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Lifetimes of quasiparticles and collective excitations in hot QED plasmas
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The perturbative calculation of the lifetime of fermion excitations in a QED plasma at high temperature is
plagued with infrared divergences which are not eliminated by the screening corrections. The physical pro-
cesses responsible for these divergences are the collisions involving the exchange of long wavelength, quasi-
static, magnetic photons, which are not screened by plasma effects. The leading divergences can be resummed
in a nonperturbative treatment based on a generalization of the Bloch-NordBitknodel at finite tempera-
ture. The resulting expression of the fermion propagator is free of infrared problems, and exhibits a nonexpo-
nential damping at large timesSg(t) ~exp{—aTtInwyt}, where w,=eT/3 is the plasma frequency and
a=e?/4. [S0556-282(197)00802-3

PACS numbgs): 12.20.Ds, 11.15.Bt, 52.68h

[. INTRODUCTION the hot QCD plasma was gauge-dependent, and could turn
out negative in some gaugésee Ref[26] for a survey of
The study of the elementary excitations of ultrarelativisticthis problen). Decisive progress on this problem was made
plasmas, such as the quark-gluon plasma, has received mubia Pisarski 3] and Braaten and Pisarski, who identified the
attention in the recent pagt—11]. (See alsd12,13 for re- resummation needed to obtain the screening corrections in a
cent reviews and more referenge¥he physical picture gauge-invariant way4] [the resummation of the so called
which emerges is that of a system with two types of degreeshard thermal loops” (HTL)]. Such screening corrections
of freedom:(i) the plasma quasiparticles, whose energy is ofare sufficient to make finite the transport cross-secti6(ig,
the order of the temperatufig (ii) the collective excitations, and also the damping rates of excitations with zero momen-
whose typical energy igT, whereg is the gauge coupling, tum [4,8]. At the same time, however, it has been remarked
assumed to be smalg<1 (in QED, g=e is the electric [3] that the HTL resummation is not sufficient to render fi-
charge. For this picture to make sense, however, it is impor-nite the damping rates of excitations with nonvanishing mo-
tant that the lifetime of the excitations be large compared tanenta. The remaining infrared divergences are due to colli-
the typical period of the modes. sions involving the exchange of long wavelength, quasistatic,
Information about the lifetime is obtained from the re- magnetic photongor gluong, which are not screened in the
tarded propagator. A usual expectation is ﬁ?@(tt,p) decays hard thermal loop approximation. Such divergences affect
exponentially in time, Sg(t,p)~e 'EMe ?P 5o that the computation of the damping rates of charged excitations,
|SR(t,p)|2~e‘F(p)t with I'(p) =2y(p), which identifies the in both Abelian and non-Abelian gauge theories. Thus, in the
lifetime of the single particle excitation agp)=1/MT"(p). lowest order calculations of Reff3], [14—25, one meets
The exponential decay may then be associated to a pole tifie same logarithmic divergence for electrons in QED, for
the Fourier transfornSg(w,p), located atw=E(p) —iy(p). charged scalars in scalar QEBQED), and for quarks and
The quasiparticles are well defined if their lifetimés much  gluons in QCD.(There is no such problem for the photon
larger than the period 1/E of the field oscillations, that is, if damping rate, which is IR finite and of ordgfT [27], since
the damping ratey is small compared to the energy If this  photons do not couple directly to gluons or to themsejves.
is the case, the respective damping rates can be comput&dirthermore, the problem appears for both spftgT) and
from the imaginary part of the on-shell self-eneryow  hard (p~T) quasiparticles. In QCD this problem is gener-
=E(p),p]. Such calculations suggest that-g>T [3,4] for  ally avoided by the ad hoc introduction of an IR cutoff
both the single-particle and the collective excitations. In the“magnetic screening mas$”~g>T, which is expected to
weak coupling regimg<1, this is indeed small compared to appear dynamically from gluon self-interactioh28]. In
the corresponding energiésf orderT andgT, respectively, QED, on the other hand, it is known that no magnetic screen-
suggesting that the quasiparticles are well defined, and thiag can occuf29], so that the solution of the problem must
collective modes are weakly damped. However, the compulie somewhere else.
tation of y in perturbation theory is plagued with infrared  In order to make the damping ratefinite, Lebedev and
divergences, which casts doubt on the validity of these stateSmilga proposed a self-consistent computation of the damp-
ments[3], [14-25. ing ratey [14], by including y also in internal propagators.
The first attempts to calculate the damping rates werdiowever, the resulting self-energy is not analytic near the
made in the early 80’s. It was then found that, to one-loopcomplex mass shell, and the logarithmic divergence actually
order, the damping rate of the soft collective excitations inreappears when the discontinuity of the self-energy is evalu-
ated ato=E—ivy [16,17]. More thorough resummations of
the fermion line led to the conclusion that the full fermion
*Also at CNRS. propagator has actually no quasiparticle pole in the complex
TAlso at CNRS. energy pland22,2(. These analyses left unanswered, how-
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ever, the question of the large time behavior of the retardetral density has the shape of a resonance strongly peaked
propagator. As we have shown in a previous Left88), the  around o=E(p), with a typical width of the order
answer to this question requires resummations for both thé/~~g?T In(1/g). With minor modifications, the above con-
fermion propagator and the photon-electron vertex functionclusions also apply for the sof¢ollective) excitations, with
Such resummations modify the analytic structure of the remomentagp~gT, whose lifetimes are found to depend on the
tarded propagator: indeed, as we shall see, they make it angtoup velocitiedv .[<1 (Sec. V.
lytic in the vicinity of the mass shell. At this stage it is useful to specify the notations and the
The need for a nonperturbative analysis follows from theconventions to be used throughout. The analytic propagator
fact that infrared divergences occur in all orders of perturbalS defined in the complex energy plane by the spectral rep-

tion theory. The leading divergences arise, in all orders, fronf€Sentation

the same kinematical regime as in the one loop calculation, 0 0

namely from the exchange of soft quasistatic magnetic pho- S(w.p)= f“ dp” ps(p”,p) €.
tons. In the imaginary time formalism, these divergences are ' o 27 pP-w '
concentrated in diagrams in which the photon lines carry

zero Matsubara frequendyo be referred as static modes in The Matsubara propagator is obtained from Elql) by set-

what follows. In this sense, they appear as the divergenceging w=iw,, with w,=(2n+1)x#T and integem. At tree

of an effective three-dimensional gauge theory, which is in1eve|,pf(po,p):ppo(po,p) wherep=p*y,, 6pE|p|:p, and

trinsically nonperturbative. Still, this effective “dimensional

reduction” brings in simplifications which can be exploited -

to arrive at an explicit solution of the problem. po(P°,p)=—[8(p°—€,) — 8(p°+ €)1, (1.2
We concentrate in this paper on the damping rate of fer- €p

mionic excitations in hot QED plasmas. Our analysis is

based on the Bloch-Nordsiedlor eikona) approximation so that

[31]. At zero temperature, this approximation provides an 0

all-order solution to the infrared catastrophe, and correctly g (,, by~ “’7’2_p'27: -1 h. (p)+ ~1 h_(p)
describes the mass-shell structure of the four-dimensional ’ w°—p w—p w+p '
fermion propagatof32]. At finite temperature, the Bloch- (1.3

Nordsieck(BN) approximation has been previously used, by

Weldon, to verify the cancellation of the infrared diver- whereh.(p)=(y"Fp-y)/2, with p=p/p.

gences in the production rate for soft real photf3®]. Let The full fermion propagator is given by the Dyson-
us also mention that an attempt to solve the IR problem oSchwinger equation

the damping rate, using the BN approximation in the same

spirit as in the present paper, has been reported in[B4f. S Hw,p)=S; H(w,p)+3(w,p). 1.9
However, although the final result obtained 84] is similar

to ours, the derivations there are plagued with several incon'fhe most genera| form of the Se|f-ener§ywhich is com-

sistencies, some of which are pointed ouf30]. patible with the rotational and chiral symmetries is
In this paper, we shall considéin Sec. lll) a different
generalization of the Bloch-Nordsieck model at finite tem- S (w,p)=a(w,p)y°+b(w,p)p-y
perature, which is better suited to study the infrared structure
of the fermion propagator. Our approach is a natural exten- =h_(p)2;(w,p)—h (P2 _(w,p), (1.5

sion of the method used in R4R32] in (3+1)-dimensional

QED (QEDs, ;) at zero temperature. However, the resultingwhere

imaginary-time BN propagator does not exponentiate in an

obvious way, and thus cannot be written in closed form, in S.(w,p)==*2th.(p)3(w,p)]. (1.6)
contrast to the usual, zero-temperature propagator. Still, we

can obtain an explicit solution once we restrict ourselves tQJsing this decomposition c& onto h.., and the analogous
the static Matsubara photon modes. We thus get the retardeg,o for Sy, Eq. (1.3), one can easily_invert Ed1.4) to get
propagatorSg(t,p), and study its large time behavigBec. e 1yl propagator:

IV). The final result is that, for timets>1/gT, the propagator

does not show the usual exponential decay alluded to before, _ A A

but the more complicated behavior Sk(t,p) S(@.p)=A4(0,p)h(P)+A-(@.p)h-(p), (1.7
~e 'E(MtgmaTthot - where w,~gT is the plasma fre-
quency, ande(p)=p~T is the average energy of the hard
fermion. This corresponds to a typical lifetime
7 1~g?T In(1/g), which is similar to the one provided by the A(w,p)=
perturbation theory with an IR cutoff of the ordgfT. Since, T
ast—oo, Sp(t) is decreasing faster than any exponential, the

Fourier transform o8i(t,p), Sg(w,p), is an entire function in The retarded propagator is obtained as the boundary value
the complex energy plane. The existence of the quasiparticlef the analytic propagatail.1) when « approaches the real

is therefore not signaled by the presence of a pol&gfy)  axis from above, i.e.Sg(w,p)=S(w+i7,p), wherew is real

in the complex energy plane. However, the associated speend »—0, . In the time representation,

where

-1
o+ [p+X.(w,p)]’

(1.8
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FIG. 1. The one-loop fermion self-energy. ’ "
FIG. 2. Two-loop diagram contributing to the fermion self-
» do energy.

SR(t,p)=f e '“'Sy(w,p)

— 277
(see Fig. 3 The total interaction rate is given by

* do
—ion [ Srepep). 09 L
. 2m f L(p)= 5, J dP,dP,dPs(27)* 6 (p+p1—p2—p3)

Th_e large time behavior d&(t,p) is_determined by the ana- X[Ny(1=Ny)(1—ng) +(1—ny)nons]| M|2,

lytic structure ofSg(w,p) when continued to complex values

of w. In the upper half planeSy(w) coincides with the ana- (2.9

lytic propagator(1.1). In the lower half planeSg(w) is de- o ] ) ]

fined by continuation across the real axis, and it may hav&nd coincides with twice the damping rajép), as com-
singularities there. The large time behaviorS(t) is con- ~ Puted from the two-loop self-energy in Fig. (p) =2y(p).
trolled in most cases by the singularity 8§(w) which lies _Th|s |dent|_ty extends to finite temperature th_e u;ual physical
closest to the real axis. If this is locatedaatE(p) —i y(p), interpretation of the se!f-energy discontinuity in terms _o_f
then Sy(t,p)~f(t,p)e EPe~ Pt \where the prefactor cross-sections f(_)r_ physmal_processes, and can be verified
f(t,p) is slowly varying, and depends on the specific naturdnrough an explicit calculatiofi13] (see also below The

of the singularity. This conventional picture breaks down innotations in Eq(2.1) are as follows: all the particles are on
gauge theories since, as we shall discuss in the next sectiofe mass shelii.e., e=p ansd € =D sfor i=1,2,3, and we

the perturbative estimate of turns out to be IR divergent. have denoted fdp=J[d"p/(2m)"2¢]. The factors

The resummation of the leading infrared divergences, carriefi =N(€i) atgee the thermal occupation numbers for fermions
out in Sec. Ill, produces a propagator which has no singularln(€) =1/(e”+1)]. Note that, for fermions, the rates of the
ity in the complexe plane. We shall then find it convenient direct and of the reverse processes have to be added to give

to calculateSy(t) directly, rather than from the Fourier trans- the total de_populationz of the fermion state with momentum
form (1.9). p* [35]. Finally, |[M|* is the scattering matrix element

squared, averaged over the sgiof the incoming electron,

and summed over the spiss, s,, ands; of the other three

particles. In the Born approximatiop\|° is independent of

the temperature and involves the propagdor,(q) of the
In this section, we review the perturbative calculations oféxchanged photoriwith g=p—p;=p,—p;). Specifically

the damping rate for a hard fermion, with momentpm T [36],

[14-29 focusing on the infrared divergences which arise in

such calculations. We assume here, as customary, that the| M|?=169"D ,,(q)D}, (q)[ p*p5+ p5p°—g**(p-p3)]

dominant singularity of the retarded propagator is a simple Y ” Y

pole whose location goes back into the tree-level pole at X[p1p3+pspi—g"™ (P1-p2)]- (2.2

w=p wheng—0.

II. THE ONE-LOOP DAMPING RATE
FOR THE HARD FERMION

We shall use below the Coulomb gauge where the only non-
trivial components oD ,,(q) are the electridor longitudi-
nal) one, Dy(g)=A(q), and the magneti¢or transverse

To leading order ing, the self-energy is given by the oneD;;(q)=(8;—0;0;)A(q).
one-loop diagram in Fig. 1. This gives no contribution to the Since the interaction rat€.1) is dominated by soft mo-
damping ratey. Indeed, when evaluated on the free massmentum transferg<<T, while the external momenta are typi-
shell, i.e., atw=p, the imaginary part of the one-loop self- cally of the order ofT, we can simplify the matrix element
energy vanishes because of kinemati@s finite tempera- | M|? by settingp=p; andp,;=p, in Eq. (2.2), and obtain
ture this argument involves subtleties which are discussed in
Appendix B) > >

The leading contribution toy comes therefore from the P P,
two-loop diagram in Fig. 2, and turns out to be quadratically
infrared divergentsee, e.g., Ref$6, 7, 13, 1§). q

The on-shell imaginary part is obtained by cutting the
diagram in Fig. 2 through the internal fermion loop and the

A. Physical interpretation of the damping

) : o : > >
lower fermion propagator. Physically, this imaginary part ac- P P,
counts for the scattering of the incoming electfarith four
momentump*=(e, ,p) and ,=p] off a thermal fermion FIG. 3. Fermion-fermion elastic scattering in the Born approxi-

(electron or positron calculated in the Born approximation mation.
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where the upper cutoff* distinguishes between soft and
hard momentagT<q* <T. Since theq integral is domi-
nated by IR momenta, its leading order value is actually

with v=p andv,=p,. Furthermore, we use energy conserva-independent ofj*.

tion to write qy=€e—e3=€,— €y, that is,

do=pP—|p—al=|p:+al—p1

which, forq<T, becomes

Qo=V-g=V1-q. (2.9
The statistical-factors in Eq2.1) satisfy the identity
N1(1-n2)(1—n3)+(1-ny)nznz
=(ny—=n2)[1+N(do) — N3], (2.5

which featuresN(qg), the Bose-Einstein thermal factor for

the virtual photon. Since,=e€;+q,, andqo<<p;~

dn
N —n,)[1+N(gg) —Nngl=—=—— qoN(gg)=—T —,
(ng—ny)[ (do) — N3] dp, doN(do) dp,
(2.6
where we have used the fact that, at snoghT,
1+N(dg) —nz=N(dg)=T/do. 2.7

Finally, we use Eq(2.4) to rewrite the integrations ovey,
andp; as

dd d®
J (ziﬁ (2 p)33 (2m)*6™(p+p1—Pp2—ps)
* dQO
5. 2m8(do= V- @)278(do— V1 q),

(2.9

so that we may usp,, g, andqg as independent integration

variables in Eq(2.1):

d®p; [ dn d®q (> dogo

F<p):16”294Tf <2w>§<_d_p1)f @m? ) . 2m
X 8(qo—V-0)8(do—V1-q)|A(q)

+(VXQ)'(V1Xa)At(Q)|2- (2.9

We perform the angular integrations owe=p, and g by
using the delta functions, while the radial integration gwer

gives
dn 2T2

fdplpl = (2.10
We obtain finally

4T3 qO

Fw—f f > | 1Ai1(G0.0)f?
1 Jo
+t311 —?) |A( QO,CI)|2}, (2.11

The two terms within the parentheses in E211) corre-
spond to the exchange of an electric and of a magnetic
photon respectively. For a bare photon, we have
|A1(do,)[?=1/g* and [A(qo,q)|*=1/(a5—0°)? so that
theq integral in Eg.(2.11 shows a quadratic IR divergence:

g4-|-3 q* dq

This divergence reflects the singular behavior of the Ruther-
ford cross section for forward scatterihg6].

As is well known, however, the quadratic divergence is
removed by the screening corrections contained in the pho-
ton polarization tensor. These modify the electric and mag-
netic propagators as

-1
* j— S
A|(qO!q)_ q2+ 5H|(QO,C{)’
A:(Go.q)= qg—qz—éﬂt(qo,q)’ 213

where S11, and 811, are the respective pieces of the photon
polarization tensofin the hard thermal loop approximation
[1,2]). We shall see below that the leading IR contribution
comes from the domaigy,<g<T, where we can use the
approximate expressions

3 Jdo
SI\(do<0)=3wp=mp, ll(do=a)=—i 7 &} ",
(2.14

wherew,=gT/3 is the plasma frequency, anth=v3w, is

the Debye mass. We see that screening occurs in different
ways in the electric and the magnetic sectors. In the electric
sector, the familiar static Debye screening provides an IR
cutoff mp~gT. Accordingly, the electric contribution 0 is
finite, and of the ordeF,~g*T3m3~g?T. Its exact value
can be computed by numerical integratidr’]. In the mag-
netic sector, screening occurs only for nonzero frequepcy
[2,6]. This comes from the imaginary part of the polarization
tensor, and can be associated to the Landau damping of
spacelike photonsy3<q?). This “dynamical screening” is

not sufficient to completely remove the IR divergencd of

4T3j Jq ddo 1
q 27 q*+(3mwldo/4q)?

_gZT a* dg 37w, 9T J'
—?2— q arctal 4—q2— 277_

pdq
q’

(2.15

In writing the last equality, we payed attention only to the
dominant, logarithmically divergent, contribution. To isolate
it, we have written
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To evaluate the one-loop diagram in Fig. 4, we use the
imaginary time formalism and write

s =0T z f ﬁ _ * DMV
(2.1

p P-q q°=iow
In this equation, all the energy variables are purely imagi-
370l nary and discrete to start  with; namely,
arctarﬁ Zp):—, p’=iw,=i(2n+1)#T for the external fermion line, and
49 2 q°=iw,=i27mT for the internal photon line, with integers
n andm. Furthermorek=p—q, Sy(p—q) is the free ferm-
as appropriate fog<w,, and we have introduced the upper jon propagator, Eq(1.3), and *D**(q) is the resummed
cutoff w,~gT to approximately account for the correct UV photon propagator. We shall perform our computations in the
behavior of the integrand: namely, g8 w,, the integrand  Coulomb gaugdthe one-loop damping rate is gauge inde-
is decreasing likes ;/g°, so that they-integral is indeed cut pendenf4,37,39; see also Appendix B
off at g~ w,. The continuation of(p) to real external energy can be
The remaining IR divergence in E.15 is due to col-  done only after performing the Matsubara sum over
lisions involving the exchange of very sdi|—0), quasi- q,=iw,,, and consists in simply replacingfor retarded
static (qo—0) magnetic photons, which are not screened byhoundary conditionsp®=iw, by w+iz, with real » and
plasma effects. To see that, note that the IR contribution tq, .0, . In order to perform the Matsubara sum in E2.17),
I', comes from momenta<gT, where[*A(do.0)* is a- it is convenient to use the spectral representations of the
most a delta function of,: various propagators. F@,, this is given in Eq.(1.1), with
ps(p%p)=pPpo(p°,p). For the electric and magnetic photon
propagators we have similarly

FIG. 4. The resummed one-loop self-energy.

4

~ o .

q4+(377w;2)q0/4(:{)2 gq—0 3qw;2) (qO) © d * ( )
(2.16 Moo= | Grbled

— E qo_(.!)

|*At(q01q)|2:

This is so because, ag—0, the imaginary part of the po-

larization tensor vanishes linearfgee the second equation * A T f” % *pi(do,a) (2.18
(2.14)], a property which can be related to the behavior of (@.0)= a> )= 27 Qo—o '

the phase space for the Landau damping processes. Since

energy conservation requireg,=q cos, where 6 is the  where*p, and* p, are the corresponding spectral densities,
angle between the momentum of the virtual photghand

that of the incoming fermion(p), the magnetic photons *p141(0o,q)=21m*A, (qo+i7n,q). (2.19
which are responsible for the singularity are emitted, or ab-
sorbed, at nearly 90 degrees. Note the subtraction performed in the spectral representation

To conclude this subsection, we note that if we tempo-of *A(w,q): this is necessary sinceA (w,q)— —1/g> as
rarily leave aside the logarithmic divergence, then both thdw|—. When the above expressions are inserted in Eq.
electric and the magnetic damping rates are of ogfd,  (2.17), the sum ovemw,, can be performed easily. One ob-
rather thang*T as one would naively expect by looking at tains then
times referred as anomalous damp(ig], and is a conse- S (p)=— ZJ J*“’ dk® J’+°° dg°
guence of the strong sensitivity of the scattering cross section (P=-9 ( e 27 )_w 2w
to the IR behavior of the photon propagator. By comparison,
fermion, namely the Compton scattering and the annihilation Xpo(K) vy, " (@) — o7 °—p°
process, are less IR singular—as they involve the exchange
of a virtual fermion—and only contribute at ordgfT. (2.20

d3q
2r)

the diagrams in Figs. 2 and 3. This situation has been some-
the other two-body collisions leading to the damping of the 1+N(g°) —n(k?

The analytical continuatiop’— w+i7 can now be done,
B. Resummed one-loop self-energy and the damping rate is calculated g9)=—Im2_(p,p).

While the above calculation of the interaction rate in the©One gets
Born approximation is physically transparent, for the subse- 2 4 ve KO [ dg®
quent developments in this paper it is more convenient to,,( ) — 9" f 4 f ax” f aq (K94 ¢ o)
obtain y from the imaginary part of the self-energy. To low- o (2m)?® ) w 27 | o 2w
est order, we can write{p)=—Im2_(p,p), with 2, (w,p)
defined as in Eq(1.6) in terms of the resummed one-loop X[1+N(g%) —n(k%)]po(k)
self-energy. The corresponding diagram is displayed in Fig. <IN wka—(0- &) (k- &) T*
4: the blob on the photon line in this figure denotes the {2lwko=(p- ) (k- @)1 pi()
effective photon propagator of E(R.13. +[wko+ (p-K)]*pi(a)}, (2.2)
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wherew=p, k*=(k°k) andk=p—q.
The spectral function§2.19 of the dressed photon have
the structure

*ps(do,q) =2me(do)24(q) a5 — w2(q)]
+Bs(do,q) 0(a%—q3), (2.22

wheres=1I ort, z,(q) is the residue of the timelike pole at
ws(q), and

Yo
Bi(do.q) =37 w} q *A(do. )|,

do(a?—a}

)
Bi(do. Q) =37y ——5 5 [*Addo. Q)% (223

For w—p, the energy conservation selects the positive value

ko=€p—q=Ip—q| from the spectral densityy(k,,k) of the

JEAN-PAUL BLAIZOT AND EDMOND IANCU
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can easily make contact between these two presentations.
Namely, Eq.2.11) in Sec. Il A is essentially the same as the
above Eq(2.26), as can be seen by using E§.23 for the
spectral densities. Moreover, the IR singular piece of the
damping ratg2.26) is given by Eq.(2.15), as we verify now
through a different computation based on the sum ril&$
displayed in Appendix A.

Using the behavior of these sum rules for large photon
momentag> w,, as given in EQ(A6), one can verify that
is independent of the arbitrary intermediate sagle to the
order of interestthe contribution of the momenig>q* is
of relative ordergT/q*). Furthermore, the infrared behavior
is dominated by that term of Eq2.26) which involves the
transverse spectral density divided Qy. Specifically, for
small momenta<w, we can write

g dgg 1 2
f_qmﬁt(qom—?[lm(q%pn, (.27

internal fermion. Also, the kinematics restricts the photon

momentum to be spacelikégy|<q). Finally, because of the

which diverges as i in the zero momentum limit. All the

infrared sensitivity of the damping rate, the whole contribu-other terms give finite contributions &s-0 (of relative or-

tion toI" in the on-shell limit(and not only its divergent part
comes from soft photon momenig< T. Since, on the other

hand,p~T, we can make the following kinematical approxi-

mations when evaluating ER.21) (recall thatw=p):
€p-q=P—P-q=p—q cosy,
wep_g(p-0)(k-G)=p*(1-cosh),
wko+(p-k)=2p?,
1+N(Q%) —n(ep-q)=N(q°)=T/q°. (2.24

With these simplifications, Eq2.21) becomes

d®q (= dqgo
~ 2 —
7(p)_7Tg Tf (277)3 f " 217_q0 5(q0 q Coag)

X[*pi(q)+(1—cog0)* p(q)], (2.29

derg®/w3), and will be neglected here. By retaining only the
leading term in Eq(2.27), we obtain the singular contribu-
tion to Eq.(2.26):

9°T

op 1 9*T o,
Ysing= 2 L dq a—m'n—-

2

(2.28

The upper cutoffw,~gT accounts approximately for the
terms which have been neglected when keeping only e 1/
contribution to the sum rul€2.27) [recall that the full inte-
grand in Eq.(2.26 is indeed cut off ag~w,]. As long as
we are interested only in the coefficient of the logarithm, the
precise value of this cutoff is unimportant. The scaig,
however, is uniquely determined by the physical process re-
sponsible for the existence of space like photons, i.e., the
Landau damping. As we shall see later, this is the scale
which fixes the long time behavior of the retarded propaga-
tor.

In terms of collisions, the logarithmic singularity ¢f Eq.

and it is independent of the external momentum. To be O 28 arises from the exchange of very soft quasistatic

sistent with the approximations performed, we supply th

above integral oveq with an upper cutoffq* satisfying
gT<qg* <T. We shall verify later that, to the order of inter-
est, the value of the integral is actually independengaf
By using thed function to perform the angular integration
in Eg. (2.25, we obtain
9T Q*d Jq dao
- Ax “ q9 —q 270

2

q
X 1—q—2)/3t(qo,q>} (2.26

Bi(do,q) +

e(quO) magnetic photons, as already discussed in Sec. Il A.

In the present computation, this may be seen also as follows:
for very soft momentaj<w,, the functiong(q,,q)/d, is
strongly peaked aj,=0 (see Fig. $and in the calculation of
the integral(2.27) it can be replaced by the following ap-
proximate expression:

w,zjq 2 s
2 q°+(3Twytod)? o d° (@)
(2.29

This is, of course, just a translation of the corresponding

37

1
— Bi(do<<q)=
do

In order to regularize the IR divergence, we have inserted @roperty(2.16 of the magnetic propagator. Still, this is sug-

lower cutoff w in the integral overg. Note that because of

gestive because the

quantity 5:(do,9q)N(do)

the kinematics, the support of the energy integral is limited= (T/qo) B:(do,q) is the density of states which are available

to —q<gg<g, so that only the off-shell pieces; 1(q,,q) of

for the emission ¢,>0) or the absorption y<<0) of a

the photon spectral densities contribute to the damping ratevirtual photon with momentung and energyqy. Then, Eq.
This is consistent with the physical interpretation of the(2.29 shows that, for very soft momentp<w,, the whole
damping rate presented in Sec. Il A. In fact, at this point, wedensity of states is concentratedggt=0 (see Fig. 5.
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1
Y= ap t{p Im Z4(p)]

3
2
2Tf d’q 1 -1
! =9 (211')352 mw—p—q coh+in
0.2 0.4 gZT prd fld vs y
== co —p—qco
2w ), 99) (w—p—q cosh)
@p
ZaTmm, (2.31)

where the approximate equality means that only regular
terms have been dropped. In the mass-shell limitp, this
reproduces the singular result of EQ.28. Note that the

10 upper cutoffwy, is the only trace of the screening effects in
the above calculation; indeed, the magnetostatic propagator
is the same as at the tree-level, nantely(0,q) = 1/9°.

0 The divergence ofy at the (resummed one-loop level
invites a closer examination of the higher order corrections.
The two-loop self-energy is briefly discussed in Appendix C,
where we show that the leading infrared divergence arises,
again from terms where both the internal photons are static

FIG. 5. The functiongs,(qo.q) andB,(qo.)/do for g=0.5u, . and magnetic. This result is readily generalized to all orders;

All the quantities are made adimensional by multiplying them bythe most singular contributions to the on—shell fermion self-
appropriate powers af, . energy are confined to the magnetostatic sector. When com-

puting these contributions, all the loop integrals run over the
three momentay of the static internal photons, so that the
infrared singularities are effectively those of a three-
. . . _ dimensional theory. Consider then a genemidoop self-
Because of the delta function singulariffdo) in EQ.  gnerqy diagram with only magnetostatic modes: Its disconti-
(2.29, the above discussion suggests that, in the imaginary, i “when evaluated on the tree-level mass-shelp, has
time for_mallsm, the whole IR S|_ngulz_:1r|ty |s_c_oncentrated IN howerlike IR divergences, possibly combined with logarith-
the static modej,=0. Let us verify this explicitly by show-  mjc ones. Power counting shows that the leading divergences
ing that, indeed, the logarithm in Eq2.28 arises entirely zre of relative orderd?T/u)" %, whereu is an IR cutoff.
from the magnetic contribution of the static term Sych strong IR divergences are analogous to those identified
do=iwyn=0 in the Matsubara sum of Ed2.17) [15,24.  in the analysis of the corrections to the screening mass in
Note that the analytic continuation of this term to real energy[39], and their presence signals a breakdown of perturbation
(po— w+i7n) is well defined, since all its singularities lie on theory.

-0.4 -0.2 0.2 0.4

C. Static photon modes and non-perturbative aspects

the real axis in the compleg, plane.(This is not so for the To get further insight, it is useful to consider the explicit
terms withgy=iw,,# 0, which individually have singulari- two-loop calculation from Appendix C; the on-shell self-
ties off the real axig. energy>®(p,p) shows a linear plus logarithmic divergence.
The magnetostatic mode gives the following contribution(There are also subleading, purely logarithmic, divergences,
to the one-loop self-energy: but these are left out in a leading-order calculadi@pecifi-
cally, Eq.(C5) yields

3 ~
Esw,p):—ngf (;’ q)s ¥So(w,p—q)y*Di(0,0) 2P(p,p)= 3 tTh.(Z?(p,p)]

o

3. i .0 i S AiA 2(an? @y aT
:ngf d’q y[ey —(p—@)-y]¥ 8"-q'd = I T e,
(2m)° (o+in)—(p—@)* o

(2.32

where 2 M(p,p)=—iaT In(w,/w) is the on-shell limit of

the one-loop self-energy in EqR.31). Now, in order to com-
The momentum integral in Eq2.30 shows a logarithmic  Pute the two-loop contribution to the damping rate, one has
ultraviolet divergence. In the full calculation, such a diver- {0 €xpand the dispersion equatior-p+2 (w,p) up to the
gence would be cut off by the contribution of the nonstaticorder of interest. This yields the 2-loop mass-shell correction

modes. [Recall the discussion after Eq2.28.] When N the form

supplemented with an upper cutaéf,, Eq. (2.30 yields the S0 @(p)=[zV(p)— 1]2&1)(p,p)+2(f)(p,p)
following contribution to the fermion damping ratéor

w=p): +0(3 loops, (2.33

(2.30
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where

g3 2 aT
(p)—1=t| =ZL (2.34

@ lep ™2 - W e
is the one-loop residue, whose leading IR-divergent part has

been computed in Appendix C. By combining EQ.32

with Egs.(2.33 and (2.34), we note that the leading, pow-  FIG. 6. A genericn-loop diagram(here,n=6) for the self-

erlike, divergences cancel between the two-loop self-energgnergy in quenched QED.

and the one-loop residue, so that the two-loop correction to

is only logarithmically divergent, as at the one loop level. Thus, when expressed in terms of the resummed photon
A simple argument, based on a gauge-invariant approxipropagator, the relevant self-energy diagrams contain no

mation to the full Dyson-Schwinger equation which is de-fermion loops: the internal photon lines are all attached on

tailed in Appendix C, suggests that this is a general featurghe incoming fermion line. A typicah-loop diagram is

if we assume the fermion propagator to have a simple pole &hown in Fig. 6. There are as many loops as photon propa-

the mass-shell, then the damping rate remains logarithmigators, and we can choose all the independent loop momenta

cally divergent to all orders. That is, the powerlike diver-to be the momenteag, of the soft photon lines(here

gences which occur ir®(w=p) appear to cancel against r=1,...n for ann-loop graph. All such diagrams are com-

similar divergences in the residu@ similar all-order can- posed from the three following structural uni¢s: the effec-

cellation has been argued in three-dimensional QED at zerdve photon propagatdfD ,,(q); (ii) the fermion propagator

temperaturg40].) However, the persistence of the logarith- So(p+0), wherep is the hard external momentum, agds

mic divergence in all orders of perturbation theory suggest& linear combination of the soft loop moment@j) the

that the analytic structure of the propagator is more compliphoton-fermion vertexy”. In the kinematical regime of in-

cated than a simple pole. terest, both the fermion propagator and the vertex function
To conclude this section, let us emphasize that when wean be further simplified, along the lines explained in Sec.

compute the imaginary part of multiloop diagrams with only Il B. After performing the Matsubara sums over the internal

static internal photons, we are actually considering the efbosonic frequencies, and the analytic continuation to real ex-

fects of multiple collisions involving the exchange of quasi-ternal energy, the internal fermion lines are represented by

static magnetic photons with the plasma particles. The facgpectral densities such psee, e.g., Eq(2.20]

that these processésr, more accurately, their most IR sin-

gular contributions to the interaction ratean be effectivel 0 n ) =TkOAO— (e q).

taken into account by the “dimensional reduction” to )t/he pi(ke,p= @) =[ky = (p=q)-7] €p—q

magnetostatic photon modes is a consequence of the specific

infrared behavior of the resummed magnetic propagator, as X[ﬁ(ko_fp—q)_ S(k+ €p-a)l, (3.

expressed by Eq2.16).

v

which  multiply energy denominators of the form

_1,0_ A0 i <
IIl. THE BLOCH-NORDSIECK MODEL i/(w ~k€ _(3, )d_p_sc;nccoew (v\?hZPév—aeV\//(;p—ﬁ)C?g rep|:§:
p—q= €p— V0= e aue
AT FINITE TEMPERATURE Eq. (3_1) with

Previously, we have shown that the leading infrared di- i ~
vergences in the perturbative computation of the fermion pi(K%p—a)=(¥°=p- y) w8[K°~Vv-(p—0)]
self-energy are those of an effective three-dimensional _ Avc 0
theory involving only static magnetic photons. We shall take =h+(P)po(k.p=0), 3.2
advantage of this in order to get an explicit expression forth%vhere the reduced spectral densit
fermion propagator. However, before restricting ourselves to P y
the static photon modes, we shall first develop a more gen-
eral approach which is essentially a finite-temperature exten-

sion of the Bloch-Nordsieck approximati$¢81,32.

po(w,p)=278(w—V-p) (3.3

involves only the positive-energy fermion state. The contri-
bution of the negative-energy fermion state, initially present
in Eq. (3.1), is suppressed by the corresponding large energy
We start by deriving a set of simplified Feynman rulesdenominator.
which allows one to compute the most IR singular contribu- One sees in Eq3.2) that neither the spin structure, nor
tions to the damping rate from higher loop self-energy dia-the negative-energy fermion intermediate states, play an im-
grams. The leading infrared divergences arise from diagramgortant role. In fact, the residual spin structure of E2j2),
where all the internal photon lines are soft, and thereforé.e., the spin matrixh,(p), does not involve the loop mo-
dressed by the screening corrections. No further resummarenta anymore, and can be absorbed into a redefinition of
tion of the photon lines is necessary beyond the hard thermahe vertex function. To see this, recall that, for a positive
loop approximation: in Abelian gauge theories, all the higherenergy hard fermion, the relevant self-energy is
order corrections to the photon polarization tensor remair®, =tr[h, (p)2]/2. In the present kinematical regime, the
perturbative, and do not modify the qualitative IR behaviorspin structure of a typicah-loop contribution to3, factor-
of the HTL-resummed propagatfdenoted a$D ,,(q)]. izes into the trace

A. Perturbation theory with soft photons
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| #4127 #2n= Lt h_ (D) y*th () y*2- - -h, (P) y*2n]. andD,=d,+igA,. In these equations, the time variables
(3.9 are purely imaginarye.g., xo=—i7, andy,=—i7,, with
. . o O=7, 1< and Sg(x—y)= (74— 7y)(x—y)], and the
By using the identitiegwith v*=(1,v)] gauge fields are periodic in tima,,(r=0)=A (7= ). The

- - R tree-level photon action has been written as
h (p)y*h,(p)=v*h . (p),

. 71 d*a .
tr h, (p) y*]=20v", (3.5 (A,Dg A)=T% (zﬂ)gA (iwm,q)Do,,(1om,0)
one readily derives XA (—iwy,—q), (3.10
| Hak2™ Hon=p F1p 2. - -pHan, (3.8 wherew,=27mT with integerm, andD,,, is the free pho-

ton propagator in an arbitrary gauge.
The same result would have been obtained by using the re- T?]e ?er?mon propagatorSE(yxg y)gandS (x,y|A) are an-
duced spectral density in E¢B.3) instead of Eq(3.2), to- tiperiodic. For instance S

gether with the effective vertek*=v*.
To conclude, the corrections to the self-enebgy which Se(7,=0,7,|A) = —Se(7,=8,7,|A) (3.11
. . . . . iy E\ /X 1y ’
derive from the fermion interactions with soft photons can be
obtained from the Feynman graphs of quenched QED, bgnd similarly for z,. The functional determinant
evaluating the latter with the following effective Feynman exd —TrIinSg(x,y|A)] describes the plasma polarization.
rules: (i) the photon propagatdfD,,,(q); (i) the fermion  Diagrammatically, this term generates internal fermion
(analytig propagator loops. As already discussed, the only polarization effects
o - o which need to be considered are those contained in the pho-
+= dK* po(k®,p—0) ton HTL, which we denote here afl,,,:
ColP=D=| | 27 0= (p"=®)
TrinSe(x,y|A)=3(A,5IIA). (3.12
-1

=g —v-(p—q)’

(8.7 Furthermore, the simplifications discussed in the previous
subsection are easily implemented by replacing the exact

(iii) the photon-fermion vertek*=v*. Any reference to the ProPagatoSe(x,y|A) in Eg. (3.8) with the Bloch-Nordsieck

spin structure, and also to the antiparticles, has disappeare‘&r.Opagato'GE(X'y|A)' solution of the equation

We note that, when used in relation to the one-loop self- T _ _
energy in Fig. 4, the above Feynman rules yield directly the (v DY) Gel(x.y|A) = de(x—y), (313
expression(2.26 for tzhe damping ratethat is, the whole it antiperiodic boundary conditiongFormally, this equa-
contribution of ordeg“T, and not only its divergent pieEe jon is obtained by replacing the Dirac matricgé by the
For higher loop diagrams however, we do not expect all th%article velocity v# in the full equation(3.9]. With the

subleading divergences to be correctly reproduced since, ff)ove simplifications, the general equati@®) reduces to
instance, contributions coming from mixed diagrams, where

some photons are hard and the other ones are soft, have been . ) .
ignored. Se(x,y)=Z2 f[dA]Ge(X,ﬂA)eXF{—z(A,*D Al
The simplified structure which is put forward here is fa- (3.14

miliar from most treatments of the IR divergences at zero

temperaturdsee, e.g.[41] and references thergirt can be  with * D;,}= D 5I}V+ oll,,. It is easy to verify that, when
most economically exploited within the Bloch-Nordsieck considered in perturbation theory, Eq8.13 and (3.14
model[31] (see alsd32]), which, for the vacuum theory, is generate the simplified Feynman rules alluded to at the end
exactly soluble. In order to search for a nonperturbative soef the previous subsection.

lution at finite temperature, we follow Reff32] and refor-

mulate this model in the language of path integrals. C. The Bloch-Nordsieck propagator in imaginary time

B. The Bloch-Nordsieck model in functional form In real time, the equation foB(x,y|A) reads
In the Matsubara formalism, the exact fermion propagator —i(v-DG(x,y|A) =8 (x~y), (3.19

at finite temperature can be obtained as "
and can be solved exactly. For retarded boundary conditions,

. G(x,y|A) =0 for x,<y,, the solution reads
Scxy) =2 [ [dAISc(xylA et~ Trinsc(x.y/A)
Gr(x,Y[A) =i 6(x°—y%) 8'¥[x—y—v(x*—y*)JU(x.y)
~3(A,Dg*A)] (39 .
=i | dts¥(x—y—vt)U(x,x—vt). (3.1
whereSg(x,y|A) is the(imaginary-time fermion propagator fo (x=y=ohU( vt). (318
in the presence of a background gauge field:
Here, U(x,y) is the parallel transporter along the straight
—iD,Se(X,Y|A)= Se(x—Y), (3.9 line trajectory of velocityv joining x andy(y=x—ut):
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U(x,x—vt)=exp{—igjOtdSwA[x—v(t—s)]]. GE(x,y|A)=j{dp}e‘ip'<x‘y)GE(x,p|A)

(3.17

B
= —u(v-p) .D
In order to verify that Eq(3.16 is indeed a solution of Eq. Ge(X,p|A) Jo due V(x,v-p;u), (3.23
(3.195, one may use the fact that the functih{x,x—uvt)
satisfies the following equation, where the unknown functiok'(x,v-p;u) satisfies

4 .
- % U(x,x—vt)=(v-DU(x,x—vt),  (3.18 oy VoDV,

with the boundary conditiot) =1 for t=0. V(n=0iu)=V(n=pu),

In imaginary time, the resolution of E€3.13 is compli- e — B(v-p) h— R —
cated by the antiperiodic boundary conditions to be imposed Vx.v-piu=0)+e Viv-piu=p)=1. (324
on Gg: As in the real-time case, the-dependence o6Gg(x,p|A)

arises entirely from its interactions with tifeeriodig gauge
Ge(7,=0,7y|A) = — Ge(7,=B,7,|A), (3.19 field. If A=0, we recover the free propagat®.20 by re-
placing V(x,v-p;u) with n(v-p), which satisfies indeed the
and similarly forr, . The free equatioitA=0) can be easily last equation(3.24) because of the identity
solved in momentum space:

n(e)+efn(e)=1. (3.29
Ge(io,,p)= R (3.20 Equation(3.24), with the indicated boundary conditions,
V-p~lwy can be solved as a series in powersg#, , that is, as a

o ) perturbative expansion:
wherew,=(2n+1)#T. This is in agreement with E43.7).

In the imaginary time representation, v-A(Q)

V(x,V~p;U)=n(V'p)+9f [dq]e“q'xﬁ[n(v‘p)
Ge(7,p)=T>, e "“n"Ge(iw,,p) 92
“n —n[v-(p+q)]e’”(”'°‘>]+?f[dql]
=e "Po(m)[1-n(v-p)]—6(—7)n(v-p)}, AQD) v-AGy)
—i v 1) U 2
3.2 X[dg,]e (@1 a)
(3.2 [dg,] 00 00
}/;k;i;? N(w)=1[exp(Bw)+1] is the Fermi-Dirac statistical X[n(v-p)—n[v-(p+q;)]e u@
Consider now the interacting problem, wik#0. As a —n[v-(p+qp)Je U %)

guidance in searching a solution to £8.13 with antiperi-
odic boundary conditions, we use the soluti@l6 to the :
real-time problem, which we write in the fornwith (3.26
p*=(w,p) andv-p=w—Vv-p]

+n[v-(p+ayt+ap)le” r ]+

It can be verified, using in particular the identit§.25 that
d*p _ the serieq3.26 satisfies indeed Eq$3.24).

GR(X-Y|A):f 2 e P X YGg(x,p|A) As already noted, the quantity/(x,v-p;u) is the
imaginary-time analogue of the real-time parallel transporter
U(x,x—ut), Eg.(3.17. This is also manifest from the anal-
ogy between Eq(3.18 for U(x,x—vt) and Eq.(3.24 for
V(x,v-p;u). By solving Eq.(3.18 in perturbation theory, one
generates a series analogous to B326), where, however,
where thex-dependence of the functioBg(x,p|A) comes the thermal factors are absent. The correspondence between

from the corresponding dependence of the background field€ two series can be easily worked out term by term. For
By analogy, we look for the solutioGg(x,y|A) to the  INstance,
imaginary-time BN equation in the following form

GR(x,p|A)=if dt €'@P=7my(x,x—vt), (3.22
0

{n(v-p)=nlv-(p+g)le v ¥} (1-e'D),
and so on. In the real-time series, factorizations occur, which
To simplify notations, the measure in the momentum integralsbring in simplifications. For example, in second order,
will be denoted below by the following condensed notation:

B d3q B d®p
[dq]=T 2 f (271_)3’ f{dp}=Tpo,ZOddf (2,”,)3 .

do.even

(1_ eit(v-ql)_ eit(v-q2)+ eit(v-q1+v-q2))

— (1_ eit(u-ql))(l_ eit<U'QZ))_
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Because of such factorizations, the real-time series correFhen, for —B8<7<0, we obtain

sponding to Eq(3.26 can be resummed into an exponential,

leading to the expressiof8.17). In the imaginary time, the

presence of the thermal factors prevents such a simple expo-

nentiation.
By insertingGg(x,y|A), Egs.(3.23 and(3.26), into Eq.

(3.14), we can perform the Gaussian functional integral over

the photon fields term by term. This yields

Se(X—y)=f {dp}e™ P *7Ys(p)

Se(p)=— Joﬁdu UPV(v-piu), (329

WhereV(v~p;u) is the functional average &f(x,v-p;u), Eq.

(3.26),
_ g2n
V(V~p;u)=n(V-p)+n§1(—1)”W f [da,da,---dgp]

D(qy)D(dy) D (ap)
(- 0020007 (v g2 LNV P)
—n[v-(p+q;)]e '@ % —nlv-(p+a,)]
xe U924 (= 1) [v- (p+ay+ 0,

(3.28

4oty Jem W@ttt
and

D(q)=v**D, (iwp,qu". (3.29

Equations(3.27) and (3.28 express the Matsubara fermion
propagator in the Bloch-Nordsieck model as a formal series

in powers ofg?.

D. The retarded propagator

983
S<(T,X)=f dgﬁpei‘"xsﬂr.p),
(2m)
S<(r,p)=e PN (v-p;u=—1), (3.33
and similarly, for Gs7<p,
S*(7,p)=eB VPNV (v.p;u=B—1). (3.39
In particular, the last Eq3.24) implies
S7(0p)+S~(0p)=1. (3.39

If the functionsS~(7) andS™(7) are known explicitly, then
they can be analytically extended in the complex time plane
by simply replacingr—it, with complext. The functions
S=(t) and S™(t) thus obtained are well defined for any
satisfying GsImt<p, in the case 06~(t), and—B<Imt<0,

for S7(t). For the problem at hand, these analytic properties
can be verified in E((3.28): they arise from the fact that the
thermal factors render the momentum integrals like

convergent for any €u<gB. We see that the statistical fac-
tors are essential to ensure the correct analytical properties;
but, at the same time, they prevent the exponentiation in Eq.
(3.28.

According to Egs(3.30, (3.33, and(3.34), the retarded
propagator is given by

Sr(t,p)=i6(t)e VP BV-PY/(y. p;u= B—it)
+V(v-p;u=—it)]. (3.36

The analytic continuation of the functioﬁ(v-p;u) to real
time is permitted only after performing the Matsubara sums

To study the mass-shell behavior of the fermion propagaever the bosonic frequencie|§=iwm in all the terms of the
tor, we need the retarded propagator, rather than the Matsulrfinite serieg3.28. Fortunately, we may avoid doing this if
ara one. These two propagators are related by analytic cove restrict ourselves to resumming the leading infrared di-
tinuation in either the complex energy, or the complex timevergences. This is further explained in the next subsection.
plane. Here it is more convenient to proceed in the time
representation. To this aim, we recall that the retarded propa-

gator Si(t,p) can be obtained as
Sg(t,p)=iO(t)[S™(t,p)+S~(t,p)], (3.30 lar terms of the perturbative expansion are concentrated in
the static photon modes. Considering only the contribution of
where the function$~ and S~ are the analytic components the static modesj,=iw,,=0 to Eq.(3.28 is equivalent to
of the time-ordered propagat§i3,35. These can be ob- solving the Bloch-Nordsieck equatidB.13 in the presence
tained from the Matsubara propagator: of a static background field ,(x):

Se(7,p)=0(7)S™(7,p) = 0(—7)S™(7,p). (3.31)

In order to get the Matsubara propagator we have to
evaluate first the sum ovary=iw, in Eq. (3.27). Since
V(v-p;u) is independent op,, this may be done trivially, by
using

E. Dimensional reduction

In view of the discussion in Sec. Il C, the most IR singu-

d*q . B
AM(X)=TI (27:])3 e'q'XAM(wm=0,q)=TJA0 d7A,(7,X).
(3.37

With only static photon modes, the analytic continuation of
Eq. (3.29 to real time is trivial, and the sum in E¢3.36

can be performed explicitly, term by term. As we show now,
the thermal occupation factors compensate in this sum, and

T e o™ W= §(r+u)—8(r+u—p). : :
the resulting series fdBg(t,p) can be resummed as an expo-

n,odd

(3.32
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nential. To be specific, consider the term of ordérin the  is needed since the corresponding momentum integral turns
expansion(3.28. To V(v-p;u= —it), this terms contributes out to be ultraviolet finitdsee below, Eq4.12].
[D(gq)=D(0,9)] Equation(3.42 determines the large time behavior of the
fermion propagator, to be discussed in the next section. At a
it first sight, the considerable simplifications leading to this
-9? f 23 (v q)2 {n(v-p)—nlv-(p+a)]e It equationfand coming from the restriction to the static photon
(3.3 ~ Modes in Eq(3.28] may seem rather accidental. However,
as we explain now, there is a simple reason for these simpli-

while to eﬁ(V'p)V(v-p;UZB—it) it contributes fications, and, in fact, Eq3.42 could have been obtained in
a more direct way30], which avoids some of the complica-
d3q D(q) siv. tions of the Matsubara formalisrtthe latter are essential
-g° f 2m3 (v-q)? e?V"Pn(v-p) only for the nonstatic modgsLet us indeed return briefly to
the functional integral of Eq(3.14), and consider its ap-
—n[v-(p+q)]efVDe-itv-an, (3.39  proximation where the Bloch-Nordsieck propagator

Ge(x,y|A) includes only the static electromagnetic field
In the sum of these two expressions, the thermal factors disa ,(x) of Eq. (3.37. Then, the contribution of the nonstatic
appear because of the identi§.25, leaving photon modes to the functional integral trivially factorizes,
and is compensated by the corresponding contribution to the
partition functionZ, thus leaving

By analyzing similar compensations for the higher order

_—--1 _1 *—1
terms, we eventually recognize the power expansion of an Se(x.y)=Zo f [dAIGe(x.y|A)ex =z (A,*D™"A)ol,

exponential: (3.449
Sr(t,p)=i6(t)e "V PA(Y), (341
where A=A, (0,=00), and @A*D 'A), denotes the
with wym=0 contribution to the effective photon acti¢®.10); cor-
respondinglyZ, is the partition function of the static mode
) d3q (q) alone. Since the background figlgl37) is time independent,
A(t)=exp —g°T 2m3 v-q)? [1—cog(v-q)];. the propagatoGg(x,y|A) depends only on the time differ-

(3.4  €NceXo—Yo, i.e.,Ge(X,Y|A)=Gg(Xy—Yo.X,y|A). Its Fourier
transform can be analytically continued in the complex en-

The zero-frequency photon propagator reads ergy plane, and the resulting function coincides, in the upper
half plane, with the retarded propagator. It is then convenient
5(q)zvu*D (0n=00)0" to take the Fourier transform of E¢3.44, and write
r [p*=(w,,p), ,=(2n+1)7T]:
_ 1 1 ( (V-q)z) T (v-q)?
q2+m% q2 q2 q4 '
@43 S(p)=2;" | [aAIGE(xplIext ~1(a D *A)].

(3.4

in an arbitrary gauge of the Coulomb or the covariant type
(A=0 corresponds to both the Landau and the strict Coulomb

gauges The three terms in Eq3.43 correspond respec- Since the energp, enters Eq(3.45 as an external param-

tively to the electric, magnetic, and gauge sectors. In Edeter, the continuation to real external enepgy-w+i 7, and

(3.42, we have replaced the complex exponential by a cothe Fourier transform to real time, can both be performed

sine function, by taking into account the parity of the inte-pefore doing the functional integration. Thus, the retarded

grand. propagatorSg(t,x) can be directly obtained as the functional
Theg-integral in Eq.(3.42) presents a spurious ultraviolet average ofGg(x,y|A), which is known explicitly [recall

logarithmic divergence in the physical sectae., for elec-  Eqs.(3.16) and(3.17)].

tric and magnetic photoinsThis divergence is unphysical Specifically, Egs.(3.45 and (3.16 give Sg(t,p) in the

since in the full theory, including also the nonstatic photonform of Eq. (3.41), where

modes, theg integral would be cut off at momenig~ w,

(recall the discussion in Sec. I)BThus, to be consistent

with the approximations performed, we have to complement Y Lo e

the above “dimensional reduction” with the prescription A(D=Zq f[dA]U(ny_Ut)eXFi—z(A, DAl

that an upper cutoff of the ordgT is added in momentum (3.46

integrals, in the physical sector. Since this cutoff is not ex-

actly known, it will be important in what follows to verify

that the physical predictions are independent from its precisand the parallel transporter is that of a static background

value. In the gauge sector, on the other hand, no such cutofield:
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is the one-loop self-energy in the BN approximation, and
: corresponds to the spin projecti@n of the full self-energy

[cf. Eqg. (1.6)]. The imaginary part of this equation deter-

mines the damping rate according 4& —Im 2 (w=p). We

U(x,x—vt)=exr{—f d3y jL(y)A“(y)

t
j#(y)zigv#f dss®(x—y—vs). (3.47)  can write, withe=w—V-p,
0
_ o d°q
A straightforward computation yields then Im3(w,p)=— wngf (ZT)S
A(t)=exp{ %TJ d3X1d3XZJ”(X1)*DMV(X1_X2)JV(Xz)] ><5[w—V-(p+q)]D(q)=—i—T "dgq
™ Jlel
—ex —g—sztd ftd DIv(s;—s,)]l,  (3.48 1 € 1 €
2 081052 1 2 ! ' X? _? —m‘k)\?, (45)
where which, in the mass-shell limi&—0, and with an IR cutoffu
o in the magnetic sector, yieldsvith a=g%/4m)
D(x)=| ——5€9D 3.49
” f R o B PR | S

is the Fourier transform of the static photon propagator
(3.43. By using the last equation to perform teg ands,

. : . This first piece inside the parentheses, which comes from the
integrations, we may cast E¢3.48 in the form of Eq.

magnetic sector, reproduces the singular piece of the re-

(3.42. summed one-loop calculatiofrecall Eq. (2.28]. On the
other hand, the other two pieces are not correctly reproduced
IV. THE INFRARED STRUCTURE by the present calculation. The electric piece, which is finite
OF THE FERMION PROPAGATOR and of the ordegZT, occurs even with a minus sidnecall

that the contribution of the electric scattering to the interac-
tion rate in Eq.(2.26 was positivg. The gauge-dependent
The nontrivial time dependence of the fermion propagatohjece turns out to be nonvanishing, but it could be eliminated
is contained in the functiod(t), Eq. (3.42. Because our by introducing an IR cutoffu in the gauge sector as well,
approximations preserve only the leading infrared behavioknd by taking the on-shell limit only subsequeritBg] (see
of the perturbation theory, E¢3.42 describes only the lead- also the discussion in Appendix BThis situation is generic;
ing large-time behavior oA(t). Since the only energy scale our approximation yields correctly only the leading IR diver-
in the momentum integral of Eq3.42 is the upper cutoff, gences of the usual perturbation theory, which all arise from
of ordergT, the large-time regime is achieved for 1/gT.  the magnetic sector, but not the subleading terms. In particu-
The expansion of Eq3.42 in powers ofg® reproduces |ar, the contributions involving the electric and the gauge
the dominant singularities of the usual perturbative expansector are subleading, and should be discarded for consis-
sion for the self-energy. Let us verify this for the correctiontency. This is equivalent to usirg(q)=1/g? rather than the

A. Large time behavior

of orderg?: full static propagator of Eq(3.43.
3. = Let us verify now that the full, nonperturbative, expres-
5Sa(w.p)= _92TiJ'wdteit(w7v.p+i7;)f d°q D(q) sion of A(t), Eq. (3.42, is free of infrared singularities. In-
RV 0 (2m)° (v-q)? spection of the integrand in E¢3.42 shows that the domi-
nant IR behavior arises from the linjit-q|=q cos#—0. This
X[1—cod(v-q)]. (4.9) is consistent with the calculations in Sec. Il A and 1l B show-

] o ) ) ] ing that the divergences come from the exchange of mag-
We perform first the time integration and obtain, after simplenetic photons emitted or absorbed at nearly 90 degrees. We

algebraic manipulations, have, in this limit,
6SR(w1p):_SO(wlp)E(w!p)SO(w!p)! (42) 1_CO$(V'q) tz )
Wz§+0[t4(v~q) 1, 4.7
where q

and the momentum integral is IR safe, as advertised. We see
4.3 here, once again, that the gauge-dependent piece of the pho-

0

w=V-ptin ton propagatox3.43 does not contribute to the leading IR
behavior(which is given by the term in & of the magnetic
is the free BN propagator, and propagatoy. Indeed, because of the fact@oss)?, the gauge
. propagatorcos6)?/q? is less singular ag cosf—0.
S(w.p)= —g2T d°q B(a) -1 Consider now the UV behavior of the-integral. This
' (2m)° w—V-(p+q)+in depends logarithmically on the UV cutoffw,, and, as a

(4.9 consequence, the large time behavioAgf) is insensitive to
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both the precise value of the UV cutoff, and to the specific
procedure which is used for its implementation. This will be
verified explicitly below.

The evaluation ofA(t) is most simply done by using the
coordinate space representati@48 for A(t). Correspond-
ing to D(q)=1/q°, we haveD(x)=1/47x, and we obtain, 0.
for t>1/w,, A(t)=exd —g®TF(t)], with

t t —_~
F(v=} [ ds, [ asBrv(s,—s,)

1 [t t o 0(]sy— o/ — wp)
==—1d f d
877 fo 51 0 SZ |Sl_SZ|

20

t FIG. 7. The time behavior of the fermion propagator as de-
~an (INwyt+consy. (48 scribed by the nonperturbative resuitt) (full line) and by the
exponentialA| (t) (dashed ling for g=0.4. On the abscissa axis,

In this calculation, the ultraviolet cutoff has been introducedfiMe is measured in units of & .
in the function é(|s;—s,|—1/w,). Let us verify that the

same large time behavior is obtained with a different UV d®q (v-q)® 1-cog(v-q) 't

regularization, namely, with the modified photon propagator SF()=A 23 q* (v-g)° M ga
D(q)= 1/9°~1/(q*+ w 5) (Pauli-Villars regularization By (4.12
using
At large times, this is indeed subleading with respect to Eq.
- diq . 1 1 1 (4.11). Note that, the momentum integral in E4.12) being
D(X)ZJ e'q'x(—— —— | =72 (1—e "), ultraviolet finite, no upper cutoff has been necessary in its
(2m)° 7 q2+w§ Amx evaluation. i g
(4.9 We conclude that, at times> /o, thze functionA(t) is
we get successively gauge-independent and of the fofa=g-“/4m)
1 [t . 1— e vplsi—ss] A(wpt>1)=exp(—aTt Inw,t). (4.13
F(t)=—stlfd82— o : :
8w Jo 0 |s1— sy The most striking feature of this result is the fact that, at very
ot s large times(w,t—<), the fermion propagator is decreasing
_tl-e ™ 1+ “’Ptds 1-e faster than any exponential. We also note that the scale of the
A7 wpt 0 S time variations is fixed by the plasma frequenay~gT.
A measure of the decay timeis given by
ot I 1—exp(—wpt)
= nwpt-i-(‘yE—l)—l—w—pt-‘rEl(wpt) , wp wp
—=aT Inw,7=aT|In —T—ln In —T+ . (4.19
(410 T o (2%

SinceaT~gw,, we see that~1/[g*T In(1/g)]. This is very
close to the perturbative result in E(.28), which, in the
presence of an IR cutoff-gT, predicts a damping rate
y~0°T In(1/g). A comparison of the two decay laws,
A(t)=exd —g?TF(t)], with F(t) from Eq. (4.10, and the
exponentid A, (t) =exp(—yt) with y=aT In(1/g), is pre-
sented in Fig. 7 fog=0.4. In this figure, the time is mea-
(4.11) sured in units of 1, , and the results displayed fd(t) can
be trusted for values,t>1, where our approximations are

which coincides, as long as the leading logarithm is congXPected to hold. For very large times»7, the function
cerned, with the previous resu#t.8). On the other hand, the A(t) is indeed more rapidly decreasing than the exponential
subleading term, i.e., the constant under the logarithm, i&L(t). On the otherzhand, for intermediate, but still large,
dependent on the UV regularization. Thus, as expected, it i#Mes, 1gT<t<1/g°T, the opposite situation holds:
only the dominant behavior at very large times which is con-2()=>A.(t). When discussing the lifetime of the excitation,
sistently described by our approximation; the subleadindt is rather the intermediate range of times which matters,
terms should be ignored.

We have argued before that the gauge-fixing terms are not
important to the order of interest. To verify this explicitly, 2This is the spectral function which would produce an exponential
we compute the gauge-dependent contributiorF{b), as  decay in time with a lifetime as close as possible to the nonpertur-
given by the last term of the photon propagat®3): bative result in Eq(4.14.

where E;(x) is the exponential-integral function,
E.(x)=/[7dy(e™™/y), and y the Euler constant. At very
large timesw,t>1, we may use the asymptotic expansion of
the exponential-integral to get, for the right-hand qiB&lS)

of Eq. (4.10,

F(t)=(t/4m)[Inwpt+ (ye—1)]=(t/47)Inwt,



55 LIFETIMES OF QUASIPARTICLES AND COLLECTNE.. .. 987

since for asymptotically large times=1/g°T the excitation in agreement with Eq(4.13. From Eqgs.(4.20 and (4.19
has already decayed. It follows that, for the range of times ofve note that the logarithmic on-shell divergence of the self-
interest, the decay of the excitation is actually slower tharenergy(w) corresponds to the fact tha(t) decreases only

the one predicted by perturbation theory. as 1t at large times.
Further understanding of the main result, 413, may
be gained by noticing that, quite generally, the one loop con- B. Mass-shell behavior

tribution to the retarded propagator redtls0
outt propag 40s0) The nontrivial large-time behavior exhibited in E4.13

has interesting consequences on the behavior of the retarded
OSg(t,p)= f dtlf dt;Sp(t—t1,p) propagator in the complex energy plane. In fact, since at
large timesA(t) is decreasing faster than any exponential,
X3 R(t1—12,P)So(t2,p), (4.15  the time-integral giving the Fourier transform

whereSy(t,p) is the free retarded propagator aBf(t,p) is _ foc i wt _ fw it(w=v-p+in)
the retarded one-loop self-energy. Since, in the BN model, Sr(@,p) wdte Sr(tp)=i 0 dte A,

So(t,p)=i6(t)e '"P) we can write (4.22
, t ty e is absolutely convergent for any compl@nd finite w. That
OSR(t) = _'SO(t)Jodt1JO dtpe! PP p(t — 1) is, the retarded propagat8g(w) is an entire function, with
sole singularity at Imw— —oe. Recall, however, that strictly
=—Sy(t)5A(1), (4.16 speaking, our present approximation holds only in the vicin-

ity of the mass-shell. Therefore, when speaking about
where the dependence g@nis not written down explicitly. |4, —v.p|— we have in mind off-shell deviations which are
The quantitysA(t) is nothing but the 1-loop contribution to much larger tharg?T. To further clarify this point, let us
A(t) in Eq. (3.42: A(t)=exd —oA(t)]. That is, in the BN give a crude estimate of hoBk(w) increases as lm— —.

model, the corrections to the free propagator, which simplyro this aim, let us consides=v-p—i¢, with real and posi-
multiply the free propagator, exponentiate. After a change ofive ¢. We write:
integration variables in Eq4.16 we get

i | T grett
6A(t)=iﬁ dt’ (t—t)et'vVPst). (417 () Ifo dremaln), 423

. ) o . which is a purely imaginary function aof, and consider the
[Thel |ntegrat|,on limit ha; been ex,tended toe since  panavior of|Sx(9)| for &>aT. Regarded as a function of
2g(t")=0fort’<0]. Assuming thaBg(t") decreases atleast g integrance¢'A(t) is rapidly increasing for smatl, but it

as fast as 1/ for t' —oc, we obtain the dominant large time g gecreasing for sufficiently large values bf where the

behavior ofA(t) as decay ofA(t) starts to dominate. Assuming the time integral
; in Eq. (4.23 to be dominated by large values tef-which is

A(t)zexp{—itJ dt’e“'“"p)ER(t’) ) (4.189 correct for large enouglf—we can use the asymptotic ex-
— pression(4.13, and determine the timg at which the inte-

rand is maximum:
The limit t—oo of the t’-integral, if it exists, defines the I

on-shell self-energy: o {—aT
wpt* =exp—

(4.249

ER(w=v-p,p>=f dt’et v PSp(t’,p).  (4.19
— By using the fact that the integrand is positive definite, and
o that, according to Eqé4.24, {—aT In w,t* =aT and thus
Then, [A(t—)[=e 7, with y=—ImX(w=V-p). In the ,_,T|n wpt>aT for anyt<t*, we can writé
present case, the Fourier transform in E4.19 does not
exist. However, the large-time behavior in E4.18 is well o 1
defined. The self-energ}ix(t,p) may be obtained from Eq. |SR(§)|>f dte"‘“:ﬁ [explaTt*)—1], (4.29
(4.4) after a Fourier transform: 0

o)

yvhere we have used E@.9) for 73(x). Then thet’-integral — i F{g ex;{ ) (4.26
in Eq. (4.18 reads(for t>1/w,) aT ©

SR(t>0p)=—ig2Te V"PD(|x|=t) so that
— e opt

=—iaTe VP + (4.20 ISR(§)|>—

’ [

t
aTJ — (1—e “')=aT In(wpt), (4.21) _ )
ot 3This estimate was suggested to us by A. Reduih
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FIG. 8. The spectral densify(e) (full line, in units of lkw,) and
the Lorentzianp (e) (dashed ling for g=0.08, as a function of
e=v-p in units of w, .

where g=aT/w,=(3/4m)g. Equation (4.26 shows that
ISr(9)| is ra/pidly increasing starting with values aof
such thatge®’*T~1, that is,{~aT In(1/g). In perturbation
theory, Sg(w) has a pole at w=v-p—iy, where
y=aT In(wy/u)=aT In(L/g) if u~g°T. Thus, our nonper-
turbative solution forSg(w) replaces the pole at finite dis-
tance by an essential singularity aticc, which however
starts manifesting itself at distanceg)®T In(1/g) below the

real axis, that is, at the same distances as the pole of tht

perturbation theory.

Since Sg(w) is analytic in any finite neighborhood of the

tree-level mass-shell ai=v-p, we need to clarify the mass-

shell interpretation. To this aim, we consider the spectra

densityp(w,p)

p(0.p)=2 lmsR<w,p)=2f:dt cos(v-p)A(L),
4.27)

wherev - p=w—Vv-p. It satisfies the sum rue

*» dw ,
f ) Ep(w,p)=A(t=O)=l. (4.28

We have calculategh(w,p) numerically, and the result is
plotted, for a coupling constagt=0.08, in Fig. 8. We also
represent, for the same value gf the Lorentzian spectral
function (e=v - p)

2y

= m, (429)

pL(€)

with y=aT In(1/g). This is the spectral function which
would produce the exponential time deciy(t) =exp(—yt)
alluded to at the end of the previous subsection. It is seen

4In fact, this sum rule holds exactly in the Bloch-Nordsieck
model, independently of the restriction to the static photon mode. In

general, A(t=0) is replaced, in Eq.(4.28, by S (t=0p)
+S=<(t=0,p), which is also equal to one, as shown by E335.

JEAN-PAUL BLAIZOT AND EDMOND IANCU

0
these figures that, in the weak coupling limit, the spectra
density p(e) has the shape of a resonance strongly peakeg

0 0.1 0.2 0.3 0.4 0.5

FIG. 9. The imaginary part of the self-energy, £4.30), as a
function of the energy, forg=0.08: nonperturbative calculation
(full line), one-loop resultdotted ling, and one-loop result in the
presence of an IR cutoffg®T (dashed ling All the quantities are
measured in units oy, .

around e=0, and with a typical width of the order
1/7~g?T In(1/g), that is, of the same order as that of the
Lorentzian. This allows us to identify the mass-shell of the
full propagator atw=v-p, as at tree-level. Moreover, it is
clear from Fig. 8 that, for very smafj<1, the nonperturba-
tive spectral density is even sharper than a Lorentzian. Thus
e net result of the infrared effects considered here is to
slightly enhance the stability of the quasiparticle staee
also the discussion at the end of the previous subsegction

Finally, it is interesting to compute the imaginary part of
}he exact self-energy, by inverting the Dyson-Schwinger
equationSg }(w,p)=—(w—V-p)+x(w,p). A simple calcula-
tion yields

2p(e)

MRS G e

(4.30

wheree=v - p, p(e) is the spectral density of E¢4.27) and

&(e)EZf:dt SinetA(t). (4.31)

This is represented graphically in Fig. 9, together with the
pure one-loop result, Eq4.5), which shows a logarithmic
divergence ag—0 (dotted ling, and the screened one-loop
result, as obtained from E@.4) after inserting an IR cutoff
equal toa T (dashed ling As manifest on this figure, the full
result for In® is finite at the mass-shet=0, and inferior to
the value predicted by the perturbation theory with an IR
cutoff ~g®T. The latter property is consistent with the pre-
vious analysis of the spectral density, and also of the time
behavior at intermediate times. One can also verify the non-
erturbative character of the solution. For example,
Fm Sr(e=0)=—1/fgdtA(t) has no expansion in powers of

Z even if one keeps, constant in Eq(4.13 for A(t).

V. THE LIFETIME OF THE SOFT FERMIONIC
EXCITATIONS

For soft momentap~gT, the quasiparticles become col-
lective excitations, with nontrivial dispersion relatiofis2]
and self-interactionp4,5]. To leading order irg, the disper-
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sion relations are real, and the quasiparticles propagate with-

out damping. At next to leading order, collisional damping

occurs. The corresponding damping raténas been calcu-
lated in the effective(i.e., HTL-resummed perturbation
theory[4]. For an excitation with zero momentufp=0), y
is finite and of the ordeg®T [4,8]. However, for excitations
with finite momentunp>g°T, the lowest order perturbative

calculation ofy meets with the same infrared problem as that

discussed for the hard particlgk7,24]. As we shall see, this

e

P P

@)

(b)

FIG. 10. One-loop diagrams for the soft fermion self-energy in
the effective expansion.

problem is solved by the same technique as that used for the

hard fermion.

A. The HTL approximation

tions between a fermion pair and any number of soft pho-
tons. For instance, the Ward identity

g“*I,(p,p+q)=*S X p)—*S p+q), (5.7

Let us recall first the main features of the dispersion rela-

tions for soft fermions, to leading order jp They are ob-
tained from the poles of the effective propagat®(w,p)
which is obtained a§S™*=S, 1+ 63, with §3(w,p) denot-
ing the fermion self-energy in thd TL approximation1,2]:

dQ v

In this equationw,=gT//8 is the frequency of the spatially
uniform (p=0) fermionic excitations. The propagator is con-
veniently written in the form(1.7), that is,

*S(w,p)=*A,(w,p)h4(p)+*A_(w,p)h_(p), (5.2
where
AP . 63
wF[p+63.(w,p)]
and
8% . (w,p)=*3 tr[h.(P)62(w,p)]. (5.4

The pole equationsA [ w(p),p] =0 yield two positive en-
ergy branchesw.(p) [1], instead of the usual onéwith
w=p) in the free electron spectrum. Ferclose to the mass-
shell atw¢(p), s==*, we can write

. z4(p)
Ag(w,p)= PRI (5.5
wherez,(p) is the residue of the modg
B 362 4(w,p)
1 1 S
z.(p)=1 0w oo (5.6

Sincew.. (p)>p for anyp, both dispersion relations are real:

requires the existence of a nonlocal 3-point vertex function,
which is indeed found in the form*I',(p,p+Qq)
=vy,+6l,(p,p+0q), where o', (p,p+0q) is the 3-point
HTL [4,5]:

dQ v 0

a7 (v-prinv-(p+a)+in]’
(5.8

6FM(p,p+q)=w%f

Similarly, higher vertices, without analogue at the tree-level,
are necessary in order to fulfill the higher order Ward iden-
tities. We show here one more example, namely the Ward
identity satisfied by the 2-fermions—2-photons vertex func-
tion:

ai* I ,(P1,P2:d192) =*T ,(P1,P1+02)

—*I' (p1+0d1,p1+01+0y),
(5.9

where, in the left hand sidey; and g; are respectively the
momenta of the incoming fermions and photons, with
p;+p,+q;+d,=0. For what follows, it is important to re-
mark that all the HTL vertex functions atalmos} uniquely
determined by the self-energy in E¢6.1) and the Ward
identities like Eq.(5.7) [5,43]. This is so since the nonlinear
structure of the effective action of the HTL'’s is the minimal
one which is consistent with the gauge symmé¢fiy 1,44.

B. Perturbation theory for the damping rate

In this section, we discuss the perturbative computation of
the damping rate for the soft fermion, and the related IR
problems. After a brief summary of the leading-order com-
putation[4,17,24, we discuss higher orders corrections and
how they simplify in the computation of the leading diver-
gent terms.

The dominant contribution to the damping rate, of order

the quasiparticles propagate without damping in this approxigz-l-’ comes from the imaginary part of tieesummetione-

mation. For small moment@n<<gT, w.(p)=wy*p/3. The
upper branch is strictly increasing . (p)>0 for any p],
while the lower branch has a minimum pt p.~0.92w,.

At very large momentap>w,, both branches approach the
light cone, butz, (p)—1, whilez_(p) vanish exponentially.
(See Refs[10,12,13 for more details and physical interpre-
tation,)

loop self-energy*>(w,p), as given by the two diagrams in
Fig. 10[4]. Specifically,

(5.10

where*>..(p) =tr[h_.(p)*=(p)1/2 and the subscripts refer
to the two positive-energy modes in the fermion spectrum.

Y=(p)=—2+(p)IM*2 . [w+(p)+inp],

Because of the gauge symmetry, the nonlocal character ddote that, in general, the “tadpole” diagram in Fig. (bD

the HTL self-energy in Eq(5.1) leads to effective interac-

gives a nontrivial contribution te, since the 4-point vertex



990 JEAN-PAUL BLAIZOT AND EDMOND IANCU 55

itself has a nonzero discontinuity. Moreover, the imaginaryThe particular spin projections " written down above
part of the diagram in Fig. 18) comes not only from the are the only ones which enté& . =tr(h.*3)/2, and there-
cutting of the internal propagatofas for the usual one-loop fore the damping rate in E¢5.10.
diagram discussed in Sec),lbut also from the discontinuity Note that the simplified vertefs.15 has no discontinuity,
of the resummed 3-point vertices. so that the whole imaginary part & in the kinematical

In what follows, we concentrate on the singular contribu-regime of interest arises by cutting the internal lines in Fig.
tion to y. This comes entirely from the diagram in Fig.(a0 10(a). Specifically, the previous approximations yield the

[17], which reads dominant(infrared singular piece of the one-loop damping
rate a§ 17,24

*3 ( ) 2-|— 2 f d3q *T ( + ) d3 i 5”' j

alP)=—4g 3 p.p+q q v U=

= 2 # ~7.02 - =

qo—lwm ( 7T) Yt(p) z.0 T (2,”,)3 Z. q2 Z.
X*S(p+a)*T'(p+a,p)*D*"(q). (5.11 —_
X1m —

W+ - + + i
It has been already recognizEll] that the singular piece of 0= =(p)~[v=|q cof+in

vy arises from the same kinematical regime as for a hard b
fermion, namely, from the exchange of a very saf&(g>T) =aT|v.(p)|In m

magnetic photon at nearly 90 degrees. This allows for kine- -

matical approximations identical to those encountered iRyhich is very close to Eq(2.31) for a hard fermion(recall
Sec. Il. In particular, the whole singularity can be reproducedpat lv|=1 for the hard quasiparticie

by restricting the calculation to the magnetostatic mode cgonsider now the higher order correctionsytowith em-
q°=i wm=0 [24], with propagator*D”(wm=0,q)=§'llq2, phasis on the leading infrared contributions. By relying
and .Wlth an upper cutoff~gT. .Furthermore, the mte:rnal mostly on the gauge symmetry, we argue now that the most
fermion propagator*S(w,p+q) is nearly on-shell, since gingylar contributions toy arise from multiloop diagrams
w=w.(p), and qg<p. Thus we can write \hich involve the(resummed 3-point photon-fermion ver-
w.(p+Q)=w-(p) +Vv-(p)-q,—where v{(p) denotes the tex put not the higher order verticédhis is so since in the

(5.1

group velocity of the mods, vs(p)=dws(p)/P=vs(P)P—,  kinematical regime of interest, the inverse fermion propaga-
and replace*S(w,p+0)—*A.(wp+gh.(p), with [recall {5
Eq. (5.5]
_ *AgHw,p+a)=—[w—op)—Vsp)-d]
Z, s ' 3 s )
AL (w,p+Q)= =(P) (5.12 Z(p)

(5.17

is linear in the photon momentum so that the Ward iden-
Pity (5.7 can be satisfied by a 3-point verté&X" (p,p+q)
which is independent of the momentum of the photon leg.
And we have seen indeed that the singular one-loop contri-
bution is obtained by replacinI™ (p,p+q) with *I"(p,p),
which is independent af and (up to a spin projectgrequal
to v (p)/z,(p). Furthermore, with aj-independent 3-point
R vertex, all the other, higher, Ward identities—as the one
7*S (w,p) (5.13 shown in Eg.(5.9—are trivially satisfied by setting the
ap' ' ' n-point HTL's with n=4 to zero. Since, as alluded to before,
the vertex HTL's are essentially determined by the Ward

(The dependence of the vertex function on the external eridentities, it follows that the higher-point verticebeyond
ergy o is not indicated explicitly. The inverse propagator is the 3-point functiom are not important in the kinematical

conveniently written agrecall Eq.(1.7)] regime of interest. _ _ _
We thus conclude that, in order to isolate the most singu-

B _ - _ A lar contributions toy, (s= =) in perturbation theory, we have
*S™Hw,p)=* A (w,p)h-(p)+* A= (w,p)h. (D). to consider the same diagrams as for the hard fermion, and
(514 evaluate them with the following simplified Feynman rules:
(i) the photon propagatob 3 (q)=6'/9?; (i) the fermion
From Egs.(5.13 and(5.14), we obtain, foro=w-(p), propagator* Ay(w,p+q) from Eq. (5.12; (iii) the photon-
fermion vertex*I'y(p) =v «(p)/zs(p). The momentum inte-

o—w+(p)—v=(p)-q’

where the uppeflower) sign applies according to whether
the external line is close to the mass-shell of the uppe
branch, or of the lower branch, respectively. A final simpli-
fication refers to the 3-point vertex functicil™(p,p+q),
where we can neglect the photon momentgrand use the
differential form of the Ward identity5.7) to write:

*T(p,p)=

It T T R gt —
«(p p.p)h-(p =(p ap _ipzi(p)
SThis can be also verified by power counting, as in R&¥] for
gEA-L N (p) the one-loop calculation. Namely, cutting a vertex rather than a

trTh. (p)*T'(p,p)]=2 t 9 _ 51 fermion propagator yields a factor of[%(p)-q] less, and thus a
[h-(p)*T"(p.p)] ap' z.(p) (515 less singular infrared behavior.
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grals over the photon momenta should be computed with aBtrictly speaking, the mass-shell for the BN particle of mo-

upper cutoff of the ordew,. Strictly speaking, the above mentump, that isw=vs-p, is different from the real leading-

simplifications hold only for very soft momentg=<p~gT, order mass-shell, ab=w¢(p). This is so, of course, since

and not up to momentg~ w, . This is not important, how- the dispersion relations for soft fermions are not linear, so

ever, since the dominarisingulay contributions arise from that the group velocityvg| is really momentum dependent.

the limit g—0 and are insensitive to the upper cutoff. However, this difference is not important, since the BN
Note that the above Feynman rules are essentially those propagatol5.21) presents the correct dependencejon the

a local effective field theory, in contrast with the HTL Feyn- mass-shell limit. Compare in this respect E¢5.21) and

man rules, which are nonlocdllhe apparent dependence on (5.12): in both these equations, it is the difference in energy

o andp is irrelevant here, since these are the fixed energyith respect to the mass-shell which matters, rather than the

and momentum of the external line; they enter the computaprecise value of the mass-shell energy itself. berw4(p)

tion as parametensFurthermore, the IR contribution tpis  in Eq.(5.12, and respectively fow=vg-p in Eq. (5.21), the

largely insensitive to the details of the HTL resummation,propagators in these two equations become identical.

which enters only via the global factotg(p) and z,(p). Equations(5.18 and(5.19 are further manipulated as in

Actually, to the order of interesty, is even independent of Sec. Il E[recall, especially, the discussion after E8.44].

the residuezg(p), as also suggested by the one-loop result inAs a result, we obtain the retarded propagator for the two

Eq. (5.16. This is so because a generaloop graph con- fermionic modest, for momentagp~gT and energies close

tributing to 24 (in the simplified perturbation theory intro- to the mass-shelb=w..(p). It reads

duced aboveinvolves 2n vertices*I'y, and therefore a fac-

torz; 2", and (zn— 1) propagatord A, which yield a factor

i " dttlo- o= (p)+in]
zﬁn‘i. The remaining factor of %/ disappears in the com- S=(,p) 'Zi(p)fo dte TA=(),
putation of y,= —z, Im 3.
_ 2 d3q Di(q)
C. The Bloch-Nordsieck model for a soft fermion A.(t)=exp —g°T 273 (v.-q)2 [1—cod(v.-q)]|.
At this point, the analysis of the dominant mass-shell be- (5.22

havior of the soft fermion becomes almost identical to the . L= i i 2,2
corresponding analysis for the hard fermion. This analogy idn this _rtequatlon,Di(q)—v +Dg(@v=v3/q° so that we
due to the fact that the soft photons responsible for the |Fean write

divergences have typical momemda&gT, which are much _

smaller than the momentump~gT of the soft fermion. In A-(M=Aa(v-0), (5.23

view of this, the whole discussion in sections 3 and 4 can bgih A(t) as given by Eq(3.42) Whereﬁ(q)ﬁl/qZ andv is
directly extended to the case of a soft fermion. _an arbitrary unit vector. Note that the functions (t) are
Specifically, the simplified Feynman rules which apply in implicitly dependent on the momentum via the group ve-
the IR regime are, once again, those of the Bloch-Nordsieckitiesy, , (p). Both the mass-shell behavior of the propaga-
model, and can be summarized in the following functionalioy (522 and the large time behavior of the propagator
integral representation of the soft fermion propagator: S..(t,p) follows from the analysis in Sec. IV. At very large

times wy|v . |t>1, we have

S. (X, :z*lf dA]G.(x,y|A)exd — (A,D; A)].

L(X,Y)=Zy" | [dA]G.(x,y|A)exd —3(A,Dg "A)o] A(wyv-]t>1)=exd — aTlo-]t nwylo-]0)].
(5.18 (5.24

In this equationG(x,y|A) is the Bloch-Nordsieck propaga- The spectral density of the mods is peaked around
tor for the quasiparticle in the modes==, in the presence w=w4(p), with a width of the ordeg®T|v4/In(1/g). In par-
of the static magnetic field*=[0,A(x)], and satisfiefwith ticular, for the lower modev_(p), and for p=p., where
vE=(1vy)] v_(pe) =0, Eq.(5.23 shows that, to this approximation, the
“plasmino” mode is not damped, in accordance with the
—i(vg Dy Gy(X,Y|A) =26 (x—y). (5.19  one-loop result for the damping rate, £§.16.

Furthermore, VI. CONCLUSIONS

1 The analysis presented in this paper suggests that the
(A,DglA)0=f f d3x dy A'(x) D (x—y)Al(y), damping of the fermionic excitations with momemtz g°T
5 is not exponential in time, but of the more complicated form
(520 sy(t)~e EPexd —aT|v|t In(w,|v|t)], where v=0E/ap

. is the group velocity of the excitatiom,~gT is the plasma
where the vector field\'(x) has been defined in E¢3.37), group Y Wp—9 P

h frequency, ande=g%4m. As a consequence, the retarded
andD;; (x)=4;/4mx. Note that the freéretarded BN propa-  ,5hagatorSe(w) has no quasiparticle pole, but the spectral
gator, as obtained from E¢5.19 with A=0, reads

density shows nevertheless a sharp resonance peaked at
w=E(p), with a width~g?T In(1/g). At the present level of

~Zs (5.21) accuracy, the mean enerdy(p) is given by the leading-
w—Vs (p+q)+in’ ' order approximation, namelg(p)=p for a hard excitation,

Gs(w,pt+q)=
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and E(p)=w. (p) for a soft one. We note that this result ture in closed forn?. There are at least two points where the
solves the IR problem of the damping rate in a very “soft” full thermal BN model(with all photon modes included
way, by essentially replacing the IR cutqif in the pertur-  could possibly complete our previous analysis: the dynami-
bative result | (t) =exgd —aT|v|t In(wp|v|/u)] with the in-  cal emergence of the upper cutoffigT (recall that, in the
verse of the time. Thus, quantitatively, the lifetime of the effective three-dimensional theory, this cutoff has been intro-
excitation does not differ much from that obtained fromduced by hang and, related to this, the consistent computa-
leading-order perturbation theory. tion of the subleading terms beyonddnt) in Eq. (4.13);
The asymptotic behavior of the retarded propagator hathat is, the terms of orde/>T which multiply the time in the
been obtained by solving exactly an effective theory whichexponent ofA(t).
reproduces all the leading infrared divergences of the pertur- It is finally natural to ask what is the relevance of the
bation theory. The physical processes which are responsibjeresent solution for the non-Abelian QCD plasma. It is
for these divergences are the multiple collisions involvingwidely believed that the self-interactions of the chromomag-
the exchange of long wavelength, quasistatic, magnetic phaietic gluons may generate magnetic screening at the scale
tons, which are not screened by plasma effects. By comparg®T. As a crude model, we may include a screening mass
son, the longitudinal, gauge sector is less singular in perture~g2T in the magnetostatic propagator in the QED calcula-
bation theory, and does not contribute to the dominant largéion. Then Eq(3.42) provides, at very large times=1/g°T,
time behavior of the nonperturbative solution. an exponential decay, A, (t)~exp(—yt) with
At finite temperature, the presence of the thermal bathy=aT In(w,/u)=aT In(1/g). However, in the physically
amplifies the IR divergences, in such a way that they becommore  interesting regime of intermediate times
effectively those of a three-dimensional gauge theory. Thenl/gT<t<1/g?T, the behavior is governed uniquely by the
a comparison with massive QED40] helps in explaining plasma frequency, according to our resul@.13:
why an IR divergence occurs for the one-loop damping ratep ,(t) ~exp(—aTt In wyt). Thus, at least within this limited
in contrast to the zero temperature case where the IR probmodel, which is QED with a “magnetic mass,” the time
lem does not affect the dispersion equation, but only théehavior in the physical regime remains controlled by the
residue of the propagatf82]. At this point, we should recall Bloch-Nordsieck mechanism. But, of course, this result gives
that the explicit solution that we have proposed here reliesio serious indication about the real situation in QCD, since it
essentially on the three-dimensional character of the domis unknown whether, in the present problem, the effects of
nant singularities. This has been widely recognized in relathe gluon self-interactions can be simply summarized in
tion with the infrared structure of thermal field theor|@§)], terms of a magnetic mass.
and, in the calculation of static quantitidgke the free en-
ergy or the screening masge# has been exploited in the
method of “dimensional reduction’(see[39,45,46,47 and ACKNOWLEDGMENTS
references thereinWe emphasize, however, that the damp-

ing rate is a dynamical quantity, and the usefulness of the During the elaboration of this paper, we have benefited

dimensional reduction for this problem is n@fpriori obvi-  from discussions and useful remarks from a number of
ous, given the subtleties of the analytic continuation frompegple. It is a pleasure to thank R. Baier, G. Baym, M.

Matsubara to real external energy. If a dimensional reduction ege|iac, B. Miller, R. D. Pisarski, A. K. Rebhan, D. Schiff,
occurs in the computation of the Ia_lrge time behawqr, this is;ng B. Vanderheyden. Service de Physiqué oFigeie is
because of the pqrtlcular lR behavior of the magnetic phOtorI‘_aboratoire de la Direction des Sciences de la Matigu
prop_aga’For, as d_|splay_ed In qu'.lG) or (2.29. The dy-_ Commissariat &Energie Atomique.

namical information which is contained in the later equations
refers not only to the absence of the magnetic screening, but
also to the phenomenon of Landau damping.

It is also worth emphasizing that our result takes into
account only the most singular terms of the perturbative ex- ) .
pansion. Because of the approximation used, we have lost !N this Appendix, we collect the sum rules for the photon
control on the subleading terms. Although, in a strict pertur-SPectral densities which are used in Sec. Il B. o
bative sense, these agepriori less important, one cannot The ele_ctrlc and magnetic spectral_ densities are defined in
completely exclude the possibility that they may still modify Ed- (2.19 in terms of the corresponding propagators. In the
our results in a qualitative way. It is hard to see, howeverhard thermal loop approximation, they involve both pole and
how they could destroy the quasiparticle picture, which weCUt pieces, as shown in E@.22. They satisfy the following
have shown to survive after a complete treatment of the leacgUm rules[17], which trade the integrals over the off-shell
ing IR divergences. Improvements of our solution may re-SPectral densities, ;(do.q) for functions of wy(q) and
quire an appropriate generalization of the Bloch-Nordsiecks(q):
model to finite temperature, a task that we have explored in
this paper, but without reaching a definite conclusion. The
difﬁCU'ty comes from the fact that the statistical factors pre- 5The representation given in ER.28 of Ref.[34] is deceiving.
vent the simple exponentiation of the BN propagator whichit involves a dubious analytic continuation of the four-velocity
occurs at zero temperature. As a consequence, we have nagiich, in any case, can only be made after completing the time
been able to obtain the retarded propagator at finite temperéntegral. But this latter integral cannot be computed in closed form.

APPENDIX A
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f dqp 1z
2wq o g?+md wi(q)’

fq ddo B0 = _ z(q)
—q27mG T g7 wi(q)

fq 4% )=1-2(q) (A1)
4 2m JoBi(do,0)= Z(q).

2

2
- = B 1+o@op]l, (A7)

z(q)= 50
p

so that

fq dgo 4 1
277q Bi(0o,a)= 15;31

a dqgg 1
f 2700 B(do, Q)——z_w—,

2
The first two of these sum rules are obtained by simply set- P

ting =0 in the spectral representatio{’s18, and by using

*A,(0,9)=—1/(g°+m3), *A,(0,g)=1/g% together with

Eq. (2.22. As for the third one, this is obtained by inserting

EqQ. (2.22 into the familiar sum rule

F 9% )=1 (A2)
5, do"pdGo,a) =1,

fq qu 1 A8
7q§%ﬂt(%ﬂ)—5_w‘2)- (A8)

When these expressions are inserted in R6), the con-
tribution in 142 of the magnetic spectral functidithe sec-

ond line in Eq.(A8)] generates a logarithmic IR singularity.

APPENDIX B

which is a consequence of the equal-time commutation rela-

tion for the quantum field§13].

Since there is no phase-space available for the direct de-

The use of the sum rulg#\1) is convenient to study both cay of the on-shell fermion into a pair of massless particles,

the ultraviolet and the infrared behavior of tgentegral in

one expects that the damping rate computed from the bare

Eqg. (2.26. To this aim, we need the dispersion relationsone-loop fermion self-energy should vanish. However, at fi-

w (q) [1,2,48 and the corresponding residues,(q),
which, in our conventions, read

20{(wf—0?)

2 2 2
Bwpwi—(wi—q

20{(wflq*~1)
3w§— (w|2— q2) '
(A3)

Z= 2)2: 3=

At large momentag> w,,, we have the approximate expres-

sions[50]

0i(Q)=02+3032, wi(q)=g}[1+4x(a)],

305 | 8q° 8q°
Zt(Q)—1—4—qz n3—w’2)—3, Z|(Q)—3—C[)'2)X|(Q),
(A4)

where

292
x|(q)Eexr{—3—wg—2). (A5)

p

From Eqs (A1) and(A4), we obtain, forq>w, (recall that

mD 30)p)
fq dqgo
2mqg

fq ddo (1— db wp
—q 2mdg q

3
(qo,q)—

—2) Bi(do,q)= ﬁi’ (AB)

These estimates show that the integrand in 26 be-
haves likew 5/g® for momentag> w,,.
We turn now to momentg<w,. We then have

wf(q)=w5+60%/5, wl(q)=wj+39%5,

nite temperature, this argument is complicated by infrared
singularities which arise because of the enhancement of col-
linear singularities by the Bose-Einstein thermal factor.

To illustrate this problem, we consider the calculation of
the damping rate to bare one-loop order in the Coulomb
gauge. This is obtained by simply replacing, in Eg.21),
the photon spectral functions with their bare counterparts,
namelyp(®'=0 andp{*(q,q) = po(do.a), With p, from Eq.
(1.2. In the on-shell limit, the whole contribution tacomes
from spacelike photons, withgy|<gq. However, since the
free spectral densityl.2) has support precisely at the inte-
gration limits go= *£q, we should be more careful when
evaluating Eq(2.22) in the on-shell limitw—p. For w close
to, but different fromp, the latter equation yieldsompare

with Eq. (2.29]
dq F dap
(2m)° ) _» 27qq

X 8(w—p—0o+q cosd)(1—cos8)py(do.q).
(B1)

Yolw=p)== wg’T

After the angular integration, we obtain

d o—p+q d
yo(wzp)— (w p)J qf o

-p-q Jo
X[Zqo—(w—p)][6 Jo—a)—6(do+a)]
=92T| - _q( _|o—p|
4 lo—pli2 G° 2q

(B2)

If we let now w—p, the factor in the front of the last integral
goes to zero, but the integral itself becomes IR divergent. An
explicit calculation shows that the RHS of E&2) is in fact
independent ofw—p), and equals
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tive Feynman rules described at the end of Sec. Il A. At

q/‘\ H\_‘\/\\ two-loop level, this amounts to replacing EG1) by
- d3q d3k
P prark P+ p+q 2(2) — 2T 2
W 2= 3 3| s | e

X So(p+a)Se(P+q+K)[So(p+0)
+Sy(p+k)ID(q)D(K), (C2)
o°T

Yo=g (B3)  whereSy(p)_is the fermion propagator in the BN model, Eq.
& (4.3, and D(q)=v'*D"(q)v’ is the (HTL resummed
This result is, however, unphysical. It arises from the emisPropagator of the magnetic photdiwe recall that the elec-
sion or the absorption of collinea¥=0, q,=q, or, respec- tric_propagator does not yield IR smgulant;)efquatmn
tively, 6=, gqo=—q) massless photons, whose contribu- (C2) is precisely the two-loop self-energy in the Bloch-

tions are enhanced by the Bose-Einstein fadtay,. Such  Nordsieck approximation. .
contributions do not survive screening corrections. However, The Matsubara sums oves, and o are ponvemently
since the gauge-dependent terms in the photon propagatBffformed by contour methods, and by using the spectral
are not modified by the plasma effects, they mayrepresentat|0r(12.18) of *A;(q). In doing this, one gets sev-

generate—by the mechanism alluded to before—a nonvar?—ral terms, corresponding to the poles of the various propa-

H 0
ishing contribution to the on-shell self-enerigg]. Note that  9&(0rs in the complex planey’ and k°. Every such term

an entirely similar problem arises in the three-dimensiona|m/°|ves three energy denominators, and the product of two

gauge theories at zero-temperature, when computing the gistatistical factors. The latter are either of the bosonic or of
persion equation to one loop orc{éid] the fermionic type, according to whether they correspond to

To overcome this problem, it has been suggef&a#4Q poles of a photon propagator, or of an electron propagator,
to take the on-shell limit in the presence of an IR regulator '€SPectively. When the external energy approaches the tree-
say, an IR cutoffu. With such a cutoff, thej-integral in Eq. level mass-shellw—p=v-p, all the energy denominators are

(B2) remains finite as—p, and the total result fop(w=p) SOt Of the type 1bo—v-q), and may give infrared prob-

vanishes. Thus, the damping rate remains zero at the balgms: [The hard energy denominators, which were poten-
lly present in the full two-loop self-enerd1), have been

one-loop level, as expected. In the same way one verifies thd e o .
the dispersion relation is gauge-independent, as it shoulgj'm'”""ted by the simplified Feynman rules leading to Eq.
t

FIG. 11. Two-loop diagrams for the fermion self-energy.

[37]. On the other hand, the residue of the propagator at th C2).] Then, the leading IR singularities arise uniquely from

mass-shell becomes dependent on the IR cuiofind (lin- e terms which involve the product of two Bose-Einstein
early divergent asu—o0. P olind( distribution functions, sinc®(q°)N(k%)=T?/(q°°) at soft

momenta. By isolating these most singular terms, we obtain,

after a straightforward calculation,
APPENDIX C

2
We verify here, on an explicit two-loop calculation, somezg)(w:p)
general features of the infrared behavior of the on-shell self- d3q &k (= dg
energy in perturbation theory. Specifically, we shall show  =(g?T)2 0« ( )
i . X g (2 )3 (2 )3 2 pildo.q
that the leading divergences are powerlike, and can be fully ™ m)" J—= 2mqo
taken into account by restricting all the internal Matsubara © dk
sums to their zero frequency photon modes. X f — *pi(kg,K)

At two loop order, the fermion self-energy is given by the — 27K
two diagrams in Fig. 11, which yield 1 1
X
d3 w+qp—V-(p+q) o+qetke—v-(p+g+k)
s@p--@n? T 3 [ o i v
o K=in, I (27) 1 1

(C3

d3k % w+q0—v-(p+q)+w+ko—v~(p+k) ’
% f (2m)* 7uSolPF )Y, So(PFatk) where it is understood that the external energy carries a small
positive imaginary parto—w+i7).
XInSo(p+a)y,+ v, So(PHkon] The energy integrals ovey, and overk, involve both the
X*D#(q)* DP (k). (C1 pole and the cut pieces of the photon spectral density. How-
ever, it is only the off-shel{or cut) piece of* p, which yields
The notations here are as in E@.17); for instance, a singular contribution, so we may as well restrict the afore-
p’=iw,=i(2n+1)7T, q°=iw,=i2#mT and k°=iw, mentioned energy integrals to spacelike momefug,<q
=i27rT, with integersn, m andr. According to Eq.(1.6), and|ky|=<q, and replace the full spectral functions igy.
the correction to the positive mass-shell is determined by th&hen, the subsequent analysis follows closely the discussion
function 3 (w,p)=tr[h.(p)2(w,p)]/2. As w=p, the most of the (resummey one-loop self-energy in Sec. Il B. The
singular contributions t&, . are obtained by using the effec- singular domain is that of very soft photon momenga,
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k<gT, where we can use E(R.29 to replaceB;(qo<q)/dq
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Let us finally provide an all order argument for the can-

by (27/92) 8(q,). At the same time, we have to supplementcellation of the strongest, powerlike, infrared divergences in
the momentum integrations with an upper cutoff of the ordetthe perturbative evaluation gf To this aim, we consider the

of w,~gT. The net effect is that the leading singular pieceDyson-Schwinger equation for the fermion self-energy
of E%)(wzp) is the same as it would be obtained by retain-within the effective three-dimensional Bloch-Nordsieck

ing only the static term&,,= o, =0 in the Matsubara sums
of Eq. (C2). That is,

d3q 1 d®k 1

2 )~ (2T)2 _ _

E+ (w_p)_(g T) f (2,”,)3 q2 f (2,”_)3 k2
1 1

><w—v-(p+q+k) w—V-(p+Qq)

y 1 1
w—V-(p+Q) * w—V-(ptk)

. (CY

Since this is divergent as—v-p, we take the mass-shell
limit in the presence on an IR cutoff, and obtain

d’q 1 1
2 ~—n)~ —(n2T)2 _
2+ (o p) (g T) J' (277,)3 qZ (V'q_in)z
d*k 1 1
2m)3 K2 v-k—ig
2 (aT)?
:|;(“M) In% (C5)

We thus find the linear plus logarithmic infrared divergence

mentioned in Sec. Il C.
According to Eq.(2.33, the computation ofy?—the

two-loop contribution to the damping rate—requires also the

one-loop residuez®(p) —1=(%Y/dw). Similarly to Eq.
(C4), we obtain the leading IR-singular contribution 34"
in the form

d’q 1 1
(1) ~02 _
2 eP=0T | Gos @ oV pratin’
(C6)
and thus
d’q 1 1 2 aT
(1) —1~—02 _ —
2010 | e
(C7)

theory:
2 d*q ' i
2(w,p)=-9 Tf (23 v Sle.p+ )l (pta.p)Dg (),
(C8)
whereD (q)=6'/9?, S'is the full BN propagator,
-1
S(w,p+0q)= (C9

o—V-(ptq)—2(w,p+q)’

andI’(p+q,p) is the full vertex, which is related t8 via the
Ward identity

ad'Tj(p+a,p)=S Hw,p+a)—S Ywp). (C10

We make now the usual assumptiB0] that the dominant
IR behavior involves only the longitudinal piece of the ver-
tex. This is entirely determined by the Ward identity:

) j
F'(p+q,p>=v”,—q[s—l(w,p+q>—s—1<w,p>].

(C1)
When inserted in Eq(C8), this yields
dg 1 1
2 il
E(wrp)_ g T (277)3 q2 V'q_i7]
X[1-SHw,p)Swptq]. (C12

As already explained, EGC8) reproduces the most singular
terms of the perturbative expansion, and this remains true
after inserting the approximatiof€11) for the vertex func-
tion, as can be verified explicitly by developing EG.12) in
perturbation theory. We now take the on-shell limit in the
presence of an IR cutof, taken as a small photon mass. As
long asu#0, there is no IR problem, and we expect the
mass-shell to correspond to a simple pole of the exact propa-
gator. ThusS™(w,p) vanishes on shell, and the second term
in Eq. (C12 gives no contribution. The leading contribution
to the on-shell self-energy reads then

(on sheh=—g° | ci: I
on snely=— -
S @ P va-ing
2
;
9 (c13
47 M

in the presence of the IR regulator. The linear IR divergence

of the residue compensates the dominant singularity of thand coincides with the IR singular part of the one-loop self-
two-loop self-energy in Eq(C5), so that the leading contri- energy. This is only possible if the aforementioned compen-
bution to /?—which remains beyond the accuracy of the sation of the leading powerlike divergences holds in all or-
present computation—is of the OrdE(I’azTZ/cup)[ln(wp/ ders. Note that the above arguments become meaningless in
wF~g®T[In(w,/w . Even if still divergent asu—0, this  the physical limitu—0, where not only does the estimate
does not contribute to the ordgfT which is our concern (C13 become logarithmically divergent, but the integral
here. multiplying S™Y(w,p) also diverges on the mass-shell.
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