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The perturbative calculation of the lifetime of fermion excitations in a QED plasma at high temperature is
plagued with infrared divergences which are not eliminated by the screening corrections. The physical pro-
cesses responsible for these divergences are the collisions involving the exchange of long wavelength, quasi-
static, magnetic photons, which are not screened by plasma effects. The leading divergences can be resummed
in a nonperturbative treatment based on a generalization of the Bloch-Nordsieck~BN! model at finite tempera-
ture. The resulting expression of the fermion propagator is free of infrared problems, and exhibits a nonexpo-
nential damping at large times:SR(t);exp$2aTt lnvpt%, where vp5eT/3 is the plasma frequency and
a5e2/4p. @S0556-2821~97!00802-3#

PACS number~s!: 12.20.Ds, 11.15.Bt, 52.60.1h

I. INTRODUCTION

The study of the elementary excitations of ultrarelativistic
plasmas, such as the quark-gluon plasma, has received much
attention in the recent past@1–11#. ~See also@12,13# for re-
cent reviews and more references.! The physical picture
which emerges is that of a system with two types of degrees
of freedom:~i! the plasma quasiparticles, whose energy is of
the order of the temperatureT; ~ii ! the collective excitations,
whose typical energy isgT, whereg is the gauge coupling,
assumed to be small:g!1 ~in QED, g5e is the electric
charge!. For this picture to make sense, however, it is impor-
tant that the lifetime of the excitations be large compared to
the typical period of the modes.

Information about the lifetime is obtained from the re-
tarded propagator. A usual expectation is thatSR~t,p! decays
exponentially in time, SR~t,p!;e2 iE(p)te2g(p)t, so that
uSR~t,p!u2;e2G(p)t with G(p)52g(p), which identifies the
lifetime of the single particle excitation ast(p)51/G(p).
The exponential decay may then be associated to a pole of
the Fourier transformSR~v,p!, located atv5E(p)2 ig(p).
The quasiparticles are well defined if their lifetimet is much
larger than the period;1/E of the field oscillations, that is, if
the damping rateg is small compared to the energyE. If this
is the case, the respective damping rates can be computed
from the imaginary part of the on-shell self-energyS@v
5E(p),p#. Such calculations suggest thatg;g2T @3,4# for
both the single-particle and the collective excitations. In the
weak coupling regimeg!1, this is indeed small compared to
the corresponding energies~of orderT andgT, respectively!,
suggesting that the quasiparticles are well defined, and the
collective modes are weakly damped. However, the compu-
tation of g in perturbation theory is plagued with infrared
divergences, which casts doubt on the validity of these state-
ments@3#, @14–25#.

The first attempts to calculate the damping rates were
made in the early 80’s. It was then found that, to one-loop
order, the damping rate of the soft collective excitations in

the hot QCD plasma was gauge-dependent, and could turn
out negative in some gauges~see Ref.@26# for a survey of
this problem!. Decisive progress on this problem was made
by Pisarski@3# and Braaten and Pisarski, who identified the
resummation needed to obtain the screening corrections in a
gauge-invariant way@4# @the resummation of the so called
‘‘hard thermal loops’’ ~HTL!#. Such screening corrections
are sufficient to make finite the transport cross-sections@6,7#,
and also the damping rates of excitations with zero momen-
tum @4,8#. At the same time, however, it has been remarked
@3# that the HTL resummation is not sufficient to render fi-
nite the damping rates of excitations with nonvanishing mo-
menta. The remaining infrared divergences are due to colli-
sions involving the exchange of long wavelength, quasistatic,
magnetic photons~or gluons!, which are not screened in the
hard thermal loop approximation. Such divergences affect
the computation of the damping rates of charged excitations,
in both Abelian and non-Abelian gauge theories. Thus, in the
lowest order calculations of Refs.@3#, @14–25#, one meets
the same logarithmic divergence for electrons in QED, for
charged scalars in scalar QED~SQED!, and for quarks and
gluons in QCD.~There is no such problem for the photon
damping rate, which is IR finite and of orderg4T @27#, since
photons do not couple directly to gluons or to themselves.!
Furthermore, the problem appears for both soft (p;gT) and
hard (p;T) quasiparticles. In QCD this problem is gener-
ally avoided by the ad hoc introduction of an IR cutoff
~‘‘magnetic screening mass’’! ;g2T, which is expected to
appear dynamically from gluon self-interactions@28#. In
QED, on the other hand, it is known that no magnetic screen-
ing can occur@29#, so that the solution of the problem must
lie somewhere else.

In order to make the damping rateg finite, Lebedev and
Smilga proposed a self-consistent computation of the damp-
ing rateg @14#, by includingg also in internal propagators.
However, the resulting self-energy is not analytic near the
complex mass shell, and the logarithmic divergence actually
reappears when the discontinuity of the self-energy is evalu-
ated atv5E2 ig @16,17#. More thorough resummations of
the fermion line led to the conclusion that the full fermion
propagator has actually no quasiparticle pole in the complex
energy plane@22,20#. These analyses left unanswered, how-
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ever, the question of the large time behavior of the retarded
propagator. As we have shown in a previous Letter@30#, the
answer to this question requires resummations for both the
fermion propagator and the photon-electron vertex function.
Such resummations modify the analytic structure of the re-
tarded propagator: indeed, as we shall see, they make it ana-
lytic in the vicinity of the mass shell.

The need for a nonperturbative analysis follows from the
fact that infrared divergences occur in all orders of perturba-
tion theory. The leading divergences arise, in all orders, from
the same kinematical regime as in the one loop calculation,
namely from the exchange of soft quasistatic magnetic pho-
tons. In the imaginary time formalism, these divergences are
concentrated in diagrams in which the photon lines carry
zero Matsubara frequency~to be referred as static modes in
what follows!. In this sense, they appear as the divergences
of an effective three-dimensional gauge theory, which is in-
trinsically nonperturbative. Still, this effective ‘‘dimensional
reduction’’ brings in simplifications which can be exploited
to arrive at an explicit solution of the problem.

We concentrate in this paper on the damping rate of fer-
mionic excitations in hot QED plasmas. Our analysis is
based on the Bloch-Nordsieck~or eikonal! approximation
@31#. At zero temperature, this approximation provides an
all-order solution to the infrared catastrophe, and correctly
describes the mass-shell structure of the four-dimensional
fermion propagator@32#. At finite temperature, the Bloch-
Nordsieck~BN! approximation has been previously used, by
Weldon, to verify the cancellation of the infrared diver-
gences in the production rate for soft real photons@33#. Let
us also mention that an attempt to solve the IR problem of
the damping rate, using the BN approximation in the same
spirit as in the present paper, has been reported in Ref.@34#.
However, although the final result obtained in@34# is similar
to ours, the derivations there are plagued with several incon-
sistencies, some of which are pointed out in@30#.

In this paper, we shall consider~in Sec. III! a different
generalization of the Bloch-Nordsieck model at finite tem-
perature, which is better suited to study the infrared structure
of the fermion propagator. Our approach is a natural exten-
sion of the method used in Ref.@32# in ~311!-dimensional
QED ~QED311! at zero temperature. However, the resulting
imaginary-time BN propagator does not exponentiate in an
obvious way, and thus cannot be written in closed form, in
contrast to the usual, zero-temperature propagator. Still, we
can obtain an explicit solution once we restrict ourselves to
the static Matsubara photon modes. We thus get the retarded
propagatorSR~t,p!, and study its large time behavior~Sec.
IV !. The final result is that, for timest@1/gT, the propagator
does not show the usual exponential decay alluded to before,
but the more complicated behavior SR(t,p)
;e2 iE(p)te2aTt lnvpt, where vp;gT is the plasma fre-
quency, andE(p).p;T is the average energy of the hard
fermion. This corresponds to a typical lifetime
t21;g2T ln~1/g!, which is similar to the one provided by the
perturbation theory with an IR cutoff of the orderg2T. Since,
as t→`, SR(t) is decreasing faster than any exponential, the
Fourier transform ofSR~t,p!, SR~v,p!, is an entire function in
the complex energy plane. The existence of the quasiparticle
is therefore not signaled by the presence of a pole ofSR~v!
in the complex energy plane. However, the associated spec-

tral density has the shape of a resonance strongly peaked
around v5E(p), with a typical width of the order
1/t;g2T ln~1/g!. With minor modifications, the above con-
clusions also apply for the soft~collective! excitations, with
momentap;gT, whose lifetimes are found to depend on the
group velocitiesuv6u,1 ~Sec. V!.

At this stage it is useful to specify the notations and the
conventions to be used throughout. The analytic propagator
is defined in the complex energy plane by the spectral rep-
resentation

S~v,p!5E
2`

1` dp0

2p

r f~p
0,p!

p02v
. ~1.1!

The Matsubara propagator is obtained from Eq.~1.1! by set-
ting v5ivn , with vn5(2n11)pT and integern. At tree
level, rf~p

0,p!5p” r0(p
0,p) wherep”5pmgm , ep[upu5p, and

r0~p
0,p!5

p

ep
@d~p02ep!2d~p01ep!#, ~1.2!

so that

S0~v,p!52
vg02p•g

v22p2
5

21

v2p
h1~ p̂!1

21

v1p
h2~ p̂!,

~1.3!

whereh6~p̂!5~g07p̂•g!/2, with p̂[p/p.
The full fermion propagator is given by the Dyson-

Schwinger equation

S21~v,p!5S0
21~v,p!1S~v,p!. ~1.4!

The most general form of the self-energyS which is com-
patible with the rotational and chiral symmetries is

S~v,p!5a~v,p!g01b~v,p!p̂•g

[h2~ p̂!S1~v,p!2h1~ p̂!S2~v,p!, ~1.5!

where

S6~v,p!56 1
2 tr@h6~ p̂!S~v,p!#. ~1.6!

Using this decomposition ofS onto h6 , and the analogous
one forS0, Eq. ~1.3!, one can easily invert Eq.~1.4! to get
the full propagator:

S~v,p!5D1~v,p!h1~ p̂!1D2~v,p!h2~ p̂!, ~1.7!

where

D6~v,p!5
21

v7@p1S6~v,p!#
. ~1.8!

The retarded propagator is obtained as the boundary value
of the analytic propagator~1.1! whenv approaches the real
axis from above, i.e.,SR~v,p!5S~v1ih,p!, wherev is real
andh→01 . In the time representation,
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SR~ t,p!5E
2`

` dv

2p
e2 ivtSR~v,p!

5 iu~ t !E
2`

` dv

2p
e2 ivtr f~v,p!. ~1.9!

The large time behavior ofSR~t,p! is determined by the ana-
lytic structure ofSR~v,p! when continued to complex values
of v. In the upper half plane,SR~v! coincides with the ana-
lytic propagator~1.1!. In the lower half plane,SR~v! is de-
fined by continuation across the real axis, and it may have
singularities there. The large time behavior ofSR(t) is con-
trolled in most cases by the singularity ofSR~v! which lies
closest to the real axis. If this is located atv5E(p)2 ig(p),
then SR~t,p!;f ~t,p!e2 iE(p)te2g(p)t, where the prefactor
f ~t,p! is slowly varying, and depends on the specific nature
of the singularity. This conventional picture breaks down in
gauge theories since, as we shall discuss in the next section,
the perturbative estimate ofg turns out to be IR divergent.
The resummation of the leading infrared divergences, carried
out in Sec. III, produces a propagator which has no singular-
ity in the complexv plane. We shall then find it convenient
to calculateSR(t) directly, rather than from the Fourier trans-
form ~1.9!.

II. THE ONE-LOOP DAMPING RATE
FOR THE HARD FERMION

In this section, we review the perturbative calculations of
the damping rate for a hard fermion, with momentump;T
@14–25# focusing on the infrared divergences which arise in
such calculations. We assume here, as customary, that the
dominant singularity of the retarded propagator is a simple
pole whose location goes back into the tree-level pole at
v5p wheng→0.

A. Physical interpretation of the damping

To leading order ing, the self-energy is given by the
one-loop diagram in Fig. 1. This gives no contribution to the
damping rateg. Indeed, when evaluated on the free mass
shell, i.e., atv5p, the imaginary part of the one-loop self-
energy vanishes because of kinematics.~At finite tempera-
ture this argument involves subtleties which are discussed in
Appendix B.!

The leading contribution tog comes therefore from the
two-loop diagram in Fig. 2, and turns out to be quadratically
infrared divergent~see, e.g., Refs.@6, 7, 13, 18#!.

The on-shell imaginary part is obtained by cutting the
diagram in Fig. 2 through the internal fermion loop and the
lower fermion propagator. Physically, this imaginary part ac-
counts for the scattering of the incoming electron@with four
momentumpm5~ep ,p! and ep5p# off a thermal fermion
~electron or positron!, calculated in the Born approximation

~see Fig. 3!. The total interaction rate is given by

G~p!5
1

2e E dp̃1dp̃2dp̃3~2p!4d~4!~p1p12p22p3!

3@n1~12n2!~12n3!1~12n1!n2n3#uMu2,

~2.1!

and coincides with twice the damping rateg(p), as com-
puted from the two-loop self-energy in Fig. 2:G(p)52g(p).
This identity extends to finite temperature the usual physical
interpretation of the self-energy discontinuity in terms of
cross-sections for physical processes, and can be verified
through an explicit calculation@13# ~see also below!. The
notations in Eq.~2.1! are as follows: all the particles are on
the mass shell~i.e., e5p and e i5pi for i51,2,3!, and we
have denoted *dp̃i[* [d3pi /(2p)32e i ]. The factors
ni5n(e i) are the thermal occupation numbers for fermions
[n(e)51/(ebe11)]. Note that, for fermions, the rates of the
direct and of the reverse processes have to be added to give
the total depopulation of the fermion state with momentum
pm @35#. Finally, uMu2 is the scattering matrix element
squared, averaged over the spins of the incoming electron,
and summed over the spinss1, s2, ands3 of the other three
particles. In the Born approximation,uMu2 is independent of
the temperature and involves the propagatorDmn(q) of the
exchanged photon~with q5p2p35p22p1!. Specifically
@36#,

uMu2516g4Dmn~q!Drl* ~q!@pmp3
r1p3

mpr2gmr~p•p3!#

3@p1
np2

l1p2
np1

l2gnl~p1•p2!#. ~2.2!

We shall use below the Coulomb gauge where the only non-
trivial components ofDmn(q) are the electric~or longitudi-
nal! one,D00(q)[D l(q), and the magnetic~or transverse!
oneDi j (q)5(d i j2q̂i q̂ j )D t(q).

Since the interaction rate~2.1! is dominated by soft mo-
mentum transfersq!T, while the external momenta are typi-
cally of the order ofT, we can simplify the matrix element
uMu2 by settingp.p3 andp1.p2 in Eq. ~2.2!, and obtain

FIG. 1. The one-loop fermion self-energy.

FIG. 2. Two-loop diagram contributing to the fermion self-
energy.

FIG. 3. Fermion-fermion elastic scattering in the Born approxi-
mation.
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uMu2.64g4p2p1
2uD l~q!1~v3q̂!•~v13q̂!D t~q!u2,

~2.3!

with v[p̂ andv1[p̂1. Furthermore, we use energy conserva-
tion to writeq05e2e35e22e1, that is,

q05p2up2qu5up11qu2p1 ,

which, for q!T, becomes

q0.v•q.v1•q. ~2.4!

The statistical-factors in Eq.~2.1! satisfy the identity

n1~12n2!~12n3!1~12n1!n2n3

5~n12n2!@11N~q0!2n3#, ~2.5!

which featuresN(q0), the Bose-Einstein thermal factor for
the virtual photon. Sincee25e11q0, andq0!p1;T,

~n12n2!@11N~q0!2n3#.2
dn

dp1
q0N~q0!.2T

dn

dp1
,

~2.6!

where we have used the fact that, at smallq0!T,

11N~q0!2n3.N~q0!.T/q0 . ~2.7!

Finally, we use Eq.~2.4! to rewrite the integrations overp2
andp3 as

E d3p2
~2p!

E d3p3
~2p!3

~2p!4d~4!~p1p12p22p3!

5E d3q

~2p!3
E

2`

` dq0
2p

2pd~q02v•q!2pd~q02v1•q!,

~2.8!

so that we may usep1, q, andq0 as independent integration
variables in Eq.~2.1!:

G~p!.16p2g4TE d3p1
~2p!3 S 2

dn

dp1
D E d3q

~2p!3
E

2`

` dq0
2p

3d~q02v•q!d~q02v1•q!uD l~q!

1~v3q̂!•~v13q̂!D t~q!u2. ~2.9!

We perform the angular integrations overv1[p̂1 and q̂ by
using the delta functions, while the radial integration overp1
gives

E dp1p1
2S 2

dn

dp1
D5

p2T2

6
. ~2.10!

We obtain finally

G.
g4T3

6 E
0

q*
dqE

2q

q dq0
2p F uD l~q0 ,q!u2

1
1

2 S 12
q0
2

q2D
2

uD t~q0 ,q!u2G , ~2.11!

where the upper cutoffq* distinguishes between soft and
hard momenta:gT!q*!T. Since theq integral is domi-
nated by IR momenta, its leading order value is actually
independent ofq* .

The two terms within the parentheses in Eq.~2.11! corre-
spond to the exchange of an electric and of a magnetic
photon respectively. For a bare photon, we have
uD l(q0 ,q)u

251/q4 and uD t(q0 ,q)u
251/(q 0

22q2)2, so that
theq integral in Eq.~2.11! shows a quadratic IR divergence:

G.
g4T3

4p E
0

q* dq

q3
. ~2.12!

This divergence reflects the singular behavior of the Ruther-
ford cross section for forward scattering@36#.

As is well known, however, the quadratic divergence is
removed by the screening corrections contained in the pho-
ton polarization tensor. These modify the electric and mag-
netic propagators as

*D l~q0 ,q!5
21

q21dP l~q0 ,q!
,

*D t~q0 ,q!5
21

q0
22q22dP t~q0 ,q!

, ~2.13!

whered Pl andd Pt are the respective pieces of the photon
polarization tensor~in the hard thermal loop approximation
@1,2#!. We shall see below that the leading IR contribution
comes from the domainq0!q!T, where we can use the
approximate expressions

dP l~q0!q!.3vp
2[mD

2 , dP t~q0!q!.2 i
3p

4
vp
2 q0
q
,

~2.14!

wherevp5gT/3 is the plasma frequency, andmD5)vp is
the Debye mass. We see that screening occurs in different
ways in the electric and the magnetic sectors. In the electric
sector, the familiar static Debye screening provides an IR
cutoffmD;gT. Accordingly, the electric contribution toG is
finite, and of the orderG l;g4T3/mD

2;g2T. Its exact value
can be computed by numerical integration@17#. In the mag-
netic sector, screening occurs only for nonzero frequencyq0
@2,6#. This comes from the imaginary part of the polarization
tensor, and can be associated to the Landau damping of
spacelike photons (q 0

2,q2). This ‘‘dynamical screening’’ is
not sufficient to completely remove the IR divergence ofGt :

G t.
g4T3

12 E
0

q*
dqE

2q

q dq0
2p

1

q41~3pvp
2q0/4q!2

5
g2T

p2 E
0

q* dq

q
arctanS 3pvp

2

4q2 D .
g2T

2p E
0

vp dq

q
.

~2.15!

In writing the last equality, we payed attention only to the
dominant, logarithmically divergent, contribution. To isolate
it, we have written
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arctanS 3pvp
2

4q2 D .
p

2
,

as appropriate forq!vp , and we have introduced the upper
cutoff vp;gT to approximately account for the correct UV
behavior of the integrand: namely, asq@vp , the integrand
is decreasing likev p

2/q3, so that theq-integral is indeed cut
off at q;vp .

The remaining IR divergence in Eq.~2.15! is due to col-
lisions involving the exchange of very soft~uqu→0!, quasi-
static ~q0→0! magnetic photons, which are not screened by
plasma effects. To see that, note that the IR contribution to
Gt comes from momentaq!gT, where u*Dt(q0 ,q) u

2 is al-
most a delta function ofq0:

u*D t~q0 ,q!u2.
1

q41~3pvp
2q0/4q!2

;
q→0

4

3qvp
2 d~q0!.

~2.16!

This is so because, asq0→0, the imaginary part of the po-
larization tensor vanishes linearly@see the second equation
~2.14!#, a property which can be related to the behavior of
the phase space for the Landau damping processes. Since
energy conservation requiresq05q cosu, where u is the
angle between the momentum of the virtual photon~q! and
that of the incoming fermion~p!, the magnetic photons
which are responsible for the singularity are emitted, or ab-
sorbed, at nearly 90 degrees.

To conclude this subsection, we note that if we tempo-
rarily leave aside the logarithmic divergence, then both the
electric and the magnetic damping rates are of orderg2T,
rather thang4T as one would naively expect by looking at
the diagrams in Figs. 2 and 3. This situation has been some-
times referred as anomalous damping@14#, and is a conse-
quence of the strong sensitivity of the scattering cross section
to the IR behavior of the photon propagator. By comparison,
the other two-body collisions leading to the damping of the
fermion, namely the Compton scattering and the annihilation
process, are less IR singular—as they involve the exchange
of a virtual fermion—and only contribute at orderg4T.

B. Resummed one-loop self-energy

While the above calculation of the interaction rate in the
Born approximation is physically transparent, for the subse-
quent developments in this paper it is more convenient to
obtaing from the imaginary part of the self-energy. To low-
est order, we can writeg(p)52ImS1(p,p), with S1~v,p!
defined as in Eq.~1.6! in terms of the resummed one-loop
self-energy. The corresponding diagram is displayed in Fig.
4: the blob on the photon line in this figure denotes the
effective photon propagator of Eq.~2.13!.

To evaluate the one-loop diagram in Fig. 4, we use the
imaginary time formalism and write

S~p!52g2T (
q05 ivm

E d3q

~2p!3
gmS0~p2q!gn*D

mn~q!.

~2.17!

In this equation, all the energy variables are purely imagi-
nary and discrete to start with; namely,
p05 ivn5 i (2n11)pT for the external fermion line, and
q05 ivm5 i2pmT for the internal photon line, with integers
n andm. Furthermore,k5p2q, S0(p2q) is the free ferm-
ion propagator, Eq.~1.3!, and *Dmn(q) is the resummed
photon propagator. We shall perform our computations in the
Coulomb gauge~the one-loop damping rate is gauge inde-
pendent@4,37,38#; see also Appendix B!.

The continuation ofS(p) to real external energy can be
done only after performing the Matsubara sum over
q05 ivm , and consists in simply replacing~for retarded
boundary conditions! p05 ivn by v1ih, with real v and
h→01 . In order to perform the Matsubara sum in Eq.~2.17!,
it is convenient to use the spectral representations of the
various propagators. ForS0, this is given in Eq.~1.1!, with
rf~p

0,p!5p” r0(p
0,p). For the electric and magnetic photon

propagators we have similarly

*D t~v,q!5E
2`

` dq0
2p

* r t~q0 ,q!

q02v
,

*D l~v,q!52
1

q2
1E

2`

` dq0
2p

* r l~q0 ,q!

q02v
, ~2.18!

where*rl and*rt are the corresponding spectral densities,

* r l ,t~q0 ,q!52 Im *D l ,t~q01 ih,q!. ~2.19!

Note the subtraction performed in the spectral representation
of *D l(v,q): this is necessary since*D l(v,q)→21/q2 as
uvu→`. When the above expressions are inserted in Eq.
~2.17!, the sum overvm can be performed easily. One ob-
tains then

( ~p!52g2E d3q

~2p!
E

2`

1` dk0

2p E
2`

1` dq0

2p

3r0~k!gmk”gn* rmn~q!
11N~q0!2n~k0!

k01q02p0
.

~2.20!

The analytical continuationp0→v1 ih can now be done,
and the damping rate is calculated asg(p)52ImS1(p,p).
One gets

g~p!5
pg2

v E d3q

~2p!3
E

2`

1` dk0

2p E
2`

1` dq0

2p
d~k01q02v!

3@11N~q0!2n~k0!#r0~k!

3$2@vk02~p•q̂!~k•q̂!#* r t~q!

1@vk01~p•k!#* r l~q!%, ~2.21!

FIG. 4. The resummed one-loop self-energy.

55 977LIFETIMES OF QUASIPARTICLES AND COLLECTIVE . . .



wherev5p, km5~k0,k! andk5p2q.
The spectral functions~2.19! of the dressed photon have

the structure

* rs~q0 ,q!52pe~q0!zs~q!d†q0
22vs

2~q!‡

1bs~q0 ,q!u~q22q0
2!, ~2.22!

wheres5 l or t, zs(q) is the residue of the timelike pole at
vs(q), and

b l~q0 ,q!53pvp
2 q0
q

u*D l~q0 ,q!u2,

b t~q0 ,q!53pvp
2
q0~q

22q0
2!

2q3
u*D t~q0 ,q!u2. ~2.23!

Forv→p, the energy conservation selects the positive value
k05ep2q[up2qu from the spectral densityr0(k0 ,k) of the
internal fermion. Also, the kinematics restricts the photon
momentum to be spacelike (uq0u,q). Finally, because of the
infrared sensitivity of the damping rate, the whole contribu-
tion toG in the on-shell limit~and not only its divergent part!
comes from soft photon momenta,q!T. Since, on the other
hand,p;T, we can make the following kinematical approxi-
mations when evaluating Eq.~2.21! ~recall thatv5p!:

ep2q.p2p•q̂5p2q cosu,

vep2q~p•q̂!~k•q̂!.p2~12cos2u!,

vk01~p•k!.2p2,

11N~q0!2n~ep2q!.N~q0!.T/q0. ~2.24!

With these simplifications, Eq.~2.21! becomes

g~p!.pg2TE d3q

~2p!3
E

2`

` dq0
2pq0

d~q02q cosu!

3@* r l~q!1~12cos2u!* r t~q!#, ~2.25!

and it is independent of the external momentum. To be con-
sistent with the approximations performed, we supply the
above integral overq with an upper cutoffq* satisfying
gT!q*!T. We shall verify later that, to the order of inter-
est, the value of the integral is actually independent ofq* .

By using thed function to perform the angular integration
in Eq. ~2.25!, we obtain

g.
g2T

4p E
m

q*
dqqE

2q

q dq0
2pq0

3Fb l~q0 ,q!1S 12
q0
2

q2Db t~q0 ,q!G . ~2.26!

In order to regularize the IR divergence, we have inserted a
lower cutoff m in the integral overq. Note that because of
the kinematics, the support of the energy integral is limited
to 2q,q0,q, so that only the off-shell piecesb l ,t(q0 ,q) of
the photon spectral densities contribute to the damping rate.
This is consistent with the physical interpretation of the
damping rate presented in Sec. II A. In fact, at this point, we

can easily make contact between these two presentations.
Namely, Eq.~2.11! in Sec. II A is essentially the same as the
above Eq.~2.26!, as can be seen by using Eq.~2.23! for the
spectral densities. Moreover, the IR singular piece of the
damping rate~2.26! is given by Eq.~2.15!, as we verify now
through a different computation based on the sum rules@17#
displayed in Appendix A.

Using the behavior of these sum rules for large photon
momentaq@vp , as given in Eq.~A6!, one can verify thatg
is independent of the arbitrary intermediate scaleq* , to the
order of interest~the contribution of the momentaq.q* is
of relative ordergT/q* !. Furthermore, the infrared behavior
is dominated by that term of Eq.~2.26! which involves the
transverse spectral density divided byq0. Specifically, for
small momentaq!vp we can write

E
2q

q dq0
2pq0

b t~q0 ,q!5
1

q2
@11O~q2/vp

2!#, ~2.27!

which diverges as 1/q2 in the zero momentum limit. All the
other terms give finite contributions asq→0 ~of relative or-
derq2/v p

2!, and will be neglected here. By retaining only the
leading term in Eq.~2.27!, we obtain the singular contribu-
tion to Eq.~2.26!:

gsing5
g2T

4p E
m

vp
dq

1

q
5
g2T

4p
ln

vp

m
. ~2.28!

The upper cutoffvp;gT accounts approximately for the
terms which have been neglected when keeping only the 1/q2

contribution to the sum rule~2.27! @recall that the full inte-
grand in Eq.~2.26! is indeed cut off atq;vp#. As long as
we are interested only in the coefficient of the logarithm, the
precise value of this cutoff is unimportant. The scalevp ,
however, is uniquely determined by the physical process re-
sponsible for the existence of space like photons, i.e., the
Landau damping. As we shall see later, this is the scale
which fixes the long time behavior of the retarded propaga-
tor.

In terms of collisions, the logarithmic singularity ofg, Eq.
~2.28!, arises from the exchange of very soft quasistatic
~q0.0! magnetic photons, as already discussed in Sec. II A.
In the present computation, this may be seen also as follows:
for very soft momentaq!vp , the functionb t(q0 ,q)/q0 is
strongly peaked atq050 ~see Fig. 5! and in the calculation of
the integral~2.27! it can be replaced by the following ap-
proximate expression:

1

q0
b t~q0!q!5

3p

2

vp
2q

q61~3pvp
2q0/4!2

;
q→0

2p

q2
d~q!.

~2.29!

This is, of course, just a translation of the corresponding
property~2.16! of the magnetic propagator. Still, this is sug-
gestive because the quantity b t(q0,q)N(q0)
.(T/q0)b t(q0,q) is the density of states which are available
for the emission (q0.0) or the absorption (q0,0) of a
virtual photon with momentumq and energyq0 . Then, Eq.
~2.29! shows that, for very soft momentaq!vp , the whole
density of states is concentrated atq050 ~see Fig. 5!.
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C. Static photon modes and non-perturbative aspects

Because of the delta function singularityd~q0! in Eq.
~2.29!, the above discussion suggests that, in the imaginary
time formalism, the whole IR singularity is concentrated in
the static modeq050. Let us verify this explicitly by show-
ing that, indeed, the logarithm in Eq.~2.28! arises entirely
from the magnetic contribution of the static term
q05 ivm50 in the Matsubara sum of Eq.~2.17! @15,24#.
Note that the analytic continuation of this term to real energy
(p0→v1 ih) is well defined, since all its singularities lie on
the real axis in the complexp0 plane.~This is not so for the
terms withq05 ivmÞ0, which individually have singulari-
ties off the real axis.!

The magnetostatic mode gives the following contribution
to the one-loop self-energy:

Ss~v,p!52g2TE d3q

~2p!3
g iS0~v,p2q!g j*Di j ~0,q!

5g2TE d3q

~2p!3
g i@vg02~p2q!•g#g j

~v1 ih!22~p2q!2
d i j2q̂i q̂ j

q2
.

~2.30!

The momentum integral in Eq.~2.30! shows a logarithmic
ultraviolet divergence. In the full calculation, such a diver-
gence would be cut off by the contribution of the nonstatic
modes. @Recall the discussion after Eq.~2.28!.# When
supplemented with an upper cutoffvp , Eq. ~2.30! yields the
following contribution to the fermion damping rate~for
v.p!:

gs[2
1

4p
tr@p” Im Ss~p!#

.g2TE d3q

~2p!3
1

q2
Im

21

v2p2q cosu1 ih

.
g2T

4p E
0

vp
dqE

21

1

d cosud~v2p2q cosu!

5aT ln
vp

uv2pu
, ~2.31!

where the approximate equality means that only regular
terms have been dropped. In the mass-shell limitv→p, this
reproduces the singular result of Eq.~2.28!. Note that the
upper cutoffvp is the only trace of the screening effects in
the above calculation; indeed, the magnetostatic propagator
is the same as at the tree-level, namely*D(0,q)51/q2.

The divergence ofg at the ~resummed! one-loop level
invites a closer examination of the higher order corrections.
The two-loop self-energy is briefly discussed in Appendix C,
where we show that the leading infrared divergence arises,
again from terms where both the internal photons are static
and magnetic. This result is readily generalized to all orders;
the most singular contributions to the on-shell fermion self-
energy are confined to the magnetostatic sector. When com-
puting these contributions, all the loop integrals run over the
three momentaq of the static internal photons, so that the
infrared singularities are effectively those of a three-
dimensional theory. Consider then a genericn-loop self-
energy diagram with only magnetostatic modes: Its disconti-
nuity, when evaluated on the tree-level mass-shellv5p, has
powerlike IR divergences, possibly combined with logarith-
mic ones. Power counting shows that the leading divergences
are of relative order (g2T/m)n21, wherem is an IR cutoff.
Such strong IR divergences are analogous to those identified
in the analysis of the corrections to the screening mass in
@39#, and their presence signals a breakdown of perturbation
theory.

To get further insight, it is useful to consider the explicit
two-loop calculation from Appendix C; the on-shell self-
energyS~2!~p,p! shows a linear plus logarithmic divergence.
~There are also subleading, purely logarithmic, divergences,
but these are left out in a leading-order calculation.! Specifi-
cally, Eq. ~C5! yields

S1
~2!~p,p![ 1

2 tr@h6~ p̂!S~2!~p,p!#

. i
2

p

~aT!2

m
ln

vp

m
;

aT

m
S1

~1!~p,p!,

~2.32!

whereS 1
(1)(p,p)52 iaT ln~vp/m! is the on-shell limit of

the one-loop self-energy in Eq.~2.31!. Now, in order to com-
pute the two-loop contribution to the damping rate, one has
to expand the dispersion equationv5p1S1(v,p) up to the
order of interest. This yields the 2-loop mass-shell correction
in the form

dv~2!~p!5@z~1!~p!21#S1
~1!~p,p!1S1

~2!~p,p!

1O~3 loops!, ~2.33!

FIG. 5. The functionsb t(q0 ,q) andb t(q0 ,q)/q0 for q50.5vp .
All the quantities are made adimensional by multiplying them by
appropriate powers ofvp .
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where

z~1!~p!215
]S1

~1!

]v
U

v5p

.
2

p

aT

m
, ~2.34!

is the one-loop residue, whose leading IR-divergent part has
been computed in Appendix C. By combining Eq.~2.32!
with Eqs. ~2.33! and ~2.34!, we note that the leading, pow-
erlike, divergences cancel between the two-loop self-energy
and the one-loop residue, so that the two-loop correction tog
is only logarithmically divergent, as at the one loop level.

A simple argument, based on a gauge-invariant approxi-
mation to the full Dyson-Schwinger equation which is de-
tailed in Appendix C, suggests that this is a general feature:
if we assume the fermion propagator to have a simple pole at
the mass-shell, then the damping rate remains logarithmi-
cally divergent to all orders. That is, the powerlike diver-
gences which occur inS~v5p! appear to cancel against
similar divergences in the residue.~A similar all-order can-
cellation has been argued in three-dimensional QED at zero
temperature@40#.! However, the persistence of the logarith-
mic divergence in all orders of perturbation theory suggests
that the analytic structure of the propagator is more compli-
cated than a simple pole.

To conclude this section, let us emphasize that when we
compute the imaginary part of multiloop diagrams with only
static internal photons, we are actually considering the ef-
fects of multiple collisions involving the exchange of quasi-
static magnetic photons with the plasma particles. The fact
that these processes~or, more accurately, their most IR sin-
gular contributions to the interaction rate! can be effectively
taken into account by the ‘‘dimensional reduction’’ to the
magnetostatic photon modes is a consequence of the specific
infrared behavior of the resummed magnetic propagator, as
expressed by Eq.~2.16!.

III. THE BLOCH-NORDSIECK MODEL
AT FINITE TEMPERATURE

Previously, we have shown that the leading infrared di-
vergences in the perturbative computation of the fermion
self-energy are those of an effective three-dimensional
theory involving only static magnetic photons. We shall take
advantage of this in order to get an explicit expression for the
fermion propagator. However, before restricting ourselves to
the static photon modes, we shall first develop a more gen-
eral approach which is essentially a finite-temperature exten-
sion of the Bloch-Nordsieck approximation@31,32#.

A. Perturbation theory with soft photons

We start by deriving a set of simplified Feynman rules
which allows one to compute the most IR singular contribu-
tions to the damping rate from higher loop self-energy dia-
grams. The leading infrared divergences arise from diagrams
where all the internal photon lines are soft, and therefore
dressed by the screening corrections. No further resumma-
tion of the photon lines is necessary beyond the hard thermal
loop approximation: in Abelian gauge theories, all the higher
order corrections to the photon polarization tensor remain
perturbative, and do not modify the qualitative IR behavior
of the HTL-resummed propagator@denoted as*Dmn(q)#.

Thus, when expressed in terms of the resummed photon
propagator, the relevant self-energy diagrams contain no
fermion loops: the internal photon lines are all attached on
the incoming fermion line. A typicaln-loop diagram is
shown in Fig. 6. There are as many loops as photon propa-
gators, and we can choose all the independent loop momenta
to be the momentaqr of the soft photon lines~here
r51,...,n for ann-loop graph!. All such diagrams are com-
posed from the three following structural units:~i! the effec-
tive photon propagator*Dmn(q); ~ii ! the fermion propagator
S0(p1q), wherep is the hard external momentum, andq is
a linear combination of the soft loop momenta;~iii ! the
photon-fermion vertexgm. In the kinematical regime of in-
terest, both the fermion propagator and the vertex function
can be further simplified, along the lines explained in Sec.
II B. After performing the Matsubara sums over the internal
bosonic frequencies, and the analytic continuation to real ex-
ternal energy, the internal fermion lines are represented by
spectral densities such as@see, e.g., Eq.~2.20!#

r f~k
0,p2q!5@k0g02~p2q!•g#

p

ep2q

3@d~k02ep2q!2d~k01ep2q!#, ~3.1!

which multiply energy denominators of the form
1/~v2k02q0!. Since q!p, we can use
ep2q.ep2v•q5p2q cosu ~wherev5]ep/]p5p̂! to replace
Eq. ~3.1! with

ŕ f~k
0,p2q![~g02p̂•g!pd@k02v•~p2q!#

5h1~ p̂!ŕ0~k
0,p2q!, ~3.2!

where the reduced spectral density

ŕ0~v,p![2pd~v2v•p! ~3.3!

involves only the positive-energy fermion state. The contri-
bution of the negative-energy fermion state, initially present
in Eq. ~3.1!, is suppressed by the corresponding large energy
denominator.

One sees in Eq.~3.2! that neither the spin structure, nor
the negative-energy fermion intermediate states, play an im-
portant role. In fact, the residual spin structure of Eq.~3.2!,
i.e., the spin matrixh1~p̂!, does not involve the loop mo-
menta anymore, and can be absorbed into a redefinition of
the vertex function. To see this, recall that, for a positive
energy hard fermion, the relevant self-energy is
S15tr@h1~p̂!S#/2. In the present kinematical regime, the
spin structure of a typicaln-loop contribution toS1 factor-
izes into the trace

FIG. 6. A genericn-loop diagram~here, n56! for the self-
energy in quenched QED.
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Im1m2•••m2n5 1
2 tr@h1~ p̂!gm1h1~ p̂!gm2•••h1~ p̂!gm2n#.

~3.4!

By using the identities@with vm5~1,v!#

h1~ p̂!gmh1~ p̂!5vmh1~ p̂!,

tr@h1~ p̂!gm#52vm, ~3.5!

one readily derives

Im1m2•••m2n5vm1vm2•••vm2n. ~3.6!

The same result would have been obtained by using the re-
duced spectral density in Eq.~3.3! instead of Eq.~3.2!, to-
gether with the effective vertexGm5vm.

To conclude, the corrections to the self-energyS1 which
derive from the fermion interactions with soft photons can be
obtained from the Feynman graphs of quenched QED, by
evaluating the latter with the following effective Feynman
rules: ~i! the photon propagator*Dmn(q); ~ii ! the fermion
~analytic! propagator

G0~p2q!5E
2`

1` dk0

2p

ŕ0~k
0,p2q!

k02~p02q0!

5
21

~p02q0!2v•~p2q!
; ~3.7!

~iii ! the photon-fermion vertexGm5vm. Any reference to the
spin structure, and also to the antiparticles, has disappeared.

We note that, when used in relation to the one-loop self-
energy in Fig. 4, the above Feynman rules yield directly the
expression~2.26! for the damping rate~that is, the whole
contribution of orderg2T, and not only its divergent piece!.
For higher loop diagrams however, we do not expect all the
subleading divergences to be correctly reproduced since, for
instance, contributions coming from mixed diagrams, where
some photons are hard and the other ones are soft, have been
ignored.

The simplified structure which is put forward here is fa-
miliar from most treatments of the IR divergences at zero
temperature~see, e.g.,@41# and references therein!. It can be
most economically exploited within the Bloch-Nordsieck
model @31# ~see also@32#!, which, for the vacuum theory, is
exactly soluble. In order to search for a nonperturbative so-
lution at finite temperature, we follow Ref.@32# and refor-
mulate this model in the language of path integrals.

B. The Bloch-Nordsieck model in functional form

In the Matsubara formalism, the exact fermion propagator
at finite temperature can be obtained as

SE~x,y!5Z21E @dA#SE~x,yuA!exp@2TrlnSE~x,yuA!

2 1
2 ~A,D0

21A!# ~3.8!

whereSE(x,yuA) is the~imaginary-time! fermion propagator
in the presence of a background gauge field:

2 iD” xSE~x,yuA!5dE~x2y!, ~3.9!

andDm5]m1 igAm . In these equations, the time variables
are purely imaginary@e.g., x052 i tx and y052 i ty , with
0<tx , ty<b and dE(x2y)5d(tx2ty)d(x2y!#, and the
gauge fields are periodic in time,Am(t50)5Am(t5b). The
tree-level photon action has been written as

~A,D0
21A!5T(

m
E d3q

~2p!3
Am~ ivm ,q!D0mn

21 ~ ivm ,q!

3An~2 ivm ,2q!, ~3.10!

wherevm52pmTwith integerm, andD0mn is the free pho-
ton propagator in an arbitrary gauge.

The fermion propagatorsSE(x2y) andSE(x,yuA) are an-
tiperiodic. For instance,

SE~tx50,tyuA!52SE~tx5b,tyuA!, ~3.11!

and similarly for ty . The functional determinant
exp@2TrlnSE(x,yuA)# describes the plasma polarization.
Diagrammatically, this term generates internal fermion
loops. As already discussed, the only polarization effects
which need to be considered are those contained in the pho-
ton HTL, which we denote here asdPmn :

TrlnSE~x,yuA!. 1
2 ~A,dPA!. ~3.12!

Furthermore, the simplifications discussed in the previous
subsection are easily implemented by replacing the exact
propagatorSE(x,yuA) in Eq. ~3.8! with the Bloch-Nordsieck
propagatorGE(x,yuA), solution of the equation

2 i ~v•Dx!GE~x,yuA!5dE~x2y!, ~3.13!

with antiperiodic boundary conditions.@Formally, this equa-
tion is obtained by replacing the Dirac matricesgm by the
particle velocity vm in the full equation~3.9!#. With the
above simplifications, the general equation~3.8! reduces to

SE~x,y!5Z21E @dA#GE~x,yuA!exp@2 1
2 ~A,*D21A!#,

~3.14!

with *D mn
215D 0mn

21 1dPmn . It is easy to verify that, when
considered in perturbation theory, Eqs.~3.13! and ~3.14!
generate the simplified Feynman rules alluded to at the end
of the previous subsection.

C. The Bloch-Nordsieck propagator in imaginary time

In real time, the equation forG(x,yuA) reads

2 i ~v•Dx!G~x,yuA!5d~4!~x2y!, ~3.15!

and can be solved exactly. For retarded boundary conditions,
G(x,yuA)50 for x0,y0 , the solution reads

GR~x,yuA!5 iu~x02y0!d~3!@x2y2v~x02y0!#U~x,y!

5 i E
0

`

dt d~4!~x2y2vt !U~x,x2vt !. ~3.16!

Here,U(x,y) is the parallel transporter along the straight
line trajectory of velocityv joining x andy(y5x2vt):
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U~x,x2vt !5expH 2 igE
0

t

dsv•A@x2v~ t2s!#J .
~3.17!

In order to verify that Eq.~3.16! is indeed a solution of Eq.
~3.15!, one may use the fact that the functionU(x,x2vt)
satisfies the following equation,

2
]

]t
U~x,x2vt !5~v•Dx!U~x,x2vt !, ~3.18!

with the boundary conditionU51 for t50.
In imaginary time, the resolution of Eq.~3.13! is compli-

cated by the antiperiodic boundary conditions to be imposed
onGE :

GE~tx50,tyuA!52GE~tx5b,tyuA!, ~3.19!

and similarly forty . The free equation~A50! can be easily
solved in momentum space:

GE~ ivn ,p!5
1

v•p2 ivn
, ~3.20!

wherevn5(2n11)pT. This is in agreement with Eq.~3.7!.
In the imaginary time representation,

GE~t,p!5T(
vn

e2 ivntGE~ ivn ,p!

5e2v•pt$u~t!@12n~v•p!#2u~2t!n~v•p!%,

~3.21!

where n~v!51/@exp~bv!11# is the Fermi-Dirac statistical
factor.

Consider now the interacting problem, withAÞ0. As a
guidance in searching a solution to Eq.~3.13! with antiperi-
odic boundary conditions, we use the solution~3.16! to the
real-time problem, which we write in the form@with
pm5~v,p! andv•p5v2v•p#

GR~x,yuA!5E d4p

~2p!4
e2 ip•~x2y!GR~x,puA!

GR~x,puA!5 i E
0

`

dt eit ~v•p!2htU~x,x2vt !, ~3.22!

where thex-dependence of the functionGR(x,puA) comes
from the corresponding dependence of the background field.

By analogy, we look for the solutionGE(x,yuA) to the
imaginary-time BN equation in the following form1

GE~x,yuA!5E $dp%e2 ip•~x2y!GE~x,puA!

GE~x,puA!52E
0

b

du e2u~v•p!V~x,v•p;u!, ~3.23!

where the unknown functionV~x,v•p;u! satisfies

2
]

]u
V5 i ~v•Dx!V,

V~tx50;u!5V~tx5b;u!,

V~x,v•p;u50!1eb~v•p!V~x,v•p;u5b!51. ~3.24!

As in the real-time case, thex-dependence ofGE(x,puA)
arises entirely from its interactions with the~periodic! gauge
field. If A50, we recover the free propagator~3.20! by re-
placingV~x,v•p;u! with n~v•p!, which satisfies indeed the
last equation~3.24! because of the identity

n~e!1eben~e!51. ~3.25!

Equation~3.24!, with the indicated boundary conditions,
can be solved as a series in powers ofgAm , that is, as a
perturbative expansion:

V~x,v•p;u!5n~v•p!1gE @dq#e2 iq•x
v•A~q!

v•q
@n~v•p!

2n@v•~p1q!#e2u~v•q!#1
g2

2 E @dq1#

3@dq2#e
2 i ~q11q2!•x

v•A~q1!

v•q1

v•A~q2!

v•q2

3@n~v•p!2n@v•~p1q1!#e
2u~v•q1!

2n@v•~p1q2!#e
2u~v•q2!

1n@v•~p1q11q2!#e
2uv•~q11q2!#1••• .

~3.26!

It can be verified, using in particular the identity~3.25! that
the series~3.26! satisfies indeed Eqs.~3.24!.

As already noted, the quantityV~x,v•p;u! is the
imaginary-time analogue of the real-time parallel transporter
U(x,x2vt), Eq. ~3.17!. This is also manifest from the anal-
ogy between Eq.~3.18! for U(x,x2vt) and Eq.~3.24! for
V~x,v•p;u!. By solving Eq.~3.18! in perturbation theory, one
generates a series analogous to Eq.~3.26!, where, however,
the thermal factors are absent. The correspondence between
the two series can be easily worked out term by term. For
instance,

$n~v•p!2n@v•~p1q!#e2u~v•q!%→~12eit ~v•q!!,

and so on. In the real-time series, factorizations occur, which
bring in simplifications. For example, in second order,

~12eit ~v•q1!2eit ~v•q2!1eit ~v•q11v•q2!!

5~12eit ~v•q1!!~12eit ~v•q2!!.

1To simplify notations, the measure in the momentum integrals
will be denoted below by the following condensed notation:

E @dq#[T (
q0 ,even

E d3q

~2p!3
, E $dp%[T (

p0 ,odd
E d3p

~2p!3
.
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Because of such factorizations, the real-time series corre-
sponding to Eq.~3.26! can be resummed into an exponential,
leading to the expression~3.17!. In the imaginary time, the
presence of the thermal factors prevents such a simple expo-
nentiation.

By insertingGE(x,yuA), Eqs.~3.23! and ~3.26!, into Eq.
~3.14!, we can perform the Gaussian functional integral over
the photon fields term by term. This yields

SE~x2y!5E $dp%e2 ip•~x2y!SE~p!

SE~p!52E
0

b

du e2u~v•p!Ṽ~v•p;u!, ~3.27!

whereṼ~v•p;u! is the functional average ofV~x,v•p;u!, Eq.
~3.26!,

Ṽ~v•p;u!5n~v•p!1 (
n>1

~21!n
g2n

n! E @dq1dq2•••dqn#

3
D̃~q1!D̃~q2!•••D̃~qn!

~v•q1!
2~v•q2!

2•••~v•qn!
2 @n~v•p!

2n@v•~p1q1!#e
2u~v•q1!2n@v•~p1q2!#

3e2u~v•q2!1•••1~21!nn@v•~p1q11q2

1•••1qn!#e
2uv•~q11q21•••1qn!#, ~3.28!

and

D̃~q!5vm*Dmn~ ivm ,q!vn. ~3.29!

Equations~3.27! and ~3.28! express the Matsubara fermion
propagator in the Bloch-Nordsieck model as a formal series
in powers ofg2.

D. The retarded propagator

To study the mass-shell behavior of the fermion propaga-
tor, we need the retarded propagator, rather than the Matsub-
ara one. These two propagators are related by analytic con-
tinuation in either the complex energy, or the complex time,
plane. Here it is more convenient to proceed in the time
representation. To this aim, we recall that the retarded propa-
gatorSR~t,p! can be obtained as

SR~ t,p!5 iu~ t !@S.~ t,p!1S,~ t,p!#, ~3.30!

where the functionsS. andS, are the analytic components
of the time-ordered propagator@13,35#. These can be ob-
tained from the Matsubara propagator:

SE~t,p!5u~t!S.~t,p!2u~2t!S,~t,p!. ~3.31!

In order to get the Matsubara propagator we have to
evaluate first the sum overp05 ivn in Eq. ~3.27!. Since
Ṽ~v•p;u! is independent ofp0, this may be done trivially, by
using

T (
n,odd

e2 ivn~t1u!5d~t1u!2d~t1u2b!. ~3.32!

Then, for2b<t<0, we obtain

S,~t,x!5E d3p

~2p!3
eip•xS,~t,p!,

S,~t,p!5e2t~v•p!Ṽ~v•p;u52t!, ~3.33!

and similarly, for 0<t<b,

S.~t,p!5e~b2t!~v•p!Ṽ~v•p;u5b2t!. ~3.34!

In particular, the last Eq.~3.24! implies

S.~0,p!1S,~0,p!51. ~3.35!

If the functionsS,~t! andS.~t! are known explicitly, then
they can be analytically extended in the complex time plane
by simply replacingt→i t , with complex t. The functions
S,(t) and S.(t) thus obtained are well defined for anyt
satisfying 0<Imt<b, in the case ofS,(t), and2b<Imt<0,
for S.(t). For the problem at hand, these analytic properties
can be verified in Eq.~3.28!: they arise from the fact that the
thermal factors render the momentum integrals like

E d3q

~2p!3
n@v•~p1q!#eu~v•q!

convergent for any 0,u,b. We see that the statistical fac-
tors are essential to ensure the correct analytical properties;
but, at the same time, they prevent the exponentiation in Eq.
~3.28!.

According to Eqs.~3.30!, ~3.33!, and~3.34!, the retarded
propagator is given by

SR~ t,p!5 iu~ t !e2 i t ~v•p!@eb~v•p!Ṽ~v•p;u5b2 i t !

1Ṽ~v•p;u52 i t !#. ~3.36!

The analytic continuation of the functionṼ~v•p;u! to real
time is permitted only after performing the Matsubara sums
over the bosonic frequenciesq05 ivm in all the terms of the
infinite series~3.28!. Fortunately, we may avoid doing this if
we restrict ourselves to resumming the leading infrared di-
vergences. This is further explained in the next subsection.

E. Dimensional reduction

In view of the discussion in Sec. II C, the most IR singu-
lar terms of the perturbative expansion are concentrated in
the static photon modes. Considering only the contribution of
the static modesq05 ivm50 to Eq. ~3.28! is equivalent to
solving the Bloch-Nordsieck equation~3.13! in the presence
of a static background fieldAm~x!:

Am~x!5TE d3q

~2p!3
eiq•xAm~vm50,q!5TE

0

b

dt Am~t,x!.

~3.37!

With only static photon modes, the analytic continuation of
Eq. ~3.28! to real time is trivial, and the sum in Eq.~3.36!
can be performed explicitly, term by term. As we show now,
the thermal occupation factors compensate in this sum, and
the resulting series forSR~t,p! can be resummed as an expo-
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nential. To be specific, consider the term of orderg2 in the
expansion~3.28!. To Ṽ~v•p;u52 i t !, this terms contributes
@D̃~q![D̃~0,q!#

2g2TE d3q

~2p!3
D̃~q!

~v•q!2
$n~v•p!2n@v•~p1q!#e2 i t ~v•q!%,

~3.38!

while to eb~v•p!Ṽ~v•p;u5b2 i t ! it contributes

2g2TE d3q

~2p!3
D̃~q!

~v•q!2
eb~v•p!$n~v•p!

2n@v•~p1q!#eb~v•q!e2 i t ~v•q!%. ~3.39!

In the sum of these two expressions, the thermal factors dis-
appear because of the identity~3.25!, leaving

2g2TE d3q

~2p!3
D̃~q!

~v•q!2
@12e2 i t ~v•q!#. ~3.40!

By analyzing similar compensations for the higher order
terms, we eventually recognize the power expansion of an
exponential:

SR~ t,p!5 iu~ t !e2 i t ~v•p!D~ t !, ~3.41!

with

D~ t ![expH 2g2TE d3q

~2p!3
D̃~q!

~v•q!2
@12cost~v•q!#J .

~3.42!

The zero-frequency photon propagator reads

D̃~q![vm*Dmn~vm50,q!vn

52
1

q21mD
2 1

1

q2 S 12
~v•q!2

q2 D1l
~v•q!2

q4
,

~3.43!

in an arbitrary gauge of the Coulomb or the covariant type
~l50 corresponds to both the Landau and the strict Coulomb
gauges!. The three terms in Eq.~3.43! correspond respec-
tively to the electric, magnetic, and gauge sectors. In Eq.
~3.42!, we have replaced the complex exponential by a co-
sine function, by taking into account the parity of the inte-
grand.

Theq-integral in Eq.~3.42! presents a spurious ultraviolet
logarithmic divergence in the physical sector~i.e., for elec-
tric and magnetic photons!. This divergence is unphysical
since in the full theory, including also the nonstatic photon
modes, theq integral would be cut off at momentaq;vp
~recall the discussion in Sec. II B!. Thus, to be consistent
with the approximations performed, we have to complement
the above ‘‘dimensional reduction’’ with the prescription
that an upper cutoff of the ordergT is added in momentum
integrals, in the physical sector. Since this cutoff is not ex-
actly known, it will be important in what follows to verify
that the physical predictions are independent from its precise
value. In the gauge sector, on the other hand, no such cutoff

is needed since the corresponding momentum integral turns
out to be ultraviolet finite@see below, Eq.~4.12!#.

Equation~3.42! determines the large time behavior of the
fermion propagator, to be discussed in the next section. At a
first sight, the considerable simplifications leading to this
equation@and coming from the restriction to the static photon
modes in Eq.~3.28!# may seem rather accidental. However,
as we explain now, there is a simple reason for these simpli-
fications, and, in fact, Eq.~3.42! could have been obtained in
a more direct way@30#, which avoids some of the complica-
tions of the Matsubara formalism~the latter are essential
only for the nonstatic modes!. Let us indeed return briefly to
the functional integral of Eq.~3.14!, and consider its ap-
proximation where the Bloch-Nordsieck propagator
GE(x,yuA) includes only the static electromagnetic field
Am~x! of Eq. ~3.37!. Then, the contribution of the nonstatic
photon modes to the functional integral trivially factorizes,
and is compensated by the corresponding contribution to the
partition functionZ, thus leaving

SE~x,y!5Z0
21E @dA#GE~x,yuA!exp@2 1

2 ~A,*D21A!0#,

~3.44!

where Am[Am~vm50,q!, and (A,*D21A)0 denotes the
vm50 contribution to the effective photon action~3.10!; cor-
respondingly,Z0 is the partition function of the static mode
alone. Since the background field~3.37! is time independent,
the propagatorGE(x,yuA) depends only on the time differ-
encex02y0 , i.e.,GE(x,yuA)[GE~x02y0 ,x,yuA!. Its Fourier
transform can be analytically continued in the complex en-
ergy plane, and the resulting function coincides, in the upper
half plane, with the retarded propagator. It is then convenient
to take the Fourier transform of Eq.~3.44!, and write
@pm5~ivn ,p!, vn5(2n11)pT#:

SE~p![Z0
21E @dA#GE~x,puA!exp@2 1

2 ~a,*D21A!0#.

~3.45!

Since the energyp0 enters Eq.~3.45! as an external param-
eter, the continuation to real external energyp0→v1ih, and
the Fourier transform to real time, can both be performed
before doing the functional integration. Thus, the retarded
propagatorSR~t,x! can be directly obtained as the functional
average ofGR(x,yuA), which is known explicitly @recall
Eqs.~3.16! and ~3.17!#.

Specifically, Eqs.~3.45! and ~3.16! give SR~t,p! in the
form of Eq. ~3.41!, where

D~ t ![Z0
21E @dA#U~x,x2vt !exp@2 1

2 ~A,*D21A!0#,

~3.46!

and the parallel transporter is that of a static background
field:
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U~x,x2vt !5expF2E d3y jm~y!Am~y!G ,
j m~y![ igvmE

0

t

dsd~3!~x2y2vs!. ~3.47!

A straightforward computation yields then

D~ t !5expH 1
2TE d3x1d

3x2 j
m~x1!*Dmn~x12x2! j

n~x2!J
5expH 2

g2

2
TE

0

t

ds1E
0

t

ds2D̃@v~s12s2!#J , ~3.48!

where

D̃~x![E d3q

~2p!3
eiq•xD̃~q! ~3.49!

is the Fourier transform of the static photon propagator
~3.43!. By using the last equation to perform thes1 and s2
integrations, we may cast Eq.~3.48! in the form of Eq.
~3.42!.

IV. THE INFRARED STRUCTURE
OF THE FERMION PROPAGATOR

A. Large time behavior

The nontrivial time dependence of the fermion propagator
is contained in the functionD(t), Eq. ~3.42!. Because our
approximations preserve only the leading infrared behavior
of the perturbation theory, Eq.~3.42! describes only the lead-
ing large-time behavior ofD(t). Since the only energy scale
in the momentum integral of Eq.~3.42! is the upper cutoff,
of ordergT, the large-time regime is achieved fort@1/gT.

The expansion of Eq.~3.42! in powers ofg2 reproduces
the dominant singularities of the usual perturbative expan-
sion for the self-energy. Let us verify this for the correction
of orderg2:

dSR~v,p!52g2TiE
0

`

dt eit ~v2v–p1 ih!E d3q

~2p!3
D̃~q!

~v•q!2

3@12cost~v•q!#. ~4.1!

We perform first the time integration and obtain, after simple
algebraic manipulations,

dSR~v,p!52S0~v,p!S~v,p!S0~v,p!, ~4.2!

where

S0~v,p!5 i E
0

`

dt eit ~v2v•p1 ih!5
21

v2v•p1 ih
~4.3!

is the free BN propagator, and

S~v,p!52g2TE d3q

~2p!3
D̃~q!

21

v2v•~p1q!1 ih
~4.4!

is the one-loop self-energy in the BN approximation, and
corresponds to the spin projectionS1 of the full self-energy
@cf. Eq. ~1.6!#. The imaginary part of this equation deter-
mines the damping rate according tog52Im S~v5p!. We
can write, withe[v2v•p,

ImS~v,p!52pg2TE d3q

~2p!3

3d@v2v•~p1q!#D̃~q!52
g2T

4p E
ueu

vp
dq q

3F 1q2 S 12
e2

q2D 2
1

q21mD
2 1l

e2

q4G , ~4.5!

which, in the mass-shell limite→0, and with an IR cutoffm
in the magnetic sector, yields~with a5g2/4p!

g5aTF ln vp

m
2
1

2
lnS 11

vp
2

mD
2 D 1

l21

2 G . ~4.6!

This first piece inside the parentheses, which comes from the
magnetic sector, reproduces the singular piece of the re-
summed one-loop calculation@recall Eq. ~2.28!#. On the
other hand, the other two pieces are not correctly reproduced
by the present calculation. The electric piece, which is finite
and of the orderg2T, occurs even with a minus sign@recall
that the contribution of the electric scattering to the interac-
tion rate in Eq.~2.26! was positive#. The gauge-dependent
piece turns out to be nonvanishing, but it could be eliminated
by introducing an IR cutoffm in the gauge sector as well,
and by taking the on-shell limit only subsequently@38# ~see
also the discussion in Appendix B!. This situation is generic;
our approximation yields correctly only the leading IR diver-
gences of the usual perturbation theory, which all arise from
the magnetic sector, but not the subleading terms. In particu-
lar, the contributions involving the electric and the gauge
sector are subleading, and should be discarded for consis-
tency. This is equivalent to usingD̃~q!51/q2 rather than the
full static propagator of Eq.~3.43!.

Let us verify now that the full, nonperturbative, expres-
sion ofD(t), Eq. ~3.42!, is free of infrared singularities. In-
spection of the integrand in Eq.~3.42! shows that the domi-
nant IR behavior arises from the limituv•qu[q cosu→0. This
is consistent with the calculations in Sec. II A and II B show-
ing that the divergences come from the exchange of mag-
netic photons emitted or absorbed at nearly 90 degrees. We
have, in this limit,

12cost~v•q!

~v•q!2
.
t2

2
1O@ t4~v•q!2#, ~4.7!

and the momentum integral is IR safe, as advertised. We see
here, once again, that the gauge-dependent piece of the pho-
ton propagator~3.43! does not contribute to the leading IR
behavior~which is given by the term in 1/q2 of the magnetic
propagator!. Indeed, because of the factor~cosu!2, the gauge
propagator~cosu!2/q2 is less singular asq cosu→0.

Consider now the UV behavior of theq-integral. This
depends logarithmically on the UV cutoff;vp , and, as a
consequence, the large time behavior ofD(t) is insensitive to
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both the precise value of the UV cutoff, and to the specific
procedure which is used for its implementation. This will be
verified explicitly below.

The evaluation ofD(t) is most simply done by using the
coordinate space representation~3.48! for D(t). Correspond-
ing to D̃(q)51/q2, we haveD̃~x!51/4px, and we obtain,
for t@1/vp , D(t)5exp@2g2TF(t)#, with

F~ t ![ 1
2 E

0

t

ds1E
0

t

ds2D̃@v~s12s2!#

5
1

8p E
0

t

ds1E
0

t

ds2
u~ us12s2u21/vp!

us12s2u

.
t

4p
~ lnvpt1const!. ~4.8!

In this calculation, the ultraviolet cutoff has been introduced
in the function u(us12s2u21/vp). Let us verify that the
same large time behavior is obtained with a different UV
regularization, namely, with the modified photon propagator
D̃(q)51/q221/(q21v p

2) ~Pauli-Villars regularization!. By
using

D̃~x!5E d3q

~2p!3
eiq•xS 1q22 1

q21vp
2D 5

1

4px
~12e2vpx!,

~4.9!

we get successively

F~ t !5
1

8p E
0

t

ds1E
0

t

ds2
12e2vpus12s2u

us12s2u

5
t

4p H 12e2vpt

vpt
211E

0

vpt

ds
12e2s

s J
5

t

4p H lnvpt1~gE21!1
12exp~2vpt !

vpt
1E1~vpt !J ,

~4.10!

where E1(x) is the exponential-integral function,
E1(x)5* 1

`dy(e2xy/y), andgE the Euler constant. At very
large times,vpt@1, we may use the asymptotic expansion of
the exponential-integral to get, for the right-hand side~RHS!
of Eq. ~4.10!,

F~ t !.~ t/4p!@ lnvpt1~gE21!#.~ t/4p!lnvpt,
~4.11!

which coincides, as long as the leading logarithm is con-
cerned, with the previous result~4.8!. On the other hand, the
subleading term, i.e., the constant under the logarithm, is
dependent on the UV regularization. Thus, as expected, it is
only the dominant behavior at very large times which is con-
sistently described by our approximation; the subleading
terms should be ignored.

We have argued before that the gauge-fixing terms are not
important to the order of interest. To verify this explicitly,
we compute the gauge-dependent contribution toF(t), as
given by the last term of the photon propagator~3.43!:

dF~ t ![lE d3q

~2p!3
~v•q!2

q4
12cost~v•q!

~v•q!2
5l

t

8p
.

~4.12!

At large times, this is indeed subleading with respect to Eq.
~4.11!. Note that, the momentum integral in Eq.~4.12! being
ultraviolet finite, no upper cutoff has been necessary in its
evaluation.

We conclude that, at timest@1/vp , the functionD(t) is
gauge-independent and of the form~a5g2/4p!

D~vpt@1!.exp~2aTt lnvpt !. ~4.13!

The most striking feature of this result is the fact that, at very
large times~vpt→`!, the fermion propagator is decreasing
faster than any exponential. We also note that the scale of the
time variations is fixed by the plasma frequencyvp;gT.

A measure of the decay timet is given by

1

t
5aT lnvpt5aTS ln vp

aT
2 ln ln

vp

aT
1••• D . ~4.14!

SinceaT;gvp , we see thatt;1/@g2T ln(1/g)#. This is very
close to the perturbative result in Eq.~2.28!, which, in the
presence of an IR cutoff;g2T, predicts a damping rate
g;g2T ln(1/g). A comparison of the two decay laws,
D(t)5exp@2g2TF(t)#, with F(t) from Eq. ~4.10!, and the
exponential2 DL(t)5exp~2gt! with g5aT ln(1/g), is pre-
sented in Fig. 7 forg50.4. In this figure, the time is mea-
sured in units of 1/vp , and the results displayed forD(t) can
be trusted for valuesvpt@1, where our approximations are
expected to hold. For very large times,t@t, the function
D(t) is indeed more rapidly decreasing than the exponential
DL(t). On the other hand, for intermediate, but still large,
times, 1/gT!t!1/g2T, the opposite situation holds:
D(t).DL(t). When discussing the lifetime of the excitation,
it is rather the intermediate range of times which matters,

2This is the spectral function which would produce an exponential
decay in time with a lifetime as close as possible to the nonpertur-
bative result in Eq.~4.14!.

FIG. 7. The time behavior of the fermion propagator as de-
scribed by the nonperturbative resultD(t) ~full line! and by the
exponentialDL(t) ~dashed line! for g50.4. On the abscissa axis,
time is measured in units of 1/vp .
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since for asymptotically large timest*1/g2T the excitation
has already decayed. It follows that, for the range of times of
interest, the decay of the excitation is actually slower than
the one predicted by perturbation theory.

Further understanding of the main result, Eq.~4.13!, may
be gained by noticing that, quite generally, the one loop con-
tribution to the retarded propagator reads~t.0!

dSR~ t,p!52E
0

t

dt1E
0

t1
dt2S0~ t2t1 ,p!

3SR~ t12t2 ,p!S0~ t2 ,p!, ~4.15!

whereS0~t,p! is the free retarded propagator andSR~t,p! is
the retarded one-loop self-energy. Since, in the BN model,
S0(t,p)5 iu(t)e2 i t (v•p), we can write

dSR~ t !52 iS0~ t !E
0

t

dt1E
0

t1
dt2e

i ~ t12t2!~v•p!SR~ t12t2!

[2S0~ t !dD~ t !, ~4.16!

where the dependence onp is not written down explicitly.
The quantitydD(t) is nothing but the 1-loop contribution to
D(t) in Eq. ~3.42!: D(t)5exp@2dD(t)#. That is, in the BN
model, the corrections to the free propagator, which simply
multiply the free propagator, exponentiate. After a change of
integration variables in Eq.~4.16! we get

dD~ t !5 i E
2`

t

dt8~ t2t8!eit 8~v•p!SR~ t8!. ~4.17!

@The integration limit has been extended to2` since
SR(t8)50 for t8,0#. Assuming thatSR(t8) decreases at least
as fast as 1/t8 for t8→`, we obtain the dominant large time
behavior ofD(t) as

D~ t !.expF2 i t E
2`

t

dt8eit 8~v•p!SR~ t8!G . ~4.18!

The limit t→` of the t8-integral, if it exists, defines the
on-shell self-energy:

SR~v5v•p,p!5E
2`

`

dt8eit 8~v•p!SR~ t8,p!. ~4.19!

Then, uD(t→`)u.e2gt, with g52Im S~v5v•p!. In the
present case, the Fourier transform in Eq.~4.19! does not
exist. However, the large-time behavior in Eq.~4.18! is well
defined. The self-energySR~t,p! may be obtained from Eq.
~4.4! after a Fourier transform:

SR~ t.0,p!52 ig2Te2 i t ~v•p!D̃~ uxu5t !

52 iaTe2 i t ~v•p!
12e2vpt

t
, ~4.20!

where we have used Eq.~4.9! for D̃~x!. Then thet8-integral
in Eq. ~4.18! reads~for t@1/vp!

aTE
0

t dt8

t8
~12e2vpt8!.aT ln~vpt !, ~4.21!

in agreement with Eq.~4.13!. From Eqs.~4.20! and ~4.19!
we note that the logarithmic on-shell divergence of the self-
energyS~v! corresponds to the fact thatS(t) decreases only
as 1/t at large times.

B. Mass-shell behavior

The nontrivial large-time behavior exhibited in Eq.~4.13!
has interesting consequences on the behavior of the retarded
propagator in the complex energy plane. In fact, since at
large timesD(t) is decreasing faster than any exponential,
the time-integral giving the Fourier transform

SR~v,p!5E
2`

`

dt eivtSR~ t,p!5 i E
0

`

dt eit ~v2v•p1 ih!D~ t !,

~4.22!

is absolutely convergent for any complex~and finite! v. That
is, the retarded propagatorSR~v! is an entire function, with
sole singularity at Imv→2`. Recall, however, that strictly
speaking, our present approximation holds only in the vicin-
ity of the mass-shell. Therefore, when speaking about
uv2v•pu→` we have in mind off-shell deviations which are
much larger thang2T. To further clarify this point, let us
give a crude estimate of howSR~v! increases as Imv→2`.
To this aim, let us considerv5v•p2i z, with real and posi-
tive z. We write:

SR~z!5 i E
0

`

dt eztD~ t !, ~4.23!

which is a purely imaginary function ofz, and consider the
behavior ofuSR~z!u for z@aT. Regarded as a function oft,
the integrandeztD(t) is rapidly increasing for smallt, but it
is decreasing for sufficiently large values oft, where the
decay ofD(t) starts to dominate. Assuming the time integral
in Eq. ~4.23! to be dominated by large values oft—which is
correct for large enoughz—we can use the asymptotic ex-
pression~4.13!, and determine the timet* at which the inte-
grand is maximum:

vpt*5exp
z2aT

aT
. ~4.24!

By using the fact that the integrand is positive definite, and
that, according to Eq.~4.24!, z2aT ln vpt*5aT and thus
z2aT ln vpt.aT for any t,t* , we can write3

uSR~z!u.E
0

t*
dt eaTt5

1

aT
@exp~aTt* !21#, ~4.25!

so that

uSR~z!u.
1

aT FexpS g̃ exp
z2aT

aT D21G
.

1

aT
expF g̃ expS z

aTD G , ~4.26!

3This estimate was suggested to us by A. Rebhan@42#.
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where g̃[aT/vp5(3/4p)g. Equation ~4.26! shows that
uSR~z!u is rapidly increasing starting with values ofz
such thatg̃ez/aT;1, that is,z;aT ln~1/g!. In perturbation
theory, SR~v! has a pole at v5v•p2ig, where
g.aT ln(vp/m).aT ln~1/g! if m;g2T. Thus, our nonper-
turbative solution forSR~v! replaces the pole at finite dis-
tance by an essential singularity at2i`, which however
starts manifesting itself at distances;g2T ln~1/g! below the
real axis, that is, at the same distances as the pole of the
perturbation theory.

SinceSR~v! is analytic in any finite neighborhood of the
tree-level mass-shell atv5v•p, we need to clarify the mass-
shell interpretation. To this aim, we consider the spectral
densityŕ~v,p!

ŕ~v,p!52 ImSR~v,p!52E
0

`

dt cost~v•p!D~ t !,

~4.27!

wherev•p5v2v•p. It satisfies the sum rule4

E
2`

` dv

2p
ŕ~v,p!5D~ t50!51. ~4.28!

We have calculatedŕ~v,p! numerically, and the result is
plotted, for a coupling constantg50.08, in Fig. 8. We also
represent, for the same value ofg, the Lorentzian spectral
function ~e[v•p!

rL~e!5
2g

e21g2 , ~4.29!

with g5aT ln~1/g!. This is the spectral function which
would produce the exponential time decayDL(t)5exp~2gt!
alluded to at the end of the previous subsection. It is seen on
these figures that, in the weak coupling limit, the spectral
density ŕ~e! has the shape of a resonance strongly peaked

around e50, and with a typical width of the order
1/t;g2T ln~1/g!, that is, of the same order as that of the
Lorentzian. This allows us to identify the mass-shell of the
full propagator atv5v•p, as at tree-level. Moreover, it is
clear from Fig. 8 that, for very smallg!1, the nonperturba-
tive spectral density is even sharper than a Lorentzian. Thus
the net result of the infrared effects considered here is to
slightly enhance the stability of the quasiparticle state~see
also the discussion at the end of the previous subsection!.

Finally, it is interesting to compute the imaginary part of
the exact self-energy, by inverting the Dyson-Schwinger
equationSR

21~v,p!52~v2v•p!1SR~v,p!. A simple calcula-
tion yields

2ImSR~e!5
2ŕ~e!

ś2~e!1 ŕ2~e!
, ~4.30!

wheree[v•p, ŕ~e! is the spectral density of Eq.~4.27! and

ś~e![2E
0

`

dt sinetD~ t !. ~4.31!

This is represented graphically in Fig. 9, together with the
pure one-loop result, Eq.~4.5!, which shows a logarithmic
divergence ase→0 ~dotted line!, and the screened one-loop
result, as obtained from Eq.~4.4! after inserting an IR cutoff
equal toaT ~dashed line!. As manifest on this figure, the full
result for ImSR is finite at the mass-shelle50, and inferior to
the value predicted by the perturbation theory with an IR
cutoff ;g2T. The latter property is consistent with the pre-
vious analysis of the spectral density, and also of the time
behavior at intermediate times. One can also verify the non-
perturbative character of the solution. For example,
Im SR~e50!521/*0

`dtD(t) has no expansion in powers of
g2 even if one keepsvp constant in Eq.~4.13! for D(t).

V. THE LIFETIME OF THE SOFT FERMIONIC
EXCITATIONS

For soft momenta,p;gT, the quasiparticles become col-
lective excitations, with nontrivial dispersion relations@1,2#
and self-interactions@4,5#. To leading order ing, the disper-

4In fact, this sum rule holds exactly in the Bloch-Nordsieck
model, independently of the restriction to the static photon mode. In
general, D~t50! is replaced, in Eq. ~4.28!, by S.~t50,p!
1S,~t50,p!, which is also equal to one, as shown by Eq.~3.35!.

FIG. 8. The spectral densityŕ~e! ~full line, in units of 1/vp! and
the LorentzianrL~e! ~dashed line! for g50.08, as a function of
e[v•p in units ofvp .

FIG. 9. The imaginary part of the self-energy, Eq.~4.30!, as a
function of the energy, forg50.08: nonperturbative calculation
~full line!, one-loop result~dotted line!, and one-loop result in the
presence of an IR cutoff;g2T ~dashed line!. All the quantities are
measured in units ofvp .
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sion relations are real, and the quasiparticles propagate with-
out damping. At next to leading order, collisional damping
occurs. The corresponding damping rateg has been calcu-
lated in the effective~i.e., HTL-resummed! perturbation
theory@4#. For an excitation with zero momentum~p50!, g
is finite and of the orderg2T @4,8#. However, for excitations
with finite momentump@g2T, the lowest order perturbative
calculation ofg meets with the same infrared problem as that
discussed for the hard particles@17,24#. As we shall see, this
problem is solved by the same technique as that used for the
hard fermion.

A. The HTL approximation

Let us recall first the main features of the dispersion rela-
tions for soft fermions, to leading order ing. They are ob-
tained from the poles of the effective propagator*S~v,p!
which is obtained as*S215S0

211d S, with d S~v,p! denot-
ing the fermion self-energy in theHTL approximation@1,2#:

dS~v,p!5v0
2E dV

4p

v”
v2v•p1 ih

. ~5.1!

In this equation,v05gT/A8 is the frequency of the spatially
uniform ~p50! fermionic excitations. The propagator is con-
veniently written in the form~1.7!, that is,

*S~v,p!5*D1~v,p!h1~ p̂!1*D2~v,p!h2~ p̂!, ~5.2!

where

*D6~v,p!5
21

v7@p1dS6~v,p!#
, ~5.3!

and

dS6~v,p!56 1
2 tr@h6~ p̂!dS~v,p!#. ~5.4!

The pole equations*D6
21[v(p),p]50 yield two positive en-

ergy branchesv6(p) @1#, instead of the usual one~with
v5p! in the free electron spectrum. Forv close to the mass-
shell atvs(p), s56, we can write

*Ds~v,p!.
zs~p!

vs~p!2v
, ~5.5!

wherezs(p) is the residue of the modes,

zs
21~p!512

]dSs~v,p!

]v U
v5vs~p!

. ~5.6!

Sincev6(p).p for anyp, both dispersion relations are real:
the quasiparticles propagate without damping in this approxi-
mation. For small momenta,p!gT, v6(p).v06p/3. The
upper branch is strictly increasing@v1(p).0 for any p#,
while the lower branch has a minimum atp5pc'0.92v0 .
At very large momenta,p@v0, both branches approach the
light cone, butz1(p)→1, whilez2(p) vanish exponentially.
~See Refs.@10,12,13# for more details and physical interpre-
tation.!

Because of the gauge symmetry, the nonlocal character of
the HTL self-energy in Eq.~5.1! leads to effective interac-

tions between a fermion pair and any number of soft pho-
tons. For instance, the Ward identity

qm*Gm~p,p1q!5*S21~p!2*S21~p1q!, ~5.7!

requires the existence of a nonlocal 3-point vertex function,
which is indeed found in the form*Gm(p,p1q)
5gm1dGm(p,p1q), where dGm(p,p1q) is the 3-point
HTL @4,5#:

dGm~p,p1q!5v0
2E dV

4p

vmv”
~v•p1 ih!@v•~p1q!1 ih#

.

~5.8!

Similarly, higher vertices, without analogue at the tree-level,
are necessary in order to fulfill the higher order Ward iden-
tities. We show here one more example, namely the Ward
identity satisfied by the 2-fermions–2-photons vertex func-
tion:

q1
m*Gmn~p1 ,p2 ;q1q2!5*Gn~p1 ,p11q2!

2*Gn~p11q1 ,p11q11q2!,

~5.9!

where, in the left hand side,pi and qi are respectively the
momenta of the incoming fermions and photons, with
p11p21q11q250. For what follows, it is important to re-
mark that all the HTL vertex functions are~almost! uniquely
determined by the self-energy in Eq.~5.1! and the Ward
identities like Eq.~5.7! @5,43#. This is so since the nonlinear
structure of the effective action of the HTL’s is the minimal
one which is consistent with the gauge symmetry@5,11,44#.

B. Perturbation theory for the damping rate

In this section, we discuss the perturbative computation of
the damping rate for the soft fermion, and the related IR
problems. After a brief summary of the leading-order com-
putation@4,17,24#, we discuss higher orders corrections and
how they simplify in the computation of the leading diver-
gent terms.

The dominant contribution to the damping rate, of order
g2T, comes from the imaginary part of the~resummed! one-
loop self-energy*S~v,p!, as given by the two diagrams in
Fig. 10 @4#. Specifically,

g6~p!52z6~p!Im*S6@v6~p!1 ih,p#, ~5.10!

where*S6(p)5tr@h6~p̂!*S(p)#/2 and the subscripts6 refer
to the two positive-energy modes in the fermion spectrum.
Note that, in general, the ‘‘tadpole’’ diagram in Fig. 10~b!
gives a nontrivial contribution tog, since the 4-point vertex

FIG. 10. One-loop diagrams for the soft fermion self-energy in
the effective expansion.
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itself has a nonzero discontinuity. Moreover, the imaginary
part of the diagram in Fig. 10~a! comes not only from the
cutting of the internal propagators~as for the usual one-loop
diagram discussed in Sec. II!, but also from the discontinuity
of the resummed 3-point vertices.

In what follows, we concentrate on the singular contribu-
tion to g. This comes entirely from the diagram in Fig. 10~a!
@17#, which reads

*Sa~p!52g2T (
q05 ivm

E d3q

~2p!3
*Gm~p,p1q!

3*S~p1q!*Gn~p1q,p!*Dmn~q!. ~5.11!

It has been already recognized@17# that the singular piece of
g arises from the same kinematical regime as for a hard
fermion, namely, from the exchange of a very soft (q&g2T)
magnetic photon at nearly 90 degrees. This allows for kine-
matical approximations identical to those encountered in
Sec. II. In particular, the whole singularity can be reproduced
by restricting the calculation to the magnetostatic mode
q05 ivm50 @24#, with propagator*Di j ~vm50,q!5d i j /q2,
and with an upper cutoff;gT. Furthermore, the internal
fermion propagator*S~v,p1q! is nearly on-shell, since
v.v6(p), and q!p. Thus we can write
v6~p1q!.v6(p)1v6(p)•q,—where vs(p) denotes the
group velocity of the modes, vs(p)[]vs(p)/]p5vs(p)p̂—,
and replace*S~v,p1q!→*D6~v,p1q!h6~p̂!, with @recall
Eq. ~5.5!#

*D6~v,p1q!.
2z6~p!

v2v6~p!2v6~p!•q
, ~5.12!

where the upper~lower! sign applies according to whether
the external line is close to the mass-shell of the upper
branch, or of the lower branch, respectively. A final simpli-
fication refers to the 3-point vertex function*Gi~p,p1q!,
where we can neglect the photon momentumq and use the
differential form of the Ward identity~5.7! to write:

*G i~p,p!5
]*S21~v,p!

]pi
. ~5.13!

~The dependence of the vertex function on the external en-
ergyv is not indicated explicitly.! The inverse propagator is
conveniently written as@recall Eq.~1.7!#

*S21~v,p!5*D1
21~v,p!h2~ p̂!1*D2

21~v,p!h1~ p̂!.
~5.14!

From Eqs.~5.13! and ~5.14!, we obtain, forv.v6(p),

h6~ p̂!*G i~p,p!h6~ p̂!5h6~ p̂!
]*D6

21

]pi
.h6~ p̂!

v6
i ~p!

z6~p!

tr@h6~ p̂!*G i~p,p!#52
]*D6

21

]pi
.2

v6
i ~p!

z6~p!
. ~5.15!

The particular spin projections of*Gi written down above
are the only ones which enter*S6[tr~h6*S!/2, and there-
fore the damping rate in Eq.~5.10!.

Note that the simplified vertex~5.15! has no discontinuity,
so that the whole imaginary part of*S in the kinematical
regime of interest arises by cutting the internal lines in Fig.
10~a!. Specifically, the previous approximations yield the
dominant~infrared singular! piece of the one-loop damping
rate as@17,24#

g6~p!.z6g
2TE d3q

~2p!3
v6
i

z6

d i j

q2
v6
j

z6

3Im
2z6

v2v6~p!2uv6uq cosu1 ih

.aTuv6~p!u ln
vp

uv2v6~p!u
, ~5.16!

which is very close to Eq.~2.31! for a hard fermion~recall
that uvu51 for the hard quasiparticle!.

Consider now the higher order corrections tog, with em-
phasis on the leading infrared contributions. By relying
mostly on the gauge symmetry, we argue now that the most
singular contributions tog arise from multiloop diagrams
which involve the~resummed! 3-point photon-fermion ver-
tex, but not the higher order vertices.5 This is so since in the
kinematical regime of interest, the inverse fermion propaga-
tor,

*Ds
21~v,p1q!.2@v2vs~p!2vs~p!•q#

1

zs~p!
,

~5.17!

is linear in the photon momentumq, so that the Ward iden-
tity ~5.7! can be satisfied by a 3-point vertex*Gi~p,p1q!
which is independent of the momentum of the photon leg.
And we have seen indeed that the singular one-loop contri-
bution is obtained by replacing*Gi~p,p1q! with *Gi~p,p!,
which is independent ofq and~up to a spin projector! equal
to v s

i (p)/zs(p). Furthermore, with aq-independent 3-point
vertex, all the other, higher, Ward identities—as the one
shown in Eq. ~5.9!—are trivially satisfied by setting the
n-point HTL’s with n>4 to zero. Since, as alluded to before,
the vertex HTL’s are essentially determined by the Ward
identities, it follows that the higher-point vertices~beyond
the 3-point function! are not important in the kinematical
regime of interest.

We thus conclude that, in order to isolate the most singu-
lar contributions togs ~s56! in perturbation theory, we have
to consider the same diagrams as for the hard fermion, and
evaluate them with the following simplified Feynman rules:
~i! the photon propagatorD 0

i j ~q!5d i j /q2; ~ii ! the fermion
propagator*Ds~v,p1q! from Eq. ~5.12!; ~iii ! the photon-
fermion vertex*G s

i (p)5v s
i (p)/zs(p). The momentum inte-

5This can be also verified by power counting, as in Ref.@17# for
the one-loop calculation. Namely, cutting a vertex rather than a
fermion propagator yields a factor of 1/@vs(p)•q# less, and thus a
less singular infrared behavior.
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grals over the photon momenta should be computed with an
upper cutoff of the ordervp . Strictly speaking, the above
simplifications hold only for very soft momenta,q!p;gT,
and not up to momentaq;vp . This is not important, how-
ever, since the dominant~singular! contributions arise from
the limit q→0 and are insensitive to the upper cutoff.

Note that the above Feynman rules are essentially those of
a local effective field theory, in contrast with the HTL Feyn-
man rules, which are nonlocal.~The apparent dependence on
v and p is irrelevant here, since these are the fixed energy
and momentum of the external line; they enter the computa-
tion as parameters.! Furthermore, the IR contribution tog is
largely insensitive to the details of the HTL resummation,
which enters only via the global factorsvs(p) and zs(p).
Actually, to the order of interest,gs is even independent of
the residuezs(p), as also suggested by the one-loop result in
Eq. ~5.16!. This is so because a generaln-loop graph con-
tributing to Ss ~in the simplified perturbation theory intro-
duced above! involves 2n vertices*G s

i , and therefore a fac-
tor zs

22n, and (2n21) propagators*Ds , which yield a factor
zs
2n21. The remaining factor of 1/zs disappears in the com-

putation ofgs52zs Im Ss .

C. The Bloch-Nordsieck model for a soft fermion

At this point, the analysis of the dominant mass-shell be-
havior of the soft fermion becomes almost identical to the
corresponding analysis for the hard fermion. This analogy is
due to the fact that the soft photons responsible for the IR
divergences have typical momentaq!gT, which are much
smaller than the momentump;gT of the soft fermion. In
view of this, the whole discussion in sections 3 and 4 can be
directly extended to the case of a soft fermion.

Specifically, the simplified Feynman rules which apply in
the IR regime are, once again, those of the Bloch-Nordsieck
model, and can be summarized in the following functional
integral representation of the soft fermion propagator:

S6~x,y!5Z0
21E @dA#G6~x,yuA!exp@2 1

2 ~A,D0
21A!0#.

~5.18!

In this equation,Gs~x,yuA! is the Bloch-Nordsieck propaga-
tor for the quasiparticle in the modes, s56, in the presence
of the static magnetic fieldAm5@0,A~x!#, and satisfies@with
v s

m[~1,vs!#

2 i ~vs•Dx!Gs~x,yuA!5zsd
~4!~x2y!. ~5.19!

Furthermore,

~A,D0
21A!05

1

T E d3x d3y Ai~x!D0i j
21~x2y!Aj~y!,

~5.20!

where the vector fieldAi(x! has been defined in Eq.~3.37!,
andD0i j (x!5dij /4px. Note that the free~retarded! BN propa-
gator, as obtained from Eq.~5.19! with A50, reads

Gs~v,p1q!5
2zs

v2vs•~p1q!1 ih
. ~5.21!

Strictly speaking, the mass-shell for the BN particle of mo-
mentump, that isv5vs•p, is different from the real leading-
order mass-shell, atv5vs(p). This is so, of course, since
the dispersion relations for soft fermions are not linear, so
that the group velocityuvsu is really momentum dependent.
However, this difference is not important, since the BN
propagator~5.21! presents the correct dependence onq in the
mass-shell limit. Compare in this respect Eqs.~5.21! and
~5.12!: in both these equations, it is the difference in energy
with respect to the mass-shell which matters, rather than the
precise value of the mass-shell energy itself. Forv5vs(p)
in Eq. ~5.12!, and respectively forv5vs•p in Eq. ~5.21!, the
propagators in these two equations become identical.

Equations~5.18! and ~5.19! are further manipulated as in
Sec. III E @recall, especially, the discussion after Eq.~3.44!#.
As a result, we obtain the retarded propagator for the two
fermionic modes6, for momentap;gT and energies close
to the mass-shell,v.v6(p). It reads

S6~v,p!5 iz6~p!E
0

`

dt eit @v2v6~p!1 ih#D6~ t !,

D6~ t !5expH 2g2TE d3q

~2p!3
D̃6~q!

~v6•q!2
@12cost~v6•q!#J .

~5.22!

In this equation,D̃6~q!5v 6
i D 0

i j ~q!v 6
j 5v 6

2 /q2, so that we
can write

D6~ t !5D~ uv6ut !, ~5.23!

with D(t) as given by Eq.~3.42! whereD̃~q!→1/q2 andv is
an arbitrary unit vector. Note that the functionsD6(t) are
implicitly dependent on the momentump, via the group ve-
locitiesv6(p). Both the mass-shell behavior of the propaga-
tor ~5.22! and the large time behavior of the propagator
S6~t,p! follows from the analysis in Sec. IV. At very large
timesvpuv6ut@1, we have

D6~vpuv6ut@1!.exp@2aTuv6ut ln~vpuv6ut !#.
~5.24!

The spectral density of the modes is peaked around
v5vs(p), with a width of the orderg2Tuvsu ln~1/g!. In par-
ticular, for the lower modev2(p), and for p5pc , where
v2(pc)50, Eq.~5.23! shows that, to this approximation, the
‘‘plasmino’’ mode is not damped, in accordance with the
one-loop result for the damping rate, Eq.~5.16!.

VI. CONCLUSIONS

The analysis presented in this paper suggests that the
damping of the fermionic excitations with momentap@g2T
is not exponential in time, but of the more complicated form
SR(t);e2 iE(p)texp@2aTuvut ln(vpuvut)#, where v5]E/]p
is the group velocity of the excitation,vp;gT is the plasma
frequency, anda5g2/4p. As a consequence, the retarded
propagatorSR~v! has no quasiparticle pole, but the spectral
density shows nevertheless a sharp resonance peaked at
v5E(p), with a width;g2T ln~1/g!. At the present level of
accuracy, the mean energyE(p) is given by the leading-
order approximation, namelyE(p)5p for a hard excitation,
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andE(p)5v6(p) for a soft one. We note that this result
solves the IR problem of the damping rate in a very ‘‘soft’’
way, by essentially replacing the IR cutoffm in the pertur-
bative resultDL(t)5exp@2aTuvut ln(vpuvu/m)# with the in-
verse of the time. Thus, quantitatively, the lifetime of the
excitation does not differ much from that obtained from
leading-order perturbation theory.

The asymptotic behavior of the retarded propagator has
been obtained by solving exactly an effective theory which
reproduces all the leading infrared divergences of the pertur-
bation theory. The physical processes which are responsible
for these divergences are the multiple collisions involving
the exchange of long wavelength, quasistatic, magnetic pho-
tons, which are not screened by plasma effects. By compari-
son, the longitudinal, gauge sector is less singular in pertur-
bation theory, and does not contribute to the dominant large
time behavior of the nonperturbative solution.

At finite temperature, the presence of the thermal bath
amplifies the IR divergences, in such a way that they become
effectively those of a three-dimensional gauge theory. Then,
a comparison with massive QED3 @40# helps in explaining
why an IR divergence occurs for the one-loop damping rate,
in contrast to the zero temperature case where the IR prob-
lem does not affect the dispersion equation, but only the
residue of the propagator@32#. At this point, we should recall
that the explicit solution that we have proposed here relies
essentially on the three-dimensional character of the domi-
nant singularities. This has been widely recognized in rela-
tion with the infrared structure of thermal field theories@28#,
and, in the calculation of static quantities~like the free en-
ergy or the screening masses!, it has been exploited in the
method of ‘‘dimensional reduction’’~see@39,45,46,47# and
references therein!. We emphasize, however, that the damp-
ing rate is a dynamical quantity, and the usefulness of the
dimensional reduction for this problem is nota priori obvi-
ous, given the subtleties of the analytic continuation from
Matsubara to real external energy. If a dimensional reduction
occurs in the computation of the large time behavior, this is
because of the particular IR behavior of the magnetic photon
propagator, as displayed in Eqs.~2.16! or ~2.29!. The dy-
namical information which is contained in the later equations
refers not only to the absence of the magnetic screening, but
also to the phenomenon of Landau damping.

It is also worth emphasizing that our result takes into
account only the most singular terms of the perturbative ex-
pansion. Because of the approximation used, we have lost
control on the subleading terms. Although, in a strict pertur-
bative sense, these area priori less important, one cannot
completely exclude the possibility that they may still modify
our results in a qualitative way. It is hard to see, however,
how they could destroy the quasiparticle picture, which we
have shown to survive after a complete treatment of the lead-
ing IR divergences. Improvements of our solution may re-
quire an appropriate generalization of the Bloch-Nordsieck
model to finite temperature, a task that we have explored in
this paper, but without reaching a definite conclusion. The
difficulty comes from the fact that the statistical factors pre-
vent the simple exponentiation of the BN propagator which
occurs at zero temperature. As a consequence, we have not
been able to obtain the retarded propagator at finite tempera-

ture in closed form.6 There are at least two points where the
full thermal BN model ~with all photon modes included!
could possibly complete our previous analysis: the dynami-
cal emergence of the upper cutoff;gT ~recall that, in the
effective three-dimensional theory, this cutoff has been intro-
duced by hand!, and, related to this, the consistent computa-
tion of the subleading terms beyond ln~vpt! in Eq. ~4.13!;
that is, the terms of orderg2T which multiply the time in the
exponent ofD(t).

It is finally natural to ask what is the relevance of the
present solution for the non-Abelian QCD plasma. It is
widely believed that the self-interactions of the chromomag-
netic gluons may generate magnetic screening at the scale
g2T. As a crude model, we may include a screening mass
m;g2T in the magnetostatic propagator in the QED calcula-
tion. Then Eq.~3.42! provides, at very large timest*1/g2T,
an exponential decay, Dm(t);exp~2gt! with
g5aT ln(vp/m)5aT ln~1/g!. However, in the physically
more interesting regime of intermediate times
1/gT!t!1/g2T, the behavior is governed uniquely by the
plasma frequency, according to our result~4.13!:
Dm(t);exp~2aTt ln vpt!. Thus, at least within this limited
model, which is QED with a ‘‘magnetic mass,’’ the time
behavior in the physical regime remains controlled by the
Bloch-Nordsieck mechanism. But, of course, this result gives
no serious indication about the real situation in QCD, since it
is unknown whether, in the present problem, the effects of
the gluon self-interactions can be simply summarized in
terms of a magnetic mass.
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APPENDIX A

In this Appendix, we collect the sum rules for the photon
spectral densities which are used in Sec. II B.

The electric and magnetic spectral densities are defined in
Eq. ~2.19! in terms of the corresponding propagators. In the
hard thermal loop approximation, they involve both pole and
cut pieces, as shown in Eq.~2.22!. They satisfy the following
sum rules@17#, which trade the integrals over the off-shell
spectral densitiesb l ,t(q0 ,q) for functions of vs(q) and
zs(q):

6The representation given in Eq.~2.28! of Ref. @34# is deceiving.
It involves a dubious analytic continuation of the four-velocity
which, in any case, can only be made after completing the time
integral. But this latter integral cannot be computed in closed form.
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E
2q

q dq0
2pq0

b l~q0 ,q!5
1

q2
2

1

q21mD
2 2

zl~q!

v l
2~q!

,

E
2q

q dq0
2pq0

b t~q0 ,q!5
1

q2
2

zt~q!

v t
2~q!

,

E
2q

q dq0
2p

q0b t~q0 ,q!512zt~q!. ~A1!

The first two of these sum rules are obtained by simply set-
ting v50 in the spectral representations~2.18!, and by using
*D l(0,q)521/(q21mD

2 ), *D t(0,q)51/q2, together with
Eq. ~2.22!. As for the third one, this is obtained by inserting
Eq. ~2.22! into the familiar sum rule

E
2`

` dq0
2p

q0* r t~q0 ,q!51, ~A2!

which is a consequence of the equal-time commutation rela-
tion for the quantum fields@13#.

The use of the sum rules~A1! is convenient to study both
the ultraviolet and the infrared behavior of theq-integral in
Eq. ~2.26!. To this aim, we need the dispersion relations
v l ,t(q) @1,2,48# and the corresponding residueszl ,t(q),
which, in our conventions, read

zt5
2v t

2~v t
22q2!

3vp
2v t

22~v t
22q2!2

, zl5
2v l

2~v l
2/q221!

3vp
22~v l

22q2!
.

~A3!

At large momenta,q@vp , we have the approximate expres-
sions@50#

v t
2~q!.q213vp

2/2, v l
2~q!.q2@114xl~q!#,

zt~q!.12
3vp

2

4q2 S ln 8q2

3vp
223D , zl~q!.

8q2

3vp
2 xl~q!,

~A4!

where

xl~q![expS 2
2q2

3vp
222D . ~A5!

From Eqs.~A1! and ~A4!, we obtain, forq@vp ~recall that
mD

2 53v p
2!,

E
2q

q dq0
2pq0

b l~q0 ,q!.
3vp

2

q4
,

E
2q

q dq0
2pq0

S 12
q0
2

q2Db t~q0 ,q!.
3vp

2

2q4
. ~A6!

These estimates show that the integrand in Eq.~2.26! be-
haves likev p

2/q3 for momentaq@vp .
We turn now to momentaq!vp . We then have

v t
2~q!.vp

216q2/5, v l
2~q!.vp

213q2/5,

zt~q!.12
q2

5vp
2 , zl~q!.

vp
2

q2
@11O~q4/vp

4!#, ~A7!

so that

E
2q

q dq0
2pq0

b l~q0 ,q!.
4

15

1

vp
2 ,

E
2q

q dq0
2pq0

b t~q0 ,q!.
1

q2
2

1

vp
2 ,

E
2q

q dq0
2p

q0b t~q0 ,q!.
1

5vp
2 . ~A8!

When these expressions are inserted in Eq.~2.26!, the con-
tribution in 1/q2 of the magnetic spectral function@the sec-
ond line in Eq.~A8!# generates a logarithmic IR singularity.

APPENDIX B

Since there is no phase-space available for the direct de-
cay of the on-shell fermion into a pair of massless particles,
one expects that the damping rate computed from the bare
one-loop fermion self-energy should vanish. However, at fi-
nite temperature, this argument is complicated by infrared
singularities which arise because of the enhancement of col-
linear singularities by the Bose-Einstein thermal factor.

To illustrate this problem, we consider the calculation of
the damping rate to bare one-loop order in the Coulomb
gauge. This is obtained by simply replacing, in Eq.~2.21!,
the photon spectral functions with their bare counterparts,
namelyr l

(0)50 andr t
(0)(q0 ,q)5r0(q0 ,q), with r0 from Eq.

~1.2!. In the on-shell limit, the whole contribution tog comes
from spacelike photons, withuq0u<q. However, since the
free spectral density~1.2! has support precisely at the inte-
gration limits q056q, we should be more careful when
evaluating Eq.~2.21! in the on-shell limitv→p. Forv close
to, but different from,p, the latter equation yields@compare
with Eq. ~2.25!#

g0~v.p!.pg2TE d3q

~2p!3
E

2`

` dq0
2pq0

3d~v2p2q01q cosu!~12cos2u!r0~q0 ,q!.

~B1!

After the angular integration, we obtain

g0~v.p!.
g2T

8p
~v2p!E

0

` dq

q2 E
v2p2q

v2p1q dq0
q0

3@2q02~v2p!#@d~q02q!2d~q01q!#

5
g2T

4p
uv2pu E

uv2pu/2

` dq

q2 S 12
uv2pu
2q D .

~B2!

If we let nowv→p, the factor in the front of the last integral
goes to zero, but the integral itself becomes IR divergent. An
explicit calculation shows that the RHS of Eq.~B2! is in fact
independent of~v2p!, and equals
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g05
g2T

4p
. ~B3!

This result is, however, unphysical. It arises from the emis-
sion or the absorption of collinear~u50, q05q, or, respec-
tively, u5p, q052q! massless photons, whose contribu-
tions are enhanced by the Bose-Einstein factorT/q0 . Such
contributions do not survive screening corrections. However,
since the gauge-dependent terms in the photon propagator
are not modified by the plasma effects, they may
generate—by the mechanism alluded to before—a nonvan-
ishing contribution to the on-shell self-energy@49#. Note that
an entirely similar problem arises in the three-dimensional
gauge theories at zero-temperature, when computing the dis-
persion equation to one loop order@40#.

To overcome this problem, it has been suggested@38,40#
to take the on-shell limit in the presence of an IR regulator,
say, an IR cutoffm. With such a cutoff, theq-integral in Eq.
~B2! remains finite asv→p, and the total result forg0~v5p!
vanishes. Thus, the damping rate remains zero at the bare
one-loop level, as expected. In the same way one verifies that
the dispersion relation is gauge-independent, as it should
@37#. On the other hand, the residue of the propagator at the
mass-shell becomes dependent on the IR cutoffm, and~lin-
early! divergent asm→0.

APPENDIX C

We verify here, on an explicit two-loop calculation, some
general features of the infrared behavior of the on-shell self-
energy in perturbation theory. Specifically, we shall show
that the leading divergences are powerlike, and can be fully
taken into account by restricting all the internal Matsubara
sums to their zero frequency photon modes.

At two loop order, the fermion self-energy is given by the
two diagrams in Fig. 11, which yield

S~2!~p!52~g2T!2 (
q05 ivm

(
k05 ivr

E d3q

~2p!3

3E d3k

~2p!3
gmS0~p1q!grS0~p1q1k!

3@glS0~p1q!gn1gnS0~p1k!gl#

3*Dmn~q!*Drl~k!. ~C1!

The notations here are as in Eq.~2.17!; for instance,
p05 ivn5 i (2n11)pT, q05 ivm5 i2pmT and k05 iv r
5 i2prT, with integersn, m and r . According to Eq.~1.6!,
the correction to the positive mass-shell is determined by the
function S1~v,p!5tr@h6~p̂!S~v,p!#/2. As v.p, the most
singular contributions toS1 are obtained by using the effec-

tive Feynman rules described at the end of Sec. III A. At
two-loop level, this amounts to replacing Eq.~C1! by

S1
~2!~p!52~g2T!2 (

q05 ivm

(
k05 ivr

E d3q

~2p!3
E d3k

~2p!3

3S0~p1q!S0~p1q1k!@S0~p1q!

1S0~p1k!#D̃~q!D̃~k!, ~C2!

whereS0(p) is the fermion propagator in the BN model, Eq.
~4.3!, and D̃(q)[v i*Di j (q)v j is the ~HTL resummed!
propagator of the magnetic photon.~We recall that the elec-
tric propagator does not yield IR singularities.! Equation
~C2! is precisely the two-loop self-energy in the Bloch-
Nordsieck approximation.

The Matsubara sums overvm and vr are conveniently
performed by contour methods, and by using the spectral
representation~2.18! of *D t(q). In doing this, one gets sev-
eral terms, corresponding to the poles of the various propa-
gators in the complex planesq0 and k0. Every such term
involves three energy denominators, and the product of two
statistical factors. The latter are either of the bosonic or of
the fermionic type, according to whether they correspond to
poles of a photon propagator, or of an electron propagator,
respectively. When the external energy approaches the tree-
level mass-shell,v→p[v•p, all the energy denominators are
soft, of the type 1/~q02v•q!, and may give infrared prob-
lems. @The hard energy denominators, which were poten-
tially present in the full two-loop self-energy~C1!, have been
eliminated by the simplified Feynman rules leading to Eq.
~C2!.# Then, the leading IR singularities arise uniquely from
the terms which involve the product of two Bose-Einstein
distribution functions, sinceN(q0)N(k0).T2/(q0k0) at soft
momenta. By isolating these most singular terms, we obtain,
after a straightforward calculation,

S1
~2!~v.p!

.~g2T!2E d3q

~2p!3
E d3k

~2p!3
E

2`

` dq0
2pq0

* r t~q0 ,q!

3E
2`

` dk0
2pk0

* r t~k0 ,k!

3
1

v1q02v•~p1q!

1

v1q01k02v•~p1q1k!

3F 1

v1q02v•~p1q!
1

1

v1k02v•~p1k!G , ~C3!

where it is understood that the external energy carries a small
positive imaginary part~v→v1ih!.

The energy integrals overq0 and overk0 involve both the
pole and the cut pieces of the photon spectral density. How-
ever, it is only the off-shell~or cut! piece of*rt which yields
a singular contribution, so we may as well restrict the afore-
mentioned energy integrals to spacelike momenta,uq0u<q
and uk0u<q, and replace the full spectral functions bybt .
Then, the subsequent analysis follows closely the discussion
of the ~resummed! one-loop self-energy in Sec. II B. The
singular domain is that of very soft photon momenta,q,

FIG. 11. Two-loop diagrams for the fermion self-energy.
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k!gT, where we can use Eq.~2.29! to replaceb t(q0!q)/q0
by (2p/q2)d(q0). At the same time, we have to supplement
the momentum integrations with an upper cutoff of the order
of vp;gT. The net effect is that the leading singular piece
of S1

~2!~v.p! is the same as it would be obtained by retain-
ing only the static termsvm5v r50 in the Matsubara sums
of Eq. ~C2!. That is,

S1
~2!~v.p!.~g2T!2E d3q

~2p!3
1

q2 E d3k

~2p!3
1

k2

3
1

v2v•~p1q1k!

1

v2v•~p1q!

3F 1

v2v•~p1q!
1

1

v2v•~p1k!G . ~C4!

Since this is divergent asv→v•p, we take the mass-shell
limit in the presence on an IR cutoffm, and obtain

S1
~2!~v.p!.2~g2T!2E d3q

~2p!3
1

q2
1

~v•q2 ih!2

3E d3k

~2p!3
1

k2
1

v•k2 ih

5 i
2

p

~aT!2

m
ln

vp

m
. ~C5!

We thus find the linear plus logarithmic infrared divergence
mentioned in Sec. II C.

According to Eq. ~2.33!, the computation ofg~2!—the
two-loop contribution to the damping rate—requires also the
one-loop residue,z(1)(p)215~]S1

~1!/]v!. Similarly to Eq.
~C4!, we obtain the leading IR-singular contribution toS1

~1!

in the form

S1
~1!~v,p!.g2TE d3q

~2p!3
1

q2
1

v2v•~p1q!1 ih
,

~C6!

and thus

z~1!~p!21.2g2TE d3q

~2p!3
1

q2
1

~v•q2 ih!2
.
2

p

aT

m
,

~C7!

in the presence of the IR regulator. The linear IR divergence
of the residue compensates the dominant singularity of the
two-loop self-energy in Eq.~C5!, so that the leading contri-
bution to g~2!—which remains beyond the accuracy of the
present computation—is of the order~a2T2/vp!@ln~vp/
m!#2;g3T@ln~vp/m!#2. Even if still divergent asm→0, this
does not contribute to the orderg2T which is our concern
here.

Let us finally provide an all order argument for the can-
cellation of the strongest, powerlike, infrared divergences in
the perturbative evaluation ofg. To this aim, we consider the
Dyson-Schwinger equation for the fermion self-energy
within the effective three-dimensional Bloch-Nordsieck
theory:

S~v,p!52g2TE d3q

~2p!3
v iS~v,p1q!G j~p1q,p!D0

i j ~q!,

~C8!

whereD 0
i j ~q!5d i j /q2, S is the full BN propagator,

S~v,p1q!5
21

v2v•~p1q!2S~v,p1q!
, ~C9!

andGj ~p1q,p! is the full vertex, which is related toS via the
Ward identity

qjG j~p1q,p!5S21~v,p1q!2S21~v,p!. ~C10!

We make now the usual assumption@50# that the dominant
IR behavior involves only the longitudinal piece of the ver-
tex. This is entirely determined by the Ward identity:

G j~p1q,p!5
v j

v•q
@S21~v,p1q!2S21~v,p!#.

~C11!

When inserted in Eq.~C8!, this yields

S~v,p!.2g2TE d3q

~2p!3
1

q2
1

v•q2 ih

3@12S21~v,p!S~v,p1q!#. ~C12!

As already explained, Eq.~C8! reproduces the most singular
terms of the perturbative expansion, and this remains true
after inserting the approximation~C11! for the vertex func-
tion, as can be verified explicitly by developing Eq.~C12! in
perturbation theory. We now take the on-shell limit in the
presence of an IR cutoffm, taken as a small photon mass. As
long asmÞ0, there is no IR problem, and we expect the
mass-shell to correspond to a simple pole of the exact propa-
gator. Thus,S21~v,p! vanishes on shell, and the second term
in Eq. ~C12! gives no contribution. The leading contribution
to the on-shell self-energy reads then

S~on shell!.2g2TE d3q

~2p!3
1

q21m2

1

v•q2 ih

. i
g2T

4p
ln

vp

m
, ~C13!

and coincides with the IR singular part of the one-loop self-
energy. This is only possible if the aforementioned compen-
sation of the leading powerlike divergences holds in all or-
ders. Note that the above arguments become meaningless in
the physical limitm→0, where not only does the estimate
~C13! become logarithmically divergent, but the integral
multiplying S21~v,p! also diverges on the mass-shell.
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