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Quantum fields in disequilibrium: Squeezed states
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A spacetime description of squeezed states in quantum fields is presented, revealing the connection between
squeezing and nonequilibrium dynamics. Squeezings in configuration space, occupation number space, and
phase space are distinguished; generating transformations and criteria for their physical realization are dis-
cussed. The results have an immediate applicability to atoms and ions in traps, as well as to quantum optics in
relativistic and nonequilibrium systems. Squeezing, sub-Poissonian statistics, and antibunching are all shown
to be a direct consequence of spacetime inhomogeneities in the quantum field. The finite speed of communi-
cation between separate regions of the fifilite speed of lightplaces a lower limit on the attainable spectral
width of squeezed states. The squeezing parameter for field quadratures has the appearance of a chemical
potential in an inhomogeneous field, and through a renormalization may be generated by a Chern-Simons-like
term.[S0556-282(97)04902-3
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I. INTRODUCTION in, in quantum optical systems, is the observable properties
of the field as an entity, divorced from speculations as to the
Demonstrations of the field as a truly quantum-microscopic details which give rise to the observables. One
mechanical entity have come most convincingly from quan-of the principal aims of this paper is to eliminate single-
tum optics in the last two decadgk]. Light, or the photon- particle momentum-space creation and annihilation opera-
radiation field, exhibits several phenomena which admit dors, with definite momentum, in favor of more general
complete description only in quantum, many-particle theoryGreen functions for the field. This should lead to a more
Examples include squeezed states, sub-Poissonian statistiggnerally applicable theory and also a new calculational
and antibunching2]. The micromaser has proven to be anscheme which makes contact with quantum electrodynamics
invaluable testing ground for these phenomena, since indiand all of the accumulated wisdom therein. To do so it is
vidual atoms may effectively be used as measurement probéelpful to first establish a more direct correspondence be-
of the cavity field. Squeezing, in general, concerns the redudween the canonical approach of plane wave expansions and
tion of fluctuations(noise in a canonical paip,q, such that creation-annihilation operators, and the covariant operator
their uncertainty product is minimizeahdso that one of the approach{4] in a way which is conducive to generalization
pair attains a value which is lower than the value for coher{3]. Finally, the finite speed of light is also an issue which
ent states. Since the quantum field possesses sevef#s been previously ignored and an appreciation of its con-
position-momentum pairs, this property may arise in both thesequences is forthcoming. One cannot exclude the possibility
single and many-particle theories. Antibunching signals arthat extreme astrophysical quantum-light sources would re-
anticorrelation of atoms in the sub-Poissonian regime so thaguire a fully relativistically covariant analysj$].
squeezing is enhanced for events arriving at broadly sepa- It was shown in Ref[6] that quadrature-squeezed states
rated intervals from the sour¢€]. In this paper it is shown are related to the coherent statasvacuum or quasivacuum
that these phenomena can be understood as features ofirathe presence of a souncby a unitary transformation in
nonequilibrium quantum field theory. the space of the relevant canonical pajg. The case most
In a previous papel3] (hereafter referred to as papey | often considered in connection with sub-Poissonian statistics
the problem of inhomogeneous quantum fields was discussé8 that of number squeezing in creation-annihilation operator
by introducing a covariant method based on the Schwingetoccupation numbgrspace. There one finds that an effective
action principle and the various Green functions of the field.action or Hamiltonian for stable-squeezed states involves the
There it was only hinted as to the possible applications ofombinationsa’a, a2, and @")2. Converting these Fourier
such a formalism and the connection with “canonical” field transformed expressions into configuration space, it is found
theory was left implicit. Since one of the key areas of interesthat the latter two terms correspond to interactions of the
for nonequilibrium field theory and inhomogeneous systemgorm ® (x)® (—x), for all x, which appears to be unphysical:
is nonlinear, guantum optics, it is important to bridge the gapan interaction betweetnand —t violates causality and has no
between old-style canonical formalism and the more moderinvariant meaningsince it singles out a special origirsimi-
approach in terms of Green functions. Moreover, the connedarly, an interaction between two poimtsandx’ singles out
tion between squeezing and nonequilibrium field theory doea special point on each spacelike cross section of the field
not seem to have been appreciated in the literature. and implies a notion of absolute simultaneity which is for-
Single-particle modes in field theory are an idealizationbidden in special relativity, owing to the finite speed of light.
which does not convincingly describe interacting, finite sys-lt is, therefore clear that terms such a$ and @')? are
tems away from equilibrium. What we are really interestedidealizations valid over small aparati. Moreover, the identi-
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fication of a special origin in spacetime is a highly special-of a number of conventional relations in terms of inhomoge-
ized case, the true meaning of the selection of a special poimteous, nonlocal oscillator states. These are a first order per-
is that one requires a notion @ihomogeneityor loss of  turbation of the pure momentum-space objects, and serve as
translational invariance in space and/or time so that at any temporary bridge between the canonical creation-
arbitrary position one can discuss a distribution of eventgnnihilation formalism and the fully covariant inhomoge-
around that position. This reasoning makes the formalism ofieous case. We begin, therefore, by retracing some features
paper | immediately interesting. - _ of the discussion for the bosonic Klein-Gordon field in paper

A study of inhomogeneous systems, avoiding free-field, i terms of creation and annihilation operators for a field
perturbation theory, requires a theory of nonlinear, ”Onloca%atisfying a complex dispersion relation.

fields With.complex djspersion re_IationSThe formal appa- . The real scalar field (x) satisfies an equation of motion
ratus required to begin a discussion of such systems requires o form

a certain initial patience on the part of the reader, but the

benefits of the fully covariant approach are well worth the

effort. This paper will also serve to clarify the relationship to (—O+A*9,+B)D(X)+ f dV,, C(x,x" )P (x')=0 (1)

more traditional canonical field theojySuch a theory was .

discussed in paper | for a single-component bosonic field. A

real space description of squeezing was previously given ifof Some real source termA,B,C. The sources may be

Ref.[7], but these authors neglect the possibility of nonlineathought of as a phenomenological interaction with matter,

effects such as hysteresis and do not explore the dynamictie details of which are to be specified for each model. An

aspect presented in this paper. inhomogeneous system is characterized I6(®&,x’) which
Clearly the radiation field is a vector quantity which de-is not translationally invariant, i.eC=C(x—x',x+x’) the

serves a fully covariant treatment; in keeping with the litera-source conceals a dependence on an average pasitidth

ture, we shall consider mostly a single polarizati@nreal respect to some origin. The following notation is used for

scalar field in the present work, and a full vector field theory symmetric and antisymmetric objects, and all conventions

will be given elsewhere. A brief summary of the radiation follow those in paper I

field is given in the final section. The present results are not

especially confined to the radiation field, but are confined to 1 ,

any bosonic field, and the straightforward generalization to = §(X+X ),

fermions can be expected to lead to an improved description

of relativistic system such as the free electron 148érRe- 1

cent experiments on trapped ions may also be modeled by a X==(x—x"). 2

real bosonic field interacting with a harmonic poteniil.
The outline of this paper is as follows. In Sec. I, an

approximate implementation of a creation-annihilation for- S ‘ ,
malism for inhomogeneous field theory in slowly varying the field is & nonlocal object, depending not onlyxobut on

external potentials is presented. The aim of this section i§€ighboring positions within a radius which is governed by
mainly to serve as a bridge between the general spacetinid® Pehavior ofC(x,x"). In such a system, a conventional
approach of paper | and methods which are in widesprea@’omentum-space_expansion is not possible. However, lo-
use. Section Il presents a clarification of the notions of mo-Cally, about a poink, one may establish momentum coordi-
mentum and position for single-particle excitations of inho-Nateés through the partial Fourier transform. N
mogeneous quantum fields, and motivates the introduction of 1h€ scalar product of any two functions of only positive
a phase-space connection. Section IV discusses the issue fBgauency is given by10]

squeezing of the Fourier decomposition of a quantum field in

an inhomogeneous bz_:lckgrou_nd. This_ is often the case which (., 'fﬁ’):f dU“[fLi(%fﬁ)—i(%fl)fﬁ], 3)

is more closely associated with experiments. The message of

this analysis is that monochromatic squeezing is a physical

impossibility owing to the finiteness of systems, either due tovhere

boundary conditions or ultimately due to the finite speed of "k

communication signals imposed by special relativity. Section _ L2 2y nikXE

V shows how the foregoing results can be obtained in a f”‘(x)_f (2w)”0(k°)5( Kot w?)eta(k) @
spacetime formulation, avoiding the approximate notions of

Sec. Il and finds the width of the spectral distribution forwhich satifies the dispersion relation; ki+ w?=0. The
squeezed states. The time evolution of squeezed statgdode decomposition of a real scalar fidigx) may be writ-
viewed as a nonequilibrium quantum field, is presented foken

both the real scalar fieltheutral atomsand in Sec. VI for

the electromagnetic field. Finally, some order of magnitude d"k ,

estimates of the importance of the corrections described in ~ P(X)= f Wﬁ(ko)5(—ko+ »?)

this paper are presented in Sec. VII.

The translational noninvariance of the sou@émplies that

x[a(k,x)e**+af(k,x)e ] (5)
Il. OSCILLATOR STATES

As a first step towards a nonlocal, inhomogeneous theory _ (dk) ikx 4 ot —ikx
in whicha anda' are absent, one must establish the meaning 2|w| [atk,x)e al(k,xje ™, ®
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where @k)=d""*k/(2m7)""* and expikx) is a short hand sort of x dependence is physically acceptable. The
for exdi(kx— wt)]. In the limit of plane waves, the creation s-function property arises in the even part of the snall
and annihilation operatora’,a are independent of. One expansion of the exponential
may envisage theix dependence as a measure of the inap-
propriateness of a plane-wave expansion of the field. The d"1x o
reality of the field is secured by the relation f 2m 18 f(x,k)~ (k) 11
a'(k,x)=a(—k,x), provided the frequencies are real. If
 is a complex quantity, as is the case for systems off equiand finite behavior is only secured because the odd part van-
librium, then one must write ishes in the limits. However, even a small modulating func-
+ tion which is odd inx can destroy this property and lead to
(D(X):f (dk)( a(k,x) ikx 4 a’(k.x) e—ikx} (7) divergent behavior. Thus, provided the function which
* , o : .
2w(k,X) 2w* (k,x) modulates the exponential is evensin the integral trans-
forms smoothly into a5 function with no divergences. In

so that the reality of the field requires general, one has to deal with the issue of quantum interfer-
akx) |* [ a(—kx) . ence through a convolution: for instance,
20k,x)) |\ 2w(=k,x)/ ®

A(k)=f (dx)e™™f (k,x)

The two terms of positive and negative frequency in Eq.

(4) may also be denoted b (x)=®(")+®() indicating (ke pix
the annihilation and creation parts in real space. Their or- :f (dx)(dp)e' " P (k)g(p)=Tf(k)g(—k),
thogonality properties can be investigated by computing
(@), o)y and @), d)): (12
which illustrates the conection between nonlocality in mo-
((I)(*>,(D(”)=—if d"" x(dk)(dp) mentum space and the inhomogeneities in configuration
space for future reference.
a(p,x) .~ akx) | . The expansion of the field in terms of creation and anni-

20(p.x) © 2 2olkx) € (9 hilation operatora™ and a is only possible(or even plau-

' ' sible) in an approximation in which the inhomogeneities are
In the usual case where and w are independent of, itis ~ Sufficiently weak to make thé-function assumption an ap-
possible to integrate efigp+k)x] to obtain ad function ~ Proximately valid one. In general, something much more
8(p+k). This secures the immediate vanishing of Ej, (colloquially) “coherent” occurs and one must deal with the
which indicates the mutual orthogonality of the positive andfi€ld as an entity as in paper I. Proceeding on the assumption
negative frequency parts of the field. However, we are interthat thes-function approximation is indeed valid, we obtain
ested in nontriviak dependence, and it is clear that the in-

tegral overx is not aé function if the exponential is modu- (®) q)<+>):f (dk) et

lated by anx-dependent coefficient. In the case above, this ' 4|w|?

makes no difference since the integral vanishes by the sym-

metry of the factors. However, this issue raises its head at x| atal w+i E—i ‘9t_“’ +c.c.), (13
several stages in the discussion and it is useful to deal with it a ®

now. There are three possibilities for inhomogeneous sys-
tems:(i) thex dependence d(k,x) is so slow that it can be Where we again assume the slownessoods a function of
ignored so that one still obtainsé&function by approxima- time. For real frequencieén the absence of dissipation or
tion, (i) a anda’ do not depend on the point but on a  amplification, one may write this in the form
neighboring point, nonlocally detached fromthis also re-
sults in aé function, assuming the& dependence is “slow (+) s () _ = =
enough,” and(iii) the x dependence is strong and cannot be (@@ )_f (diOINCk,x) +R(kx)], (14
ignored.

The second of these points is somewhat vaguely stated. Iwhere
precise meaning acquires a firmer footing in the Green func- _
tion approach of paper I, in which one works entirely in N(k,x)=a'(k,x)a(k,x"), (15
terms of two-point functions. One writes

T ot T
at(k.x) R(k,x)= s (a'da—ada'), (16)

a(k,x) . i 2| o
) — k ikx ikx
) J(d )[Zw(k,x)e +2w*(k, 7

(10) which represent the number of particles at the average posi-
tion x and the flux of particles created or destroyed, respec-
which compares to Eq7). In the third, most general case, tively, over the intervak—x’. Note that, as th&-function
the x dependence is not ignorable and a modification of theapproximation becomes poor, tiéfunction broadens to a
S-function result is inevitable. In this case one must ask whafinite width and one has'(k)a(k’), i.e., particles created
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with one-momentum and returned to the vacuum with an- _
other, indicating dissipative or antidissipative scattering from f —zw(X)a(k x)ta(k’,x)=— j do®)iD ,d(x),
the sources.

The same effect is seen for complex frequencies in Eq. (dk)
(13) where the imaginary part Itw(k,x)) leads to absorp- s w*(X)a(k’,x)a(k,x )T—f do#®MiD <I>(x)
tion or amplification of the total particle number with mo- 2|
mentumk at spacetime locatiox. It is interesting to observe (24

the analogue of the covariant derivative from paper I, in thegne should now check that(k,x) has the property of a

above expressions: number operator. This is confirmed through the relations
oo 22N [N(k.x),a'(k,x)]=a'(kx), (25)
a w
[N(k,x),a(k,x")]=—a(k,x"), (26)
- - ﬁtaT (9{0.)*
fo* —lo* — —5+- 5, (17 from which one derives

— B _
wherea ™! represents the inverse af In paper |, thea,a’ N(k,x)a’(k,x)[n(k,x))=[N(k,x)+1][n(k,x)),

terms were represented by the gradient of a number operator
(actually, its ensemble average, the Wigner fungtidrhis
occurs due to the nonlocality of the inhomogeneous field
over a spacing of the order~x—x', where one notes that These relations hold also for complex frequencies, since the
commutation relations have the same structure in the real and

N(k.x7a(k,x")n(k,x"))=[N(k ) 1]|n(k,x")).
(28)

d,@"(x=x)a(x+X)) _ r?,LN(k,X_): dua J,a’ complex cases. Finally, when the ensemble average over oc-
al(x=X)ax+X)  N(kx) a a' -’ cupation number statdsi(k,x)) is introduced, for a given
(18  density matrix, one has
That the ensemble average of the nonlocal number operator Tr(pN(k,x)) = f(|o(k,X)],X), (29
in Eq. (15) is related to the Wigner functiofi(x,k), is clear

from since the occupation number states satisfy

(n|n"y=(0|a’(k,x)a(k’,x")|0)

dk) ., _
{@(x),d)(x’)}=f%e‘k(x"‘ [1+2f(k,x)]. (19 _(ol[a"(k.x).a(kx')]]0)

It now seems clear that the nonlocal generalization of the =(2m" 2w(k,x)(k—k), (30

commutation relations foa,a’ must be given by
and thus

T T — n—-1 Y L
[a(k,x),a’(k,x")]=(2m)"" 2w(k,x)5(k—k") (20 (n’(k’,x’)|N(k,x_)|n(k,x)> (31)

for real frequencies and b
g Y or, inserting the trace over the statistical ensemble,

o* (x)a(k,x)a’(k,x")—w(x)a’(k,x")a(k,x)

Tr(n’ (k",x")[pN(k,x)|n(k,x))
=27)" 12| w(k,x)|?5(k—k") (22)

=Tr(pn(k,x))n[n")=Tr(pn(k,x)){n[n")
for complex frequencies. To show these one need the inver- _ — =
sion formulas for the creation-annihilation operators. For real =f(w(kx).x)¢n[n"). (32

frequencies and homogeneous fields, one has the relations 1+, summarize this section, one finds that conventional
notions of particles with definite momentum can be general-

% ! afa=— j dotd ()i g LP(X), ized to inhomogeneous systems by adopting an adiabatic ap-
(2m)" " 20 proximation,. In this approximation, we make contact with
1 1 the Wigner function and number operators in their more fa-
t_ 1y, = miliar forms. To exceed this approximation, however, we
2m)" 120227 j do®Mig, (). (22 ot deal with the field variablezpdirectly.
In inhomogeneous fields, complex case one simply replaces IIl. POSITION AND MOMENTUM
the partial derivative by its covariant analogue,
&M—>DM=ﬁﬂ+a_ﬂ, where Having rewritten the nearly local limit of an inhomoge-
neous, nonlocal field theory in terms of familiar canonical
— dyw d,a Y quantities, the next step is to determine the meaning of po-
&= T a +(a,k,)x", (23 sition and momentum for excitations of the field in the pres-

ence of inhomogeneities. There are three distinct interpreta-
where all operators are evaluated(lafx), so that tions of position and momentum in a field theory and each
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pair satisfies canonical commutation relations. Symmetry under integration by parts implies that
Squeezed states of the field are characterized by the fact _ _
that they minimize the uncertainty product - I i ﬁ_w _ Ty (39)
1 X 2wk 2w’
Agap= 2" (33 wherevy is the group velocity of the total wave packet.

The connection for the momentum operator on these one-

In order to discuss such minimal packets we need to estalparticle waves is, by analogy
lish the significance of each of the canonical paifs:
[D(x),IT(x")]=i6(x,x"), which refers to the field as a dy- I do
namical entity and the minimality of zero-point fluctuations, Fp=- 2w’ (39)
(i) [Q(k),P(k)] =i, a canonical transformation of the com-
mutator for creation and annihilation operators in E2),  The connection for the position operator is well known from
which refers to minimality in occupation number space, andrelativistic quantum field theorf10,11]; the connection for
(iii) [x,p]=i, which refers to the localizability of individual the momentum is new in the inhomogeneous system. Slight
one-particle observations of the field. This final case givesnodifications to the connections must be made for the full
rise to the relativistic version of the usual Heisenberg uncerguantum field. Here, one must deal with general superposi-
tainty product for quantum mechanics. For the inhomogetions of wave functions which als@y necessity of relativ-
neous field there is a fourth measure of position and momeristic invariancg involve timelike variations. Quantum wave
tum which relates to the inhomogeneity scale and is closelpackets must now satisfy the dispersion relation for the full
linked to the covariant connections for position and momenfield, which is both spacetime dependent and highly nonlin-
tum. This will emerge from the discussion of covariance. Weear.
begin, therefore, with the third of these gquantities. The invariant inner product for the field, at a given point,

Consider the normalized plane-wave one-particle eigenis
functions in the homogeneous system,¢(X)
=1/\Nexp(kx), normalized by the inner product:

(<I>(X),(I>(X))=—if do*[P(x),d,P(X)]
(¢1(X,t),¢1(X,,t))=1,

ne =—i| do*[D(x),IT,(X)]
_if d lx[e—ikx(;?eikq:l’ j #
N =1 (40

2Rew
—Fe mo=1, (39 2
(D(x),®(x)= (P (x), DT (x)+ (@ (x), D) (x)).
where o is the spatial volume of the system. Thus, (41)

N=2Ree 2™ corresponds to a single particle in the total . ) .
The expression for the momentum operator’s covariant con-

volume, N'=2Rawe 2'™® corresponds to one particle per tion is. theref th iously introduced tor field
unit volume, and so on. In what follows, we shall simply nection 1s, eretore, the previously introduced vector fie

define the one-particle normalization to be Ay [see Eq.(ZL_%)_ and the fin_al section of p?PeT- Mo deter-
mine the modified connection for the position operator, one

N,=2Rew)0, @35  considers®(x),®(*)(x)) in Eq. (40). A straightforward
repetition of the argument for one-particle wave functions
which corresponds to one particle in the total volume, in theeads to the expression
absence of dissipative or antidissipative processes.

In nonrelativistic quantum mechanics, one is used to the o J 10 vy
: : : o M= — -1 2—Im(w)+ — -— —Re—
notion that a differential realization of the momentum opera- x 2|70k, Nk, ®
tor is given by p=-—id and, similarly for the position ) J u
x=—idldk. However, these differential operators do not | Ug
commute with the normalization factors and, therefore, do T E[Zmlm(‘”HTM_R%] 42
not constitute Hermitian operators. They can be made Her-
mitian by introducing connectioni, andI’,, such that This may be compared to E6) of paper I, where it arises
as a length scale of “inhomogeneity fluctuation&’k.
. d Since one is dealing with modified position and momen-
X=l ok LY tum operators, it is pertinent to ask whether the commutation
relations are preserved by the introduction of covariant con-
p=—id+T,, (36)  nections. Writing
so that [x*,D,]=idy+ Ay, (43

(P1,Xp1) = (X1, 7). 37 one has
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The functionH(k,x) summarizes the deviation of the dy-
Wr . (44 namics from that for one-particle excitations, and these two
scales must be understood as additional uncertainties, on top
wherel'#=2a”. This can be further rewritten in the form of those which appear in the conventional Heisenberg rela-
tion. Moreover, they do not satisfy a Heisenberg-type in-
equality themselves since tlkedependence arises as a result
(f,o,...). (45  of statistical and vacuum fluctuations, whereasxtaepen-
dence arises as a result of dynamitansport and external
In other words, it is the commutator of the position and mo-Poundary conditions. The two dependences are related by a
mentum derviatives acting on the complex frequency, thd3oltzmann-Vlasov-type equation, which we shall not discuss
Wigner function, and possible oth&rdependent quantities here[12]. i )
(which arise in connection with dissipation and the density X encompasses, amongst other things, thermal broadening
matrix). Thus, provided phase space contains no singularif the noise in position localization:
ties, A% must vanish. This has the physical implication that a

A;:}’«: aMFXV_

J
O ——

e
A "ok”

14

minimal uncertainty packet of the field can never violate the B(“—i 1_+f)2_w
well-known minimum Heisenberg uncertainty value. _‘7ku 20w |1+ f
In obtaining dispersion relations in paper I, we were led to
conclude that a natural length scale for the “granularity” of _ (1+f)_1ﬁ_ 1) do
the field, and the extent of position or momentum fluctua- ow  w/dk,
tions were given by 8
— [ N
L,=P, =a,H(kx), (46) - (eﬁ“’—1+ w)%’ (50
Ax— L ﬁ: 47) where 1f =exp(Bw)—1 and 1+ f = efef andvy is the group
H(k,x) ok =X velocity of wave packets.
Ap accounts for a contribution from thedependence, a
Ane 1 oH _r 49) broadening of the momentum distribution due to the inhomo-
P= H(k,x) ox P’ geneous distribution of the field. It is tempting to refer to this
as “inhomogeneous broadening.” This name is usually re-
where served for Doppler broadening of frequency in gaseous mat-
ter, so we should be cautious in adopting such a name. In
d"k fact, the two quantities are related. Since this term represents

<CD(X)CD(X’)>:J (ZW)”eIK(X “H (k). (49) a localized correction to the momentum of the field, induced
by a microscopic disequilibriuninot the averaged fieldit

The length scalé. —0 in the homogeneous limit, indicating has precisely the property of a generalized Doppler width.
an infinite resolution of the field or no inhomogeneity. This Indeed,Ap is related to the rate of change of frequency due
also implies either granularity nor weak localization sinceto localized disequilibriumd,w/w. Thus, this fluke of no-
the corresponding momentum scale becomes infinite, leadingienclature is, for once, a lucky one.
to a continuous spectrum of frequencies. The other two
scales represent an approximate measure of the degree of
localization about the average positimnand the spread of
momentum uncertainty of a wave packé&k vanishes when The second definition of canonical variables arises in oc-
the k dependence o (k,x) vanishes. This corresponds to cupation number space, or the Fock space of the particle
white-noise fluctuations of the field in the momentyail creation-annihilation operatoes,a. Often in experiments it
frequencies equally like)yas one would expect from the is this Fourier decomposition of the field which can be mea-
usual uncertainty relation. In other words, as the system isured. Here, one may define position and momentum vari-
completely delocalized in the momentu@s a result of sta-  aplesQ and P in such a way that the free-particle Hamil-
tistical and vacuum fluctuatiopsthe uncertainty in the cor- tgnian takes on the appearance of an array of harmonic
responding position is minimized. independence implies a oscillators in occupation number space. In discussions of
purely local limit. Ap vanishes only when the system is com- squeezed states of the radiation field, it is normally this pair
pletely homogeneous, or the dependence vanishes. This of operators to which one refers, not to the observable posi-
implies that all positions of a plane wave are equally likely,tion and momentumQ and P are related t@",a by [6]
since there is no potential to single out a special point. This
is also in accord with familiar ideas about uncertainty.

IV. FOURIER MODES

One should be wary not to confuse these approximate a:i SQ+'_|S ’
measures of uncertainty with the more familisx=x—(x) V2 S
andAp=p—(p). The scale in Eq947) and (49) refers di-
rectly to the connectionE, andI", and represents statistical 1 i
and kinematical modifications to the minimum width of par- aTz—(sé— _[5)' (51)
ticle excitations in phase space, at given valuek ahdx. \/5 S
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wheres= \w for an unperturbed oscillator arrdfree field. ~ where Xy =(1/2y)(Q)+iy{P). Whens?*=1/y and M =a,

In general, one may regasias a squeezing parameter, re-these are clearly the coherent states. The symmetry of the

ducing@ at the expense & or vice versa. This may be seen commutator now suggests that all other minimal states might

more clearly by inverting the relations be obtainable from the coherent states with the aid of a simi-
larity transformation. Let

Qzﬁ(ﬁam M=J.a(k,x)+J_a'(k,x), (59)
so that
p= > (a-ah), (52) 1(1+s%y
2 i)

so that the Hamiltonian
R R ] 1[{1-s%y (©0)
— P24 40224t == ——].
H(k)=P“+s"Q“=s"a'a, (53 2\ g /—7

which is manifestly a harmonic oscillator for ttkéh mode, e argument for homogeneous systems now proceeds by
with natural frequencys?. It can be noted that the transfor- proving the relationg6]

mation preserves the form of the commutation relati@0):
. U,aU, *=acoshz| +a'e '@%sinHz,
[Q,P]=2iwd(k—k')(2m)" L. (54)
U,a'u, '=a'coshz| + ae*%sinHz, (61)
Note that the commutator is independensafnd thuss is a
kinematical symmetry of the system which preserves thevith the help of the formula
minimality of the uncertainty product

1
1 e"BA A=B+[A,B]+ Z{A,[A,B]}- .- (62)

AQAP= > (55)
and by making the identificatiod . =coshz, J_=sinhZ

since, by the Schwarz inequality, any two operators satisfy@nd arg=0. In evaluating Eq(61) one uses the commutator
ing [X,Y]=iA also satisfyAXAY=1A. Fors>1 the posi- for a,a’. These formulas remain correct provided the cre-
tion AQ=1/\/2s is squeezed, and fa&r<1, the momentum ation a.nd ann.i@tion operators _are_all e\{aluated at.the_ same
AP=i\s2 is squeezed. The structure of these relations iSPaCElime poink. An approximation in which the derivative
unaffected by a functional dependence on the average podg SIOWly varying can only be accomplished by assuming that
tion x and thus no immediate problems arise in connectior]® OPerators are effectively independenkofowever, this

with inhomoaeneous svstems. As shown bv St the Isno hindrance and it simply reflects the essential locality of
Unitary operator Y St gach “domain” or “cell” of the field, which is labeled by

X.
Using the unitary operatdd, for realz we are, therefore,
(56) able to generate all of the squeezed states

UZ=exp<%[za2—z*(aT)2]
may be thought of as the exponentiated generator of this IM)=Uzl2) 63
symmetry, so that if®,k) is a minimal field configuration characterized by three real parameters: the real and imagi-
(i.e., it saturates the uncertainty inequality in the kth mode nary parts ofa andz. If a=nexp(6), thenn is the occupa-
then so isU,|®,k). Although this tells us nothing about tion number of the coherent state addis its phase. For
minimality in real space, it is related to squeezing of the|z|—0 one obtains the coherent states.

number distribution, or the issue of sub-Poissonian statistics The dynamical evolution of a minimal state, in momem-

and is, therefore, of great interest in quantum optics. tum space, is determined by
The suitability of this operator as a symmetry generator is _
not so straightforward for inhomogeneous systems and must IM,t)=exp(—iHt)U,|a). (64)

be reinvestigated. To do this one notes that minimal uncer-

tainty packets are eigenfunctions of the dimensionless oper&2"€ can ask what is the general form of a Hamiltonian which
tor [13,14] preserves the minimality of a set states in the decomposition

of the quantum field? An evaluation of the transformed free
O . Hamiltonian leads to
M= —(Q+iyP), (57)
2y UHU '=w(a'a+1)+2wcoshz|sinHz|[a%+ (a')?].
65
which is clearly equal to the annihilation operatafk,x) 69

whens?=1/y. The eigenfunctions of this operator satisfy Terms quadratic in the creation and annihilation operators
R are, therefore, important here. Many authors refer to a
MIM)=\py|M), (59 Hamiltonian with such an operator as a squeezed Hamil-
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tonian, indicating that this is sufficient to obtain quadraturenever contain terms other thaia. We begin again, there-
squeezind1,15]. This, however, is not, in the strictest sense,fore, with an action of the form
well defined, since it violates locality of interactiofishile
one may certainly write down such an interaction in Fourier 9 9
space, it is impossible to obtain such an operator through any Ssq:f dV,dVy {(D#®)g,,, (X, X" )[D"D(X")]
physical process In fact, that such a term can exist at all,
requires a notion of inhomogeneity such as is described in Y
this paper and its predecessor. To show this, and to obtain a +P(X) y*(X,x")[D ,P(X") ] = P(X") y*(x,X")
more satisfactory formulation, it is necessary to abandon the
particle approach and consider the quantum field as an entity
in real space.
In the local limit of the creation and annihilation operators )
(the limit in which they are functions df only), one may use \here the notation of paper | has been udeg=0,-T? is
the inversion relation a derivative which commutes with the functigiix,x’), etc.
(dx) _ One can now examine the form of this action in momen-
a(k)= _if [eK* 9o D (X)] (66)  tum space and compare it to the idealized Hamiltonian in Eq.
2w(k) (65). Substituting Eq(7) for ®(x) and separating variables
into X andx, one obtains

X[I;;Ltb(x)]+<I>(x)A(x,x')<I>(x’)}, (70)

to show that a term of the form? in the momentum-space
action or Hamiltonian has the following form as a position- a(k,x)a(p,x)
space term in the action: Sq=2Re| dVitdk)(dp) ’ ’

_ __ [p—k
a)(k,X)w(p,X)w(—2 )
a7 [ (600X AL 2o (X 0TGP (X )]

IO D[P (61 DX 1) + D(x,) xexli(p+K)x]| (—k*p"—ik“T §=ipTg+TgT )

p—k p—k 1 .

p—k
az—(a52=2if(dxxdqunxxztnao¢(xtn,(6& '+A("Ef“ij)' (71)

XD (—x,t)5(x—x")}. (67)

XgMV

Thus, the unitary operator involves the form

which may be identified with the generally covariant form Clearly, in the limit thatA, y,,,9,,, become independent of

byha. ¢ from pa L wh it ted h X, one can integrate over, obtaining §(k+p) and subse-

PY paper {, where It represented a phase (.:urrenéuentlyp to obtain the usual local result

in the internal space of the field. These expressions involv

integrals of the form (dk)
SIoc:f

dk
Wa(k)aT(k)[gMV(k)k“k +2Ak)]. (72

exdik(x+x")]
| RS g, | | |
w Note that this purely local operator contains no squeezing
) terms, thus an action or Hamiltonian which admits squeezed
f (dK) exgik(x+x")] i3(xx) solutions must necessarily be nonlocal.
® ' To produce a term in Eq71) which reproduces the stan-

dard a? terms as closely as possible, we require that the
. functionsA((p—k)/2,x) etc. be concentrated strongly about
J’ (dk)expik(x+x")]= &(x+x"). (69 p=k to counteract the tendency of the exponential to lead to
a ¢ function (imposingp= —k). The functions or distribu-
Notice that Eq.(67) is highly nonlocal: in particular, the tions must also lead to a well-behaved reverse Fourier trans-
latter term depends on diametrically opposed point in spacdorm in order to lead to physically acceptable solutions.
Such a term cannot be supported for arbitrary spatial separa- This tendency of the interactions to turn an annihilation
tions in a relativistic theory, owing to the finite speed of operator into a creation operat@nd vice versareflects the
communication imposed by special relativity. It representsability of the medium to store and rechannel energy by
an instantaneous interaction over infinite distance. Moreovestimulated scattering. Instead of particles being created and
this expression singles out the arbitrary origin as a speciahen destroyed, two quanta are created and two quanta are
point and is, therefore, a special case, rather than a covariadestroyed as independent, but balanced, processes. Clearly,
expression. It seems clear that the squeezing operator equétis requires a very special physical environment; it also re-
tion (56) can only be an approximation, valid over small quires a special functioA((p—k)/2,x). Clearly, thex de-
separations. A correct starting point must involve a generallypendence plays a crucial role in frustrating theunction, by
covariant, nonlocal expression which contains an inhomogeproducing noise irx. In the absence of such noise, no func-
neous potential. Without such a potential, no special pointsion would survive thes function resulting from the expo-
in space can be singled out and the action or Hamiltonian canential. Perhaps, the simplest case is presented by a periodic
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function of x, such as would be generated by a periodicAs the x dependence disappeafd—N and the last term
pulsing or a periodic background potential. This provides anvolving the connectionl’, vanishes, leaving the well-
connection between the formalism and the phenomenon anown property of the Poisson distribution.

antibunching of photons in sub-Poissonian ligtte below. In the literature, it is common to specify the statistics of
In either case, the importance of a spacetime inhomogeneitye field by quoting the Mandel parame@ror Fano number

is emphasized. Another possibility is a rapidly changingf=1+Q [17]. The latter is obtained from the above by re-
function of x such as one could find in a system far from arranging:

mechanical or thermal equilibrium.

While this property of the sources is important for the <N2>—<N)Z
description of squeezing, a more fundamental limitation f:T—Af, (78)
must be satisfied in order to preserve causality. The finite (N)

speed of communication between spatially separated parts WhereAf(f\]) is defined to be equal to the last term in Eq.

the system 1S imposed only 'T the r_10n|oca_| sources are th‘('}77). This number is equal to unity for a Poisson distribution.
Green functions of some mediating interaction. For example

they will satisfy an equation of the form A number less than one indic_:ates sub-Poiss_on statisti_cs_; a

number greater than one indicates super-Poisson statistics.
Here, one sees that the result of the inhomogeneous connec-
tion can lead to a “squeezing” of the field statistics.

It is worth noting from the discussion in this section that
for somepositivemass-energy squared{*=0. The precise the inhomogeneity of the field is required to explain both
equation will be determined by the procedure described ilinomalous statistics and notion of squeezed states. The fact
paper I, together with a knowledge of the microscopic interthat a broad(periodig x distribution of the sources is re-
actions of the field. We examine the effect of this aSSUmptiOQIuired to Satisfy the criteria for these exp|ains the phenom-
more closely in Sec. VIL. enon of antibunching, or the tendency of source photons to

Before presenting an improved formulation of the forego-pe distributed evenly in spacetinféne opposite of & func-
ing results, it is of special interest to consider the width oftjgn).

field-intensity fluctuations AN=N-—(N), since this is a

[— O+ M2(X)JAX,X')= 8(X—X), (73

more readily opserved quantity th&nandQ. The propertie;s V. SPACETIME FORMULATION
of AN may be inferred from the true momentum of the field.
Following Schwingef16], we note that We are now in a position to reformulate inhomogeneous

field theory and present all the preceding results in a compact
~ form, based on the quantum action principdé. This elimi-
(P,):((—iﬁ#—rp#)(¢(+),¢(+))):<J (dk)N(k,X)>, nates not only the need for the localized creation or annihi-
(74) lation operators, but also the introduction of a special
squeezing transformatiod. The latter may now be under-

~ — — stood as a subclass of the usual finite unitary transformations
where N=N(k,x) +R(k,x) [see Eq.(14)] and the angular induced by the dynamics of the field.

o e o e et N M0VIg 0 2 Spacelne approach we open he coor to
pap additional definitions of squeezing which describe the time

operator are described by evolution of fields. Before examining these, we shall con-
sider the analogue of the momentum-space squeezing in Sec.

((PL= (P (P, =(P,))) IV. We begin with a phenomenological action of the form
=(PuP (PP 5= [ AV (0#6(0)T,. (xx) @ 4(x')
=(_I&M_Fp,u,)(_IaV_FpV)<((D(+)!(D(+))>

T P(X)AMXX") d(X") +I(X) d(X)}, (79
:j (dk)(kk, +13,1p,)N(K,X). (75 where the superscript on the derivative indicates that the
sign of the connection term is reversed, and the sources

This can also be interpreted Fk] 9,,(X,X") andA(x,x") are taken to be symmetrical in their

indices, and may also be split up into a local part and a
Nl N Y0 N SN N o) nonlocal part if desired , is a derivative which commutes
(N(kON(K'2))=(NCk, X)) (N (K", )) with the sourcegw(x,x’).M
= 5kk,[<ﬁ(k,x_))+iaﬂva(kMk;)‘l] (76) According to the quantum action principle, the variation

of any quantum transformation functigamplitude is given

on extracting factors of the momentum. The integral over?y
momenta leads to a modification of the standard result for , Y

I = 89 ). 80
the Poisson distribution of random particles (¢7|¢)=i(s"|0S¢) (80

From this relation one infers both the operator equations of
motion 6S/ 64 =0, for dynamical variableg and the gen-

N2\ /N\2— /N -1
(N =(N) <N>+f (dk),Lp,(k k)% (77) erator of infinitesimal unitary transformatior@ which is
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obtained from the total time dervitative #5. Sis an action inhomogeneous bilocal interaction. Note also &, ¢ has
symmetrized with respect to the kinematical derivatives ofthe interpretation of an invariant probabili§ on the mani-
the dynamical variables. From this, one obtains the variatiofold of positive energy solutions for the field, so that the

of any operatoA on the basig¢) unitary transformation has the form of a weight
SA=—i[A,G]. (81 U~e9P, (89
Applying this principle to the action in Eq79), by varying  which acts on the mixture of states to which the transforma-
the action with respect té(x), one obtains tion function in Eq.(80) refers. This will supply a relation
between the statistical distributigdensity matrix or Wigner
5S:J dV,dVy {286(X) - —D¥g,,,(x,X")D $(x") function) and the unitary evolutio_n of the field. _
Although we have been seeking to eschew the notion of
+286(x)-A0GX ) b(X') + 8- I} creation-annihilation operators, it is useful to return to mo-

mentum space. In terms of this improved, fully covariant

derivation, we can now attempt to identify the true nature of
+J dVido#[6¢(x)g,,(X,X")D"¢(X")]. (82  the idealized squeezing parameteiin Eq. (51). Crudely

speaking, it is now a nonlocal quantity, depending on both

From this we infer the nonlocal field equation the momentunk and the inhomogeneity coordinatein its
Fourier-transformed form. One might also wonder whether
the resulting nonlocal transformation is even a symmetry of

_ DM ! v ! ’ ' —
j dVie{=D#g,,(X,X")D"$(x) + A(x,x") $(x')} =0, the system any longer. In fact, the derivation above in terms

(83)  of the action principle demonstrates this unequivocally, but
we can also show the deviation from the well-known form in
Eq. (61), by assuming the adiabatic approximation and em-
ploying the inhomogeneous oscillator states. The symmetry
then rests on the idenitification of the transformed operator
sz dV,do#[dp(X)g,,(X,x" )D"p(x")].  (84) Ua(k,x)U~* with M=J_a(k,x)+J_a'(k,x). The trans-
formation is possible provided the coefficiedts andJ_ are
The equal-time commutation relations are suitably modifieeXPressible in terms of the symmetry parameter, and the re-
by the external interaction with the source, and follow di-'ation closes under the algebraafa’. .
rectly from Eq.(81): Returning to momentum space, the true form of a permis-
sible squeezing transformation is nonlocal in the momentum

which implies a nonlocal Hamiltonian of the form in Eq.
(65), and generator of infinitesimal unitary transformations

¢(X),f dVyr @, (X, X )[D"p(x")]|=18(x, )N, .

1 _ _ _
(85 U(k)=exp< Ef (dk")[a(k,x)goo(k, k", x)a(k’,x)

The canonical choice for the unit vectoy, is =0, pointing FoL = Pt T
in a pure time direction. It is now clear that the generator —a(kx)gook.k',x)a’(k’.x)] . (90
G leads to the unitary transformation matrix
Since the creation-annihilation operators commute except

U=expiG) (86)  whenk=k’, one now findgusing the identity in Eq(62)]
that
in infinitesimal form. The finite transformation can now be
compared to U(k)a(k,x)U(k)"*

1
U=ex;{§g[a2_(a’r)2] :a(klx_)cosl,{%f (dk/)goo(k,k’,x_)(1+ 5kk’))

=exr<ifdVXda“gW(x,x’)¢(X)D”¢(x’) . (87 + e~ 13 ®ooa " (k,x)

/1 _
which, referring to Eq(56), is seen to be of the same form as ><sm%(§f (dKk")goo(k K", x)(1+ 5kk’)) : (99)
the squeezing transformation. When applied to a coherent
state(displaced vacuuim U(k)a'(k XU (k)2

. 21k
|c)=exp(|f dVXJ(IJ)|O>=exp[—(1/2)|Jk| ]WW’
(88)

=aT(kx_)cosI‘<Ef (dk")goo(k, k', X) (14 Syr)
) 2 0 (AN kk’

: _ 1 —
this results in a squeeze. Thus, the squeezing transformation +e'a’9900a(k,x)sin>{§f (dk")goo(k,k’,x)(1+ 5kk,)),
is to be interpreted as simply one of a class of standard

unitary transformations on the field, in a field theory with an (92
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where the hyperbolic sines and cosines are to be regarded te rate of change of the statistical sjatk is initimately
abbreviations for their power-series expansions. Althougttonnected with the time development of the quantum field.
this formal expression cannot be evaluated any further withThis expression also illustrates the essential locality of the
out more specific details, it clearly has the correct propertiesqueezing, in spite of the fact that the quadratic interaction is
to act as a unitary transformation, transforming any minimabilocal.
packet of the field into any other. The transformation is now The case ofx,p] squeezing is no different from the dis-
highly nonlinear. Moreover, one identifies the cussion in Sec. lll, so there is no need to repeat it here.
k,x-dependent parametsrby Squeezing of the zero-point fluctuations in the field and con-
jugate momentum can be presented in a real space form
1 .  — without introducing the Fourier components as in Sec. IV. A
=COS"( Ef (dk’)goo(k,k",x)(1+ 5kk'))v squeezing operator can be constructed in the usual way by
(93) constructing variables

1<l+sz‘y

2| sy

which reduces to the well-known result in E@1) when 1 i
goo(k, K", X)—|z| 8(k—k') and argy=0. Rearranging this Aizﬁ se() =X |, (96)
formula, one finds an inevitably exponential average-tiore

space dependence in the squeezing parameter, such that

s(k,x)= iexp( :%f (dk") ook, k' X)(1+ Siper) |, [As A_]=68(x,x") (97)

vy

(94 at equal times. The quadratic operator may now be written

such as is observed in the squeezing of trapped ions in a
recent experimert9] by Meekhofet al. The specific nature U= Pexp{ J dVXyO(Ai—AZ,)
of this exponential variation depends on environmental fac-
tors (boundary conditions Referencq9] does not provide ) . . .
sufficient details for a more detailed comparison. Note thatWhich may also be written in the generally covariant form
in this relativistic formulation, the squeezing parameter is a
position, time- and freqency-dependent quantity, which is _ f “
peaked sharply arourtd=k’. Only in an idealized system is v Pexp{ dVxy"$(d, )
it possible to obtain pure mode squeezing. The width of the
distribution is determined by the width of the dipolelike driv- This term also appeared in paper | as an off-diagonal source
ing forceggo(k,k’,x), which is, in turn, found from the dis- term, which was directly related to the changing of the oc-
persion relation for the interacting fieldee Sec. V). An  cupation number in different number states in momentum
order of magnitude estimate isk=w/v4. The distribution ~ space. Notice that the term, as presented, violates parity and
will be broadest when the dispersion relation of the field hagime-reversal invariance, but that the combined transforma-
large gapsan effective magsin the energy spectrum. The tion of variables involves both) and U~ so that parity is
effect of this splitting of a monochromatic field into several preserved in any physical expectation values. We thus iden-
components is reminiscent of parametric down conversioitify this source term as an operator which will squeeze mini-
[18]. This frequency and spacetime dependence of th&al states of the field. This makes an interesting connection
squeezing will tend to lead to squeezing concentrated in spén the case of the electromagnetic field, as seen below. Be-
cific areas of phase space, i.e., specific discrete momenta fare leaving this case, it may be noted that this operator is
specific times and places, typically with an oscillatory char-not even bilocal: it serves as the generator of squeezings
acter. This could be observed as a collapse and revival gfven as a purely local quantity. This can be understood as
occupation numbers of a given frequency, or as standingpllows. Such a source term does not occur naturally in the
waves in space. action of a physical theory. It violates parity and time-
In addition to the Fourier space squeezing of Sec. IV reversal invariance and can, therefore, only arise as an ex-
there are three other nonzero commutators which can be us@gession of external boundary conditions. In paper I it was
to substantiate the notion of squeezing the field. We have thghown that the coefficieny* was equivalent to the time
usual equal-time commutatofg,p] and[ ¢,11] and there is  variation of the dispersion relatiof)*) and the time varia-
the commutator of the positive and negative frequency partion of the density matrix £#), indeed, all of these played

: (98)

. (99

of the field[10,3] which is summarized by the role of a “gauge field” or chemical potential for the
_ quadratures of the real scalar field. Thus, while there is no
[P(X),p(X")]=1G(X,X"), (95 need for an inhomogeneity at the formal level, one should

_ understand that the physical origin of such a term is precisely
where G(x,x’) is the commutator function, expressible asa result of the inhomogeneousme-dependentdevelop-
the sum of the positive and negative frequency Wightmamment of the system. Such a term may be viewed as a renor-
functions[19]. This commutator vanishes on a spacelike hy-malization of such an inhomogeneous system.
persurface, i.e., in canonical language it only exists for caus- The unequal time commutator in E@5) admits another
ally connected fields at different times and is independent ofnternal transformation of the field over a two-time interval.
the statistical state of the systdhough it does depend on The Schwarz inequality then implies that
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1 ~ where g(x,x’) is introduced to make a causal connection
Ad()A(X")=5(G(x,x")), (100 between the field at andx’. It represents a “vacuum po-
larization” of the field. The squeezing transformation result-

i.e., the fluctuation width in the field between any two timesnd from this operator is now

is bounded by an expression which is independent of th / N =1(y!
statef (k,x) of the system, but which can depend on the rat(?(x’x )3+ (X XHUTHXX)
of change off(k,x) and the spectrunw(k,x) away from v
equilibrium. The width of these fluctuations is determined by = f dVvydVy.a,(y,y )coshC(x,x",y,y")a(y,y")]
the spectral content of the field aswlk,x). An increased x

mass or gap in the spectrum typically damps the value of the e / , /

right-hand sidgRHS) exponentially, instead of like a power Ta-(yy)sinfCOaxty.y)e(y.y")].

law; thus the tendency for fluctuations to increase over Y(x,x")a_(x,x)U"Lx' x)

short time interval is reduced by the gap. The form of the gap

was _derived in paper | and is given by <

m?+A(k,X) + (F—N)?, where F, is the gradient of the =f dvydVy.a_(y,y")cosiC(x,x",y,y")g(y,y")]

Wigner function andN , is the rate of expansion of a cavity X

to which the field is confined. The form of this expression +a.,(y,y")sinfC(x,x",y,y")a(y,y")]. (106
indicates that rapidnonadiabatizchanges in the occupation

numbers of particles in momentum statesnequilibrium, If the functiong(y,y’) is sharply peaked at=y’, this trans-

or an decrease in the size of trap or cavity would tend tdormation has no squeezing effect. This reflects the need for
increase the possibility for squeezing. an inhomogeneity in the development of the system. This

It is also possible to view EJ100 as two separate com- transformation does not provide a sharp relationship between
mutators for the positive and negative frequency componentihe squeezed and nonsqueezed fields, rather there is a depen-

of the field. The relation dence on the entire history of the field’s development. This is
equivalent to the finite width in momentum space in Eq.
[¢ (%), 7 (x")]=iG T (x,x") (92).

, This transformation is simply a nonequilibrium perturba-
_ @ (dk )[a(k) aT(k/)]eikx-Hk’x’ tion of the field. It is caused by a bilocal interaction and
20 20’ ' represents a correlation between the field at different space-
time points. Such correlations are related to the notion of
off-diagonal long range ordefODLRO) or Bose-Einstein
shows that this is directly related to the squeezing exprességPndensation, and it is interesting to speculate on how per-
in terms ofa anda' in Sec. IV. To make the squeezing turbqtlo_ns might lead to squeezed states of motion in atomic
explicit, we may introduce new real variables an_d ionic condensate@Note: such. Iong.range phase corre-
lations, or global symmetry breaking, give the appearance of
1 nonlocal correlations in the field. This is to be understood as
—(s¢(x)i—¢(x’)) (1020  a collective effect which in no way violates the assumption
V2 S of finite speed of communication.
In summary: by describing every manifestation of squeez-
such that ing in terms of distinct noncommuting pairs, one gains an
insight into the necessity of time-dependent or inhomoge-
[a;(X1,X2),@-(X3,X4)]=C(X1,X2,X3,X4), (103  neous interactions from several different perspectives. Al-
though formally distinct, these different squeezings are all
and related to one another and may be thought of as different
~ manifestations of the same phenomenon. The intimate rela-
[a; (Xq,X2),a_(Xq,X2)]=—1G(X,x"). (104  tionship with the nonequilibrium development of the field
plays a central role in the squeezing of the modes.
The corresponding operatbr can be constructed and repre-
sents the tendency of the field quadratures to be squeezed VI. THE ELECTROMAGNETIC FIELD
dynamically over the time interval concerned:

(107

a.=

The real scalar field has been used as the center point of
X! the discussion thus far. Scalar fields are the relevant variables
U(x,x’)=Pex;{if dV,dVy for atomic and some ionic systems and are more closely
X related to the single-polarization models commonly dis-
cussed in the literature. The most important field, however,
X[ai(xl,xz)—az(lexz)]g(X,X')) from an experimental viewpoint, is the electromagnetic
(em) field. This case has been discussed in a real space for-
< mulation in Ref[7], where the authors emphasize the impor-
= Pexr( iJ dede'¢(X)g(X-X')</>(X')), tance of time-dependent interactions in optical media, but do
X not properly discuss the effect of this inhomogeneity on the
(105  field equations. In fact, it is a special property of Maxwell’'s
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equations in 31 dimensions which makes them invariant AD;;=AH=0. (113
under inhomogeneity(conforma) transformations, so the

conclusions of Ref.7] can be trusted in spite of the apparent These are the well-known continuity conditions for the field
omission in their analysis. As a result, it would be superflu-at a dielectric boundary and serve as a check on perhaps
ous to reproduce their discussion, even though it takes anfamiliar formalism. From the surface term in the variation
different approach from the present paper. Instead, to roundf the action, we obtain the covariant form of the commuta-
off this discussion, the foregoing results are only summaiion relations for the field:

rized for the specific case of the em field. The results of Ref.
[7] are not relativistically covariant, so we extend them and
write down generally covariant forms which encompass the
time-dependent behavior found in nonlinear media, such as
hysteresis. The electric and magnetic fields are really thevheres, (x,x") is thed function on a spacelike hypersurface
components of a rank-two tensor; i3 dimensions they pointing in theu direction andg,,, here is the(local) space-
happen to have the characteristics of a vector and #me metric. The canonical value f@s is zero. This commu-
pseudovector, respectively, while inr+2L dimensions, the tator can also be expressed in gauge-invariant form,
magnetic field is a pseudoscalar. In covariant language, the

=ig),0,(x,x"), (114

AA(X),I dVyeD (X", X")

interconvertibility ofE and B in relativistic systems due to o
relative motion gre automatically accountedyfor. Such an in- FM(X)’I AVieD X X7 |Z10,01,8, (X, X")
terchangeability is particularly important in relativistic sys- )
tems such as the free electron laser. —1039,,6,(xX"),
To express Maxwell's equations icovariant form, we (115

introduce the field® andH and a tensoD ,,, given by
so that the canonical limit, in-81 dimensions, gives
0 -D; —-D, —Dj
D, O Hy —H, [B,D]=iVX(x,x"). (118

(107
D —Hs 0 Ha It is more useful though to use the dual of the field strength
D; H, —-H; O F ., to express this, since this gives a more accurate and
compact impression of which components are conjugate to
in 3+1 dimensions. We see that this tensor has the samgne another. It also makes transparent an algebraic step be-
structure as low. Thus, in 3+ 1 dimensions one has

Fu=d,A,—d,A,, (108

D, (X,x")=

1
= Elgweaﬂwapéﬂ(x,x’),

) ) X A ) F;B,J' dVX”D,uy(X’,X")
but with D replacing andH replacingB. This tensor is a
nonlocal quantity since the polarization of the medium is a (117

nonlocal relation . . . . . '
where the dual field strength int31 dimensions is defined

by
P(t)zf dty(t—t")E. (109
In terms of this tensor, we can write the action Fzﬁzieaﬁw':w- (118
1 . .
S:f dVXdVX/[ZF’”(X)Dw,(x,x’)—J“Aﬂé(x,x’)]. In 2+ 1 dimensions, one has
(110) * 1oy 1 N B ’
o o Fa,f dVyD (X", X") =§|g>\vea50 0, (x,x"),
The variation of the action is given by
(119
5S=j dV,dVy{— 6A"9*D ,,— I* A} where the dual is given by
1
+f dVedo*{6A,D ,,}=0. (111 Fh=5eumF™. (120

The continuity condition implies that the canonical momen-we are now interested in constructing minimal uncertainty
tum is (u=0) states by forming combinations of these conjugate variables.
M =D (112 An impqrtant point to note here,_ Which_ is sometimes pre-

m =0 sented in a misleading manner in the literature, is that the

and that the condition for continuity across a surface dividing®@UPling of sources to the electromagnetic field has the form
two regions of space ig =i divides into two cases:

AD.g=AD=0 Smt:f dVXJ“A#—FJ dV,dV, 347D, (x,x"), (12D)
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i.e., currents couple to the vector potential and not to the There are two independent issues to be addresbeitie
electric field. The termd*” behaves like an external “dipole corrections arising from the essentially inhomogeneous na-
fo_r_ce” ar_1d is related to the atomic pola}rization or SL_Jscepti-ture of the interaction, andii) corrections arising from a
bility. This means that, rather than forming the combinationsproper observance of the laws of relativity and locality of

B+iD as in Ref.[7] (which is a pseudovector in-81 di- interactions. The first of these may be dealt with by compar-
mensions, and cannot be generalizeal cleaner and more ing the orders of magnitude of the frequency of radiation
general form can be constructed using the scalar with the frequencyor rate of changeof the time- or space-

i dependent interaction causing the inhomogeneous develop-

ai:SjMA,u(X)igf dV j#"D, ,(X%,X"), (122 ment. The latter mlght be t_he _rate of change of a _sp_atlally
heterogeneous medium, or it might be the characteristic tran-

sition or hysteresis times of atoms with nonlinear suscepti-
bilities; the nature of the spacetime dependence has been
kept general in this paper. For simplicity we, shall assume
that all spacetime variations are harmoriginusoidal in
time and talk about the frequency of the modulating inhomo-
geneity().

The effect of the inhomogeneous corrections is twofold:
Now, from the relative orientation of the sources combinedkst, there is a shift in the frequen¢gmelike) or wave num-
with gauge invariance, one may write, int2 dimensions,  per(spacelik¢, and second, there is an effective mass or gap

SN Wk in the classical dispersion relation. Since the frequency and
i*j 0(x) e, (124 . .
wave number corrections add or subtract directly from the

wherej* is a conserved spacelike current gfd is antisym-
metric. The construction of the transformation term now in-
volves the following forms, up to a gauge transformation:

ai—a’~j A, | aﬁf dVieDga(x,x"). (123

and in 3+ 1 dimensions one has actual frequency of radiation, they give rise to a shift of each
o mode. The sign of the shift depends upon the gradient of the
4N~ 0,(x) e (129  change in(i) the effective frequency found from the disper-

sion relation, andii) the rate of change of the Wigner func-
tion or density matrix for the field. Thus, if a physical system
1 has a time-dependent interaction with a characteristic fre-
Scszzf dVXdVX,G(X)e/‘“AMDM(x,x’), (126 quency which is, say, one percent of the frequgncy of rad|_a—
tion, then the shift can be expected to be maximally of this
can be regarded as a source term or driving force whicf§ame order, multiplied by a frequency-dependent exponential
tends to squeeze minimal packets of the field indamping factor. A similar argument holds for spatial gradi-
(2+1)-dimensionaB, D space. Thus, squeezing of the Fou-ents and the wave number, though the effect for spatial in-
rier modes arises directly from the nonlocal susceptibilityhomogeneity is smaller by a factor of Some typical ex-
x(x,x") and permeabilityu(x,x’) contained inD,,,(x,x"), amples could include the modulation of atomic energies by
by analogy with Eqs(79)—(92). That the Chern-Simons term lightwaves(with typically 10 000 times longer wavelength
tends to implement a symmetry transformati@gueezing leading to shifts of the order of $610’ Hz at optical fre-
might be expected since it is known to have no independerguencies, which is of the order of photon recoil enerfsj
dynamics of its own. This is interesting since the Chern-and should be observable along with the Lamb $&#i. For
Simons term is cited in connection with a number of physicahonlinear susceptibilities one would expect shifts on the or-
systems, most notably the quantum Hall effect. The abOV@er of MHz and above at 0ptica| frequencies_
resglt prompts immedia_t(_e sp_eculation as to whether squeezed The effective mass may be estimated by using
vanable; can be |dent|f|ed in these. systems. The_ CONVersen ~me?, where() is the rate of the time-dependent inter-
speculation that photonic solitons might obey fractional stayction. For optical frequencies and microwaves, the mass is
tistics has also been proposed receri@f]. The Chern- o, yemely smallaround one thousandth of the electron rest
Simons term is the quantity analogous#8¢(J,,#) INro- o5 1t for energetic x-ray time scales, it can clearly ap-

du::edt'lrllfpaﬁ)ﬁr ; V\I/ghzlf_,ﬁas Ia ?auo?e f|elc;j or ? ctr;]em!cal froach the electron rest mass. This may play a significant
potential for the field. This also lends credence to the view of |\ " "¢ oo alectron lasers.

the Chern-Simons coefficient as a nonequilibrium parameter
in Refs.[21,27.

This means that the Chern-Simons term,

The second of the distinct issues addressed here concerns
the finiteness of the speed of light in mediating explicit in-
teractions. In this paper we assume that the interaction term
in the action or Hamiltonian must be of a local form. Only

The preceding sections present a detailed justification oifhteractions which are in concord with special relativity are
the way in which squeezing interactions result from the nonpermitted. The fact that suctbi)local interactions lead to
equilibrium evolution of the quantum field. It is a “micro- nonlocal correlations is well known and should not be con-
scopic” rather than a phenomenological description, involv-fused with the essential locality of the interaction terms. We
ing Green functions and observable expectation values. Ishall discuss this point further below. As derived in Sec. IV,
this section we shall use the results to determine the magnihe extent to which squeezing can be realized in a two-
tude of the corrections which can be expected to the singlephoton (two-field) interaction depends on the spectral con-
mode, idealized models presented in the literature. tent of an interaction term of the form

VII. DISCUSSION OF THE INHOMOGENEOUS THEORY
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= Msin(), then it is possible to evaluate the above integral
Sint:J dV,dV, p(X)A(X,X") p(X"). (127 analytically. The specific expression is not particularly inter-
esting; the behavior of the result is no longer a sharp
This depends on the nature of the interaction kerneb-function interaction at a single frequency, but a peak of
A(x,x") in Fourier space, which, in turn, depends on thefinite width with oscillating side bandsee Fig. 1 It is also
details of the microscopic system being modeled. To answenteresting to note the asymmetry in the shape of the peaks
the question of the intrinsic width of participating modes which arises from the finite limits on the integral oteihis
required for squeezing, we assume the following Lorentziarshould be observable for strongly time-dependent interac-
form for this kernel: tions in a finite cavity.
We may thus conclude from the above that a single-mode,
d'k . , idealized model is a good approximation for strongly time-
A(x,x")= j e ) ————_ (128  dependent interactions: squeezing is maximal when the inter-
(2m) k?+ M?(x) : e : . :
acting photons have similar frequency profiles and is maxi-

This form incorporates the assumption of limitedThe ef- _mal _at a s_trong_reso_nance, such as '9 a l@gbavity. The
fective massM(x) is possibly the inhomogeneous gap in theInStrInSIC line V\f!dth IS Of,,the ordepc /ﬁ for Mq&(.)' F".
dispersion relation for the waves. The boundary conditionya”y’ the term “nonlocal” is often used in connection with
on this propagation kernel do not play a role in our analysis?queezmg' o .

but one would clearly expect to restrict the sum to include. ,!t_be clear T“.’”? the analys_ls In t.h's paper that non!ocal-
only causal times in the actidB]. Given the above form, we Ity” in a. relativistically covariant field theory is a derived
can now transform to Fourier space. If one assumes that th%oncept. sfueezing is accomplished only through propagated

efective mass is independentafimpiing a homogeneous el YOEE A L8 oo O o with more
theory, then the action takes the form

than one variable, such #4x,x’), but here we mean faster
dk (k) d(—k) f[ha_n Iight pommunicajcioﬂl.Since the wave packgts have an
int= Zmn KM (129 intrinsic width, there is a probable time delay in measure-
ment of the order N w between two photons or fields. The
inhomogeneity of the theory does not play a special role
ere. Nonlocal correlations may indeed be observgiilase
correlations which move with the phase velocity, for in-
stance, but no direct interactioicommunication is either
geessary or possible between points lying outside the light
one.

The idealized form for the squeezing operator, used in th
literature,a®— (a')? gives not¢ (k) ¢(—k) in the numerator,
but ¢ (k) ¢(k), which is completely nonlocal and cannot be
generated by the givefi(x,x’) for any M. However, if the
mass depends on the average position, one may reduce A
interaction term to the form ¢

ki 0Kz g e DKy A(ko) VIll. SUMMARY

d
Snt:f dV_X— p—
(2m)" (2m)" i (k3= k) 2+ M2(x) Squeezed states are conventionally explained as two-
(130 particle emission and absorption processes in momentum
. . . . . space, using a formalism of single-mode creation and de-
The meaning of this term IS most easily seen if we take th%Struction operatorgl8]. In this work, the notion of squeezing
inhomogeneity to be purely in time and express in even angy 5qqressed from several related perspectives. A spacetime
odd variables approach is employed to elucidate the physical reason for
4 kdods — (o squee;ing, in terms of nonequilibrium dynamics of the quan-
S Nf dxof WO 2iux® f’(“’ )p(w—k) tum field. Momentum-space results are presented for their
nt (2m)ntt (k2_g)2)+M2(§U)' relationship with experimental situations. Results are given
(131  for the real scalar fieldrepresenting atoms and certain ionic
_ o system$ and the electromagnetic field. The formally distinct
wherek=3(k,—k,), andk=3(k,+k,), and so on. It is now commutators of interest ar@) [x,p], the true position and
seen that squeezing dependsw@rbeing large compared to momentum of one-particle excitations; these are modified in
. Thus, outgoing photonéields) with identical frequency the presence of spacetime-dependent interactions such as
profiles are squeezed best. The denominator ensures that tH®se which generate squeezingp); [a,a'] and[Q,P], the
interaction term always includes a finite width, however.single-mode quadratures of the field, related to antibunching,
This is to do with the Lorentzian form and not to do with the intrinsically polychromatic with minimum width limited by
inhomogeneity. Another feature to observe in the above exthe weight 1b; (iii) [#,11], the canonical field variables
pression is that the denominator vanishes for on-dlekds-  which express the same @8 in real space, and make con-
sica) photons and thus peaks sharply at this value. The intact with nonequilibrium, inhomogeneous field theory as de-
teraction looks most like the ideal squeezing interactionscribed in paper I; and finall§iv) [ ¢(x), ¢(x")], the unequal
when the variation of the Lorentzian is slow, however. Thustime commutator, which contains the dynamical evolution of
it is the flattest parts of the Lorentzian which are squeezedqueezed packets. All of these are expressions of the same
most. This occursi) at resonance maxima and minima, andunderlying dynamics, and merely reflect different aspects of
(i) for highly nonclassicaloff-shell) states. If one takes, as the evolution through alternative variables. The transforma-
an illustrative case, a harmonic inhomogeneity{(t)  tion operatord) which squeeze minimal field configurations
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FIG. 1. A plot of the integralf"  cos(2st)dt[sir?(t)+1], over a range ofv. This represents a harmonic inhomogeneity of half the
frequency of the field components, for illustrative purposes. The asymmetry of the curve is a result of the finite correlation length combined
with the time dependence of the effective mas4(t)=sin(), in scaled units. This particular integral may be solved analytically, but in
general a numerical investigation is required. The shape of this graph is to be comparéduoction for a monochomatic theory.

are best viewed in real space, and can be identified witlsqueezing; the relation to nonequilibrium field theory, and
off-diagonal source terms, analogous to the Chern-Simonthe attention to finite speed of light and finite system size
terms in (2+1)-dimensional field theory through a change (shorter coherence lengtHeading to an intrinsic line width
of variables. The basic physical reason which underliesnd sidebands. The latter might well be an important issue in
squeezing is an inhomogenedtisne-dependentinteraction  solid state lasers, where spatial inhomogeneities are more
of the field, expressed by nonlocal interactidinysteresis pronounced and coherence over many optical wavelengths is
and electron recoil Environment and decoherence are in-perturbed by inhomogeneous structure in the medi2h It
trinsic issues in squeezed systems. Two-particle creation pr@ould also be important in extremely relativistic systems
cessegdown conversion, etgare the first term in a “non- such as astrophysical sources and the free electron laser
local source” expansion of the evolving density matrix where the degree of coherence is less af8iteThe connec-
[12,3. In spite of the apparent nonlocal appearance ofion with off-diagonal long range order suggests that
squeezing, it is shown here that it arises from purely locakqueezed velocity distributions might well characterize a
interactions. Bose-Einstein condensate formed in a trap, if the condensate
New in this paper is the covariant, unified picture of were formed rapidly enough.
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