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A spacetime description of squeezed states in quantum fields is presented, revealing the connection between
squeezing and nonequilibrium dynamics. Squeezings in configuration space, occupation number space, and
phase space are distinguished; generating transformations and criteria for their physical realization are dis-
cussed. The results have an immediate applicability to atoms and ions in traps, as well as to quantum optics in
relativistic and nonequilibrium systems. Squeezing, sub-Poissonian statistics, and antibunching are all shown
to be a direct consequence of spacetime inhomogeneities in the quantum field. The finite speed of communi-
cation between separate regions of the field~finite speed of light! places a lower limit on the attainable spectral
width of squeezed states. The squeezing parameter for field quadratures has the appearance of a chemical
potential in an inhomogeneous field, and through a renormalization may be generated by a Chern-Simons-like
term. @S0556-2821~97!04902-3#

PACS number~s!: 11.10.Wx, 42.50.Dv, 05.30.2d, 05.70.Ln

I. INTRODUCTION

Demonstrations of the field as a truly quantum-
mechanical entity have come most convincingly from quan-
tum optics in the last two decades@1#. Light, or the photon-
radiation field, exhibits several phenomena which admit a
complete description only in quantum, many-particle theory.
Examples include squeezed states, sub-Poissonian statistics,
and antibunching@2#. The micromaser has proven to be an
invaluable testing ground for these phenomena, since indi-
vidual atoms may effectively be used as measurement probes
of the cavity field. Squeezing, in general, concerns the reduc-
tion of fluctuations~noise! in a canonical pairp,q, such that
their uncertainty product is minimizedandso that one of the
pair attains a value which is lower than the value for coher-
ent states. Since the quantum field possesses several
position-momentum pairs, this property may arise in both the
single and many-particle theories. Antibunching signals an
anticorrelation of atoms in the sub-Poissonian regime so that
squeezing is enhanced for events arriving at broadly sepa-
rated intervals from the source@2#. In this paper it is shown
that these phenomena can be understood as features of a
nonequilibrium quantum field theory.

In a previous paper@3# ~hereafter referred to as paper I!,
the problem of inhomogeneous quantum fields was discussed
by introducing a covariant method based on the Schwinger
action principle and the various Green functions of the field.
There it was only hinted as to the possible applications of
such a formalism and the connection with ‘‘canonical’’ field
theory was left implicit. Since one of the key areas of interest
for nonequilibrium field theory and inhomogeneous systems
is nonlinear, quantum optics, it is important to bridge the gap
between old-style canonical formalism and the more modern
approach in terms of Green functions. Moreover, the connec-
tion between squeezing and nonequilibrium field theory does
not seem to have been appreciated in the literature.

Single-particle modes in field theory are an idealization
which does not convincingly describe interacting, finite sys-
tems away from equilibrium. What we are really interested

in, in quantum optical systems, is the observable properties
of the field as an entity, divorced from speculations as to the
microscopic details which give rise to the observables. One
of the principal aims of this paper is to eliminate single-
particle momentum-space creation and annihilation opera-
tors, with definite momentum, in favor of more general
Green functions for the field. This should lead to a more
generally applicable theory and also a new calculational
scheme which makes contact with quantum electrodynamics
and all of the accumulated wisdom therein. To do so it is
helpful to first establish a more direct correspondence be-
tween the canonical approach of plane wave expansions and
creation-annihilation operators, and the covariant operator
approach@4# in a way which is conducive to generalization
@3#. Finally, the finite speed of light is also an issue which
has been previously ignored and an appreciation of its con-
sequences is forthcoming. One cannot exclude the possibility
that extreme astrophysical quantum-light sources would re-
quire a fully relativistically covariant analysis@5#.

It was shown in Ref.@6# that quadrature-squeezed states
are related to the coherent states~a vacuum or quasivacuum
in the presence of a source! by a unitary transformation in
the space of the relevant canonical pairp,q. The case most
often considered in connection with sub-Poissonian statistics
is that of number squeezing in creation-annihilation operator
~occupation number! space. There one finds that an effective
action or Hamiltonian for stable-squeezed states involves the
combinationsa†a, a2, and (a†)2. Converting these Fourier
transformed expressions into configuration space, it is found
that the latter two terms correspond to interactions of the
formF(x)F(2x), for all x, which appears to be unphysical:
an interaction betweent and2t violates causality and has no
invariant meaning~since it singles out a special origin!; simi-
larly, an interaction between two pointsx andx8 singles out
a special point on each spacelike cross section of the field
and implies a notion of absolute simultaneity which is for-
bidden in special relativity, owing to the finite speed of light.
It is, therefore clear that terms such asa2 and (a†)2 are
idealizations valid over small aparati. Moreover, the identi-
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fication of a special origin in spacetime is a highly special-
ized case, the true meaning of the selection of a special point
is that one requires a notion ofinhomogeneityor loss of
translational invariance in space and/or time so that at any
arbitrary position one can discuss a distribution of events
around that position. This reasoning makes the formalism of
paper I immediately interesting.

A study of inhomogeneous systems, avoiding free-field
perturbation theory, requires a theory of nonlinear, nonlocal
fields with complex dispersion relations.~The formal appa-
ratus required to begin a discussion of such systems requires
a certain initial patience on the part of the reader, but the
benefits of the fully covariant approach are well worth the
effort. This paper will also serve to clarify the relationship to
more traditional canonical field theory.! Such a theory was
discussed in paper I for a single-component bosonic field. A
real space description of squeezing was previously given in
Ref. @7#, but these authors neglect the possibility of nonlinear
effects such as hysteresis and do not explore the dynamical
aspect presented in this paper.

Clearly the radiation field is a vector quantity which de-
serves a fully covariant treatment; in keeping with the litera-
ture, we shall consider mostly a single polarization~a real
scalar field! in the present work, and a full vector field theory
will be given elsewhere. A brief summary of the radiation
field is given in the final section. The present results are not
especially confined to the radiation field, but are confined to
any bosonic field, and the straightforward generalization to
fermions can be expected to lead to an improved description
of relativistic system such as the free electron laser@8#. Re-
cent experiments on trapped ions may also be modeled by a
real bosonic field interacting with a harmonic potential@9#.

The outline of this paper is as follows. In Sec. II, an
approximate implementation of a creation-annihilation for-
malism for inhomogeneous field theory in slowly varying
external potentials is presented. The aim of this section is
mainly to serve as a bridge between the general spacetime
approach of paper I and methods which are in widespread
use. Section III presents a clarification of the notions of mo-
mentum and position for single-particle excitations of inho-
mogeneous quantum fields, and motivates the introduction of
a phase-space connection. Section IV discusses the issue of
squeezing of the Fourier decomposition of a quantum field in
an inhomogeneous background. This is often the case which
is more closely associated with experiments. The message of
this analysis is that monochromatic squeezing is a physical
impossibility owing to the finiteness of systems, either due to
boundary conditions or ultimately due to the finite speed of
communication signals imposed by special relativity. Section
V shows how the foregoing results can be obtained in a
spacetime formulation, avoiding the approximate notions of
Sec. II and finds the width of the spectral distribution for
squeezed states. The time evolution of squeezed states,
viewed as a nonequilibrium quantum field, is presented for
both the real scalar field~neutral atoms! and in Sec. VI for
the electromagnetic field. Finally, some order of magnitude
estimates of the importance of the corrections described in
this paper are presented in Sec. VII.

II. OSCILLATOR STATES

As a first step towards a nonlocal, inhomogeneous theory
in whicha anda† are absent, one must establish the meaning

of a number of conventional relations in terms of inhomoge-
neous, nonlocal oscillator states. These are a first order per-
turbation of the pure momentum-space objects, and serve as
a temporary bridge between the canonical creation-
annihilation formalism and the fully covariant inhomoge-
neous case. We begin, therefore, by retracing some features
of the discussion for the bosonic Klein-Gordon field in paper
I in terms of creation and annihilation operators for a field
satisfying a complex dispersion relation.

The real scalar fieldF(x) satisfies an equation of motion
of the form

~2h1Am]m1B!F~x!1E dVx8C~x,x8!F~x8!50 ~1!

for some real source termsA,B,C. The sources may be
thought of as a phenomenological interaction with matter,
the details of which are to be specified for each model. An
inhomogeneous system is characterized by aC(x,x8) which
is not translationally invariant, i.e.,C5C(x2x8,x1x8) the
source conceals a dependence on an average positionx̄ with
respect to some origin. The following notation is used for
symmetric and antisymmetric objects, and all conventions
follow those in paper I:

x̄5
1

2
~x1x8!,

x̃5
1

2
~x2x8!. ~2!

The translational noninvariance of the sourceC implies that
the field is a nonlocal object, depending not only onx but on
neighboring positions within a radius which is governed by
the behavior ofC(x,x8). In such a system, a conventional
momentum-space expansion is not possible. However, lo-
cally, about a pointx̄, one may establish momentum coordi-
nates through the partial Fourier transform.

The scalar product of any two functions of only positive
frequency is given by@10#

~ f a , f b!5E dsm@ f a
† i ~]m f b!2 i ~]m f a

† ! f b#, ~3!

where

f a~x!5E dnk

~2p!n
u~k0!d~2k0

21v2!eikx f̃ a~k! ~4!

which satifies the dispersion relation,2k0
21v250. The

mode decomposition of a real scalar fieldF(x) may be writ-
ten

F~x!5E dnk

~2p!n
u~k0!d~2k0

21v2!

3@a~k,x!eikx1a†~k,x!e2 ikx# ~5!

5E ~dk!

2uvu @a~k,x!eikx1a†~k,x!e2 ikx#, ~6!
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where (dk)[dn21k/(2p)n21 and exp(ikx) is a short hand
for exp@i(kx2vt)#. In the limit of plane waves, the creation
and annihilation operatorsa†,a are independent ofx. One
may envisage theirx dependence as a measure of the inap-
propriateness of a plane-wave expansion of the field. The
reality of the field is secured by the relation
a†(k,x)5a(2k,x), provided the frequenciesv are real. If
v is a complex quantity, as is the case for systems off equi-
librium, then one must write

F~x!5E ~dk!H a~k,x!

2v~k,x!
eikx1

a†~k,x!

2v* ~k,x!
e2 ikxJ , ~7!

so that the reality of the field requires

S a~k,x!

2v~k,x! D *5S a~2k,x!

2v~2k,x! D . ~8!

The two terms of positive and negative frequency in Eq.
~4! may also be denoted byF(x)5F (1)1F (2) indicating
the annihilation and creation parts in real space. Their or-
thogonality properties can be investigated by computing
(F (1),F (1)) and (F (1),F (2)):

~F~2 !,F~1 !!52 i E dn21x~dk!~dp!

3S a~p,x!

2v~p,x!
eipx] tJ

a~k,x!

2v~k,x! Deikx. ~9!

In the usual case whereA andv are independent ofx, it is
possible to integrate exp@i(p1k)x# to obtain ad function
d(p1k). This secures the immediate vanishing of Eq.~9!,
which indicates the mutual orthogonality of the positive and
negative frequency parts of the field. However, we are inter-
ested in nontrivialx dependence, and it is clear that the in-
tegral overx is not ad function if the exponential is modu-
lated by anx-dependent coefficient. In the case above, this
makes no difference since the integral vanishes by the sym-
metry of the factors. However, this issue raises its head at
several stages in the discussion and it is useful to deal with it
now. There are three possibilities for inhomogeneous sys-
tems:~i! thex dependence ofa(k,x) is so slow that it can be
ignored so that one still obtains ad function by approxima-
tion, ~ii ! a and a† do not depend on the pointx but on a
neighboring point, nonlocally detached fromx; this also re-
sults in ad function, assuming thex dependence is ‘‘slow
enough,’’ and~iii ! thex dependence is strong and cannot be
ignored.

The second of these points is somewhat vaguely stated. Its
precise meaning acquires a firmer footing in the Green func-
tion approach of paper I, in which one works entirely in
terms of two-point functions. One writes

F~x!5E ~dk!H a~k,x̄!

2v~k,x̄!
eikx1

a†~k,x̄!

2v* ~k,x̄!
e2 ikxJ ,

~10!

which compares to Eq.~7!. In the third, most general case,
the x dependence is not ignorable and a modification of the
d-function result is inevitable. In this case one must ask what

sort of x dependence is physically acceptable. The
d-function property arises in the even part of the smallk
expansion of the exponential

E dn21x

~2p!n21e
ik–xf ~x,k!;d~k! ~11!

and finite behavior is only secured because the odd part van-
ishes in the limits. However, even a small modulating func-
tion which is odd inx can destroy this property and lead to
divergent behavior. Thus, provided the function which
modulates the exponential is even inx, the integral trans-
forms smoothly into ad function with no divergences. In
general, one has to deal with the issue of quantum interfer-
ence through a convolution: for instance,

D~k!5E ~dx!eikxf ~k,x!

5E ~dx!~dp!ei ~k1p!xf ~k!g~p!5 f ~k!g~2k!,

~12!

which illustrates the conection between nonlocality in mo-
mentum space and the inhomogeneities in configuration
space for future reference.

The expansion of the field in terms of creation and anni-
hilation operatorsa† and a is only possible~or even plau-
sible! in an approximation in which the inhomogeneities are
sufficiently weak to make thed-function assumption an ap-
proximately valid one. In general, something much more
~colloquially! ‘‘coherent’’ occurs and one must deal with the
field as an entity as in paper I. Proceeding on the assumption
that thed-function approximation is indeed valid, we obtain

~F~1 !,F~1 !!5E ~dk!
e2Im~v!t

4uvu2

3S a†aFv1 i
] ta

a
2 i

] tv

v G1c.c.D , ~13!

where we again assume the slowness ofv as a function of
time. For real frequencies~in the absence of dissipation or
amplification!, one may write this in the form

~F~1 !,F~1 !!5E ~dk!@N~k,x̄!1R~k,x̄!#, ~14!

where

N~k,x̄!5a†~k,x!a~k,x8!, ~15!

R~k,x̄!5
1

2uvu ~a†] ta2a] ta
†!, ~16!

which represent the number of particles at the average posi-
tion x̄ and the flux of particles created or destroyed, respec-
tively, over the intervalx2x8. Note that, as thed-function
approximation becomes poor, thed function broadens to a
finite width and one hasa†(k)a(k8), i.e., particles created
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with one-momentum and returned to the vacuum with an-
other, indicating dissipative or antidissipative scattering from
the sources.

The same effect is seen for complex frequencies in Eq.
~13! where the imaginary part Im„v(k,x)… leads to absorp-
tion or amplification of the total particle number with mo-
mentumk at spacetime locationx. It is interesting to observe
the analogue of the covariant derivative from paper I, in the
above expressions:

iv→ iv1
] ta

a
2

] tv

v
,

iv*→ iv*2
] ta

†

a†
1

] tv*

v*
, ~17!

wherea21 represents the inverse ofa. In paper I, thea,a†

terms were represented by the gradient of a number operator
~actually, its ensemble average, the Wigner function!. This
occurs due to the nonlocality of the inhomogeneous field
over a spacing of the orderx̃;x2x8, where one notes that

]̃m„a
†~ x̄2 x̃!a~ x̄1 x̃!…

a†~ x̄2 x̃!a~ x̄1 x̃!
[

]mN~k,x̄!

N~k,x̄!
5

]ma

a
2

]ma
†

a†
.

~18!

That the ensemble average of the nonlocal number operator
in Eq. ~15! is related to the Wigner functionf ( x̄,k), is clear
from

$F~x!,F~x8!%5E ~dk!

2uvu
eik~x2x8!@112 f ~k,x̄!#. ~19!

It now seems clear that the nonlocal generalization of the
commutation relations fora,a† must be given by

@a~k,x!,a†~k,x8!#5~2p!n212v~k,x̄!d~k2k8! ~20!

for real frequencies and by

v* ~ x̄!a~k,x!a†~k,x8!2v~ x̄!a†~k,x8!a~k,x!

5~2p!n212uv~k,x̄!u2d~k2k8! ~21!

for complex frequencies. To show these one need the inver-
sion formulas for the creation-annihilation operators. For real
frequencies and homogeneous fields, one has the relations

1

~2p!n21

1

2v
a†a52E dsmF~2 !i ]m

JF~x!,

1

~2p!n21

1

2v
aa†5E dsmF~1 !i ]m

J F~x!. ~22!

In inhomogeneous fields, complex case one simply replaces
the partial derivative by its covariant analogue,
]m→Dm5]m1ām , where

ām5
]mv

v
2

]ma

a
1~]mkn!xn, ~23!

where all operators are evaluated at~k,x!, so that

E ~dk!

2uvu2
v~ x̄!a~k,x8!†a~k8,x!52E dsmF~2 !iDm

JF~x!,

E ~dk!

2uvu2
v* ~ x̄!a~k8,x!a~k,x8!†5E dsmF~1 !iDm

JF~x!.

~24!

One should now check thatN(k,x̄) has the property of a
number operator. This is confirmed through the relations

@N~k,x̄!,a†~k,x!#5a†~k,x!, ~25!

@N~k,x̄!,a~k,x8!#52a~k,x8!, ~26!

from which one derives

N~k,x̄!a†~k,x!un~k,x!&5@N~k,x̄!11#un~k,x!&, ~27!

N~k,x̄!a~k,x8!un~k,x8!&5@N~k,x̄!21#un~k,x8!&.
~28!

These relations hold also for complex frequencies, since the
commutation relations have the same structure in the real and
complex cases. Finally, when the ensemble average over oc-
cupation number statesun(k,x)& is introduced, for a given
density matrix, one has

Tr^rN~k,x̄!&5 f „uv~k,x̄!u,x̄…, ~29!

since the occupation number states satisfy

^nun8&5^0ua†~k,x!a~k8,x8!u0&

5^0u@a†~k,x!,a~k,x8!#u0&

5~2p!n212v~k,x̄!d~k2k8!, ~30!

and thus

^n8~k8,x8!uN~k,x̄!un~k,x!& ~31!

or, inserting the trace over the statistical ensemble,

Tr^n8~k8,x8!urN~k,x̄!un~k,x!&

5Tr„rn~k,x̄!…^nun8&5Tr„rn~k,x̄!…^nun8&

5 f „uv~k,x̄!u,x̄…^nun8&. ~32!

To summarize this section, one finds that conventional
notions of particles with definite momentum can be general-
ized to inhomogeneous systems by adopting an adiabatic ap-
proximation,. In this approximation, we make contact with
the Wigner function and number operators in their more fa-
miliar forms. To exceed this approximation, however, we
must deal with the field variables directly.

III. POSITION AND MOMENTUM

Having rewritten the nearly local limit of an inhomoge-
neous, nonlocal field theory in terms of familiar canonical
quantities, the next step is to determine the meaning of po-
sition and momentum for excitations of the field in the pres-
ence of inhomogeneities. There are three distinct interpreta-
tions of position and momentum in a field theory and each
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pair satisfies canonical commutation relations.
Squeezed states of the field are characterized by the fact

that they minimize the uncertainty product

DqDp>
1

2
. ~33!

In order to discuss such minimal packets we need to estab-
lish the significance of each of the canonical pairs:~i!
@F(x),P(x8)#5 id(x,x8), which refers to the field as a dy-
namical entity and the minimality of zero-point fluctuations,
~ii ! @Q(k),P(k)]5 i , a canonical transformation of the com-
mutator for creation and annihilation operators in Eq.~20!,
which refers to minimality in occupation number space, and
~iii ! @x,p#5 i , which refers to the localizability of individual
one-particle observations of the field. This final case gives
rise to the relativistic version of the usual Heisenberg uncer-
tainty product for quantum mechanics. For the inhomoge-
neous field there is a fourth measure of position and momen-
tum which relates to the inhomogeneity scale and is closely
linked to the covariant connections for position and momen-
tum. This will emerge from the discussion of covariance. We
begin, therefore, with the third of these quantities.

Consider the normalized plane-wave one-particle eigen-
functions in the homogeneous system,f1(x)
51/ANexp(ikx), normalized by the inner product:

„f1~x,t !,f1~x8,t !…51,

2 i E dn21x

N @e2 ikx] tJe
ikx#51,

2Rev

N e22Imvs51, ~34!

where s is the spatial volume of the system. Thus,
N52Ree22Imvs corresponds to a single particle in the total
volume, N52Reve22Imv corresponds to one particle per
unit volume, and so on. In what follows, we shall simply
define the one-particle normalization to be

N152Re~v!s, ~35!

which corresponds to one particle in the total volume, in the
absence of dissipative or antidissipative processes.

In nonrelativistic quantum mechanics, one is used to the
notion that a differential realization of the momentum opera-
tor is given by p52 i ] and, similarly for the position
x52 i ]/]k. However, these differential operators do not
commute with the normalization factors and, therefore, do
not constitute Hermitian operators. They can be made Her-
mitian by introducing connectionsGx andGp , such that

x52 i
]

]k
1Gx ,

p52 i ]1Gp , ~36!

so that

~f1 ,xf1!5~xf1 ,f1!. ~37!

Symmetry under integration by parts implies that

Gx52
i

2

1

v

]v

]k
52

i

2

vg
v
, ~38!

wherevg is the group velocity of the total wave packet.
The connection for the momentum operator on these one-

particle waves is, by analogy

Gp52
i

2

]v

v
. ~39!

The connection for the position operator is well known from
relativistic quantum field theory@10,11#; the connection for
the momentum is new in the inhomogeneous system. Slight
modifications to the connections must be made for the full
quantum field. Here, one must deal with general superposi-
tions of wave functions which also~by necessity of relativ-
istic invariance! involve timelike variations. Quantum wave
packets must now satisfy the dispersion relation for the full
field, which is both spacetime dependent and highly nonlin-
ear.

The invariant inner product for the field, at a given point,
is

„F~x!,F~x!…52 i E dsm@F~x!,]mF~x!#

52 i E dsm@F~x!,Pm~x!#

51 ~40!

and

„F~x!,F~x!…5„F~1 !~x!,F~1 !~x!…1„F~2 !~x!,F~2 !~x!….
~41!

The expression for the momentum operator’s covariant con-
nection is, therefore, the previously introduced vector field
ām @see Eq.~23! and the final section of paper I#. To deter-
mine the modified connection for the position operator, one
considers„F (1)(x),F (1)(x)… in Eq. ~40!. A straightforward
repetition of the argument for one-particle wave functions
leads to the expression

Gx
m52

i

2 F2 ]

]km
Im~v!1

1

N

]N

]km
2Re

vg
m

v G
52

i

2 F2 ]

]km
Im~v!1Tm2Re

vg
m

v G . ~42!

This may be compared to Eq.~96! of paper I, where it arises
as a length scale of ‘‘inhomogeneity fluctuations’’Dx.

Since one is dealing with modified position and momen-
tum operators, it is pertinent to ask whether the commutation
relations are preserved by the introduction of covariant con-
nections. Writing

@xm,Dn#5 idn
m1Dn

m , ~43!

one has
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Dn
m5]mGxn2

]

]kn Gk
m , ~44!

whereGk
m5ām. This can be further rewritten in the form

Dn
m5F]m,

]

]knG~ f ,v, . . . !. ~45!

In other words, it is the commutator of the position and mo-
mentum derviatives acting on the complex frequency, the
Wigner function, and possible otherx-dependent quantities
~which arise in connection with dissipation and the density
matrix!. Thus, provided phase space contains no singulari-
ties,Dn

m must vanish. This has the physical implication that a
minimal uncertainty packet of the field can never violate the
well-known minimum Heisenberg uncertainty value.

In obtaining dispersion relations in paper I, we were led to
conclude that a natural length scale for the ‘‘granularity’’ of
the field, and the extent of position or momentum fluctua-
tions were given by

Lm5Pm
215 ]̄mH~k,x̄!, ~46!

D̄x5
1

H~k,x!

]H

]k
5Gx , ~47!

D̄p5
1

H~k,x!

]H

]x
5Gp , ~48!

where

^F~x!F~x8!&5E dnk

~2p!n
eik~x2x8!H~k,x̄!. ~49!

The length scaleL→0 in the homogeneous limit, indicating
an infinite resolution of the field or no inhomogeneity. This
also implies either granularity nor weak localization since
the corresponding momentum scale becomes infinite, leading
to a continuous spectrum of frequencies. The other two
scales represent an approximate measure of the degree of
localization about the average positionx̄ and the spread of
momentum uncertainty of a wave packet.D̄x vanishes when
the k dependence ofH(k,x) vanishes. This corresponds to
white-noise fluctuations of the field in the momentum~all
frequencies equally likely! as one would expect from the
usual uncertainty relation. In other words, as the system is
completely delocalized in the momentum~as a result of sta-
tistical and vacuum fluctuations!, the uncertainty in the cor-
responding position is minimized.k independence implies a
purely local limit.D̄p vanishes only when the system is com-
pletely homogeneous, or thex dependence vanishes. This
implies that all positions of a plane wave are equally likely,
since there is no potential to single out a special point. This
is also in accord with familiar ideas about uncertainty.

One should be wary not to confuse these approximate
measures of uncertainty with the more familiarDx5x2^x&
andDp5p2^p&. The scale in Eqs.~47! and ~48! refers di-
rectly to the connectionsGx andGp and represents statistical
and kinematical modifications to the minimum width of par-
ticle excitations in phase space, at given values ofk and x̄.

The functionH(k,x̄) summarizes the deviation of the dy-
namics from that for one-particle excitations, and these two
scales must be understood as additional uncertainties, on top
of those which appear in the conventional Heisenberg rela-
tion. Moreover, they do not satisfy a Heisenberg-type in-
equality themselves since thek dependence arises as a result
of statistical and vacuum fluctuations, whereas thex̄ depen-
dence arises as a result of dynamics~transport! and external
boundary conditions. The two dependences are related by a
Boltzmann-Vlasov-type equation, which we shall not discuss
here@12#.

x̄ encompasses, amongst other things, thermal broadening
of the noise in position localization:

D̄xm5
]

]km
S 11 f

2v D 2v

11 f

5S ~11 f !21
] f

]w
2
1

v D ]v

]km

52S b

ebv21
1
1

v D vgm , ~50!

where 1/f5exp(bv)21 and 11 f5ebv f andvg
m is the group

velocity of wave packets.
D̄p accounts for a contribution from thex̄ dependence, a

broadening of the momentum distribution due to the inhomo-
geneous distribution of the field. It is tempting to refer to this
as ‘‘inhomogeneous broadening.’’ This name is usually re-
served for Doppler broadening of frequency in gaseous mat-
ter, so we should be cautious in adopting such a name. In
fact, the two quantities are related. Since this term represents
a localized correction to the momentum of the field, induced
by a microscopic disequilibrium~not the averaged field!, it
has precisely the property of a generalized Doppler width.
Indeed,Dp is related to the rate of change of frequency due
to localized disequilibrium] tv/v. Thus, this fluke of no-
menclature is, for once, a lucky one.

IV. FOURIER MODES

The second definition of canonical variables arises in oc-
cupation number space, or the Fock space of the particle
creation-annihilation operatorsa†,a. Often in experiments it
is this Fourier decomposition of the field which can be mea-
sured. Here, one may define position and momentum vari-
ablesQ̂ and P̂ in such a way that the free-particle Hamil-
tonian takes on the appearance of an array of harmonic
oscillators in occupation number space. In discussions of
squeezed states of the radiation field, it is normally this pair
of operators to which one refers, not to the observable posi-
tion and momentum.Q̂ and P̂ are related toa†,a by @6#

a5
1

A2
S sQ̂1

i

s
P̂D ,

a†5
1

A2
S sQ̂2

i

s
P̂D , ~51!
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wheres5Av for an unperturbed oscillator array~free field!.
In general, one may regards as a squeezing parameter, re-
ducingQ̂ at the expense ofP̂ or vice versa. This may be seen
more clearly by inverting the relations

Q̂5
1

sA2
~a1a†!,

P̂5
s

iA2
~a2a†!, ~52!

so that the Hamiltonian

H~k!5 P̂21s4Q̂25s2a†a, ~53!

which is manifestly a harmonic oscillator for thekth mode,
with natural frequencys2. It can be noted that the transfor-
mation preserves the form of the commutation relation~20!:

@Q̂,P̂#52ivd~k2k8!~2p!n21. ~54!

Note that the commutator is independent ofs and thuss is a
kinematical symmetry of the system which preserves the
minimality of the uncertainty product

DQDP>
1

2
~55!

since, by the Schwarz inequality, any two operators satisfy-
ing @X,Y#5 iA also satisfyDXDY> 1

2A. For s.1 the posi-
tion DQ51/A2s is squeezed, and fors,1, the momentum
DP5 iAs/2 is squeezed. The structure of these relations is
unaffected by a functional dependence on the average posi-
tion x̄ and thus no immediate problems arise in connection
with inhomogeneous systems. As shown by Stoler@6#, the
unitary operator

Uz5expS 12 @za22z* ~a†!2# D ~56!

may be thought of as the exponentiated generator of this
symmetry, so that ifuF,k& is a minimal field configuration
~i.e., it saturates the uncertainty inequality in the kth mode!,
then so isUzuF,k&. Although this tells us nothing about
minimality in real space, it is related to squeezing of the
number distribution, or the issue of sub-Poissonian statistics
and is, therefore, of great interest in quantum optics.

The suitability of this operator as a symmetry generator is
not so straightforward for inhomogeneous systems and must
be reinvestigated. To do this one notes that minimal uncer-
tainty packets are eigenfunctions of the dimensionless opera-
tor @13,14#

M̂5
1

2g
~Q̂1 ig P̂!, ~57!

which is clearly equal to the annihilation operatora(k,x)
whens251/g. The eigenfunctions of this operator satisfy

M̂ uM &5lMuM &, ~58!

wherelM5(1/2g)^Q&1 ig^P&. When s251/g andM5a,
these are clearly the coherent states. The symmetry of the
commutator now suggests that all other minimal states might
be obtainable from the coherent states with the aid of a simi-
larity transformation. Let

M̂5J1a~k,x!1J2a
†~k,x!, ~59!

so that

J15
1

2 S 11s2g

sAg
D ,

J25
1

2 S 12s2g

sAg
D . ~60!

The argument for homogeneous systems now proceeds by
proving the relations@6#

UzaUz
215acoshuzu1a†e2 iargzsinhuzu,

Uza
†Uz

215a†coshuzu1aeiargzsinhuzu, ~61!

with the help of the formula

eABA2A5B1@A,B#1
1

2!
$A,@A,B#%••• ~62!

and by making the identificationJ15coshuzu, J25sinhuzu
and argz50. In evaluating Eq.~61! one uses the commutator
for a,a†. These formulas remain correct provided the cre-
ation and annihilation operators are all evaluated at the same
spacetime pointx̄. An approximation in which the derivative
is slowly varying can only be accomplished by assuming that
the operators are effectively independent ofx̄. However, this
is no hindrance and it simply reflects the essential locality of
each ‘‘domain’’ or ‘‘cell’’ of the field, which is labeled by
x̄.
Using the unitary operatorUz for realz we are, therefore,

able to generate all of the squeezed states

uM &5Uzua& ~63!

characterized by three real parameters: the real and imagi-
nary parts ofa andz. If a5nexp(iu), thenn is the occupa-
tion number of the coherent state andu is its phase. For
uzu→0 one obtains the coherent states.

The dynamical evolution of a minimal state, in momem-
tum space, is determined by

uM ,t&5exp~2 iHt !Uzua&. ~64!

One can ask what is the general form of a Hamiltonian which
preserves the minimality of a set states in the decomposition
of the quantum field? An evaluation of the transformed free
Hamiltonian leads to

UHU215v~a†a1 1
2 !12vcoshuzusinhuzu@a21~a†!2#.

~65!

Terms quadratic in the creation and annihilation operators
are, therefore, important here. Many authors refer to a
Hamiltonian with such an operator as a squeezed Hamil-

55 957QUANTUM FIELDS IN DISEQUILIBRIUM: SQUEEZED . . .



tonian, indicating that this is sufficient to obtain quadrature
squeezing@1,15#. This, however, is not, in the strictest sense,
well defined, since it violates locality of interactions~while
one may certainly write down such an interaction in Fourier
space, it is impossible to obtain such an operator through any
physical process!. In fact, that such a term can exist at all,
requires a notion of inhomogeneity such as is described in
this paper and its predecessor. To show this, and to obtain a
more satisfactory formulation, it is necessary to abandon the
particle approach and consider the quantum field as an entity
in real space.

In the local limit of the creation and annihilation operators
~the limit in which they are functions ofk only!, one may use
the inversion relation

a~k!52 i E ~dx!

2v~k!
@eikx]0JF~x!# ~66!

to show that a term of the forma2 in the momentum-space
action or Hamiltonian has the following form as a position-
space term in the action:

a25E ~dx!~dx8!dt$@]0F~x,t !#g~x,x8!@]0F~x8,t !#

1 iJ~x8,t !@]0F~x,t !#F~x8,t !1F~x,t !

3F~2x,t !d~x2x8!%. ~67!

Thus, the unitary operator involves the form

a22~a†!252i E ~dx!~dx8!dtJ~x8,t !@]0F~x,t !#, ~68!

which may be identified with the generally covariant form
fgm]mf from paper I, where it represented a phase current
in the internal space of the field. These expressions involve
integrals of the form

E ~dk!
exp@ ik~x1x8!#

v2 5g~x1x8!,

E ~dk!
exp@ ik~x1x8!#

v
5 iJ~x1x8!,

E ~dk!exp@ ik~x1x8!#5d~x1x8!. ~69!

Notice that Eq.~67! is highly nonlocal: in particular, the
latter term depends on diametrically opposed point in space.
Such a term cannot be supported for arbitrary spatial separa-
tions in a relativistic theory, owing to the finite speed of
communication imposed by special relativity. It represents
an instantaneous interaction over infinite distance. Moreover,
this expression singles out the arbitrary origin as a special
point and is, therefore, a special case, rather than a covariant
expression. It seems clear that the squeezing operator equa-
tion ~56! can only be an approximation, valid over small
separations. A correct starting point must involve a generally
covariant, nonlocal expression which contains an inhomoge-
neous potential. Without such a potential, no special points
in space can be singled out and the action or Hamiltonian can

never contain terms other thana†a. We begin again, there-
fore, with an action of the form

Ssq5E dVxdVx8$~D
g

mF!gmn~x,x8!@D
g

nF~x8!#

1F~x!gm~x,x8!@D
g

mF~x8!#2F~x8!gm~x,x8!

3@D
g

m8 F~x!#1F~x!A~x,x8!F~x8!%, ~70!

where the notation of paper I has been used:D
g

m[]m2Gm
g is

a derivative which commutes with the functiong(x,x8), etc.
One can now examine the form of this action in momen-

tum space and compare it to the idealized Hamiltonian in Eq.
~65!. Substituting Eq.~7! for F(x) and separating variables
into x̃ and x̄, one obtains

Ssq52ReE dVx̄~dk!~dp!
a~k,x̄!a~p,x̄!

v~k,x̄!v~p,x̄!vS p2k

2 D
3exp@ i ~p1k!x̄#H ~2kmpn2 ikmGg

n2 ipnGg
m1Gg

mGg
n!

3gmnS p2k

2
,x̄D12gmS p2k

2
,x̄D ~ ikm2Gm

g !

1AS p2k

2
,x̄D J . ~71!

Clearly, in the limit thatA,gm ,gmn become independent of
x̄, one can integrate overx̄, obtainingd(k1p) and subse-
quentlyp to obtain the usual local result

Sloc5E ~dk!

v~k!
a~k!a†~k!@gmn~k!kmkn12A~k!#. ~72!

Note that this purely local operator contains no squeezing
terms, thus an action or Hamiltonian which admits squeezed
solutions must necessarily be nonlocal.

To produce a term in Eq.~71! which reproduces the stan-
dard a2 terms as closely as possible, we require that the
functionsA„(p2k)/2,x̄… etc. be concentrated strongly about
p5k to counteract the tendency of the exponential to lead to
a d function ~imposingp52k). The functions or distribu-
tions must also lead to a well-behaved reverse Fourier trans-
form in order to lead to physically acceptable solutions.

This tendency of the interactions to turn an annihilation
operator into a creation operator~and vice versa! reflects the
ability of the medium to store and rechannel energy by
stimulated scattering. Instead of particles being created and
then destroyed, two quanta are created and two quanta are
destroyed as independent, but balanced, processes. Clearly,
this requires a very special physical environment; it also re-
quires a special functionA„(p2k)/2,x̄…. Clearly, thex̄ de-
pendence plays a crucial role in frustrating thed function, by
producing noise inx̄. In the absence of such noise, no func-
tion would survive thed function resulting from the expo-
nential. Perhaps, the simplest case is presented by a periodic
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function of x̄, such as would be generated by a periodic
pulsing or a periodic background potential. This provides a
connection between the formalism and the phenomenon of
antibunching of photons in sub-Poissonian light~see below!.
In either case, the importance of a spacetime inhomogeneity
is emphasized. Another possibility is a rapidly changing
function of x̄ such as one could find in a system far from
mechanical or thermal equilibrium.

While this property of the sources is important for the
description of squeezing, a more fundamental limitation
must be satisfied in order to preserve causality. The finite
speed of communication between spatially separated parts of
the system is imposed only if the nonlocal sources are the
Green functions of some mediating interaction. For example,
they will satisfy an equation of the form

@2h1M2~ x̄!#A~x,x8!5d~x2x!, ~73!

for somepositivemass-energy squared,M2>0. The precise
equation will be determined by the procedure described in
paper I, together with a knowledge of the microscopic inter-
actions of the field. We examine the effect of this assumption
more closely in Sec. VII.

Before presenting an improved formulation of the forego-
ing results, it is of special interest to consider the width of
field-intensity fluctuations,DN5N2^N&, since this is a
more readily observed quantity thanP andQ. The properties
of DN may be inferred from the true momentum of the field.
Following Schwinger@16#, we note that

^pm&5^~2 i ]m2Gpm!~F~1 !,F~1 !!&5 K E ~dk!Ñ~k,x̄!L ,
~74!

where Ñ5N(k,x̄)1R(k,x̄) @see Eq.~14!# and the angular
brackets represent the expectation value of a field operator
~see paper I!. The connected correlations of the momentum
operator are described by

^~pm2^pm&!~pn2^pn&!&

5^pmpn&2^pm&^pn&

5~2 i ]m2Gpm!~2 i ]n2Gpn!^~F~1 !,F~1 !!&

5E ~dk!~kmkn1 i ]mGpn!Ñ~k,x̄!. ~75!

This can also be interpreted as@16#

^Ñ~k,x̄!Ñ~k8,x̄!&2^Ñ~k,x̄!&^Ñ~k8,x̄!&

5dkk8@^Ñ~k,x̄!&1 i ]mGpn~kmkn8!21# ~76!

on extracting factors of the momentum. The integral over
momenta leads to a modification of the standard result for
the Poisson distribution of random particles

^Ñ2&2^Ñ&25^Ñ&1E ~dk!]mGpn~kmkn8!21. ~77!

As the x̄ dependence disappears,Ñ→N and the last term
involving the connectionGp vanishes, leaving the well-
known property of the Poisson distribution.

In the literature, it is common to specify the statistics of
the field by quoting the Mandel parameterQ or Fano number
f511Q @17#. The latter is obtained from the above by re-
arranging:

f5
^Ñ2&2^Ñ&2

^Ñ&
2D f , ~78!

whereD f ^Ñ& is defined to be equal to the last term in Eq.
~77!. This number is equal to unity for a Poisson distribution.
A number less than one indicates sub-Poisson statistics; a
number greater than one indicates super-Poisson statistics.
Here, one sees that the result of the inhomogeneous connec-
tion can lead to a ‘‘squeezing’’ of the field statistics.

It is worth noting from the discussion in this section that
the inhomogeneity of the field is required to explain both
anomalous statistics and notion of squeezed states. The fact
that a broad~periodic! x̄ distribution of the sources is re-
quired to satisfy the criteria for these explains the phenom-
enon of antibunching, or the tendency of source photons to
be distributed evenly in spacetime~the opposite of ad func-
tion!.

V. SPACETIME FORMULATION

We are now in a position to reformulate inhomogeneous
field theory and present all the preceding results in a compact
form, based on the quantum action principle@4#. This elimi-
nates not only the need for the localized creation or annihi-
lation operators, but also the introduction of a special
squeezing transformationU. The latter may now be under-
stood as a subclass of the usual finite unitary transformations
induced by the dynamics of the field.

In moving to a spacetime approach we open the door to
additional definitions of squeezing which describe the time
evolution of fields. Before examining these, we shall con-
sider the analogue of the momentum-space squeezing in Sec.
IV. We begin with a phenomenological action of the form

S5E dVxdVx8$„D
mf~x!…Tgmn~x,x8!„Dnf~x8!…

1f~x!A~x,x8!f~x8!1J~x!f~x!%, ~79!

where the superscriptT on the derivative indicates that the
sign of the connection term is reversed, and the sources
gmn(x,x8) andA(x,x8) are taken to be symmetrical in their
indices, and may also be split up into a local part and a
nonlocal part if desired.Dm is a derivative which commutes
with the sourcegmn(x,x8).

According to the quantum action principle, the variation
of any quantum transformation function~amplitude! is given
by

d^f8uf&5 i ^f8udSuf&. ~80!

From this relation one infers both the operator equations of
motion dS/df50, for dynamical variablesf and the gen-
erator of infinitesimal unitary transformationsG which is
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obtained from the total time dervitative indS. S is an action
symmetrized with respect to the kinematical derivatives of
the dynamical variables. From this, one obtains the variation
of any operatorA on the basisuf&

dA52 i @A,G#. ~81!

Applying this principle to the action in Eq.~79!, by varying
the action with respect tof(x), one obtains

dS5E dVxdVx8$2df~x!•2Dmgmn~x,x8!Dnf~x8!

12df~x!•A~x,x8!f~x8!1df•J%

1E dVxdsm@df~x!gmn~x,x8!Dnf~x8!#. ~82!

From this we infer the nonlocal field equation

E dVx8$2Dmgmn~x,x8!Dnf~x8!1A~x,x8!f~x8!%50,

~83!

which implies a nonlocal Hamiltonian of the form in Eq.
~65!, and generator of infinitesimal unitary transformations

G5E dVxdsm@df~x!gmn~x,x8!Dnf~x8!#. ~84!

The equal-time commutation relations are suitably modified
by the external interaction with the source, and follow di-
rectly from Eq.~81!:

Ff~x!,E dVx8gmn~x,x8!@Dnf~x8!#G5 id~x,x!n̂m .

~85!

The canonical choice for the unit vectorn̂m is m50, pointing
in a pure time direction. It is now clear that the generator
G leads to the unitary transformation matrix

U5exp~ iG ! ~86!

in infinitesimal form. The finite transformation can now be
compared to

U5expS 12 g@a22~a†!2# D
5expS i E dVxdsmgmn~x,x8!f~x!Dnf~x8! D , ~87!

which, referring to Eq.~56!, is seen to be of the same form as
the squeezing transformation. When applied to a coherent
state~displaced vacuum!,

uc&5expS i E dVxJF D u0&5exp@2~1/2!uJku2#
Jk
n

An!
un&,

~88!

this results in a squeeze. Thus, the squeezing transformation
is to be interpreted as simply one of a class of standard
unitary transformations on the field, in a field theory with an

inhomogeneous bilocal interaction. Note also thatfDmf has
the interpretation of an invariant probabilityP on the mani-
fold of positive energy solutions for the field, so that the
unitary transformation has the form of a weight

U;egP, ~89!

which acts on the mixture of states to which the transforma-
tion function in Eq.~80! refers. This will supply a relation
between the statistical distribution~density matrix or Wigner
function! and the unitary evolution of the field.

Although we have been seeking to eschew the notion of
creation-annihilation operators, it is useful to return to mo-
mentum space. In terms of this improved, fully covariant
derivation, we can now attempt to identify the true nature of
the idealized squeezing parameters in Eq. ~51!. Crudely
speaking, it is now a nonlocal quantity, depending on both
the momentumk and the inhomogeneity coordinatex̄ in its
Fourier-transformed form. One might also wonder whether
the resulting nonlocal transformation is even a symmetry of
the system any longer. In fact, the derivation above in terms
of the action principle demonstrates this unequivocally, but
we can also show the deviation from the well-known form in
Eq. ~61!, by assuming the adiabatic approximation and em-
ploying the inhomogeneous oscillator states. The symmetry
then rests on the idenitification of the transformed operator
Ua(k,x̄)U21 with M̂5J1a(k,x)1J2a

†(k,x). The trans-
formation is possible provided the coefficientsJ1 andJ2 are
expressible in terms of the symmetry parameter, and the re-
lation closes under the algebra ofa,a†.

Returning to momentum space, the true form of a permis-
sible squeezing transformation is nonlocal in the momentum

U~k!5expS 12E ~dk8!@a~k,x̄!g00~k,k8,x̄!a~k8,x̄!

2a†~k,x̄!g00* ~k,k8,x̄!a†~k8,x!# D . ~90!

Since the creation-annihilation operators commute except
when k5k8, one now finds@using the identity in Eq.~62!#
that

U~k!a~k,x̄!U~k!21

5a~k,x̄!coshS 12E ~dk8!g00~k,k8,x̄!~11dkk8! D
1e2 iargg00a†~k,x!

3sinhS 12E ~dk8!g00~k,k8,x̄!~11dkk8! D , ~91!

U~k!a†~k,x̄!U~k!21

5a†~k,x̄!coshS 12E ~dk8!g00~k,k8,x̄!~11dkk8! D
1eiargg00a~k,x̄!sinhS 12E ~dk8!g00~k,k8,x̄!~11dkk8! D ,

~92!
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where the hyperbolic sines and cosines are to be regarded as
abbreviations for their power-series expansions. Although
this formal expression cannot be evaluated any further with-
out more specific details, it clearly has the correct properties
to act as a unitary transformation, transforming any minimal
packet of the field into any other. The transformation is now
highly nonlinear. Moreover, one identifies the
k,x̄-dependent parameters by

1

2 S 11s2g

sAg
D 5coshS 12E ~dk8!g00~k,k8,x̄!~11dkk8!D ,

~93!

which reduces to the well-known result in Eq.~61! when
g00(k,k8,x̄)→uzud(k2k8) and argg0050. Rearranging this
formula, one finds an inevitably exponential average-time~or
space! dependence in the squeezing parameter,

s~k,x̄!5
2

Ag
expS 6

1

2E ~dk8!g00~k,k8,x̄!~11dkk8! D ,
~94!

such as is observed in the squeezing of trapped ions in a
recent experiment@9# by Meekhofet al. The specific nature
of this exponential variation depends on environmental fac-
tors ~boundary conditions!. Reference@9# does not provide
sufficient details for a more detailed comparison. Note that,
in this relativistic formulation, the squeezing parameter is a
position, time- and freqency-dependent quantity, which is
peaked sharply aroundk5k8. Only in an idealized system is
it possible to obtain pure mode squeezing. The width of the
distribution is determined by the width of the dipolelike driv-
ing forceg00(k,k8,x̄), which is, in turn, found from the dis-
persion relation for the interacting field~see Sec. VII!. An
order of magnitude estimate isDk5v/vg . The distribution
will be broadest when the dispersion relation of the field has
large gaps~an effective mass! in the energy spectrum. The
effect of this splitting of a monochromatic field into several
components is reminiscent of parametric down conversion
@18#. This frequency and spacetime dependence of the
squeezing will tend to lead to squeezing concentrated in spe-
cific areas of phase space, i.e., specific discrete momenta at
specific times and places, typically with an oscillatory char-
acter. This could be observed as a collapse and revival of
occupation numbers of a given frequency, or as standing
waves in space.

In addition to the Fourier space squeezing of Sec. IV,
there are three other nonzero commutators which can be used
to substantiate the notion of squeezing the field. We have the
usual equal-time commutators@x,p# and@f,P# and there is
the commutator of the positive and negative frequency parts
of the field @10,3# which is summarized by

@f~x!,f~x8!#5 iG̃~x,x8!, ~95!

where G̃(x,x8) is the commutator function, expressible as
the sum of the positive and negative frequency Wightman
functions@19#. This commutator vanishes on a spacelike hy-
persurface, i.e., in canonical language it only exists for caus-
ally connected fields at different times and is independent of
the statistical state of the system~though it does depend on

the rate of change of the statistical state!. It is initimately
connected with the time development of the quantum field.
This expression also illustrates the essential locality of the
squeezing, in spite of the fact that the quadratic interaction is
bilocal.

The case of@x,p# squeezing is no different from the dis-
cussion in Sec. III, so there is no need to repeat it here.
Squeezing of the zero-point fluctuations in the field and con-
jugate momentum can be presented in a real space form
without introducing the Fourier components as in Sec. IV. A
squeezing operator can be constructed in the usual way by
constructing variables

A65
1

A2
S sf~x!6

i

s
P~x! D , ~96!

such that

@A1 ,A2#5d~x,x8! ~97!

at equal times. The quadratic operator may now be written

U5PexpS E dVxg
0~A1

2 2A2
2 ! D , ~98!

which may also be written in the generally covariant form

U5PexpS E dVxg
mf~]mf! D . ~99!

This term also appeared in paper I as an off-diagonal source
term, which was directly related to the changing of the oc-
cupation number in different number states in momentum
space. Notice that the term, as presented, violates parity and
time-reversal invariance, but that the combined transforma-
tion of variables involves bothU andU21 so that parity is
preserved in any physical expectation values. We thus iden-
tify this source term as an operator which will squeeze mini-
mal states of the field. This makes an interesting connection
in the case of the electromagnetic field, as seen below. Be-
fore leaving this case, it may be noted that this operator is
not even bilocal: it serves as the generator of squeezings
even as a purely local quantity. This can be understood as
follows. Such a source term does not occur naturally in the
action of a physical theory. It violates parity and time-
reversal invariance and can, therefore, only arise as an ex-
pression of external boundary conditions. In paper I it was
shown that the coefficientgm was equivalent to the time
variation of the dispersion relation (Vm) and the time varia-
tion of the density matrix (Fm), indeed, all of these played
the role of a ‘‘gauge field’’ or chemical potential for the
quadratures of the real scalar field. Thus, while there is no
need for an inhomogeneity at the formal level, one should
understand that the physical origin of such a term is precisely
a result of the inhomogeneous~time-dependent! develop-
ment of the system. Such a term may be viewed as a renor-
malization of such an inhomogeneous system.

The unequal time commutator in Eq.~95! admits another
internal transformation of the field over a two-time interval.
The Schwarz inequality then implies that
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Df~x!Df~x8!>
1

2
^G̃~x,x8!&, ~100!

i.e., the fluctuation width in the field between any two times
is bounded by an expression which is independent of the
statef (k,x̄) of the system, but which can depend on the rate
of change off (k,x̄) and the spectrumv(k,x̄) away from
equilibrium. The width of these fluctuations is determined by
the spectral content of the field as 1/v(k,x̄). An increased
mass or gap in the spectrum typically damps the value of the
right-hand side~RHS! exponentially, instead of like a power
law; thus the tendency for fluctuations to increase over a
short time interval is reduced by the gap. The form of the gap
was derived in paper I and is given by
m21Ā(k,x̄)1(F2N)2, where Fm is the gradient of the
Wigner function andNm is the rate of expansion of a cavity
to which the field is confined. The form of this expression
indicates that rapid~nonadiabatic! changes in the occupation
numbers of particles in momentum states~nonequilibrium!,
or an decrease in the size of trap or cavity would tend to
increase the possibility for squeezing.

It is also possible to view Eq.~100! as two separate com-
mutators for the positive and negative frequency components
of the field. The relation

@f~1 !~x!,f~2 !~x8!#5 iG ~1 !~x,x8!

5E ~dk!

2v

~dk8!

2v8
@a~k!,a†~k8!#eikx1 ik8x8

~101!

shows that this is directly related to the squeezing expressed
in terms of a and a† in Sec. IV. To make the squeezing
explicit, we may introduce new real variables

a65
1

A2
S sf~x!6

1

s
f~x8! D ~102!

such that

@a1~x1 ,x2!,a2~x3 ,x4!#5C~x1 ,x2 ,x3 ,x4!, ~103!

and

@a1~x1 ,x2!,a2~x1 ,x2!#52 iG̃~x,x8!. ~104!

The corresponding operatorU can be constructed and repre-
sents the tendency of the field quadratures to be squeezed
dynamically over the time interval concerned:

U~x,x8!5PexpS i E
x

x8
dVxdVx8

3@a1
2 ~x1 ,x2!2a2

2 ~x1 ,x2!#g~x,x8! D
5PexpS i E

x

x8
dVxdVx8f~x!g~x,x8!f~x8! D ,

~105!

where g(x,x8) is introduced to make a causal connection
between the field atx andx8. It represents a ‘‘vacuum po-
larization’’ of the field. The squeezing transformation result-
ing from this operator is now

U~x,x8!a1~x,x8!U21~x8,x!

5E
x

x8
dVydVy8a1~y,y8!cosh@C~x,x8,y,y8!g~y,y8!#

1a2~y,y8!sinh@C~x,x8,y,y8!g~y,y8!#,

U~x,x8!a2~x,x8!U21~x8,x!

5E
x

x8
dVydVy8a2~y,y8!cosh@C~x,x8,y,y8!g~y,y8!#

1a1~y,y8!sinh@C~x,x8,y,y8!g~y,y8!#. ~106!

If the functiong(y,y8) is sharply peaked aty5y8, this trans-
formation has no squeezing effect. This reflects the need for
an inhomogeneity in the development of the system. This
transformation does not provide a sharp relationship between
the squeezed and nonsqueezed fields, rather there is a depen-
dence on the entire history of the field’s development. This is
equivalent to the finite width in momentum space in Eq.
~91!.

This transformation is simply a nonequilibrium perturba-
tion of the field. It is caused by a bilocal interaction and
represents a correlation between the field at different space-
time points. Such correlations are related to the notion of
off-diagonal long range order~ODLRO! or Bose-Einstein
condensation, and it is interesting to speculate on how per-
turbations might lead to squeezed states of motion in atomic
and ionic condensates.~Note: such long range phase corre-
lations, or global symmetry breaking, give the appearance of
nonlocal correlations in the field. This is to be understood as
a collective effect which in no way violates the assumption
of finite speed of communication.!

In summary: by describing every manifestation of squeez-
ing in terms of distinct noncommuting pairs, one gains an
insight into the necessity of time-dependent or inhomoge-
neous interactions from several different perspectives. Al-
though formally distinct, these different squeezings are all
related to one another and may be thought of as different
manifestations of the same phenomenon. The intimate rela-
tionship with the nonequilibrium development of the field
plays a central role in the squeezing of the modes.

VI. THE ELECTROMAGNETIC FIELD

The real scalar field has been used as the center point of
the discussion thus far. Scalar fields are the relevant variables
for atomic and some ionic systems and are more closely
related to the single-polarization models commonly dis-
cussed in the literature. The most important field, however,
from an experimental viewpoint, is the electromagnetic
~em! field. This case has been discussed in a real space for-
mulation in Ref.@7#, where the authors emphasize the impor-
tance of time-dependent interactions in optical media, but do
not properly discuss the effect of this inhomogeneity on the
field equations. In fact, it is a special property of Maxwell’s
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equations in 311 dimensions which makes them invariant
under inhomogeneity~conformal! transformations, so the
conclusions of Ref.@7# can be trusted in spite of the apparent
omission in their analysis. As a result, it would be superflu-
ous to reproduce their discussion, even though it takes a
different approach from the present paper. Instead, to round
off this discussion, the foregoing results are only summa-
rized for the specific case of the em field. The results of Ref.
@7# are not relativistically covariant, so we extend them and
write down generally covariant forms which encompass the
time-dependent behavior found in nonlinear media, such as
hysteresis. The electric and magnetic fields are really the
components of a rank-two tensor; in 311 dimensions they
happen to have the characteristics of a vector and a
pseudovector, respectively, while in 211 dimensions, the
magnetic field is a pseudoscalar. In covariant language, the
interconvertibility ofE andB in relativistic systems due to
relative motion are automatically accounted for. Such an in-
terchangeability is particularly important in relativistic sys-
tems such as the free electron laser.

To express Maxwell’s equations incovariant form, we
introduce the fieldsD andH and a tensorDmn , given by

Dmn~x,x8!5S 0 2D1 2D2 2D3

D1 0 H3 2H2

D2 2H3 0 H1

D3 H2 2H1 0

D ~107!

in 311 dimensions. We see that this tensor has the same
structure as

Fmn5]mAn2]nAm , ~108!

but with D replacingE andH replacingB. This tensor is a
nonlocal quantity since the polarization of the medium is a
nonlocal relation

P~ t !5E dtx~ t2t8!E. ~109!

In terms of this tensor, we can write the action

S5E dVxdVx8H 14Fmn~x!Dmn~x,x8!2JmAmd~x,x8!J .
~110!

The variation of the action is given by

dS5E dVxdVx8$2dAn]mDmn2JmdAm%

1E dVx8dsm$dAnDmn%50. ~111!

The continuity condition implies that the canonical momen-
tum is (m50)

Pm5D0m , ~112!

and that the condition for continuity across a surface dividing
two regions of space ism5 i divides into two cases:

DDi05DD50,

DDi j5DH50. ~113!

These are the well-known continuity conditions for the field
at a dielectric boundary and serve as a check on perhaps
unfamiliar formalism. From the surface term in the variation
of the action, we obtain the covariant form of the commuta-
tion relations for the field:

FAl~x!,E dVx9Dmn~x8,x9!G5 iglndm~x,x8!, ~114!

wheredm(x,x8) is thed function on a spacelike hypersurface
pointing in them direction andgmn here is the~local! space-
time metric. The canonical value form is zero. This commu-
tator can also be expressed in gauge-invariant form,

FFrl~x!,E dVx9Dmn~x8,x9!G5 i ]rglndm~x,x8!

2 i ]lgrndm~x,x8!,

~115!

so that the canonical limit, in 311 dimensions, gives

@B,D#5 i¹3d~x,x8!. ~116!

It is more useful though to use the dual of the field strength
Fmn to express this, since this gives a more accurate and
compact impression of which components are conjugate to
one another. It also makes transparent an algebraic step be-
low. Thus, in 311 dimensions one has

FFab* ,E dVx9Dmn~x8,x9!G5 1

2
iglneab

lr]rdm~x,x8!,

~117!

where the dual field strength in 311 dimensions is defined
by

Fab* 5
1

2
eabmnF

mn. ~118!

In 211 dimensions, one has

FFa* ,E dVx9Dmn~x8,x9!G5 1

2
iglneab

l ]bdm~x,x8!,

~119!

where the dual is given by

Fm*5
1

2
emnlF

nl. ~120!

We are now interested in constructing minimal uncertainty
states by forming combinations of these conjugate variables.
An important point to note here, which is sometimes pre-
sented in a misleading manner in the literature, is that the
coupling of sources to the electromagnetic field has the form

Sint5E dVxJ
mAm1E dVxdVx8J

mnDmn~x,x8!, ~121!
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i.e., currents couple to the vector potential and not to the
electric field. The termJmn behaves like an external ‘‘dipole
force’’ and is related to the atomic polarization or suscepti-
bility. This means that, rather than forming the combinations
B6 iD as in Ref.@7# ~which is a pseudovector in 311 di-
mensions, and cannot be generalized!, a cleaner and more
general form can be constructed using the scalar

a65s jmAm~x!6
i

sE dVx8 j
mnDnm~x,x8!, ~122!

wherej m is a conserved spacelike current andj mn is antisym-
metric. The construction of the transformation term now in-
volves the following forms, up to a gauge transformation:

a1
2 2a2

2 ; j mAm• j
abE dVx9Dba~x,x8!. ~123!

Now, from the relative orientation of the sources combined
with gauge invariance, one may write, in 211 dimensions,

j m j nl;u~x!emnl, ~124!

and in 311 dimensions one has

j m j nl;ur~x!emnlr. ~125!

This means that the Chern-Simons term,

SCS5
1

4E dVxdVx8u~x!emnlAmDnl~x,x8!, ~126!

can be regarded as a source term or driving force which
tends to squeeze minimal packets of the field in
(211!-dimensionalB, D space. Thus, squeezing of the Fou-
rier modes arises directly from the nonlocal susceptibility
x(x,x8) and permeabilitym(x,x8) contained inDmn(x,x8),
by analogy with Eqs.~79!–~92!. That the Chern-Simons term
tends to implement a symmetry transformation~squeezing!
might be expected since it is known to have no independent
dynamics of its own. This is interesting since the Chern-
Simons term is cited in connection with a number of physical
systems, most notably the quantum Hall effect. The above
result prompts immediate speculation as to whether squeezed
variables can be identified in these systems. The converse
speculation that photonic solitons might obey fractional sta-
tistics has also been proposed recently@20#. The Chern-
Simons term is the quantity analogous togmf(]mf) intro-
duced in paper I withgm as a ‘‘gauge field’’ or a chemical
potential for the field. This also lends credence to the view of
the Chern-Simons coefficient as a nonequilibrium parameter
in Refs.@21,22#.

VII. DISCUSSION OF THE INHOMOGENEOUS THEORY

The preceding sections present a detailed justification of
the way in which squeezing interactions result from the non-
equilibrium evolution of the quantum field. It is a ‘‘micro-
scopic’’ rather than a phenomenological description, involv-
ing Green functions and observable expectation values. In
this section we shall use the results to determine the magni-
tude of the corrections which can be expected to the single-
mode, idealized models presented in the literature.

There are two independent issues to be addressed:~i! the
corrections arising from the essentially inhomogeneous na-
ture of the interaction, and~ii ! corrections arising from a
proper observance of the laws of relativity and locality of
interactions. The first of these may be dealt with by compar-
ing the orders of magnitude of the frequency of radiation
with the frequency~or rate of change! of the time- or space-
dependent interaction causing the inhomogeneous develop-
ment. The latter might be the rate of change of a spatially
heterogeneous medium, or it might be the characteristic tran-
sition or hysteresis times of atoms with nonlinear suscepti-
bilities; the nature of the spacetime dependence has been
kept general in this paper. For simplicity we, shall assume
that all spacetime variations are harmonic~sinusoidal! in
time and talk about the frequency of the modulating inhomo-
geneityV.

The effect of the inhomogeneous corrections is twofold:
first, there is a shift in the frequency~timelike! or wave num-
ber ~spacelike!, and second, there is an effective mass or gap
in the classical dispersion relation. Since the frequency and
wave number corrections add or subtract directly from the
actual frequency of radiation, they give rise to a shift of each
mode. The sign of the shift depends upon the gradient of the
change in~i! the effective frequency found from the disper-
sion relation, and~ii ! the rate of change of the Wigner func-
tion or density matrix for the field. Thus, if a physical system
has a time-dependent interaction with a characteristic fre-
quency which is, say, one percent of the frequency of radia-
tion, then the shift can be expected to be maximally of this
same order, multiplied by a frequency-dependent exponential
damping factor. A similar argument holds for spatial gradi-
ents and the wave number, though the effect for spatial in-
homogeneity is smaller by a factor ofc. Some typical ex-
amples could include the modulation of atomic energies by
lightwaves~with typically 10 000 times longer wavelength!
leading to shifts of the order of 106–107 Hz at optical fre-
quencies, which is of the order of photon recoil energies@23#
and should be observable along with the Lamb shift@24#. For
nonlinear susceptibilities one would expect shifts on the or-
der of MHz and above at optical frequencies.

The effective mass may be estimated by using
\V;mc2, whereV is the rate of the time-dependent inter-
action. For optical frequencies and microwaves, the mass is
extremely small~around one thousandth of the electron rest
mass!, but for energetic x-ray time scales, it can clearly ap-
proach the electron rest mass. This may play a significant
role in free electron lasers.

The second of the distinct issues addressed here concerns
the finiteness of the speed of light in mediating explicit in-
teractions. In this paper we assume that the interaction term
in the action or Hamiltonian must be of a local form. Only
interactions which are in concord with special relativity are
permitted. The fact that such~bi!local interactions lead to
nonlocal correlations is well known and should not be con-
fused with the essential locality of the interaction terms. We
shall discuss this point further below. As derived in Sec. IV,
the extent to which squeezing can be realized in a two-
photon ~two-field! interaction depends on the spectral con-
tent of an interaction term of the form
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Sint5E dVxdVx8f~x!A~x,x8!f~x8!. ~127!

This depends on the nature of the interaction kernel
A(x,x8) in Fourier space, which, in turn, depends on the
details of the microscopic system being modeled. To answer
the question of the intrinsic width of participating modes
required for squeezing, we assume the following Lorentzian
form for this kernel:

A~x,x8!5E dnk

~2p!n
eik~x2x8!

1

k21M2~ x̄!
. ~128!

This form incorporates the assumption of limitedc. The ef-
fective massM( x̄) is possibly the inhomogeneous gap in the
dispersion relation for the waves. The boundary conditions
on this propagation kernel do not play a role in our analysis,
but one would clearly expect to restrict the sum to include
only causal times in the action@3#. Given the above form, we
can now transform to Fourier space. If one assumes that the
effective mass is independent ofx̄, implying a homogeneous
theory, then the action takes the form

Sint5E dnk

~2p!n
f~k!f~2k!

k21M2 . ~129!

The idealized form for the squeezing operator, used in the
literature,a22(a†)2 gives notf(k)f(2k) in the numerator,
but f(k)f(k), which is completely nonlocal and cannot be
generated by the givenA(x,x8) for anyM. However, if the
mass depends on the average position, one may reduce the
interaction term to the form

Sint5E dV x̄
dnk1

~2p!n
dnk2

~2p!n
ei ~k11k2!x̄

f~k1!f~k2!
1
4 ~k12k2!

21M2~ x̄!
.

~130!

The meaning of this term is most easily seen if we take the
inhomogeneity to be purely in time and express in even and
odd variables

Sint;E dx0E dn21kdv̄dṽ

~2p!n11 e22i v̄ x̄0
f~v̄1 k̃!f~v̄2 k̃!

~ k̃22ṽ2!1M2~ x̄0!
,

~131!

wherek̃5 1
2(k12k2), andk̄5 1

2(k11k2), and so on. It is now
seen that squeezing depends onv̄ being large compared to
ṽ. Thus, outgoing photons~fields! with identical frequency
profiles are squeezed best. The denominator ensures that the
interaction term always includes a finite width, however.
This is to do with the Lorentzian form and not to do with the
inhomogeneity. Another feature to observe in the above ex-
pression is that the denominator vanishes for on-shell~clas-
sical! photons and thus peaks sharply at this value. The in-
teraction looks most like the ideal squeezing interaction
when the variation of the Lorentzian is slow, however. Thus,
it is the flattest parts of the Lorentzian which are squeezed
most. This occurs~i! at resonance maxima and minima, and
~ii ! for highly nonclassical~off-shell! states. If one takes, as
an illustrative case, a harmonic inhomogeneity,M( t̄)

5Msin(t̄), then it is possible to evaluate the above integral
analytically. The specific expression is not particularly inter-
esting; the behavior of the result is no longer a sharp
d-function interaction at a single frequency, but a peak of
finite width with oscillating side bands~see Fig. 1!. It is also
interesting to note the asymmetry in the shape of the peaks
which arises from the finite limits on the integral overt. This
should be observable for strongly time-dependent interac-
tions in a finite cavity.

We may thus conclude from the above that a single-mode,
idealized model is a good approximation for strongly time-
dependent interactions: squeezing is maximal when the inter-
acting photons have similar frequency profiles and is maxi-
mal at a strong resonance, such as in a high-Q cavity. The
instrinsic line width is of the orderMc2/\ for MÞ0. Fi-
nally, the term ‘‘nonlocal’’ is often used in connection with
squeezing.

It be clear from the analysis in this paper that ‘‘nonlocal-
ity’’ in a relativistically covariant field theory is a derived
concept: squeezing is accomplished only through propagated
interactions which obey the theory of relativity.@The term
‘‘nonlocal’’ is sometimes used to refer to function with more
than one variable, such asA(x,x8), but here we mean faster
than light communication.# Since the wave packets have an
intrinsic width, there is a probable time delay in measure-
ment of the order 1/Dv between two photons or fields. The
inhomogeneity of the theory does not play a special role
here. Nonlocal correlations may indeed be observable~phase
correlations which move with the phase velocity, for in-
stance!, but no direct interaction~communication! is either
necessary or possible between points lying outside the light
cone.

VIII. SUMMARY

Squeezed states are conventionally explained as two-
particle emission and absorption processes in momentum
space, using a formalism of single-mode creation and de-
struction operators@18#. In this work, the notion of squeezing
is addressed from several related perspectives. A spacetime
approach is employed to elucidate the physical reason for
squeezing, in terms of nonequilibrium dynamics of the quan-
tum field. Momentum-space results are presented for their
relationship with experimental situations. Results are given
for the real scalar field~representing atoms and certain ionic
systems! and the electromagnetic field. The formally distinct
commutators of interest are~i! @x,p#, the true position and
momentum of one-particle excitations; these are modified in
the presence of spacetime-dependent interactions such as
those which generate squeezings;~ii ! @a,a†# and@Q,P#, the
single-mode quadratures of the field, related to antibunching,
intrinsically polychromatic with minimum width limited by
the weight 1/v; ~iii ! @f,P#, the canonical field variables
which express the same as~ii ! in real space, and make con-
tact with nonequilibrium, inhomogeneous field theory as de-
scribed in paper I; and finally~iv! @f(x),f(x8)#, the unequal
time commutator, which contains the dynamical evolution of
squeezed packets. All of these are expressions of the same
underlying dynamics, and merely reflect different aspects of
the evolution through alternative variables. The transforma-
tion operatorsU which squeeze minimal field configurations
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are best viewed in real space, and can be identified with
off-diagonal source terms, analogous to the Chern-Simons
terms in (211)-dimensional field theory through a change
of variables. The basic physical reason which underlies
squeezing is an inhomogeneous~time-dependent! interaction
of the field, expressed by nonlocal interactions~hysteresis
and electron recoil!. Environment and decoherence are in-
trinsic issues in squeezed systems. Two-particle creation pro-
cesses~down conversion, etc.! are the first term in a ‘‘non-
local source’’ expansion of the evolving density matrix
@12,3#. In spite of the apparent nonlocal appearance of
squeezing, it is shown here that it arises from purely local
interactions.

New in this paper is the covariant, unified picture of

squeezing; the relation to nonequilibrium field theory, and
the attention to finite speed of light and finite system size
~shorter coherence length!, leading to an intrinsic line width
and sidebands. The latter might well be an important issue in
solid state lasers, where spatial inhomogeneities are more
pronounced and coherence over many optical wavelengths is
perturbed by inhomogeneous structure in the medium@25#. It
could also be important in extremely relativistic systems
such as astrophysical sources and the free electron laser
where the degree of coherence is less acute@8#. The connec-
tion with off-diagonal long range order suggests that
squeezed velocity distributions might well characterize a
Bose-Einstein condensate formed in a trap, if the condensate
were formed rapidly enough.
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