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We study the full out-of-thermal-equilibrium dynamics of a relativistic classical scalar field through spon-
taneous symmetry breaking. In these circumstances we determine the evolution of the ensemble averages of the
correlation length and topological defect densities. This clarifies many aspects of the nonperturbative dynamics
of fields in symmetry-breaking phase transitions and allows us to comment on a quantitative basis on the
canonical pictures for topological defect formation and evolution. We also compare these results to those
obtained from the field evolution in the Hartree approximation or using the linearized theory. By doing so we
conclude about the regimes of validity of these approximations.@S0556-2821~96!05624-X#

PACS number~s!: 11.15.Tk, 11.27.1d, 11.30.Qc

I. INTRODUCTION

The formation of topological defects is a general conse-
quence of symmetry-breaking phase transitions in field theo-
ries with a topologically nontrivial vacuum manifold, both in
the early Universe@1,2#, and in a number of materials in the
laboratory@3–5#.

To date predictions of the number and distributions of
defects formed in these circumstances has relied on very
simplistic heuristic models where some qualitative aspects of
the phase transition are invoked, but where all dynamics is
sacrificed@6#. These are at the basis of large-scale simula-
tions of defect networks subsequently used to generate the
energy density perturbations responsible for the formation of
structure in the Universe@7#.

Recently, considerable effort has been devoted to the de-
velopment of more realistic defect formation scenarios based
on more sophisticated thermal arguments@8#, applicable in
the context of a second-order phase transition. These appear
consistent with the results of recent experiments in3He and
4He. Simultaneously the search for methods to follow the
approximate evolution of relativistic field theories in out of
equilibrium settings@9–11# has known a considerable im-
provement, made possible by the utilization of large-scale
computing facilities. The first attempts to account for the
number of defects formed in this context@12# also have been
developed.

In this paper we perform the first complete fully nonlinear
dynamical study of a relativistic classical theory out of ther-
mal equilibrium in a symmetry breaking phase transition. We
compute the time evolution of many quantities of interest,
such as the correlation length and the defect densities as well
as their dependence on the choice of initial conditions and on
the presence of external dissipation.

We then compare these results to other approaches found
recently in the literature. We will show by explicit computa-
tion of the time evolution for the zero densities of our field in
well-specified and illustrative circumstances. that both the
Hartree approximation and the linearized theory have differ-

ent merits in approximating the full classical evolution. By
virtue of this comparison we also learn, in a quantitative
manner, when they fail and, consequently, about the regimes
of their applicability.

The results of this paper raise many extremely interesting
new questions concerning the nonperturbative dynamics of
relativistic fields away from thermal equilibrium. Our
present methods rely heavily on the usage of extensive com-
putational facilities. Rather than openly trying to tackle some
of these new issues, the intention of the presentation below
will be a more modest one, restricted in its character to that
of reporting on the finds of a numerical experiment. A more
analytical approach must be sought in order to complete our
understanding, though, and it is our intention to expand on
our attempts in forthcoming publications. Nevertheless, we
believe the present results constitute considerable quantita-
tive progress on the usual canonical qualitative pictures of
defect formation and evolution.

This paper is organized as follows. In Sec. II we describe
the theoretical background for the field evolution. We dis-
cuss the field equations for the full classical evolution in the
presence of external dissipation, and our choice of initial
conditions, which for consistency we take to follow a classi-
cal Boltzmann distribution. We then describe two approxi-
mation schemes to the classical evolution, namely, the Har-
tree approximation and the linearized theory. In the latter
case we present the exact analytical evolution and Halperin’s
formula for the zero densities of the scalar field in a Gaussian
theory. We finish this section by describing briefly our nu-
merical procedure for the full classical evolution and the
computation of approximate statistical ensemble-averaged
quantities.

In Sec. III we present our results. We show the fully non-
equilibrium evolution of the scalar field correlation length as
well as its zero and defect densities. We show explicitly that
the latter can be counted at a given sensible field coarse-
graining scale, independently of the necessary ultraviolet
cutoff of our implementation. We also discuss the depen-
dence of these results on our choice of initial conditions. We
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then proceed to compare these zero densities to those ob-
tained from the Hartree approximation and the linearized
theory, and to draw conclusions about the regimes of their
applicability. Finally, we present the evolution of the defect
densities per correlation volume and seek to relate our results
to the qualitative canonical arguments for defect formation
and long-time evolution: the Kibble mechanism and scaling
conjectures.

In Sec. IV we summarize our most important results,
present our conclusions, and point to questions, raised by the
present work, which we intend to study in the near future.

II. THEORETICAL BACKGROUND

In what follows we will be concerned solely with the
evolution of aclassicalrelativistic field theory. The role of
quantum fluctuations on the evolution of our field is, there-
fore, simply neglected. This is done in the spirit of statistical
relativistic field theories, e.g.,@13#.

Our neglect of all quantum aspects should, however, con-
stitute an excellent approximation to the complete field dy-
namics at energies close to the phase transition temperature.
This is a nontrivial statement to quantify in general, but that
can be made precise by treating the presence of the nonlinear
term in the usual perturbative loop expansion. The funda-
mental difference between the thermal and the quantum loop
perturbative series then arises from the fact that the quantum
expansion is organized in terms of increasing powers of\
while the thermal one is proportional to powers of the tem-
peratureT51/b, made adimensional by appearing explicitly
in ratios with the mass scales in the theory. In the regime in
which the temperature to mass ratios are very large com-
pared to\, quantum fluctuations can be neglected safely
relative to their thermal equivalent. Another manifestation of
the quantum nature of a field theory is that the energy spec-
trum becomes discrete and, consequently, the thermal distri-
bution becomes Bose-Einstein instead of its classical Boltz-
mann form. Both classical and quantum distributions
coincide approximately for frequenciesv such that
\v/T!1, showing again that quantum manifestations
should become fundamental in the ultraviolet of the theory
and/or at low temperatures, as is well known. Both these
regimes are relatively unimportant for the studies presented
below and, given our choice of the initial field configura-
tions, may be probed only under extreme conditions in the
evolution or measurements performed over the deep ultravio-
let sector of the theory. We will not be concerned with these
regimes below and that, given the fundamental difficulties
inherent to a full quantum approach relative to the opportu-
nities offered by the classical theory, constitutes our best
justification for neglecting quantum fluctuations. Although
somewhat unsatisfactory, we believe this is in itself justifi-
able in view of the extremely interesting possibilities it per-
mits, especially in opening a window for probing nonpertur-
bative aspects of the field evolution at the phase transition. In
this section we will proceed to describe the details of our full
classical evolution as well as the basis for two approxima-
tions, the Hartree self-consistent evolution and the linearized
theory. We conclude this section by presenting the predic-
tions from the exact results possible in Gaussian theories and
discussing our numerical methods.

A. The classical theory

In what follows we will adopt the simplest collisional
model displaying topological defects, i.e., we will be dealing
with a classicallf4 scalar field theory in 111 dimensions.
In one spatial dimension, a Boltzmann distributed classical
field is always finite and, therefore, does not require renor-
malization @13#. This choice of spatial dimensionality also
allows us to guarantee, from a technical point of view, that
we will be able to evolve numerically a discretized dynami-
cal system with enough resolution on all scales and generate
a sufficiently large number of field realizations in order to be
able to compute true statistical ensemble-averaged quantities.
In one spatial dimension and in equilibrium, the Mermin-
Wagner theorem@14# states that there is no long-range order.
In this sense there is no phase transition as understood ca-
nonically in terms of thermodynamic quantities. In an out-of
equilibrium evolution such as ours, however, spontaneous
symmetry breaking certainly occurs, in the sense that the
field chooses locally in space to fall towards either of the
energetically equivalent minima. In what follows we, there-
fore, will continue to use the term symmetry breaking phase
transition in this sense. In any case, equilibrium in our evo-
lution, as will be clear by the end of this section, can be
strictly achieved only at zero temperature, where the
Mermin-Wagner theorem ceases to apply. Field theories in
higher spatial dimensions will be considered in a forthcom-
ing work @15#.

In order to trigger the transition, we set up initially a large
number of field configurations out of a canonical statistical
ensemble and, att50, destabilize the system by changing
instantaneously the sign and magnitude of the mass.

The evolution equations fort.0, then will be taken to be

~] t
22¹2!f2m2f1lf31hḟ50, ~2.1!

where l is the scalar self-coupling andm is the classical
mass. The dissipation coefficienth is included as we wish to
describe a system in the presence of additional degrees of
freedom. This is a necessary condition in order to justify the
use of a canonical thermal distribution of fields as our initial
conditions. Accordingly, the form of the evolution equations
can be obtained exactly if our system, the scalar field, is
assumed to be in contact with a much larger one, a thermal
bath of oscillators, coupled linearly tof. The result is a
Langevin system with a simple Markovian dissipation ker-
nel, characterized only by the constant value ofh, and a
noise term, where the two are related by the fluctuation-
dissipation theorem@16#. At zero bath temperature and in the
absence of quantum fluctuations, the system reduces to Eq.
~2.1!.

It is convenient and physically clarifying to consider the
rescaled system by redefining the time and space variables as
well as the field amplitudes as in

x→x/m, t→t/m, f→Al/mf, ~2.2!

to be

~] t
22¹2!f2f1f31h̃] tf50, ~2.3!

where
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h̃5h/m. ~2.4!

The new dissipation constanth̃ has a clear physical inter-
pretation. It is the ratio of the wavelength 1/m, for the mean
scalar field to the diffusion length, 1/h, of a free Brownian
particle in contact with the thermal bath. Whenever this ratio
is small, the diffusion length is large compared to the parti-
cle’s wavelength and the only collisional effects present in-
volve the interaction of the scalar field with itself. In the
converse limit the system is dominated by dissipative effects
to the bath and the dynamics obey essentially a diffusion
equation where the second derivative in Eq.~2.3! is negli-
gible relative to the first and as a consequence oscillations
and self-interactions play a secondary role.

The ratioh̃ is, therefore, our fundamental dynamical pa-
rameter. All other information about the system is encoded
in the initial field configurations. To specify these we assume
that, for t,0, the system will be described by a free-field
equation, with possibly a different mass parameterM ,

~] t
22¹2!f1M2f50, ~2.5!

in thermal equilibrium at a given temperature 1/b. Our goal
is to compute ensemble averages of several quantities
throughout the evolution. In order to achieve this we gener-
ate initially a large number of field configurations out of a
Boltzmann distributed statistical ensemble. This is, off
course, the classical canonical equilibrium distribution. The
probability density functional,P@f,P#, for the field and its
canonical conjugate momentumP5]f/]t will be given by

P@f,P#}e2bH[f,P] , ~2.6!

whereH is the free-field Hamiltonian

H@f,P#5
1

2E0
L

dxP2~x!1S ]f

]x
~x! D 21M2f2~x!,

~2.7!

whereL is the one-dimensional volume of our system, which
will be taken to be much larger than the mean correlation
length of the initial field configurationj51/m.

Since this is a Gaussian distribution, we need specify only
the mean value and variance for the field and its conjugate
momentum in order to characterize it. We do this most sim-
ply in Fourier space, where we have

^fk~0!&50, ^fk~0!f2k~0!&5
1

bLvk
2 ~2.8!

and

^Pk~0!&50, ^Pk~0!P2k~0!&5
1

bL
~2.9!

with the dispersion relation

vk5Ak21M2, uku5
2pn

L
, n50,1, . . . ,1`.

~2.10!

The same statistical field configuration could have been
obtained by driving a linear~i.e., free of self-interactions!

field to thermal equilibrium in contact with a reservoir at
temperature 1/b, using a Langevin evolution equation@13#.

In order to trigger the symmetry breaking transition, we
proceed, att50, to change instantaneouslyM2, in sign and
in magnitude, thus forcing the system to leave thermal equi-
librium and to evolve in a nonlinear way, according to Eq.
~2.1!. This is the simplest way of destabilizing the system
and has the advantage of analytical tractability in the sim-
plest cases. Because of this property it has been used exten-
sively in the literature @9,12#, where the instantaneous
change ofM2 is often referred to as aquench. In terms of
bulk thermodynamical quantities, it corresponds to a sudden
decrease in Pressure, or in the language of finite temperature
field theory, a decrease in the theory’s effective potential. It
is not clear to us, however, if such a triggering mechanism
has a natural implementation in the laboratory.1

In order to compute average quantities, we then evolve
numerically a large number of random field realizations out
of the statistical ensemble Eqs.~2.8! and ~2.9!, using Eq.
~2.1! and compute, at given time intervals, their mean values
over this set.

Before we proceed to present our results, we will describe
briefly two approximate schemes to the evolution described
above, the Hartree approximation and the linearized theory.
In the next section we will compare the results obtained by
these three different approaches.

B. The Hartree approximation

A widely used approximation scheme to the full approach
described in the previous section is the so called Hartree
self-consistent approximation@19#. Unlike the naive pertur-
bative expansion, it has the virtue of remaining stable
throughout the symmetry breaking transition. It is also fully
renormalizable in the case of quantum initial conditions
@10,11#. Because of these characteristics, the Hartree ap-
proximation has received quite a lot of attention in the recent
literature as a means of performing out-of-equilibrium com-
putations in various situations@10,11#.

As a drawback it describes a theory where all energy
transfers must be made through the mean-field and, as a con-
sequence, in situations when the field evolution involves im-
portant energy transfers among modes withkÞ0, it behaves
poorly. Our objective below will be to make the latter state-
ment more precise.

The Hartree approximation results from making the La-
grangian quadratic, by replacing the quartic term by an ex-
pression involving only the average value of the quadratic
field. More interestingly, it can be seen to arise as the first
order in a systematic perturbative expansion, in the param-
eter 1/N of an O(N) symmetric theory, see, e.g.,@11#.

Once this form for the Lagrangian density is assumed, the
corresponding evolution equations are required to be self-
consistent, in the sense that the zero separation two-point

1It is clear that this is not the mechanism of destabilizing the
theory in a cosmological context. Pressure quenches were used to
drive liquid 4He systems through a superfluid phase transition@3#,
but are thought to be accompanied by other energy loss mecha-
nisms.
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function computed at each step of the evolution is the same
one present in the effective Lagrangian, for the correspond-
ing time.

In practice this can be achieved by replacing the cubic
term in the Euler-Lagrange equation by

f3~ t,x!53^f2~ t !&f~ t,x!. ~2.11!

With this substitution the approximate evolution equations
now describe a Gaussian field with an effective time-
dependent mass. This allows us to compute easily the time-
dependent two-point functionW(x,x8,t,t8):

W~x,x8,t,t8!5^f~x,t !f~x8,t8!&

5 (
k52`

1`

Gk~ t,t8!eik~x2x8!, ~2.12!

where we chose to writeGk(t,t8) in terms of the usual posi-
tive and negative frequency modes,Uk

1(t) andUk
2(t), re-

spectively, as

Gk~ t,t8!5Uk
1~ t !Uk

2~ t8!1Uk
2~ t !Uk

1~ t8!. ~2.13!

These, in turn, obey the field evolution equations

F d2dt2 1k22m213l^f2~ t !&1h
d

dtGUk
6~ t !50. ~2.14!

The initial conditions Eq.~2.8! and~2.9!, also can be writ-
ten in terms of the positive and negative frequency modes
Uk

1(t) andUk
2(t). We obtain

Uk
6~ t50!5

1

vkA2bL
, U̇k

6~ t50!5
6 i

A2bL
. ~2.15!

For the Hartree scheme to be complete, we have to impose a
consistency equation, namely, that the mean-field taken in
Eq. ~2.14! be the same as the result obtained from two-point
correlation function calculated from Eq.~2.13!. This gives

^f2~ t !&52 (
k52`

1`

Uk
1~ t !Uk

2~ t !. ~2.16!

Equations~2.14! and ~2.16! together with the initial con-
ditions Eq.~2.15! constitute a well-posed initial value prob-
lem that can easily be solved numerically, for a discretized
set of momenta. Note that once we obtain the time-
dependent correlation function, we have at our disposal all
the information about the system since the Hartree approxi-
mation assumes implicitly a Gaussian distribution of fields.

Equation~2.14! shows that the Hartree approximation is
clearly collisionless as it describes the interactions of an in-
finite set of modes with a mean-field. As a result energy
transfer processes among the modes proceed without any ex-
change of momentum, necessarily through the mean-field.
The collisionless character of the Hartree approximation con-
stitutes its greatest weakness and will bring about substantial
differences to the behavior observed by evolving the scalar
field using Eq.~2.1!, as we will illustrate in the next section.

C. The linear approximation

More severely, one can neglect the interactions altogether
simply by removing the cubic term in the evolution from Eq.
~2.1!. This is necessarily an extremely crude approximation,
but has the merit of making it possible to predict, given an
initial Gaussian field configuration, all the relevant quantities
analytically. It also can be assumed~as it has been done
frequently in the literature, see@12#! that for certain param-
eter ranges the relevant evolution occurs in the period soon
after the field leaves equilibrium and starts descending to-
wards the minimum of the new potential. During this stage
the potential can, in fact, be approximated by an inverted
squared well, but as we will see later the nonlinear aspects of
the evolution will in well-defined circumstances be relevant
for the mechanism of defect production, altering substan-
tially their numbers.

Since the evolution is linear, the distribution of fields will
remain Gaussian for all times and we need to determine only
the two-point correlation function in order to have a full
description of the system. This can be done analytically, with
the positive and negative frequency modes being given by

Uk
1~ t !5

e2h/2t

A2bL
F 1vk

cosh~Vkt !1
i

Vk
S 12

ih

2vk
D sinh~Vkt !G ,

uku,kc ,
~2.17!

Uk
1~ t !5

e2h/2t

A2bL
F 1vk

cos~Vkt !1
i

Vk
S 12

ih

2vk
D sin~Vkt !G ,

uku.kc ,

with

Uk
25~Uk

1!* ,

where Vk5Auk22m22h2/4u and kc5Am21h2/4. Note
that, modulo the effect of the external dissipation that damps
all modes, the evolution is divided in the usual way between
exponential~for uku,kc) and oscillatory~for uku.kc).

D. Analytical results for the Gaussian theory—counting zeros
and defects

In the special case of the linearized evolution exact ana-
lytical predictions are possible, which constitute an excellent
test on our methods. These results are based on a well-known
computation, first derived by Halperin@17#. Given the
knowledge of the equal time two-point function and its spa-
tial derivatives, it allows us to calculate the average spatial
density of zeroŝn0&, in a Gaussian distribution of fields. In
one dimension Halperin’s formula becomes

^n0~ t !&5
1

p
AUW9~0,t !

W~0,t ! U, ~2.18!

where, by translational invariance,

W~x,x8,t !5W~ ux2x8u,t ![W~r ,t !. ~2.19!
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One of the simplest applications of this result is for the
case of a Boltzmann distribution of free quadratic fields,
which corresponds to our initial conditions. We then have
that our two-point function is explicitly time independent
and takes the form

W~x,x8!5
1

bL (
k52`

1`
1

vk
2e

ik~x2x8!, ~2.20!

on a discrete periodic lattice, withk andv obeying the dis-
persion relation Eq.~2.10!. When substituted in Eq.~2.18!
this gives

^n0&5
1

p
A(2`

` k2/vk
2

(2`
` 1/vk

2 . ~2.21!

It is clear that̂ n0&, given by Eq.~2.21!, diverges. Introduc-
ing an upper momentum cutoffL we have that this diver-
gence is of the form̂n0&;L1/2.2

Equation~2.18! can be extended easily to both the Hartree
and the linear evolutions, since in both cases the field distri-
butions remain Gaussian for all times. This fact allows us to
obtain a time-dependent zero density, which can be written
explicitly in terms of the propagating modes as

^n0~ t !&5
1

p
A(k52`

1` k2uUk
1~ t !u2

(k52`
1` uUk

1~ t !u2
. ~2.22!

As before the result diverges clearly. This can be seen from
the explicit analytical result, in the linear case, or numeri-
cally for the Hartree approximation. This divergence is a
consequence of the existence of too large a number of zeros
in arbitrarily small scales, too large in fact for the series in
Eq. ~2.22! to converge to a finite result. The number of zeros
that correspond to defects is, however, clearly independent
of the behavior of the field deep in the ultraviolet. In order to
measure the correct number of defects present in a given
field configuration with zero crossings on all scales, we,
therefore, must introduce a coarse-graining scale, which we,
naturally, will choose to be of the order@usually slightly
larger# than the size of a defect@18#. In one spatial dimension
there is an exact domain wall solution with a well-defined
width, given by 1/m.

When evolving the full nonlinear theory, we, thus, will
have to introduce two relevant scales. An upper momentum
cutoff L which is related to the number of modes chosen to
generate the initial conditions, and a coarse-graining scale, of
the order of 1/m, used for calculating the defect density. This
density then has to be shown explicitly not dependent on the
upper momentum cutoff. Given this cutoff scale, we also will
measure the zero density and compare it to the analytical
predictions both from the linear and Hartree approximations.

E. The numerical evolution

In order to perform the nonlinear out-of-equilibrium evo-
lution, we have used a 128-processor parallel computer. We

took advantage of this architecture to evolve in each proces-
sor a different random realization of the initial Boltzmann
distributed scalar field. For each one of these, we took the
initial ultraviolet cutoff to correspond to a wave number of
about 1000 and our spatial lattice to have 10625 sites. A
defect’s width was always resolved with more than 12 lattice
points. All quantities of interest were computed at given time
intervals by averaging over the ensemble.

To perform the numerical evolution, we used a second
order staggered leapfrog method. The corresponding set of
equations for the field and its conjugate momentum are

P~x,t11/2dt !5
12x

11x
P~x,t21/2dt !

1
dt

11x
@¹2f~x,t !1f~x,t !2f3~x,t !#,

~2.23!

f~x,t1dt !5f~x,t !1dtP~x,t11/2dt !, ~2.24!

wherex5h̃dt/2 anddt is the time step.
The initial conditions were generated in Fourier space us-

ing a normal distributed random number generator and then
converted to real space using a fast Fourier transform algo-
rithm. For each chosen time step we measured the average
density of zeros of the field~by looking at sign changes at
consecutive lattice points!, the average density of defects~by
counting the number of zeros in the coarse-grained field!,
and the correlation function. Using the correlation function,
we have calculated the correlation length which we defined
as the point at which the value of the correlation function,
normalized at zero spacing to be unity, goes below 1/e. This
also enables us to define defect and zero densities per corre-
lation length volume.

Several precautions should be taken in order to guarantee
a good accuracy of the results. The spatial step should be
small enough to resolve the defects and the time step should
obey the Courant condition

dt!dx,

where dx is the physical lattice spacing, in order for the
method to converge safely.

III. THE RESULTS

A. Testing our methods and exact analytical results
for the Gaussian theory

The simplest test we can perform on our procedure is to
measure the zero densities in our numerical evolution in the
special case ofl50 and compare the results to the exact
predictions of the linearized theory.

This involves several aspects of our numerical data.
Firstly, we want to test whether our randomly generated ini-
tial conditions reproduce faithfully an average field configu-
ration out of Boltzmann distribution and, in the affirmative
case, whether the numerical evolution in the simple case of
the linear theory coincides with the exact analytical results
derived in Secs. IIC and IID.

2For spatial dimensionD52, ^n0&;L2/ln(L). For D>3,
^n0&;LD.
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In order to do the latter, we must necessarily introduce an
ultraviolet momentum cutoffL. We note, however, that Hal-
perin’s formula is still applicable for a finite number of
modes, the exact result being given by Eq.~2.22! with finite
limits in the sum. Therefore the unavoidable introduction of
a cutoff should not be an obstacle to the numerical verifica-
tion of the analytical predictions. Before comparing the zero
density obtained from the numerical linear evolution to the
exact result, we must pay attention to one last technical com-
plication. When converting a finite set of amplitudes gener-
ated ink space tox space using the fast Fourier transform
algorithm, we are actually loosing resolution, in the sense of
field structure, in the smallest scales, which in turn can lead
to an underestimate of the number of zeros. We observed
explicitly this problem when transforming a generated field
configuration withN amplitudes in momentum space to a
grid with the same number of points in configuration space.
A simple way of overcoming this difficulty is to, for a cho-
senL, generate an extra number of modes of higher momen-
tum with zero amplitude and then transform this set tox
space. This corresponds basically to an increase in the num-
ber of points in real space~and, thus, in the spatial resolu-
tion!, while keeping a given momentum cutoff fixed. How
much precision we actually need then is decided by increas-
ing the number of extra modes with zero amplitude until the
average zero density converges to the analytical result for the
Boltzmann distribution, given by Eq.~2.23!. We were care-
ful to follow this procedure even when the comparison to the
linear results was unnecessary, in the case of the full classi-
cal evolution.

Having done this, we obtained an excellent agreement
between the initial conditions and their numerical evolution
and the exact analytical result, with a very small standard
deviation within our ensemble, represented by the error bars
in Fig. 1.

This also reassured us that the number of samples used in
our ensemble, 128 as mentioned above, is large enough for
us to obtain a good approximation to the exact ensemble
averaged quantities.

B. Nonlinear field and defect evolution

Having performed the tests of Sec. III A, we are now
ready to analyze the evolution of the field in the presence of
the nonlinear term. As mentioned before, the evolution re-
sults depend only on one dynamical parameterh̃ and on the
initial conditions which are specified completely by the val-
ues of the temperature, 1/b, and the massM . In what follows
we will assume the rescaled evolution of Eq.~2.3! and drop
tildes.

An example of the zero and defect density evolution is
shown in Fig. 2. As expected the density of the latter is
always smaller than that of the former and independent of
the chosen momentum cutoff. We also observe that for rea-
sonably dissipated systems, the defect and zero densities co-
incide for large times. The zero densities observed in the
coarse-grained Gaussian initial field should not be taken
strictly as defects, off course, as they lack the stability only
obtained at later times when the field truly settles down lo-
cally at either of the energetically equivalent minima.

The qualitative evolution of the field, in the aftermath of a
sudden quench, can be seen to follow two quite different
stages. Firstly, immediately after the quench, the negative
curvature of the potential near the origin gives rise to insta-
bilities in the fields, in the sense that if one neglects the cubic
term in the evolution, which is initially taken to be small
@becausê f2(t50)&!1, by construction# the modes with
momentumk,kc will evolve according to the exponential
forms of Eq.~2.17!. The corresponding exponential growth
distorts the original field configuration since the amplitudes
for the unstable modes grow much larger than their charac-
teristic value, typical of the thermal initial conditions, while
the remaining amplitudes stay approximately the same, but
for damping if dissipation is present. The result of this evo-
lution is a considerable deviation from the Boltzmann dis-
tributed initial field. This characteristic unstable behavior
suggests that it is a good working hypothesis to assume that
the field in this initial stage follows approximately the lin-

FIG. 1. Exact Linear evolution~solid line! and numerical evo-
lution ~data points! for the zero density in the free case. The error
bars denote the standard deviation from the mean, computed over
our ensemble of 128 realizations. FIG. 2. Evolution of the total zero density and that in the coarse-

grained field on the scale of the width of a defect forh50.05 and
initial conditions withM50.1,T50.005. For late times the coarse-
grained zeros can be identified as topological defects.
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earized evolution. We will check and confirm this conjecture
in what follows.

The instabilities shut down when the cubic term, in Eq.
~2.3!, grows large enough to compensate for the negative
sign of the mass. This is the beginning of the second stage of
the evolution, often referred to in the literature as reheating
since the field during this period tends again to a new maxi-
mum entropy configuration. The evolution at this stage is
completely nonlinear and inaccessible through the usage of a
weak-coupling perturbative expansion.

At the beginning of reheating, the fields are severely red
shifted relative to a thermal distribution and energy redistri-
bution among the modes must occur. As a result, in the ab-
sence of strong dissipation, the amplitude of the short wave-
length modes grows while that of the long wavelength modes
decreases. These two types of behavior are now not just
characteristic of modes with momentumk.kc and k,kc ,
respectively, since among the latter the amplitude also has
grown differentially, approximately with the exponential of
their characteristic frequency, Eq.~2.17!. As a result of this
flow of energy to smaller wavelengths, the field configura-
tions change to display much more structure on smaller
scales including those in which topological defects can be
produced. After the first burst of energy transfer to smaller
scales, the resulting field configurations involving large gra-
dients are unfavored energetically and the field evolves back
quickly to suppress them partially. This results in a series of
oscillations in typical quantities, such as the zero densities or
the correlation length, Fig. 3 and Fig. 8.

In the presence of external dissipation, forh nonzero, the
instabilities grow in an analogous way, soon after the
quench, but the process of energy redistribution or reheating
can be quite different. The presence of external dissipation,
as we discussed above, can be seen as resulting from the
existence of effective channels, i.e., modes of other fields,
which compete with those of the scalar field for the energy
transferred from its largest wavelength modes. The value of
h then determines the relative importance of these two types
of channels. This competition among scalar field and chan-

nels external to it turns out to be absolutely crucial for the
form of the evolution of the zero and defect densities.

Schematically, with our choice of parameters, forh51,
the system is always strongly dissipated and behaves much
like a field without self-interactions~albeit stable! that
freezes in very early. This can be seen clearly in the field
profiles of Fig. 4. The effective external channels, therefore,
dominate strongly over the scalar field self-interactions and
no signature of reheating, such as the creation of zeros or a
strong drop in correlation length, is observable.

For smaller values of the dissipation,h50.120.05, both
self-interactions and dissipation are important, acting on the
same kind of time scales. It is clear from our results that the
transfer of amplitude among the modes occurs at well-
defined stages of their oscillations. This is a subject of study
in its own right, which is beginning to receive much attention
in the context of the theory of reheating after a period of
inflationary expansion in the early Universe. Our objective in
this paper is not to tackle this question, but, in view of the
strong analogies between the two problems, to point out
merely that as a consequence of this behavior the creation of
zeros and defects at reheating proceeds by bursts. This is
visible in Fig. 5.

When zeros and defects are created in these bursts, the
dissipation~if not high enough! and the field self-interactions
are not sufficiently effective to suppress them immediately.
As the momentary production shuts off, however, both these
processes reduce the zero densities considerably. At the next
burst another large amount of small scale structure can be
created again, but smaller than that at the previous instance.
The field evolution then proceeds to dissipate it away and so
on. As a result of these two competing processes, the field
oscillates between having quite large amounts of structure on
small scales and having little, as both processes of creation
and dissipation seem to be most efficient after the converse
one has acted. These processes are clearly visible in the large
oscillations undergone by the correlation length and defect
densities. Profiles out of a field evolution in this dissipative
regime is shown in Fig. 6.

Finally, for small values of the dissipation coefficient,
h<0.01, the field is allowed to reach a favorable configura-

FIG. 3. Evolution of the zero density for different values ofh
and initial conditions withM50.1 andT50.005.

FIG. 4. Field profiles at different instants of the evolution for
h51 and initial conditions withM50.1 andT50.005. It is evident
that the field configuration is frozen in for the larger times.
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tion before the dissipation has any sizable effect. The zero
densities still oscillate in a similar fashion, but field ordering
in small scales now seems to be due to essentially the action
of the field self-interactions. For this same reason the densi-
ties for large times are much larger that those obtained under
the presence of larger dissipation. Its effect, if present at all,
is only to damp all modes for large times. Modes on smaller
scales are more strongly dissipated, though, due to the fact of
possessing a larger natural frequency. Snapshots of the field
out of a characteristic evolution under the effect of very
weak dissipation can be seen in the field profiles of Fig. 7.

Equivalently, the field evolution can be studied qualita-
tively by considering the time dependence of the correlation
length. Figure 8 shows the behavior of the correlation length
in time under the effect of several values of the external
dissipation.

It is clear that the correlation length increases in the first
quasilinear stage of the evolution, decreases at reheating and
increases again as the field organizes itself both via the effect

of its self-interactions and due to the action of the external
dissipation.

It is interesting to note, however, that the time evolution
of the correlation length for large times, after reheating,
seems to display quantitatively different time trends depend-
ing on whether the self-organization proceeds by essentially
the action of the scalar field self-interactions or results from
the effect of the external dissipation. This seems to result in
a linear time dependence in the first case and a well-known
diffusive behavior witht1/2 in the latter. This is illustrated in
Fig. 9, where it is also interesting to note that the slope of the
linear correlation length growth for small dissipation is about
0.1 of the speed of light.

This seems to suggest that the underlying field ordering
proceeds by the free propagation of a well-defined signal at a
fraction of the speed of light as is often suggested in quali-
tative scenarios for domain formation and growth.

It is, of course, also possible that the linear behavior ob-
served above will constitute merely a transient regime and

FIG. 5. The production of zeros at reheating and the mean-field
squared evolution. It is clear that zero production proceeds by
bursts.

FIG. 6. Field profiles at different instants of the evolution for
h50.1 and initial conditions withM50.1 andT50.005.

FIG. 7. Field profiles at different instants of the evolution for
h50.001 and initial conditions withM50.1 andT50.005. The
effects of reheating are clear from the comparison of the second
frame to the third.

FIG. 8. Time evolution of the correlation length forM50.1,
T50.005, and several values of the dissipationh.
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that the evolution of the correlation length actually follows
the same diffusive pattern, obtained under the effect of larger
dissipation, but on a much larger time scale. For even
smaller values ofh we observed the persistence of the linear
behavior, but with smaller slopes, showing that the external
dissipation is still playing a role in the field’s self-
organization.

We also tried to determine the influence of our choice of
initial conditions on the evolved defect densities. Initially,
for an average Boltzmann field in the continuum limit, the
spatial two-point correlation function has the exact form

^f~x!f~x8!&5p
T3

M
e2M ux2x8u. ~3.1!

This defines unambiguously the correlation length to be
j51/M . Different choices of initial conditions correspond-
ing to different massesM , therefore, lead to quite distinct
field configurations on given scales. Figure 10 shows the
defect density evolution for a choice of low dissipation,
h50.01, and three different initial masses.

The initial temperature was chosen so as to guarantee that
the field undergoes initial instabilities, i.e., so as to ensure
the effectiveness of the quench as the mechanism driving the
transition. The values chosen were such that
^f(t50)2&;0.1, in our original Boltzmann distributed field.
This results in small values of the temperature relative to the
mass scales, of the orderM /T;0.01–0.05. It should be
noted, however, that the initial zero and defect densities are
independent of this choice of temperature.

Given a choice ofM and the associated correlation length
j51/M , we expect, in rough terms, that the defect densities
will be larger for smallerj, as this is a qualitative indication
of more structure on smaller scales. This can be seen clearly
by comparing the initial magnitudes of the defect densities in
Fig. 10, for three different choices of initial correlation
lengths.

Figure 10 shows a much more striking fact, however. It is
clear that the number of defects produced at the phase tran-
sition is approximately independent of the initial densities
even when these differ by over an order of magnitude. This
is a clear indication of the importance of accounting cor-
rectly for the number of defects present at the time of reheat-
ing and not sooner. This observed independence of the
choice of initial defect densities is only characteristic of evo-
lutions under the effect of small or null dissipation as in
strongly dissipated systems reheating is, as we have seen
above, severely suppressed.

C. Comparison with the results from the linearized theory
and the Hartree approximation

In the previous section we presented and discussed the
results for the full classical evolution of Eq.~2.3!. In view of
their extensive application to nonequilibrium problems in the
literature, it is extremely interesting to analyze how particu-
lar approximations to this classical theory perform relative to
it.

In this subsection we compare briefly the results for the
zero density evolution given by the full classical evolution to
those obtained in the Hartree evolution and by considering
the free field given by the linearized theory.

Figure 11 and Fig. 12 show two examples of the zero-
density evolution computed in these three cases, and for rela-
tively low and high dissipation, respectively. The observed
difference between the zero densities given by the full clas-
sical evolution and those of the linear theory is quite simple
to understand. For largeh, as we discussed above, the effec-
tive channels present implicitly in the form of the dissipation
kernel, predominate over the scalar field self-interactions. As
a result, under large dissipation, the observed evolution for
the zero density is quite similar to that of a linear field,
following approximately the results obtained by replacing,
Eq. ~2.17! into the expression for the zero density of a
Gaussian theory, Eq.~2.18!. This procedure yields

FIG. 9. Long time evolution of the correlation length for initial
conditions withM50.1, T50.005, h50.01, andh50.05. For
the smaller of these values, the correlation length evolves linearly
with coefficient 0.1 whereas for the larger dissipation, it displays
approximately diffusive behavior.

FIG. 10. Defect density evolution for three different initial con-
ditions, with M51, T50.02, M50.1, T50.005, and M
50.001, T51.1025.
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^n~ t !&;1/~kct !
1/2. ~3.2!

Perhaps the most interesting feature of Eq.~3.2! is that it
constitutes a lower bound on the defect density obtained
from the classical theory, computed with the same initial
field configuration at the same instant in time, for an evolu-
tion with any givenh. This fact remains interesting only for
times that are not too large, since the field evolution under
high dissipation freezes quickly in with a definite number of
defects~see Fig. 5!, while Eq.~3.2! tends hopelessly to zero
densities as time increases. This discrepancy for large times
can be seen clearly in Fig. 13.

In contrast to the previous situation, for evolutions under
small external dissipation, the discrepancies between the
zero density computed from the full classical theory and the

linearized theory are quite dramatic at the time of reheating.
The reheating process is accompanied by the production of a
large number of zeros and defects that naturally go com-
pletely unaccounted for by the linear evolution. This is
clearly visible in Fig. 11.

The results obtained using the Hartree evolution also fail
to reproduce those of the full classical evolution, but in
somewhat the opposite way. At reheating the flow of energy
from the infrared to all other modes is very efficient in the
Hartree evolution. Whenh is small this indeed results in
essentially the same number of created zeros as in the full
evolution, as can be seen, e.g., in Fig. 11. The collisionless
character of the approximation, however, precludes the field
from ridding itself of high gradient configurations. This re-
sults in the fundamental difference between the Hartree and
the full evolution that, in the absence of dissipation, the num-
ber of zeros decreases in the latter, but remains approxi-
mately constant after creation in the former. For short times,
of the order of up tot520–30, the Hartree approximations,
therefore, yield a number of zeros always larger than the full
classical evolution. For larger times and for reasonably dis-
sipated systems (h>0.05), the fact that the Hartree approxi-
mation leads to field configurations with more structure on
small scales than the full evolution, implies that it can be
dissipated more efficiently. The end result is than after the
dissipation makes its effect noticeable, the zero density re-
sulting from the Hartree evolution is smaller than that of the
full theory. For sufficiently large times, such densities, nev-
ertheless, tend to a constant value thus freezing in, as in the
case of the full classical theory, unlike what happens in the
case of the linear evolution.

For evolutions under stronger dissipation and for rela-
tively short times, such as can be seen in Fig. 12, the dis-
crepancy between the Hartree and the full classical evolution
can be quite spectacular and the linear result turns out to
constitute a much better approximation. This is a clear con-
crete example in which the presence of a truncated set of

FIG. 11. The zero density given by the full classical, linearized,
and Hartree evolutions forh50.001 and initial conditions with
M50.1 andT50.005.

FIG. 12. The density of zeros given by the full classical, linear-
ized, and Hartree evolutions forh50.1 and initial conditions with
M50.1 andT50.005.

FIG. 13. The density of zeros given by the full classical, linear-
ized, and Hartree evolutions forh50.05 and initial conditions with
M50.1 andT5005.
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interactions actually leads to a much worse prediction than
what could be obtained much more simply from a trivial,
exactly solvable linear approximation.

D. Correlation volume defect densities, scaling,
and the Kibble mechanism

The evolution of the defect densities and of the field’s
correlation length are interesting in their own right. How-
ever, it is clear that they can constitute two different ways of
probing the same qualitative structure. Defects are associated
with sites of space where the field changes quickly between
its two distinct energetically equivalent minima and consti-
tute, therefore, regions where the field two-point correlation
decreases. For this very reason defect densities tell us statis-
tically how many areas of almost fully correlated field exist
in a given volume, allowing us to probe their mean charac-
teristic size. This is, in turn, clearly a measure of the corre-
lation length.

The defect densities per correlation length volumeVj

constitute, therefore, very interesting quantities, that lie at the
basis of fundamental conjectures for defect and domain for-
mation and evolution such as the Kibble mechanism and
scaling conjectures.

In Figs. 14 and 15 we plot these densities for two different
sets of initial conditions, with large and small initial correla-
tion length, respectively.

The Kibble mechanism invokes precisely the value of the
field’s correlation length in order to predict the defect density
produced at a symmetry breaking phase transition. The cor-
relation length is clearly a qualitative measure of the size of
the volume over which the field has only small amplitude
fluctuations. Defects on the other hand correspond to field
configurations that interpolate between the energetically in-
distinguishable minima and, therefore, should lie at the
boundaries of average correlated patches. At distances larger
than the correlation length, the field will be in either one of
these minima. The Kibble mechanism further assumes in
what is usually designated the geodesic rule that between

such uncorrelated regions, the continuous field should take
the shortest path over its vacuum manifold. This results in
the simple, but powerful prediction that between two corre-
lation volumes, in one spatial dimension, there will be a
defect or not with probability of 1/2. This is, naturally, the
predicted value for the correlation volume defect density.

Observing Figs. 14 and 15, it is quite striking to notice
that regardless of the value ofh and of the particular choice
of initial conditions, the defect densities obtained at reheat-
ing and, thereafter, are of the order of the prediction given by
the Kibble mechanism within a factor of about 10%.

During the stage of reheating, it is still quite apparent that
energy transfers between different scales are large and that
arguments based on local-energy minimization will be much
blurred by large fluctuations@20#. Consequently, it is more
interesting to investigate the behavior of the defect densities
for times sufficiently large that the system will have found
already an energy balance among all scales. Figure 16 shows
the evolution of the defects densities per correlation volume,
for two relatively close low values of dissipation,h50.05
and h50.01, and a larger time range. It is clear that the
correlation volume density of defects tends to a constant for
large times. This is evidence for the scaling behavior of the
domain wall network, i.e., for the fact that the number of
defects per correlation volume remains constant in time, ap-
proximately once reheating is complete.

This is an extremely powerful observation as it states that
thestatisticalevolution of a domain wall network is charac-
terized by one single length scale. According to this conjec-
ture, the domain wall network is self-similar after rescaling,
when in the scaling regime, and its statistical features can be
known at all times given the knowledge of the correlation
length. Figure 16 also shows clearly that, for the same value
of dissipation, but different initial conditions, the correlation
length defect densities for evolutions under small dissipation
result in the same large time defect densities. This is evi-
dence for the fact that the scaling densities are in these cir-
cumstances also independent of the initial conditions, chosen
at energies above the transition.

FIG. 14. The evolution of the defects densities per correlation
volume for several values ofh, for initial conditions withM50.1
andT50.005.

FIG. 15. The evolution of the defects densities per correlation
volume for several values ofh, for initial conditions withM51
andT50.02.
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Moreover, the value for the defect density in the scaling
regime, accepting the criterion of Sec. II E for determining
the correlation length, for the smaller dissipation parameter
in Fig. 16, is very close to that predicted by the Kibble
mechanism. In contrast, it is extremely interesting to notice
that for a slightly larger value ofh, the scaling defect density
is about 10% lower. This seems to indicate that the presence
of additional degrees of freedom that compete with those of
the scalar field for its energy, necessarily leads to scalar field
configurations with lower scaling defect densities.

For evolutions under stronger dissipation, the scaling re-
gime is of no particular interest, however, as it corresponds
to the trivial situation in which the field is frozen in and both
defect densities and correlation length become constant in
time. Both these remarks may have interesting realizations as
scenarios for defect formation in the early Universe.

IV. CONCLUSIONS

We presented a detailed study of the nonequilibrium dy-
namics of a classical scalar field theory in a symmetry break-
ing transition. In doing so we were able to probe regimes of
field evolution where perturbation theory breaks down and
extract conclusions about the detailed correlation length and
topological defect density evolution. We showed that after an
instantaneous quench a field develops momentary instabili-
ties responsible for the growth of its amplitude during which
the evolution is approximately linear, and on a later stage
when stability around the true minimum is found evolves, in
a period of reheating very similar to that of inflationary sce-
narios. During this later stage the evolution proceeds in a
strongly nonlinear fashion so as to redistribute energy among
all scales. We showed the effect of external dissipation in the

evolution and established evidence for the independence of
defect densities per correlation length on the choice of initial
conditions as well as their approach to a scaling regime for
large times. In passing we confronted the predictions of the
Kibble mechanism to our results and discussed the effect of
the external dissipation on the asymptotic defect densities.
We also have shown the comparison between the zero den-
sities given by the full classical evolution and the predictions
from the linearized theory and the Hartree approximations
thus clarifying when these approximate schemes are valid.

Finally, we believe that the present work raises many new
important questions about the evolution of relativistic fields
away from thermal equilibrium. We have established the ut-
most importance for the correct accounting of the transfers of
energy from the Higgs field to other channels and their in-
fluence in defect formation. In higher spatial dimensions, we
believe these transfers will be magnified by the increase in
phase space and, consequently, in the number of external
channels coupled to the long wavelength modes of the scalar
field. These energy transfers are responsible for the assump-
tions of freeze-out of the defect densities both in the Kibble
mechanism@1# and in the Zurek scenario@8#, which consti-
tute the basis for defect formation estimates in the early Uni-
verse and in the laboratory. In the former the correct ac-
counting of the expanding background as the mechanism
driving the transition is fundamental in relating the micro-
physical dynamical scales to the horizon. In adopting the
instantaneous quench in the work described in this paper, we
merely have taken the simplest workable example of sym-
metry breaking.

We are investigating presently the effect of an expanding
background on topological defect production and evolution,
in higher spatial dimensions, and studying the details of the
energy redistribution during the phase transition. The major
difficulties of these studies have to do with the enormous
disparity between the microphysical and cosmological scales
and the need for renormalization in spatial dimensions higher
than one.

Whenever we can overcome these difficulties, field theo-
retical studies of cosmological phase transitions will clarify
important aspects of the role of topological defects as the
seeding mechanism for the formation of structure in the Uni-
verse and the theory of reheating after a period of inflation-
ary expansion.
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FIG. 16. The evolution of the defects densities per correlation
volume for two values ofh. For h50.01 the dashed line corre-
sponds to initial conditions withM51 and the solid line with
M50.1. The scaling regime for large times is apparent as well as
the corresponding defect density independence on the choice of
initial conditions forh50.01.
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