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Statistical mechanics of the three-dimensional Euclidean black hole

S. Carlig
Department of Physics, University of California, Davis, California 95616
(Received 17 June 1996

In its formulation as a Chern-Simons theory, three-dimensional general relativity induces a Wess-Zumino-
Witten (WZW) action on spatial boundaries. Treating the horizon of the three-dimensional Euclidean black
hole as a boundary, | count the states of the resulting WZW model, and show that when analytically continued
back to Lorentzian signature, they yield the correct Bekenstein-Hawking entropy. The relevant states can be
understood as “would-be gauge” degrees of freedom that become dynamical at the horizon.
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PACS numbsd(s): 04.70.Dy, 04.60.Kz

The underlying microscopic source of black hole entropySimons(CS) theory[10]. Consider a Chern-Simons theory
is not yet understood, but it is natural to conjecture that iton a manifold with boundary, described by the action
originates in quantum gravitational degrees of freedom at the
black hole horizon. If this is true, however, then {2e-1)- k 2 k
dimensional black hole of Bamlos, Teitelboim, and Zanelli 'cs:EfM Trl AAA+ ZANANA |+ ELM Tr AA7
(BTZ) [1] presents a paradox. General relativity in three (1.1)
spacetime dimensions can be rewritten as a Chern-Simons '
theory[2,3], and as such, its degrees of freedom are fairlyrne houndary term in Eq1.1) is the one appropriate for
well understood. In particular, the small number of topologi-ﬁxing the field A, at JM. If M is closed, this term disap-
cal degrees of freedom of a Chern-Simons theory are n ears, ande''cs ié gauge invariant. IM has a boundary,

sufficient to account for the large entropy of a macroscopig,,\vever. this invariance is broken. Indeed, under the decom-
BTZ black hole. position

In Ref. [4], and independently if5], a possible solution
to this paradox was suggested. A Chern-Simons theory on a
manifold with boundary induces a Wess-Zumino-Witten
(WZW) theory on the boundan6,7], and this WZW model .
can have mgny more degreeIEGof] freedom than the origina“1e action becomels, 9]
Chern-Simons theory. These new degrees of freedom are ~ N ~
“would-be pure gauge” excitations that become physical at led Al=Tcd Al+Klwzwl9.A], 1.3
the boundary8,9]. Let us suppose that the event horizon of . ~_ _ _
a black hole can be treated as a bounddryvill return to ~ Wherelz[9,A,] is the action of a chiral WZW model on
this assumption laterThen the induced WZW model at the the boundaryM:
horizon offers a natural source of microscopic degrees of
freedom. |+ [gx]:if
A preliminary counting argument in Ref4] indicated WZWLS2 A ),
that these degrees of freedom can correctly account for the
entropy of the BTZ black hole. That analysis was based on " i Tr(g~ldg)? (1.4)
plausible but unproven assumptions about the quantization of 127 Im ' '
the SU(1,1) WZW model. In this paper, | consider the ana-
lytic continuation to the better-understood SIG2,WZW  The “pure gauge” degrees of freedograre thus promoted
model obtained from Euclidean gravity in three dimensionsto true dynamical degrees of freedom at the boundary.
and demonstrate that the entropy of the three-dimensional A similar phenomenon can occur in general relativity.
black hole can be derived as the logarithm of the number ofrhe infinitesimal analog of the decompositih2) may be
microscopic states at the horizon. The results are quite roebtained by performing a transverse splitting of small fluc-
bust: the semiclassical contribution to the entropy is detertuations of a background metrg;, , :
mined by Virasoro zero modes, and is independent of the
details of the rest of the Hilbert space. 89,,=h,,+(Ké,,, (K'h),=0,

A=g ldg+g 'Ag, (1.2

| Tr(g g g L979— 297 *7gA,)

. “WOULD-BE GAUGE” DEGREES OF FREEDOM with  (K&),,=V &,V ,£,=L£:0,,. (1.5

Before proceeding with the computation, it is useful tolf M is closed, this splitting is uniquéd.1,12, and provides a
recall the source of boundary degrees of freedom in Cherrstandard division into “physical” and “gauge” degrees of
freedom. IfM has a boundary, however, a unique decompo-
sition requires boundary conditions that makéK self-
*Electronic address: carlip@dirac.ucdavis.edu adjoint. The simplest choice is
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&4 m=0. (1.6) Il. QUANTIZATION

SL(2C) is a noncompact group, and the techniques de-
veloped for quantizing Chern-Simons theories with compact
gauge groups require some modification. However, the ac-
Sion (1.10 looks tantalizingly like the difference between
two SU(2) Chern-Simons actions. It is thus tempting to treat
rTﬁ_andA, and the corresponding gauge transformatigasd

g, as independent fields, and write

Once again, the “would-be gauge” degrees of freeddéih
with £&##0 at dM are potential new dynamical degrees of
freedom at the boundary. Evidence for this special rol
comes from the canonical formaligfs]: the generator of the
transformatiorng;; — g;; + (K§);; on a spacelike hypersurface
2 is proportional to a constraint, and thus generates a sy
metry, only whené' vanishes ats. Note, of course, that
vector fields¢ in the kernel ofK, the Killing vectors of e _
g, donotgive rise to new degrees of freedom. This will Zsi20[AA]=|Z su<2>[A]|2, (2.1

be important to the later analysis.

Unfortunately, the decompositidid.5) holds only for in-  whereZ denotes the partition function for the WZW action
finitesimal variationssg,,, ; the finite version is highly non- (1.4 on dM. Note that since the integrand in the partition
local. The gravitational analog of the WZW action is conse-function is exgil}, the complex conjugation in E42.1) au-
quently difficult to find (although, see[13]). In three tomatically leads to the difference in sign between the two
spacetime dimensions, however, we can avoid this difficultyterms in the actiorf1.10).
three-dimensional general relativity can be reformulated as a Witten has shown that this procedure is essentially correct
Chern-Simons theory in which the diffeomorphisms are[14]. If one chooses a real polarization, which in our case
transmuted into ordinary gauge transformations, and the rexmounts to fixingA, and Az-at JM, then the dependence of
sults from Chern-Simons theory apply directly. a wave function orA and A is determined entirely by its

In particular, for Lorentzian gravity with a negative cos- dependence om. In particular, it is sufficient to evaluate the
mological constant A=—1/1%2, we can define an partition function ae®=0 and then “analytically continue.”

SU(1,1)x SU(1,1) gauge field But for e*=0, the two terms in Eq(1.10 are ordinary
SU(2) Chern-Simons actions, and wave functions are basi-
A+:(F)ail"éa)'f 1.7 cally products of two conjugate SU(2) wave functions. Ha-
I a yashi has worked out the resulting SLC2,wave functions

for the solid torus in great detdil5], and has shown explic-
Where’éa:’éaMdXM is a triad and’éa:%eab%ﬂbcdx” is a itly that a basis can be constructed from products of holo-
spin connection. The standard Einstein action can then b@orphic affine SU(2) Weyl-Kac characteifsom the first
written as SU(2)] and their complex conjugat¢om the seconif
Note, however, that in the standard quantization of an
IgraVZICS{A+]_I cdA7], ) SU(2) WZW model, and in Haygshi'§ computatior!s, the
coupling constank must be a positive integer—that is, by
wherelJA] is the Chern-Simons actiofi.1) with a cou-  Ed. (1.9), we must analytically continue to negati@ This
pling constarit sign change is identical to that described by Henningson
et al. [16], who show that the partition function for an
| SU(1,1) WZW model is formally identical to an SU(2)
VTR 19  wzw partition function analytically continued th<<—2.
To obtain a final answer for the entropy in the Lorentzian
heory, we will therefore start with the Euclidean partition
unction (2.1) with positive integrak, and continue to nega-
tive k at the end of the computation.
The advantage of the Euclidean approach is that the path

k:

We can now continue to Euclidean signature by settin
e’=ie? e'=¢!, e2=€2. The action then becomes

lga=1 cd Al = led Al (1.19 integral for an SU(2) WZW theory is well understood. In
where particular, if M is a two-torus with modulug= 7, +i 75,
the partition functionZ gy, A] can be described as follows
i _ i [6,17,18. We first perform a gauge transformation to set the
A=| w0+ 8% Ty, A= ( w?— Tea)Ta (1.1 gauge fieldA, on JM to a constant value
isan SL(2C) gauge fieldwith '_ra= - io4/2). Ourgoalisto a=— lluTg, (2.2)
count the boundary states in this theory for the three- T2

dimensional black hole.

_ _ _ 2In Refs.[14,15 the focus was on Chern-Simons states, but a
Y take Tg=i03/2, Ty=04/2, T,=0,/2, with Tr the matrix trace. ~ simple reinterpretation extends the results to the partition function.
This normalization differs from that d#]. In the notation of 14], Viewed as a functional of boundary data, a Chern-Simons state on
my Kk isis, with s pure imaginary. EquatioflL.9) can be checked by JM may be defined as a path integral owér weighted by appro-
comparing the extremal action for a closed manifold in the metricpriate Wilson lines; the partition function on a manifold with
and Chern-Simons formalisms. boundary is thus formally equivalent to a particular state.
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in the Cartan algebra. Then féra positive integer, We next need the boundary fieldsandA. For this pur-

pose, the black hole metric is most conveniently expressed in

_ k an upper half-space forfi20],
Zsual Al= 2, ¥ 0) Yl @) 2.3
= 2
e TdR24+ R2d 12+ R2 2
it ds? stinzx[dR +R2dy%+R%coSyd#?], (3.2
with the identifications
wk —— —
l)bnk(a):ex 4_ u Xnk(T!u)! (24)
2 (INR,6,x)~(InR,6+ 0, x)
where x,« are the Weyl-Kac characters for affine &). 27, 2m|r _|
Later we will need the asymptotic behavior of the characters ~| InR+ | + X 3.3
for large 7:

Herer . are the Euclidean continuations of the radii of the

outer and inner horizons, and72- © is the deficit angle of

- ] the conical singularity at th¢Euclidean horizon; the on-

Sinu shell condition is®=27. The relationship of the coordi-
29 nates R.6,x) to standard Schwarzschild coordinates is de-

scribed in[20]. For our purposes, we need only know that

Our interest is not the partition function per se, but the, g yajated to the usual radial coordinate, and that a surface
number of states. For the partition function on a torus with

Y= const is a torugthe two circumferences are a circle
modulus7, standard WZW theory19] tells us that around the horizon and a circle in periodic timéae horizon

o is the degenerate surfage= 7/2.
N i —2miT i a i iS. i
Zsiz.o(T[AA]= Tr{e?mLog=2mi 7Lo} ea;r;efgl?:gigtg)em corresponding to the metri8.2) is

(n+1)2 1

kt2 2|7

i

xnk(r,U)~exp{7

}sinw(n+ 1)u

=2 p(NN)GY g, (26 X drR|
A-=—cscy d6—|F ,  A“=icsgdy,
whereq, =€2™™, g,=e~ 2772, andp(N,N) is the number of

states for which the Virasoro generatdrg and L, have A3=icotx(d0—id—R). (3.4)
eigenvaluedN andN. This number can be extracted from Eq. R

2.6) by a standard contour integral:
(2.6 by g When restricted to a “stretched horizony= xq, A is con-

jugate to @6—idR/R) T3, independent of¢,. To use these
(N N_): _ LJ da; J a2 7 (7-)[:5\ AT] boundary data in the partition function, we must express this
PN, 472 gh-NFL) N SL2.0) b connection aa(dx+ rdy), wherex andy are coordinates on
! 2 2.7) the torus with period one. Using the identificatidi3s3), or
equivalently rewritinga in terms of the holonomies &, we
where the integrals are along circles surrounding the origiPbtain
in the complexq, andq, planes.

ks
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Or, ry) (O7 |r]
(ﬁﬂ—)“(ﬁ‘T

Ts. (3.5

We are now ready to count the states of the three- Fork a positive integer, we can now insert this expres-
dimensional Euclidean black hole. Note first that not allsjon, along with the asymptotic forfisee Eq.(2.5)] of the
states on the black hole horizon are physical. As we sawveyl-Kac characters, into E42.4) to compute the partition
above, the diffeomorphisms generated by Killing vectors—fynction Zsi(2.c)- The integral(2.7) may then be evaluated
vectors in the kernel oK—remain genuine gauge symme- by steepest descent. Consider, for example, the contribution

tries even at a boundary. For the BTZ black hole, Killing from n=0 in Eq.(2.3). The corresponding term in the par-
vectors generate time translations and rotations, and the cofition function is

responding requirement on states is that

7 K 7k
ZSL<2,c>[a,a]~eXD{ i (U2 +ud)+ Pk

Lo| phy$ =Lo| phy$ =0, 3.0
@’7'2 ry 2
on T

wk
since the Virasoro operatolsy and L, generate the rigid —exp{ B 2_7-2
displacements. EquatigB.1) can be viewed as a remnant of 5
the Wheeler-DeWitt equation. The number of states at the _(”1 _ M) }
horizon is thus given by(0,0).

(3.6

27 | k+2 2



55 STATISTICAL MECHANICS OF THE THREE. .. 881
The steepest descent approximation of the inte@a) for  sensitively on the quantum theory describing those states, as
N=N=0 then gives long as the current zero modes are fixed. For example, al-
though we do not know the detailed form of the characters
corresponding tov,(7,u) for k nonintegral, and we do not
(0 0)=exp[ _Kors (2_77) E] fully understand the Lorentzian theory, the semiclassical ex-
’ I 0 I pression for black hole entropy should not be affected: pro-
vided the partition function has the fory(7,u)F(7,u)
p[ or, (277) m+] with F~1 for large 7,, we will obtain the correct

2c e T (3.7  Bekenstein-Hawking entropy.

Finally, let me return to the question of whether it is sen-
up to terms Of Order k/ Note that the re|evant Sadd'e point sible to treat a black hole horizon as a boundary. The horizon
occurs atr,= 2t , /01, so the approximatiof2.5) is justi- IS not, of course, a physical boundary. It is, however, a place
fied as long as the black hole is larg¢/G=8r2/I>>1. A  at which one must impose “boundary conditions” in quan-
straightforward calculation also shows that the contributiongum gravity. Statements about black holes in quantum grav-
to p(0,0) coming from terms in Eq(2.3 with n#0 are ity are necessarily statements about conditional probabilities:
exponentially suppressed relative to E8.7). for instance, “If a black hole with given characteristics is

[There is a sign ambiguity here: in the identifications present, then one will observe a certain spectrum of Hawking
(3.3, we could have taken, and|r_| to be negative, cor- radiation.” To compute such probabilities, one must include
responding to a different fundamental region. The relevanthe appropriate restrictions on the path integral by restricting
saddle point would then be,=—2=r, /0®l, and the first the admissible boundary data at the horizon. Such restric-
term in Eq.(3.7) would no longer appear. For this choice, tions are sufficient to generate a WZW action at the horizon,
however, it may be shown that the contribution coming fromand thus to justify the computations of this pap#®].
n=k in Eq. (2.3 reproduces Eq3.7), with ® replaced by
47—0.]

The firs_t term in the_ exponent of E€3.7) is the correct IV. CONCLUSION
semiclassical expression for the entropy of tfet1)-

dimensional black hole. The second term is a one-loop cor- We have seen that the Chern-Simons formulation of

rection. This one-loop expression differs from that of Ref'three-dimensional Euclidean gravity permits an explicit de-

[20] by a factor of two, but | believe it is correct; the expres-~ "~ .
sion ir):[20] was based on a computation of determina%ts ipscription of horizon degrees of freedom, and that these de-

Ref.[21] [Eq. (A16)] which, | believe, has an incorrect factor grees of freedom can provide a microscopic explanation for
of two in the exponent. the entropy of the black hole. The obvious question is

The Euclidean computation has been carried outkfar whether these results can be generalized to four dimensions.

positive integer, implying thaB<0. As noted above, how- The particular methods described here certainly cannot. The

ever, the analytic continuation to Lorentzian signature rekey advantage of the Chern-Simons formalism is that it al-

quires a change of the sign & It might be possible to lows diffeomorphisms to be expressed as local gauge trans-

repeat this computation directly in the Lorentzian theory, usformations, permitting the decompositi¢h.2) and the exact

ing the results of Ref[16] for the SU(1,1) partition func- derivation of a boundary action. No such formulation is

tion. In fact, though, the semiclassical contribution to theknown in 3+1 dimensions.

entropy is largely independent of the detailed form of the Nevertheless, the basic physical mechanism discussed

charactersy,(7,u). The leading contribution t& comes here should generalize to+3 dimensions. The canonical

from the prefactor formulation of general relativity offers strong evidence for
the existence of “would-be gauge” degrees of freedom that
can become dynamical at a boundfy, and some progress

(3.9 has been made towards finding the corresponding boundary
action[13,23. While much work remains, the approach de-

in the partition function(3.6). This term may be understood veloped here provides a promising direction for understand-

as follows. In a Chern-Simons theory on a manifold withing the origin of black hole entropy.

boundary, the WZW current(z) at the boundary is propor-

tional to the gauge field\, [22]. By Eg. (1.2), this field

wk
_ 2,72
Zo(T,u) expl’ 4, (u=+u?)

contains the usual curLegt‘lag, but it also has an added ACKNOWLEDGMENTS
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to the partition function. As originally argued in R@#], it is

this zero mode that determines the dependence of the black

hole entropy on the horizon size. 3From Eq.(2.6) and its generalizations, this condition Brshould
This means that although the entropy counts microscopibold as long as the number of WZW states does not increase too

states at the horizon, its semiclassical value will not depenehapidly with N andN.
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