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In its formulation as a Chern-Simons theory, three-dimensional general relativity induces a Wess-Zumino-
Witten ~WZW! action on spatial boundaries. Treating the horizon of the three-dimensional Euclidean black
hole as a boundary, I count the states of the resulting WZW model, and show that when analytically continued
back to Lorentzian signature, they yield the correct Bekenstein-Hawking entropy. The relevant states can be
understood as ‘‘would-be gauge’’ degrees of freedom that become dynamical at the horizon.
@S0556-2821~97!02502-2#

PACS number~s!: 04.70.Dy, 04.60.Kz

The underlying microscopic source of black hole entropy
is not yet understood, but it is natural to conjecture that it
originates in quantum gravitational degrees of freedom at the
black hole horizon. If this is true, however, then the~211!-
dimensional black hole of Ban˜ados, Teitelboim, and Zanelli
~BTZ! @1# presents a paradox. General relativity in three
spacetime dimensions can be rewritten as a Chern-Simons
theory @2,3#, and as such, its degrees of freedom are fairly
well understood. In particular, the small number of topologi-
cal degrees of freedom of a Chern-Simons theory are not
sufficient to account for the large entropy of a macroscopic
BTZ black hole.

In Ref. @4#, and independently in@5#, a possible solution
to this paradox was suggested. A Chern-Simons theory on a
manifold with boundary induces a Wess-Zumino-Witten
~WZW! theory on the boundary@6,7#, and this WZW model
can have many more degrees of freedom than the original
Chern-Simons theory. These new degrees of freedom are
‘‘would-be pure gauge’’ excitations that become physical at
the boundary@8,9#. Let us suppose that the event horizon of
a black hole can be treated as a boundary.~I will return to
this assumption later.! Then the induced WZW model at the
horizon offers a natural source of microscopic degrees of
freedom.

A preliminary counting argument in Ref.@4# indicated
that these degrees of freedom can correctly account for the
entropy of the BTZ black hole. That analysis was based on
plausible but unproven assumptions about the quantization of
the SU(1,1) WZW model. In this paper, I consider the ana-
lytic continuation to the better-understood SL(2,C) WZW
model obtained from Euclidean gravity in three dimensions,
and demonstrate that the entropy of the three-dimensional
black hole can be derived as the logarithm of the number of
microscopic states at the horizon. The results are quite ro-
bust: the semiclassical contribution to the entropy is deter-
mined by Virasoro zero modes, and is independent of the
details of the rest of the Hilbert space.

I. ‘‘WOULD-BE GAUGE’’ DEGREES OF FREEDOM

Before proceeding with the computation, it is useful to
recall the source of boundary degrees of freedom in Chern-

Simons~CS! theory @10#. Consider a Chern-Simons theory
on a manifold with boundary, described by the action
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k

4pEM TrSA`dA1
2

3
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k

4pE]M
Tr AzA z̄ .

~1.1!

The boundary term in Eq.~1.1! is the one appropriate for
fixing the fieldAz at ]M . If M is closed, this term disap-
pears, andeiI CS is gauge invariant. IfM has a boundary,
however, this invariance is broken. Indeed, under the decom-
position

A5g21dg1g21Ãg, ~1.2!

the action becomes@8,9#

ICS@A#5ICS@Ã#1kIWZW
1 @g,Ãz#, ~1.3!

whereI WZW
1 @g,Ãz# is the action of a chiral WZW model on

the boundary]M :
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1

12pEM Tr~g21dg!3. ~1.4!

The ‘‘pure gauge’’ degrees of freedomg are thus promoted
to true dynamical degrees of freedom at the boundary.

A similar phenomenon can occur in general relativity.
The infinitesimal analog of the decomposition~1.2! may be
obtained by performing a transverse splitting of small fluc-
tuations of a background metricgmn :

dgmn5hmn1~Kj!mn , ~K†h!m50,

with ~Kj!mn5¹mjn1¹njm5Ljgmn . ~1.5!

If M is closed, this splitting is unique@11,12#, and provides a
standard division into ‘‘physical’’ and ‘‘gauge’’ degrees of
freedom. IfM has a boundary, however, a unique decompo-
sition requires boundary conditions that makeK†K self-
adjoint. The simplest choice is*Electronic address: carlip@dirac.ucdavis.edu
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jmu]M50. ~1.6!

Once again, the ‘‘would-be gauge’’ degrees of freedomKj
with jmÞ0 at ]M are potential new dynamical degrees of
freedom at the boundary. Evidence for this special role
comes from the canonical formalism@5#: the generator of the
transformationgi j→gi j1(Kj) i j on a spacelike hypersurface
S is proportional to a constraint, and thus generates a sym-
metry, only whenj i vanishes at]S. Note, of course, that
vector fieldsj in the kernel ofK, the Killing vectors of
gmn , do not give rise to new degrees of freedom. This will
be important to the later analysis.

Unfortunately, the decomposition~1.5! holds only for in-
finitesimal variationsdgmn ; the finite version is highly non-
local. The gravitational analog of the WZW action is conse-
quently difficult to find ~although, see@13#!. In three
spacetime dimensions, however, we can avoid this difficulty:
three-dimensional general relativity can be reformulated as a
Chern-Simons theory in which the diffeomorphisms are
transmuted into ordinary gauge transformations, and the re-
sults from Chern-Simons theory apply directly.

In particular, for Lorentzian gravity with a negative cos-
mological constant L521/l2, we can define an
SU(1,1)3 SU(1,1) gauge field

A65S ṽa6
1

l
ẽ aD T̃a, ~1.7!

where ẽ a5ẽ a
mdx

m is a triad andṽa5 1
2 eabcṽmbcdx

m is a
spin connection. The standard Einstein action can then be
written as

I grav5ICS@A
1#2I CS@A

2#, ~1.8!

where ICS@A# is the Chern-Simons action~1.1! with a cou-
pling constant1

k52
l

4G
. ~1.9!

We can now continue to Euclidean signature by setting
e35 i ẽ 0, e15ẽ1, e25ẽ 2. The action then becomes

I grav5I CS@A#2ICS@Ā#, ~1.10!

where

A5S va1
i

l
eaDTa , Ā5S va2

i

l
eaDTa ~1.11!

is an SL(2,C) gauge field~with Ta52 isa/2). Our goal is to
count the boundary states in this theory for the three-
dimensional black hole.

II. QUANTIZATION

SL(2,C) is a noncompact group, and the techniques de-
veloped for quantizing Chern-Simons theories with compact
gauge groups require some modification. However, the ac-
tion ~1.10! looks tantalizingly like the difference between
two SU(2) Chern-Simons actions. It is thus tempting to treat
A andĀ, and the corresponding gauge transformationsg and
ḡ, as independent fields, and write

ZSL~2,C!@Ã,Ã̄#5uZ SU~2!@Ã#u2, ~2.1!

whereZ denotes the partition function for the WZW action
~1.4! on ]M . Note that since the integrand in the partition
function is exp$iI%, the complex conjugation in Eq.~2.1! au-
tomatically leads to the difference in sign between the two
terms in the action~1.10!.

Witten has shown that this procedure is essentially correct
@14#. If one chooses a real polarization, which in our case
amounts to fixingAz andĀ z̄ at ]M , then the dependence of
a wave function onA and Ā is determined entirely by its
dependence onv. In particular, it is sufficient to evaluate the
partition function atea50 and then ‘‘analytically continue.’’
But for ea50, the two terms in Eq.~1.10! are ordinary
SU(2) Chern-Simons actions, and wave functions are basi-
cally products of two conjugate SU(2) wave functions. Ha-
yashi has worked out the resulting SL(2,C) wave functions
for the solid torus in great detail@15#, and has shown explic-
itly that a basis can be constructed from products of holo-
morphic affine SU(2) Weyl-Kac characters@from the first
SU(2)# and their complex conjugates@from the second#.2

Note, however, that in the standard quantization of an
SU(2) WZW model, and in Hayashi’s computations, the
coupling constantk must be a positive integer—that is, by
Eq. ~1.9!, we must analytically continue to negativeG. This
sign change is identical to that described by Henningson
et al. @16#, who show that the partition function for an
SU(1,1) WZW model is formally identical to an SU(2)
WZW partition function analytically continued tok,22.
To obtain a final answer for the entropy in the Lorentzian
theory, we will therefore start with the Euclidean partition
function ~2.1! with positive integralk, and continue to nega-
tive k at the end of the computation.

The advantage of the Euclidean approach is that the path
integral for an SU(2) WZW theory is well understood. In
particular, if ]M is a two-torus with modulust5t11 i t2,
the partition functionZ SU(2)@Ã# can be described as follows
@6,17,18#. We first perform a gauge transformation to set the
gauge fieldÃz on ]M to a constant value

a52
p i

t2
uT3 ~2.2!

1I take T̃05 is3/2, T̃15s1/2, T̃25s2/2, with Tr the matrix trace.
This normalization differs from that of@4#. In the notation of@14#,
my k is is, with s pure imaginary. Equation~1.9! can be checked by
comparing the extremal action for a closed manifold in the metric
and Chern-Simons formalisms.

2In Refs. @14,15# the focus was on Chern-Simons states, but a
simple reinterpretation extends the results to the partition function.
Viewed as a functional of boundary data, a Chern-Simons state on
]M may be defined as a path integral overM , weighted by appro-
priate Wilson lines; the partition function on a manifold with
boundary is thus formally equivalent to a particular state.
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in the Cartan algebra. Then fork a positive integer,

ZSU~2!@Ã#5 (
n50

k

cnk~0!cnk~a! ~2.3!

with

cnk~a!5expH pk

4t2
ū2J x̄nk~ t̄,ū!, ~2.4!

wherexnk are the Weyl-Kac characters for affine SU(2).
Later we will need the asymptotic behavior of the characters
for larget2:

xnk~t,u!;expH p i

2 F ~n11!2

k12
2
1

2GtJ sinp~n11!u

sinpu
.

~2.5!

Our interest is not the partition function per se, but the
number of states. For the partition function on a torus with
modulust, standard WZW theory@19# tells us that

ZSL~2,C!~t !@Ã,Ã
¯

#5 Tr$e2p i tL0e22p i t̄ L̄0%

5( r~N,N̄!q1
N2N̄q2

N1N̄ , ~2.6!

whereq15e2p i t1, q25e22pt2, andr(N,N̄) is the number of
states for which the Virasoro generatorsL0 and L̄0 have
eigenvaluesN andN̄. This number can be extracted from Eq.
~2.6! by a standard contour integral:

r~N,N̄!52
1

4p2E dq1

q1
N2N̄11

E dq2

q2
N1N̄11

ZSL~2,C!~t !@Ã,Ã
¯

#,

~2.7!

where the integrals are along circles surrounding the origin
in the complexq1 andq2 planes.

III. THE EUCLIDEAN BLACK HOLE

We are now ready to count the states of the three-
dimensional Euclidean black hole. Note first that not all
states on the black hole horizon are physical. As we saw
above, the diffeomorphisms generated by Killing vectors—
vectors in the kernel ofK—remain genuine gauge symme-
tries even at a boundary. For the BTZ black hole, Killing
vectors generate time translations and rotations, and the cor-
responding requirement on states is that

L0u phys& 5L̄0u phys& 50, ~3.1!

since the Virasoro operatorsL0 and L̄0 generate the rigid
displacements. Equation~3.1! can be viewed as a remnant of
the Wheeler-DeWitt equation. The number of states at the
horizon is thus given byr(0,0).

We next need the boundary fieldsÃ and Ã¯. For this pur-
pose, the black hole metric is most conveniently expressed in
an upper half-space form@20#,

ds25
l2

R2sin2x
@dR21R2dx21R2cos2xdu2#, ~3.2!

with the identifications

~ lnR,u,x!;~ lnR,u1Q,x!

;S lnR1
2pr1

l
,u1

2pur2u
l

,x D . ~3.3!

Here r6 are the Euclidean continuations of the radii of the
outer and inner horizons, and 2p2Q is the deficit angle of
the conical singularity at the~Euclidean! horizon; the on-
shell condition isQ52p. The relationship of the coordi-
nates (R,u,x) to standard Schwarzschild coordinates is de-
scribed in@20#. For our purposes, we need only know that
x is related to the usual radial coordinate, and that a surface
x5 const is a torus~the two circumferences are a circle
around the horizon and a circle in periodic time!; the horizon
is the degenerate surfacex5p/2.

The connectionAa corresponding to the metric~3.2! is
easily found to be

A152cscxS du2 i
dR

R D , A25 icscxdx,

A35 icotxS du2 i
dR

R D . ~3.4!

When restricted to a ‘‘stretched horizon’’x5x0, A is con-
jugate to (du2 idR/R)T3, independent ofx0. To use these
boundary data in the partition function, we must express this
connection asa(dx1tdy), wherex andy are coordinates on
the torus with period one. Using the identifications~3.3!, or
equivalently rewritinga in terms of the holonomies ofÃ, we
obtain

a52
p

t2
F S Qt2

2p
1
r1

l D1 i S Qt1
2p

2
ur2u
l D GT3. ~3.5!

For k a positive integer, we can now insert this expres-
sion, along with the asymptotic form@see Eq.~2.5!# of the
Weyl-Kac characters, into Eq.~2.4! to compute the partition
functionZSL(2,C) . The integral~2.7! may then be evaluated
by steepest descent. Consider, for example, the contribution
from n50 in Eq. ~2.3!. The corresponding term in the par-
tition function is

ZSL~2,C!@a,ā#'expH pk

4t2
~u21ū2!1

pk

k12
t2J

5expH 2
pk

2t2
F S Qt2

2p
1
r1

l D 2
2S Qt1

2p
2

ur2u
l D 2G1

pk

k12
t2J . ~3.6!
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The steepest descent approximation of the integral~2.7! for
N5N̄50 then gives

r~0,0!5expH 2
kQr1

l
1S 2p

Q D pr1

l J
5expH Qr1

4G
1S 2p

Q D pr1

l J ~3.7!

up to terms of order 1/k. Note that the relevant saddle point
occurs att252pr1 /Q l, so the approximation~2.5! is justi-
fied as long as the black hole is large,M /G58r1

2 / l2@1. A
straightforward calculation also shows that the contributions
to r(0,0) coming from terms in Eq.~2.3! with nÞ0 are
exponentially suppressed relative to Eq.~3.7!.

@There is a sign ambiguity here: in the identifications
~3.3!, we could have takenr1 and ur2u to be negative, cor-
responding to a different fundamental region. The relevant
saddle point would then bet2522pr1 /Q l, and the first
term in Eq.~3.7! would no longer appear. For this choice,
however, it may be shown that the contribution coming from
n5k in Eq. ~2.3! reproduces Eq.~3.7!, with Q replaced by
4p2Q.#

The first term in the exponent of Eq.~3.7! is the correct
semiclassical expression for the entropy of the~211!-
dimensional black hole. The second term is a one-loop cor-
rection. This one-loop expression differs from that of Ref.
@20# by a factor of two, but I believe it is correct; the expres-
sion in @20# was based on a computation of determinants in
Ref. @21# @Eq. ~A16!# which, I believe, has an incorrect factor
of two in the exponent.

The Euclidean computation has been carried out fork a
positive integer, implying thatG,0. As noted above, how-
ever, the analytic continuation to Lorentzian signature re-
quires a change of the sign ofk. It might be possible to
repeat this computation directly in the Lorentzian theory, us-
ing the results of Ref.@16# for the SU(1,1) partition func-
tion. In fact, though, the semiclassical contribution to the
entropy is largely independent of the detailed form of the
charactersxnk(t,u). The leading contribution toS comes
from the prefactor

Z0~t,u!5expH pk

4t2
~u21ū2!J ~3.8!

in the partition function~3.6!. This term may be understood
as follows. In a Chern-Simons theory on a manifold with
boundary, the WZW currentJ(z) at the boundary is propor-
tional to the gauge fieldAz @22#. By Eq. ~1.2!, this field
contains the usual currentg21]g, but it also has an added
zero-mode contributionÃz , whose value is determined by
the boundary data. The Virasoro generatorL0 has a corre-
sponding zero-mode term proportional to TrÃzÃz , and the
prefactor~3.8! is precisely the contribution of this zero-mode
to the partition function. As originally argued in Ref.@4#, it is
this zero mode that determines the dependence of the black
hole entropy on the horizon size.

This means that although the entropy counts microscopic
states at the horizon, its semiclassical value will not depend

sensitively on the quantum theory describing those states, as
long as the current zero modes are fixed. For example, al-
though we do not know the detailed form of the characters
corresponding toxnk(t,u) for k nonintegral, and we do not
fully understand the Lorentzian theory, the semiclassical ex-
pression for black hole entropy should not be affected: pro-
vided the partition function has the formZ0(t,u)F(t,u)
with F;1 for large t2, we will obtain the correct
Bekenstein-Hawking entropy.3

Finally, let me return to the question of whether it is sen-
sible to treat a black hole horizon as a boundary. The horizon
is not, of course, a physical boundary. It is, however, a place
at which one must impose ‘‘boundary conditions’’ in quan-
tum gravity. Statements about black holes in quantum grav-
ity are necessarily statements about conditional probabilities:
for instance, ‘‘If a black hole with given characteristics is
present, then one will observe a certain spectrum of Hawking
radiation.’’ To compute such probabilities, one must include
the appropriate restrictions on the path integral by restricting
the admissible boundary data at the horizon. Such restric-
tions are sufficient to generate a WZW action at the horizon,
and thus to justify the computations of this paper@10#.

IV. CONCLUSION

We have seen that the Chern-Simons formulation of
three-dimensional Euclidean gravity permits an explicit de-
scription of horizon degrees of freedom, and that these de-
grees of freedom can provide a microscopic explanation for
the entropy of the black hole. The obvious question is
whether these results can be generalized to four dimensions.
The particular methods described here certainly cannot. The
key advantage of the Chern-Simons formalism is that it al-
lows diffeomorphisms to be expressed as local gauge trans-
formations, permitting the decomposition~1.2! and the exact
derivation of a boundary action. No such formulation is
known in 311 dimensions.

Nevertheless, the basic physical mechanism discussed
here should generalize to 311 dimensions. The canonical
formulation of general relativity offers strong evidence for
the existence of ‘‘would-be gauge’’ degrees of freedom that
can become dynamical at a boundary@5#, and some progress
has been made towards finding the corresponding boundary
action @13,23#. While much work remains, the approach de-
veloped here provides a promising direction for understand-
ing the origin of black hole entropy.
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3From Eq.~2.6! and its generalizations, this condition onF should
hold as long as the number of WZW states does not increase too
rapidly with N and N̄.
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