PHYSICAL REVIEW D VOLUME 55, NUMBER 2 15 JANUARY 1997
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Black holes do not Hawking-radiate strictly blackbody radiation due to well-known frequency-dependent
greybody factors. These factors arise from frequency-dependent potential barriers outside the horizon which
filter the initially blackbody spectrum emanating from the horiz@ibrane bound states, in a thermally
excited state corresponding to near-extremal black holes, also do not emit blackbody radiation: The bound state
radiation spectrum encodes the energy spectrum of its excitations. We study a near-extremal five-dimensional
black hole. We show that in a wide variety of circumstances including both neutral and charged emission, the
effect of the greybody filter is to transform the blackbody radiation spectrum precisely into the bound state
radiation spectrum. Implications of this result for the information puzzle in the context of near-extremal black
hole dynamics are discussd&0556-282(97)04602-X]

PACS numbe(s): 04.70.Dy, 04.70.Bw, 11.25.Mj

I. INTRODUCTION ever, in the large black hole region computation of the string
radiation rate appears to be a strong coupling problem.
In Ref.[1], the Bekenstein-Hawking entropy formula was Hence it was stated if2] that string techniques were un-
derived for certain five-dimensional extremal black holes inlikely to give a precise calculation of the decay rate.
string theory by counting the asymptotic degeneracy of However, this view also proved to be too conservative.
Bogomol'ni-Prasad-SommerfieldBPS) saturatedD-brane The leading order decay rate of the thermally excited string
bound states. This derivation required an extrapolation fron#1to & single species of neutr@twave scalars of frequency
the small black hole region, wherB-brane perturbation @ IS given by
theory is good and the Schwarzchild radius is smaller than © © d%k
the string Iength, to t_he large bl_ack_hole region where the Fngeﬁwp(f)p(F) o (1.7
low-energy semiclassical approximation and the Bekenstein- L R/ (2)

Hawking formula are valid. The extrapolation was justified 9o is a(charge-dependent but frequency-indeperideffiec-

by the special topological character of BPS states, whiclye coupling of left- and right-moving oscillations of ener-
implies that their degeneracies should not change undgjies«/2 to an outgoing scalar of energy T, andTx are the
smooth variations of couplings. It was stated 1 that the  temperatures of left and right moving oscillations, and are
use ofD-brane perturbation theory to study large black holesrelated to the overall temperatufe, by

was likely limited to such supersymmetric counting prob-

lems, and could not be extended to study dynamics of non- 1.t 2 1.2

BPS excited states. Tr To Tu' '
However, this view proved to be too conservative[ 21 ]

the entropy of near-extremal states of large black holes waghe thermal factop(w/T) is

found, in the “dilute gas” regioh (defined in Sec. )| to be © 1

completely gccounted for by low-lying non.-BPS os_,cillatic_)ns p(T =1 (1.3

of an effective string. We shall see that this effective string, e

which arises in the description of bouftbraneg[1], pro-
vides a very robust picture of extremal black hole dynamics
The entropy-counting ifi2] worked because the oscillations i :
are highly diluted in the dilute gas region and potentiallyOn the other hand, is given by the Hawking form{fig
strong interactions between them are accordingly suppressed. o\ d*k
Decay of these excited statés., Hawking radiationoccurs I'y=o abiw)P<T—) 2m* (1.4
as oscillations dissipate into radiatip8l], and it was further H

noted[3] that the rate had roughly the right features. HOW'Whereo-abS(w) is the greybody factor, which equals the clas-
sical absorption cross section. In the linfig<T_ these
equations simplify dramatically, and both depend on the fre-
loutside this region interactions between left- and right-movingguency asp(w/Ty). It was shown i3] and[6] that, in this
oscillations cannot be neglected and the string calculations are difimit, both I'y and I, are proportional to the area and, in a
ficult [3,4]. surprising paper by Das and MatHTt,8], that the numerical

These thermal factors arise in Ed..1) from the left- and
right-moving oscillation densities. The black hole decay rate,

0556-2821/97/52)/861(10)/$10.00 55 861 © 1997 The American Physical Society



862 JUAN MALDACENA AND ANDREW STROMINGER 55

coefficient also matches. Note that this result is confined to In conclusion, the string picture of black hole dynamics is
the near extremal region, in which the wavelength of theapparently far more robust than originally envisioned i
outgoing radiation is much larger than the Schwarzschildat least when restricted to low excitation energies in the di-
radius. lute gas region. The string decay rates, extrapolated to the
In this paper we consider the highly nontrivial comparisonlarge black hole region, agree precisely with the semiclassi-
in which the restrictioriT g<<T, is dropped, while remaining cal Hawking decay rates in a wide variety of circumstances.
in the dilute gas and near extremal regions. After a lengthyHowever, the string method not only supplies the decay
calculation we find that the semiclassical greybody factorgates but it also gives a set of unitary amplitudes underlying

are the rates. We find it tempting to conclude that these extrapo-
lated amplitudesare also correct. It is hard to imagine a
Jerrwop(w/2T ) p(w/2Tg) mechanism which corrects the amplitudes, but somehow
Tapd @) = p(wlTh) ' (1.9 conspires to leave the rates unchanged.

This robust nature of the string picture is very significant
implying I'p=T",; and exact agreement between the stringbecause it allows us to directly confront the black hole infor-
and semiclassical calculations. mation puzzle, which is of course a primary goal of these

Let us summarize this. The black hole emits blackbodyinvestigations. According to Hawking, information is lost as
radiation from the horizon. Potential barriers outside the hoa large excited black hole decays to extremality. On the other
rizon act as a frequency-dependent filter, reflecting some dfiand, the string analysis—extrapolated to the large black
the radiation back into the black hole and transmitting somédnole region—gives a manifestly unitary answer. We will not
to infinity. The filtering acts in just such a way that the black reconcile these points of view, but we will make some hope-
hole spectroscopy mimics the excitation spectrum of thdully relevant observations along the way.
string. Hence to the observer at infinity, the black hole, mas- In Sec. Il we review the classical black hole solution. In
guerading in its greybody cloak, looks like the string, for Sec. 1ll we discuss the semiclassical limit and expansion
energies small compared to the inverse Schwarzschild radiygrameters. In Sec. IV we compute and compare the emis-
of the black hole. sion rates for neutral scalars using the Hawking and string

In the past, greybody factors have been largely regardethethods. Section V considers the charged case. Comparisons
as annoying factors which mar the otherwise perfectly therof absorption rates are made in Sec. VI. Section VII dis-
mal blackbody radiation. Now we see that they have an imeusses the rate of charge loss of a black hole and contains
portant place in the order of things, and transmit a carefullycomments on measuring the quantum microstate by scatter-
inscribed message on the quantum structure of black hole#g experiments.

We also see that in order to compare the string and black

hole pictures, we must take into account processes which

occur well outsidethe horizon of the black hole solution. Il. THE CLASSICAL SOLUTION

This is surprising in thaD-brane bound states comprising
the string are conventionally viewed as confined to a very
small region.

We further consider the case of charge emisSidie

In this section we collect some known properties of the
assical five-dimensional black hole solutions and their
D-brane descriptions which will be needed in the following.

: . Except where otherwise noted, we adopt the notatiof# bf
formulas generalize the above with the appearance of an e)ﬁ’lcluding o' =1, so that all dimensional quantities are mea-

tra charge parameter. It turns out that under some circumy .4 i string units. The low-energy action for ten-

stances charge emission doml_nates neutral emission for Eﬁmensional type IIB string theory contains the terms
near-extremal black hole. Again we find exact agreemen

between string and semiclassical results everywhere in the
dilute gas region.

The reason for this precise agreement remains mysterious. 1 ) 5 ot 1in
As shall be explained in Sec. Ill, one calculation is an ex- 7= f d'%\—g{e ?/[R+4(V $)?]— $H?}
pansion in the size of the black hole, while the other is an 10 2.1)

expansion in the inverse siz&.priori both were expected to

get corrections and there was no obvious reason that they

should agree. The agreement strongly suggests that thereiisthe ten-dimensional string framk. denotes the Ramond-
much yet to be learned about these fascinating objects. PeRamond(RR) three form field strength, and is the dilaton.
haps there is a supersymmetric nonrenormalization theoreifhe Neveu-SchwarZNS) three form, self-dual five form,
protecting the interactions between BPS states from corre@nd second scalar are set to zero. We willdelenote the
tions, or they are suppressed by our restrictions to low eneten-dimensional string coupling and define the zero mode of
gies and or the dilute gas region. We see no reason to expe¢t so that ¢ vanishes asymptotically. The ten-dimensional
the agreement to persist outside the near-extremal regioNewton’s constant is the@,,= 87°g%. We wish to consider
when wavelengths are of order the Schwarzschild radius—a toroidal compactification to five dimensions with &hof
but there could be more surprises. length 27R and aT* of four-volume(2m)*V.2 We will work

2The emission rate in the limifg<T, was recently derived in 3with these conventionsT-duality sendsR to 1R or V to 1M,
[9]. and S-duality sendg to 1/g.
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with the following near-extremal solution labeled by three
charge& [4], given in terms of the ten-dimensional variables

by

1+ 1+r—2 , (2.2
H=2r2e;+2r2e 2% geg, 2.3
r2 -12 r2 -112
dSzZ l+—2 1+—2
r r
2
2 2, fo ; 2
X| —dt +dx5+r—2(coshodt+smhadx5)
ri ' r% 1/2 ré 1/2
+ = dXidXI + 1+r—2 1+r—2
2y -1
"o 2, .2402
1_r_2 dre+redQs|, (2.9

where* is the Hodge dual in the six dimensiorS,..
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o A 2@ rsrocoshr v g

4Gg 4Gg ’ 28
where the five-dimensional Newton’'s constant is
Gs=g%m/AVR.

The D-brane representation of this state involves a bound
state ofQs five-branes wrappind“*x S* andQ, one-branes
wrapping theSt. The excitations of this bound state are ap-
proximately described by transverse oscillatiggenerated
by open strings attached to th#-brang, within the five-
brane, of a single effective string wrapp€dQs times[10]
around theS. These oscillations carry the momentunand
are described by a gas of left and right movers on the string.
Equating the energy of this gas to

n

R

RVr2 —20

29°
and its momentum ta/R we can determine the total energy
carried by the right and the left movers. Their entropies

match Eq.(2.9) in the dilute gas region in Eq2.7) [2]. The
left- and right-moving oscillations are governed by effective

and €; here is the volume element on the unlt three spherqeft- and right-moving temperatures

x® is periodically identified with period 2R; x', i=86,...,9,
are each identified with period®/Y4. The three charges are

26
Q.= Ez—j *g

B 1
Qs—me,

n=RP, (2.9

whereP is the total momentum around ti8. All charges

1 roeg

L—7T 2I’1r5'

1 roe_a

Tw 205 (2.9

Notice that in the dilute gas regioRy ,Tr<<1/r;,1/r5.

Ill. CLASSICAL LIMIT AND EXPANSION PARAMETERS

We consider a number of different expansions in this pa-
per. The semiclassical expansion is a quantum expansion
about a classical limit in which black hole radiation is sup-
pressed. Largérelative to the string lengjtblack holes can

are normalized to be integers and taken to be positive. Iipe analyzed in sigma model perturbation theory, while small
terms of these charges the parameters of the solution readblack holes can, in favorable cases, be analyze-orane

gQ:
rizTy r5=gQ51
sinh2r  g°n
2 = —— E
e~ = ey’ sint? o, (2.6)
and we are in the dilute gas region defined by
ro,M<<rq,rs. (2.7

The extremal limit isr;—0, o— with n held fixed.
The entropy and energy are

1 g°n
= Rng+ RVgQ;—F ?‘F

2

racoshar
i

E= >

a
4Gg
VRre 27

2

|

“This corresponds to the limit,y> o of the solution in4], which

perturbation theory. Those favorable cases are when the pa-
rameters are in the dilute gas region. Both large and small
black holes have classical limiignd as explained ifl1]

and in Sec. Il B below, both deserve the name black hole

In this section we describe these regions and expansions in
detail.

A. Classical limit

In the classical limit the action becomes very large so that
the stationary phase approximation can be applied. Since the
action (2.1) has an explicit Ig? prefactor, the limitg—0
with the fields held fixed is a classical limit. Noting the ex-
plicit factors of 1§ in the definitions(2.5 of the integer
charges, as well as the explicitgf/in the definitions of the
energyE and momentun®, this is equivalent to

g—0,
with gQ;, gQs, g2n fixed. (3.2

Hence the quantization conditions on integer charges imply
that they diverge in the classical limit, as expected. Noting

is the dilute gas region discussed in the Sec. Ill C. The exact metrithe relationg2.6), one may equivalently define the classical

has subleading corrections.

limit with r, r5, andr,, held fixed.
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The classical solutions depend only on the prodg€ds,  the couplings according to Eq63.2) and (3.3). The closed
gQs, andg?n and so are finite in the limi(3.1). The stan-  string theory is good for large black holéeelative to the
dard definitions of the Arnowitt-Deser-MisnéADM) en-  string scalg¢ while theD-brane field theory is good for small
ergy and momentum involve explicitd? factors and so di- black holes. This relation is being explored[itd].
verge. This divergence can be eliminated by a change of In summary, the limit(3.1) defines a semiclassical limit
units accompanying the limit. However, the entropy divergedor both small and large black holes. The semiclassical
like 1/g% and is a dimensionless number which cannot beHawking calculation is well justified in the large black hole
rescaled. region(3.2). D-brane perturbation theory is well justified in

the region(3.3).
B. Large and small black holes

It follows from the metric(2.4) thatgQ;, gQs, andg?®n C. Dilute gas region

are the characteristi¢squaredl sizes of the black hole. A further condition is needed in order to simplify the
Hence, the black hole is large or small depending on whethegalculation of nonextremal entropies and decay rates in the
these quantities are large or small relative to the string scaletring picture. In general, the left- and right-moving oscilla-
One might question the use of the phrase “black hole” totions on the string interact, and their entropy and energy
refer to something smaller than the string scale. This name igpectrum is not exactly that of a free two-dimensional gas.
appropriate because the black holes are black independeniye can understand heuristically when this free gas approxi-
of their size. Because of the divergence in the classical limimation will break down as followsa more precise discus-
of the entropy in Eq(2.9), it costs an infinite amount of sion can be found if4]). Since these left and right-movers
entropy for the black hole to lose any finite fraction of its represent oscillations of the string, we see that a necessary
mass in outgoing radiatiof6,12]. Hence, the second law condition is that the typical amplitud® of the oscillations is
prohibits radiation from escaping, and black holes are blaclemaller than the typical wavelengt This is the standard
in the classical limit(3.1) independently of their size. small amplitude approximation for propagating waves. The

Closed string perturbation theory naturally treats the field¢otal energy in these oscillations iBR if they are all left-
¢, 9,, andH as order one. Hence, notmg the explicit factorsmoving. If this energy is carried by an effective string of
of 1/g in Eq. (2.5), it is an expansion im? with gQ;, gQs, lengthQ,QsR and tension 1Psg we get the relation
andg?n fixed. The classical limit3.1) is therefore described
by genus zero closed string theory. A primary tool for ana- E= n QR ( ) (3.4

E .

Iyzing black hole solutions in classical closed string theory is R g
the o’ expansion. The solution®.2)—(2.4) are solutions of
the leading order equations. They are characterized by th@emanding thaA<\ we find
squared length scaleg,, gQs, andg®n. Thea' expansion ng 12
is valid when these are large in string units: R2Q1~ é<l or o <ry. (3.5
gQ;>1, gQs>1, ¢g?n>1. (3.2
This result does not depend on how the strings are wound, or
D-brane perturbation theory, on the other hand, involvesyhether they form a long string of leng®RQ,Qs, although
both open and closed string loops. Closed string loops havghe precise momentum quantization condition dpkg. A
factors ofg® while open string loops have factors@®; or  T-dual analysis gives the condition<rs. Analogous con-
gQs, corresponding to the fact that the open string loops caiderations with right-movers giveg<r,rs.
end on any of thé®-branes. Hence the classical linfi®1) is While we will not attempt to do so in this paper, it may be
a largeN limit of the open string field theory. Closed string possible to drop the restriction to the dilute gas region using
loops are suppressed. The lafgdimit is the sum over pla- ideas introduced ifid]. It is possible to view the corrections
nar open string diagrams with holes in them. In practice thigo the entropy away from the dilute gas limit as arising from
series cannot be summed. A primary tool for analyzing theantibranes or closed “fractional” stringsl3]. The form of
largeN limit is open string perturbation theory. This is good these corrections is highly constrained by duality and it is
if possible—with some assumptions—to account for all the en-
tropy everywhere in the moduli space in this fashidn.
0Q:<1, gQs<1, g°n<L. (3.3 Possibly this approach could be used to extend the results of

N _ _ this paper over the entire moduli space at low energies.
The last condition arises because, at the price of a power of

g2, a Feynman diagram can pick up a powendfy hooking IV. NEUTRAL SCALAR EMISSION
propagators to the momentum in the external staig. '
Hence, the classical limi3.1) may be characterized ei- In this section we will compute the decay rate into neutral

ther by the classical genus zero closed string theory or by thecalars of an excited black hole using the Hawking formula
largeN limit of the quantumD-brane open string theory. In including greybody factors and compare it to the correspond-
general, factorization of largd matrix elements implies that ing perturbative string decay rate.

every largeN theory is describable by a classical master The greybody factor in the Hawking formu{a.4) for the
field. In the present context, this classical master field is proemission rate of a given type of outgoing particle at enesgy
vided by the closed string theory. These two different repreequals the absorption cross sectiog, for the particle in-
sentations of the limi¢3.1) are useful in different regimes of coming at energy [5,14]. Greybody factors were computed
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for the emission of various particles ji5,16], but not for  Forr>r,, we see from Eqsi4.4) and (4.3 that Eq.(4.5

black holes in the dilute gas approximation. reduces to

We first compute this absorption cross section for neutral
scalars incident on the near extremal black hole given in Eq. d*y 1— 3 —0 46
(2.4). The calculation is done by solving the Klein Gordon a2 1122 ¥=0. 4.6

equation describing the propagation of the particle on the _ _
fixed black hole background. The classical wave equation i§wo independent solutions are the Bessel and Neumann

the Laplacian in the five-dimensional Einstein metric functions
h d d T
5 g e o+ ?f [R=0, (4.1) Fvgpmhmx
2 2 2
r re re ™
=1+ 3]l 1+ )| 1+ ), G=\/;pl’2N1(p)- 4.7

The solution can be expressedres (1/r*?) (aF + 8G) and
, (4.2 has the following asymptotic expansion for very largeery
far from the black hole

—
onN

h=1-

—_
N

where w is the energy of the wave. In this theory there are
many scalars. The wave equati@hl) describes the interac-
tion of a scalar that does not couple to the gauge field
strength. One example of such scalar, studiedi7ii is an o B
off-diagonal componerte.g.,h;g) of the internal metric tan- +e“’”(— g3 — ¢ ”’4)
gent to theT“. For the other scalars both the wave equation 2 2

[17] and theD-brane calculation require modifications. The
function f is the product of the three harmonic functions
characterizing the black hole ang is the nonextremality
parameter. We assume that we are in the dilute gas region

_ ot & —izma_ B
R={az @ (2e 2

e—iw/4>

, 4.9

while for smallr,r~r,, we have have to use the small
expansion of the Bessel and Neumann functions

(2.7), together with the low energy condition Ji(p)~ g,
2
while we treat the ratios/Tg ,F1/rs,Io/r as order one. Ni(p)~—|p(In p+c)— ;} (4.9

The absorption cross section is usually computed from
solutions to the wave equation which have unit incomingwherec is a numerical constant. Using Ed4.9) and(4.7)
flux from infinity and no outgoing flux from the past horizon. we get, for smalr,
The absorption cross section is then the difference of the
incoming and outgoing flux at infinity. This difference will R— \/E a2 g+ E
be small at low energies. Equivalently one may compute the “N2® 1274
ratio of the ingoing flux at the future horizon to the incoming
flux from past infinity. We shall follow this latter approach At r=r, the term multiplyingg is very large. We will see
as it avoids finding the small difference of two larger quan-that this will imply thatg<c.

c+|n(wr)—%ﬂ. (4.10

tities. In the near zone we have the equation
The wave equatiori4.1) does not appear to be analyti-
cally soluble. The solutions can be approximated by match- hd LdR [(wrrirs)? w?rird
ing near and far zone solutions. We divide the space in two r3dr hr dr 16 +—7|R=0, (41D

regions: the far zone>r, and the near zone<r,, where
I'm iS the point where we will match the solutions, is  which is valid forr<r . Defining a new variable =r 3/r?
chosen so that the equation becomes

R=0, (4.12

r d dR C
Mo Mn<<rm<rg,ls, org r—<1- (4.4 (l—v)a(l—v)£+ D+;

m

Notice that the last condition is automatically satisfied, givenwhere
the others, since~T, .

In the far zone after the change of variablegtowr, and _ | @rilsly 2 | @riTs 2

R=r"32y the equation becomes T2z ) M 2 (4.13
d?y cls —3/4+ W (ri+rd) N rirgo? N o The horizon is now a# =1 and the matching region {r ;)
dp? p? p? - #=0. is at smallv. Very close to the horizon we can change vari-

(4.5 ables toy=—In(1—v) and the equation becomes



866 JUAN MALDACENA AND ANDREW STROMINGER 55

d’R F~E+v(G+G' Inv)+--, (4.22
d_7+(C+D)R:0’ (4.19
y where the constants, G, andG’ are independent of but
which has the solutions depend ore andb. The contribution to the independent

term comes only from the first term in Eg.21):

Ri,=exd —ivC+D In(1-v)] o
_ I'(l—ia—ib)
Rou=exd +iyC+D In(1-v)] (4.15 E= I'(1-ib)[(1—ia)’

Rin (Row is the ingoing(outgoing solution at the horizon. Now we match the solutiongt.22 and(4.10 together with
The boundary condition is that far~1 the solution should their first derivatives at=r,,. We obtain the equations
behave like

(4.23

: T oy @, B 2
R=Aexd —iJC+D In(1-v)], (4.1 5 0’9 s+ —[ctin(ery) ——>
2 2 0y
where A is a constant to be determined later. Now let us =A[E+0,(G+G’ Inv)],
solve Eq.(4.12). We define new variables andF by
- — A ,—i(a+b)/ T 4
z=(1-v), R=Az'@"D2F, (4.17 \@wwg 1+—w2r2)=—2Avm(G+G’ Inv,+G).
wherea andb will be fixed below to simplify the equation. " (4.24
Substituting Eq.4.17) into Eqg. (4.12, we obtain a hyper-
geometric equation foF: Using Eq.(4.4) andv,,=r %/I’rzn we conclude tha/a<1.
) We can also neglect the term involvign the first equation
d°F dF in Eq. (4.24. We then obtain
2(1—7) — +[y—(1—ia—ib)z] — +abF=0, in Eq.(4.29 !
dz dz 8
(4.18 \/g WP =AE, "<, (4.29
wherey=(1—ia—ib), anda andb are defined by the equa-
tions (a+b)?=4(C+D) andab=C. This yields so that we do not nee@ to compute the incoming flux.

Notice that we are basically matching the free particle solu-

_ONrse” o tion =0 to the amplitude of the solution inside the throat.
2rg 47TR’ This is reasonable considering that the wavelength is much
larger than the size of the black hole.
_onfse? o 4.19 The conserved flux is given by
2r0 47TT|_’ ’

1 3 dR

where we have used E.9. f=5 |R*hr® 4—c.c.
Equation(4.18 has a one parameter family of normalized

solutions. Imposing the boundary conditigh16) and using The incoming flux from infinity, as calculated from Eqgs.

the definitions(4.17) we find that the desired solution is (4.26), (4.8, and(4.29, is

. (4.26

R=Az @"P2E(—ja —ib,1-ia—ib—¢,2), 2

(4.20 fo=—w

o

5 (4.27

wheree is a regularization parameter we introduce for later
convenience. Note th&(a,,7,0)=1 while the other solu-

tion to Eq. (4.18 behaves ag! "F(...)=Z'G"P corre- 1 dRrR
sponding to an outgoing wave. To determine the form of the fabS:E R*2r3(1-v) P b —r(a+b)|AJ2
solution for smallv we express thé& in terms of 1-z=v v

The flux into the black hole at the future horizon is

using the hypergeometric relation (4.28
o The absorption cross section for tBewave is then, using
F(—ia,—ib,1-ia—ib—¢,2) Eq. (4.25
T'(l-ia-ib—e)I'(1—e¢) (i ib ¢ b
“T(A—b-oT(l-ia—e & TPev) oS T =13 (a: ) |E| 203 g (4.29
in

_I(1-ia—ib—e(~1+e)

+vl” m . The absorption cross section for a plane wave of frequency
I'(=ib)I'(-ia) is related to theS-wave cross section bysee[7] Egs.
XF(1—ia—e1—ib—€,2—€v). (421 (6.29-(6.31]
Note that the singularities cancel fer-0. The resulting ex- Am (atb) _
9 9 Taps= 3 Oop= 2713 |E| 2. (4.30

pression has the following expansion for small ®



Next we computéE|2. Using the identity

_i 2_
IT(1—ia) Snoa (4.3
we find
1 _y ab [e2ﬂ-(a+b)_1] 43
@_ W(a+b) (GZWa_l)(eZWb_l)' ( . 2

Inserting the values ad andb from Eq.(4.19 in Eq. (4.32
and then in Eq(4.30, we obtain the final expression for the
absorption cross section

9 2.9 TO e/Tn—1
Taps= 27TII5 —- (€21 1)(e"@"R_1)" (4.33

where the Hawking temperature is

T

1 1/1 1
( (4.39

)
According to Hawking 14], the emission rate is equal to

1 d*k
T'h=0abs gormy—7 2

52,22 T 1 1 d*k
=em rZl.r5 7 (ew/ZTL_l) (ewIZTR_ 1) (2,”_)4
(4.39
The D-brane emission rate in the dilute gas region is
given by[7]
2222 Tw 1) 1) d*k
D= ™ T1ls 5 Pl o7 [P\ 2TR) (27)*
52,22 T 1 1 d*k
—emTils (ei—1) (e*R—1) (2m)*"
(4.36
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mensions they are massive particles with mass saturating a
BPS bound. In five dimensions they are massless particles
with momentum along the direction of the string. Hence in
the limit of large R, the problems of neutral and charged
emission are related by a boost along the direction of the
string. Since both the string and the spacetime picture are
boost invariant in this limit, we expect the agreement found
in the neutral case to extend to the charged case.

We begin by calculating the emission rate in the string
picture. The string calculation is a simple extension of the
calculation in[7] in which one relaxes the condition that the
interacting pair of left- and right-moving oscillations have
opposite momenta. The emission rate in the dilute gas region

IS
f“ dps f“ das
0o 2mPg Jo 27qo
X (2m)28(Kg— Po— o) 8(Ks— Ps+0s)
X(p-a/2)%p(Po/TL)p(do/Tr),

where (g,ks,K) is the momentum of the incoming particle
and (q,pPs),(dg, —gs) are the momenta of the left and right
movers on the stringks is the charge from the five-
dimensional point of view and is of the form/R for some
integerm. Since they are massless partiggs ps, 4p=05s.
Momentum conservation implies thapy=(ky+Ks)/2,
go= (ko—ks)/2. Evaluating the integrals in E¢5.1) we find

d*k 8mr?r2
b= i

(5.9

m(kg—k3)
2k,

1 1 d*k
X (e(k0+ ks)/2T _ 1) (e(kofks)/ZTR_ 1) (277)4 .

(5.2

—9,2,2,2
I'p=2mrirg

Note that we do not assume thaj<T, .

Now we turn to the Hawking calculation. We first calcu-
late the absorption cross section by solving the Klein Gordon
wave equation on this background. It is easier to think of the

The factors ofp. g come from the thermal occupation fac- background as six-dimensional. The six-dimensional dilaton
tors. We see that this expression agrees precisely with E¥.€ > is constant4], so that the six-dimensional Einstein

(4.35.

To recover the results ¢¥], we make the further approxi-
mation Tr<T,_. One then hasTy=2Tg, o~Ty,
p(w/2Tg)~p(w/Ty) andp(w/2T ) ~2T, /w. Using the ex-
pression(2.8) for the area, the decay rat4.36) then reduces
to

d*k

(2m*

(0]

FH:FD:AHP(ﬁ) (4.37

V. CHARGED SCALAR EMISSION

Now we turn to the problem of calculating the emission

rates for scalars that carry Kaluza-Klein charge.five di-

5The Tr<<T, limit of the results of this section were obtained in

[9].

and string metrics are equivalent. For low energies the domi-
nant contribution to the cross section comes from the
S-wave, so that the Klein Gordon equation becomes

1

JG

3 (GG 9,®)=0,
(5.3

(G%93+ 2G5+ G°92) ® +

with the near-extremal metric ¢#]. We work in the dilute
gas regiomrg,r,<r,,rs.

Defining @ = e~ ot~ 'ks°R(r) we obtain the radial equa-
tion

2 2

2

r r r
1+I’_; 1+r—g [k02_k52+(k03in|'10'—k5005fv')2r—g R
h d h 3dR 0 iy
e\ =0 (5.4
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whereh is defined in Eq(4.2). We define new variables VI. SCALAR ABSORPTION
_ In the preceding two sections we calculated and compared
o o o v . (ko¥ks) , ) L in th : d K ) is al
w'?=ky?—kg?, e =e"" ——"  rl/=rysinhs’. emission rates in the string and Hawking pictures. It is also
w of some interest to consider absorption rates, which have the
(5.9 qualitative difference that they do not vanish in the classical
limit.®

Reexpressing E5.4) in terms of these new variables, We  pjgces of the calculation already appeared in the preced-
find it reduces to Eqi4.1) governing neutral absorption with jng sections and it is not hard to see the agreement directly.
the substitutionso—«’ andr,—r,. Notice that the param-  ap jlluminating subtlety is that the thermal factops x ap-
etersro,r;,r's are unchanged. Hence the results of the prepearing in the emission rate are replacedppy+1 in the
vious sectior(4.33 imply that the absorption cross section is gpsorption rate, corresponding to the matrix element of a
) bosonic creation rather than annihilation operator. The clas-
To' e -1 sical absorption cross section as computed from the classical
2 (ew’/ZTL_ 1)(e‘”"2Té— 1) . (5.6 wave equatiop i§ equal to the string absorptiqn Cross segtion
minus the emission rate for that mode. This difference is just
proportional to p, +1)(prt+1)—pLpr=pLPr/ Py - This is
precisely the combination of thermal factors we see appear-
ing in the classical calculations done above in Egs33

Tabs= 271 ir é

Rewriting this in term of the original variables

O _P e Kotks and (5.8). Hence the appearance of this particular combina-
T T LI tion of factors is already necessary for agreement in the clas-
sical limit.
o' Ky—Ks It is also interesting to consider the absorption cross sec-
T T (5.7 tionin the cas@g=T, =0, which corresponds to absorption
R R by an extremal black hole. One finds
w_;:ko+k5+k0_k5:k0_¢k5, ® 1
TH 2T|_ 2TR TH Oabs— AH 2_T|_ m (61)

where ¢=tanhy is the electrostatic potential at the horizon,

B=Ay(T ), With Notice the appearance of the thermal facgw/2T, )+1

which has no simple explanation from the spacetime black
r%sinh?a rgsinhza -1 hole picture, but is obvious from the string perspective. This
7 is a salient example of how the classical greybody factors

“know” about the string.

Ao(r)= 212 r2

we finally obtain for the classical absorption cross section
VIl. EVOLUTION OF A NEAR-EXTREMAL

ﬂ_m BLACK HOLE

2 In this section we compare the rates of charge and neutral
emission, and discuss the problem of measuring the quantum
(5.8 state of a black hole with scattering experiments.
We first consider the decay rate due to charged emission.
A near-extremal black hole with excess energy

Tabs™ 2772I’§I’é

eko—ks#)/ Ty _ q
X (e KT 1) (eko k2R 1) "

The Hawking rate for charged particles is in genéfi] AE=Vr3e 27/2g® above extremality has a Hawking tem-
perature
1 d*k
I'=vogps elko—ksd)/ T _ 1 (277)4' (5.9 - 1 \/ﬁ (7.
" Q1QsR’ '

where the factor of the particle velocity=w'/ky, is a ki-
nematical factor ang is the scalar potential at the horizon.

Inserting Eq.(5.8) in Eq. (5.9) we obtain For smallAE, T, is smaller than the massRLbf the lightest

charged state andT4~T,. Hence the outgoing charged
2 > particles are all highly nonrelativistic. Their kinetic energies
m(ko"—Ks") are approximatelk,— ks~K2/2ks. It then follows from the
2kg thermal factors in Eq(5.10 that the kinetic energies are of
1 1 4%k order T,y (rather than the total energies as in the neutral
X case. Emission of a charged particle decreases both the total
(e(ko+ ks)/2T _ 1) (e(ko_kS)/ZTR_ 1) (2,”_)4 '

(5.10

— 2,.2,.2

6As discussed i6,17] this apparent time irreversibility follows
which agrees precisely with the string res{@t2). from the entropy formula and the second law.



55 BLACK HOLE GREYBODY FACTORS ANDD-BRANE . .. 869

energy and the charge of the black hole. The excess energyhereAS is the entropy carried away by the charged Hawk-

AE is decreased only by the kinetic energy of the outgoingng radiation.

particle which is jusfT. Now let us consider in this light the problem of measuring
With these approximations we can calculate the rate othe quantum microstate of a black hole. We might try to

decrease oAE due to emission of particles with char§e¢  measure the microstate by exciting(jierhaps repeatedly

from Eq. (5.10: with low energy quanta and measuring the outgoing charged
radiation resulting from the decay. According to Hawking,
dAE K2 w2 Jkss 1 the outgoing radiation carries no information about the mi-
T:j 2ks I'= @AHTH T, efs/M—1" (7.2 crostate which cannot be measured. Repeated experiments

only produce an ever-increasing amount of entropy in the
Note that typicallyks~T,_, whereRks is an integer, when radiation. In the string picture there is also some entropy in
RT.=(1/m)\n/Q,Qs is greater than one. This rate is expo- the outgoing radiation, because it is entangledth the
nentially suppressed by the facter*s’™ for ks>T . This  quantum state of the black holahich we do not directly
exponential suppression is due to the fact that the emissio,vp]easum However, this entanglement entropy can never ex-
of a particle with chargés reduces the entropy of the ex- ceedSgy, whereSgy, is the logarithm of the number of pos-
tremal black hole byAS=ks/T,, and so must be accord- gjpje piack hole states. This follows from the triangle in-
ingly suppressed. For |§.I‘®TL the tota}l emission rate for all equality for fine-grained entropie§19]: Sa+ Ss=Sas
charges can be approximated by an integral of(£c) over =|S,— Sg|. In the string picture the entropy in the radiation

positiveks: will grow initially but then will saturate at a valu,,,
which is at mostSg,,. For sufficiently rich interactions be-
dAE  w2{(e) - tween the radiation and black hole m_icrostates it should be
9t~ 30 AHTHTLR, RT>1. (7.3 possible to arrange so th&t,,=Sgy. Since the whole sys-

tem is unitary when this saturation occurs the black hole
For smallRT, charge emission is dominated by the minimal microstate is fully correlated with the radiation and has ef-
valueks;=1/R: fectively been measured. So in order to measure the mi-
crostate of the black hole—and to discern the difference be-
tween the nonunitary Hawking amplitudes and the unitary
string amplitudes—there must be at least of orfer quan-
tum states accessible to the radiation so that they can carry
an amount of information of ord&y,,. This requires a large
For neutral emission the integrals yle{IH] number of experiments_
As noted above, in the regioRT >1 these extremal
black holes tend to discharge Kaluza-Klein charge when they
dA_E= 34(5) 5 (7.5) interact. Indeed there is a simple relation between the en-
dt a2 THIH ' tropy produced and the charge lost. We see from (Ed)
that by the time the outgoing radiation has enough accessible

This expression has one more powefTgfin it than the one  ga4e5 1o determine the quantum microstate of the black hole,
for the charged emission. Hence at sufficiently low energie nas |ost all of its Kaluza-Klein charge.

charge emission always dominates. This is because there is o the other hand foR T, <1, one could excite the black
more phase space available to the the massive charged pgfsie by an energy E>n/R above extremality and still re-
ticles. However for smalRT, charged emission is €xponen- ain within the near-extremal and dilute gas regions. In this
tially suppressed and the energies at which it dominates OV&Bgion, charge emission is exponentially suppressed. Accord-

neutral emission become exponentially small. Hence chargﬁ]g to Hawking, the entropy of the outgoing radiation will be

emission dominates in some regimes while neutral emissioBf S 'Y
i i order/ RAE, which is much greater than the origi-
dominates in others. Q1Qs g g

, nal entropySgy of the black hole. In the string picture the
N?‘Xt let us .conS|der the rate of chargg Io.ss by the bIaCléntropy of tthoutgoing radiation cannot exc&gg . So this
hole in the regiorR T, >1 where charge emission dominates. resents a sharp puzzle
Since the black hole decays by emitting charged particleg '
that carry charge of the order &£~ T, and kinetic energy
SAE~T, we conclude that in a typical emission process

dAE  w?ALT}
TN W e_l’RTL, RT <1. (7.4
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