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Black holes do not Hawking-radiate strictly blackbody radiation due to well-known frequency-dependent
greybody factors. These factors arise from frequency-dependent potential barriers outside the horizon which
filter the initially blackbody spectrum emanating from the horizon.D-brane bound states, in a thermally
excited state corresponding to near-extremal black holes, also do not emit blackbody radiation: The bound state
radiation spectrum encodes the energy spectrum of its excitations. We study a near-extremal five-dimensional
black hole. We show that in a wide variety of circumstances including both neutral and charged emission, the
effect of the greybody filter is to transform the blackbody radiation spectrum precisely into the bound state
radiation spectrum. Implications of this result for the information puzzle in the context of near-extremal black
hole dynamics are discussed.@S0556-2821~97!04602-X#

PACS number~s!: 04.70.Dy, 04.70.Bw, 11.25.Mj

I. INTRODUCTION

In Ref. @1#, the Bekenstein-Hawking entropy formula was
derived for certain five-dimensional extremal black holes in
string theory by counting the asymptotic degeneracy of
Bogomol’ni-Prasad-Sommerfield-~BPS-! saturatedD-brane
bound states. This derivation required an extrapolation from
the small black hole region, whereD-brane perturbation
theory is good and the Schwarzchild radius is smaller than
the string length, to the large black hole region where the
low-energy semiclassical approximation and the Bekenstein-
Hawking formula are valid. The extrapolation was justified
by the special topological character of BPS states, which
implies that their degeneracies should not change under
smooth variations of couplings. It was stated in@1# that the
use ofD-brane perturbation theory to study large black holes
was likely limited to such supersymmetric counting prob-
lems, and could not be extended to study dynamics of non-
BPS excited states.

However, this view proved to be too conservative: In@2#,
the entropy of near-extremal states of large black holes was
found, in the ‘‘dilute gas’’ region1 ~defined in Sec. II!, to be
completely accounted for by low-lying non-BPS oscillations
of an effective string. We shall see that this effective string,
which arises in the description of boundD-branes@1#, pro-
vides a very robust picture of extremal black hole dynamics.
The entropy-counting in@2# worked because the oscillations
are highly diluted in the dilute gas region and potentially
strong interactions between them are accordingly suppressed.
Decay of these excited states~i.e., Hawking radiation! occurs
as oscillations dissipate into radiation@3#, and it was further
noted@3# that the rate had roughly the right features. How-

ever, in the large black hole region computation of the string
radiation rate appears to be a strong coupling problem.
Hence it was stated in@2# that string techniques were un-
likely to give a precise calculation of the decay rate.

However, this view also proved to be too conservative.
The leading order decay rate of the thermally excited string
into a single species of neutralS-wave scalars of frequency
v is given by

GD5geffvrS v

2TL
D rS v

2TR
D d4k

~2p!4
. ~1.1!

geff is a~charge-dependent but frequency-independent! effec-
tive coupling of left- and right-moving oscillations of ener-
giesv/2 to an outgoing scalar of energyv. TL andTR are the
temperatures of left and right moving oscillations, and are
related to the overall temperatureTH by
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1
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5

2

TH
. ~1.2!

The thermal factorr~v/T! is

rS v

T D[
1

ev/T21
. ~1.3!

These thermal factors arise in Eq.~1.1! from the left- and
right-moving oscillation densities. The black hole decay rate,
on the other hand, is given by the Hawking formula@5#

GH5sabs~v!rS v

TH
D d4k

~2p!4
. ~1.4!

wheresabs~v! is the greybody factor, which equals the clas-
sical absorption cross section. In the limitTR!TL these
equations simplify dramatically, and both depend on the fre-
quency asr~v/TH!. It was shown in@3# and @6# that, in this
limit, both GD andGH are proportional to the area and, in a
surprising paper by Das and Mathur@7,8#, that the numerical

1Outside this region interactions between left- and right-moving
oscillations cannot be neglected and the string calculations are dif-
ficult @3,4#.
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coefficient also matches. Note that this result is confined to
the near extremal region, in which the wavelength of the
outgoing radiation is much larger than the Schwarzschild
radius.

In this paper we consider the highly nontrivial comparison
in which the restrictionTR!TL is dropped, while remaining
in the dilute gas and near extremal regions. After a lengthy
calculation we find that the semiclassical greybody factors
are

sabs~v!5
geffvr~v/2TL!r~v/2TR!

r~v/TH!
, ~1.5!

implying GD5GH and exact agreement between the string
and semiclassical calculations.

Let us summarize this. The black hole emits blackbody
radiation from the horizon. Potential barriers outside the ho-
rizon act as a frequency-dependent filter, reflecting some of
the radiation back into the black hole and transmitting some
to infinity. The filtering acts in just such a way that the black
hole spectroscopy mimics the excitation spectrum of the
string. Hence to the observer at infinity, the black hole, mas-
querading in its greybody cloak, looks like the string, for
energies small compared to the inverse Schwarzschild radius
of the black hole.

In the past, greybody factors have been largely regarded
as annoying factors which mar the otherwise perfectly ther-
mal blackbody radiation. Now we see that they have an im-
portant place in the order of things, and transmit a carefully
inscribed message on the quantum structure of black holes.
We also see that in order to compare the string and black
hole pictures, we must take into account processes which
occur well outside the horizon of the black hole solution.
This is surprising in thatD-brane bound states comprising
the string are conventionally viewed as confined to a very
small region.

We further consider the case of charge emission.2 The
formulas generalize the above with the appearance of an ex-
tra charge parameter. It turns out that under some circum-
stances charge emission dominates neutral emission for a
near-extremal black hole. Again we find exact agreement
between string and semiclassical results everywhere in the
dilute gas region.

The reason for this precise agreement remains mysterious.
As shall be explained in Sec. III, one calculation is an ex-
pansion in the size of the black hole, while the other is an
expansion in the inverse size.A priori both were expected to
get corrections and there was no obvious reason that they
should agree. The agreement strongly suggests that there is
much yet to be learned about these fascinating objects. Per-
haps there is a supersymmetric nonrenormalization theorem
protecting the interactions between BPS states from correc-
tions, or they are suppressed by our restrictions to low ener-
gies and or the dilute gas region. We see no reason to expect
the agreement to persist outside the near-extremal region
when wavelengths are of order the Schwarzschild radius—
but there could be more surprises.

In conclusion, the string picture of black hole dynamics is
apparently far more robust than originally envisioned in@1#,
at least when restricted to low excitation energies in the di-
lute gas region. The string decay rates, extrapolated to the
large black hole region, agree precisely with the semiclassi-
cal Hawking decay rates in a wide variety of circumstances.
However, the string method not only supplies the decay
rates, but it also gives a set of unitary amplitudes underlying
the rates. We find it tempting to conclude that these extrapo-
lated amplitudesare also correct. It is hard to imagine a
mechanism which corrects the amplitudes, but somehow
conspires to leave the rates unchanged.

This robust nature of the string picture is very significant
because it allows us to directly confront the black hole infor-
mation puzzle, which is of course a primary goal of these
investigations. According to Hawking, information is lost as
a large excited black hole decays to extremality. On the other
hand, the string analysis—extrapolated to the large black
hole region—gives a manifestly unitary answer. We will not
reconcile these points of view, but we will make some hope-
fully relevant observations along the way.

In Sec. II we review the classical black hole solution. In
Sec. III we discuss the semiclassical limit and expansion
parameters. In Sec. IV we compute and compare the emis-
sion rates for neutral scalars using the Hawking and string
methods. Section V considers the charged case. Comparisons
of absorption rates are made in Sec. VI. Section VII dis-
cusses the rate of charge loss of a black hole and contains
comments on measuring the quantum microstate by scatter-
ing experiments.

II. THE CLASSICAL SOLUTION

In this section we collect some known properties of the
classical five-dimensional black hole solutions and their
D-brane descriptions which will be needed in the following.
Except where otherwise noted, we adopt the notation of@4#,
including a851, so that all dimensional quantities are mea-
sured in string units. The low-energy action for ten-
dimensional type IIB string theory contains the terms

1

16pG10
E d10xA2g$e22f@R14~¹f!2#2 1

12H
2%

~2.1!

in the ten-dimensional string frame.H denotes the Ramond-
Ramond~RR! three form field strength, andf is the dilaton.
The Neveu-Schwarz~NS! three form, self-dual five form,
and second scalar are set to zero. We will letg denote the
ten-dimensional string coupling and define the zero mode of
f so thatf vanishes asymptotically. The ten-dimensional
Newton’s constant is thenG1058p6g2. We wish to consider
a toroidal compactification to five dimensions with anS1 of
length 2pR and aT4 of four-volume~2p!4V.3 We will work

2The emission rate in the limitTR!TL was recently derived in
@9#.

3With these conventions,T-duality sendsR to 1/R or V to 1/V,
andS-duality sendsg to 1/g.
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with the following near-extremal solution labeled by three
charges4 @4#, given in terms of the ten-dimensional variables
by

e22f5S 11
r 5
2

r 2D S 11
r 1
2

r 2D
21

, ~2.2!

H52r 5
2e312r 1

2e22f* 6e3 , ~2.3!

ds25S 11
r 1
2

r 2D
21/2S 11

r 5
2

r 2D
21/2

3F2dt21dx5
21

r 0
2

r 2
~coshsdt1sinhsdx5!

2

1S 11
r 1
2

r 2Ddxidxi G1S 11
r 1
2

r 2D
1/2S 11

r 5
2

r 2D
1/2

3F S 12
r 0
2

r 2D
21

dr21r 2dV3
2G , ~2.4!

where*6 is the Hodge dual in the six dimensionsx0,...,x5

and e3 here is the volume element on the unit three-sphere.
x5 is periodically identified with period 2pR; xi , i56,...,9,
are each identified with period 2pV1/4. The three charges are

Q15
V

4p2g E e2f* 6H,

Q55
1

4p2g E H,

n5RP, ~2.5!

whereP is the total momentum around theS1. All charges
are normalized to be integers and taken to be positive. In
terms of these charges the parameters of the solution read

r 1
25

gQ1

V
, r 5

25gQ5 ,

r 0
2 sinh 2s

2
5

g2n

R2V
, r n

2[r 0
2 sinh2 s, ~2.6!

and we are in the dilute gas region defined by

r 0 ,r n!r 1 ,r 5 . ~2.7!

The extremal limit isr 0→0, s→` with n held fixed.
The entropy and energy are

E5
p

4G5
S r 121r 5

21
r 0
2cosh2s

2 D
5

1

g2 SRgQ11RVgQ51
g2n

R
1
VRr0

2e22s

2 D ,

S5
A

4G5
5
2p2r 1r 5r 0coshs

4G5
, ~2.8!

where the five-dimensional Newton’s constant is
G55g2p/4VR.

TheD-brane representation of this state involves a bound
state ofQ5 five-branes wrappingT

43S1 andQ1 one-branes
wrapping theS1. The excitations of this bound state are ap-
proximately described by transverse oscillations~generated
by open strings attached to theD-brane!, within the five-
brane, of a single effective string wrappedQ1Q5 times @10#
around theS1. These oscillations carry the momentumn and
are described by a gas of left and right movers on the string.
Equating the energy of this gas to

n

R
1
RVr0

2e22s

2g2

and its momentum ton/R we can determine the total energy
carried by the right and the left movers. Their entropies
match Eq.~2.8! in the dilute gas region in Eq.~2.7! @2#. The
left- and right-moving oscillations are governed by effective
left- and right-moving temperatures

TL5
1

p

r 0e
s

2r 1r 5
, TR5

1

p

r 0e
2s

2r 1r 5
. ~2.9!

Notice that in the dilute gas regionTL ,TR!1/r 1,1/r 5 .

III. CLASSICAL LIMIT AND EXPANSION PARAMETERS

We consider a number of different expansions in this pa-
per. The semiclassical expansion is a quantum expansion
about a classical limit in which black hole radiation is sup-
pressed. Large~relative to the string length! black holes can
be analyzed in sigma model perturbation theory, while small
black holes can, in favorable cases, be analyzed inD-brane
perturbation theory. Those favorable cases are when the pa-
rameters are in the dilute gas region. Both large and small
black holes have classical limits~and as explained in@11#
and in Sec. III B below, both deserve the name black hole!.
In this section we describe these regions and expansions in
detail.

A. Classical limit

In the classical limit the action becomes very large so that
the stationary phase approximation can be applied. Since the
action ~2.1! has an explicit 1/g2 prefactor, the limitg→0
with the fields held fixed is a classical limit. Noting the ex-
plicit factors of 1/g in the definitions~2.5! of the integer
charges, as well as the explicit 1/g2 in the definitions of the
energyE and momentumP, this is equivalent to

g→0,

with gQ1 , gQ5 , g2n fixed. ~3.1!

Hence the quantization conditions on integer charges imply
that they diverge in the classical limit, as expected. Noting
the relations~2.6!, one may equivalently define the classical
limit with r 1, r 5, andr n held fixed.

4This corresponds to the limita,g@s of the solution in@4#, which
is the dilute gas region discussed in the Sec. III C. The exact metric
has subleading corrections.

55 863BLACK HOLE GREYBODY FACTORS ANDD-BRANE . . .



The classical solutions depend only on the productsgQ1,
gQ5, andg

2n and so are finite in the limit~3.1!. The stan-
dard definitions of the Arnowitt-Deser-Misner~ADM ! en-
ergy and momentum involve explicit 1/g2 factors and so di-
verge. This divergence can be eliminated by a change of
units accompanying the limit. However, the entropy diverges
like 1/g2, and is a dimensionless number which cannot be
rescaled.

B. Large and small black holes

It follows from the metric~2.4! that gQ1, gQ5, andg
2n

are the characteristic~squared! sizes of the black hole.
Hence, the black hole is large or small depending on whether
these quantities are large or small relative to the string scale.
One might question the use of the phrase ‘‘black hole’’ to
refer to something smaller than the string scale. This name is
appropriate because the black holes are black independently
of their size. Because of the divergence in the classical limit
of the entropy in Eq.~2.8!, it costs an infinite amount of
entropy for the black hole to lose any finite fraction of its
mass in outgoing radiation@6,12#. Hence, the second law
prohibits radiation from escaping, and black holes are black
in the classical limit~3.1! independently of their size.

Closed string perturbation theory naturally treats the fields
f, gmn andH as order one. Hence, noting the explicit factors
of 1/g in Eq. ~2.5!, it is an expansion ing2 with gQ1, gQ5,
andg2n fixed. The classical limit~3.1! is therefore described
by genus zero closed string theory. A primary tool for ana-
lyzing black hole solutions in classical closed string theory is
thea8 expansion. The solutions~2.2!–~2.4! are solutions of
the leading order equations. They are characterized by the
squared length scalesgQ1, gQ5, andg

2n. Thea8 expansion
is valid when these are large in string units:

gQ1.1, gQ5.1, g2n.1. ~3.2!

D-brane perturbation theory, on the other hand, involves
both open and closed string loops. Closed string loops have
factors ofg2, while open string loops have factors ofgQ1 or
gQ5, corresponding to the fact that the open string loops can
end on any of theD-branes. Hence the classical limit~3.1! is
a largeN limit of the open string field theory. Closed string
loops are suppressed. The largeN limit is the sum over pla-
nar open string diagrams with holes in them. In practice this
series cannot be summed. A primary tool for analyzing the
largeN limit is open string perturbation theory. This is good
if

gQ1,1, gQ5,1, g2n,1. ~3.3!

The last condition arises because, at the price of a power of
g2, a Feynman diagram can pick up a power ofn by hooking
propagators to the momentum in the external state@11#.

Hence, the classical limit~3.1! may be characterized ei-
ther by the classical genus zero closed string theory or by the
largeN limit of the quantumD-brane open string theory. In
general, factorization of largeN matrix elements implies that
every largeN theory is describable by a classical master
field. In the present context, this classical master field is pro-
vided by the closed string theory. These two different repre-
sentations of the limit~3.1! are useful in different regimes of

the couplings according to Eqs.~3.2! and ~3.3!. The closed
string theory is good for large black holes~relative to the
string scale! while theD-brane field theory is good for small
black holes. This relation is being explored in@11#.

In summary, the limit~3.1! defines a semiclassical limit
for both small and large black holes. The semiclassical
Hawking calculation is well justified in the large black hole
region ~3.2!. D-brane perturbation theory is well justified in
the region~3.3!.

C. Dilute gas region

A further condition is needed in order to simplify the
calculation of nonextremal entropies and decay rates in the
string picture. In general, the left- and right-moving oscilla-
tions on the string interact, and their entropy and energy
spectrum is not exactly that of a free two-dimensional gas.
We can understand heuristically when this free gas approxi-
mation will break down as follows~a more precise discus-
sion can be found in@4#!. Since these left and right-movers
represent oscillations of the string, we see that a necessary
condition is that the typical amplitudeA of the oscillations is
smaller than the typical wavelengthl. This is the standard
small amplitude approximation for propagating waves. The
total energy in these oscillations isn/R if they are all left-
moving. If this energy is carried by an effective string of
lengthQ1Q5R and tension 1/Q5g we get the relation

E5
n

R
;
Q1R

g SAl D 2. ~3.4!

Demanding thatA!l we find

ng

R2Q1
;
r n
2

r 1
2 !1 or r n!r 1 . ~3.5!

This result does not depend on how the strings are wound, or
whether they form a long string of lengthRQ1Q5 , although
the precise momentum quantization condition does@10#. A
T-dual analysis gives the conditionr n!r 5 . Analogous con-
siderations with right-movers givesr 0!r 1 ,r 5 .

While we will not attempt to do so in this paper, it may be
possible to drop the restriction to the dilute gas region using
ideas introduced in@3#. It is possible to view the corrections
to the entropy away from the dilute gas limit as arising from
antibranes or closed ‘‘fractional’’ strings@13#. The form of
these corrections is highly constrained by duality and it is
possible—with some assumptions—to account for all the en-
tropy everywhere in the moduli space in this fashion@4#.
Possibly this approach could be used to extend the results of
this paper over the entire moduli space at low energies.

IV. NEUTRAL SCALAR EMISSION

In this section we will compute the decay rate into neutral
scalars of an excited black hole using the Hawking formula
including greybody factors and compare it to the correspond-
ing perturbative string decay rate.

The greybody factor in the Hawking formula~1.4! for the
emission rate of a given type of outgoing particle at energyv
equals the absorption cross sectionsabs for the particle in-
coming at energyv @5,14#. Greybody factors were computed
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for the emission of various particles in@15,16#, but not for
black holes in the dilute gas approximation.

We first compute this absorption cross section for neutral
scalars incident on the near extremal black hole given in Eq.
~2.4!. The calculation is done by solving the Klein Gordon
equation describing the propagation of the particle on the
fixed black hole background. The classical wave equation is
the Laplacian in the five-dimensional Einstein metric

F hr 3 d

dr
hr3

d

dr
1v2f GR50, ~4.1!

f5S 11
r n
2

r 2D S 11
r 1
2

r 2D S 11
r 5
2

r 2D ,
h512

r 0
2

r 2
, ~4.2!

wherev is the energy of the wave. In this theory there are
many scalars. The wave equation~4.1! describes the interac-
tion of a scalar that does not couple to the gauge field
strength. One example of such scalar, studied in@7#, is an
off-diagonal component~e.g.,h78! of the internal metric tan-
gent to theT4. For the other scalars both the wave equation
@17# and theD-brane calculation require modifications. The
function f is the product of the three harmonic functions
characterizing the black hole andr 0 is the nonextremality
parameter. We assume that we are in the dilute gas region
~2.7!, together with the low energy condition

vr 5!1 ~4.3!

while we treat the ratiosv/TR,L1,r 1 /r 5 ,r 0 /r n as order one.
The absorption cross section is usually computed from

solutions to the wave equation which have unit incoming
flux from infinity and no outgoing flux from the past horizon.
The absorption cross section is then the difference of the
incoming and outgoing flux at infinity. This difference will
be small at low energies. Equivalently one may compute the
ratio of the ingoing flux at the future horizon to the incoming
flux from past infinity. We shall follow this latter approach
as it avoids finding the small difference of two larger quan-
tities.

The wave equation~4.1! does not appear to be analyti-
cally soluble. The solutions can be approximated by match-
ing near and far zone solutions. We divide the space in two
regions: the far zoner.rm and the near zoner,rm , where
rm is the point where we will match the solutions.rm is
chosen so that

r 0 ,r n!rm!r 1 ,r 5 , vr 1
r 1
rm

!1. ~4.4!

Notice that the last condition is automatically satisfied, given
the others, sincev;TL,R .

In the far zone after the change of variables tor5vr , and
R5r23/2c the equation becomes

d2c

dr2
1F11

23/41v2~r 1
21r 5

2!

r2
1
r 1
2r 5

2v4

r4
1...Gc50.

~4.5!

For r.rm , we see from Eqs.~4.4! and ~4.3! that Eq.~4.5!
reduces to

d2c

dr2
1S 12

3

4r2Dc50. ~4.6!

Two independent solutions are the Bessel and Neumann
functions

FAp

2
r1/2J1~r!,

G5Ap

2
r1/2N1~r!. ~4.7!

The solution can be expressed asR5(1/r 3/2)(aF1bG) and
has the following asymptotic expansion for very larger , very
far from the black hole

R5
1

r 3/2 Feivr S a

2
e2 i3p/42

b

2
e2 ip/4D

1e2 ivr S a

2
ei3p/42

b

2
eip/4D G , ~4.8!

while for small r ,r;rm , we have have to use the smallr
expansion of the Bessel and Neumann functions

J1~r!;
r

2
,

N1~r!;
1

p Fr~ ln r1c!2
2

rG , ~4.9!

wherec is a numerical constant. Using Eqs.~4.9! and ~4.7!
we get, for smallr ,

R5Ap

2
v3/2H a

2
1

b

p Fc1 ln~vr !2
2

v2r 2G J . ~4.10!

At r5rm the term multiplyingb is very large. We will see
that this will imply thatb!a.

In the near zone we have the equation

h

r 3
d

dr
hr3

dR

dr
1F ~vr nr 1r 5!

2

r 6
1

v2r 1
2r 5

2

r 4 GR50, ~4.11!

which is valid for r,rm . Defining a new variablev5r 0
2/r 2

the equation becomes

~12v !
d

dv
~12v !

dR

dv
1SD1

C

v DR50, ~4.12!

where

D5S vr 1r 5r n
2r 0

2 D 2, C5S vr 1r 5
2r 0

D 2. ~4.13!

The horizon is now atv51 and the matching region (r;rm)
is at smallv. Very close to the horizon we can change vari-
ables toy52ln~12v! and the equation becomes
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d2R

dy2
1~C1D !R50, ~4.14!

which has the solutions

Rin5exp@2 iAC1D ln~12v !#

Rout5exp@1 iAC1D ln~12v !# ~4.15!

Rin ~Rout! is the ingoing~outgoing! solution at the horizon.
The boundary condition is that forv;1 the solution should
behave like

R5A exp@2 iAC1D ln~12v !#, ~4.16!

whereA is a constant to be determined later. Now let us
solve Eq.~4.12!. We define new variablesz andF by

z5~12v !, R5Az2 i ~a1b!/2F, ~4.17!

wherea andb will be fixed below to simplify the equation.
Substituting Eq.~4.17! into Eq. ~4.12!, we obtain a hyper-
geometric equation forF:

z~12z!
d2F

dz2
1@g2~12 ia2 ib !z#

dF

dz
1abF50,

~4.18!

whereg5(12 ia2 ib), anda andb are defined by the equa-
tions (a1b)254(C1D) andab5C. This yields

a5
vr 1r 5e

s

2r 0
5

v

4pTR
,

b5
vr 1r 5e

2s

2r 0
5

v

4pTL
, ~4.19!

where we have used Eq.~2.9!.
Equation~4.18! has a one parameter family of normalized

solutions. Imposing the boundary condition~4.16! and using
the definitions~4.17! we find that the desired solution is

R5Az2 i ~a1b!/2F~2 ia,2 ib,12 ia2 ib2e,z!,
~4.20!

wheree is a regularization parameter we introduce for later
convenience. Note thatF~a,b,g,0!51 while the other solu-
tion to Eq. ~4.18! behaves asz12gF(...)5zi (a1b) corre-
sponding to an outgoing wave. To determine the form of the
solution for smallv we express theF in terms of 12z5v
using the hypergeometric relation

F~2 ia,2 ib,12 ia2 ib2e,z!

5
G~12 ia2 ib2e!G~12e!

G~12 ib2e!G~12 ia2e!
F~2 ia,2 ib,e,v !

1v12e
G~12 ia2 ib2e!G~211e!

G~2 ib !G~2 ia !

3F~12 ia2e,12 ib2e,22e,v !. ~4.21!

Note that the singularities cancel fore→0. The resulting ex-
pression has the following expansion for smallv:

F;E1v~G1G8 ln v !1••• , ~4.22!

where the constantsE, G, andG8 are independent ofv but
depend ona and b. The contribution to thev independent
term comes only from the first term in Eq.~4.21!:

E5
G~12 ia2 ib !

G~12 ib !G~12 ia !
. ~4.23!

Now we match the solutions~4.22! and~4.10! together with
their first derivatives atr5rm . We obtain the equations

Ap

2
v3/2H a

2
1

b

p Fc1 ln~vrm!2
2

v2rm
2 G J

5A@E1vm~G1G8 ln vm!#,

Ap

2
v3/2

b

p S 11
4

v2rm
2 D 522Avm~G1G8 ln vm1G8!.

~4.24!

Using Eq. ~4.4! and vm5r 0
2/r m

2 we conclude thatb/a!1.
We can also neglect the term involvingb in the first equation
in Eq. ~4.24!. We then obtain

Ap

2
v3/2

a

2
5AE,

b

a
!1, ~4.25!

so that we do not needb to compute the incoming flux.
Notice that we are basically matching the free particle solu-
tion b50 to the amplitude of the solution inside the throat.
This is reasonable considering that the wavelength is much
larger than the size of the black hole.

The conserved flux is given by

f5
1

2i SR* hr3 dRdr2c.c.D . ~4.26!

The incoming flux from infinity, as calculated from Eqs.
~4.26!, ~4.8!, and~4.25!, is

f in52vUa2U
2

. ~4.27!

The flux into the black hole at the future horizon is

f abs5
1

2i FR* 2r 02~12v !
dR

dv
2c.c.G52r 0

2~a1b!uAu2.

~4.28!

The absorption cross section for theS wave is then, using
Eq. ~4.25!

sabs
S 5

f abs
f in

5r 0
2 ~a1b!

v
uEu22v3

p

2
. ~4.29!

The absorption cross section for a plane wave of frequencyv
is related to theS-wave cross section by@see @7# Eqs.
~6.29!–~6.31!#

sabs5
4p

v3 sabs
S 52p2r 0

2 ~a1b!

v
uEu22. ~4.30!
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Next we computeuEu2. Using the identity

uG~12 ia !u25
pa

sinhpa
, ~4.31!

we find

1

uEu2
52p

ab

~a1b!

@e2p~a1b!21#

~e2pa21!~e2pb21!
. ~4.32!

Inserting the values ofa andb from Eq. ~4.19! in Eq. ~4.32!
and then in Eq.~4.30!, we obtain the final expression for the
absorption cross section

sabs52p2r 1
2r 5

2 pv

2

ev/TH21

~ev/2TL21!~ev/2TR21!
, ~4.33!

where the Hawking temperature is

1

TH
5
1

2 S 1TL 1
1

TR
D . ~4.34!

According to Hawking@14#, the emission rate is equal to

GH5sabs

1

ev/TH21

d4k

~2p!4

52p2r 1
2r 5

2 pv

2

1

~ev/2TL21!

1

~ev/2TR21!

d4k

~2p!4

~4.35!

The D-brane emission rate in the dilute gas region is
given by @7#

GD52p2r 1
2r 5

2 pv

2
rS v

2TL
D rS v

2TR
D d4k

~2p!4

52p2r 1
2r 5

2 pv

2

1

~ev/2TL21!

1

~ev/2TR21!

d4k

~2p!4
.

~4.36!

The factors ofrL,R come from the thermal occupation fac-
tors. We see that this expression agrees precisely with Eq.
~4.35!.

To recover the results of@7#, we make the further approxi-
mation TR!TL . One then has TH52TR , v;TH ,
r(v/2TR);r(v/TH) andr(v/2TL);2TL/v. Using the ex-
pression~2.8! for the area, the decay rate~4.36! then reduces
to

GH5GD5AHrS v

TH
D d4k

~2p!4
. ~4.37!

V. CHARGED SCALAR EMISSION

Now we turn to the problem of calculating the emission
rates for scalars that carry Kaluza-Klein charge.5 In five di-

mensions they are massive particles with mass saturating a
BPS bound. In five dimensions they are massless particles
with momentum along the direction of the string. Hence in
the limit of largeR, the problems of neutral and charged
emission are related by a boost along the direction of the
string. Since both the string and the spacetime picture are
boost invariant in this limit, we expect the agreement found
in the neutral case to extend to the charged case.

We begin by calculating the emission rate in the string
picture. The string calculation is a simple extension of the
calculation in@7# in which one relaxes the condition that the
interacting pair of left- and right-moving oscillations have
opposite momenta. The emission rate in the dilute gas region
is

GD5
d4k

~2p!4
8p3r 1

2r 5
2

k0
E
0

` dp5
2pp0

E
0

` dq5
2pq0

3~2p!2d~k02p02q0!d~k52p51q5!

3~p•q/2!2r~p0 /TL!r~q0 /TR!, ~5.1!

where (k0 ,k5 ,kW ) is the momentum of the incoming particle
and (p0 ,p5),(q0 ,2q5) are the momenta of the left and right
movers on the string.k5 is the charge from the five-
dimensional point of view and is of the formm/R for some
integerm. Since they are massless particlesp05p5 , q05q5 .
Momentum conservation implies thatp05(k01k5)/2,
q05(k02k5)/2. Evaluating the integrals in Eq.~5.1! we find

GD52p2r 1
2r 5

2
p~k0

22k5
2!

2k0

3
1

~e~k01k5!/2TL21!

1

~e~k02k5!/2TR21!

d4k

~2p!4
.

~5.2!

Note that we do not assume thatp0!TL .
Now we turn to the Hawking calculation. We first calcu-

late the absorption cross section by solving the Klein Gordon
wave equation on this background. It is easier to think of the
background as six-dimensional. The six-dimensional dilaton
Ve22f is constant@4#, so that the six-dimensional Einstein
and string metrics are equivalent. For low energies the domi-
nant contribution to the cross section comes from the
S-wave, so that the Klein Gordon equation becomes

~G00]0
212G05]0]51G55]5

2!F1
1

AG
] r~AGGrr ] rF!50,

~5.3!

with the near-extremal metric of@4#. We work in the dilute
gas regionr 0 ,r n!r 1 ,r 5 .

DefiningF5e2 ik0t2ık5x
5
R(r ) we obtain the radial equa-

tion

S 11
r 1
2

r 2D S 11
r 5
2

r 2D Fk022k5
21~k0sinhs2k5coshs!2

r 0
2

r 2GR
1

h

r 3
d

dr S hr3 dRdr D 50, ~5.4!
5TheTR!TL limit of the results of this section were obtained in

@9#.

55 867BLACK HOLE GREYBODY FACTORS ANDD-BRANE . . .



whereh is defined in Eq.~4.2!. We define new variables

v825k0
22k5

2, e6s85e6s
~k07k5!

v8
, r n85r 0sinhs8.

~5.5!

Reexpressing Eq.~5.4! in terms of these new variables, we
find it reduces to Eq.~4.1! governing neutral absorption with
the substitutionsv→v8 and r n→r n8 . Notice that the param-
etersr 0 ,r 1 ,r 5 are unchanged. Hence the results of the pre-
vious section~4.33! imply that the absorption cross section is

sabs52p2r 1
2r 5

2 pv8

2

ev8/TH8 21

~ev8/2TL821!~ev8/2TR821!
. ~5.6!

Rewriting this in term of the original variables

v8

TL8
5

v8

TL
es2s85

k01k5
TL

,

v8

TR8
5
k02k5
TR

, ~5.7!

v8

TH8
5
k01k5
2TL

1
k02k5
2TR

5
k02fk5
TH

,

wheref5tanhs is the electrostatic potential at the horizon,
f5A0(r 0), with

A0~r !5
r 0
2sinh2s

2r 2 S 11
r 0
2sinh2s

r 2 D 21

,

we finally obtain for the classical absorption cross section

sabs52p2r 1
2r 5

2 pAk022k5
2

2

3
e~k02k5f!/TH21

~e~k01k5!/2TL21!~e~k02k5!/2TR21!
. ~5.8!

The Hawking rate for charged particles is in general@18#

G5vsabs

1

e~k02k5f!/TH21

d4k

~2p!4
, ~5.9!

where the factor of the particle velocity,v5v8/k0 , is a ki-
nematical factor andf is the scalar potential at the horizon.
Inserting Eq.~5.8! in Eq. ~5.9! we obtain

G52p2r 1
2r 5

2 p~k0
22k5

2!

2k0

3
1

~e~k01k5!/2TL21!

1

~e~k02k5!/2TR21!

d4k

~2p!4
,

~5.10!

which agrees precisely with the string result~5.2!.

VI. SCALAR ABSORPTION

In the preceding two sections we calculated and compared
emission rates in the string and Hawking pictures. It is also
of some interest to consider absorption rates, which have the
qualitative difference that they do not vanish in the classical
limit.6

Pieces of the calculation already appeared in the preced-
ing sections and it is not hard to see the agreement directly.
An illuminating subtlety is that the thermal factorsrL,R ap-
pearing in the emission rate are replaced byrL,R11 in the
absorption rate, corresponding to the matrix element of a
bosonic creation rather than annihilation operator. The clas-
sical absorption cross section as computed from the classical
wave equation is equal to the string absorption cross section
minus the emission rate for that mode. This difference is just
proportional to (rL11)(rR11)2rLrR5rLrR/rH . This is
precisely the combination of thermal factors we see appear-
ing in the classical calculations done above in Eqs.~4.33!
and ~5.8!. Hence the appearance of this particular combina-
tion of factors is already necessary for agreement in the clas-
sical limit.

It is also interesting to consider the absorption cross sec-
tion in the caseTR5TH50, which corresponds to absorption
by an extremal black hole. One finds

sabs5AH

v

2TL

1

~12e2v/2TL!
. ~6.1!

Notice the appearance of the thermal factorr~v/2TL!11
which has no simple explanation from the spacetime black
hole picture, but is obvious from the string perspective. This
is a salient example of how the classical greybody factors
‘‘know’’ about the string.

VII. EVOLUTION OF A NEAR-EXTREMAL
BLACK HOLE

In this section we compare the rates of charge and neutral
emission, and discuss the problem of measuring the quantum
state of a black hole with scattering experiments.

We first consider the decay rate due to charged emission.
A near-extremal black hole with excess energy
DE5Vr 0

2e22s/2g2 above extremality has a Hawking tem-
perature

TH5
1

p
A 2DE

Q1Q5R
. ~7.1!

For smallDE,TH is smaller than the mass 1/R of the lightest
charged state and 2TR;TH . Hence the outgoing charged
particles are all highly nonrelativistic. Their kinetic energies
are approximatelyk02k5;kW2/2k5. It then follows from the
thermal factors in Eq.~5.10! that the kinetic energies are of
order TH ~rather than the total energies as in the neutral
case!. Emission of a charged particle decreases both the total

6As discussed in@6,12# this apparent time irreversibility follows
from the entropy formula and the second law.
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energy and the charge of the black hole. The excess energy
DE is decreased only by the kinetic energy of the outgoing
particle which is justTH .

With these approximations we can calculate the rate of
decrease ofDE due to emission of particles with chargek5
from Eq. ~5.10!:

dDE

dt
5E kW2

2k5
G5

p2

60
AHTH

4 k5
2

TL

1

ek5 /TL21
. ~7.2!

Note that typicallyk5;TL , whereRk5 is an integer, when
RTL5(1/p)An/Q1Q5 is greater than one. This rate is expo-
nentially suppressed by the factore2k5 /TL for k5@TL . This
exponential suppression is due to the fact that the emission
of a particle with chargek5 reduces the entropy of the ex-
tremal black hole byDS5k5/TL , and so must be accord-
ingly suppressed. For largeRTL the total emission rate for all
charges can be approximated by an integral of Eq.~7.2! over
positivek5:

dDE

dt
;

p2z~e!

30
AHTH

4TL
2R, RTL@1. ~7.3!

For smallRTL charge emission is dominated by the minimal
valuek551/R:

dDE

dt
;

p2AHTH
4

60R2TL
e21/RTL, RTL!1. ~7.4!

For neutral emission the integrals yield@7#

dDE

dt
5
3z~5!

p2 AHTH
5 . ~7.5!

This expression has one more power ofTH in it than the one
for the charged emission. Hence at sufficiently low energies
charge emission always dominates. This is because there is
more phase space available to the the massive charged par-
ticles. However for smallRTL charged emission is exponen-
tially suppressed and the energies at which it dominates over
neutral emission become exponentially small. Hence charge
emission dominates in some regimes while neutral emission
dominates in others.

Next let us consider the rate of charge loss by the black
hole in the regionRTL@1 where charge emission dominates.
Since the black hole decays by emitting charged particles
that carry charge of the order ofk5;TL and kinetic energy
dDE;TH we conclude that in a typical emission process

dn

dDE
;

Rk5
dDE

;
RTL
TH

;AnR

DE
. ~7.6!

Integrating this equation we find that by the timeDE decays
to zero

Dn

n
;

DS

S
, ~7.7!

whereDS is the entropy carried away by the charged Hawk-
ing radiation.

Now let us consider in this light the problem of measuring
the quantum microstate of a black hole. We might try to
measure the microstate by exciting it~perhaps repeatedly!
with low energy quanta and measuring the outgoing charged
radiation resulting from the decay. According to Hawking,
the outgoing radiation carries no information about the mi-
crostate which cannot be measured. Repeated experiments
only produce an ever-increasing amount of entropy in the
radiation. In the string picture there is also some entropy in
the outgoing radiation, because it is entangled7 with the
quantum state of the black hole~which we do not directly
measure!. However, this entanglement entropy can never ex-
ceedSBH , whereSBH is the logarithm of the number of pos-
sible black hole states. This follows from the triangle in-
equality for fine-grained entropies@19#: SA1SB>SAB
>uSA2SBu. In the string picture the entropy in the radiation
will grow initially but then will saturate at a valueSmax
which is at mostSBH . For sufficiently rich interactions be-
tween the radiation and black hole microstates it should be
possible to arrange so thatSmax5SBH . Since the whole sys-
tem is unitary when this saturation occurs the black hole
microstate is fully correlated with the radiation and has ef-
fectively been measured. So in order to measure the mi-
crostate of the black hole—and to discern the difference be-
tween the nonunitary Hawking amplitudes and the unitary
string amplitudes—there must be at least of ordereSBH quan-
tum states accessible to the radiation so that they can carry
an amount of information of orderSBH . This requires a large
number of experiments.

As noted above, in the regionRTL@1 these extremal
black holes tend to discharge Kaluza-Klein charge when they
interact. Indeed there is a simple relation between the en-
tropy produced and the charge lost. We see from Eq.~7.7!
that by the time the outgoing radiation has enough accessible
states to determine the quantum microstate of the black hole,
it has lost all of its Kaluza-Klein charge.

On the other hand forRTL!1, one could excite the black
hole by an energyDE@n/R above extremality and still re-
main within the near-extremal and dilute gas regions. In this
region, charge emission is exponentially suppressed. Accord-
ing to Hawking, the entropy of the outgoing radiation will be
of orderAQ1Q5RDE, which is much greater than the origi-
nal entropySBH of the black hole. In the string picture the
entropy of the outgoing radiation cannot exceedSBH . So this
presents a sharp puzzle.
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