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Electric-magnetic black hole duality
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We generalize duality invariance for the free Maxwell action in an arbitrary background geometry to include
the presence of electric and magnetic charges. In particular, it follows that the actions of equally charged
electric and magnetic black holes are eqi8D556-282(97)02602-1
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It has long been knowfti] that in an arbitrary background Maxwell actionis invariant under arbitrary finite duality ro-
geometry, the source-free Maxwell action is duality-invarianttations. In canonical form, in the usuat-3 notation, it ig[4]
under general electric/magnetic field rotatiqifier a recent
review of electromagnetic duality, s¢2]). This is the case Iy[E,A]= _J d%x

. . . M ’
despite the change of sign of the Maxwell Lagrangian
- %Ffw under the “duality rotation”F ,,—*F,,. Because
of the interest of electrically and magnetically charged black - eijkNiEj Bk}, (1)
holes in the semiclassical regime, it is natural to study dual-
ity of the action there as well. We shall show that the action,;hare Ei is the electric,B'=¢*g;A, the magnetic field

and not just the field equations or the stress tensor, is dualitqth are contravariant three-densitieand all metrics are in
invariant in such a way that equivalence of the black holehree-space; we have solved the Gauss constraint so that both
actions and partition functions is maintained for the chargedti ang B are identically transversed,E'=0=g;B'.
solutions. In particular, we provide a simple derivation of As ysual, we take the field configurations to behave
similar recent conclusions of HaWklng and R(E% which asymptotica”y as Ai:ai(0’¢)r_l+ O(r_z) and

were reached through a somewhat laborious procedure. As'=e'(9,)r 2+ 0O(r %) asr—.

the subject of Maxwell duality seems always to be fraught The variation of the action under changestdf

with confusion, we will at times belabor the obvious to make

our point clear.

When dealing with magnetically charged black holes, one
usually determines the partition function in a sector with ) o . )
fixed magnetic charge. To make a meaningful comparisofanishes for arb|traryi variationse' SLi’bleCt to the transver-
between the electric and magnetic cases, it is therefore neSality condition$ 4, oE'=0 andd$2E'dS=0 if and only if
essary to compute the partition function for electrically the coefficient of6E' in (2) satisfies the condition
charged black holes also in a sector with fixed charge, rather . ) )
than fixed electric chemical potential. For this reason, we Ai+Ng Y El - € BIN =5,V 3
shall deal in this paper exclusively with the action adapted to _ _ . .
the variational principle in which the charges are kept fixed.Where\./ (=Ao) is an al’bltl’ii{’y function which behaves as-
Technically, this is achieved by considering field histories inymptot!lcallyi as C+O(ri ). Inthat case, Sl
the variational principle that all have the same given electric_ —JdxE'GV = _955i5E Vd§=—Cd(electric fluy=0.
and magnetic fluxes at infinitgsee below. Our main result No special conditions are required, on the other hand, when
is that there is a transformation of the dynamical variableyarying A;. Thus, the action(1) is appropriate as it stands,
which, when combined with the corresponding rotation ofi.€., without “improving” it by adding surface terms, to the
the charges, maps the action for a fixed set of electric and
magnetic charges to the action for the duality-rotated set of _
fixed electric and magnetic charges. The condition $E'dS=0 is actually a consequence of

Consider first sourcefree electrodynamics in an arbitrary; SE'=0 (and of smoothne$®n spatial sections witR® topology.
background with topologRx 3, where the spatial sections We write it separately, however, because this is no longer the case
> are homeomorphic t&3. As shown explicitly in[1], the  if 3 has holes, as below.

A E -124 (FiF] 4 RiRi
E'Ai+ 5Ng™ g, (E'E/+B'B)

5E|M=—J d*xSE'(A+Ng~Y2g;,El - €4 BINY), (2
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variational principle in which the competing histories all —-2G=CSZ)+CSA)
have the same given electric flux at infinity and thus also the
same given electric chardbere equal to zejo :f 3y ijk7 5. f 3y ik A 4.
As pointed out i 3], it is necessary to allow the temporal d*XeT 210,21+ | dXETAT A ®

componentV of the vector potential to approach a nonvan- . .
ishing constant at infinity since this is what happens in the W€ now turn to the black hole case and include electric
black hole case i¥/ is required to be regular on the horizon. @1d magnetic sources. To stick to the problem of interest in
However, as we have just shown, in order to achieve thi 3_], where qnly the exterior solution is conS|d§red, one can
while working with the action(1), it is unnecessary to keep Still work with the sourcefree Maxwell equations but one
all three component&' of the electric field fixed at spatial Must allow for nonvanishing electric and magnetic fluxes at
infinity; only the electric flux§E'dS must be kept con- infinity. This is possible beca_use th_e spatial sectibrisave

: L L a hole. There are thus two-dimensional surfaces that are not
stant in th_e varla_ltlc_)nal prlnC|pIe. ) _ contractible to a point, namely, the surfaces surrounding the

The action(1) is invariant under duality rotations. Indeed, ;e (we assume for simplicity a single black hole but the

the finite rotation analysis can straightforwardly be extended to the multi-

E’ E cosd  sind\[E black-hole case o _
=R = . (4) In the presence of a nonvanishing magnetic flux, the mag-
B B —sing cos/\B netic field is given by the expression

manifestly preserves all but the Et&rm in Eq.(1), whose B'=¢€9,A+Bg 9
separate invariance is also easy to check. The above rotation ‘

of B can of course be explicitly expressed as ondafsing  WhereBg is a fixed field that carries the magnetic flux,
the fact thatA'= —V~2€%9;B, up to an irrelevant gauge
fcransfo.rmation. A parti-cularly symmgtric formulation results 3g BiS dS=4mu, (10)
if one introduces, as ifil], a “potential” Z for the trans- s2

verse electric field througk'= e'lkajzk. The equivalent of

0

Eq. (4) is then and whereB= €%, A, is the transverse part &,
z' z co i i iqa_
( ,):R( )E( @ sme)(z), o /810, _Bids=0 1y
A A —singd cosh/\ A ®
o Following Dirac, we can tak8j to be entirely localized on
and the kinetic term a string running from the source hole to infinity, say along
the positivez-axis #=0. We shall not need the explicit form
f d*xe* 9,2, A; (6)  of Bg in the sequel, but only to remember that for a given

magnetic chargg., By is completely fixed and hence is not a
field to be varied in the action. The only dynamical compo-
nents of the magnetic fielB' are still the transverse ones,

e, A.
One can also decompose the electric field as

is now manifestly invariantThe surface term that one picks
up at spatial infinity from the variation of the kinetic term is
easily seen to vanish with the given asymptotic conditions.
As explained in[1], there is no contradiction between the

invariance of the actiofil) under(4) and its change of sign Ei— EiT+ E (12)
under
_yo cpap where the longitudinal part carries all the electric flux
F,U,V_>(_g) gﬂagvﬁ Fer. (7)
The point is that any transformation must be represented in jgsz E dS=4me, (13

terms of the independent field variables, which Ef).can-
not as it is most easily seen by observing tHaF (unlike  and the transverse field obeys
dF) does not vanish identically. On the other hand, an ex-
plicit generator of the rotatiofd) or (5) does exis{1].2 In JE-=0 35 EldS=0 (14)
the (Z,A) language, it takes the particularly elegant “topo- T e T

logical,” metric-independent form

%

and can thus again be written & =e€'%9,Z, for some
Z,. Given the electric charge the longitudinal electric field
2This is not always the case: for the scalar field in two dimensions!S complete_ly determined '_f we impose in addition, say, that
for example, the duality is od, ¢—€,,0"®, or in canonical lan- it be spherlcfally symme_trlc. AS.W(,E haye do.ne above, we
guage, on rotation of the canonical momentumpt@and its gradi- shall work W't,h a varlatlo_nal pr.lnC|pIe In Wh'ch we .ha"?
ent, but there is no generator of the equivalent of @&g. Similar solved Qauss S IaW and in \iNh'Ch the_c_ompet!ng histories
difficulties arise for X-form gauge fields in 2 4k dimensions. have a fixed electric ﬂu}gssiE d§ at infinity. This means
While the energy density is invariant under duality rotations, thethat the longitudinal electric field is completely frozen and
kinetic term is not. Thus, duality rotations are not canonical transthat only the tranverse componeifi$ or Z' are dynamical,
formations in those cases. as for the magnetic field.
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In order. to discuss dualltyi it is cionvement_to treat thetne actionsl &4 and |§Au are equal sinc€ and B enter
nondynamical components &' and B' symmetrically. To  totally symmetrically in the energy and momentum densities.
that end, one may either redefiig by adding to it an ap- More explicitly, if we write the longitudinal fields as
propriate transverse part so that it shares the spherical SYM®! = Vi, El =eV/, then the relevant terms in E€L5) are
metry of E| , or one may redefin&, by adding to it an jyst
appropriate transverse part so that it is entirely localized on
the string. Both choiceéor, actually, any other intermediate
choice are acceptable here. For concreteness we may take—f d"'x{ Ng~Y4g;;
the first choice; the fields then have no string singularity.

The Maxwell action for the problem at hand takes exactly o
the same form as Eq1), but with E' andB' now the total —eijkN'VJ(eB'}—,uEb]. 17
electric and magnetic fields. Singg may be taken to be
time independen(the electric charge is constanbne may
replaceE' by E} in the kinetic term of Eq(1), yielding as
alternative action

_ o1 o
(eE'T+,uB'T)VJ+E(e2+,u2)V'VJ}

For the mixed terms, it is clear that the field transformation
(4) is just compensated by the parameter rotatib (the
relevant terms are just the “dot” and “cross” product of the

1 o o corresponding “two-vectors), while theVV term is invari-
ETA + ENgfllzgij(E'E“rB'BJ) ant under it. To put it more formally, the extended duality
invariance we have spelled out is

IS Er,Al=— f d*x

— . NEIBK
caNES 49 5 TEr Ar =15+ TER AT 18
This amounts to dropping a total time derivative—equal to .
zero for periodic boundary conditions—and shows epricitIyWhere thg primes denote thg rotated valugs. .
that the kinetic term is purely transverse. The action equation Equation(18) links two actions parametrized by d|f_ferent
(15) involves the parameters and w: that is, one has a values of e,_,u) . In partlcylar, for the black holes without
distinct variational principle for each choice efand i, as Maxwell excitations, we find
we have indicated.

To discuss the surface terms that arise in the variation of 1170,01=1%70,0], (19
the action, one must supplement the asymptotic behavior of
the fields at infinity by conditions at the horizon. These areas in Eq.(3). This equality is thus not a special artifact, but
especially obvious in the Euclidean continuation, where timgeflects a general invariance property of the action appropri-
becomes an angular variable with the horizon sitting at thexte to the variational principle considered here, in which the
origin of the corresponding polar coordinate system. Reguelectric and magnetic fluxes are kept fixed. The invariance of
larity then requires thaV=A, and the time derivatives the action can be verified along the same lines if one also
A, ,E' all vanish at the horizon. We assume these conditionécludes the dilaton field.
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