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We generalize duality invariance for the free Maxwell action in an arbitrary background geometry to include
the presence of electric and magnetic charges. In particular, it follows that the actions of equally charged
electric and magnetic black holes are equal.@S0556-2821~97!02602-7#
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It has long been known@1# that in an arbitrary background
geometry, the source-free Maxwell action is duality-invariant
under general electric/magnetic field rotations~for a recent
review of electromagnetic duality, see@2#!. This is the case
despite the change of sign of the Maxwell Lagrangian
2 1

4Fmn
2 under the ‘‘duality rotation’’Fmn→*Fmn . Because

of the interest of electrically and magnetically charged black
holes in the semiclassical regime, it is natural to study dual-
ity of the action there as well. We shall show that the action,
and not just the field equations or the stress tensor, is duality
invariant in such a way that equivalence of the black hole
actions and partition functions is maintained for the charged
solutions. In particular, we provide a simple derivation of
similar recent conclusions of Hawking and Ross@3#, which
were reached through a somewhat laborious procedure. As
the subject of Maxwell duality seems always to be fraught
with confusion, we will at times belabor the obvious to make
our point clear.

When dealing with magnetically charged black holes, one
usually determines the partition function in a sector with
fixed magnetic charge. To make a meaningful comparison
between the electric and magnetic cases, it is therefore nec-
essary to compute the partition function for electrically
charged black holes also in a sector with fixed charge, rather
than fixed electric chemical potential. For this reason, we
shall deal in this paper exclusively with the action adapted to
the variational principle in which the charges are kept fixed.
Technically, this is achieved by considering field histories in
the variational principle that all have the same given electric
and magnetic fluxes at infinity~see below!. Our main result
is that there is a transformation of the dynamical variables
which, when combined with the corresponding rotation of
the charges, maps the action for a fixed set of electric and
magnetic charges to the action for the duality-rotated set of
fixed electric and magnetic charges.

Consider first sourcefree electrodynamics in an arbitrary
background with topologyR3S, where the spatial sections
S are homeomorphic toR3. As shown explicitly in@1#, the

Maxwell actionis invariant under arbitrary finite duality ro-
tations. In canonical form, in the usual 311 notation, it is@4#

I M@E,A#52E d4xFEiȦi1
1

2
Ng21/2gi j ~E

iEj1BiBj !

2e i jkN
iEjBkG , ~1!

where Ei is the electric,Bi[e i jk] jAk the magnetic field
~both are contravariant three-densities!, and all metrics are in
three-space; we have solved the Gauss constraint so that both
Ei and Bi are identically transverse,] iE

i505] iB
i .

As usual, we take the field configurations to behave
asymptotically as Ai5ai(u,f)r

211O(r22) and
Ei5ei(u,f)r221O(r23) as r→`.

The variation of the action under changes ofEi ,

dEI M52E d4xdEi~Ȧi1Ng21/2gi j E
j2e i jkB

jNk!, ~2!

vanishes for arbitrary variationsdEi subject to the transver-
sality conditions1 ] idE

i50 andd rS
`
2EidSi50 if and only if

the coefficient ofdEi in ~2! satisfies the condition

Ȧi1Ng21/2gi j E
j2e i jkB

jNk5] iV ~3!

whereV ([A0) is an arbitrary function which behaves as-
ymptotically as C1O(r21). In that case, dI M
52*d4xdEi] iV 52rS

`
2dEiVdSi52Cd ~electric flux!50.

No special conditions are required, on the other hand, when
varyingAi . Thus, the action~1! is appropriate as it stands,
i.e., without ‘‘improving’’ it by adding surface terms, to the

1The condition d rS
`
2EidSi50 is actually a consequence of

] idE
i50 ~and of smoothness! on spatial sections withR3 topology.

We write it separately, however, because this is no longer the case
if S has holes, as below.
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variational principle in which the competing histories all
have the same given electric flux at infinity and thus also the
same given electric charge~here equal to zero!.

As pointed out in@3#, it is necessary to allow the temporal
componentV of the vector potential to approach a nonvan-
ishing constant at infinity since this is what happens in the
black hole case ifV is required to be regular on the horizon.
However, as we have just shown, in order to achieve this
while working with the action~1!, it is unnecessary to keep
all three componentsEi of the electric field fixed at spatial
infinity; only the electric fluxrS

`
2EidSi must be kept con-

stant in the variational principle.
The action~1! is invariant under duality rotations. Indeed,

the finite rotation

SE8

B8
D 5RSEBD[S cosu sinu

2sinu cosu D SEBD ~4!

manifestly preserves all but the EA˙ term in Eq.~1!, whose
separate invariance is also easy to check. The above rotation
of B can of course be explicitly expressed as one ofA using
the fact thatAi52¹22e i jk] jBk up to an irrelevant gauge
transformation. A particularly symmetric formulation results
if one introduces, as in@1#, a ‘‘potential’’ Z for the trans-
verse electric field throughEi5e i jk] jZk . The equivalent of
Eq. ~4! is then

S Z8

A8
D 5RS ZAD[S cosu sinu

2sinu cosu D S ZAD , ~5!

and the kinetic term

E d4xe i jk] jZkȦi ~6!

is now manifestly invariant.~The surface term that one picks
up at spatial infinity from the variation of the kinetic term is
easily seen to vanish with the given asymptotic conditions.!
As explained in@1#, there is no contradiction between the
invariance of the action~1! under~4! and its change of sign
under

Fmn→~2g!21/2gmagnb*F
ab. ~7!

The point is that any transformation must be represented in
terms of the independent field variables, which Eq.~7! can-
not as it is most easily seen by observing thatd*F ~unlike
dF) does not vanish identically. On the other hand, an ex-
plicit generator of the rotation~4! or ~5! does exist@1#.2 In
the (Z,A) language, it takes the particularly elegant ‘‘topo-
logical,’’ metric-independent form

22G5CS~Z!1CS~A!

5E d3xe i jkZi] jZk1E d3xe i jkAi] jAk . ~8!

We now turn to the black hole case and include electric
and magnetic sources. To stick to the problem of interest in
@3#, where only the exterior solution is considered, one can
still work with the sourcefree Maxwell equations but one
must allow for nonvanishing electric and magnetic fluxes at
infinity. This is possible because the spatial sectionsS have
a hole. There are thus two-dimensional surfaces that are not
contractible to a point, namely, the surfaces surrounding the
hole ~we assume for simplicity a single black hole but the
analysis can straightforwardly be extended to the multi-
black-hole case!.

In the presence of a nonvanishing magnetic flux, the mag-
netic field is given by the expression

Bi5e i jk] jAk1BS
i ~9!

whereBS
i is a fixed field that carries the magnetic flux,

R
S

`
2
BS
i dSi54pm, ~10!

and whereBT
i 5e i jk] jAk is the transverse part ofBi ,

] iBT
i 50, R

S
`
2
BT
i dSi50. ~11!

Following Dirac, we can takeBS
i to be entirely localized on

a string running from the source hole to infinity, say along
the positivez-axisu50. We shall not need the explicit form
of BS

i in the sequel, but only to remember that for a given
magnetic chargem, BS

i is completely fixed and hence is not a
field to be varied in the action. The only dynamical compo-
nents of the magnetic fieldBi are still the transverse ones,
i.e.,Ai .

One can also decompose the electric field as

Ei5ET
i 1EL

i , ~12!

where the longitudinal part carries all the electric flux

R
S

`
2
EL
i dSi54pe, ~13!

and the transverse field obeys

] iET
i 50, R

S
`
2
ET
i dSi50 ~14!

and can thus again be written asET
i 5e i jk] jZk for some

Zk . Given the electric chargee, the longitudinal electric field
is completely determined if we impose in addition, say, that
it be spherically symmetric. As we have done above, we
shall work with a variational principle in which we have
solved Gauss’s law and in which the competing histories
have a fixed electric fluxrS

`
2EidSi at infinity. This means

that the longitudinal electric field is completely frozen and
that only the tranverse componentsET

i or Zi are dynamical,
as for the magnetic field.

2This is not always the case: for the scalar field in two dimensions,
for example, the duality is on]mf→emn]nf, or in canonical lan-
guage, on rotation of the canonical momentum tof and its gradi-
ent, but there is no generator of the equivalent of Eq.~4!. Similar
difficulties arise for 2k-form gauge fields in 214k dimensions.
While the energy density is invariant under duality rotations, the
kinetic term is not. Thus, duality rotations are not canonical trans-
formations in those cases.
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In order to discuss duality, it is convenient to treat the
nondynamical components ofEi andBi symmetrically. To
that end, one may either redefineBS

i by adding to it an ap-
propriate transverse part so that it shares the spherical sym-
metry of EL

i , or one may redefineEL
i by adding to it an

appropriate transverse part so that it is entirely localized on
the string. Both choices~or, actually, any other intermediate
choice! are acceptable here. For concreteness we may take
the first choice; the fields then have no string singularity.

The Maxwell action for the problem at hand takes exactly
the same form as Eq.~1!, but with Ei andBi now the total
electric and magnetic fields. SinceEL

i may be taken to be
time independent~the electric charge is constant!, one may
replaceEi by ET

i in the kinetic term of Eq.~1!, yielding as
alternative action

I M
e,m@ET ,A#52E d4xFET

i Ȧi1
1

2
Ng21/2gi j ~E

iEj1BiBj !

2e i jkN
iEjBkG . ~15!

This amounts to dropping a total time derivative—equal to
zero for periodic boundary conditions—and shows explicitly
that the kinetic term is purely transverse. The action equation
~15! involves the parameterse and m; that is, one has a
distinct variational principle for each choice ofe andm, as
we have indicated.

To discuss the surface terms that arise in the variation of
the action, one must supplement the asymptotic behavior of
the fields at infinity by conditions at the horizon. These are
especially obvious in the Euclidean continuation, where time
becomes an angular variable with the horizon sitting at the
origin of the corresponding polar coordinate system. Regu-
larity then requires thatV[A0 and the time derivatives
Ȧi ,Ė

i all vanish at the horizon. We assume these conditions
to be fulfilled throughout.

Consider now a duality rotation~4! or ~5! acting on the
transverse, dynamical variablesAi ~or BT

i ) andET
i . Just as in

the sourceless case, the kinetic term of Eq.~15! is invariant
under this transformation: it is the same kinetic term and the
transformation law is the same; the surface term at the hori-
zon in the variation vanishes becauseȦi50 andŻi50 there.
Thus, if we also rotate the~nondynamical! components of
the electric and magnetic fields in the same way, that is, if we
relabel the external parameterse, m by the same transforma-
tion as in Eq.~4!,

S e8m8
D 5RS em D , ~16!

the actionsI M
e,m and I M

e8,m8 are equal sinceE and B enter
totally symmetrically in the energy and momentum densities.
More explicitly, if we write the longitudinal fields as
BL
i 5mVi , EL

i 5eVi , then the relevant terms in Eq.~15! are
just

2E d4xHNg21/2gi j F ~eETi 1mBT
i !Vj1

1

2
~e21m2!ViVj G

2e i jkN
iVj~eBT

k2mET
k !J . ~17!

For the mixed terms, it is clear that the field transformation
~4! is just compensated by the parameter rotation~16! ~the
relevant terms are just the ‘‘dot’’ and ‘‘cross’’ product of the
corresponding ‘‘two-vectors’’!, while theVV term is invari-
ant under it. To put it more formally, the extended duality
invariance we have spelled out is

I M
e,m@ET ,AT#5I M

e8,m8@ET8 ,AT8#, ~18!

where the primes denote the rotated values.
Equation~18! links two actions parametrized by different

values of (e,m). In particular, for the black holes without
Maxwell excitations, we find

I M
e,0@0,0#5I M

0,e@0,0#, ~19!

as in Eq.~3!. This equality is thus not a special artifact, but
reflects a general invariance property of the action appropri-
ate to the variational principle considered here, in which the
electric and magnetic fluxes are kept fixed. The invariance of
the action can be verified along the same lines if one also
includes the dilaton field.
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