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I. INTRODUCTION

Numerical integrations are often used to calculate the in-
ner and outer spherical multipolesqlm andQlm of distribu-
tions of mass, charge, etc. Problems arise when asymmetrical
shapes are involved and high accuracy is required. This
problem is frequently encountered in experimental gravita-
tion where the multipole formalism is used to calculate
torques and forces@1,2# on test bodies in the fields of attrac-
tors with realistic geometries. Many cases of practical inter-
est deal with distributions that can be accurately approxi-
mated as a linear superposition of basic geometric shapes
such as cylindrical annuli, rectangular prisms, trapezoidal
slabs, etc. To calculate the inner and outer multipoles of
these distributions it is necessary to know the multipoles
about the point of interest for each of the superposed shapes.
We will show that if the inner and outer multipoles of these
simple shapes are known about any one point then analytic
solutions can be obtained for the multipoles of a superposed
distribution about an arbitrary point. This allows one to cal-
culate, without numerical integration, inner and outer multi-
poles of complex systems and, perhaps more importantly, to
study the effect of perturbations of the system arising from
misalignments, etc. Rotations of the spherical multipoles are
easily carried out using standard techniques of angular mo-
mentum algebra. This paper addresses the problem of trans-
lations.

II. FORMALISM

Consider an arbitrary distribution of mass, charge, etc.,
that can be separated into two disjoint bodies. One body, the
‘‘object,’’ is considered to be in the field produced by the
other body, the ‘‘source.’’ Integrating over this distribution,
the object has inner multipoles

qlm5E ro~rW !r lYlm* ~ r̂ !d3r ~1!

and the source has outer multipoles

Qlm5E rs~rW !r2~ l11!Ylm~ r̂ !d3r , ~2!

whereYlm* andYlm are spherical harmonics and the density

functions ro(rW) and rs(rW) correspond to the object and
source bodies, respectively. Assuming that bothqlm and
Qlm are known about a coordinate origin,O, we now wish to
know the corresponding inner and outer multipoles about an
arbitrary point,P(r 8,u8,f8):

q̃LM5E ro~rW9!r 9LYLM* ~ r̂ 9!d3r 9 ~3!

and

Q̃LM5E rs~rW9!r 92~L11!YLM~ r̂ 9!d3r 9. ~4!

To express the moments aboutP in terms of the moments
aboutO it is necessary to expand the solid harmonics in the
integrands of Eqs.~3! and ~4! using the relations@3#

r 9LYLM~ r̂ 9!5 (
l 8,l50

L A 4p~2L11!!

~2l 811!! ~2l11!!

3r 8 l 8r l$Yl 8~ r̂ 8! ^Yl~ r̂ !%LMdL,l1 l 8 ~5!

and

r 92~L11!YLM~ r̂ 9!5 (
l 8,l50

` A 4p~2l !!

~2L !! ~2l 811!!

3
r 8 l 8

r l11 $Yl 8~ r̂ 8! ^Yl~ r̂ !%LMdL,l2 l 8,

~6!

where the tensor product is given by
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$Yl 8~ r̂ 8! ^Yl~ r̂ !%LM5 (
m8,m

C~ l 8,m8,l ,m,L,M !

3Yl 8m8~ r̂ 8!Ylm~ r̂ !, ~7!

andC is a Clebsch-Gordan coefficient. These equations dif-
fer from those given in Ref.@3#. We found by doing explicit
calculations, such as the ones that follow, that the equations
in Ref. @3# give incorrect results by a factor of (21)l . The
inner multipole moments aboutP now have the form

q̃LM5 (
l 8,m8,l ,m

A 4p~2L11!!

~2l 811!! ~2l11!!
r 8 l 8Yl 8m8

* ~ r̂ 8!

3C~ l 8,m8,l ,m,L,M !dL,l1 l 8E ro~rW !r lYlm* ~ r̂ !d3r ,

~8!

while the outer multipoles are

Q̃LM5 (
l 8,m8,l ,m

A 4p~2l !!

~2L !! ~2l 811!!
r 8 l 8

3Yl 8m8~ r̂ 8!C~ l 8,m8,l ,m,L,M !

3dL,l2 l 8E rs~rW !r2~ l11!Ylm~ r̂ !d3r . ~9!

It is easy to see that the integrals in Eqs.~8! and ~9! are
simply the multipole moments aboutO, given in Eqs.~1! and
~2!. Therefore, we have

q̃LM5 (
l 8,m8,l ,m

A 4p~2L11!!

~2l 811!! ~2l11!!
r 8 l 8

3Yl 8m8
* ~ r̂ 8!C~ l 8,m8,l ,m,L,M !dL,l1 l 8qlm ~10!

and

Q̃LM5 (
l 8,m8,l ,m

A 4p~2l !!

~2L !! ~2l 811!!
r 8 l 8

3Yl 8m8~ r̂ 8!C~ l 8,m8,l ,m,L,M !dL,l2 l 8Qlm .

~11!

These expressions provide analytic solutions for the multi-
pole moments about an arbitrary point in terms of known
moments about a given point. Equation~10! is equivalent to
one given in Ref.@2#.

Equations~10! and ~11! show that the inner moments
q̃LM depend on the finite set of momentsqlm with l,L,
whereas, the outer momentsQ̃LM depend on the infinite set
of momentsQlm with l.L. However, the infinite sum in Eq.
~11! does not produce problems in practical applications. Be-
cause theQlm scale like 1/R, whereR is a characteristic
distance fromO to the object, one sees that theQ̃LM mo-
ments induced by a displacementr 8 are smaller by a factor
of (r 8/R) l 8 compared to the characteristic size of theQLM
moments of the same order. So, in general, the series con-
verges with only a small number of terms.

III. SELECTION RULES

In this section we mention selection rules that are useful
in understanding the effects on the multipole moments due to
perturbations in the position of the objects. For small dis-
placements the leading order terms in Eqs.~10! and ~11!
havel 851. As a result, a small translation of an object with
momentsqlm andQlm induces new momentsq̃ l11,m8 and
Q̃l21,m8 wherem85m if the displacement is alongẑ and
m85m61 if the displacement is in thex-y plane. In second
order in the displacement one induces new moments
q̃ l12,m9 and Q̃l22,m9 wherem95m for displacements along
ẑ andm95m,m62 for displacements in thex-y plane.

IV. APPLICATIONS

As an illustration of the effectiveness of Eqs.~10! and
~11! consider two unit charges, of opposite sign, initially
located at6a on thex axis, respectively. The inner moments
of this charge distribution calculated about the origin using
Eq. ~1! have oddl andm and the leading terms are

q1152aA 3

2p

and

q3352a3A 35

16p
.

If we now displace these point charges by an amountr 8
along the positivex axis, moments with evenl andm are
generated. As an example, consider theq44 moment, which
can be calculated analytically using Eq.~3! with

ro~rW !5
d~u2p/2!@d„r2~a1r 8!…d~f!2d„r2~a2r 8!…d~f2p!#

r 2
, ~12!

55 7971BRIEF REPORTS



so that

q̃445~a1r 8!4Y44* ~p/2,0!1~a2r 8!4Y44* ~p/2,p!

53A35

8p
~a3r 81ar83!. ~13!

For comparison we calculate theq̃44 moment using Eq.~10!.
From the discussion above,q̃44 depends only on theq11 and
q33 moments. Theq33 moment is the first-order contribution
to the sum and theq11 moment is the third-order contribu-
tion, the second-order term is absent because of the symme-
tries of theqlm’s calculated about the origin. Therefore, Eq.
~10! gives

q̃445A4p9!

3!7!
r 8Y11* ~p/2,0!C~1,1,3,3,4,4!q33

1A4p9!

7!3!
r 83Y33* ~p/2,0!C~3,3,1,1,4,4!q11

53A35

8p
~a3r 81ar83!. ~14!

In this case the result to third order is exact because it in-
cludes all the nonvanishing terms in Eq.~10!.

The outer multipole moments are also easily calculated
for the system of displaced charges. As an illustration, we
calculate theQ̃22 moment using Eq.~4! and the density func-
tion given by Eq.~12! to obtain the displaced outer multipole
moment

Q̃225
1

4
A15

2p
@~a1r 8!232~a2r 8!23#. ~15!

To calculateQ̃22 using Eq.~11! we need all momentsQlm
with l>2. To first order, we require theQ33 andQ31 mo-
ments,

Q3352
1

a4
A 35

16p
, Q315

1

a4
A 21

16p
.

The second-order terms vanish becauseQ4m50. To third
order we need theQ55, Q53, Q51, andQ521 moments:

Q5552
1

4a6
A693

16p
, Q535

1

4a6
A385

16p
,

Q5152
15

8a6
A 11

30p
, Q5215

15

8a6
A 11

30p
.

The Q̃22 moment calculated from Eq.~11! is

Q̃225A4p6!

4!3!
r 8@Y121~p/2,0!C~1,21,3,3,2,2!Q33

1Y11~p/2,0!C~1,1,3,1,2,2!Q31#

1A4p10!

4!7!
r 83@Y323~p/2,0!C~3,23,5,5,2,2!Q55

1Y321~p/2,0!C~3,21,5,3,2,2!Q53

1Y31~p/2,0!C~3,1,5,1,2,2!Q51

1Y33~p/2,0!C~3,3,5,21,2,2!Q521#. ~16!

For a ten percent displacement,a510, r 851, the values of
Q̃22 andQ̃22 from Eqs.~15! and ~16! are

Q̃22522.3965531024

and

Q̃22522.394931024,

respectively, which differ by 0.07%.

V. CONCLUSION

We have shown that if the inner and outer multipoles
about a given point are known for any distribution of mass,
charge, etc., then it is always possible to construct solutions
for q̃LM andQ̃LM about a nearby point that are linear com-
binations of the inner and outer multipoles about the original
point. This eliminates the need for error-inducing numerical
integrations when dealing with perturbations of distributions
whose unperturbed multipole moments are known and, for
example, to center precisely objects in the field of a source
using purely gravitational means~see Ref.@4#!. With a cata-
log of solutions for multipoles of simple geometric distribu-
tions, it is possible to construct arbitrarily complicated dis-
tributions and obtain analytic solutions for their multipole
moments about arbitrary points.
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