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We obtain a large class of cosmological solutions in the toroidally compactified low-energy limits of string
theories inD dimensions. We consider solutions wherg-@imensional subset of the spatial coordinates,
parametrizing a flat space, a sphere, or a hyperboloid, describes the spatial sections of the physically observed
Universe. The equations of motion reduce to Liouville or BE(1,R) Toda equations, which are exactly
solvable. We study some of the cases in detail, and find that under suitable conditions they can describe
four-dimensional expanding universes. We discuss also how the solutiobs dimensions behave upon
oxidation back to théd =10 string theory oD =11 M theory.[S0556-282(97)06712-X]

PACS numbsds): 11.27+d, 98.80.Cq

I. INTRODUCTION tract, adding further to the numbepsand g of expanding
and contracting dimensions. Ultimately, phenomenological
The study of cosmological consequences of string theorgonsiderations would imply that one is principally interested
has been an area of much active research in the[pa€].  in the case where the total number of expanding spatial di-
Recently, exploiting certain duality symmetry, it has beenmensions is 3.
suggested that inflation can occur in string theory without The reason for dividing the discussion into two stages, in
relying on the potential energy density of the dilaton fieldwhich first we find cosmological solutions in the
[7,8]. Since then, several papers have investigated aspects Bfdimensional toroidal compactifications of the ten-
string-inspired cosmology in various dimensiof@-16]. dimensional theories, and then we oxidize them back to
One of the intriguing features in these models is that a dyD =10 orD =11, is the following. In order to construct so-
namical compactification of some of the coordinate direclutions, it is useful to choose a highly symmetriéaisatzfor
tions can occur, implying, for example, that a cosmologicalthe form of the metric and other fields in the theory, so as to
solution of the ten-dimensional string can evolve so that itobtain relatively simple equations of motion for the remain-
describes a four-dimensional expanding Universe, with théng degrees of freedom. Upon oxidation ©=10 or
extra six dimensions undergoing a contractisee, for ex- D=11, the solutions typically acquire a more complicated
ample,[13]). In view of the recent advances in the under-form, which would be less easily found, or classified, by a
standing of the unity among string theories, it can be arguedirect ten-dimensional study of the equations of motion. This
that the most natural arenas within which cosmological modis analogous to the situation fprbrane solitons, where most
els should be studied are type IIA and type IIB string theo-of the lower-dimensional solutions yield rather complicated
ries, or possibly theiM-theory andF-theory progenitors configurations irD =10 orD =11 that correspond to sets of
[13]. Cosmological solutions of this kind involving the use intersectingo-branes, possibly also with “boosts” along cer-
of Neveu-Schwarz—Neveu-SchwarfNS-NS fields have tain directions in the toroidally compactified dimensions
been discussed if@—11]. The various duality symmetries [17-22.
make it natural also to study cosmological solutions involv- The organization of the paper is as follows. In Sec. Il, we
ing Ramond-Ramon(R-R) fields alsg13]. In this paper, we set up theAnsatzfor the metric tensor and the other fields of
shall examine a broad class of cosmological models thahe theories, and then obtain cosmological models involving
arise as solutions of the low-energy limits of ten-dimensionabingle-scalar, dyonic, and multiscalar solutions. Included in
string theories oM theory. Our starting point will be to the multiscalar cases are models where the equations of mo-
consider models in thB-dimensional toroidal compactifica- tion reduce to the SIN+1,R) Toda equations. In Sec. lll,
tions of the fundamental theories, in whighdimensional ~we discuss the cosmological properties of some of the mod-
spatial sectiongwhich may be flat, spherical, or hyperbolic els. In Sec. IV, we discuss the Kaluza-Klein reduction and
expand whileqg=D —p—1 dimensions contract, as the Uni- oxidation of the cosmological solutions. The paper ends with
verse evolves. These models themselves may all be reintegonclusions in Sec. V.
preted as 10-dimensional or 11-dimensional solutions, by re-
versing Fhe reduction procedure that led to the Il COSMOLOGICAL SOLUTIONS
D-dlmensu_)nal theory. By this means, Ia_rge classes of 10- or FROM STRING THEORIES
11-dimensional solutions of a cosmological type can be ob-
tained. The extra dimensions that are restored in this oxida- Cosmological models are described by solutions of the
tion process will themselves typically either expand or condow-energy effective theory in which the metric tensor, and
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the other fields, are time dependent. We shall look for solu- In the rest of this section, we shall derive various classes
tions in which theD-dimensional metric takes the form of cosmological solutions in toroidally compactified string
L theories.
ds?=—e?Vdt?+e?Ad s+ e?Bdy™Mdy™, )

. A. One-scalar cosmological solutions

where the functiondJ, A, and B depend only ont, and . ) . ) ) )

d s? represents th@-dimensional metric on the spatial sec- The simplest .cosmo.log|cal solution | d|m9n3|ons n-
volves the metric, a dilaton, and amrank antisymmetric

tion of ad-dimensional spacetime, with=p+ 1. Typically, R
we shall consider spatial metrics of the maximally symmetrlc]cleld strengthFn. The Lagrangian is given by

form 1 1
) e 'L=R—5(9$)*~ 5 re¥F], (5
— r
ds’=—+—+r2dQ? 2)
1—kr where the constardt can be parametrized §23]
whered(Q? is the metric on a unitd— 2)-sphere. Without 2(n—1)(D—n—1)
loss of generality, the constaktmay be taken to be equal to a’=A— D2 . (6)

0, 1, or—1, in which case metrid s? describes flat, spheri-
cal, or hyperboloidal spatial sections, respectively. The genfNote that the Brans-Dicke Lagrangian generalized to in-
eral idea will be to look for solutions where this spacetimeclude a field strength can be recast in the fd&) by mak-
expands at large time, while thg=(D—d)-dimensional ing a dilaton-dependent conformal rescaling of the metric,
space parametrized by the coordinag€scontracts and be- and scaling the dilaton by an appropriate constant. The
comes unobservable at large time. Note that the fundfig®m  Brans-Dicke parameteap is related to the dilaton coupling
redundant, in the sense that it can later be set to any desiretnstanta.] In supergravity theories, the full bosonic La-
form by an appropriate redefinition of the time coordinate. Itgrangian can be consistently truncated to the single-scalar
is convenient to include it, however, since the solution of theLagrangian(5) for A=4/N, whereN is a set of integers
equations of motion can be simplified by choosing it appro-1,2,. .. ,N;. WhereN, depends orD andn [24]. For
priately. one-form field strengths, the Lagrangian can also be consis-
In the vielbein basise®=eYdt, e?=e”e?, eM=eBdy™ tently truncated to a set dfi one-forms for whichA takes
(there will be no confusion between the exponential functhe values 24N(N+1)(N+2)] [25]. The equations of mo-
tions and the vielbeinswe find that the curvature two-forms tion from the Lagrangiar5) are

are given by a
3 . - . D :_ea¢F2
®0a2672U(A_UA+A2)e0/\ea, ¢ 2n!
o:—zuB_'B+Bz 0N M 1
0% —e Y (B-U ye/\e™, Run=5Im$Ind+ Sun. (7

=0%+e VA% \e", ©)
ow, (e ?FM - Mn =0,
02, =e 2YABe?\e™, _ _ .
whereSyy is a symmetric tensor given by
Om,=e 2YB%eM\e",

n_

— agl o2 _ 2

— _ MN = e’ F FOun|- (8
where an overdot denotes a derivative with respect to the 2(n—1)! MN n(D-1)

@a

time coor(ilnate and®?, is the curvature two-form for the  tpore are two types oknsazefor the field strengttF, that
metric d s°= e®e? of the spatial sections, in the vielbein are compatible with the symmetries of the metfiy, giving
basise?. It follows that the tangent-space components of theiise to elementary and solitonic cosmological solutions. In

Ricci tensor for the metri€l) are given by the elementary solutions, th&nsatzfor the antisymmetric
o o o o tensor is given in terms of its potential, and in a coordinate
Roo=—e 2’[p(A+A?~UA)+q(B+B*~UB)], frame takes the form
Rap=€ 2Y(A+pA’—UA+QAB) Supte R, (4) Amyige-mq = T €mymy-.mgy ©
U, oo . and hence
Ryn=€"2Y(B+qB2—UB+ pAB) Sy,
_ F o =femm. m 10

where R,;,, denotes the tangent-space components of the Omymz Mg MMz Mg (

Ricci tensor for the spatlal metric. In all the cases we shal|yhere f is a funct|on oft only. Here and throughout this

conS|der the metriad s2 is Einstein, and we may write paperey...y ande™ N are taken to be tensor densities of
Rap=k(p—1)8,,, Which is in particular the case for the weights—1 and 1, respectively, with purely numerical com-

metrics(2). ponentst1 or 0. Note in particular that they are not related
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just by raising and lowering indices using the metric tensor.

For elementary solutions, we hape=D —n andg=n—1.
For the solitonic cosmological solutions, tesatzfor

the tangent-space components for the antisymmetric tensor is

:)\eipA

p

11

F
aja,---a P

€aja, --a
where N is a constant. Thus we havep=n and
gq=D—n—1. The form of the exponential prefactor is deter-
mined by the requirement th&t, satisfy the Bianchi identity
dF,=0.

Substituting theAnsdze for the metric and the field
strength into the equations of moti@#), we find

. .. .1
¢+(pA+qB—U)¢>=Eea)\ze‘fa""zp“z“,

A+ (pA+qB—U)A+k(p—1)e?V—2A

— g 2,—€agp—2pA+2U
“2b-2)"® ’
(12
B (pA+qB—U)B= — -0 = \2e-cav-zpata
2(D-2) '

p(A+A2—UA)+q(B+BZ—UB)+§¢2

= Ll)\Ze*eaqﬁprAJrZU
2(D-2) '
wheree=1 for the elementary case amre- — 1 for the soli-
tonic case. In the elementary case, the constaatises as
the integration constant for the functidnin Eq. (9).

It is convenient to make the gauge choide= pA+qB,
and to define

X=qB+(p—1)A Y=B+ﬁ¢
CAETPT A TP -2 @
=-—ea¢p+2qB. (13
The equations of motion fax, @, andY become
. .1 .
X+k(p—1)%*=0, @+5A\%"=0, Y=0,
(14

together with the first integral

2q(D—2)a2Y2_ 2pA
p—1

D2+ AN+ =
p—1

[X2+k(p—1)2e?].
(15

ThusX and® both satisfy Liouville equations. The manifest
positivity of the left-hand side of Eq15) shows that the
Hamiltonian X%+ k(p—1)2e?* for X must be positive, and
hence the appropriate form of the solution is
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p?cosr(cwa) if k=1,

—X_

© T et |
< sinh(ct+6) if k=—1,
X=—-ct—46 if k=0, (16

wherec and § are constants. Note that in taking the square
root of 2%, the positive root should be chosen in the expres-
sion for e X. The Hamiltonian®2+AX2%e® for ® is also
manifestly positive, and so the solution can be written as

A
o (1/2)4)2% cosh Bt+y), (17)

where 8 and y are constants. The solution f&f may be
taken to be simply

Y=—ut. (18
The constraint15), therefore, implies that
Ac’—q(D—-2)a’u?
Bz:p a( )a‘u 19

2(p—1)

In terms of the original functions, B, andU appearing
in the metric(1), and the dilatong, the solution takes the
form

A(D-2)
e 2q

B

=55

L ME

=35

a®(D-2)ut A(D-2)
cosi{Bt+y)e 2p-1) ezap-1) %,

A(D-2)
e 2(p-D

a2(D—2)ut
cosiBt+ y)e 2(p-D ,

(20

A AVA
em¢:_

28 cosh Bt+ y)e #at,

together withU=pA+qB. In a case where there is no dila-
ton, the solutions foA andB are again given by Eq20),
with ©=0. If insteadq=0, we have from Eq.6) that
a’=A; the solution for¢ follows from Eq.(20) by setting
g=0, andA is given byA=X/(p—1), with X given by Eq.
(16).

B. Dyonic cosmological solutions

In general dimensions, the cosmological solutions are ei-
ther elementary or solitonic. Il =2n, the n-rank field
strength can carry both electricl0) and magnetic(11)
charges. In this cas@=n andg=n—1. Making the same
gauge choicdJ =nA+(n—1)B, we find that the equations
of motion are given by
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1 same SL(FR) Toda equationf26]. This solution is unstable,
2.—a¢_ \ 2pad) a2(n—1)B ; g .

h= 58(7\19 —\3e*%)e , in the sense that it is a bound state of an electric and a
magnetic black hole with negative binding enef@y].]

Atk(n—1)e2(""DATE) = (7\ e 2%+ \Je??)e?n VB, C. Multicharge cosmological solutions

The D-dimensional bosonic Lagrangian & theory to
D dimensions compactified on a torus can be consistently

1
B _ —(\2n—a¢_ \ 2nad\a2(n—1)B
B 4(>\1e Taze)e ' @Y truncated to

o .1 1
p(A+A’—UA) +q(B+B?-UB)+ 3¢ e 'L=R-3 (9¢)%— 201 - 2 efa ¥F2, (26)

_ E()\ze‘a‘j’+ \2e24)g2(n-1)B when the dilat_on vectors for the setNffield strengthg$-, of
471 2 ' rankn=2 satisfy the dot products

These equations can be simplified by defining the variables . - 2(n—=1)(D—n-1)

X, d1, anqu, Ma,ﬁ’:ca'cﬁz45aﬁ_ D—2 . (27)

X=(n=1)(A+B), The maximum valuéN,,,, for N depends on the rank of the

1 field strengths, and on the dimensi@én For example, for
= m[q2+ gi—2In((n—1)\1\5)], (2290 two-form field strengthsNma=2 for 6<D=<9; Nma=3 in
D=5; andN =4 in 3=D=<4 [24]. We shall discuss the
case of one-form field strengths in Sec. Il D. In fact, we can
perform a further truncation to the single-scalar Lagrangian

a 1 N
=——(Qgo—Qy)+ —In—,
¢ 2(n—1)(q2 a2 a A, (5) with a, ¢, andF given by[24]

leading to , , o
. . a’= 2<Ml>aﬁ) . ¢=aX (M7, 6,
X+k(n—1)2e2%=0, @,=—eh*t1 a0 ) =

Qo= —etm T, (23 Fo=a?y (M1),4F2 (28)
B

together with the first-order constraint
For dilaton vectors whose dot products satisfy EtY), the

value of the constard is given by Eq.(6) with A=4/N.
In this subsection, we shall obtain multicharge cosmologi-
cal solutions for the Lagrangiaf26). We use the same el-

3G+ )+ (1- @iy o7 (- 4 @2 1

=2n[X2+k(n—1)%e . (24  ementary(9) or solitonic(11) Ansazefor the field strengths

F,. The metricAnsatzis given by Eq.(1), and again we

Here the constant is given by make the gauge choidd =pA+qB. The equations of mo-
1 a2 A tion become

a= (25

272n—1) 2in-1)°

I\)II—‘

2 é )\ze—eéa-&+2q3

The solution forX is straightforward, and is given by Eq. “

(16), with p=n. For generic values o, a particular solu-

tion for g; andq, can be obtained by settirgy =q,, which  A_ _ k(p—1)e29B+2(P~DAL LE A e—ec ¢+2qB

reduces the equations to two identical Liouville equations. 2(D-2)%

This special solution describes a self-dual cosmological

model, with\;=\,. It is unclear how to solve the equations . p—1 428

in the general dyonic case; # \,, for generic values ofr. B=— 2(D— 2)2 NG & (29)

However, there are two values affor which the equations

are solvable. When=1, they reduce to two Liouville equa- 1 -

tions and the solutions can be straightforwardly obtained. p(A+A%2—UA)+q(B+B2—UB)+ = (¢)?

This value ofa can arise for a three-form field strength in 2

D=6, with A=4. Another value ofa for which the equa-

tions are solvable ige=2, in which case they become the _ p—1 E )\Ze—ec -$+20B

SL(3R) Toda equations. This value af can arise for a - 2(D-2)4

two-form field strength inD=4, with A=4. [In fact, this

field strength can also support a dyonic black hole solutionAs in the single-charge case, it is convenient to define new
whose equations of motion can again be reexpressed as thariables:
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X=qB+(p—1)A, Y=B+-

p—1) _
D-2 ;ﬁ (M l)aﬁ‘PB’

®,=—€p,+20B, (30
where (pa=5a-<?>. The equations of motion foX and @,

become a set of Liouville equations

X+k(p—1)22X=0, &, +2\%e%=0, (31
together with the first integral constraint
: 8q(D—2)aZ?.
D2 +4N%ePa) + ————Y?
D A TS
8p .
=pr1[X2+k(p—l)2e2X], (32

whereA=4/N anda is given by Eq.(6), andY again satis-
fiesY=0.

The solution for the functiorX depends on the value of
the parametek, and is again given by Eq16). The solu-
tions for @, take the form

Ag
e (12 %u= Zeosli Bt + ), 33
a

where 8, and vy, are constants. The solution fof may
again be taken to be simply= — ut. The constrain{32),
therefore, implies that

» IBZZZpACZ—Zq(D—Z)aZMZ
i (p—1)A

(34
In terms of the functiondJ, A, B, and the dilatonic fields
¢, , the solutions can be expressed as

e~ [20D-2)/p—1]1B_ o[2(D-2)a2ut/(p-1)A]
NI
a=1 Ba
e[2(D72)/q]A:e[2(D72)/q(p71)] Xe[Z(D*Z)ale/(Dfl)A]

: (39

NN
x [1 (—QCOSHB(IH )
a=1 o
with U=pA+qgB and ep,=2qB—®,. When all the pa-
rameters\ , are equal and alB, are equal, multicharge so-

lutions reduce to the single-scalar solution given by @6).

D. SL(N+1,R) cosmological solutions

In this subsection, we discuss cosmological solutions with

one-form field strengths. The bosonic Lagrangian Mf

theory compactified t® dimensions on a torus can be trun-

cated to one involvindN<N,,,, one-form field strengths, of
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For the one-form field strengths, alternative consistent
truncations are possible in cases where the dot products of
the dilaton vectors do not satisfy E@7), but instead satisfy
[25]

MaB:45a,8_26(1,,8+l_25a,ﬁ*1' (36)
This is in fact twice the Cartan matrix for SN 1,R), and
consequently, as we shall see, the equations of motion of the
consistently truncated systef®6) can be cast into the form
of the SLN+ 1,R) Toda equations, which are exactly solv-
able. The multiscalar multicharge system can be further trun-
cated to a single-scalar systdB) using Eq.(28); these so-
lutions have[25]

24

=M= NI D(NT2)"

37

It was shown in[25] that sets of dilaton vectors with dot
products given by Eq36) arise in all toroidally compacti-
fied supergravities in all dimension®<9. In this case
Nmax=10—-D.

We shall first consider elementary cosmological solutions.
The metric for the elementary case involving one-form field
strengths is given by

ds?= —e?Ydt?+e?Ad s?, (38)

whered s? is again the metric on the spatial sections, typi-
cally taking the form(2). The field strengths take the elemen-
tary form given by Eq.(9). It is convenient to make the
gauge choic&J = (D —1)A, which implies that the equations
of motion become

.1 )
Pa=52 Mph5e 98, A+k(D-2)e*P-2A=0,
2°p

E,B (M _1)aB(;Da(;D,E+ 2 )\ie_qoa

=2(D—1)(D—2)(A%+keXP~2A), (39

Making the further redefinitiod ,= — 23 ;(M - agPp WE
find that® , satisfies

1
cb;;=—>\§exp(§% Maﬁqaﬁ), (40)

1 < 1

=2(D—2)(D—1)(A2+kexP~2A),

the form(26). Such consistent truncations are possible when
the dilaton vectors of the retained field strengths satisfy EqFinally, the redefinition ®,=q,—42 (M ‘1)aﬁln>\ﬁ re-

(27). In this case, we havh =2 for 7<D=<8; N,..=4
for 5<D=<6; N»=7 for D=4; andN,,~=8 for D=3.

moves the charges from the equations, and hence from Eq.
(36) we see that the equations become



q,=—e?i1 %,
dzz — @~ 91t202703
dsz — @~ U2t203~0s (41)
qu=e IN-1720n,

Thus the functiongy, satisfy the SLN+1,R) Toda equa-

tions, while A satisfies the Liouville equation. The solutions

are subject to the first-order constraint in E40), which can
be reexpressed as

H=2(D—1)(D—2)(A?+ke?P~2A), (42)
where H is the Hamiltonian for the Toda equatiornél),
given by

H

1 o 1

- Z;B MaﬁqanJrEa: exp( EEB: Maﬁqﬁ) . (43
The solution of the Liouville equation foA, whose form
depends on the value of the constlnts given by Eq.(16)
with p=D —1, whereX=(D —2)A. The general solution to
the SLN+ 1,R) Toda equation$41) can be given compactly
in the form[28]

N+1
eiq“: fk . 'fk Az(kl, PR ,ka)e("‘k1+"'+”ku)t,
ki<kp---<k, * @
(44)
where A%(kq, . .. ,ka)=HKi<kj(,uki—Mkj)2 is the square of

the Vandermonde determinant, afhdand w, are arbitrary
constants satisfying

N+1 N+1

IT fi=A%1,2,... N+1), >, w=0. (45
k=1 k=1

The Hamiltonian, which is conserved, takes the vdlie
$3N*Lu2 . It follows from Eq. (42) that the Hamiltonian

constraint implies
N+1

kZl w2=4(D-1)(D—2)c?. (46)
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from a small value at early times to a large value at late
times. Furthermore, one would hope that the scale factor
e® for the additionalg=D —p—1 dimensions parametrized
by they™ coordinates would become small at large times, so
that the additional dimensions become unobservable.

In order to discuss the evolution of the solutions, it is
useful to introduce a comoving time coordinate. In cases
where there is no dilaton, such as solution®of 11 super-
gravity or M theory, the choice of metric is unambiguous,
and the comoving timer is given by = [eVdt. In cases
where there is a dilaton, such as solutions of type IIA string
in D=10, there are two natural metrics that one might con-
sider, namely, the Einstein-frame metric and the string-frame
metric. The former is the one that we have been considering
thus far in the paper, and the latter is related to it by the
conformal rescalinglsZ;,,= €*ds®. The comoving time co-
ordinate depends on the choice of metric.

We shall begin by considering the simpler case of solu-
tions in D=11 supergravity, and then afterwards we shall
consider solutions i = 10.

A. Cosmology inD=11

In D= 11 supergravity, the bosonic fields consist only of
the metric and a four-form field strength. We can use it to
construct both elementary cosmological solutions with
p=7 and solitonic solutions witlp=4. Their metrics are
given by the first two equations in E¢RO), with A=4 and
=0, owing to the absence of the dilaton. We may also take
v=0, by appropriate choice of the origin for Let us con-
sider the solitonic case, which will correspond to a five-
dimensional cosmological model. We see from E) that

B?=%¢c? in this case, and from Eq20) that

e3A=—_eX coshBt,
e B
—6B A
e :E coshgt, (47)

and U=4A-+6B. Without loss of generality, we may take
B to be positive. The scale fact®®=e” diverges both at
t=c and att=—o, since3>|c|, while the scale factoe®
associated with the extig dimensions tends to zero in both
limits. The comoving time 7, defined such that
ds?=—dr?+e? d s>+ e?Bdy™dy™, is given by r=feVdt.

In general, owing to the complexity of the functie¥, the

It is straightforward to generalize the above discussion tQg|ation betweerr andt can only be evaluated by numerical

solitonic cosmological solutions, where we hgve 1 and

g=D—2. The equations of motion again can be cast into the

methods.
If k=1, the comoving coordinate is finite for all values

form of SL(N+1,R) Toda equations, and hence we can ob-f ¢ Whent runs from— o to +, r runs between two finite

tain exact solutions.

IIl. COSMOLOGICAL CHARACTERISTICS
OF THE SOLUTIONS

The solutions that we have obtained in the previous se
tion have metrics of the formil) in which the scale factors
e” ande® evolve in time. In order to obtain realistic cosmo-

values, 7_ to 7, . In this process, the scale sife=e”
shrinks from infinite size at_ to a minimum at some value
7o and then expands again to infinity af . From Eq.(3),
and from the form of the solutiot47), we see that the cur-
Jvature is of ordere™?" at large|t|, and thus diverges as

exd (2 2\/§)|ct].The solution is obviously undesirable

373
from both the phenomenological and the theoretical points of

logical models, a first requirement is that the scale factoview. The situation is different whek=0, since then we
e” for the spatial sections of the Universe should evolvehave e’ ~exd3(8|t|—4ct)] at large|t|. If ¢ is negative,
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c=— \/gﬁ, thenr diverges as tends to infinity, and in fact thatforD=11. Whenk=1, the comoving coordinateruns
7~eY. Sincee™2Y goes to zero at large, it follows that the ~ from 7- to 7, ast runs from —% to +%. The four-
curvature goes to zero at large Finally, if k=—1 the co- dimensional scale size shrinks from infinity to a minimum
ordinatet runs from — 8/c to +, and 7 correspondingly ~and then expands to infinity again. For the case0, and
runs from infinity to zero. The scale sifebecomes large as ¢<0, the comoving coordinate runs from zero to infinity as
7 tends to infinity, and is zero whenis zero. The curvature t runs from——co to «. The scale paramet&=e” diverges in

is singular atr=0, and tends to zero astends to infinity.  both ther—0 andr— regimes. Thus we can defing, at
Thus both thek=0 andk= —1 models have the feature that which the scale paramet& is a minimum, as the starting
the Universe expands as the comoving time increases fromoint of the expansion of the Universe, withrunning from
some finite timery to infinity, i.e.,R">0 for 7> 7y, where a 7, to infinity. It is easy to verify that speed of the expansion
prime denotes a derivative with respecttdOne may define R’ is always greater than zero whet 7, but with R”>0

79, Where the scale factdR is a minimum, as the starting when r— r, and R”<0 when r—. Although the metrics
point for the expansion of the Universe. In tke 0 case, we  behave identically for both the NS-NS and R-R solutions, the
haveR">0 at7= 7o andR"<0 asr—». Whenk=—1,we (ilaton field, and hence the string coupliggbehave in op-
haveR">0 at 7=17o, andR"=0 as7 tends to infinity. In  posite ways. For the NS-NS solution, the string coupling
thesek=0 andk=—1 solutions, the Universe is not starting giverges whenr— o, while for the R-R solution the string
from zero size atr= 7o, but rather, this value of the comov- ¢,ypjing vanishes in that limit. In all cases, the curvature
ing time represents the point at which it has a minimum sizeyg 4 1o zero when the scale fac®ris large, if this coin-
which is of the order of the Planc!< scalg. In prmmple,'oneCides with 7 going to infinity, namely, in thek=0 and
can extrapolate back te=0, at which point the scale size k=—1 models. On the other hand, if largecorresponds to

R is infinite. Although this region & r<, does not itself , five yajue of 7, as in thek=1 models, the curvature
describe a satisfactory cosmological evolution, since the Codiverges there

moving time reaches an end pointat 0 and the curvature If k=—1, the coordinate runs from = to t=— /c,

diverges there, there is a sense in which one can think of thgnd correspondingly, the comoving coordinateuns from
physrl]caltl LtJrlverse with =7, as emerging through a zero to infinity. The scale paramet@runs from infinity to a
wormnole atr= ro. minimum atry, and then to infinity again. Thus we can de-
In a similar manner, one can analyze the elementary SGine the expansion of the Universe frome 7, to 7=, At
lutions inD=11, which describe an eight-dimensional COS-4pa beginning of the Universe, we ha%‘>8 while at the
mological model. end of the Universe we havR"=0 in this case. At the
_ beginningr= 7, the string coupling constargf is a nonva-
B. Cosmology inD=10 nishing constant for both NS-NS solutions and R-R solutions
Since ten-dimensional string theories have three-fornnd it converges to another nonvanishing constant at large
field strengths, we can obtain solitonic solutions witi 3 T

and q=6, which describe four-dimensional cosmological In the above discussion, we studied the cosmological
models. The dilaton coupling is such tre=1, and hence Characteristics of the metrics in the Einstein frame. In this

A=4. The string coupling constant is given gy=e~¢. The  frame, the form of the metrics is insensitive to whether the
Neveu-Schwarz—Neveu-SchwafXS-NS three-form field ~ Solution is constructed using an NS-NS three-form or an R-R
strengths of any of th® =10 string theories have dilaton three-form. However, since the constarih the dilaton pref-

coupling a= + 1, while the Ramond-Ramon(R-R) three- ~ actor is +1 for the NS-NS solutions ané-1 for the R-R
form of type 1IB theory hasi= — 1. From Eq.(20), we find  Solutions, the string metrics for the NS-NS and R-R cases are

that the solutions have the form quite different, and we shall discuss them separately. In the
string-frame metric, the scale factef for the y™ space in
the R-R solutions diverges whéih goes to infinity. Thus the
solutions only make sense whér= —1, since in this case
the relevant part of the evolution does not involve the large
N [t| regime. Specifically, a$ runs from +o to — é/c, the
e 88=— cosh Bt+ y)e?*, (48)  comoving coordinater runs from zero to infinity, but the
B evolution is taken fromr= r, whereR=¢e”" is a minimum to

7= whereR diverges. This behavior of the scale factor
R is similar to that in the Einstein frame, but the scale factor
e® shrinks, although remaining finite and nonzero for the
entire evolution. For the NS-NS solutions, the string cou-
together withU=3A+6B, and from Eq.(19 we have pling diverges at largét|. Thus the solutions are again re-
B2=3c?—12u2 stricted to the cas&=—1, wheret runs from *x to

Let us first consider the case whanr=0. This value has t=— é/c. The comoving coordinate runs from zero to in-
the distinguishing feature that the dimensional reduction ofinity. At large 7, the D=4 Universe expands with constant
the solution by compactifying thg™ coordinates gives rise speed; but at-=0, unlike in the Einstein frame, we have
to solutions which also involve only one scalar field, as weR=e*=0, andR"<0 for small 7.
shall discuss in Sec. IV. In the Einstein frame, the analysis of So far, we have discussed the cosmological characteristics
the cosmological properties of these solutions is analogous tof the solution(48) when w is set to zero. We saw that the

e(8/3)A:% cosh Bt + y)e2ut+ (431X

A
e (2@ ‘f’ZE cosh Bt+ y)e B+,
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string coupling diverges for NS-NS solutions at lardg originating from some fundamental theory such as a string in
while it vanishes for R-R solutions. Now let us examine theD =10, orM theory inD=11. Since the lower-dimensional
solutions wherw is nonvanishing. In this case, as we shall theories that we have considered are obtained by consistent
see in the next section, dimensional reductions of the soludimensional reduction fror® =10 orD =11, it follows that
tions in which they™ coordinates are compactified give rise all their cosmological solutions can be oxidized back to so-
to solutions with additional scalar fields in the lower dimen-lutions in the fundamental higher dimension. In part, the util-
sion. We shall examine the metrics for solutions withity of constructing solutions first in the lower dimension is
B=6u>0. In this case the dilaton, and hence the stringthat it can often be simpler than solving the equations di-
coupling, becomes a constant whemoes to infinity, for  rectly in the fundamental dimension. In particular, this is true
both the NS-NS and the R-R solutions. Then, by making af the lower-dimensional solution involves more than one
small perturbation away fron8=6u, which will not quali- field strength, since its oxidation to the higher dimension will
tatively affect the characteristics of the metric, we can havéhen give a solution that lies outside the class that we have
the string coupling vanish whengoes to infinity. It follows considered thus far. Thus it is useful to study the general
from the equation below Eq48) that we have|c|=4u  procedure of oxidation and reduction of the various cosmo-
when 8=6u. In the Einstein frame, the behavior of the so- logical solutions.

lutions for k=1, k=0, andk=—1 are analogous to the The general procedure of toroidal-dimensional reduction
corresponding ones with =0 that we discussed previously. can be broken down into a sequence of one-step reductions
This implies, in particular, that by adjusting the parameteron circles. The necessary reduction formulas can thus be
w properly, we can have an inflationary model even forencapsulated in the reduction of the following Lagrangian in
NS-NS solutions whei=0, where the string coupling van- (D+1) dimensions:

ishes as the comoving time approaches infinity. At ldrte

behavior of the metric in the string frame is the same as that 1. . e -

in the Einstein frame, since the dilaton tends to a constant at Lpi1=eR— Ee(&cb)z— ﬁea""Fﬁ, (49
larget. If k=0, large values of imply large values ofr, '

while if k=—1, they imply thatr tends to zero. Thus inthe

string frame, by adjusting the paramegemproperly, we can 9iving

also have inflationary models where the string coupling, re-

spectively, vanishes or goes to a constant at largehile 1 1

the expansion rat®’ of the four-dimensional Universe ei- Lp=eR- Ee(acﬁ)z— Ee((w)z— Zee_z(D_l)““’fz

ther tends to zero or becomes a constant.

We have discussed the cosmological features of the soli- e -
e—Z(r‘I—l)acp—aqﬁFl/12

tonic solutions for both the NS-NS and R-R three-forms. T onl

These solutions can provide inflationary models of the Uni-

verse. The nine-dimensional space divides into two parts: a e 2(D ) ap— b2

six-dimensional subspace shrinks to zero or a finite size as “2n-1)1 ¢ Fh-1 (50

the comoving time tends to infinity, while a three-
dimensional subspace expands. The solutions provide a dy- , , , , i )
namical compactification of the ten-dimensional spacetimd? D dimensions. The 0+ 1)-dimensional fields with a
toD=41 caret are expressed in terms of tBedimensional fields

In D=10, there exist further field strengths of other ranks,Vithout carets by the standard Kaluza-Klein relations:
and the associated solutions will describe cosmologies in dif-

ferent dimensions. ds3. ,=e?*¢dsi +e 2P~ 2e¢(dz+ A)?,

IV. DIMENSIONAL REDUCTION AND OXIDATION _— Ny e
OF COSMOLOGICAL SOLUTIONS An-1=An-1tAnp/\dzZ,  d=¢, (51

In the previous sgcnons, we constructed. rather gener%here all the fields without carets are independent of the
class_:es of cc_JsmoIog_lcaI solutions [_m-dlmensuonal Super- compactification coordinate andF=d.A. The constant is
gravity theories. Ultimately, one views these theories asgiven bya=[2(D—1)(D—2)] Y2 The lower-dimensional

field strengths, obtained from the exterior derivative of the

ISince the metric on the six-dimensional subspace is flat, we magxpreSSIOn for the potential,_, given above, are, therefore,

choose to identify the coordinates to give a six-torus. The radii o€Xpressed as-,= Fi+Fa-1/\(dz+.A), where F) is the
the circles will be time dependent, and are proportionafoSince ~ Chern-Simons-corrected forfyy=dA,_;—dA,_,/\ A, and

T duality relates circles of small radii to circles of large radii, a Fn—1=dAn_5.

solution such as we have here whefetends to a small but non- Let us begin by applying the above formalism to the ex-
zero fixed value at large comoving times is physically more desir-ample of aD=10 cosmological solution, of the forr{20)
able than one where® shrinks to zero at large times. These solu- with p=3 andq=6, with A=4 anda®=1. We shall take
tions also exhibit a desirable behavior of the dilaton field, in that itthe compactification coordinateto be one of they/™ coor-
tends to a finite constant at large comoving times, and thus thdinates, so that iD=9 we havep=3 andq=5. The rel-
gauge coupling will become constant at large times. evant part of theD=9 Lagrangian will be, using Eq50),
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Lo=€eR 2e((7¢>) 2e((9go) —12eea F3

=eR- %e(&d;l)z— %e(a(ﬁz)z— %zeew’le, (52)
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tion from ¢,. TheseD =9 solutions can also be oxidized to
D =10, but for generic values of the internal coordinate

z can no longer be isotropically grouped with the coordinates
y™. Thus theseD=9 solutions gives rise to new ten-
dimensional cosmological solutions, but in this casetfe
andz spaces dynamically compactify at different rates.

where in the second line we have introduced a rotated pair of The above illustration of Kaluza-Klein-dimensional re-

dilatonic scalars, defined byb¢,=a¢dp—4a¢ and
bd,=4ap+ae. The constantse and b are given by
a=1/(4\/7) andb?=8/7. Comparing the metrids?, given

in Eq. (1) for the ten-dimensional solution with the dimen-

sionally reduced metrids; defined in Eq(51), we see that
the Kaluza-Klein scalar is given by ao=—B/7. Thus it
follows from the ten-dimensional solutiof20) that its di-
mensional reduction t® =9 gives a metric of the fornil),
with functionsU, B, andB (the tildes denotindd=9 quan-
tities) given by

e(14/5)K:% cosh Bt + y)ez,mr (719X

A

e 7B g cosh Bt+ y)e?, (53

together withU=2A+5B. The D=9 dilatonic fields ¢,
and ¢, are given by

A
e (2/0) b1 B cosh Bt+ y)e 5+,

e(4V2ib) ¢y — o= But (54)

duction of theD =10 cosmological solutions =9 can be
easily generalized to arbitrary dimensions. The reverse of the
procedure provides a mechanism for oxidizing all the lower-
dimensional solutions back =10 orD=11. Thus all the
lower-dimensional solutions we obtained in Sec. Il can be
viewed as 10- or 11-dimensional solutions, and obtaining
such lower-dimensional solutions provides a convenient al-
gorithm for constructing and classifying sets of 10- or 11-
dimensional theories. Of course, it is not guaranteed that the
coordinate directions that are selected for this nondynamical
Kaluza-Klein compactification of the theory will actually
shrink, rather than grow, as the cosmological solution
evolves. Which of these occurs is a matter of calculation in
the specific model in question. If it should turn out that some
of the compactification directions actually expand with time,
it becomes natural, from the ten-dimensional point of view,
to include them in the spatial directions of the expanding
universe. For example, we can construcpa?2 solitonic
solution in four dimensions using a two-form field strength.
From the four-dimensional point of view, we have a three-
dimensional expanding universe, with one shrinking circle.
However, if the two-form field strength comes from the di-
mensional reduction of the three-formln= 10, oxidation of

the four-dimensional solution tB=10 reveals that one of
the six “compactifying” coordinates in fact expands, and
hence gives rise to a four-dimensional expanding Universe,

Thus we see that in general, the dimensional reduction of ahich is no different from thgg=3, =6 solutions with
single-scalar solution has given rise to a solution with twok=0 in D= 10 that we discussed earlier.

linearly independent scalars. If, however, we consider the However, this does not imply that all the lower-
D =10 solution withu=0, then it reduces to a single-scalar dimensional solutions are nothing but reductions of already-

solution inD=9. In fact thisD=9 solution is precisely of
the same form{20), with p=3,9=5,A=4, andu=0. Itis

interesting to note that even whenis taken to be nonzero,

the D=9 metric is still of the form given in Eq.20). How-

known higher-dimensional solutions. As we saw earlier, the
single-scalaD =9 solution with nonvanishing. oxidizes to
a solution inD =10 that is not encompassed by #esatzin
Sec. II. In fact, as we saw in Sec. Il, a large number of
solutions arise in lower dimensions that involve more than

ever, the Hamiltonian relatiofiL9) between the integration
constantsB, ¢, and w is given by the ten-dimensional for-
mula 8%=3c?— 12u? rather than the nine-dimensional for-
mula 3%=3c?— 10u? that would be needed if the #0 so-

one field strength. The equations of motion have the form of
a set of Liouville equations or SN+ 1,R) Toda equations.
The oxidation of these solutions provides a rich variety of
lutions were to have the single-scalar fof20) in D=9. cosmological solutions i =10. It would be very interest-
Thus the reason why the additional scafgris excited inthe ing to analyze their cosmological significance.

p#0 dimensionally reduced solutions is that its energy con-
tribution is needed in order to make up the deficit in the
Hamiltonian constraint.

It is interesting to note that the dimensional reduction of In this paper we have made a rather extensive study of
the ten-dimensional cosmological solutions gives rise to neveertain classes of cosmological solutions =10 string
solutions that are beyond the scope of Sec. Il, in that atheory orM theory. In particular, we began by constructing
additional scalar, namely,, which does not couple to the cosmological models in thB-dimensional toroidal compac-
field strength, becomes linearly proportional to the time codifications of the string oM theory, in which the metric
ordinatet. The metric and the dilatow; of the solution, takes the form(1). The relevant cosmological solutions cor-
however, have exactly the same form as those for the solwespond to cases whepedimensional spatial sections that
tion with vanishinge,. In fact the constant of proportionality can be flat, spherical, or hyperboloidal expand in time, while
v in the time dependence ¢f,= vt can be arbitrary, and has an internal g-dimensional space undergoes a contraction.
the effect of changing the relation between the constants ofhis spacetime, witlb=p+qg+1 dimensions, can then be
integration toB%=3c?— 10u?— »?, wherev is the contribu- embedded in the origindd =10 or D =11 theory by revers-

V. CONCLUSIONS
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ing the steps of the toroidal compactification Bodimen- R">0 at early times, an®”<0 as7— o, where the primes
sions. This gives further dimensions that may be expandindenote derivatives with respect to the comoving time. On the
or contracting, depending on the details of the solution. Thether hand, in thek=1 models the comoving time runs
models that would be of principal interest for cosmology arewithin a finite range, and the scale facRrdiverges at both
those where the total number of expanding spatial dimengnds of the interval. We also obtained large classes of more
sions is 3. By dividing the process of constructidg=10 or  complicated solutions whose cosmological properties we did
D =11 solutions into these two stages, one can obtain rathg{ot examine in detail, including those corresponding to the
broad classes of solutions with relative ease. SL(N+1R) Toda equations. It would be interesting to in-

We examined some general features of the evolution ofestigate the cosmology of these models further.
the metric scaling functions in some of the simpler solutions

that we obtained. In certain cases, we found that the behavior
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