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We obtain a large class of cosmological solutions in the toroidally compactified low-energy limits of string
theories inD dimensions. We consider solutions where ap-dimensional subset of the spatial coordinates,
parametrizing a flat space, a sphere, or a hyperboloid, describes the spatial sections of the physically observed
Universe. The equations of motion reduce to Liouville or SL(N11,R) Toda equations, which are exactly
solvable. We study some of the cases in detail, and find that under suitable conditions they can describe
four-dimensional expanding universes. We discuss also how the solutions inD dimensions behave upon
oxidation back to theD510 string theory orD511M theory.@S0556-2821~97!06712-X#

PACS number~s!: 11.27.1d, 98.80.Cq

I. INTRODUCTION

The study of cosmological consequences of string theory
has been an area of much active research in the past@1–6#.
Recently, exploiting certain duality symmetry, it has been
suggested that inflation can occur in string theory without
relying on the potential energy density of the dilaton field
@7,8#. Since then, several papers have investigated aspects of
string-inspired cosmology in various dimensions@9–16#.
One of the intriguing features in these models is that a dy-
namical compactification of some of the coordinate direc-
tions can occur, implying, for example, that a cosmological
solution of the ten-dimensional string can evolve so that it
describes a four-dimensional expanding Universe, with the
extra six dimensions undergoing a contraction~see, for ex-
ample, @13#!. In view of the recent advances in the under-
standing of the unity among string theories, it can be argued
that the most natural arenas within which cosmological mod-
els should be studied are type IIA and type IIB string theo-
ries, or possibly theirM -theory andF-theory progenitors
@13#. Cosmological solutions of this kind involving the use
of Neveu-Schwarz–Neveu-Schwarz~NS-NS! fields have
been discussed in@9–11#. The various duality symmetries
make it natural also to study cosmological solutions involv-
ing Ramond-Ramond~R-R! fields also@13#. In this paper, we
shall examine a broad class of cosmological models that
arise as solutions of the low-energy limits of ten-dimensional
string theories orM theory. Our starting point will be to
consider models in theD-dimensional toroidal compactifica-
tions of the fundamental theories, in whichp-dimensional
spatial sections~which may be flat, spherical, or hyperbolic!
expand whileq5D2p21 dimensions contract, as the Uni-
verse evolves. These models themselves may all be reinter-
preted as 10-dimensional or 11-dimensional solutions, by re-
versing the reduction procedure that led to the
D-dimensional theory. By this means, large classes of 10- or
11-dimensional solutions of a cosmological type can be ob-
tained. The extra dimensions that are restored in this oxida-
tion process will themselves typically either expand or con-

tract, adding further to the numbersp and q of expanding
and contracting dimensions. Ultimately, phenomenological
considerations would imply that one is principally interested
in the case where the total number of expanding spatial di-
mensions is 3.

The reason for dividing the discussion into two stages, in
which first we find cosmological solutions in the
D-dimensional toroidal compactifications of the ten-
dimensional theories, and then we oxidize them back to
D510 orD511, is the following. In order to construct so-
lutions, it is useful to choose a highly symmetricalAnsatzfor
the form of the metric and other fields in the theory, so as to
obtain relatively simple equations of motion for the remain-
ing degrees of freedom. Upon oxidation toD510 or
D511, the solutions typically acquire a more complicated
form, which would be less easily found, or classified, by a
direct ten-dimensional study of the equations of motion. This
is analogous to the situation forp-brane solitons, where most
of the lower-dimensional solutions yield rather complicated
configurations inD510 orD511 that correspond to sets of
intersectingp-branes, possibly also with ‘‘boosts’’ along cer-
tain directions in the toroidally compactified dimensions
@17–22#.

The organization of the paper is as follows. In Sec. II, we
set up theAnsatzfor the metric tensor and the other fields of
the theories, and then obtain cosmological models involving
single-scalar, dyonic, and multiscalar solutions. Included in
the multiscalar cases are models where the equations of mo-
tion reduce to the SL(N11,R) Toda equations. In Sec. III,
we discuss the cosmological properties of some of the mod-
els. In Sec. IV, we discuss the Kaluza-Klein reduction and
oxidation of the cosmological solutions. The paper ends with
conclusions in Sec. V.

II. COSMOLOGICAL SOLUTIONS
FROM STRING THEORIES

Cosmological models are described by solutions of the
low-energy effective theory in which the metric tensor, and
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the other fields, are time dependent. We shall look for solu-
tions in which theD-dimensional metric takes the form

ds252e2Udt21e2Ad s̄21e2Bdymdym, ~1!

where the functionsU, A, and B depend only ont, and
d s̄2 represents thep-dimensional metric on the spatial sec-
tion of ad-dimensional spacetime, withd5p11. Typically,
we shall consider spatial metrics of the maximally symmetric
form

d s̄25
dr2

12kr2
1r 2dV2, ~2!

wheredV2 is the metric on a unit (d22)-sphere. Without
loss of generality, the constantk may be taken to be equal to
0, 1, or21, in which case metricd s̄2 describes flat, spheri-
cal, or hyperboloidal spatial sections, respectively. The gen-
eral idea will be to look for solutions where this spacetime
expands at large time, while theq5(D2d)-dimensional
space parametrized by the coordinatesym contracts and be-
comes unobservable at large time. Note that the functionU is
redundant, in the sense that it can later be set to any desired
form by an appropriate redefinition of the time coordinate. It
is convenient to include it, however, since the solution of the
equations of motion can be simplified by choosing it appro-
priately.

In the vielbein basise05eUdt, ea5eA ēa, em5eBdym

~there will be no confusion between the exponential func-
tions and the vielbeins!, we find that the curvature two-forms
are given by

Q0
a5e22U~Ä2U̇Ȧ1Ȧ2!e0`ea,

Q0
m5e22U~B̈2U̇Ḃ1Ḃ2!e0`em,

Qa
b5Q̄a

b1e22UȦ2ea`eb, ~3!

Qa
m5e22UȦḂea`em,

Qm
n5e22UḂ2em`en,

where an overdot denotes a derivative with respect to the
time coordinatet, andQ̄a

b is the curvature two-form for the
metric d s̄25 ēa ēa of the spatial sections, in the vielbein
basisēa. It follows that the tangent-space components of the
Ricci tensor for the metric~1! are given by

R0052e22U@p~Ä1Ȧ22U̇Ȧ!1q~B̈1Ḃ22U̇Ḃ!#,

Rab5e22U~Ä1pȦ22U̇Ȧ1qȦḂ!dab1e22AR̄ab , ~4!

Rmn5e22U~B̈1qḂ22U̇Ḃ1pȦḂ!dmn ,

where R̄ab denotes the tangent-space components of the
Ricci tensor for the spatial metric. In all the cases we shall
consider, the metricd s̄2 is Einstein, and we may write
R̄ab5k(p21)dab , which is in particular the case for the
metrics~2!.

In the rest of this section, we shall derive various classes
of cosmological solutions in toroidally compactified string
theories.

A. One-scalar cosmological solutions

The simplest cosmological solution inD dimensions in-
volves the metric, a dilaton, and ann-rank antisymmetric
field strengthFn . The Lagrangian is given by

e21L5R2
1

2
~]f!22

1

2n!
eafFn

2 , ~5!

where the constanta can be parametrized as@23#

a25D2
2~n21!~D2n21!

D22
. ~6!

@Note that the Brans-Dicke Lagrangian generalized to in-
clude a field strength can be recast in the form~5!, by mak-
ing a dilaton-dependent conformal rescaling of the metric,
and scaling the dilaton by an appropriate constant. The
Brans-Dicke parameterv is related to the dilaton coupling
constanta.# In supergravity theories, the full bosonic La-
grangian can be consistently truncated to the single-scalar
Lagrangian~5! for D54/N, whereN is a set of integers
1,2, . . . ,Nmax, whereNmax depends onD and n @24#. For
one-form field strengths, the Lagrangian can also be consis-
tently truncated to a set ofN one-forms for whichD takes
the values 24/@N(N11)(N12)# @25#. The equations of mo-
tion from the Lagrangian~5! are

hf5
a

2n!
eafF2,

RMN5
1

2
]Mf]Nf1SMN , ~7!

]M1
~eeafFM1•••Mn!50,

whereSMN is a symmetric tensor given by

SMN5
1

2~n21!!
eafS FMN

2 2
n21

n~D21!
F2gMND . ~8!

There are two types ofAnsätze for the field strengthFn that
are compatible with the symmetries of the metric~1!, giving
rise to elementary and solitonic cosmological solutions. In
the elementary solutions, theAnsatzfor the antisymmetric
tensor is given in terms of its potential, and in a coordinate
frame takes the form

Am1i2•••mq
5 f em1m2•••mq

, ~9!

and hence

F0m1m2•••mq
5 ḟ em1m2•••mq

, ~10!

where f is a function of t only. Here and throughout this
papereM•••N andeM•••N are taken to be tensor densities of
weights21 and 1, respectively, with purely numerical com-
ponents61 or 0. Note in particular that they are not related
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just by raising and lowering indices using the metric tensor.
For elementary solutions, we havep5D2n andq5n21.

For the solitonic cosmological solutions, theAnsatzfor
the tangent-space components for the antisymmetric tensor is

Fa1a2•••ap
5le2pAea1a2•••ap , ~11!

where l is a constant. Thus we havep5n and
q5D2n21. The form of the exponential prefactor is deter-
mined by the requirement thatFn satisfy the Bianchi identity
dFn50.

Substituting theAnsätze for the metric and the field
strength into the equations of motion~7!, we find

f̈1~pȦ1qḂ2U̇ !ḟ5
1

2
eal2e2eaf22pA12U,

Ä1~pȦ1qḂ2U̇ !Ȧ1k~p21!e2U22A

5
q

2~D22!
l2e2eaf22pA12U,

~12!

B̈1~pȦ1qḂ2U̇ !Ḃ52
p21

2~D22!
l2e2eaf22pA12U,

p~Ä1Ȧ22U̇Ȧ!1q~B̈1Ḃ22U̇Ḃ!1
1

2
ḟ2

52
p21

2~D22!
l2e2eaf22pA12U,

wheree51 for the elementary case ande521 for the soli-
tonic case. In the elementary case, the constantl arises as
the integration constant for the functionf in Eq. ~9!.

It is convenient to make the gauge choiceU5pA1qB,
and to define

X[qB1~p21!A, Y[B1
~p21!

ea~D22!
f,

F[2eaf12qB. ~13!

The equations of motion forX, F, andY become

Ẍ1k~p21!2e2X50, F̈1
1

2
Dl2eF50, Ÿ50,

~14!

together with the first integral

Ḟ21Dl2eF1
2q~D22!a2

p21
Ẏ25

2pD

p21
@Ẋ21k~p21!2e2X#.

~15!

ThusX andF both satisfy Liouville equations. The manifest
positivity of the left-hand side of Eq.~15! shows that the
Hamiltonian Ẋ21k(p21)2e2X for X must be positive, and
hence the appropriate form of the solution is

e2X5H p21

c
cosh~ct1d! if k51,

p21

c
sinh~ct1d! if k521,

X52ct2d if k50, ~16!

wherec andd are constants. Note that in taking the square
root of e2X, the positive root should be chosen in the expres-
sion for e2X. The HamiltonianḞ21Dl2eF for F is also
manifestly positive, and so the solution can be written as

e2 ~1/2! F5
lAD

2b
cosh~bt1g!, ~17!

whereb and g are constants. The solution forY may be
taken to be simply

Y52mt. ~18!

The constraint~15!, therefore, implies that

b25
pDc22q~D22!a2m2

2~p21!
. ~19!

In terms of the original functionsA, B, andU appearing
in the metric~1!, and the dilatonf, the solution takes the
form

e
D~D22!

2q A5
lAD

2b
cosh~bt1g!e

a2~D22!mt
2~p21! e

D~D22!
2q~p21!

X,

e2
D~D22!
2~p21!

B5
lAD

2b
cosh~bt1g!e

a2~D22!mt
2~p21! , ~20!

e
D
2ea f5

lAD

2b
cosh~bt1g!e2mqt,

together withU5pA1qB. In a case where there is no dila-
ton, the solutions forA andB are again given by Eq.~20!,
with m50. If instead q50, we have from Eq.~6! that
a25D; the solution forf follows from Eq. ~20! by setting
q50, andA is given byA5X/(p21), with X given by Eq.
~16!.

B. Dyonic cosmological solutions

In general dimensions, the cosmological solutions are ei-
ther elementary or solitonic. InD52n, the n-rank field
strength can carry both electric~10! and magnetic~11!
charges. In this case,p5n andq5n21. Making the same
gauge choiceU5nA1(n21)B, we find that the equations
of motion are given by
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f̈5
1

2
a~l1

2e2af2l2
2eaf!e2~n21!B,

Ä1k~n21!e2~n21!~A1B!5
1

4
~l1

2e2af1l2
2eaf!e2~n21!B,

B̈52
1

4
~l1

2e2af1l2
2eaf!e2~n21!B, ~21!

p~Ä1Ȧ22U̇Ȧ!1q~B̈1Ḃ22U̇Ḃ!1
1

2
ḟ2

52
1

4
~l1

2e2af1l2
2eaf!e2~n21!B.

These equations can be simplified by defining the variables
X, q1, andq2,

X5~n21!~A1B!,

B5
1

4~n21!
@q21q122ln„~n21!l1l2…#, ~22!

f5
a

2~n21!
~q22q1!1

1

a
ln

l1

l2
,

leading to

Ẍ1k~n21!2e2X50, q̈152eaq11~12a!q2,

q̈252e~12a!q11aq2, ~23!

together with the first-order constraint

1

2
a~ q̇1

21q̇2
2!1~12a!q̇1q̇21eaq11~12a!q21eaq21~12a!q1

52n@Ẋ21k~n21!2e2X#. ~24!

Here the constanta is given by

a5
1

2
1

a2

2~n21!
5

D

2~n21!
. ~25!

The solution forX is straightforward, and is given by Eq.
~16!, with p5n. For generic values ofa, a particular solu-
tion for q1 andq2 can be obtained by settingq15q2, which
reduces the equations to two identical Liouville equations.
This special solution describes a self-dual cosmological
model, withl15l2. It is unclear how to solve the equations
in the general dyonic casel1Þl2, for generic values ofa.
However, there are two values ofa for which the equations
are solvable. Whena51, they reduce to two Liouville equa-
tions and the solutions can be straightforwardly obtained.
This value ofa can arise for a three-form field strength in
D56, with D54. Another value ofa for which the equa-
tions are solvable isa52, in which case they become the
SL(3,R) Toda equations. This value ofa can arise for a
two-form field strength inD54, with D54. @In fact, this
field strength can also support a dyonic black hole solution,
whose equations of motion can again be reexpressed as the

same SL(3,R) Toda equations@26#. This solution is unstable,
in the sense that it is a bound state of an electric and a
magnetic black hole with negative binding energy@27#.#

C. Multicharge cosmological solutions

The D-dimensional bosonic Lagrangian ofM theory to
D dimensions compactified on a torus can be consistently
truncated to

e21L5R2
1

2
~]fW !22

1

2n! (
a51

N

ec
W

a•f
W
Fa
2, ~26!

when the dilaton vectors for the set ofN field strengthsFa of
rankn>2 satisfy the dot products

Mab5cWa•cWb54dab2
2~n21!~D2n21!

D22
. ~27!

The maximum valueNmax for N depends on the rank of the
field strengths, and on the dimensionD. For example, for
two-form field strengths,Nmax52 for 6<D<9; Nmax53 in
D55; andNmax54 in 3<D<4 @24#. We shall discuss the
case of one-form field strengths in Sec. II D. In fact, we can
perform a further truncation to the single-scalar Lagrangian
~5! with a, f, andF given by @24#

a25S (
a,b

~M21!abD 21

, f5a(
a,b

~M21!abcWa•fW ,

Fa
25a2(

b
~M21!abF

2. ~28!

For dilaton vectors whose dot products satisfy Eq.~27!, the
value of the constanta is given by Eq.~6! with D54/N.

In this subsection, we shall obtain multicharge cosmologi-
cal solutions for the Lagrangian~26!. We use the same el-
ementary~9! or solitonic~11! Ansätze for the field strengths
Fa . The metricAnsatzis given by Eq.~1!, and again we
make the gauge choiceU5pA1qB. The equations of mo-
tion become

fẄ 5
1

2
e(

a
cWala

2e2ecWa•f
W 12qB,

Ä52k~p21!e2qB12~p21!A1
q

2~D22!(a la
2e2ecWa•f

W 12qB,

B̈52
p21

2~D22!(a la
2e2ecWa•f

W 12qB. ~29!

p~Ä1Ȧ22U̇Ȧ!1q~B̈1Ḃ22U̇Ḃ!1
1

2
~fẆ !2

52
p21

2~D22!(a la
2e2ecWa•f

W 12qB.

As in the single-charge case, it is convenient to define new
variables:
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X[qB1~p21!A, Y5B1
e~p21!

D22 (
a,b

~M21!abwb ,

Fa52ewa12qB, ~30!

wherewa5cWa•fW . The equations of motion forX andFa
become a set of Liouville equations

Ẍ1k~p21!2e2X50, F̈a12la
2eFa50, ~31!

together with the first integral constraint

(
a

~Ḟa
214la

2eFa!1
8q~D22!a2

~p21!D
Ẏ2

5
8p

p21
@Ẋ21k~p21!2e2X#, ~32!

whereD54/N anda is given by Eq.~6!, andY again satis-
fies Ÿ50.

The solution for the functionX depends on the value of
the parameterk, and is again given by Eq.~16!. The solu-
tions forFa take the form

e2 ~1/2! Fa5
la

ba
cosh~bat1ga!, ~33!

where ba and ga are constants. The solution forY may
again be taken to be simplyY52mt. The constraint~32!,
therefore, implies that

(
a

ba
25

2pDc222q~D22!a2m2

~p21!D
. ~34!

In terms of the functionsU, A, B, and the dilatonic fields
wa , the solutions can be expressed as

e2 @2~D22!/p21# B5e@2~D22!a2mt/~p21!D#

3 )
a51

N S la

ba
cosh~bat1ga! D ,

e@2~D22!/q# A5e@2~D22!/q~p21!# Xe@2~D22!a2mt/~p21!D#

3 )
a51

N S la

ba
cosh~bat1ga! D , ~35!

with U5pA1qB and ewa52qB2Fa . When all the pa-
rametersla are equal and allba are equal, multicharge so-
lutions reduce to the single-scalar solution given by Eq.~20!.

D. SL„N11,R… cosmological solutions

In this subsection, we discuss cosmological solutions with
one-form field strengths. The bosonic Lagrangian ofM
theory compactified toD dimensions on a torus can be trun-
cated to one involvingN<Nmax one-form field strengths, of
the form~26!. Such consistent truncations are possible when
the dilaton vectors of the retained field strengths satisfy Eq.
~27!. In this case, we haveNmax52 for 7<D<8; Nmax54
for 5<D<6; Nmax57 for D54; andNmax58 for D53.

For the one-form field strengths, alternative consistent
truncations are possible in cases where the dot products of
the dilaton vectors do not satisfy Eq.~27!, but instead satisfy
@25#

Mab54dab22da,b1122da,b21 . ~36!

This is in fact twice the Cartan matrix for SL(N11,R), and
consequently, as we shall see, the equations of motion of the
consistently truncated system~26! can be cast into the form
of the SL(N11,R) Toda equations, which are exactly solv-
able. The multiscalar multicharge system can be further trun-
cated to a single-scalar system~5! using Eq.~28!; these so-
lutions have@25#

a25D5
24

N~N11!~N12!
. ~37!

It was shown in@25# that sets of dilaton vectors with dot
products given by Eq.~36! arise in all toroidally compacti-
fied supergravities in all dimensionsD<9. In this case
Nmax5102D.

We shall first consider elementary cosmological solutions.
The metric for the elementary case involving one-form field
strengths is given by

ds252e2Udt21e2Ad s̄2, ~38!

whered s̄2 is again the metric on the spatial sections, typi-
cally taking the form~2!. The field strengths take the elemen-
tary form given by Eq.~9!. It is convenient to make the
gauge choiceU5(D21)A, which implies that the equations
of motion become

ẅa5
1

2(b Mablb
2e2wb, Ä1k~D22!e2~D22!A50,

(
a,b

~M21!abẇaẇb1(
a

la
2e2wa

52~D21!~D22!~Ȧ21ke2~D22!A!. ~39!

Making the further redefinitionFa522(b(M
21)abwb , we

find thatFa satisfies

Fa952la
2expS 12(b MabFbD , ~40!

1

4(a,b MabḞaḞb1(
a

la
2expS 12(b MabFbD

52~D22!~D21!~Ȧ21ke2~D22!A!.

Finally, the redefinitionFa5qa24(b(M
21)ablnlb re-

moves the charges from the equations, and hence from Eq.
~36! we see that the equations become
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q̈152e2q12q2,

q̈252e2q112q22q3,

q̈352e2q212q32q4, ~41!

•••

q̈N5e2qN2112qN.

Thus the functionsqa satisfy the SL(N11,R) Toda equa-
tions, whileA satisfies the Liouville equation. The solutions
are subject to the first-order constraint in Eq.~40!, which can
be reexpressed as

H52~D21!~D22!~Ȧ21ke2~D22!A!, ~42!

whereH is the Hamiltonian for the Toda equations~41!,
given by

H5
1

4(a,b Mabq̇aq̇b1(
a

expS 12(b MabqbD . ~43!

The solution of the Liouville equation forA, whose form
depends on the value of the constantk, is given by Eq.~16!
with p5D21, whereX5(D22)A. The general solution to
the SL(N11,R) Toda equations~41! can be given compactly
in the form @28#

e2qa5 (
k1,k2•••,ka

N11

f k1••• f ka
D2~k1 , . . . ,ka!e~mk1

1•••1mka
!t,

~44!

whereD2(k1 , . . . ,ka)5)ki,kj
(mki

2mkj
)2 is the square of

the Vandermonde determinant, andf k andmk are arbitrary
constants satisfying

)
k51

N11

f k5D2~1,2, . . . ,N11!, (
k51

N11

mk50. ~45!

The Hamiltonian, which is conserved, takes the valueH5
1
2(a51

N11ma
2 . It follows from Eq. ~42! that the Hamiltonian

constraint implies

(
k51

N11

mk
254~D21!~D22!c2. ~46!

It is straightforward to generalize the above discussion to
solitonic cosmological solutions, where we havep51 and
q5D22. The equations of motion again can be cast into the
form of SL(N11,R) Toda equations, and hence we can ob-
tain exact solutions.

III. COSMOLOGICAL CHARACTERISTICS
OF THE SOLUTIONS

The solutions that we have obtained in the previous sec-
tion have metrics of the form~1! in which the scale factors
eA andeB evolve in time. In order to obtain realistic cosmo-
logical models, a first requirement is that the scale factor
eA for the spatial sections of the Universe should evolve

from a small value at early times to a large value at late
times. Furthermore, one would hope that the scale factor
eB for the additionalq5D2p21 dimensions parametrized
by theym coordinates would become small at large times, so
that the additional dimensions become unobservable.

In order to discuss the evolution of the solutions, it is
useful to introduce a comoving time coordinate. In cases
where there is no dilaton, such as solutions ofD511 super-
gravity or M theory, the choice of metric is unambiguous,
and the comoving timet is given by t5*eUdt. In cases
where there is a dilaton, such as solutions of type IIA string
in D510, there are two natural metrics that one might con-
sider, namely, the Einstein-frame metric and the string-frame
metric. The former is the one that we have been considering
thus far in the paper, and the latter is related to it by the
conformal rescalingdsstring

2 5efds2. The comoving time co-
ordinate depends on the choice of metric.

We shall begin by considering the simpler case of solu-
tions in D511 supergravity, and then afterwards we shall
consider solutions inD510.

A. Cosmology inD511

In D511 supergravity, the bosonic fields consist only of
the metric and a four-form field strength. We can use it to
construct both elementary cosmological solutions with
p57 and solitonic solutions withp54. Their metrics are
given by the first two equations in Eq.~20!, with D54 and
m50, owing to the absence of the dilaton. We may also take
g50, by appropriate choice of the origin fort. Let us con-
sider the solitonic case, which will correspond to a five-
dimensional cosmological model. We see from Eq.~19! that

b25 8
3 c

2 in this case, and from Eq.~20! that

e3A5
l

b
eX coshbt,

e26B5
l

b
coshbt, ~47!

andU54A16B. Without loss of generality, we may take
b to be positive. The scale factorR[eA diverges both at
t5` and att52`, sinceb.ucu, while the scale factoreB

associated with the extraq dimensions tends to zero in both
limits. The comoving time t, defined such that
ds252dt21e2Ad s̄21e2Bdymdym, is given byt5*eUdt.
In general, owing to the complexity of the functioneU, the
relation betweent andt can only be evaluated by numerical
methods.

If k51, the comoving coordinatet is finite for all values
of t. Whent runs from2` to1`, t runs between two finite
values, t2 to t1 . In this process, the scale sizeR5eA

shrinks from infinite size att2 to a minimum at some value
t0 and then expands again to infinity att1 . From Eq.~3!,
and from the form of the solution~47!, we see that the cur-
vature is of ordere22U at large utu, and thus diverges as

exp@(832
2
3A 8

3 )uct].The solution is obviously undesirable
from both the phenomenological and the theoretical points of
view. The situation is different whenk50, since then we
have eU;exp@ 13(butu24ct)] at large utu. If c is negative,
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c52A 3
8b, thent diverges ast tends to infinity, and in fact

t;eU. Sincee22U goes to zero at larget, it follows that the
curvature goes to zero at larget. Finally, if k521 the co-
ordinatet runs from2d/c to 6`, and t correspondingly
runs from infinity to zero. The scale sizeR becomes large as
t tends to infinity, and is zero whent is zero. The curvature
is singular att50, and tends to zero ast tends to infinity.
Thus both thek50 andk521 models have the feature that
the Universe expands as the comoving time increases from
some finite timet0 to infinity, i.e.,R8.0 for t.t0, where a
prime denotes a derivative with respect tot. One may define
t0, where the scale factorR is a minimum, as the starting
point for the expansion of the Universe. In thek50 case, we
haveR9.0 att5t0 andR9,0 ast→`. Whenk521, we
haveR9.0 at t5t0, andR950 ast tends to infinity. In
thesek50 andk521 solutions, the Universe is not starting
from zero size att5t0, but rather, this value of the comov-
ing time represents the point at which it has a minimum size,
which is of the order of the Planck scale. In principle, one
can extrapolate back tot50, at which point the scale size
R is infinite. Although this region 0<t<t0 does not itself
describe a satisfactory cosmological evolution, since the co-
moving time reaches an end point att50 and the curvature
diverges there, there is a sense in which one can think of the
‘‘physical’’ Universe with t>t0 as emerging through a
wormhole att5t0.

In a similar manner, one can analyze the elementary so-
lutions inD511, which describe an eight-dimensional cos-
mological model.

B. Cosmology inD510

Since ten-dimensional string theories have three-form
field strengths, we can obtain solitonic solutions withp53
and q56, which describe four-dimensional cosmological
models. The dilaton coupling is such thata251, and hence
D54. The string coupling constant is given byg5e2f. The
Neveu-Schwarz–Neveu-Schwarz~NS-NS! three-form field
strengths of any of theD510 string theories have dilaton
coupling a511, while the Ramond-Ramond~R-R! three-
form of type IIB theory hasa521. From Eq.~20!, we find
that the solutions have the form

e~8/3! A5
l

b
cosh~bt1g!e2mt1 ~4/3! X,

e28B5
l

b
cosh~bt1g!e2mt, ~48!

e2~2/a! f5
l

b
cosh~bt1g!e26mt,

together withU53A16B, and from Eq. ~19! we have
b253c2212m2.

Let us first consider the case whenm50. This value has
the distinguishing feature that the dimensional reduction of
the solution by compactifying theym coordinates gives rise
to solutions which also involve only one scalar field, as we
shall discuss in Sec. IV. In the Einstein frame, the analysis of
the cosmological properties of these solutions is analogous to

that forD511. Whenk51, the comoving coordinatet runs
from t2 to t1 as t runs from 2` to 1`. The four-
dimensional scale size shrinks from infinity to a minimum
and then expands to infinity again. For the casek50, and
c,0, the comoving coordinate runs from zero to infinity as
t runs from2` to`. The scale parameterR5eA diverges in
both thet→0 andt→` regimes. Thus we can definet0, at
which the scale parameterR is a minimum, as the starting
point of the expansion of the Universe, witht running from
t0 to infinity. It is easy to verify that speed of the expansion
R8 is always greater than zero whent.t0, but withR9.0
when t→t0 andR9,0 whent→`. Although the metrics
behave identically for both the NS-NS and R-R solutions, the
dilaton field, and hence the string couplingg, behave in op-
posite ways. For the NS-NS solution, the string coupling
diverges whent→`, while for the R-R solution the string
coupling vanishes in that limit. In all cases, the curvature
tends to zero when the scale factorR is large, if this coin-
cides with t going to infinity, namely, in thek50 and
k521 models. On the other hand, if largeR corresponds to
a finite value oft, as in thek51 models, the curvature
diverges there.

If k521, the coordinatet runs from6` to t52d/c,
and correspondingly, the comoving coordinatet runs from
zero to infinity. The scale parameterR runs from infinity to a
minimum att0, and then to infinity again. Thus we can de-
fine the expansion of the Universe fromt5t0 to t5`. At
the beginning of the Universe, we haveR9.0 while at the
end of the Universe we haveR950 in this case. At the
beginningt5t0, the string coupling constantg is a nonva-
nishing constant for both NS-NS solutions and R-R solutions
and it converges to another nonvanishing constant at large
t.

In the above discussion, we studied the cosmological
characteristics of the metrics in the Einstein frame. In this
frame, the form of the metrics is insensitive to whether the
solution is constructed using an NS-NS three-form or an R-R
three-form. However, since the constanta in the dilaton pref-
actor is11 for the NS-NS solutions and21 for the R-R
solutions, the string metrics for the NS-NS and R-R cases are
quite different, and we shall discuss them separately. In the
string-frame metric, the scale factoreB for the ym space in
the R-R solutions diverges whenutu goes to infinity. Thus the
solutions only make sense whenk521, since in this case
the relevant part of the evolution does not involve the large
utu regime. Specifically, ast runs from6` to 2d/c, the
comoving coordinatet runs from zero to infinity, but the
evolution is taken fromt5t0 whereR5eA is a minimum to
t5` whereR diverges. This behavior of the scale factor
R is similar to that in the Einstein frame, but the scale factor
eB shrinks, although remaining finite and nonzero for the
entire evolution. For the NS-NS solutions, the string cou-
pling diverges at largeutu. Thus the solutions are again re-
stricted to the casek521, where t runs from 6` to
t52d/c. The comoving coordinatet runs from zero to in-
finity. At large t, theD54 Universe expands with constant
speed; but att50, unlike in the Einstein frame, we have
R5eA50, andR9,0 for smallt.

So far, we have discussed the cosmological characteristics
of the solution~48! whenm is set to zero. We saw that the
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string coupling diverges for NS-NS solutions at largeutu,
while it vanishes for R-R solutions. Now let us examine the
solutions whenm is nonvanishing. In this case, as we shall
see in the next section, dimensional reductions of the solu-
tions in which theym coordinates are compactified give rise
to solutions with additional scalar fields in the lower dimen-
sion. We shall examine the metrics for solutions with
b56m.0. In this case the dilaton, and hence the string
coupling, becomes a constant whent goes to infinity, for
both the NS-NS and the R-R solutions. Then, by making a
small perturbation away fromb56m, which will not quali-
tatively affect the characteristics of the metric, we can have
the string coupling vanish whent goes to infinity. It follows
from the equation below Eq.~48! that we haveucu54m
whenb56m. In the Einstein frame, the behavior of the so-
lutions for k51, k50, and k521 are analogous to the
corresponding ones withm50 that we discussed previously.
This implies, in particular, that by adjusting the parameter
m properly, we can have an inflationary model even for
NS-NS solutions whenk50, where the string coupling van-
ishes as the comoving time approaches infinity. At larget the
behavior of the metric in the string frame is the same as that
in the Einstein frame, since the dilaton tends to a constant at
large t. If k50, large values oft imply large values oft,
while if k521, they imply thatt tends to zero. Thus in the
string frame, by adjusting the parameterm properly, we can
also have inflationary models where the string coupling, re-
spectively, vanishes or goes to a constant at larget, while
the expansion rateR8 of the four-dimensional Universe ei-
ther tends to zero or becomes a constant.

We have discussed the cosmological features of the soli-
tonic solutions for both the NS-NS and R-R three-forms.
These solutions can provide inflationary models of the Uni-
verse. The nine-dimensional space divides into two parts: a
six-dimensional subspace shrinks to zero or a finite size as
the comoving time tends to infinity, while a three-
dimensional subspace expands. The solutions provide a dy-
namical compactification of the ten-dimensional spacetime
to D54.1

In D510, there exist further field strengths of other ranks,
and the associated solutions will describe cosmologies in dif-
ferent dimensions.

IV. DIMENSIONAL REDUCTION AND OXIDATION
OF COSMOLOGICAL SOLUTIONS

In the previous sections, we constructed rather general
classes of cosmological solutions inD-dimensional super-
gravity theories. Ultimately, one views these theories as

originating from some fundamental theory such as a string in
D510, orM theory inD511. Since the lower-dimensional
theories that we have considered are obtained by consistent
dimensional reduction fromD510 orD511, it follows that
all their cosmological solutions can be oxidized back to so-
lutions in the fundamental higher dimension. In part, the util-
ity of constructing solutions first in the lower dimension is
that it can often be simpler than solving the equations di-
rectly in the fundamental dimension. In particular, this is true
if the lower-dimensional solution involves more than one
field strength, since its oxidation to the higher dimension will
then give a solution that lies outside the class that we have
considered thus far. Thus it is useful to study the general
procedure of oxidation and reduction of the various cosmo-
logical solutions.

The general procedure of toroidal-dimensional reduction
can be broken down into a sequence of one-step reductions
on circles. The necessary reduction formulas can thus be
encapsulated in the reduction of the following Lagrangian in
(D11) dimensions:

LD115êR̂2
1

2
ê~]f̂ !22

e

2n!
eâf̂F̂n

2 , ~49!

giving

LD5eR2
1

2
e~]f!22

1

2
e~]w!22

1

4
ee22~D21!awF2

2
e

2n!
e22~n21!aw2âfFn8

2

2
e

2~n21!!
e2~D2n!aw2âfFn21

2 ~50!

in D dimensions. The (D11)-dimensional fields with a
caret are expressed in terms of theD-dimensional fields
without carets by the standard Kaluza-Klein relations:

dŝD11
2 5e2awdsD

2 1e22~D22!aw~dz1A!2,

Ân215An211An22`dz, f̂5f, ~51!

where all the fields without carets are independent of the
compactification coordinatez, andF5dA. The constanta is
given bya5@2(D21)(D22)#21/2. The lower-dimensional
field strengths, obtained from the exterior derivative of the
expression for the potentialÂn21 given above, are, therefore,
expressed asF̂n5Fn81Fn21`(dz1A), where Fn8 is the
Chern-Simons-corrected formFn85dAn212dAn22`A, and
Fn215dAn22.

Let us begin by applying the above formalism to the ex-
ample of aD510 cosmological solution, of the form~20!
with p53 andq56, with D54 anda251. We shall take
the compactification coordinatez to be one of theym coor-
dinates, so that inD59 we havep53 andq55. The rel-
evant part of theD59 Lagrangian will be, using Eq.~50!,

1Since the metric on the six-dimensional subspace is flat, we may
choose to identify the coordinates to give a six-torus. The radii of
the circles will be time dependent, and are proportional toeB. Since
T duality relates circles of small radii to circles of large radii, a
solution such as we have here whereeB tends to a small but non-
zero fixed value at large comoving times is physically more desir-
able than one whereeB shrinks to zero at large times. These solu-
tions also exhibit a desirable behavior of the dilaton field, in that it
tends to a finite constant at large comoving times, and thus the
gauge coupling will become constant at large times.
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L95eR2
1

2
e~]f!22

1

2
e~]w!22

1

12
eeaf24awF3

2

5eR2
1

2
e~]f1!

22
1

2
e~]f2!

22
1

12
eebf1F3

2 , ~52!

where in the second line we have introduced a rotated pair of
dilatonic scalars, defined bybf15af24aw and
bf254af1aw. The constantsa and b are given by
a51/(4A7) andb258/7. Comparing the metricds10

2 given
in Eq. ~1! for the ten-dimensional solution with the dimen-
sionally reduced metricds9

2 defined in Eq.~51!, we see that
the Kaluza-Klein scalarw is given byaw52B/7. Thus it
follows from the ten-dimensional solution~20! that its di-
mensional reduction toD59 gives a metric of the form~1!,
with functionsŨ, B̃, andB̃ ~the tildes denotingD59 quan-
tities! given by

e~14/5!Ã5
l

b
cosh~bt1g!e2mt1 ~7/5! X,

e27B̃5
l

b
cosh~bt1g!e2mt, ~53!

together withŨ52Ã15B̃. The D59 dilatonic fieldsf1
andf2 are given by

e2 ~2/b! f15
l

b
cosh~bt1g!e25mt,

e~4A2/b!f25e28mt. ~54!

Thus we see that in general, the dimensional reduction of a
single-scalar solution has given rise to a solution with two
linearly independent scalars. If, however, we consider the
D510 solution withm50, then it reduces to a single-scalar
solution inD59. In fact thisD59 solution is precisely of
the same form~20!, with p53, q55, D54, andm50. It is
interesting to note that even whenm is taken to be nonzero,
theD59 metric is still of the form given in Eq.~20!. How-
ever, the Hamiltonian relation~19! between the integration
constantsb, c, andm is given by the ten-dimensional for-
mula b253c2212m2 rather than the nine-dimensional for-
mulab253c2210m2 that would be needed if themÞ0 so-
lutions were to have the single-scalar form~20! in D59.
Thus the reason why the additional scalarf2 is excited in the
mÞ0 dimensionally reduced solutions is that its energy con-
tribution is needed in order to make up the deficit in the
Hamiltonian constraint.

It is interesting to note that the dimensional reduction of
the ten-dimensional cosmological solutions gives rise to new
solutions that are beyond the scope of Sec. II, in that an
additional scalar, namelyf2, which does not couple to the
field strength, becomes linearly proportional to the time co-
ordinate t. The metric and the dilatonf1 of the solution,
however, have exactly the same form as those for the solu-
tion with vanishingf2. In fact the constant of proportionality
n in the time dependence off25nt can be arbitrary, and has
the effect of changing the relation between the constants of
integration tob253c2210m22n2, wheren is the contribu-

tion from f2. TheseD59 solutions can also be oxidized to
D510, but for generic values ofn the internal coordinate
z can no longer be isotropically grouped with the coordinates
ym. Thus theseD59 solutions gives rise to new ten-
dimensional cosmological solutions, but in this case theym

andz spaces dynamically compactify at different rates.
The above illustration of Kaluza-Klein-dimensional re-

duction of theD510 cosmological solutions toD59 can be
easily generalized to arbitrary dimensions. The reverse of the
procedure provides a mechanism for oxidizing all the lower-
dimensional solutions back toD510 orD511. Thus all the
lower-dimensional solutions we obtained in Sec. II can be
viewed as 10- or 11-dimensional solutions, and obtaining
such lower-dimensional solutions provides a convenient al-
gorithm for constructing and classifying sets of 10- or 11-
dimensional theories. Of course, it is not guaranteed that the
coordinate directions that are selected for this nondynamical
Kaluza-Klein compactification of the theory will actually
shrink, rather than grow, as the cosmological solution
evolves. Which of these occurs is a matter of calculation in
the specific model in question. If it should turn out that some
of the compactification directions actually expand with time,
it becomes natural, from the ten-dimensional point of view,
to include them in the spatial directions of the expanding
universe. For example, we can construct ap52 solitonic
solution in four dimensions using a two-form field strength.
From the four-dimensional point of view, we have a three-
dimensional expanding universe, with one shrinking circle.
However, if the two-form field strength comes from the di-
mensional reduction of the three-form inD510, oxidation of
the four-dimensional solution toD510 reveals that one of
the six ‘‘compactifying’’ coordinates in fact expands, and
hence gives rise to a four-dimensional expanding Universe,
which is no different from thep53, q56 solutions with
k50 in D510 that we discussed earlier.

However, this does not imply that all the lower-
dimensional solutions are nothing but reductions of already-
known higher-dimensional solutions. As we saw earlier, the
single-scalarD59 solution with nonvanishingm oxidizes to
a solution inD510 that is not encompassed by theAnsatzin
Sec. II. In fact, as we saw in Sec. II, a large number of
solutions arise in lower dimensions that involve more than
one field strength. The equations of motion have the form of
a set of Liouville equations or SL(N11,R) Toda equations.
The oxidation of these solutions provides a rich variety of
cosmological solutions inD510. It would be very interest-
ing to analyze their cosmological significance.

V. CONCLUSIONS

In this paper we have made a rather extensive study of
certain classes of cosmological solutions inD510 string
theory orM theory. In particular, we began by constructing
cosmological models in theD-dimensional toroidal compac-
tifications of the string orM theory, in which the metric
takes the form~1!. The relevant cosmological solutions cor-
respond to cases wherep-dimensional spatial sections that
can be flat, spherical, or hyperboloidal expand in time, while
an internalq-dimensional space undergoes a contraction.
This spacetime, withD5p1q11 dimensions, can then be
embedded in the originalD510 orD511 theory by revers-
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ing the steps of the toroidal compactification toD dimen-
sions. This gives further dimensions that may be expanding
or contracting, depending on the details of the solution. The
models that would be of principal interest for cosmology are
those where the total number of expanding spatial dimen-
sions is 3. By dividing the process of constructingD510 or
D511 solutions into these two stages, one can obtain rather
broad classes of solutions with relative ease.

We examined some general features of the evolution of
the metric scaling functions in some of the simpler solutions
that we obtained. In certain cases, we found that the behavior
of the scale parameters was of the phenomenologically de-
sirable form, in which the ‘‘physical’’ spatial dimensions
grow from a very small initial size to a large size at later
times, while the additional ‘‘internal’’ dimensions shrink, or
dynamically compactify. In particular, this kind of behavior
can arise in thek50 andk521 models, where we find that
the scale parameterR of the physical spatial sections satisfies

R9.0 at early times, andR9<0 ast→`, where the primes
denote derivatives with respect to the comoving time. On the
other hand, in thek51 models the comoving time runs
within a finite range, and the scale factorR diverges at both
ends of the interval. We also obtained large classes of more
complicated solutions whose cosmological properties we did
not examine in detail, including those corresponding to the
SL(N11,R) Toda equations. It would be interesting to in-
vestigate the cosmology of these models further.
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