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Focusing of timelike world sheets in a theory of strings
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An analysis of the generalized Raychaudhuri equations for string world sheets is shown to lead to the notion
of focusingof timelike world sheets in the classical Nambu—Goto theory of strings. The conditions under
which such effects can occur are obtained. Explicit solutions as well as the Cauchy initial value problem are
discussed. The results closely resemble their counterparts in the theory of point particles which were obtained
in the context of the analysis of spacetime singularities in general relativity many years ago.
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I. INTRODUCTION evaluating the second variatidd,5] (see also[6] for an
earlier reference in the mathematics literajufénally, gen-

The theory of extended objects such as strings and higheralized Raychaudhuri equations also exist today due to the
branes embedded in an ambient background spacetime haforts of Capovilla and Guvefi7]. However, not much at-
been extensively studied in the recent past. The string diention has been devoted towards understanding the general
membrane viewpoint has found useful applications in seenfeatures of the solutions of the Jacobi and Raychaudhuri
ingly diverse fields ranging from a theory of fundamental€quations in string or membrane theories in a way similar to
strings[1] in the context of quantum gravity and unification their treatment in the context of GR. Our main aim in this
to two-dimensional objectéhypersurfaceésembedded in an paper would therefore be to analyze the Raychaudhuri equa-
Euclidean background, examples of which are abundant ition for strings and derive the world sheet analogue of geo-
the active area of biologicalamphiphilio membraneg2].  desic focusing.

The consequences of the generalization of those equations

which describe various features of a point particle theory to Il. THE RAYCHAUDHURI EQUATIONS
the case of strings and membranes are therefore worth inves- ) ) . .
tigating. In introducing the Raychaudhuri equations and their gen-

To get into the relevant context we must first ask whateralizations we shall prefer writing down the equations first
these equations are. For any theory, the starting point is aRnd then explaining the relevance and geometrical meaning
most always the action. The action for the relativistic pointof the various quantities which appear. _
particle is the integral of the arc lengttis. The first varia- For the case of families of timelike geodesic curves the
tion results in the equation of motion which in a generalRaychaudhuri equation for the quantity known as the expan-
background is thgeodesic equatiorSolutions to this equa- SION ¢ IS given as
tion are the geodesic curves of the corresponding back-
ground geometry. .The second_ variat.ion of the_ action_ is re- %Jr 3024—202—2(02: —R,,EHE. 1)
lated to theJacobi or geodesic deviatioequation which dn 3 my
governs the separation of one geodesic from another in a
generic curved background. In general relatiyiBR), where ~ The expansiory measures the rate of change of the cross
spacetime curvature is related to matter, geodesic deviaticsectional area of a family of geodesias"” and »*"” are
provides a measure of the gravitational force. An alternativknown as the shear and rotation of the congruence. Thus, if
set of equations which contain further information about thethe expansion is negativpositive somewhere, we can con-
nature of a one parameter family of geodesics is composed @ude that the congruence or family is convergiiverg-
the Raychaudhuri equatior{8]. These deal with the issue of ing). Moreover, if the expansion goes tex, we have fo-
the focusing or defocusing of geodesic congruences and plagusing of geodesics—a generalization of which is the main
a major role in the proofs of the singularity theorems of GR.topic here.

Each of the above-mentioned equations have generaliza- An alternative way to look at Eq1) is to convert it into
tions for the case of strings as well as higher branes. Th& second order, linear, ordinary differential equation. This is
geodesic equation is replaced by the string or membrandone by a simple change of variablés (3/F)dF/d\ which
equations of motion and constraints which emerge out of thgields the equation
first variation of the area functiondNambu-Goto action

The Jacobi equation has also been extended recently by d?F

1
W+§H()\)F=O, 2
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Raychaudhuri equation states thatt=0 and matter satis- J°F
fies an energy conditiofusuallyR,,,£#£"=0 or, using Ein- o a5 Talor,0)F=0, )
stein’s field equation, T,,,— %Tgw,)§/*§”>0], then con- L
verging (¢ negativg families of timelike or null geodesics where F and a are functions of ther, ,o_ variables. A
must necessarily focus within a finite value of the affine pa-<lass of solutions of this equation can be easily obtained by
rameterh. Note that the existence of zeros in the class ofinspection. We first note that the usual general solution of the
solutions of Eq(2) implies the divergence of the expansion. wave equation in + 1 dimensions which involves the super-
Detailed analysis of the focusing theorems can be found iposition of functions ofo, ando_ does not work here be-
[8-10]. Physically, focusing is a natural consequence of thecause of the presence of the second term in the equation.
attractivenature of gravitating matter and acts as a pointerto - Assuminga(o, ,0_)=a.(o.)a_(o_) we may choose
the existence of spacetime singularities.

A generalization of the above equation is achieved by
considering families of surfaces as opposed to families of F(7+ ,o_)=exp<af a+(a+)d‘7++bf a—(‘r—)d”—)’
curves. These surfaces are timelike., they have a Lorent- (6)
zian induced metric on the world she@ind extremal with ) ) )
respect to variations of the Nambu-Goto action. The originalVherea, b are two constants which must satisfy the condi-
derivation for the most general casedifdimensional time-  tion ab+1=0 if Eq. (6) has to be a solution of E¢5).
like, extremal, Nambu-Goto surfaces embedded in an !tis easily seen that the following four possibilities exist
N-dimensional Lorentzian background is due to Capovillaor choices ofa andb:
and Guven[7]. The form of the equation for string world

sheets given beloyl1] is obtained by using certain proper- (Da=1, b=-1, (2a=-1, b=1, @)
ties of two-dimensional surfacgshe choice of isothermal (3)a=i, b=i, (4)a=—i, b=—i ®)
coordinates and simplifications achieved by implementing ' ' ' '
the Gauss-Codazzi integrability conditions. We have Note in the above that there are both oscillatory as well as
- - 1 exponential solutions. For the former, we need to look into
J J the real and imaginar h i d si luti
ANNCAN 2, 2 pEvayE — ginary partshe cosine and sine solutions,
72 T o2 TN Y (T TRTRL,EGETHF=0, © respectively which are
whereo, r are the world sheet coordinaté®R is the world 5( f f )
> ) : F ,0_)=CO0 do, + (o )do_ |,
sheet Ricci curvatureR,,, is the spacetime Ricci tensor, and (04.0-) a(0y)doy a-(0-)do
EL are the tangent vectors to the world sheet in the frame C)

basis[g(Ea,,Ep) = 7ap]- Q2(o,7) is the conformal factor in

the metric induced on the world sheet from the background F(, ,o):sin(f a+(g+)d0++f a(o)da).
geometry. We shall denote the coefficient Bf in the

third term collectively asa(ao,7)=[1/(N—2)]Q%(—2R (10
+R,,EZE™). Introduce the quantitied, and é_ (expansions along the

The above generalized equation is a second order, linegght-cone directionss, and o_) which are related ta,
hyperbolic partial differential equation. It is the parallel of 5. 9, as

Eqg. (2). We now have two quantitie, and 6, which rep-

resent the generalized expansions alongthend o direc- 0,.=0,—6., 6_=60,+6,. 11
tions of the world sheet and are obtained by taking the partial

derivative of IrF with respect to ther and o variables, re- For the exponential solutions we therefore have
spectively. Our objective now is to obtain and analyze the 1 oF

solutions of this equation. ,=——=*a_ (o) (12)
F do, '
I1l. SOLUTIONS IN LIGHT-CONE COORDINATES 1 oF
In order to arrive at and extract information about the G‘ZE do_ Fa-(o-), (13
solutions of Eq.(3) it is useful to make a few assumptions
about the quantityr(o-, 7). We can think of two possibilities 0,.0_=60—0*=—a(o,,0_). (14

straightaway. The first of these is to assume thas sepa-

rable in theo, 7 variables. On the other hand, one may preferThe upper and lower signs refer to the choitBsand (2) in
going over to light-cone coordinates and assume separabilitd. (7), respectively.

in that system. The conclusions related to the former case For positivea [i.e., (8 @.>0 or (b) @.<0] one can
have already been discussed in a previous paper by this abave the following alternativesve take the lower sign in the

thor [11]. We therefore concentrate on the latter. previous expressions, i.€2) in Eq. (7)]: 6. negative and
In light-cone coordinates defined by 6_ positive [for (a)] and 6, positive andé_ negative[for
(b)]. On the other hand, for negative [i.e., (c) a,>0,

o,=3(c—7), o_=%(c+7), (4 a_<O0or(d) @, <0, a_>0]the following possibilities ex-

ist: 0. negative[for (c)] and 0. positive[for (d)]. Addition-
the generalized Raychaudhuri equation takes the form ally, for this class of solutions, a divergencedn or «_ is
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necessary to have divergent expansions. This implies a di-
vergence in world sheet curvature or the spacetime Ricci
tensor when evaluated on the world sheet.

Let us now turn to the oscillatory solutions. The expres-
sions for§, and 6_ for them can be obtained in a similar
fashion. We choose to work with the cosine solution for
which we have

1
a=—2—fa+a,\/?. (20)

T

Defining the induced metric on the world sheet as
ds’=e?[—dr?+do?], (21)

with e??=f(C%—C3), we can convert the expression above
into the form

0+=—a+(0+)tar(f a+(0+)d0'++f a_(a'_)dO'_),
(15 a=-2e P9, 0_el=—2(d,0_p+d.pi_p). (22

Choosing a generic form g¢=A(o,)+B(o_) we can

0_=—a_(0+)tar(f a_(0+)da'++f a_(O'_)dO'_),
(16)

0,0_=0*—0*=a(o, ,o_)tar

f a_(o)do,

+f a_(o-_)da_). (17)

easily see that it is possible to get arwhich is separable in
light-cone coordinates. Note that in this entire discussion we
have never really chosen an explicit form for the function
f(Xg,Xq). This is not necessary as is apparent from the cal-
culation. The separability gf which ultimately results in the
separability ofe, however, yields a world sheet metric which
is flat (R=—2e 279, d_p turns out be zero

Also, if the background geometry had been chosen
such that the conformal factor was associated as a factor

First let us assume>0 which implies the constraintg) ~ With the Xo, x; pz)art gf the2 met2r|c [more  precisely,
and (b) mentioned before onr. . Consequently we have 95 =f(Xo.x:1)(—dxg+dx)+dxy+dxs], then the same
6.>0 or #.<0 depending on the sign of the tangent func-embedding would have resulted in anidentically equal to
tion. On the contrary, itv<<0, i.e., cases$c) and(d), we find ~ Z€r0.
that for both case#, and#_ can only have opposite signs.
However, in contrast to the oscillatory solutiofis can di-
verge for finite values ofr. even thougha may be com-
pletely regular there.

If =0, one has to analyze the solutions of the ordinar
wave equation which are given by the functibéto,) or

IV. FOCUSING THEOREM

We now move on to the more important question of ana-
lyzing the generalized Raychaudhuri equation in string
ytheory from the viewpoint of a Cauchy initial value problem.
o e T Note that the discussion presented in the previous sections
g(a_.) or thelrlllnear superposition. By spema_hzmg {0 €XPO- has peen largely aimed at obtaining specific solutions with
nential or oscillatory cases it is easy to arrive at focusmgthe assumption of separability in light-cone variables.
effects at least for the latter. Note, however, that solutions to Fortunately, we have several oscillation theorems due to

the a#0 case may not go over smoothly to those forp,qan and Stockid2,13 which are essentially tailored to
a=0. The simplest example of this type of behavior can be,, " requirements. We mention below one such theorem
noted for the ordinary differential equation for the simple , hi-h \we shall use subsequently.

harmonic oscillator which has solutions of the form kogs Theorem (Pagan and Stocks 197Ept F(o, ,o) sat-

sinkx, k being the frequency. Putting=0 in the solutions isfy the partial differential equation
yields trivial results whereas we know that the differential
equation fork=0 has a solution of the forrax+b where
a,b are two arbitrary constants.
We now construct an explicit example of an embeddingwith the initial conditions
which is such that the quantity is separable in light-cone oF
coordinates. . Floo,0)=1(01), ——lo,-g =t(c2), (24
The background metric is assumed to be conformally do_ "+ 7=
flat—the line element is taken as

F.,_+a(o,,0_)F=0, (23

in the domaino_—oc,=0 (i.e. 7=0). Let the following

d=F(xo.x) [~ +dC+dE+dxG]. (19  conditions also hold:
i ,o_)=k*>0, 25
An embedding which satisfies the Nambu-Goto equations () aloy,0-) 29

and constraints could be (i) a,(o.,0.)=0, (i) a_(o.,0.)=0, (26)

Xo=C17+Cso, X1;=Cy7+Cj0, X,=cO0nst, X3=cConst, F2 (o, ,0,)
+ E]

’

iv F(o oL )———————
(19) ( ) ( + +) a(0_+ ,(T+)
whereC;, C, are constants witkC3>C3. Flo o) F2(o_,0.)
One therefore needs to write down the expression for the T a(o_,0_)
quantity « which turns out to be (27

are bounded agr.. —;
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then,F changes sigfii.e., develops a zero nodal linsome-  gruence in the spacetime—for example, this happens in the

where in the domain universe models which exhibit curvature singularities . How-
ever, this is not always true. At this stage, it is not com-
D={o,,0_ |3 _<0_<»3,<0,<»,3_ -3 ,=0} pletely clear whether a notion of incompleteness of string

(28)  world sheets can be derived and related to a singularity in the
background spacetime. Moreover, we do not know precisely
The possible existence of the nodal litee curve along if the conical world sheet singularity which may arise if the
which F is zerg is the basic result of the above-stated theo-focal curve degenerates to a point has any relation to the
rem. In the language of GR the nodal line is a generalizatiomackground spacetime singularities. Further analysis is es-
of the focal point—we might call it thdocal curvealong  sential if one wishes to arrive at a better understanding.
which families of timelike world sheets intersect. We can see |t must be mentioned that this &sfocusing theorem—i.e.,
straightaway that there are several conditions which have t@ith the assumptions on the various quantities one can con-
be obeyed in order to ensure the existence of a nodal linglude that a focal curve can exist. The results of the previous
We now briefly discuss the implications of each of them.  section are different from two angles—first, we wuiat frame
Condition(i) is the analogue of the usual energy conditionan initial value problem there, and second the solutions are
in the theory of geodesic curves although the right-hand sidebtainedad hog largely by inspection. It is possible that
(RHS) of the inequality has gositive numberinstead of  ynder different assumptions on the variables as well as other
zero. However, since the=0 case leads to a simple wave injtial conditions one may also be able to prove the existence
equation(whose solutions always have zexose can extend of a nodal curve. The author, unfortunately, is unaware of
this condition to the analogue of the usual energy conditiorsuch results either in the mathematics or in the physics lit-
with k? being replaced by zero. erature.
The second conditiofi.e., (ii)] imposes restrictions on
the derivatives ofx. Translated in the language of,  co-
ordinates one can easily check that the following have to

hold true: Before we conclude let us point out certain applications of
the formalism of the generalised Jacobi and Raychaudhuri
’9_“> ’9_5“ ’9_“> _ (9_“ (29) equations in a completely different context—that of biologi-
do_ dr’  do ot cal membranes. Here, we consider two-dimensional hyper-
surfaces embedded in a Euclidedlat) background space.
Therefore, if « is only a function ofo, one requires The first variation yields the surface configurations which
da/do=0, whereas ifa is only a function ofr, then one can be minimalzero mean curvatuyer Willmore (constant
actually ends up in a contradiction, the only resolution ofmean curvatunedepending on the choice of the action func-
which is to assume as a constant or zero. tional. The corresponding Jacobi equations contain informa-
Finally, the third condition, which is on the functidh,  tion about the normal deformations of these two-dimensional
implies, for instance, for the oscillatory solutions derivedsurfaces and are thereby linked to the question of stability.
earlier, the boundedness of the quantitas o approaches Much of the basic notions along these directions have been
+oo, This can be seen by substituting the solution in thepursued in a mathematical context in a number of papers

V. OFFSHOOTS

expression for the condition. [14]. However, an application-oriented analysis with an em-
Based on the above theorem we can now frame our fophasis on specific, physically relevant cases has not yet been
cusing theorem for timelike world sheets. performed. On the other front, solutions of the Raychaudhuri

If 6, or 6_ is negative somewhere, then they tend toequations, which are in a certain sense nonperturbative,
— oo within a finite value of the worldsheet parameters or ~ would indicate the formation of cusps and kinks on the mem-
o_ provided all conditions on the: are obeyed. The nega- brane[focusing along a degenerate curyint]. A major
tivity of .. or #_ is dependent on the negativity of the func- difference with the analysis presented in this paper and that
tions r and t which appear in the initial conditions. required to understand membranes in a Euclidean back-
It is perhaps easier to visualize the notion of focusing forground is the appearance of elliptic equations as opposed to
the case of a family of closed string world sheets. Assume ayperbolic ones. Therefore, to analyze the Jacobi equations
family of cylindrical world sheets which meet along some or when focusing one has to utilize the oscillation theorems
curve o, =f(o_). This curve is the nodal line mentioned for elliptic equations. Fortunately, once again such theorems
before. It may happen that this curgedal line degenerates do exist[15]. A detailed presentation of these ideas and their
to a point. For example, if the equation of the curve turns outonsequences in the context of biological membranes will be
to be o2+0¢2=0, then the only real solution is reported elsewhergi6].
o,=0_=0. For such cases we have a family of cones
emerging out of th_at point—the common vertex of the cones VI. CONCLUSIONS
being the focal point of the congruence of world sheets. This
basically means that the world sheet geometries have a coni- In conclusion we summarize and raise a few questions of
cal singularity in the sense of unbounded curvature at thatelated interest.
specific point. In GR, the focal point of a congruence indi- We have obtained docusing theorenfor string world
cates a singularity in the congruence of geodesics. We masheets. This is illustrated through exact solutions as well as
find that the spacetime singularifin the sense of unbounded an analysis of the Cauchy initial value problem. The condi-
curvature coincides with the focal point of a geodesic con- tions for focusing are outlined—these constrain world sheet
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as well as spacetime properties. An analysis of the Jacolulassical level? As a first step towards tlifsllowing the
equation as well as a more detailed presentation of the ideamth of GR we now have a focusing theorem. It would per-
here is in progress and will be reported in the near futurdnaps be worthwhile to attempt a derivation of the analogues
[17]. of the Hawking-Penrose theorems for the case of strings and
It is a somewhat pleasing fact that most of the results fothereby demonstrate the existence or nonexistence of space-
point particle theories have their generalization for the caséime singularities in the classical theory of strings. If the
of strings. However, GR as a theory of gravity has a uniqueanswer remains the same as in GR., spacetime singulari-
feature—the equations of motion for test particlés. the ties exist under quite general conditignthen one can pro-
geodesic equatigncan be derived from the Einstein field ceed towards examining how quantum string theory can help
equations for the fieldy,, [18]. We may therefore ask— us solve the problem.
given the string equation of motion—can one find the corre-

sponding “Einstein equation” which would lead to it under
the suitable assumptions which may defintest string?
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