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An analysis of the generalized Raychaudhuri equations for string world sheets is shown to lead to the notion
of focusingof timelike world sheets in the classical Nambu–Goto theory of strings. The conditions under
which such effects can occur are obtained. Explicit solutions as well as the Cauchy initial value problem are
discussed. The results closely resemble their counterparts in the theory of point particles which were obtained
in the context of the analysis of spacetime singularities in general relativity many years ago.
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I. INTRODUCTION

The theory of extended objects such as strings and higher
branes embedded in an ambient background spacetime has
been extensively studied in the recent past. The string or
membrane viewpoint has found useful applications in seem-
ingly diverse fields ranging from a theory of fundamental
strings@1# in the context of quantum gravity and unification
to two-dimensional objects~hypersurfaces! embedded in an
Euclidean background, examples of which are abundant in
the active area of biological~amphiphilic! membranes@2#.
The consequences of the generalization of those equations
which describe various features of a point particle theory to
the case of strings and membranes are therefore worth inves-
tigating.

To get into the relevant context we must first ask what
these equations are. For any theory, the starting point is al-
most always the action. The action for the relativistic point
particle is the integral of the arc length,ds. The first varia-
tion results in the equation of motion which in a general
background is thegeodesic equation. Solutions to this equa-
tion are the geodesic curves of the corresponding back-
ground geometry. The second variation of the action is re-
lated to theJacobi or geodesic deviationequation which
governs the separation of one geodesic from another in a
generic curved background. In general relativity~GR!, where
spacetime curvature is related to matter, geodesic deviation
provides a measure of the gravitational force. An alternative
set of equations which contain further information about the
nature of a one parameter family of geodesics is composed of
theRaychaudhuri equations@3#. These deal with the issue of
the focusing or defocusing of geodesic congruences and play
a major role in the proofs of the singularity theorems of GR.

Each of the above-mentioned equations have generaliza-
tions for the case of strings as well as higher branes. The
geodesic equation is replaced by the string or membrane
equations of motion and constraints which emerge out of the
first variation of the area functional~Nambu-Goto action!.
The Jacobi equation has also been extended recently by

evaluating the second variation@4,5# ~see also@6# for an
earlier reference in the mathematics literature!. Finally, gen-
eralized Raychaudhuri equations also exist today due to the
efforts of Capovilla and Guven@7#. However, not much at-
tention has been devoted towards understanding the general
features of the solutions of the Jacobi and Raychaudhuri
equations in string or membrane theories in a way similar to
their treatment in the context of GR. Our main aim in this
paper would therefore be to analyze the Raychaudhuri equa-
tion for strings and derive the world sheet analogue of geo-
desic focusing.

II. THE RAYCHAUDHURI EQUATIONS

In introducing the Raychaudhuri equations and their gen-
eralizations we shall prefer writing down the equations first
and then explaining the relevance and geometrical meaning
of the various quantities which appear.

For the case of families of timelike geodesic curves the
Raychaudhuri equation for the quantity known as the expan-
sion u is given as

du

dl
1
1

3
u212s222v252Rmnjmjn. ~1!

The expansionu measures the rate of change of the cross
sectional area of a family of geodesics.smn and vmn are
known as the shear and rotation of the congruence. Thus, if
the expansion is negative~positive! somewhere, we can con-
clude that the congruence or family is converging~diverg-
ing!. Moreover, if the expansion goes to2`, we have fo-
cusing of geodesics—a generalization of which is the main
topic here.

An alternative way to look at Eq.~1! is to convert it into
a second order, linear, ordinary differential equation. This is
done by a simple change of variablesu5(3/F)dF/dl which
yields the equation

d2F

dl2 1
1

3
H~l!F50, ~2!

whereH(l)5Rmnjmjn12s222v2. The focusing theorem
which originates from an analysis of either version of the
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Raychaudhuri equation states that ifv250 and matter satis-
fies an energy condition@usuallyRmnjmjn>0 or, using Ein-
stein’s field equation, (Tmn2 1

2Tgmn)j
mjn>0], then con-

verging (u negative! families of timelike or null geodesics
must necessarily focus within a finite value of the affine pa-
rameterl. Note that the existence of zeros in the class of
solutions of Eq.~2! implies the divergence of the expansion.
Detailed analysis of the focusing theorems can be found in
@8–10#. Physically, focusing is a natural consequence of the
attractivenature of gravitating matter and acts as a pointer to
the existence of spacetime singularities.

A generalization of the above equation is achieved by
considering families of surfaces as opposed to families of
curves. These surfaces are timelike~i.e., they have a Lorent-
zian induced metric on the world sheet! and extremal with
respect to variations of the Nambu-Goto action. The original
derivation for the most general case ofD-dimensional time-
like, extremal, Nambu-Goto surfaces embedded in an
N-dimensional Lorentzian background is due to Capovilla
and Guven@7#. The form of the equation for string world
sheets given below@11# is obtained by using certain proper-
ties of two-dimensional surfaces~the choice of isothermal
coordinates! and simplifications achieved by implementing
the Gauss-Codazzi integrability conditions. We have

2
]2F

]t2
1

]2F

]s2 1
1

N22
V2~22R1Rmn Ea

mEna!F50, ~3!

wheres,t are the world sheet coordinates,2R is the world
sheet Ricci curvature,Rmn is the spacetime Ricci tensor, and
Ea

m are the tangent vectors to the world sheet in the frame
basis@g(Ea ,Eb)5hab#. V2(s,t) is the conformal factor in
the metric induced on the world sheet from the background
geometry. We shall denote the coefficient ofF in the
third term collectively asa(s,t)5@1/(N22)#V2(22R
1RmnEa

mEna).
The above generalized equation is a second order, linear,

hyperbolic partial differential equation. It is the parallel of
Eq. ~2!. We now have two quantitiesut andus which rep-
resent the generalized expansions along thet ands direc-
tions of the world sheet and are obtained by taking the partial
derivative of lnF with respect to thet ands variables, re-
spectively. Our objective now is to obtain and analyze the
solutions of this equation.

III. SOLUTIONS IN LIGHT-CONE COORDINATES

In order to arrive at and extract information about the
solutions of Eq.~3! it is useful to make a few assumptions
about the quantitya(s,t). We can think of two possibilities
straightaway. The first of these is to assume thata is sepa-
rable in thes,t variables. On the other hand, one may prefer
going over to light-cone coordinates and assume separability
in that system. The conclusions related to the former case
have already been discussed in a previous paper by this au-
thor @11#. We therefore concentrate on the latter.

In light-cone coordinates defined by

s15 1
2 ~s2t!, s25 1

2 ~s1t!, ~4!

the generalized Raychaudhuri equation takes the form

]2F

]s1]s2
1a~s1 ,s2!F50, ~5!

whereF and a are functions of thes1 ,s2 variables. A
class of solutions of this equation can be easily obtained by
inspection. We first note that the usual general solution of the
wave equation in 111 dimensions which involves the super-
position of functions ofs1 ands2 does not work here be-
cause of the presence of the second term in the equation.

Assuminga(s1 ,s2)5a1(s1)a2(s2) we may choose

F~s1 ,s2!5expS aE a1~s1!ds11bE a2~s2!ds2 D ,
~6!

wherea, b are two constants which must satisfy the condi-
tion ab1150 if Eq. ~6! has to be a solution of Eq.~5!.

It is easily seen that the following four possibilities exist
for choices ofa andb:

~1!a51, b521, ~2!a521, b51, ~7!

~3!a5 i , b5 i , ~4!a52 i , b52 i . ~8!

Note in the above that there are both oscillatory as well as
exponential solutions. For the former, we need to look into
the real and imaginary parts~the cosine and sine solutions,
respectively! which are

F~s1 ,s2!5cosS E a1~s1!ds11E a2~s2!ds2 D ,
~9!

F~s1 ,s2!5sinS E a1~s1!ds11E a2~s2!ds2 D .
~10!

Introduce the quantitiesu1 andu2 ~expansions along the
light-cone directionss1 and s2) which are related tous

andut as

u15us2ut , u25us1ut . ~11!

For the exponential solutions we therefore have

u15
1

F

]F

]s1
56a1~s1!, ~12!

u25
1

F

]F

]s2
57a2~s2!, ~13!

u1u25us
22ut

252a~s1 ,s2!. ~14!

The upper and lower signs refer to the choices~1! and~2! in
Eq. ~7!, respectively.

For positivea @i.e., ~a! a6.0 or ~b! a6,0# one can
have the following alternatives@we take the lower sign in the
previous expressions, i.e.,~2! in Eq. ~7!#: u1 negative and
u2 positive @for ~a!# and u1 positive andu2 negative@for
~b!#. On the other hand, for negativea @i.e., ~c! a1.0,
a2,0 or ~d! a1,0, a2.0# the following possibilities ex-
ist: u6 negative@for ~c!# andu6 positive@for ~d!#. Addition-
ally, for this class of solutions, a divergence ina1 or a2 is
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necessary to have divergent expansions. This implies a di-
vergence in world sheet curvature or the spacetime Ricci
tensor when evaluated on the world sheet.

Let us now turn to the oscillatory solutions. The expres-
sions foru1 and u2 for them can be obtained in a similar
fashion. We choose to work with the cosine solution for
which we have

u152a1~s1!tanS E a1~s1!ds11E a2~s2!ds2 D ,
~15!

u252a2~s1!tanS E a2~s1!ds11E a2~s2!ds2 D ,
~16!

u1u25ut
22us

25a~s1 ,s2!tan2S E a2~s1!ds1

1E a2~s2!ds2 D . ~17!

First let us assumea.0 which implies the constraints~a!
and ~b! mentioned before ona6 . Consequently we have
u6.0 or u6,0 depending on the sign of the tangent func-
tion. On the contrary, ifa,0, i.e., cases~c! and~d!, we find
that for both casesu1 andu2 can only have opposite signs.
However, in contrast to the oscillatory solutionsu6 can di-
verge for finite values ofs6 even thougha may be com-
pletely regular there.

If a50, one has to analyze the solutions of the ordinary
wave equation which are given by the functionf (s1) or
g(s2) or their linear superposition. By specializing to expo-
nential or oscillatory cases it is easy to arrive at focusing
effects at least for the latter. Note, however, that solutions to
the aÞ0 case may not go over smoothly to those for
a50. The simplest example of this type of behavior can be
noted for the ordinary differential equation for the simple
harmonic oscillator which has solutions of the form coskx,
sinkx, k being the frequency. Puttingk50 in the solutions
yields trivial results whereas we know that the differential
equation fork50 has a solution of the formax1b where
a,b are two arbitrary constants.

We now construct an explicit example of an embedding
which is such that the quantitya is separable in light-cone
coordinates.

The background metric is assumed to be conformally
flat—the line element is taken as

ds25 f ~x0 ,x1!@2dx0
21dx1

21dx2
21dx3

2#. ~18!

An embedding which satisfies the Nambu-Goto equations
and constraints could be

x05C1t1C2s, x15C2t1C1s, x25const, x35const,

~19!

whereC1, C2 are constants withC1
2.C2

2.
One therefore needs to write down the expression for the

quantitya which turns out to be

a522
1

Af
]1]2Af . ~20!

Defining the induced metric on the world sheet as

dsI
25e2r@2dt 21ds2#, ~21!

with e2r5 f (C1
22C2

2), we can convert the expression above
into the form

a522e2r]1]2e
r522~]1]2r1]1r]2r!. ~22!

Choosing a generic form ofr5A(s1)1B(s2) we can
easily see that it is possible to get ana which is separable in
light-cone coordinates. Note that in this entire discussion we
have never really chosen an explicit form for the function
f (x0 ,x1). This is not necessary as is apparent from the cal-
culation. The separability ofr which ultimately results in the
separability ofa, however, yields a world sheet metric which
is flat (2R522e22r]1]2r turns out be zero!.

Also, if the background geometry had been chosen
such that the conformal factor was associated as a factor
with the x0, x1 part of the metric @more precisely,
ds25 f (x0 ,x1)(2dx0

21dx1
2)1dx2

21dx3
2#, then the same

embedding would have resulted in ana identically equal to
zero.

IV. FOCUSING THEOREM

We now move on to the more important question of ana-
lyzing the generalized Raychaudhuri equation in string
theory from the viewpoint of a Cauchy initial value problem.
Note that the discussion presented in the previous sections
has been largely aimed at obtaining specific solutions with
the assumption of separability in light-cone variables.

Fortunately, we have several oscillation theorems due to
Pagan and Stocks@12,13# which are essentially tailored to
our requirements. We mention below one such theorem
which we shall use subsequently.

Theorem (Pagan and Stocks 1975). Let F(s1 ,s2) sat-
isfy the partial differential equation

F121a~s1 ,s2!F50, ~23!

with the initial conditions

F~s1 ,s1!5r ~s1!,
]F

]s2
us15s2

5t~s1!, ~24!

in the domains22s1>0 ~i.e. t>0). Let the following
conditions also hold:

~ i! a~s1 ,s2!>k2.0, ~25!

~ ii ! a1~s1 ,s2!>0, ~ iii ! a2~s1 ,s2!>0, ~26!

~ iv! UF2~s1 ,s1!2
F1
2 ~s1 ,s1!

a~s1 ,s1!
U,

UF2~s2 ,s2!2
F2
2 ~s2 ,s2!

a~s2 ,s2!
Uare bounded ass6→`;

~27!
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then,F changes sign~i.e., develops a zero nodal line! some-
where in the domain

D[$s1 ,s2uS2<s2,`,S1<s1,`,S22S1>0%.
~28!

The possible existence of the nodal line~a curve along
which F is zero! is the basic result of the above-stated theo-
rem. In the language of GR the nodal line is a generalization
of the focal point—we might call it thefocal curvealong
which families of timelike world sheets intersect. We can see
straightaway that there are several conditions which have to
be obeyed in order to ensure the existence of a nodal line.
We now briefly discuss the implications of each of them.

Condition~i! is the analogue of the usual energy condition
in the theory of geodesic curves although the right-hand side
~RHS! of the inequality has apositive numberinstead of
zero. However, since thea50 case leads to a simple wave
equation~whose solutions always have zeros!, we can extend
this condition to the analogue of the usual energy condition
with k2 being replaced by zero.

The second condition@i.e., ~ii !# imposes restrictions on
the derivatives ofa. Translated in the language ofs,t co-
ordinates one can easily check that the following have to
hold true:

]a

]s
>

]a

]t
,

]a

]s
>2

]a

]t
. ~29!

Therefore, if a is only a function ofs, one requires
da/ds>0, whereas ifa is only a function oft, then one
actually ends up in a contradiction, the only resolution of
which is to assumea as a constant or zero.

Finally, the third condition, which is on the functionF,
implies, for instance, for the oscillatory solutions derived
earlier, the boundedness of the quantitya ass6 approaches
6`. This can be seen by substituting the solution in the
expression for the condition.

Based on the above theorem we can now frame our fo-
cusing theorem for timelike world sheets.

If u1 or u2 is negative somewhere, then they tend to
2` within a finite value of the worldsheet parameterss1 or
s2 provided all conditions on thea are obeyed. The nega-
tivity of u1 or u2 is dependent on the negativity of the func-
tions r and t which appear in the initial conditions.

It is perhaps easier to visualize the notion of focusing for
the case of a family of closed string world sheets. Assume a
family of cylindrical world sheets which meet along some
curve s15 f (s2). This curve is the nodal line mentioned
before. It may happen that this curve~nodal line! degenerates
to a point. For example, if the equation of the curve turns out
to be s1

2 1s2
2 50, then the only real solution is

s15s250. For such cases we have a family of cones
emerging out of that point—the common vertex of the cones
being the focal point of the congruence of world sheets. This
basically means that the world sheet geometries have a coni-
cal singularity in the sense of unbounded curvature at that
specific point. In GR, the focal point of a congruence indi-
cates a singularity in the congruence of geodesics. We may
find that the spacetime singularity~in the sense of unbounded
curvature! coincides with the focal point of a geodesic con-

gruence in the spacetime—for example, this happens in the
universe models which exhibit curvature singularities . How-
ever, this is not always true. At this stage, it is not com-
pletely clear whether a notion of incompleteness of string
world sheets can be derived and related to a singularity in the
background spacetime. Moreover, we do not know precisely
if the conical world sheet singularity which may arise if the
focal curve degenerates to a point has any relation to the
background spacetime singularities. Further analysis is es-
sential if one wishes to arrive at a better understanding.

It must be mentioned that this isa focusing theorem—i.e.,
with the assumptions on the various quantities one can con-
clude that a focal curve can exist. The results of the previous
section are different from two angles—first, we donot frame
an initial value problem there, and second the solutions are
obtainedad hoc, largely by inspection. It is possible that
under different assumptions on the variables as well as other
initial conditions one may also be able to prove the existence
of a nodal curve. The author, unfortunately, is unaware of
such results either in the mathematics or in the physics lit-
erature.

V. OFFSHOOTS

Before we conclude let us point out certain applications of
the formalism of the generalised Jacobi and Raychaudhuri
equations in a completely different context—that of biologi-
cal membranes. Here, we consider two-dimensional hyper-
surfaces embedded in a Euclidean~flat! background space.
The first variation yields the surface configurations which
can be minimal~zero mean curvature! or Willmore ~constant
mean curvature! depending on the choice of the action func-
tional. The corresponding Jacobi equations contain informa-
tion about the normal deformations of these two-dimensional
surfaces and are thereby linked to the question of stability.
Much of the basic notions along these directions have been
pursued in a mathematical context in a number of papers
@14#. However, an application-oriented analysis with an em-
phasis on specific, physically relevant cases has not yet been
performed. On the other front, solutions of the Raychaudhuri
equations, which are in a certain sense nonperturbative,
would indicate the formation of cusps and kinks on the mem-
brane@focusing along a degenerate curve~point!#. A major
difference with the analysis presented in this paper and that
required to understand membranes in a Euclidean back-
ground is the appearance of elliptic equations as opposed to
hyperbolic ones. Therefore, to analyze the Jacobi equations
or when focusing one has to utilize the oscillation theorems
for elliptic equations. Fortunately, once again such theorems
do exist@15#. A detailed presentation of these ideas and their
consequences in the context of biological membranes will be
reported elsewhere@16#.

VI. CONCLUSIONS

In conclusion we summarize and raise a few questions of
related interest.

We have obtained afocusing theoremfor string world
sheets. This is illustrated through exact solutions as well as
an analysis of the Cauchy initial value problem. The condi-
tions for focusing are outlined—these constrain world sheet
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as well as spacetime properties. An analysis of the Jacobi
equation as well as a more detailed presentation of the ideas
here is in progress and will be reported in the near future
@17#.

It is a somewhat pleasing fact that most of the results for
point particle theories have their generalization for the case
of strings. However, GR as a theory of gravity has a unique
feature—the equations of motion for test particles~i.e. the
geodesic equation! can be derived from the Einstein field
equations for the fieldgmn @18#. We may therefore ask—
given the string equation of motion—can one find the corre-
sponding ‘‘Einstein equation’’ which would lead to it under
the suitable assumptions which may define ateststring?

Finally, of course, one has to address the question of
background spacetime singularities—does a string descrip-
tion as opposed to the point particle resolve the issue at the

classical level? As a first step towards this~following the
path of GR! we now have a focusing theorem. It would per-
haps be worthwhile to attempt a derivation of the analogues
of the Hawking-Penrose theorems for the case of strings and
thereby demonstrate the existence or nonexistence of space-
time singularities in the classical theory of strings. If the
answer remains the same as in GR~i.e., spacetime singulari-
ties exist under quite general conditions!, then one can pro-
ceed towards examining how quantum string theory can help
us solve the problem.
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