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Minimal length uncertainty relation and ultraviolet regularization
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Studies in string theory and quantum gravity suggest the existence of a finite lowek kit the possible
resolution of distances, at the latest on the scale of the Planck Iength’%‘?mOWithin the framework of the
Euclidean path integral we explicitly show ultraviolet regularization in field theory through this short distance
structure. Both rotation and translation invariance can be preserved. An example is studied in detail.
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I. INTRODUCTION [x,p]=iA(1+Bp%+---). 3)

As has long been known, the combination of relativistic For studies on the technical and conceptual implications of
and quantum effects implies that the conventional notion othese and more general types of correction terms|[k&e
distance breaks down the latest at the Planck scale, which '@6]. We remark that those studies arose from weekg.,
about 10 %> m. The basic argument is that the resolution of 17)) in the seemingly unrelated field of quantum groups, in
small distances requires test particles of short wavelengtyhich this type of commutation and uncertainty relations had
and thus of high energy. At sufficiently small scale, i.e.,appeared independentifirst in [18]). A standard reference
close to the Planck scale, the gravitational effect of the tesn quantum groups igL9].
particle’s energy significantly disturbs the space-time struc- Eqr the general case of dimensions it appears that no
ture which was tried. Studies on gedanken experimentgonsensus has been reached in the literature on which gen-
therefore suggest the existence of a finite lihity to the  eralization of Eq(3), i.e., which particular correction terms
possible resolution of distances. String theory, as a theory f the uncertainty relations could arise as a gravity effect in
quantum gravity, should allow a deeper understanding ofne ultraviolet, or as a string effect. Let us therefore here
what could happen at such extreme scales. Indeed, sevei@nsider small correction terms of a general form
studies in string theory yielded a certain type of correction to(x,’r:x. ,p)“: )
the uncertainty relation oo

[X,pj1=1:(5ij+ BijPkPi+ - - +) (4)

h
AxAp= 5[1+ﬁ(Ap)2+ --+],  B>0, (1) with the coefficients;y, (and also possible terms of higher
power in thep;) chosen such that the corresponding uncer-

which, as is easily verified, implies a finite minimal uncer- f@inty relations imply a finite minimal uncertaintyx,>0.
tainty Axo=7% 8. Therefore,Ax,>0 can be viewed as a W& Will for simplicity normally assumép;,p;]=0, but we
fuzziness of space, or also as a consequence of the nonpoiffloW [Xi,X;]#0. Let us keep in mind that it is the correction
likeness of the fundamental particles. It seems that, in stringf™MS t0 the x,p commutation relations which induce
theory, intuitively, the input of more energy does eventually®*o>0. A noncommutativity of the; will not be necessary
no longer allow to improve the spatial resolution, as this’or the appearance of a finite minimal uncertaidg,.
energy starts to enlarge the probed string. References are, IN short, the key mechanism which leads to ultraviolet
e.g.,[1-7]; see alsd8]. For recent reviews, see, e.[9,10]. regularization in the presence of a minimal uncertaifuty

Using the usual definition of uncertaintiegy§ normal- IS the following. _ _ _
ized) In the case of the ordinary commutation and uncertainty
relations underlying, the states of maximal localization are

(Ax) = (ol Ox= (x| ) 2 )2, (2)  position eigenstatdx), for which the uncertainty in position

vanishes. Crucially, these maximal localization states are
the uncertainty relation Eq.l) implies a small correction nonnormalizable. Therefore, their scalar product is not a
term to the commutation relation in the associative Heisenfunction but the Dirae distribution(x|x’)= 8(x—x'). As is
berg algebra: well known (for a recent reference, s¢20]), in the formu-

lation of local interaction in field theory it is the ill defined-

ness of the product of these and related distributions which

*Electronic address: a.kempf@amtp.cam.ac.uk give rise to ultraviolet divergencies.
"Electronic address: mangano@axpnal.na.infn.it, A finite minimal uncertaintyAx, will yield normalizable
g.mangano@amtp.cam.ac.uk maximal localization states, and thereby regularize the ultra-
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violet. More precisely, as we will see, there exist generalizedeen discussed, e.qg.,[ih,26]. The approach of “generalized
commutation relations of the type of Edd) such that there quantum dynamics” by Adlef27] allows for generic com-
exists a minimal uncertaintAx,>0, with the vectors of mutation relations and a possible generalization of the under-

maximal localizationx™) obeying lying Hilbert space to a quaternionic space. In this approach

the ordinary canonical commutation relations have been de-

(XMx™=1,  Axymy=AxXo, (X™|x|x™)=x rived as a first order approximation in a statistical averaging
procesq 28].

with xeR. (5) Further, it should also be of interest to apply the noncom-

_ S mutative geometric concepts developed28], in particular
It follows that due to their normalizability, the scalar product to study the modifications to the differential and integral cal-
culus over such generalized quantum phase spaces.

S(x,y):=(xM|y™) (6) We note that, technically, the appearance of correction
. . o terms to the canonical commutation relations can generally
is a function rather than a distribution. also be viewed as a nontrivial and nonunique change of gen-

A simple example is the one-dimensional case of ).  erators from the, p, which obey[ Xo,po] = i% to new sets of
with >0 and no higher or_der corre(_:tlorjs. For this case th%)enerators. Examples for such algebra homomorphijsfos
scalar prodyct of the maximal localization states has beefhe case of Eq3) arep: Xg—X=>Xo+ BPoXoPo, Po— Po, OF
calculated in13]: alsop: Xo—X=Xo Po—p=pB"Y2an(p.8Y?).

3 The reason why a slight change in the commutation rela-
=y [ X7y sin X—y x| @ tions is able to introduce a drastically new short distance
2n\B |\ 248 268 | structure is not only that expectation values of a function of
operators generally do not equal the function of the expecta-
Note that the poles of the first factor are cancelled by zero§on values. Technically, the reason is of course that algebra
of the sine function, so thas is a regular function. For a homomorphismg which change the commutation relations
graph see Fig. 3 ifi13]. The analogous result for the case qf the'genera.tors are nec;essanly noncanomcal transforma-
with also a finite minimal uncertainty in momentum has beerfions, i.e., unlike symmetries, the cannot be implemented
worked out in[15]. as unitary (nor as antilinear antiunitajytransformations.
We consider it to be an attractive feature of this shortJnitariesU generally preserve any chosen commutation re-
distance structure that it will not require the breaking oflations, say h(x,p)=0, since h(x,p)=0=h(x",p")
translation and rotation invariance, while also being compat=h(UxU",UpUT)=Uh(x,p)u"=0. Thus any change in
ible with possible(e.g., quantum gropgeneralizations of the commutation relations introduces new features into the
these symmetries. Also, this regularization will not require totheory, such as the appearance afxy>0, which we will
cut momentum space. here focus on.
A general approach for the formulation of quantum field
theory with generalizea,p-commutation relations underly- Il. GENERAL FRAMEWORK
ing has been developed iri2], with a general result on
infrared regularization irf16], and preliminary results on
ultraviolet regularization ifil4]. Our aim here is to show the Let us consider the example of Euclidean charged scalar
general mechanism, both abstractly and explicitly, by whichg* theory, in its formulation on position space:
a minimal uncertainty in position regularizes the ultraviolet,
i.e., we show how aAx, could indeed provide a natural L 4
ultraviolet cutoff in quantum field theory. While we will fo- Z131= Nf D¢ exp( _f d’x
cus here on commutation relations which induce a finite
Axy>0, the general framework does allow for generic com- i l(ﬁf’fﬁ)* bb—d*I—I* ¢
mutation relations. Let us therefore also mention some of 4!
those studies which suggest such more general commutation
relations. with N a normalization factor. Fourier transformation allows
For example, the approach by Doplichetral. [21] sug- us to express the action functional in momentum space,
gests the existence of specific corrections toxhecommu-  which is of course to choose the plane waves as a Hilbert
tation and uncertainty relations. One of the arguments therbkasis in the space of fields which is formally being summed
is that the improvement of a position measurement in onever. Equivalently, the action functional can be expressed in
direction ultimately requires a delocalization in orthogonalany arbitrary other Hilbert basis, such as, e.g., a Hilbert basis
directions, in order to reduce the gravitationally disturbingof Hermite functions. In fact, it is not necessary to specify
energy density of the probing particle. A possible noncom-any choice of basis. Fields can be identified as vectors in the
mutativity of the position operators was probably first dis-representation spade of the associative Heisenberg algebra
cussed if22], developing a line of thought which has been .4 with the canonical commutation relations:
followed since, mainly by Russian schools; see, ¢28]. In
the context of noncommuting position operators, see also [x,pjl=ihs;, i,j=1,....4 9
[24]. Other studies, e.9.25], suggest a length dependence of
the minimal uncertainty in length measurements. Correctiorsince the functional analytic structure is analogous to
terms specifically to thep,p commutation relations have the situation in quantum mechanics, we formally ex-

1

E(X,Y)Z;

A. Partition function

¢* (= a0 +mic?) ¢

) ) ®
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tend the Dirac notation for states to fields, i.eb(x) local since the apparent nonlocality could not be observed—
=(x|¢) and ¢(p)=(p|s). We recall that, via(x|p) due to the fuzzinesdx, introduced through the generalized
=(27h) 2exp(xp/k), the # which appears in the Fourier uncertainty relations.
factor e*P'* of the transformation from position to momen-  In our formulation of quantum field theories with under-
tum space stems from theof Eq. (9). Of course, the simple lying generalized,p commutation relations, we will stick to
quantum mechanical interpretation of fields) and in par- the abstract form of the action functional and the partition
ticular of the position and momentum operators of E).  function, as, e.g., given in Eq10), i.e., we will not intro-
does not simply extend, due to the relativistically necessargluce any changes “by hand” into the form of the action
existence of antiparticles; s¢80]. However, this formula- functional. The switching on of corrections to the underlying
tion clarifies the functional analytic structure of the actionuncertainty relations will automatically manifest itself in the
functional[12,16: explicit form of the resulting Feynman rules. The correction
2 terms to the commutation%relagions induce modifications to
the action of the operatop+m<), and to the properties of
Z[‘]]:Nf Dd)exp{ N ﬁ<¢|p2+mzcz|¢> the maximally localized field$x™), which will both cru-
cially enter into the Feynman rules.

We remark that, as a new feature, some generalized com-
mutation relations will have nontrivial unitarily nonequiva-
lent representations, as the well-known theorem by von Neu-
The pointwise multiplication * of fields is crucial for the mann no longer applies. It has been suggested that such cases
description of local interaction. It maps two fields onto onecould correspond to manifolds with horizons or nontrivial

N
- H<¢*¢|¢’* #)+(PlH+le)|. (10

field, i.e., *: F® F—F, and it normally reads topology[26].
* :f d*x |X)®(x|®(x| (11 B. Feynman rules
For explicitness, let us specify some arbitrary Hilbert ba-
so that, in our notation, sis{|n)}, in the space- of fields on which the generalized

commutation relations are represented. While this basis can
be continuous, discrete, or generally a mixture of both, we
here use the convenient notation fordiscrete. We recall
that the discreteness or continuousness of the choice of basis
= $1(y) a(y). (12) is unrelated to the issue of regularizatiénis separable even

; . : in the case of the ordinary commutation relations, i.e., dis-
In the case of generalized commutation relations we read E rete Hilbert baseésuch as the Fock basialso exist in the

(11) with the |x) denoting the vectors of maximal localiza- . . .

tion, i.e., we are integrating over the position expectationCase of the ordinary commutation relatlo_ns. We r_emark that,

values of the maximal localization vectors: n the. case of th_g ordinary commutation relatlor!s, vyheq
choosing the position space representation the situation is
slightly subtle since the propagator and the vertex are then

* =f d* [x™e (x| & (x™M|. (13)  distributions. The situation will become simpler for

Axy>0, as the distributions will turn into regular functions.

Fields, operators, and * are expanded in{h®} basis as

(9 62N~ 62% 9= [ dt'x (0062

In Eq. (10), in order to make the units more transparent, we
introduced an arbitrary unit length so that the field$¢ _ 2, 2:2)  _ 24 22
become unitless. could trivially also be reabsorbed in>the n=(nl¢) and (p*+mcHny=(n|p™+mc |m>(14)
definition of the fields. As is easily seen, in the case of the
ordinary commutation relations the vectdsg have units
length™2, so that| ¢,* ¢b,) has unitdength 2, implying that
the coupling constant (of the unregularized theorys unit-
less. As is to be expected in a_regularlzed 5|t_uat|on, t_hls *:2 Lnl,nz,n3|n1>®<n2|®<n3|- (15)
changes in the cases of generalized commutation relations n
with normalizable maximal localization vectors. Due to
(x™|x™y=1 the|x™) do not carry units, so that the coupling Thus
\ is no longer unitless.

We recall that in the case of the ordinary commutation
and uncertainty relations the position eigenvectors are the |¢* ¢ )= 2 Lomdmlo)(r|¢")In), (16)
maximal localization vectors, implying that the application e
of the definition Eq.(11) for * in the partition function de-
scribes the maximally local interaction. The apparent “non-"-€
locality” introduced in Eq.(13) is only of the size of the now
underlying finite minimal position uncertainty. Within the (¢* " )n=Lnrshr bs - (17)
framework, physical processes, including measurement pro-
cesses, obey the uncertainty relations. We therefore conclude this Hilbert basis the partition function Eq10) thus
that the so-defined interactions are observationally strictlyeads, summing over repeated indices,

and
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C. Regularization

Let us first consider the tadpole grafsee Fig. 1 Using
Egs.(19—(21), or directly Eqs.(23) and(24), yields its ex-

|2
Z[J]: NJ'FD(l’ exr{ - ﬁ_i d):l(pz-l- mzcz)nlnzd’n2

A ression as an operator:
- T L:1n2n3|-n1n4n5¢’r:2¢:3¢n4¢7n5+ ¢:Jn+‘J: bn |- P b '
2\h? d*xd*y ~
18
( ) (4!)2(AX0)2 (AXo)S 54(X:y)
Pulling the interaction term in front of the path integral, com-
p_Ielt(ijng the squares, and carrying out the Gaussian integrals ><<xmI Py ym'> ly™e(xM. (25
yields
, A g a9 4 _ o . . .
Z[J]=N'exp — FLnlnznsLnlnws 3 91 93 97 As is well known, ordinarily this graph is quadratically di-
: Nz 7¥ng “<ny “¥ng vergent for large momenta. On position space the diver-

gence, or rather the ill definedness of this graph, arises not
x g~ (#21?) J§<P2+m2°2>n#m)_ (190  through the large scale integrals, but instead at short dis-
tances, i.e., ag—Vy.
For our cases of generalized commutation relations this
We can therefore read off the Feynman rules for the propagraph is however well defined: Due to the normalizability of
gator and the vertex the maximal localization vectors, their scalar prodatis a
function bounded by 1, rather than a distribution. In the sec-

212 4
_ Gl ) [ N % (20) ond factor, which consists of matrix elements of the propa-
nm~ pZ+ m?c? R gator, the operatorp?+m?c?)~! is bounded. Therefore,

again due to the normalizability of the™) also these matrix

Note that the earlier arbitrarily introduced constardrops ~ €lements are bounded functionsofindy. Thus the short-
out of the Feynman rules since each vertex attaches to foshstance divergence is indeed removed in the case of the
propagators. generalized commutation relations.
Explicitly, Eq. (13) yields the structure constants In the casem=0 the operator p” is unbounded, which,
as is well known, can lead to infrared divergencies at large
distances. A relevant question in this context is of course
Ln, nying= J d* (nyx™{(x™|n)(x™ng). (21)  whether in cases of generalized commutation and uncertainty
relations with a finite minimal uncertainty in momentum this

For the case of the ordinary commutation relations, we reinfrared problem could be avoided. Indeed, as has been
e y . N shown in[16], the existence of a finitd p,>0 implies that
cover with|x™)=|x), and, e.g., choosing the position repre-

sentationn) = x) the operator P2 is as well behavgd. as if it contain_ed a mass
' term, i.e., it is a bounded self-adjoint operator. Since we are
(Axg=0) here primarily interested in the ultraviolet behavior, let us in
Ly =8 (x=x") 8 (x=x"). (22)  the following assume the infrared to be regularized either
throughm>0, or, e.g., througlA p,>0 (examples of gener-
In the general case withx,>0, as we said, the coupling alized commutation relations which imply both, finite mini-
constant picks up units. We can however still define a unitmal uncertainties in positioAx, and in momentuna p, are
less\ by splitting off suitable factors df Let us also choose known, seq11]).
| = Axo. Any other choice fol would amount to a redefini- ~ The tadpole graph could of course have been avoided by
tion of the coupling constan. normal ordering the interaction Lagrangian. Let us therefore
As abstract operators, i.e., without specifying a Hilbertconsider the further example of the normally logarithmically
basis in the space of fields, the free propagator and the lowedivergent “fish” graph(see Fig. 2

order vertex then read, using the definition £8), It requires two vertices and two propagators:
ﬁz
©- (Axo)*(p®+m?c?)’ @3 27" J’d4X1 d'x; d'x d'x,
(41)%(Axo)* (Axp)™®
[ XY eyt sy (7 7, ><<xm' xm'>2754(x X2) 6*(Xg X4
41]) (AXop) ’ 2| p?r m2c2 | 1:X2 3:X4
0 XIxThe|xr) e (xe(x7. (26)

We can now use the Feynman rules E(@3) and (24) to

explicitly check for UV regularization in the cases of Heisen-

berg algebrasA generated by operatorsp which obey gen- Ordinarily, in  position  space, the propagator
eralized commutation implying xo>0. (X, (p?+m2c?) ™1 |x3) is divergent forx,— x3. Neverthe-
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FIG. 2. The fish graph.

FIG. 1. The tadpole graph. The notation is meant to indicate d d tai ¢ t th
Axy>0, i.e., the fuzziness of space-time, or the particles’ nonpoint-curve space does contain momentum operators, nese
likeness. should be generators of a generalized definition of translation

on curved space, in which cafsg ,p;]=0 would express the
less, it is well defined as a distribution. However, its squaréPSence of curvature on position sp426].)

(X, (P2 +mc?) "1 |x3)? is not! The remaining commutation relations among theare
In contrast, since in the case of the generalized commutdPen determined through the Jacobi identities, yield2g]
tion relations the matrix elements of the propagator . -
propag [ X 1= 1%{Xa, 03 OO} s} (28

(3" (p?+ m?c?) ~Y|x2") are bounded, also for,— X, arbi-
trary high powerg(xJ'"|(p?+m?c?) x5, reN, are also  For simplicity we adopted the geometric notation, with

well defined functions ok, andxs. Again, the short distance and [,] standing for (ant) commutators and with
structure is found to be regularized. Q,=d/dpQ.

In fact, it is obvious that the short distance structure of all We observe that the,p commutation relations Eq$27)
graphs is regularized, since in arbitrary graphs at most finitgre translation invariant in the sense that they are preserved
powers of matrix elements of the propagator, and powers ofinder the transformations
6 can appear, which both are now bounded regular func- _
tions. Xi—>Xi+di s Pi— P, di elR, i=1,...n. (29)

We should note, however, that although we have seen th%n the other hand, for genertg, the commutation relations

gs. (28) are not invariant under translations, i.e., the gen-
erators obtained through the transformations E28. do not
obey Eq.(28). We can, however, enforce translation invari-
ance by requiringd to yield [x; ,x;]=0. We read off from
Eq. (28) that a sufficient and necessary condition for this to
hold is (summing ovelri)

the ultraviolet divergencies are absent, we cannot general
exclude that some sets of generalized commutation relatio
could introduce new types of divergencies. This will have to
be investigated case by case.

D. External symmetry

The one-dimensional uncertainty relation Ef) has no B
uniquen-dimensional generalization. Therefore, any particu- ®ia‘9pi®bc_ ®ib3pi®ac (30

lar choice for the corrections to the commutation relations in hich be vi q ing the ab ¢
n dimensions will require motivation from string theory or which may be viewed as expressing the absence of curvature

quantum gravity. There is also the possibility of generalized®? momentum space, by the same arguments as above. Of
external and internal symmetry group®.g., quantum COUTSe, central correction terms may still be added on the

groups at the Planck scale, see, e.fl1,31-33. We will right-hand side(RHS) of the x,x commutation relations,
here not attempt to develop such arguments any further. L&ithout spoiling translation invariance, e.g., terms of the

us here instead consider the constraints which can be posffM suggested in21]. L .
by requiring conventional translation and rotation invariance 1€ requirement of rotation invariance further imposes

of the commutation relations. 2 2
(p)= - D
We start with a general ansatz foyp commutation rela- O (P)=1(p%) 3y +a(PIPiP; 31
tions inn dimensions: so that Eq.(30) takes the forn{34]
[Xi,pj]=1%0;;(p), (27) 2ff’
9 Fap7 (32

where we require that only the ultraviolet is affected, i.e.,

©;j(p) shall be allowed to significantly differ frond;; only  \;here the prime denoted/dp? Under these conditions

for large mo_menta. . _ translations and rotations do respect the commutation rela-
As we said, we assuni@; ,p;]=0.(We remark thatithas iong je. they are quantum canonical transformations, and
been argued that if the final theory of quantum theory ony,, jndeed be implemented as unitary transformations. The

translations are given by

We remark that the ansatz of differential renormalization, see, u(d): —gdT (33
e.g.[20], starts here by replacing the ill defined square of the propa-
gator(nonuniquely by the derivative of a well defined distribution, With [T;,x;]= &;;, and where we denoted the scalar product
thereby introducing a length scale. 3,diT; by d-T. Since in the “naive” definition of trans-
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lations in Egs.(29) there is no explicitly built-in “knowl-

edge” of the new short distance structure, the anti-Hermitian

generatordl; are not given by the-p;/if directly. Instead,
they are

T,= Pi

~iREpd) (349

as is not difficult to verify. As a consequence of the new

short distance structure the translatéywill be found to be

bounded operators, technically as we will $&€. (42)], be-

causef eventually goes linearly witlp for large p.
Analogously, rotations

U(®)=e®%iMi (35

are generated by the operators

1
Mijzw (PiX; = PjXi) (36)
which obey

[Pi M ]= 6ikPj— 6ijPx» (37
[Xi s M ] = GikXj — 6ij Xk (38)
[Mij , M= 6ikMji = 5iMjc+ 6 Mg — )My (39)

as usual.

Ill. EXPLICIT EXAMPLE

In the following we will illustrate the formalism with an
explicit example of generalized commutation relations.

A. Choice of commutation relations

ACHIM KEMPF AND GIANPIERO MANGANO

f=1+§p2+0((ﬂp2)z). (43

so that, if we chooses, e.g., at around the Planck scale
B~ Y?~pp, thenf significantly deviates from the identity
only for large momenta of that scale.

We therefore obtain the commutation relations

2
[Xi,pj]=ih ﬁ@q G+ Bpipj |, (44
[X,%]]=0, (45
[pi,pj]1=0. (46)

We remark that, assuming translation and rotation invari-
ance, the correction terms to the commutation relations are in
fact unique to first order inB: Eq. (32 vyields
f=1+p/2p?>+0(B?) andg=B+0O(B?), so that
[x.pj]=ik[(1+ BI2p?) 5+ Bpip;+O(BH)]  (47)
and[x;,x;]=0+ o(B?), [pi ,P;1=0, which of course coin-
cides with what we obtain from Eq$44) to first order in

B.
We remark that concerning the possible choices of com-
mutation relations it should generally be interesting to inves-
tigate the interplay of the technical constraints with the input
and physical intuition from string theory and quantum grav-
ity. In particular, as follows from the relation between the
translators and the momenta, Eg4), the rule for the addi-
tion of extremely large momenta is modified through
(p+Kk)i=p;f ~1(p?) +kf~1(k?). There should exist an in-
terpretation in terms of the effects of gravity at the Planck
scale, similar to the well-known effect of momentum non-

If we require our generalized commutation relations toconservation through gravity on large scales*(,=0
obey translation and rotation invariance, there still appears teather thanT#” ,=0). This may, e.g., be related to the old

be considerable freedom in choosing the functiénand,

idea of possible curvature in momentum space, in which a

through Eq.(32), the functiong. Many choices may not lead generalized. parallelogram rule for the addition of momenta
to generalized commutation relations that imply a minimalhas been discussed; 2], and more recently23]. It has

uncertaintyAxy,>0. In particular, Eq.(32) indicates thaig

of course long been suggested that, more drastically, both

can develop singularities. A detailed investigation into therotation and translation invariance may be generalized or

various possibilities is in progre485]. Here, in order to

broken at the Planck scale. Any physical intuition for this

obtain a well behaved example of generalized commutatiogould and should then also provide guidance for the gener-
relations we simply force there not to appear a singularity byalization of Eq.(13) to account for the then positiofand

imposing, as the simplest choicg$0),

g=B. (40)
Thus, Eq.(32) then reads
,__ Bt
Ty 4y
which is solved by
Bp°
f=——— 42
Vi+28p%—1 “2

The Taylor expansion around the origin is well behaved:

possibly orientationdependence of the short distance struc-
ture. This will at first require a case by case study.

B. Hilbert space representations

The commutation relations Eq&t4), (45), and (46) still
find a Hilbert space representation in the spectral representa-
tion of the momentg; (since momentum space is still com-
mutative and there is no finite minimal uncertainty in mo-
mentum,Ap,=0):

Xi- p(p)=ih

, . n+1
f+pg+Tg

pit+fdp

+gpipjﬁpj}‘/’(p)r (48)
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pi- Y(p)=pi¥(p), (49 Generally, within the Hilbert space representation of the
generalized commutation relations there exist an arbitrary

number of Hilbert bases in which the and p; are repre-
<¢1|¢2>:j d"py1 (p)¢a(p), (500 sented in terms of multiplication and differentiation opera-
tors:
where y(p)=(p|#) and(p|p")=3(p—p’). X andp; are
symmetric operators on the dense donfair=S., . This rep- Xi- p(v)=fi(v,d/dv) ¥(v), (56)
resentation holds for any choice df and g, as can be
checked directly. The case of commutation relations with pi- Y(v)=gi(v,d/dv)(v). (57)

general® is covered in26].
A further representation of the commutation relations Eqsgince  the d/dv-
(44)—(46), which will prove convenient for practical calcu- [d/dv :
lations, is obtained by using that the translatbrsare anti-
Hermitian and have a spectral representation on the Hilbe
basis{|p)|pel,} of vectors obeyind;-|p)=p;/if|p) with

and v; obey the Leibniz rule
i,vj]=&j;, each one of these Hilbert bases offers an
alternative viewpoint according to which the introduction of

minimal uncertainty in positions is the replacement of op-
eratorsxg ,pg Which obey the conventional commutation re-
lations by new operators andp;

l,={p e R"p?<2/B}, (51)
i.e., theT,; are bounded operators. The unitary transformation Xi=fi(Xo, = po/ifi), pi:=gi(Xo,~Pol/ih) (58
which maps from momentum space to the spectral represen-
tation of theT; has the matrix elements (identifying xqi=v; ,poi= —i#d/dv;). The action, including
the definitions of maximally localized field€q. (5)] and
(plp)=(1—Bp?2)~ (" V2(1+ gp?/2)1/2 maximally local interactiorfEq. (13)], is dependent on the
generalized uncertainty relations and the thereby generalized
x & p;— Pi ) (52) commutation relations, but it is of course independent of the
b 1-pBp%2) choice of Hilbert basis in which it is calculated. Therefore,

while some choices of Hilbert bases can provide conceptu-
The operator representations and the scalar product then reatly interesting “points of view,” none of these is canonical.
in p space We still have to prove that the generalized commutation
relations Eqs.(44)—(46) do in fact imply a finite minimal
Xi- y(p)=ihd, y(p), (53 uncertaintyAx,>0, rather than, e.g., a discretization of po-
sition space. Before we do this in the next section, let us note
pi an important representation theoretic consequence of the ex-
Pi(p) =152 ¥(pP). (54)  istence of a minimal uncertaintyx,>0.
Bp<l2 . .
A general argument shows that commutation relations
which imply a finite minimal uncertainty in position cannot
<¢1|¢2>:J d"p st (p) a(p), (55) ﬁnd a Hilbert space representation on a s_pectral representa-
In tion of the position operators: The uncertainty relations hold
in all * representations of the commutation relations. On the
where ¢/(p) =(p|¥) and{p|p’')=8"(pi—p{). Note that, as other hand, as is easily seen, e.g., in the example ofZg.
is easy to see in this representation, the momentum operatoas eigenvector to an observable necessarily has vanishing
p; are still unbounded. uncertainty in this observable. Thus, if the uncertainty rela-
We note also that the momentum operatprsio longer  tions imply a finite uncertainty in positions, they exclude the
coincide with the generators of translationsA T;, but that  existence of any position eigenvectors in any physical do-
they differ from them for large momenta, i.e., for small dis- main, i.e., on any domain on which the commutation rela-
tances. Related to our discussion at the end of Sec. |, Eqtions are represented. In particular, in cases wherg>0
(53) and (54) then suggest to take the point of view that theand Ap,>0 both position and momentum representations
introduction of a Planck scale minimal uncertainty in posi-are ruled out and one has to resort to other Hilbert bases, as,
tions amounts to sticking to the usual position operator®.g., in[12,14.
while giving up the usual momentum operat@gs for new To be precise, let us assume that the commutation rela-
momentum operatons; , thereby leading to ultraviolet regu- tions are represented on some dense dorairH in a Hil-
larization.(We are here neglecting functional analytic detailsbert spaceH. Ordinarily, there would exist sequencge,)
such as the changing domain and defect indices of the posi D} with position uncertainties decreasing to zdmg.,
tion operators. Gaussian approximations to the position eigenvegttmghe
On the other hand, using the eigenbasis of phe Egs.  presence of a finitd x>0, however, there exists a minimal
(48) and (49) show that, alternatively, the introduction of a uncertainty “gap,” i.e., there are no vectofg) e D which
finite minimal uncertainty in positions can be viewed aswould have an uncertainty in positions in the interval
keeping the conventional momentum operators pg; and  [0,AXg[, so that now
instead replacing the conventional position operaigrdy
new position operators = X;(Xq,Pg) Which are given via Eqg. A {|y,)eD}: lim (AXo)[yy=0. (59
(48) (Wlth Pi = Poi and &pi = Xoi /i ﬁ) . n—o "



7916 ACHIM KEMPF AND GIANPIERO MANGANO 55

Technically, the position operators are merely symmetric on [|(xi— () +ik(pi—(pi))| )| |=0. (64)
representation® of the commutation relations. Their defi-
ciency indices are nonvanishing and equal, implying the exThus the vectors on the boundary of the region allowed by

istence of a family of self-adjoint extensions ki though, the uncertainty relations obey the squeezed state equation:
crucially of course, not irD. This functional analytic struc-

ture was first found if11]. (xi—{xi)) +ik(pi—(pi))|¥)=0. (65
As is easily seen, there do exist formal position eigenvec-
tors inH: Due to the symmetry of the underlying generalized commu-
tation relations we do not lose generality by calculating the
B \"?nT(n/2)]¥2 maximally localized fieldx””), around the origin, i.e., with
Ye(p)= <_) 5 e it i, (600 (0M|x|0™=0 and (0™|p;|0™)=0. In p space Eq.(65)
reads
Concerning the normalization, recall that the surface/zof the
(n—1)-dimensional unit sphere read®=/dQ,=27"¢ ;
I'(n/2). The scalar product can be calculated to be ha '+Ik1 /3’ 2/2 vidp)=0. (68
B n/ZnF(nIZ) . Due to rotational symmetryp™) can only depend op?, so
(W)= 5= 5 fl dnpe (7= plh that Eq.(66) becomes
k
(@wﬁ) " (n ) (ﬁlg— nl) 3,20 pP) = = mm— il p°) (67)
il e I''=+1 ‘]n/2 _—, Zﬁ(l Bp /2)
|£— 7| 2 B
61) whose normalized solutions reaki>0)
. . . . 2k n 1/2
where J,,, is the Bessel function of the first kind of order = + _+1)
n/2. The zeros of the scalar product determine the self- o | [ B\ B2 2/p\I1f
adjoint extensions of the oB densely defined; (for any Yi(p”)= 27 2k (1=Bp*275
chosené, all 7’s such that|é— 7| is a zero ofJ,, corre- r ﬁ+1
spond to the eigenvectors of one self-adjoint extension (68)

However, as is readily verified, none of these vectors is in
the domain of thep;. Thus, as is to be expected when We can now calculate the squared uncertainty in position as
Axy>0, none of the family of self-adjoint extensions of the a function ofk:

x; is in the domain of the representation of the commutation

relations. In the one-dimensional case 1 we recover the ,  hkak+nhp

results obtained ifil3], in particular the scalar product of the (AX)MJ: 4 2k—hp " 69
“formal position eigenvectors’{technically of eigenvectors
of the adjointsx* , which are not self-adjoint, nor symmet- The minimum is reached for
ric):
hp n
V2l¢— | o= [TV ) 70
np sin( —\/_>
(e w,)= P ) (62)  We therefore find the finite minimal uncertainfy,:
! V2| ¢-

2_ (Ax)? ﬁ T3 JTE5+ 1)2
There is, however, a natural generalization of the position (AXp)"=(A Iwk> 1+n2(yi+n/2+1)% (7D
space representation. To this end we define a Hilbert space
representation of the commutation relations on “quasiposiThe field |0ml>:|¢,ko> of maximal localization around the

tion space,” se¢13,15: origin therefore reads, in the representation,
lp(x)::<xm|llp>_ (63 <p|0m'>=l,//ko(pz):Nllz(n)(,B/Zﬂ)”M
These quasiposition functiong(x) are obtained by project- X (1— Bp2l2)2+ Nvzaa: (72)

ing the fields|#) onto the fields of maximal localization
|x™) and they do of course turn into the ordinary positionyhere we defined
space representation fdrx,— 0.

N() r2+n/2+J1+n/2) 73
- - ; n):= .
C. Maximally localized fields T(2+ V1t n2)
Let us now prove that\x,>0 by explicitly calculating
the maximally localized fields. The p-space representation of the fields of maximal localiza-

As is well known theAx;Ap; uncertainty relations are tion around arbitrary position expectation valugsow fol-
derived from the positivity of the norm: low by translation:
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FIG. 3. Plot of the scalar product of maximally localized fieﬁ(&—y) vs |x—y|/h/B. 5 generalizes the Diraé distribution for
Axy>0.

<p|xml>:<p|ex~T|0mI>: <p|0ml>efix-p/h_ (74) D. Feynman rules
As we saw in Sec. Il B, the Feynman rules are composed

Using Eq.(52), we eventually obtain the maximally local- of two basic functions, related to the vertex and to the propa-
ized fields in momentum space, gator, respectively,

ap? 112 SOcy™): = (xmy™)
(pIx™)y=(Bl2m)"™* NYA(n) )

1+2B8p%—1+28p?

and

T3 2802 1| 12+ I8
X Lf : h? 2. 2 a1y
Bp G(x,y): = 7=z (X"[(p>+m*c?) Hy™). (77
(AXo)
X-p V1+2Bp°—1 -
b Ry S (79 The calculation of5, i.e., of the scalar product of maximally

localized fields is straightforward, in particular in therep-

. o L resentation. The result is of course independent of the choice
This expression is of course also the quasiposition represegs Hilbert basis. Choosing spherical coordinates:
tation of the plane wave with momentum We observe that

in quasiposition space the fields can now not have arbitrarily ~ il

fine ripples. Indeed, from the argument in the exponent in O(X—Y)=(X ly™)

Eq. (75) we read off that for increasing momentum the wave-

length in quasiposition space only tends towards a finite =(Bl2m)"*NY(n) f d"p(1— Bp?/2)Lt IFn2
minimal wavelength In

X ei(xfy)»p/h
A= \28 (76) 1+n/2+ I+n72
B h\2B r n \/_/
which is reached as the momentymntends to infinity. The L x=y) 2+ 5 +Nl+n2
situation is perhaps comparable to the speed of light as a
fundamental limit, in which case also the kinematics lets the V2|x—y|

. (79

energy diverge as the fundamental limit is approached. In the XJ1+n2+ \m( T
Appendix we give the unitary transformation from theep- B
resentation to the quasiposition representation and back, and _

we prove the completeness of the set of maximally localized We note thaty(x—y) is also the quasiposition wave func-
fields. tion of the around/ maximally localized fieldy™). Because
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of the finite norm of the maximally localized fields, which shows that the propagator is well behaved for all dis-

8(x—y) had of course to come out as a regular function. Itsfances, in particular also fgr—y|—0.

graph is plotted in Fig. 3. Since the small distance behavior is independent of the
Recall that ordinarily, i.e., wheAx,=0, the propagator mass, let us also consider the simpler massless propagator.

in position spac&(x—y) can only be defined as a distribu- Using spherical coordinates and introducing the dimension-

tion, and that it is the ill definedness of its squéas well as  €ss variables

of higher powers which gives rise to ultraviolet divergen-

cies; see, e.g[20]. We know from Sec. IIC thaG(x—y) t=p\BI2, s=cod, (82)

must now be a well-defined function without singularities.

Explicitly, let us consider the free propagator matrix ele-\ye obtain

ments:
52 G(x—Y) N(”)ﬁzﬁ( 1)”/2 fldt

- | —1p,ml X=Y)=F5 7| = -
G(X—Y)—W<Xm|(p2+m202) Hy™) y 2(Axg)? \ 7 Sh-1 0

_ N(n)#?2 B W2 (1-BpA)dt T2 % fﬂda(sine)n—Ztn—B(l_tZ)B-#v‘meidt cosy

(Axo) 2 \27) ), " P pZrm2ca(1— Bp2l2)2 0
. 2 n/2
x @l (x=y)-plh (79 :N(I’l)ﬁ B i fl J‘l
2(Axp)* \ Sn-1 odt —1d32
The massive propagator cannot be simply expressed in terms '
of elementary or special functions. However, for arbitrary X (1—g2)(N=3)/2gn=3(1 _12)3+1Fn2gidts  (gp)
nonvanishing mass(x—y) can be uniformly bounded by
42 where d:=2|x—y|/(%B). Performing the integration
IG(X—Y)|< —— 5 (80) overs and then ovet, and after some simplification, one
m-c<(AXop) finally obtains, forn>2,
|
3+VJ1+n/2)(2++1+n/2
G(x—y)=2" 3+ )@+ ) 1Fo(=1+n/2; 3+n/2+1+n/2, n/2;
(n—2)VJ1+n/2(1+ J1+n/2)%(2+n/2+ J1+n/2)
—Ix=yl?1(212B)), (83

where we have used the explicit expressions fboxd)? andN(n) given in Egs.(71) and(73).

In the particular case of four Euclidean dimensions the last expression can be cast in a much simpler fora# Fgs.
(71) and(73) for (Axo)2,N(n) and the definition of5(x—y) yield
36+20J3 #%28

6+443 [x—yI°

Therefore, the propagator can be expressed as the product of the usual zero mass propagator andcatsfiifmittion
which has the following behavior for large and short distances:

G(x—y)= (1-3(x~y)). (84)

72B(1— S(x—y))~ ! [x—y[? 1+ 0 My for |x—y|<# B
8+2\3 nB ’
_ \/§|X—y| —7/12—3
h2B(1— 8(x—y))~h3B{ 1+0O| | ——— for |x—y|>#B. (85
VB
|
In particularG(x—Y) is a well behaved function in the short IV. SUMMARY AND OUTLOOK

distance regime and tends to a finite limit for—y|=0, Studies in string theory and quantum gravity provide the-
while for distances larger thanyg it rapidly approaches the oretical evidence for various types of correction terms to the
well known |x—y|~2 behavior of the free massless propaga-canonical commutation relations. Measurable effects could
tor of the case of the ordinary commutation relations. in principle appear anywhere between the presently resolv-
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able scale of 10'® m and the Planck scale of 18 m,  where the|y,) are eigenvectors to th@on-Hermitian op-
although expected close to the Planck scale. eratorsx’ [see Eq.(60)] and p is some value in the open
Our aim here was to show that the existence of even an afterval ]0,,/2/8[. The set of vectorfy,) is the collection of
present unmeasurably smali,, for example at about the g eigenbases to the self-adjoint extensions ofxheand is
Planck length, could have a drastic effect in field theory,therefore overcompletgfor the details of the functional
namely by rendering the theory ultraviolet finite. We noteanalysis seg11,13,15,18. Further, the factor in front of the
that this new short distance behavior would truly be a quanscalar product in Eq(A2) never vanishes nor diverges for
tum structure, in the sense that it has no classical analoginy p. Thus, if the right-hand side of E4A2) vanishes for
Further, the presence of &x,>0 is compatible with both, g x this implies| ¢)=0, which had to be shown.
generalized symmetries as well as with conventional rotation The completeness of the set of maximally localized fields
and translation symmetry. means that we obtain the full information on apy) when
The existence of this short distance structure would raiseollecting its projectiongx™|) on the|x™), i.e., the qua-
a number of conceptual issues, in particular, it would lead tGjposition representation truly represents the fields. Indeed,
a generalized notion of local interaction. Strictly speaking.the mapping, e.g., fronp space to quasiposition space is
the maximally local interaction term in the case of generalinvertible.
ized commutation relations is neither local nor nonlocal in  ysing the explicit expressions Eq§2) and (74) for the
the conventional sense. InStead, itis “Observationally” Iocalmaxima”y localized fields in th@ representation we obtain
in the sense that it is local as far as distances can be resolvegy arbitrary |) the quasiposition wave functiog(x) ex-

given the generalized uncertainty relations.  pressed in terms of its representations(p) as
Similarly, questions such as whether the unitarity of time

evolution is broken or conserved, or whether local gauge  y(x)=(x™|y)=NY4n)(B/2m)"
invariance is broken or conserved also seem not to be appli-
cable in the usual sense. Instead, in the case of the general-
ized uncertainty relations the notions of “time evolution” or
“local” gauging may need to be redefined, analogously to
how local interaction is generalized into “observationally”
local interaction. This is under investigation. ; ; :

There exist a number of immediate technical issues whicr\{v'th the inverse:
need to be addressed, for example the significance of Eq. W(p)=N"Y2(n)(BI2am) 42 mh) "
(32) and its pole structure, and Wick rotation. It should of

course also be worth exploring the possible usefulness of the 2 pon — 12 JTTATTIS ol
approach as a mere regularization method. X(1-Bp2) " f d"™x e P Y(x).

(A4)

XJ dnp(l_ﬁp2/2)1/2+\e‘meix-p/hlp(p)
ln

(A3)

APPENDIX
. Let us denote the mapping from space to quasiposition
We prove the completeness of the set of maximally local'space{Eq. (A3)] by U. The identityU~1U=1 is easily veri-

ized fields and we g|ve_the unitary transf_orm_apon which CONieq by inserting Eq(A3) into Eq. (Ad).
nects thep representation with the quasiposition representa- In the quasiposition representation the scalar product and

tion for the .example of generalized commutation reIanonsEhe action of the position and momentum operators then read
considered in Sec. Ill.

In order to see that the set of maximally localized fields =N~Yn)(B/2m) M2 2mH) 2"
{|x™} is complete, we use that a set of vectdyg) in a (i) (M(Bf2m) "H2mh)

Hilbert space is complete if frofyp| ) =0, V|4, ) follows 1 T
that(¢|=0. Consider now ¢|x™): Xflndnp (1—pBp?/2)~ 17t
(@Ix™)=N"(n)(pl2m)"* f d"p X f J d"x dy €UV PRy* () p(y), (A5)
In

X(l_ﬂp2/2)1/2+V“meiXﬁ/ﬁ(ﬁ(p)_ (Al) ‘ 0 9
Pl ()= —ih X (A2BAI S -(x),  (AB)
=0 i

Using the mean value theorem r '

. . h n\ .
(BIx™)=NY2(n)(BI2m)"*(1~ Bp?I2) 2+ T8 X h(x)= x'+i7ﬁ 1+4/1+5 p')¢(x). (A7)
Xfl d"pe™ " ¢(p) whereA =3,7%/9x?. Note that the action g; given in Eq.
n (A6) [and also used in EGA7)] is well defined on quasipo-

sition wave functionsy(x), since they Fourier decompose
into wavelengths not smaller than the finite minimal wave-
length\ [Eq. (76)]. In this context see algd.3] where the
X{b| ), (A2) concept of quasiposition representation was first introduced.

— Nl/2( n) (1 _ BFZ/Z) 1/2+ JIl4+nl8

nI'(n/2)
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