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I. INTRODUCTION

As has long been known, the combination of relativistic
and quantum effects implies that the conventional notion of
distance breaks down the latest at the Planck scale, which is
about 10235 m. The basic argument is that the resolution of
small distances requires test particles of short wavelength
and thus of high energy. At sufficiently small scale, i.e.,
close to the Planck scale, the gravitational effect of the test
particle’s energy significantly disturbs the space-time struc-
ture which was tried. Studies on gedanken experiments
therefore suggest the existence of a finite limitDx0 to the
possible resolution of distances. String theory, as a theory of
quantum gravity, should allow a deeper understanding of
what could happen at such extreme scales. Indeed, several
studies in string theory yielded a certain type of correction to
the uncertainty relation

DxDp>
\

2
@11b~Dp!21•••#, b.0, ~1!

which, as is easily verified, implies a finite minimal uncer-
tainty Dx05\Ab. Therefore,Dx0.0 can be viewed as a
fuzziness of space, or also as a consequence of the nonpoint-
likeness of the fundamental particles. It seems that, in string
theory, intuitively, the input of more energy does eventually
no longer allow to improve the spatial resolution, as this
energy starts to enlarge the probed string. References are,
e.g.,@1–7#; see also@8#. For recent reviews, see, e.g.,@9,10#.

Using the usual definition of uncertainties (uc& normal-
ized!

~Dx! uc&5^cu~x2^cuxuc&!2uc&1/2, ~2!

the uncertainty relation Eq.~1! implies a small correction
term to the commutation relation in the associative Heisen-
berg algebra:

@x,p#5 i\~11bp21••• !. ~3!

For studies on the technical and conceptual implications of
these and more general types of correction terms, see@11–
16#. We remark that those studies arose from work~e.g.,
@17#! in the seemingly unrelated field of quantum groups, in
which this type of commutation and uncertainty relations had
appeared independently~first in @18#!. A standard reference
on quantum groups is@19#.

For the general case ofn dimensions it appears that no
consensus has been reached in the literature on which gen-
eralization of Eq.~3!, i.e., which particular correction terms
to the uncertainty relations could arise as a gravity effect in
the ultraviolet, or as a string effect. Let us therefore here
consider small correction terms of a general form
(xi

†5xi ,pi
†5pi)

@xi ,pj #5 i\~d i j1b i jklpkpl1••• ! ~4!

with the coefficientsb i jkl ~and also possible terms of higher
power in thepi) chosen such that the corresponding uncer-
tainty relations imply a finite minimal uncertaintyDx0.0.
We will for simplicity normally assume@pi ,pj #50, but we
allow @xi ,xj #Þ0. Let us keep in mind that it is the correction
terms to the x,p commutation relations which induce
Dx0.0. A noncommutativity of thexi will not be necessary
for the appearance of a finite minimal uncertaintyDx0.

In short, the key mechanism which leads to ultraviolet
regularization in the presence of a minimal uncertaintyDx0
is the following.

In the case of the ordinary commutation and uncertainty
relations underlying, the states of maximal localization are
position eigenstatesux&, for which the uncertainty in position
vanishes. Crucially, these maximal localization states are
nonnormalizable. Therefore, their scalar product is not a
function but the Diracd distribution^xux8&5d(x2x8). As is
well known ~for a recent reference, see@20#!, in the formu-
lation of local interaction in field theory it is the ill defined-
ness of the product of these and related distributions which
give rise to ultraviolet divergencies.

A finite minimal uncertaintyDx0 will yield normalizable
maximal localization states, and thereby regularize the ultra-
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violet. More precisely, as we will see, there exist generalized
commutation relations of the type of Eqs.~4! such that there
exists a minimal uncertaintyDx0.0, with the vectors of
maximal localizationuxml& obeying

^xmluxml&51, Dxuxml&5Dx0 , ^xmluxuxml&5x

with xPR. ~5!

It follows that due to their normalizability, the scalar product

d̃~x,y!:5^xmluyml& ~6!

is a function rather than a distribution.
A simple example is the one-dimensional case of Eq.~3!

with b.0 and no higher order corrections. For this case the
scalar product of the maximal localization states has been
calculated in@13#:

d̃~x,y!5
1

p F x2y

2\Ab
2S x2y

2\Ab
D 3G21

sinS x2y

2\Ab
p D . ~7!

Note that the poles of the first factor are cancelled by zeros
of the sine function, so thatd̃ is a regular function. For a
graph see Fig. 3 in@13#. The analogous result for the case
with also a finite minimal uncertainty in momentum has been
worked out in@15#.

We consider it to be an attractive feature of this short
distance structure that it will not require the breaking of
translation and rotation invariance, while also being compat-
ible with possible~e.g., quantum group! generalizations of
these symmetries. Also, this regularization will not require to
cut momentum space.

A general approach for the formulation of quantum field
theory with generalizedx,p-commutation relations underly-
ing has been developed in@12#, with a general result on
infrared regularization in@16#, and preliminary results on
ultraviolet regularization in@14#. Our aim here is to show the
general mechanism, both abstractly and explicitly, by which
a minimal uncertainty in position regularizes the ultraviolet,
i.e., we show how aDx0 could indeed provide a natural
ultraviolet cutoff in quantum field theory. While we will fo-
cus here on commutation relations which induce a finite
Dx0.0, the general framework does allow for generic com-
mutation relations. Let us therefore also mention some of
those studies which suggest such more general commutation
relations.

For example, the approach by Doplicheret al. @21# sug-
gests the existence of specific corrections to thex,x commu-
tation and uncertainty relations. One of the arguments there
is that the improvement of a position measurement in one
direction ultimately requires a delocalization in orthogonal
directions, in order to reduce the gravitationally disturbing
energy density of the probing particle. A possible noncom-
mutativity of the position operators was probably first dis-
cussed in@22#, developing a line of thought which has been
followed since, mainly by Russian schools; see, e.g.,@23#. In
the context of noncommuting position operators, see also
@24#. Other studies, e.g.,@25#, suggest a length dependence of
the minimal uncertainty in length measurements. Correction
terms specifically to thep,p commutation relations have

been discussed, e.g., in@1,26#. The approach of ‘‘generalized
quantum dynamics’’ by Adler@27# allows for generic com-
mutation relations and a possible generalization of the under-
lying Hilbert space to a quaternionic space. In this approach
the ordinary canonical commutation relations have been de-
rived as a first order approximation in a statistical averaging
process@28#.

Further, it should also be of interest to apply the noncom-
mutative geometric concepts developed in@29#, in particular
to study the modifications to the differential and integral cal-
culus over such generalized quantum phase spaces.

We note that, technically, the appearance of correction
terms to the canonical commutation relations can generally
also be viewed as a nontrivial and nonunique change of gen-
erators from thex0,p0 which obey@x0,p0#5 i\ to new sets of
generators. Examples for such algebra homomorphismsr for
the case of Eq.~3! arer: x0→x5x01bp0x0p0, p0→p0, or
alsor: x0→x5x0, p0→p5b21/2tan(p0b

1/2).
The reason why a slight change in the commutation rela-

tions is able to introduce a drastically new short distance
structure is not only that expectation values of a function of
operators generally do not equal the function of the expecta-
tion values. Technically, the reason is of course that algebra
homomorphismsr which change the commutation relations
of the generators are necessarily noncanonical transforma-
tions, i.e., unlike symmetries, ther cannot be implemented
as unitary ~nor as antilinear antiunitary! transformations.
UnitariesU generally preserve any chosen commutation re-
lations, say h(x,p)50, since h(x,p)50⇒h(x8,p8)
5h(UxU†,UpU†)5Uh(x,p)U†50. Thus any change in
the commutation relations introduces new features into the
theory, such as the appearance of aDx0.0, which we will
here focus on.

II. GENERAL FRAMEWORK

A. Partition function

Let us consider the example of Euclidean charged scalar
f4 theory, in its formulation on position space:

Z@J#:5NE Df expS 2E d4x Ff* ~2] i]
i1m2c2!f

1
l

4!
~ff!*ff2f* J2J*fG D , ~8!

with N a normalization factor. Fourier transformation allows
us to express the action functional in momentum space,
which is of course to choose the plane waves as a Hilbert
basis in the space of fields which is formally being summed
over. Equivalently, the action functional can be expressed in
any arbitrary other Hilbert basis, such as, e.g., a Hilbert basis
of Hermite functions. In fact, it is not necessary to specify
any choice of basis. Fields can be identified as vectors in the
representation spaceF of the associative Heisenberg algebra
A with the canonical commutation relations:

@xi ,pj #5 i\d i j , i , j51, . . . ,4. ~9!

Since the functional analytic structure is analogous to
the situation in quantum mechanics, we formally ex-
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tend the Dirac notation for states to fields, i.e.,f(x)
5^xuf& and f(p)5^puf&. We recall that, via ^xup&
5(2p\)22exp(ixp/\), the \ which appears in the Fourier
factor eixp/\ of the transformation from position to momen-
tum space stems from the\ of Eq. ~9!. Of course, the simple
quantum mechanical interpretation of fieldsuf& and in par-
ticular of the position and momentum operators of Eq.~9!
does not simply extend, due to the relativistically necessary
existence of antiparticles; see@30#. However, this formula-
tion clarifies the functional analytic structure of the action
functional @12,16#:

Z@J#5NE DfexpS 2
l 2

\2 ^fup21m2c2uf&

2
l l 4

4!
^f*fuf*f&1^fuJ&1^Juf& D . ~10!

The pointwise multiplication * of fields is crucial for the
description of local interaction. It maps two fields onto one
field, i.e., *: F^F→F, and it normally reads

*5E d4x ux& ^ ^xu ^ ^xu ~11!

so that, in our notation,

~f1*f2!~y!5^yuf1*f2&5E d4x ^yux&^xuf1&^xuf2&

5f1~y!f2~y!. ~12!

In the case of generalized commutation relations we read Eq.
~11! with the ux& denoting the vectors of maximal localiza-
tion, i.e., we are integrating over the position expectation
values of the maximal localization vectors:

*5E d4x uxml& ^ ^xmlu ^ ^xmlu. ~13!

In Eq. ~10!, in order to make the units more transparent, we
introduced an arbitrary unit lengthl , so that the fieldsuf&
become unitless.l could trivially also be reabsorbed in the
definition of the fields. As is easily seen, in the case of the
ordinary commutation relations the vectorsux& have units
length22, so thatuf1*f2& has unitslength

22, implying that
the coupling constantl ~of the unregularized theory! is unit-
less. As is to be expected in a regularized situation, this
changes in the cases of generalized commutation relations
with normalizable maximal localization vectors. Due to
^xmluxml&51 theuxml& do not carry units, so that the coupling
l is no longer unitless.

We recall that in the case of the ordinary commutation
and uncertainty relations the position eigenvectors are the
maximal localization vectors, implying that the application
of the definition Eq.~11! for * in the partition function de-
scribes the maximally local interaction. The apparent ‘‘non-
locality’’ introduced in Eq.~13! is only of the size of the now
underlying finite minimal position uncertainty. Within the
framework, physical processes, including measurement pro-
cesses, obey the uncertainty relations. We therefore conclude
that the so-defined interactions are observationally strictly

local since the apparent nonlocality could not be observed—
due to the fuzzinessDx0 introduced through the generalized
uncertainty relations.

In our formulation of quantum field theories with under-
lying generalizedx,p commutation relations, we will stick to
the abstract form of the action functional and the partition
function, as, e.g., given in Eq.~10!, i.e., we will not intro-
duce any changes ‘‘by hand’’ into the form of the action
functional. The switching on of corrections to the underlying
uncertainty relations will automatically manifest itself in the
explicit form of the resulting Feynman rules. The correction
terms to the commutation relations induce modifications to
the action of the operator (p21m2), and to the properties of
the maximally localized fieldsuxml&, which will both cru-
cially enter into the Feynman rules.

We remark that, as a new feature, some generalized com-
mutation relations will have nontrivial unitarily nonequiva-
lent representations, as the well-known theorem by von Neu-
mann no longer applies. It has been suggested that such cases
could correspond to manifolds with horizons or nontrivial
topology @26#.

B. Feynman rules

For explicitness, let us specify some arbitrary Hilbert ba-
sis $un&%n in the spaceF of fields on which the generalized
commutation relations are represented. While this basis can
be continuous, discrete, or generally a mixture of both, we
here use the convenient notation forn discrete. We recall
that the discreteness or continuousness of the choice of basis
is unrelated to the issue of regularization.F is separable even
in the case of the ordinary commutation relations, i.e., dis-
crete Hilbert bases~such as the Fock basis! also exist in the
case of the ordinary commutation relations. We remark that,
in the case of the ordinary commutation relations, when
choosing the position space representation the situation is
slightly subtle since the propagator and the vertex are then
distributions. The situation will become simpler for
Dx0.0, as the distributions will turn into regular functions.

Fields, operators, and * are expanded in the$un&% basis as

fn5^nuf& and ~p21m2c2!nm5^nup21m2c2um&
~14!

and

*5(
ni

Ln1 ,n2 ,n3un1& ^ ^n2u ^ ^n3u. ~15!

Thus

uf*f8&5 (
n,m,r

Lnmr^muf&^r uf8&un&, ~16!

i.e.,

~f*f8!n5Lnrsf rfs8 . ~17!

In this Hilbert basis the partition function Eq.~10! thus
reads, summing over repeated indices,
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Z@J#5NE
F
Df expS 2

l 2

\2 fn1
* ~p21m2c2!n1n2fn2

2
l l 4

4!
Ln1n2n3
* Ln1n4n5fn2

* fn3
* fn4

fn5
1fn* Jn1Jn*fnD .

~18!

Pulling the interaction term in front of the path integral, com-
pleting the squares, and carrying out the Gaussian integrals
yields

Z@J#5N8expS 2
l l 4

4!
Ln1n2n3
* Ln1n4n5

]

]Jn2

]

]Jn3

]

]Jn4
*

]

]Jn5
*

3e2 ~\2/ l2! Jn* ~p21m2c2!nm
21JmD . ~19!

We can therefore read off the Feynman rules for the propa-
gator and the vertex

Gnm5S \2/ l 2

p21m2c2D
nm

, G rstu52
l l 4

4!
Lnrs* Lntu . ~20!

Note that the earlier arbitrarily introduced constantl drops
out of the Feynman rules since each vertex attaches to four
propagators.

Explicitly, Eq. ~13! yields the structure constants

Ln1 ,n2 ,n35E d4x ^n1uxml&^xmlun2&^xmlun3&. ~21!

For the case of the ordinary commutation relations, we re-
cover withuxml&5ux&, and, e.g., choosing the position repre-
sentationun&5ux&,

L
x,x8,x9

~Dx050!
5d4~x2x8!d4~x2x9!. ~22!

In the general case withDx0.0, as we said, the coupling
constant picks up units. We can however still define a unit-
lessl by splitting off suitable factors ofl . Let us also choose
l5Dx0. Any other choice forl would amount to a redefini-
tion of the coupling constantl.

As abstract operators, i.e., without specifying a Hilbert
basis in the space of fields, the free propagator and the lowest
order vertex then read, using the definition Eq.~6!,

G5
\2

~Dx0!
2~p21m2c2!

, ~23!

G52
l

4!E d4xd4y

~Dx0!
8 d̃4~yml,xml!uyml& ^ uyml& ^ ^xmlu ^ ^xmlu.

~24!

We can now use the Feynman rules Eqs.~23! and ~24! to
explicitly check for UV regularization in the cases of Heisen-
berg algebrasA generated by operatorsx,p which obey gen-
eralized commutation implyingDx0.0.

C. Regularization

Let us first consider the tadpole graph~see Fig. 1!. Using
Eqs.~19!–~21!, or directly Eqs.~23! and ~24!, yields its ex-
pression as an operator:

2l\2

~4! !2~Dx0!
2E d4xd4y

~Dx0!
8 d̃4~x,y!

3 K xmlU 1

p21m2c2 UymlL uyml& ^ ^xmlu. ~25!

As is well known, ordinarily this graph is quadratically di-
vergent for large momenta. On position space the diver-
gence, or rather the ill definedness of this graph, arises not
through the large scale integrals, but instead at short dis-
tances, i.e., asx→y.

For our cases of generalized commutation relations this
graph is however well defined: Due to the normalizability of
the maximal localization vectors, their scalar productd̃4 is a
function bounded by 1, rather than a distribution. In the sec-
ond factor, which consists of matrix elements of the propa-
gator, the operator (p21m2c2)21 is bounded. Therefore,
again due to the normalizability of theuxml& also these matrix
elements are bounded functions ofx andy. Thus the short-
distance divergence is indeed removed in the case of the
generalized commutation relations.

In the casem50 the operator 1/p2 is unbounded, which,
as is well known, can lead to infrared divergencies at large
distances. A relevant question in this context is of course
whether in cases of generalized commutation and uncertainty
relations with a finite minimal uncertainty in momentum this
infrared problem could be avoided. Indeed, as has been
shown in@16#, the existence of a finiteDp0.0 implies that
the operator 1/p2 is as well behaved as if it contained a mass
term, i.e., it is a bounded self-adjoint operator. Since we are
here primarily interested in the ultraviolet behavior, let us in
the following assume the infrared to be regularized either
throughm.0, or, e.g., throughDp0.0 ~examples of gener-
alized commutation relations which imply both, finite mini-
mal uncertainties in positionDx0 and in momentumDp0 are
known, see@11#!.

The tadpole graph could of course have been avoided by
normal ordering the interaction Lagrangian. Let us therefore
consider the further example of the normally logarithmically
divergent ‘‘fish’’ graph~see Fig. 2!.

It requires two vertices and two propagators:

2l2\4

~4! !2~Dx0!
4E d4x1 d4x2 d4x3 d4x4

~Dx0!
16

3 K x2mlU 1

p21m2c2 Ux3mlL 2d̃4~x1 ,x2!d̃
4~x3 ,x4!

3ux1
ml& ^ ux1

ml& ^ ^x4
mlu ^ ^x4

mlu. ~26!

Ordinarily, in position space, the propagator
^x2u(p21m2c2)21 ux3& is divergent forx2→x3. Neverthe-
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less, it is well defined as a distribution. However, its square
^x2u(p21m2c2)21 ux3&2 is not.

1

In contrast, since in the case of the generalized commuta-
tion relations the matrix elements of the propagator
^x2

mlu(p21m2c2)21ux3
ml& are bounded, also forx2→x3, arbi-

trary high powerŝ x2
mlu(p21m2c2)21ux3

ml& r , rPN, are also
well defined functions ofx2 andx3. Again, the short distance
structure is found to be regularized.

In fact, it is obvious that the short distance structure of all
graphs is regularized, since in arbitrary graphs at most finite
powers of matrix elements of the propagator, and powers of
d̃ can appear, which both are now bounded regular func-
tions.

We should note, however, that although we have seen that
the ultraviolet divergencies are absent, we cannot generally
exclude that some sets of generalized commutation relations
could introduce new types of divergencies. This will have to
be investigated case by case.

D. External symmetry

The one-dimensional uncertainty relation Eq.~1! has no
uniquen-dimensional generalization. Therefore, any particu-
lar choice for the corrections to the commutation relations in
n dimensions will require motivation from string theory or
quantum gravity. There is also the possibility of generalized
external and internal symmetry groups~e.g., quantum
groups! at the Planck scale, see, e.g.,@11,31–33#. We will
here not attempt to develop such arguments any further. Let
us here instead consider the constraints which can be posed
by requiring conventional translation and rotation invariance
of the commutation relations.

We start with a general ansatz forx,p commutation rela-
tions inn dimensions:

@xi ,pj #5 i\Q i j ~p!, ~27!

where we require that only the ultraviolet is affected, i.e.,
Q i j (p) shall be allowed to significantly differ fromd i j only
for large momenta.

As we said, we assume@pi ,pj #50. ~We remark that it has
been argued that if the final theory of quantum theory on

curved space does contain momentum operators, these
should be generators of a generalized definition of translation
on curved space, in which case@pi ,pj #50 would express the
absence of curvature on position space@26#.!

The remaining commutation relations among thexi are
then determined through the Jacobi identities, yielding@26#

@xi ,xj #5 i\$xa ,Qar
21Qs[ iQ j ] r ,s%. ~28!

For simplicity we adopted the geometric notation, with$,%
and @ ,# standing for ~anti! commutators and with
Q,s5]/]psQ.

We observe that thex,p commutation relations Eqs.~27!
are translation invariant in the sense that they are preserved
under the transformations

xi→xi1di , pi→pi , diPR, i51, . . . ,n. ~29!

On the other hand, for genericQ, the commutation relations
Eqs. ~28! are not invariant under translations, i.e., the gen-
erators obtained through the transformations Eqs.~29! do not
obey Eq.~28!. We can, however, enforce translation invari-
ance by requiringQ to yield @xi ,xj #50. We read off from
Eq. ~28! that a sufficient and necessary condition for this to
hold is ~summing overi )

Q ia]piQbc5Q ib]piQac ~30!

which may be viewed as expressing the absence of curvature
on momentum space, by the same arguments as above. Of
course, central correction terms may still be added on the
right-hand side~RHS! of the x,x commutation relations,
without spoiling translation invariance, e.g., terms of the
form suggested in@21#.

The requirement of rotation invariance further imposes

Q i j ~p!5 f ~p2!d i j1g~p2!pipj ~31!

so that Eq.~30! takes the form@34#

g5
2 f f 8

f22p2f 8
, ~32!

where the prime denotesd/dp2. Under these conditions
translations and rotations do respect the commutation rela-
tions, i.e., they are quantum canonical transformations, and
can indeed be implemented as unitary transformations. The
translations are given by

U~d!:5ed•T ~33!

with @Ti ,xj #5d i j , and where we denoted the scalar product
( i51
n diTi by d•T. Since in the ‘‘naive’’ definition of trans-

1We remark that the ansatz of differential renormalization, see,
e.g.@20#, starts here by replacing the ill defined square of the propa-
gator~nonuniquely! by the derivative of a well defined distribution,
thereby introducing a length scale.

FIG. 1. The tadpole graph. The notation is meant to indicate
Dx0.0, i.e., the fuzziness of space-time, or the particles’ nonpoint-
likeness.

FIG. 2. The fish graph.
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lations in Eqs.~29! there is no explicitly built-in ‘‘knowl-
edge’’ of the new short distance structure, the anti-Hermitian
generatorsTi are not given by the2pi / i\ directly. Instead,
they are

Ti5
pi

2 i\ f ~p2!
~34!

as is not difficult to verify. As a consequence of the new
short distance structure the translatorsTi will be found to be
bounded operators, technically as we will see@Eq. ~42!#, be-
causef eventually goes linearly withp for largep.

Analogously, rotations

U~Q!5eQ i j M i j ~35!

are generated by the operators

Mi j5
1

2 i\ f ~p2!
~pixj2pjxi ! ~36!

which obey

@pi ,M jk#5d ikpj2d i jpk , ~37!

@xi ,M jk#5d ikxj2d i jxk , ~38!

@M i j ,M kl#5d ikM j l2d i lM jk1d j lM ik2d jkM i l ~39!

as usual.

III. EXPLICIT EXAMPLE

In the following we will illustrate the formalism with an
explicit example of generalized commutation relations.

A. Choice of commutation relations

If we require our generalized commutation relations to
obey translation and rotation invariance, there still appears to
be considerable freedom in choosing the functionsf and,
through Eq.~32!, the functiong. Many choices may not lead
to generalized commutation relations that imply a minimal
uncertaintyDx0.0. In particular, Eq.~32! indicates thatg
can develop singularities. A detailed investigation into the
various possibilities is in progress@35#. Here, in order to
obtain a well behaved example of generalized commutation
relations we simply force there not to appear a singularity by
imposing, as the simplest choice (b.0),

g5b. ~40!

Thus, Eq.~32! then reads

f 85
b f

2~ f1bp2!
~41!

which is solved by

f5
bp2

A112bp221
. ~42!

The Taylor expansion around the origin is well behaved:

f511
b

2
p21O„~bp2!2…, ~43!

so that, if we chooseb, e.g., at around the Planck scale
b21/2'pPl , then f significantly deviates from the identity
only for large momenta of that scale.

We therefore obtain the commutation relations

@xi ,pj #5 i\ S bp2

~112bp2!1/221
d i j1bpipj D , ~44!

@xi ,xj #50, ~45!

@pi ,pj #50. ~46!

We remark that, assuming translation and rotation invari-
ance, the correction terms to the commutation relations are in
fact unique to first order in b: Eq. ~32! yields
f511b/2p21O(b2) andg5b1O(b2), so that

@xi ,pj #5 i\@~11b/2p2!d i j1bpipj1O~b2!# ~47!

and@xi ,xj #501O(b2), @pi ,pj #50, which of course coin-
cides with what we obtain from Eqs.~44! to first order in
b.

We remark that concerning the possible choices of com-
mutation relations it should generally be interesting to inves-
tigate the interplay of the technical constraints with the input
and physical intuition from string theory and quantum grav-
ity. In particular, as follows from the relation between the
translators and the momenta, Eq.~34!, the rule for the addi-
tion of extremely large momenta is modified through
(p1̂k) i5pi f

21(p2)1ki f
21(k2). There should exist an in-

terpretation in terms of the effects of gravity at the Planck
scale, similar to the well-known effect of momentum non-
conservation through gravity on large scales (Tmn

;n50
rather thanTmn

,n50). This may, e.g., be related to the old
idea of possible curvature in momentum space, in which a
generalized parallelogram rule for the addition of momenta
has been discussed; see@22#, and more recently@23#. It has
of course long been suggested that, more drastically, both
rotation and translation invariance may be generalized or
broken at the Planck scale. Any physical intuition for this
could and should then also provide guidance for the gener-
alization of Eq.~13! to account for the then position~and
possibly orientation! dependence of the short distance struc-
ture. This will at first require a case by case study.

B. Hilbert space representations

The commutation relations Eqs.~44!, ~45!, and ~46! still
find a Hilbert space representation in the spectral representa-
tion of the momentapi ~since momentum space is still com-
mutative and there is no finite minimal uncertainty in mo-
mentum,Dp050):

xi•c~p!5 i\F S f 81p2g81
n11

2
gD pi1 f ]pi

1gpipj]pj Gc~p!, ~48!
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pi•c~p!5pic~p!, ~49!

^c1uc2&5E dnpc1* ~p!c2~p!, ~50!

wherec(p)5^puc& and ^pup8&5d(p2p8). xi and pi are
symmetric operators on the dense domainD:5S` . This rep-
resentation holds for any choice off and g, as can be
checked directly. The case of commutation relations with
generalQ is covered in@26#.

A further representation of the commutation relations Eqs.
~44!–~46!, which will prove convenient for practical calcu-
lations, is obtained by using that the translatorsTi are anti-
Hermitian and have a spectral representation on the Hilbert
basis$ur&urPI n% of vectors obeyingTi•ur&5r i / i\ur& with

I n5$rPRnur2,2/b%, ~51!

i.e., theTi are bounded operators. The unitary transformation
which maps from momentum space to the spectral represen-
tation of theTi has the matrix elements

^rup&5~12br2/2!2~n11!/2~11br2/2!1/2

3dnS pi2 r i
12br2/2D . ~52!

The operator representations and the scalar product then read
in r space

xi•c~r!5 i\]r i
c~r!, ~53!

pi•c~r!5
r i

12br2/2
c~r!, ~54!

^c1uc2&5E
I n

dnrc1* ~r!c2~r!, ~55!

wherec(r)5^ruc& and ^rur8&5dn(r i2r i8). Note that, as
is easy to see in this representation, the momentum operators
pi are still unbounded.

We note also that the momentum operatorspi no longer
coincide with the generators of translations2 i\Ti , but that
they differ from them for large momenta, i.e., for small dis-
tances. Related to our discussion at the end of Sec. I, Eqs.
~53! and~54! then suggest to take the point of view that the
introduction of a Planck scale minimal uncertainty in posi-
tions amounts to sticking to the usual position operators
while giving up the usual momentum operatorsp0i for new
momentum operatorspi , thereby leading to ultraviolet regu-
larization.~We are here neglecting functional analytic details
such as the changing domain and defect indices of the posi-
tion operators.!

On the other hand, using the eigenbasis of thepi , Eqs.
~48! and ~49! show that, alternatively, the introduction of a
finite minimal uncertainty in positions can be viewed as
keeping the conventional momentum operatorspi5p0i and
instead replacing the conventional position operatorsx0i by
new position operatorsxi5xi(x0,p0) which are given via Eq.
~48! ~with pi5p0i and]pi5x0i / i\).

Generally, within the Hilbert space representation of the
generalized commutation relations there exist an arbitrary
number of Hilbert bases in which thexi and pi are repre-
sented in terms of multiplication and differentiation opera-
tors:

xi•c~v !5 f i~v,d/dv !c~v !, ~56!

pi•c~v !5gi~v,d/dv !c~v !. ~57!

Since the d/dv i and v i obey the Leibniz rule
@d/dv i ,v j #5d i j , each one of these Hilbert bases offers an
alternative viewpoint according to which the introduction of
a minimal uncertainty in positions is the replacement of op-
eratorsx0i ,p0i which obey the conventional commutation re-
lations by new operatorsxi andpi

xi5 f i~x0,2p0 / i\!, pi :5gi~x0,2p0 / i\! ~58!

~identifying x0i5v i ,p0i52 i\d/dv i). The action, including
the definitions of maximally localized fields@Eq. ~5!# and
maximally local interaction@Eq. ~13!#, is dependent on the
generalized uncertainty relations and the thereby generalized
commutation relations, but it is of course independent of the
choice of Hilbert basis in which it is calculated. Therefore,
while some choices of Hilbert bases can provide conceptu-
ally interesting ‘‘points of view,’’ none of these is canonical.

We still have to prove that the generalized commutation
relations Eqs.~44!–~46! do in fact imply a finite minimal
uncertaintyDx0.0, rather than, e.g., a discretization of po-
sition space. Before we do this in the next section, let us note
an important representation theoretic consequence of the ex-
istence of a minimal uncertaintyDx0.0.

A general argument shows that commutation relations
which imply a finite minimal uncertainty in position cannot
find a Hilbert space representation on a spectral representa-
tion of the position operators: The uncertainty relations hold
in all * representations of the commutation relations. On the
other hand, as is easily seen, e.g., in the example of Eq.~2!,
an eigenvector to an observable necessarily has vanishing
uncertainty in this observable. Thus, if the uncertainty rela-
tions imply a finite uncertainty in positions, they exclude the
existence of any position eigenvectors in any physical do-
main, i.e., on any domain on which the commutation rela-
tions are represented. In particular, in cases whereDx0.0
and Dp0.0 both position and momentum representations
are ruled out and one has to resort to other Hilbert bases, as,
e.g., in@12,14#.

To be precise, let us assume that the commutation rela-
tions are represented on some dense domainD,H in a Hil-
bert spaceH. Ordinarily, there would exist sequences$ucn&
PD% with position uncertainties decreasing to zero~e.g.,
Gaussian approximations to the position eigenvectors!. In the
presence of a finiteDx0.0, however, there exists a minimal
uncertainty ‘‘gap,’’ i.e., there are no vectorsuc&PD which
would have an uncertainty in positions in the interval
@0,Dx0@ , so that now

'” $ucn&PD%: lim
n→`

~Dx0! ucn&50. ~59!
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Technically, the position operators are merely symmetric on
representationsD of the commutation relations. Their defi-
ciency indices are nonvanishing and equal, implying the ex-
istence of a family of self-adjoint extensions inH, though,
crucially of course, not inD. This functional analytic struc-
ture was first found in@11#.

As is easily seen, there do exist formal position eigenvec-
tors inH:

cj~r!5F S b

2p D n/2nG~n/2!

2 G1/2e2 i j•r/\. ~60!

Concerning the normalization, recall that the surface of the
(n21)-dimensional unit sphere readsSn5*dVn52pn/2/
G(n/2). The scalar product can be calculated to be

^cjuch&5F S b

2p D n/2nG~n/2!

2 G E
I n

dnre2 i ~h2j!•r/\

5S A2\Ab

uj2hu D n/2GS n211D Jn/2S A2uj2hu

\Ab
D ,

~61!

whereJn/2 is the Bessel function of the first kind of order
n/2. The zeros of the scalar product determine the self-
adjoint extensions of the onD densely definedxi ~for any
chosenj, all h ’s such thatuj2hu is a zero ofJn/2 corre-
spond to the eigenvectors of one self-adjoint extension!.
However, as is readily verified, none of these vectors is in
the domain of thepi . Thus, as is to be expected when
Dx0.0, none of the family of self-adjoint extensions of the
xi is in the domain of the representation of the commutation
relations. In the one-dimensional casen51 we recover the
results obtained in@13#, in particular the scalar product of the
‘‘formal position eigenvectors’’~technically of eigenvectors
of the adjointsxi* , which are not self-adjoint, nor symmet-
ric!:

^cjuch&5

\Ab sinS A2uj2hu

\Ab
D

A2uj2hu
. ~62!

There is, however, a natural generalization of the position
space representation. To this end we define a Hilbert space
representation of the commutation relations on ‘‘quasiposi-
tion space,’’ see@13,15#:

c~x!:5^xmluc&. ~63!

These quasiposition functionsc(x) are obtained by project-
ing the fields uc& onto the fields of maximal localization
uxml& and they do of course turn into the ordinary position
space representation forDx0→0.

C. Maximally localized fields

Let us now prove thatDx0.0 by explicitly calculating
the maximally localized fields.

As is well known theDxiDpi uncertainty relations are
derived from the positivity of the norm:

uu~xi2^xi&!1 ik~pi2^pi&!uc&uu>0. ~64!

Thus the vectors on the boundary of the region allowed by
the uncertainty relations obey the squeezed state equation:

~xi2^xi&!1 ik~pi2^pi&!uc&50. ~65!

Due to the symmetry of the underlying generalized commu-
tation relations we do not lose generality by calculating the
maximally localized fielduxml&, around the origin, i.e., with
^0mluxi u0ml&50 and ^0mlupi u0ml&50. In r space Eq.~65!
reads

S i\]r i
1 ik

r i
12br2/2Dck~r!50. ~66!

Due to rotational symmetry,u0ml& can only depend onp2, so
that Eq.~66! becomes

]r2ck~r2!52
k

2\~12br2/2!
ck~r2! ~67!

whose normalized solutions read (k.0)

ck~r2!5F S b

2p D n/2GS 2k\b
1
n

2
11D

GS 2k\b
11D G 1/2

~12br2/2!k/\b.

~68!

We can now calculate the squared uncertainty in position as
a function ofk:

~Dx! uck&
2 5

\k

4

4k1n\b

2k2\b
. ~69!

The minimum is reached for

k05
\b

2 S 11A11
n

2D . ~70!

We therefore find the finite minimal uncertaintyDx0:

~Dx0!
25~Dx! uck0&

2 5
\2b

4
A11n/2~A11n/211!2. ~71!

The field u0ml&5uck0
& of maximal localization around the

origin therefore reads, in ther representation,

^ru0ml&5ck0
~r2!5N1/2~n!~b/2p!n/4

3~12br2/2!1/21A1/41n/8, ~72!

where we defined

N~n!:5
G~21n/21A11n/2!

G~21A11n/2!
. ~73!

Ther-space representation of the fields of maximal localiza-
tion around arbitrary position expectation valuesj now fol-
low by translation:
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^ruxml&5^ruex•Tu0ml&5^ru0ml&e2 ix•r/\. ~74!

Using Eq. ~52!, we eventually obtain the maximally local-
ized fields in momentum space,

^puxml&5~b/2p!n/4 N1/2~n!S bp2

112bp22A112bp2
D 1/2

3S A112bp221

bp2 D 11n/21A1/41n/8

3expS 2 i
x•p

\

A112bp221

bp2 D . ~75!

This expression is of course also the quasiposition represen-
tation of the plane wave with momentump. We observe that
in quasiposition space the fields can now not have arbitrarily
fine ripples. Indeed, from the argument in the exponent in
Eq. ~75! we read off that for increasing momentum the wave-
length in quasiposition space only tends towards a finite
minimal wavelength

l05p\A2b ~76!

which is reached as the momentumpi tends to infinity. The
situation is perhaps comparable to the speed of light as a
fundamental limit, in which case also the kinematics lets the
energy diverge as the fundamental limit is approached. In the
Appendix we give the unitary transformation from ther rep-
resentation to the quasiposition representation and back, and
we prove the completeness of the set of maximally localized
fields.

D. Feynman rules

As we saw in Sec. II B, the Feynman rules are composed
of two basic functions, related to the vertex and to the propa-
gator, respectively,

d̃~xml,yml!:5^xmluyml&

and

G~x,y!:5
\2

~Dx0!
2 ^xmlu~p21m2c2!21uyml&. ~77!

The calculation ofd̃, i.e., of the scalar product of maximally
localized fields is straightforward, in particular in ther rep-
resentation. The result is of course independent of the choice
of Hilbert basis. Choosing spherical coordinates:

d̃~x2y!5^xmluyml&

5~b/2p!n/4N1/2~n! E
I n

dnr~12br2/2!11A11n/2

3ei ~x2y!•r/\

5S \A2b

ux2yu D 11n/21A11n/2

GS 21
n

2
1A11n/2D

3J11n/21A11n/2S A2ux2yu

\Ab
D . ~78!

We note thatd̃(x2y) is also the quasiposition wave func-
tion of the aroundy maximally localized fielduyml&. Because

FIG. 3. Plot of the scalar product of maximally localized fieldsd̃(x2y) vs ux2yu/\Ab. d̃ generalizes the Diracd distribution for
Dx0.0.
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of the finite norm of the maximally localized fields,
d̃(x2y) had of course to come out as a regular function. Its
graph is plotted in Fig. 3.

Recall that ordinarily, i.e., whenDx050, the propagator
in position spaceG(x2y) can only be defined as a distribu-
tion, and that it is the ill definedness of its square~as well as
of higher powers! which gives rise to ultraviolet divergen-
cies; see, e.g.,@20#. We know from Sec. IIC thatG(x2y)
must now be a well-defined function without singularities.
Explicitly, let us consider the free propagator matrix ele-
ments:

G~x2y!5
\2

~Dx0!
2 ^xmlu~p21m2c2!21uyml&

5
N~n!\2

~Dx0!
2 S b

2p D n/2E
I n

dnr
~12br2/2!31A11n/2

r21m2c2~12br2/2!2

3ei ~x2y!•r/\. ~79!

The massive propagator cannot be simply expressed in terms
of elementary or special functions. However, for arbitrary
nonvanishing mass,G(x2y) can be uniformly bounded by

uG~x2y!u<
\2

m2c2~Dx0!
2 ~80!

which shows that the propagator is well behaved for all dis-
tances, in particular also forux2yu→0.

Since the small distance behavior is independent of the
mass, let us also consider the simpler massless propagator.
Using spherical coordinates and introducing the dimension-
less variables

t5rAb/2, s5cosu, ~81!

we obtain

G~x2y!5
N~n!\2b

2~Dx0!
2 S 1p D n/2Sn21E

0

1

dt

3E
0

p

du~sinu!n22tn23~12t2!31A11n/2eidt cosu

5
N~n!\2b

2~Dx0!
2 S 1p D n/2Sn21E

0

1

dtE
21

1

ds2

3~12s2!~n23!/2tn23~12t2!31A11n/2eidts, ~82!

where d:5A2ux2yu/(\Ab). Performing the integration
over s and then overt, and after some simplification, one
finally obtains, forn.2,

G~x2y!52n
~31A11n/2!~21A11n/2!

~n22!A11n/2~11A11n/2!2~21n/21A11n/2!
1F2„211n/2; 31n/21A11n/2, n/2;

2ux2yu2/~2\2b!…, ~83!

where we have used the explicit expressions for (Dx0)
2 andN(n) given in Eqs.~71! and ~73!.

In the particular case of four Euclidean dimensions the last expression can be cast in a much simpler form. Forn54, Eqs.
~71! and ~73! for (Dx0)

2,N(n) and the definition ofd̃(x2y) yield

G~x2y!5
36120A3
614A3

\2b

ux2yu2
„12 d̃~x2y!…. ~84!

Therefore, the propagator can be expressed as the product of the usual zero mass propagator and a smoothcutoff function,
which has the following behavior for large and short distances:

\2b„12 d̃~x2y!…;
1

812A3
ux2yu2H 11OF S A2ux2yu

\Ab
D 2G J for ux2yu!\Ab,

\2b„12 d̃~x2y!…;\2bH 11OF S A2ux2yu

\Ab
D 27/22A3G J for ux2yu@\Ab. ~85!

In particularG(x2y) is a well behaved function in the short
distance regime and tends to a finite limit forux2yu50,
while for distances larger than\Ab it rapidly approaches the
well known ux2yu22 behavior of the free massless propaga-
tor of the case of the ordinary commutation relations.

IV. SUMMARY AND OUTLOOK

Studies in string theory and quantum gravity provide the-
oretical evidence for various types of correction terms to the
canonical commutation relations. Measurable effects could
in principle appear anywhere between the presently resolv-
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able scale of 10218 m and the Planck scale of 10235 m,
although expected close to the Planck scale.

Our aim here was to show that the existence of even an at
present unmeasurably smallDx0, for example at about the
Planck length, could have a drastic effect in field theory,
namely by rendering the theory ultraviolet finite. We note
that this new short distance behavior would truly be a quan-
tum structure, in the sense that it has no classical analog.
Further, the presence of aDx0.0 is compatible with both,
generalized symmetries as well as with conventional rotation
and translation symmetry.

The existence of this short distance structure would raise
a number of conceptual issues, in particular, it would lead to
a generalized notion of local interaction. Strictly speaking,
the maximally local interaction term in the case of general-
ized commutation relations is neither local nor nonlocal in
the conventional sense. Instead, it is ‘‘observationally’’ local
in the sense that it is local as far as distances can be resolved,
given the generalized uncertainty relations.

Similarly, questions such as whether the unitarity of time
evolution is broken or conserved, or whether local gauge
invariance is broken or conserved also seem not to be appli-
cable in the usual sense. Instead, in the case of the general-
ized uncertainty relations the notions of ‘‘time evolution’’ or
‘‘local’’ gauging may need to be redefined, analogously to
how local interaction is generalized into ‘‘observationally’’
local interaction. This is under investigation.

There exist a number of immediate technical issues which
need to be addressed, for example the significance of Eq.
~32! and its pole structure, and Wick rotation. It should of
course also be worth exploring the possible usefulness of the
approach as a mere regularization method.

APPENDIX

We prove the completeness of the set of maximally local-
ized fields and we give the unitary transformation which con-
nects ther representation with the quasiposition representa-
tion for the example of generalized commutation relations
considered in Sec. III.

In order to see that the set of maximally localized fields
$uxml&% is complete, we use that a set of vectorsucl& in a
Hilbert space is complete if from̂fucl&50, ;ucl& follows
that ^fu50. Consider noŵfuxml&:

^fuxml&5N1/2~n!~b/2p!n/4E
I n

dnr

3~12br2/2!1/21A1/41n/8eix•r/\f~r!. ~A1!

Using the mean value theorem

^fuxml&5N1/2~n!~b/2p!n/4~12br̄2/2!1/21A1/41n/8

3E
I n

dnreix•r/\f~r!

5N1/2~n!
2

nG~n/2!
~12br̄2/2!1/21A1/41n/8

3^fucx&, ~A2!

where theucx& are eigenvectors to the~non-Hermitian! op-
eratorsxi* @see Eq.~60!# and r̄ is some value in the open
interval ]0,A2/b@ . The set of vectorsucx& is the collection of
all eigenbases to the self-adjoint extensions of thexi , and is
therefore overcomplete~for the details of the functional
analysis see@11,13,15,18#!. Further, the factor in front of the
scalar product in Eq.~A2! never vanishes nor diverges for
any r̄. Thus, if the right-hand side of Eq.~A2! vanishes for
all x this impliesuf&50, which had to be shown.

The completeness of the set of maximally localized fields
means that we obtain the full information on anyuc& when
collecting its projectionŝxmluc& on theuxml&, i.e., the qua-
siposition representation truly represents the fields. Indeed,
the mapping, e.g., fromr space to quasiposition space is
invertible.

Using the explicit expressions Eqs.~72! and ~74! for the
maximally localized fields in ther representation we obtain
for arbitrary uc& the quasiposition wave functionc(x) ex-
pressed in terms of itsr representationc(r) as

c~x!5^xmluc&5N1/2~n!~b/2p!n/4

3E
I n

dnr~12br2/2!1/21A1/41n/8eix•r/\c~r!

~A3!

with the inverse:

c~r!5N21/2~n!~b/2p!2n/4~2p\!2n

3~12br2/2!21/22A1/41n/8E dnx e2 ix•r/\c~x!.

~A4!

Let us denote the mapping fromr space to quasiposition
space@Eq. ~A3!# by U. The identityU21U51 is easily veri-
fied by inserting Eq.~A3! into Eq. ~A4!.

In the quasiposition representation the scalar product and
the action of the position and momentum operators then read

^cuf&5N21~n!~b/2p!2n/2~2p\!22n

3E
I n

dnr ~12br2/2!212A11n/2

3E E dnx dny ei ~x2y!•r/\c* ~x!f~y!, ~A5!

pi•c~x!52 i\(
r50

`

~\2bD/2!r
]

]xi
c~x!, ~A6!

xi•c~x!5S xi1 i
\b

2 S 11A11
n

2D pi Dc~x!, ~A7!

whereD5( i]
2/]xi

2 . Note that the action ofpi given in Eq.
~A6! @and also used in Eq.~A7!# is well defined on quasipo-
sition wave functionsc(x), since they Fourier decompose
into wavelengths not smaller than the finite minimal wave-
lengthl0 @Eq. ~76!#. In this context see also@13# where the
concept of quasiposition representation was first introduced.
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