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We develop a systematic approach to confinemerifi#nl supersymmetric theories. We identify simple
necessary conditions for theories to confine without chiral symmetry breaking and to generate a superpotential
nonperturbatively ¢-confing. Applying these conditions we identify aNl=1 theories with a single gauge
group and no tree-level superpotential whiglsonfine. We give a complete list of the confined spectra and
superpotentials. Some of these theories are of great interest for model building. We give several new examples
of models which break supersymmetry dynamicdl§0556-282(197)00712-1

PACS numbses): 11.15.Tk, 11.30.Pb, 12.60.Jv

I. INTRODUCTION ponents of the mesons and baryons are massless, and they
interact via the confining superpotential

The number oN=1 supersymmetric gauge theories for o
which we know exact results on their vacuum structure has W= W(deﬂvl —BMB). (1)
been growing steadily in the last two years. The great
progress was sparked by Seiberg’s conjectures about the idhis description is also valid far from the origin of the
frared properties and phase structure of supersymmetrimoduli Space where the |arge eXpeCtation values of the fields
QCD [1]. Following in his footsteps, others have obtainedCOmpletely break the gauge group. In such a vacuum the
results on a whole range of theorig2—13. Most of the theory is in the Higgs phase. A smooth gauge-invariant de-

discovered phenomena follow similar patterns in the differ-SCTiPtion of both the Higgs and confining vacua of the theory

ent theories, and one is tempted to ask if there is maybe gan only exist if there is no phase transition between the two

more general approach than the model-specific trial and errdf9'ons N ”.“’d“" space. In particular, f[hgre ;hould be no
procedure that has been customary thus far. gauge-invariant order parameter that distinguishes the two

hases.
Whereas a completely general approach that allows one 3 .
understand all the obtained results seems impossibly difficult To understand this in the example of SQCD, note that the

: : ks transform in a faithful representation of the gauge
to find, we can make much progress by focusing on the paugu""r N :
ticular phenomenon of confinement. In fact, a frequently ocJroup SUN). This implies that arbitrary test charges can be

curing and relatively easily identified infrared behavior is Zpreened by tEe th namll(cal quatrks becauss the v?cuurfn can
“ s-confinement.” In a previous publicatidi 3] we defined ISgorge quark-antiquark pairs o screen charges transtorm-

ans-confining theory as a theory for which all the degrees of Nd In any representation of the gauge group. Thus a Wilson

freedom in the infrared are gauge-invariant composites of th!aOOp V\."” always obey a perimeter law be_cause any charges
we might want to use to define the Wilson loop can be

fundamental fields. Furthermore, we demand that the infra- L ) :
red physics is described by a smooth effective theory irﬁcreened. OL_Jr.defmmon gf—gonfmement abov_e necessitates
terms of these gauge invariants. This description should bwat ans-confining theory is in such a “screening-confining

- . - - phase.
valid everywhere on the moduli space of vacua, mcIudmgp o . .
the origin of field space. Finally, we also demand that an This situation should be contrasted with 3Y(with only

s-confining theory generates a dynamical superpotential. A?dlomt matter or SCN) with vector matter. .In both these

the origin of moduli space all global symmetries of the cases the matter does not transform in a faithful representa-
theory are unbroken and the global anomalies of the microfion ©f the gagjgtehgrgup. N_owl therekare %hars\f_f thalt cannot
scopic theory are matched by the macroscopic gauge invarP—e screened by the dynamical quarks, and a Wi'son loop can
ants of the effective theory. serve as gauge-invariant order parameter to distinguish the

The best-known example of a theory which has been Cor]I_-|iggs and the confining phases. As a result, such theories

: L ; t have a single smooth description of both the Higgs
ectured to bes-confining is supersymmetric QCBQCD cannot have
{Nith N colors andF=NEl fIavF())rs gf fundamental and an- and confining phases of the theory, thus they are not

; — ) . s-confining.
t|funFjamentaI matteQ and Q [1,14]. The gauge-invariant |, 5 previous publicatiofil3], we identified two criteria
confined degrees of freedom are mesbhs QQ and bary-  which allow us to decide whether a given theory can be

onsB=QN, B_=§“. At the origin of moduli space, all com- s-confining without having to know the explicit infrared de-
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scription. If we limit our attention to theories with no tree- nonanomaloufk symmetries. Define a U(k)symmetry as
level superpotential and only one gauge group, then the synfellows: all chiral superfields, except for one arbitrarily cho-
metries completely determine the form of any senfieldg;, are assigned zef® charge. The chargg of the
nonperturbatively generated superpotential. Demanding thagmaining field is determined by requiring anomaly cancela-
this superpotential is smooth everywhere on the modultion of the mixed GU(1)r anomaly:

space yields the first of our two conditions. The other condi-

tion arises from studying the theory along some flat direction (Q—1)pui— 2 Mt pue=0qui— 2 mi+uc=0, (2

in which the gauge group is broken to a subgroup, and the J#i all}

theory may sufficiently simplify so that we can understand
its infrared physics. If we find a result that cannot be

smoothly connected to a confining phase, we know that th . Lo
whole theory is nos-confining either. We discuss the argu- ponent. These three terms arise from the contributions of the
(fermion components ot;, of all other matter superfields

ments leading to these two conditions in Sec. Il of this paper.
d bap with j#i, and of the gauge superfields, respectively. The

In Sec. Il we apply our conditions to identify all theories b P - .
with a single gauge group and no tree-level superpotential'i are the indices of the remaining matter representations,

which s-confine. We give a complete list of the confined ey are multiplied by theR charges—1 of the fermion
spectra and superpotentials for sitonfining theories with cOmponents ot , and finally . is the index of the adjoint

an arbitrary SU, SO, Sp, or exceptional gauge group. Usinéepre.sentatpn of.G multiplied by thie charge.+1 of the.

the results for thes-confining theories, we then demonstrate 92Uginos.R invariance of the supersymmetric Lagrangian
in Sec. IV how one can generate many more exact solutiong€auires the dynamically generated superpotential to have
for other models by simply integrating out matter from the R charge 2. This uniquely fixes the dependence of the super-
s-confining theories. The models which we obtain in thisPotential on the fields; :

way display interesting dynamics: confinement with chiral olls i

symmetry breaking, nonperturbatively generated superpoten- W“(‘ﬁi“')y(‘g’ uysal, &)

tials which drive the vacuum to infinity, and confinement ) )
with noninteracting composites. To determine the functional dependence on the other super-

In Sec. V we turn to applications of our results to rnode|fields,.we note that the global symmetries contain a corre-
building. We summarize the various known mechanisms ofPonding U(1} symmetry for each of the matter superfields,
dynamical supersymmetry breaking and illustrate each of th@nd the superpotential has to haRecharge 2 under each

mechanisms with a few examples which we construct usin§UchR symmetry. Finally, the dependence on the dynamical
our results of Secs. Ill and IV. Finally, we comment on theScaleA can be determined by dimensional analysis or using

possibility of using our models to construct composite mod-2n anomalou®k symmetry[2]. The result is
els in the conclusions. We hope that our tables and superpo- e
i I

IR5

where; is the Dynkin indeX of the gauge representation of
the field¢;, and (@—1) is theR charge of its fermion com-

tentials in Secs. lll and IV together with the explicit ex- Woe A3 1% 157 kol

amples of Sec. V will prove to be a valuable resource for i
model builders.

4

There may be sever&br ng possible contractions of gauge
Il. NECESSARY CRITERIA FOR s-CONFINEMENT indices, thus the superpotential can be a sum of several
In this section we develop two necessary criteria Whichterms' \.Ne. require the coefficient of this .sqpe_rpot.enUal to be
nonvanishing, then holomorphy at the origin implies that the

allow us to identify alls-confining theories with a simple exponents of all fields¢ are positive integers. Strict
gauge group and no tree-level superpotential. The first crite- P ! P gers. y

rion follows from holomorphy of the dynamically generated speaking, we should require holomorphy in the confined de-

superpotential, which can be determined using the gIoba(-Frees Of freedom which .WOUl.d imply tha}t the exponents of
composites must be positive integers. Since we do not want

symmetries of the theory. This criterion allows us to reduceto have to determine all gaude invariants for this arqument
the number of theories that are candidates for gaug 9 ’

, L jve settle for the weaker constraint on exponents of the fun-
s-confinement to a manageable set. Our second criterion fod | fields. TherefofeS . — wa=1 or 2. H .
lows from explorations of regions in moduli space which are”2Mental ields. Theretores.ju; —pe=1 or 2. However, in
easier to understand than the origin. As will be demonstrated
in Sec. lll, these two conditions combined are sufficient to
identify all s-confining theories with a single gauge group
and no tree-level superpotential.

We normalize the index of the fundamental representations of SU
and Sp to 1 and of the vector of SO to 2. This definition ensures
invariance of the index when decomposing representations of
SO(2N) under the SUY) subgroup. This is relevant to the flows
discussed in Sec. Il B.

In this subsection, we derive a simple constraint on the 2Other solutions exist if all; have a common divisad, then for
matter content of-confining theories which follows from =;u;—ug=d or 2d the superpotential Eq5) may be regular. We
the requirement of holomorphy of the confining superpotenwill argue at the end of Sec. Ill that these solutions generically do
tial. In theories with a simple gauge group G and no treenot yield s-confining theories. Another possibility is that the coef-
level superpotential, the symmetries are sufficient to deterficient of the superpotential above vanishes. There are examples of
mine the form of any dynamically generated superpotentiatonfining theories with vanishing superpotentials in the literature
completely[15]. A simple way to prove this makes use of [10].

A. The index constraint
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our normalization of the index, anomaly cancelation furtherficient condition: If the original theory is known to be

constrains this quantity to be even; thus, s-confining, then all possible reduced theoriggth a re-
maining unbroken gauge grouwhich the original theory
2 M~ me=2. (5)  flows to ares-confining also. The confined spectrum and the
]

confining superpotential of the reduced theories can be ob-
This formula summarizes our first necessary condition forttained by identifying the corresponding points in moduli
s-confinement, which enables us to rule out most theoriespace in the confined description of the original theory and
immediately. For example, for SQCD we find that the onlyintegrating out all massive fields. In practice, this means
candidate is the theory with=N+ 1. Unfortunately, Eq(5)  identifying the correct gauge-invariant fields which have
is not a sufficient condition. An example for a theory which vacuum expectation values and integrating out fields which
satisfies Eq(5) but does nots-confine is SUN) with an ~ NOW have mass terms in the superpotential using their equa-
adjoint superfield and one flavor. This theory is easily seen t§ons of motion. _ _ _
be in an Abelian Coulomb phase for generic vacuum expec- Th_e reqluced_ theone; will always contain some gauge-
tation values(VEV's) of the adjoint scalars and vanishing invariant fields in the high-energy description which origi-
VEV's for the fundamentals. In the following section, we nally transformed under the now broken gauge generators.

derive another necessary criterion which allows us to rule ough;‘]se dflelds _do nfotthhave ;r}y_ll_rrl]teractlogs and are dl;relevtﬁnt
theories that satisfy the “index constraint’ but do not '© '€ dynamics ol In€ model. They can be removed irom the

. theory. In the confined description the fields corresponding
s-confine. .
to these gauge singlets are only coupled through superpoten-
tial terms which scale to zero when the VEV’s are taken to
infinity, or which are irrelevant in the infrared.

The second condition is obtained from studying different A nontrivial application of the sufficient condition is
regions on the moduli space of the theory under considergiven by the flow from S#) with an antisymmetric tensor
ation. A generic supersymmetric theory with vanishing tree-and four “flavors” of fundamentals and antifundamentals to
level superpotential has a large moduli space of vacua. Bgp(4) with eight fundamentals. The $4) theory is known
definition, ans-confining theory has a smooth description in to s-confine[4]. By giving an expectation value to the anti-
terms of gauge invariants everywhere on this moduli spacesymmetric tensor the gauge group is broken td45pAll
There should be no singularities in the superpotential or theomponents of the antisymmetric tensor field except for one
Kahler potential and there should be no massless gaugsinglet are “eaten” by the super-Higgs mechanism, and the
bosons anywhere. four flavors of fundamentals and antifundamentals become

Thus, we can test a given theory ferconfinement by eight fundamentals of $#). Applying our sufficient crite-
expanding around points that are far out in moduli spaceion, we conclude that the Sp theoryssconfining as well.
where the theory simplifies. In the microscopic theory thelts confined spectrum and superpotential can be obtained
gauge group gets broken to a subgroup when we go out ifrom the spectrum and superpotential of the($Uheory.
moduli space by giving large()>A) expectation values A nontrivial example of a theory which can be shown not
to some fields. In this vacuum, the gauge superfields corrge s-confine is SW4) with three antisymmetric tensors and
sponding to broken symmetry generators get masses througWwo flavors. This theory satisfies our index condition, &,
the super-Higgs mechanism and the remaining matter fieldand is therefore also a candidate faconfinement. By giv-
decompose under the unbroken subgroup. This “reduceding a VEV to an antisymmetric tensor we can flow from this
theory has a smaller gauge group and may be easier to utheory to Sf4) with two antisymmetric tensors and four fun-
derstand. If the original theory wasconfining then its con- damentals. VEV's for the other antisymmetric tensors let us
fined description should be valid at this point in moduli flow further to SU2) with eight fundamentals which is
space as well. Therefore, the reduced theostésnfining if  known to be at an interacting fixed point in the infrared. We
the original theory was. This statement can be applied in twaonclude that the S4) with three tensors and $p with
directions. two tensors and all theories that flow to them cannot be

Necessary condition: If the reduced theory does not havs-confining either. This allows us to rule out the following
a smooth description with only gauge-invariant degrees othain of theories, all of which are gauge anomaly free and
freedom, then the original theory cannotseonfining. Suf-  satisfy Eq.(5):

B. Flows ands-confinement

|
SU( = SUWB) = SUB) = SU@M) - Spl)
ﬁzmﬁ Hﬁmm 2HHD 28 3H 2028 2540

(6)

Note that a VEV for one of the quark flavors of the flow is only a necessary condition. However, in all our ex-
SU(4) theory lets us flow to an S@3) theory with four fla- amples we find that a theory with a single gauge group and
vors which iss-confining. We must therefore be careful: no tree-level superpotential sconfining if it is found to
when we find a flow to ars-confining theory, it does not flow to s-confining theories in all directions of its moduli
follow that the original theory is-confining as well. The space.
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Ill. ALL s-CONFINING THEORIES TABLE I. All SU theories satisfying®;u; — ug=2. This list is

. . . . finite because the indices of higher index tensor representations
In this section, we present our results which we obtained,,, very rapidly with the size of the gauge group. We list the

using the two conditions derived in Sec. Il. We first createdyayge group and the field content of the theories in the first column.
a list of all theories with a single gauge group and matteli, the second column, we indicate which theories smnfining.
content satisfying the index constraint. Then we studied alfor the theories which do natconfine we give the flows to non-
possible flat directions of the individual theories and checked.confining theories or indicate that there is a Coulomb branch on

if they only flow to confining theories. We summarize thesethe moduli space.

results in the first table of each subsection. In the first col

umn we list all theories satisfying the index constraint. In the

second column we indicate the result of the flows: theories SU(N) - (N4 1){@+0) | s-confining
; : SU(N) H+NO+4O s-confining
which can be shown to have a branch with an unbroken SUN) B+0+3(0+0) | s-confining
Abelian gauge group we denote with “Coulomb branch,” , . _
h . SU(N) Adj+0+40 Coulomb branch
for theories which can be shown to flow to a reduced theory - -
. ) S _ SU4)  Adj +H Coulomb branch
with a non-Abelian gauge group which is restonfining we su(y 30+20+0) SU): 80
indicate the gauge group of the reduced theory and its matter SU(1) 4A0+0+0 SU(2): oo+ 40
content, all other theories ageconfining. su4) 50 Coulomb branch
After identifying all s-confining theories in this way, we su() 3@+0) s-confining
explicitly construct the confined spectra for each SU() 2H+20+40 | s-confining
s-confining theory. The group theory used to obtain these su)  2@+D) Sp(4): 35+ 20
results can be found in Refsl6—18. We present our results SUG) 2B+H+20+0( SU@4): sH+ 2@ +0)
in tables where we indicate the matter content of the ultra- sU®6) 2B+50+0 s-confining
violet theory in the upper part of the table, and the gauge- su6) 2H+H+20 SU@): 38+ 20+0)
invariant infrared spectrum in the lower part. The gauge SU(6) B+ Ho+D) +-confinin :
group and the Young tableaux of the representations of the &
matter fields are indicated in the first column. The other SU(6) H-FEH 30+0 | SUG): 2H+H+20+0
groups correspond to the global symmetries of the theory. In SU(6) E+H+E Sp(6): H+H+0o
addition to the listed global symmetries, there is also a global SU(6) 2B+D+ﬁ sues): 20+ 0)
U(1) with a G2U(1) anomaly which is broken by instantons. sU 2@ +30) s-confining
Finally, we also give the confining superpotentials when @ _ ) B _
they are not too long. We denote gauge-invariant composites SU) + 4_D+ 20 SU(6): H+H+38+0
by their constituents in parenthesis. The relative coefficients SU(7) §+H+D Sp(6): H+E+E‘

of the different terms can be determined by demanding that
the equations of motion following from this superpotential
reproduce the classical constraints of the ultraviolet theory.

This also constitutes an important consistency check: in thénd anomaly coefficient of the smallest $)(representa-
limit of large generic expectation values for fieldg)>A  tions are listed below:

the ultraviolet theory behaves classically and all its classical

constraints need to be reproduced by the infrared description. | P Dim H A
Checking that all these constraints are reproduced and deter- | = 2N L 1
mining the coefficients is a very tedious exercise which we Adj %lel N 0
only performed for some theories. Since we have not deter- B N(1) N-2 V-4
mined the coefficients of the superpotential terms for several = 2 N+2 N+4
of the s-confining theories, it may turn out that some of the E N -2) (=2=2) (V=N
terms listed in the confining superpotentials have vanishing oo | M) (D) (i)
coefficients. S I N? -3 N? -9

A more straightforward and also very powerful consis- (| Doy NIIT_2UN4D) e
tency check is provided by the 't Hooft anomaly matching (oo | MG | (R0 | ()
conditions. We explicitly checked that all global anomalies a:' MER)(E-DN-2) (W=2)(V2=N=A) | (N_4)(NP-N=8)

match between the microscopic and macroscopic degrees of
freedom in every theory. Other consistency checks which we . . -
performed for a subset of the theories include explorations o Because the index of a representation of Blgrows

f k-1 : -
the moduli spaces and adding masses for some matter fielHEe '\: Wherell< '? the number of_gaugehl_nﬁlces_, there are
and checking consistency of the results. More details o€y few anomaly free representations which satisfy &g.
these techniques are described in Sec. IV. These representations are listed in Table I. In the first col-

umn, we indicate the gauge group and the field content of the
theory. In the second column we give the flows which al-
lowed us to rule ous-confinement for a given theory. For

In this section, we present akconfining theories based those theories which deconfine we then list the spectra and
on SUN) gauge groups. We normalize the Dynkin index the confining superpotential in the following tables. For com-
and the anomaly coefficient of the fundamental representgleteness, we also list thoseconfining theories which are
tion to be one. With these conventions, the dimension, inderlready known in the literature.

A. The s-confining SUWN) theories
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1. SU(N) with (N + 1)(@+0) (SUSY QCD) [1]

SUNY}SU(N +1) SU(N+1) U(t) UL)r

0| o O 1 1

Q g 1 O -1 75

A 2

& s 1 ovw

QN 1 & -N R

N+1

1 — -
Wdyn:W[(QQ)'\Hl_ (@Q@MHQQ(QM].
2, SU(2N) withH+2N O+4 0 [4]
SU(2N) | SU(2N) SU4) U(l), U(1), U(l)r

A H 1 1 0 2N +4 0
Q g 0 i 4 —2N +2 0
Q o 1 i —2N 2N 42 L
QQ [ O 4-2N —4N +4 L
AQ° B 1 8 ~2N +38 0
AN 1 1 0 2N 44N 0
AN-1Q? 1 H —4N 2N 2N 1
AN-2Q* 1 1 —8N  2N?—8N 2
o 1 1 SN  —4N?+4N 0

1 R - — .
Wdyn=W[(AN)(QQ)“(AQZ)N*“(AN*lQZ)(QQ)Z(AQZ)NflJr(AN*ZQ“)(AQZ)N

+(QN)(AN)(AN2Q%) + (Q2N) (AN~1Q?)2).

3, SU@2N +1) with J+ (2N +1) G+4a[4]

SU@EN +1) | SU@2N +1) SU@) U(1) U(l), U()r

A g 1 1 0 . 2N+5 0

Q g D 1 4 —2N +1 0

Q O 1 O -2N-1 -2N+1 L
QQ O o 3-2N —4N +2 1
AQ B 1 8 —2N 47 0
ANQ 1 O -2N-1 2N243N+1 L
AN-1Q? 1 8 -6N-3 2N?-3N-2 3
o 1 1 42N +1) —4N?+1 0

1 I o
Weyn=72n [ (A"Q)(QQI*(AQH)N 4+ (AV1Q%)(QQ)(AQH) M+ (@M (ANQ) (AN 1Q7)].
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4, SU@N +1) with G+F+ 30+ D)

SU@N+1) | SU@3) SU3) U(1l), U(l), Ul U()g

A H 1 1 i 0 -3 0

A B 1 1 -1 0 -3 0

Q 0 o 1 0 1 2N —1 i

Q g 1 o -1 2N-1 L

M, = Q(AA}Q a o 0 4N-2-6k 2

Hy, = A(AA)*Q? g 1 -1 2 4N-5-6k 2

0, = A(AA)*Q? 1 o 1 -2 4N-5-6k 2

B, = ANQ o 1 N 1 -N-1 i

B, = ANQ 1 O -N -1 -N-1 1

By = AN-1Q® 1 1 N-1 3 3N 1

B = AN-'(@Q? 1 1 -N+1 -3 3N 1

T = (AA)™ 1 1 0 0 —6m 0
wherek=0, ... N—1 andm=1, ... N. The number of terms in the confining superpotential grows quickly with the size of

the gauge group. Therefore we only present the superpotential for tt® Bidory:

1 — — _ _ _

Wayn= 15 (MaT1To+Mi+T5B3Ba+ ToHoHoMo+ ToM MG+ TIMG+ TiB3Ba+ TiHoHoMo+ TIM MG+ T1B,B; Mg
+T1HoHoM1+B1B1HoHo+B1BiM Mo+ H H Mo+ H HoMoT1+HiHoMoT; +H B1B3+H;B;Bs+HoB1B3Ty
+HoB1B3T1+H HoM+HiHoMy).

Note that the ternTlMiMO is allowed by all symmetries, however, its coefficient is 0, which can be verified by requiring that
the equations of motion reproduce the classical constraints.

5. SU@2N) with+H+ 30+ O

SU@N) | SU3) SU@) U1y U1, Ul  Ue
A H 1 1 1 0 -3 0
A A 1 1 -1 0 -3 0
Q o = 1 0 1 2N —2 1
Q g 1 o 0 -1 2N -2 1
My, = Q(AA)Q u] O 0 0 4N-4-6k 2
H, = A(AA)"Q* g 1 -1 2 4N—-T7-6m 2
H. = A(AA)"Q? 1 g 1 -2 AN-T7-6m %
By = AV 1 1 N 0 -3N 0
By = AV 1 1 -N 0 —3N 0
By = AN-1Q? ] 1 N-1 2 N -1 z
By = AN-1Q? 1 g -N+1 -2 N-1 z
T, = (AA)" 1 1 0 0 —6n 0

wherek=0,... N—1,m=0,... N—2 andn=1, ... N—1. The case of SY) is different, because in SY) the two-index
antisymmetric tensor is self-conjugate. Therefore there is an addition@) $lobal symmetry. The corresponding table is

SU@4) | SU@) SUB) SUEB) U1), U), U(r

A H O 1 1 0 -3 0

Q n| 1 o 1 1 2 L

Q ] 1 1 m] -1 2 i
Mo=QQ 1 o o 0 2
M, = QA%Q 1 a o 0 -2 2
H=AQ? m] g 1 2 1 z
I =AQ? m] 1 g -2 1 z
T =A? m 1 1 0 -6 0

The superpotential for the §4) theory is
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1 _ _
Wdyn=F(T2Mg—12THHMO—24MOM§—24HHM2),

where the relative coefficients are fixed by requiring that the equations of motion reproduce the classical constraints.

6. SU(6) with H +40+5)

SU(6) [ SU4) SUM) U@ UQ): UQ)r
A B 1 1 0 -4 -1
Q o m] 1 1 3 1
Q ] 1 O -1 3 1
Mo = QQ O O 0 6 2
My = QA%Q O O 0 -2 0
B, = AQ? g 1 3 5 2
B, = AQ® 1 g -3 5 2
Bs = A3Q? O 1 3 -3 0
Bs = A3Q® 1 g -3 -3 0
T = A4 1 1 0 —16 4

1 _ _ _ .
Wdyn=A—1l(MoBlBlT+ B3BsMo+M3My+TM,M3+ B;B3M,+ B B3M,).

7. SU(5) with 3(H+0)

SU) | SUB) SUB) U(1) Ul
A H a 1 1 0
Q g 1 O -3 2
AQ? a a -5 4
A3Q F o o z
A® (| 1 5 0

1 - —
Wdyn:P[(As)(ASQ)(AQZ) +(A*Q)°].

8, SU(5) with 2H+4 8+ 20

SU(5) | SU(2) SUMW) SU©2) U, U(l), Ur
A H =] 1 1 0 -1 0
Q ] 1 o 1 1 1 L
Q ] 1 1 i -2 1 i
QQ 1 O O -1 2 z
AQ? O H 1 2 1 z
A%Q (n ) 1 O -2 -1 5
A3Q m] | 1 1 -2 1
A2Q*Q 1 o 1 -3 1 1

1 . _ . _ . .
Weyn=79[(A’°Q)%(QQ)*+ (A*Q)(A*Q’Q)(AQ?) + (A*Q)(AQ)(AQY)(QQ) + (A*Q)*(AQ%)?].
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9, SU(6) with 2H+50+D

SU(6) | SU@) SU(B) U U(l), U(l)g
A H o 1 0 3 i
Q 8 1 m 1 —4 0
Q m] 1 1 -5 -4 0
QQ 1 O -4 -8 0
AQ? o H 2 -5 1
A mun] 1 0 9 3
A%QQ O O —4 1 3
ANQ? 1 H 2 4 1

1 — — — - — — — —
Wdyn:A_:Ll[(A4Q2)2(QQ) +(A'Q?)(A*QQ)(AQY) +(A*)(A*QQ)(AQ)?+ (A% (AQ)*(QQ)].

Note, that the term&“?)(A%(A@)(Qa) is allowed by the 1) symmetries but not by the non-Abelian global symmetries.

10, “SU(7) with 2H+ 60

SU(TY | SU©@) Su6) UQ1) Ul)r
A H o 1 3 0
Q g 1 o -5 i
H = AQ? o H -7
N = AYQ o o 7 i
1
Wayn=313N*H
|
B. The s-confining Sp(2N) theories With this knowledge one can again write down all

anomaly-free theories for which the matter content satisfies

g. (). These theories are summarized in Table Il. In the
irst column, we indicate the gauge group and the field con-
tent of the theory. The second column gives a possible flow
to a nons-confining theory or if the theory is-confining, we

We now discuss the-confining Sp(2) theories. First,
we again summarize the group theoretical properties of th
simplest Sp(®) representations. Contrary to SV groups
there is no chiral anomaly for Spk® groups. The only re-
quirement on the field content is that there is no Witten
anomaly, this is satisfied if the sum of the Dynkin indices of

the matter fields is even. Spi@ is the subgroup of TABLE II. All Sp theories satisfyings; u;—ug=2. This list is

; af_ S NaB i finite because the indices of higher index tensor representations
SU(2N) which leaves the tensar"®=(1y,y@io)™" in grow very rapidly with the size of the gauge group. We list the

variant. lireducible tensors of Spig must be traceless with gauge group and the field content of the theories in the first column.

respect toJ**. One can obtain these irreducible representay, we second column, we indicate which theories smnfining.

tions by subtracting traces from the SW(P tensors. The For the remaining ones we give the flows to nonconfining theories

properties of these representations are summarized in thg ingicate that there is a Coulomb branch on the moduli space.
table below. We use a normalization where the index of the

fundamental is one. This normalization is consistent with the
Sp(2N) CSU(2N) embedding, under whichNl— 2N. Thus
with these conventions the index of the matter fields does not
change under SYSp decompositions. The adjoint of

Sp(2N) (2N +4)0 | s-confining
Sp(2N) H+60 s-confining
Sp(2N) mM+20 Coulomb branch

(
(
(
. y . ) Sp(4)  2H+4o | SU(2): so
Sp(2N) is the two-index symmetric tensor: Spid)  30+20 | SUE@) m+4o
Trrep Dim i Sp(4)  4H SU(2): 2o
O N 1 Sp(6)  2H+20 | Sp(4): 2H+ 40
A N@N-1)-1 2N — 2 5p(6) H+5m Sp(4): 2 +40
Da] N@2N +1) 2N +2 Sp6) H+0+0 | SU@): m+40
N@EN-1)(2N-2) _opn | @GN-3)(2N-2) ' .
NEN1)(2N+2) (2N12)(2N+3) 5p(6) 2@ SU@3): M+t
':é:'j] 5p(8)  2Q Sp(4): 54

3 2
INEN-DH(N+1Y) —
2N(2N ; 2N 41 N (2N)2 4
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state that in the second column. The oslgonfining theo- We use a normalization where the index of the vector of
ries based on Sp(®) groups are the two sequences that areSO(N) is 2. The reason is that under the embedding
already known in the literature. We give the spectra andSO(2N)DSU(N) the vector of SO(R) decomposes as
dynamically generated superpotentials of these theories By _, N+ N If we do not want the index of the matter fields

the tables below. to change under this decomposition we need to normalize the

1. Sp(2N) with (2N+4) (1 [6] index of the vector to two. The fundamental properties of the
smallest SON) representations are summarized in the tables
Sp(2N) | SU(2N +4) U()r below. The adjoint of SQN) is the two-index antisymmetric
Q| o O 3 tensor:
QZ H _2
i SO(N 1 1)
Irrep Dim 7
1 a 2N +1 2
Wdyn: A2NFT (QZ)I\HZ- S oN oN=2
H NN +1) 4N -2
2, Sp(2N) with H+6 o [11, 12] M [(NV+1)@2N+1)—1]4N+6
Sp(2N) | SU(6) 780 U()r SO(2N)
A g I _3 0 Irrep Dim I
Q O ] N-1 L o 2N 2
Ak 3k 0 S oN-1 2N—3
A 1 - 3k . S (8 gN-1 9N-3
m V — — “ ’
Q4mQ B 2v-1 3 N(2N —1) [4N -4
Herek=2,3,...,Nandm=0,1,... ,N—1. The number of O |NEN+1)—1|4N +4
terms in the superpotential grows quickly with For Sp4) ) ]
the superpotential is Since the vector and the spinors are the only representa-

tions that potentially have smaller index than the adjoint, it is
1 o3 ) ) clear that candidates fa-confining theories contain only
Wayn=45L(AD(Q%)"+(Q)(QAQ]. vectors and spinors. For odd we denote the field content
by (s,v), wheres is the number of spinors and is the
number of vectors. For eveMN we use the notation
C. The s-confining SQ(N) theories (s,s',v), wheres ands’ are the numbers of matter fields in
SO(N) theories are distinct from the SU and Sp theories the two inequivalent spinor representations arisl the num-
because contrary to those groups SiPhas representations ber of vectors.
which cannot be obtained from products of the vector repre- The SQA8) group requires special attention. The reason is
sentations. These are the spinorial representations. A theoHjat there is a group automorphism which permutes the two
can bes-confining only if all possible test charges can beSpinor and the vector representations. Therefore only relative
screened by the matter fields. Spinors cannot be screened [@pelings of the representations are meaningful. For example
matter in the vector representation of SO. Thus, theorie§4,3,0) and (0,3,4) in S@) are equivalent.
without spinorial matter cannot keconfining. This restricts With this knowledge of group theory we can write down
the number of possib|e.c0nfining SON) theories, because all theories which SatiSfy EqS) These theories are listed in
the Dynk|n index of the spinor representation grows expo_Table Il. Almost all of these theories amconﬁning. The
nentially with the size of the gauge group. The biggest grou@nly spectrum that has been given in the litera{@is for
for which Eq. (5) can be satisfied with matter including SQ(7) with (5,1). Below we list the spectra and the confining
spinor representations is $1). superpotentials for the-confining SON) theories. Most of
SO(N) theories(for N>6) do not have either chiral or the confining superpotentials are very complicated. We only
Witten anomalies. We do not consider the<6 theories list those where the number of terms in the superpotential is
because they can be obtained from our previous results bigasonably small.
using the following isomorphisms: 36~SU(4), SQ(5) 1. SO(14) with (1,05

~Sp4), SQO4)~SU(2) xSU(2), SQ(3)~SU(2),

SO2)~U(1). 50(14) | SU(B) U(1) U(l)g

The spinor representations of SO( have different prop- S 64 1 5 1

erties depending on wheth&t is even or odd. For odd, Q O -8 0

there is just one spinor representation, while for eMeiere Q’ 0o -6 0

are two inequivalent spinors. Fdf= 4k the two spinors are 5203 A -1 !

self-conjugate while foN=4k+ 2 the two spinors are com- 51Q? m 4 1

plex conjugate to each other. 5401 g -1z 1

§°Q° B ¢ i

58 1 40 1

3We do not distinguish between SR and its covering group S8Q? ] 8 1

Spin(N).
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TABLE lll. All SO(N) theories which contain at least one 2. SO(13) with (1,4)
spinor and satisfy;u;j— ug=2. This list is finite because the in-

c_iex of the spinor representations_grows_exponentially WithWe S0(13) | SUM4) U(1) Uk
list the gauge group of the theory in the first column and the matter S 64 1 1
content in the second column. As explained in the text, for Ndd 0 O 0 9 8
(s,v) denotes the number of spinors and the number of vectors, o3
: . , ) Q m -4 0
while for evenN (s,s’,v) denotes the numbers of the two inequiva- Q3 0 _4 1
lent spinors and vectors. In the third column, we indicate which 520 H 9 i
theories ares-confining. For the remaining ones we give the flows e 4
e . o ; 54Q 1 -4 !}
to nonconfining theories or indicate that there is a Coulomb branch Si0° 5 9 i
i 2
on the moduli space. g2 o 0 i
SO(14) 1(1,0,5) | s-confining 5'Q u 2 3
SO(13) | (1,4) |s-confining S 1 4 :
S0(12) | (1,0,7) | s-confining 583 & 0 3
S0(12) | (2,0,3) [ s-confining 5502 9 4
S0(12) | (1,1,3) | s-confining Q 5 i
SO(11 1,6) |s-confining S8Q° d 2 1
SO(11 2,2) |s-confining 8 1 8 1
S0(10) | (4,0,1) | s-confining
S0(10) | (3,0,3) | s-confining
S0(10) | (2,0,5) | s-confining 4 )
S0(10) | (3,1,1} | s-confining Note, that one could add the opera&%iQ* to the above list
SO(10) | (2,1,3) | s-confining without affecting anomaly matching. However, there is a
S0(10) | (1,1,5) [ s-confining : . .
S0(10) | (2,2,1) | s-confining mass term allowed for this operator, and by flowing to this
50(10) | (1,0,7) | SU(4) with 3 §+2 (O + D) theory from S@14) with (1,0,5) one finds that this mass
SO | 5 :Eggggigg term is generated. Thus®Q* is not in the IR spectrum.
SO(9 2.4) | s-confining Similar operators appear in many otheconfining SOWN)
gg(g) §166()) gU(]Al) v~{)itkl)13Bl+2 (O+D theories. Since a mass term is always generated for such
,0, oulomb branch ; ; ;
Sogsg Eﬁ, 170; Coulomb branch operators, we do not include them in any of the forthcoming
SO(8) |(5,2,0) | SU4) with3H+2 (O+0) s-confining spectra.
S0(8) [(5,1,1) { SU(4) with3H+2 (@+D) )
S0(8) | (4,3,0) | s-confining 3.S0(12) with (1,0,7
SO(8) | (4,2,1) | s-confining
SO(8) |(3,3,1) | s-confining , ,
S0O(8 3,2,2) | s-confining S0(12) | SU(T) U(1) U(II)R
SO(7 6,0) |s-confining S 32 1 7 i
SO(7 5,1) | s-confining Q 0O O —4 0
SO(7 4,2) |s-confining =
SO(7 3,3) |s-confining Q o -8 0
SO(7) | (2,4) |SU(4) with3H+2 (O+D) 52Q? A 6 L
S0(7) { (1,5) | Coulomb branch 52008 5 —10 !
.5 1 28 1
51Q° & 4 1

1
Weyn=71o[ (S'Q%)%(Q%) +(S'Q°)(S*Q°)(S°Q?)

_ 1 42,2 4y 63\ 23
Wor= =l SV +HEQANSRNER) +(S)(SQ2HQD+(SH(SQIAQY

+(SQN(8'QM(S'Q?) +(8%)4(Q%)° +(SPQH)%(Q%)3+(Q?)"(8H21.
+(8%)(S°Q%)(S*Q%)(Q%)?+(S'QH)*(Q?)
+(86Q3)2(S4Q2)(Q2)+(SB)(S4Q4)2(Q2) 4, SO(12) with (2,0.3
+(S)(S'QH)%(QH)3+(S°Q%)(S%Q%)(S'Q?)? SO(12) | SU(2) SUB) UQ) UL
S 32 w 1 3 1
+(SPQY)A(S'QY)]. el o |1 o -8 o
Q2 1 m -16 0
Note that several terms allowed by1) symmetries are not S? 1 1 6 :
allowed by the full set of global symmetries. For example, S2Q? m g -1 3
the SU5) contraction in the term $Q%)(S8)(Q?)3 van- 51 om 1 12 1
ishes, since it is not possible to make an(SUinvariant 54Q? 1 D -4 3
from the third power of a symmetric tensor and one field in S4Q m o -4 3
the antifundamental representation. There are more examples 5° 1 1 18 3
of such terms prohibited by non-Abelian global symmetries S°Q? m = 2 3
in other theories in this section. 5°Q? 1 m 8 1
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S0(12) | SUB) UL, U(l), Ul)a
S 32 1 1 3 L
s 32/ 1 -1 3 !
Q a O 0 -8 0
Q? M 0 -16. 0
55'Q3 1 0 -18 L
$2Q? g 2 -10 i
5122 8 -2 -10 L
55'Q o 0 -2 1
51 1 4 12 i
51 1 -4 12 i
5257 1 0 12 L
§35'Q° 1 2 -12 1
585Q° 1 -2 -12 1
5257Q? m 0 -4 L
S25720% 0 0 —4 1
$35'Q o 2 4 1
5°5Q o -2 1 :
5388@Q3 1 0 —6 2
53570 o 0 10 2
5457Q? a 2 2 g
5182Q* g -2 2 3
S5t 1 0 24 1
§151)? O 0 3 1
6. SQ(11) with (1,6)
soy | su®) Ua) U(g

S 32 1 3 .

Q o o -2 0

Q? m -4 0

52Q* B =2 L

52Q° g -4 L

.5 1 12 1

5105 g 2 1

52Q O 4 3

52 1 -6 i

7.SQO(11) with (2,2

50(11) | SU2) SU©2) U(1) U(l)g
S 32 O 1 1 0
Q a 1 O —4 3
Q? 1 mn| -8 1
$2Q? M 1 —6 1
5%Q M o -2 :
$? 1 1 2 0
St oI 1 4 0
s¢ 1 1 4 0
S1Q? 1 m -4 1
54Q¥ (ww 1 —4 1
54Q ™ o 0 L
58Q? (o 1 -2 1
S55Q m (] 2 L
58 1 1 8 0
5%Q 1 m] 4 3
S4Q 1 o 0 :
S8 1 1 6 0

8. SO(10) with (4,0,9

SO(10) | SU4) U() U()r
S 16 [ 1 1]
Q | 1 -8 1
Q? 1 -6 2
S2Q m -6 1
St HH 4 0
S8Q m -2 1

1
Wdyn:A_:LEB[(SGQ)Z(S4)+(SGQ)(SZQ)(S4)2

+(SQA(SH3+(SH* QY]

9. SO(10) with (3,0,3

SO(10) | SU3) SU@3) U(1) U(l)r
s 16 ] L 1 0
Q O 1 o -2 3
Q* 1 m 4 z
S2Q ] o 0 1
523 ] 1 -4 1
St ] 1 4 0
S1Q? 0 ] 0 Z

1
Wayn=715[(S'Q%)°+ (S'Q%)%(S*Q)*+(S'Q*)*(S)(Q?%)

+(SPQ¥%(SH2+(SPQ)A(Q)*(Sh?

+H(SQHQH(SH+(QH3(SH)*+(5°Q)°
+(SH(SQ%)(S'Q)(S7Q)

+(S'Q*)(SH(SPQ)A(Q*) +(8'Q*)(s'Q)*

+(SQ*)(S*Q)*(sH1.

10. SO(10) with (2,0,9

S0(10) | SU2) SU(5) U(l) U(i)p
S 16 O 1 5 L
Q O 1 o -4 0
Q? 1 m -8 0
5%Q m a 6 i
5*Q? 1 B -2 1
52Q° m 1 -10 1
54 1 120 1
51Q1 1 m 4 1
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14. SO(10) with (2,2,))

7851

50(10) | SU3) UQ1), U1): U(L)r
S 16 o 1 0 0 SO(10) | SU(2) SU(2) U(1), U(1), U(l)g
S 16 1 -3 1 0 S 16 o 1 1 1 0
Q O 1 0 -2 1 K 16 1 O -1 1 0
QZ 1 0 _4 2 Q a 1 1 0 -8 1
52Q =] 2 -2 1 Q2 1 1 0 —16 2
SS O -2 1 0 S2Q ma) 1 2 —6 1
535Q B! 0 -1 1 570 1 m -2 -6 1
5252 m -4 2 0 55 ] o 0 2 0
g4 mn| 4 0 0 54 1 1 4 4 0
$55 mm 2 1 0 5 t I —4 4 0
515%Q O -2 0 1 525 o 0 4 0
5%Q 1 -6 0 1 5350 o O 2 —4 1
525°Q* 1 -6 -1 2 350 Q o ~2 -4 1
525°Q? 1 1 0 -12 2
545°Q mm 1 2 -2 1
3520 1 m -2 =2 1
585° o o 0 6 0
5957 1 1 4 g 0
552 1 1 -4 8 0
12.SQO(10) with (2,1,3
SO(10) | SU2) SUB) UML), U@, U
3 16 o 1 1 1 0
g 16 1 1 -2 1 1
Q 0 1 O 0 -2 0
2 1 o) 0 -4 0
2
?28 EF g _24 g ‘1) 15. SQ9) with (4,0)
58 o 1 -1 92 L v
5252 m 1 -2 4 L 5 S?ég) SUD(4) U(ll)’*
52Q3 1 1 2 -4 0 - :
$25Q o o 1 2 ! s oy
54 1 1 4 4 0 s H 2
55Q? a @ -1 -2 1 S o™ 3
5252()2 1 ] -2 0 1
535Q° ) 1 1 -2 !
1
WdynZAm[(SG)Z(S“)Jr(SG)(S4)2(52)+(S4)4
+(SH3(sH?].
13. SO(10) with (1,1,5
SO(10) | SUB) UQ) U(l), U
S 16 1 1 5 i
< T 1
g gi é 01 _54 : 16. SO9) with (3,2)
o8 m 0 -8 0 S0(9) | SUB) SUE@) UQ) ULz
59 oz 6 2 s | 16| o 1 10
S_Q ] -2 6 ? Q O 1 O -3 %
5555 Los o i o boom e
KR% 1 o _10 1 S? - o o
530" 8 o 2 | §4 ™ 1 40
59! B0 6 52 8 1 -4 1
Sif 1 0 20 1 S4Q2 O 1 9 1
5750 Q¢ ] 0 4 1 S0 O O | 1




7852 CSABA CS,AKI, MARTIN SCHMALTZ, AND WITOLD SKIBA 55

17.SQ9) with (2,4) 21.S0(8) with (2,2,3
S0(9) | SU@) SUM) UQ) U(1)n S0(8) | SUB) SU@2) SU©Q) U®), Ul), Ur
5 16 - 1 ] T Q 8, O 1 1 0 4 0
4
S 8, 1 O 1 1 -3 1
¢ | d . o -t 0 s 8 1 1 1 5 1
Q? 1. @™ -2 o0 : a - - 3
sol w9 A I R R
S? () 1 2 i 2 }
S2Q3 1 ] —1 % S 1 1 [m| -2 -6 3
52Q? 1 A 0 1 S5'Q ) O [} 0 -2 %
S4Q° ) 5 1 1 52Q? 0 1 1 2 2 i
s2Q e 1 _9 1 572Q? g 1 1 -2 2 :
54 1 1 4 1 SS,QB 1 (W] O 0 6 %
52512 1 1 1 0 —12 1
S§25720? 0 1 1 0 —4 1
18. SQ(8) with (3,0, .
Q) with (3,0.9 22.50(7) with (6,0)
S0(8) | SU(4) sU3B) U(1) Ulr 5007y | SU6) U(1)a
Q@ | & o 1 3 i S| 8 0 I
S 83 1 O —4 0 SZ [am] 1
Q*? T 1 6 1 4 ] 2
52 1 s} -8 (2) 5 ] :
S2Q? § o5 -2 !
St 1 (| 4 1

1
Weyn=79[ (S +(SH*(8)?+(S)°].

1
Weyn=7m1[ (S°Q1*(S) +(S7Q)(S°Q*)*+(S°Q*)*(Q®)  23.5Q(7) with (5,1) [9]

+(82)3(Q2)4+(SZQZ)Z(SZ)(QZ)Z]. . 508(7) SUD(S) U(ll) U(S)R
Q| o 1 -5 1
19. SQ(8) with (2,1,4 Q? 1 -1 2
S? mal 2 0
: SO(8) | SU4) SU(2) U(1) UQ) U(l)r :Z“ g i 0
Q | & | o 1 1 o & 59 g -3
s | s, 1 o -2 1 0 5Q o -1 1
5| 8, 1 1 0 -2 0
Q? m 1 2 0 1 1
s ! o -z 0 Wdyn:P[(S4Q)2(SZ)+(S4Q)(SZQ)(S4)+(SZQ)Z(S4)
57 1 1 0 -4 0

52Q? H 1 -2 2 i
s20 T @ o 2 1 X (S7)+(Q%)(S7)(SH)2+(89)%(Q?)].
is% é é _41 j ; 24.50(7) with (4,2)
55'Q® O 1 -1 2 '

© . o ! SO(T) | SU@) SU@2) U) U(L)x
R E O 1 10
Q O 1 o -2 :
20.S0(8) with (3,3, Q? 1 o -4 1
s? (] 1 2 0
S0@B) | SU@3) SUB) UML)y U(L): UL)r 52Q g o o !

L Q 8, 1 1 0 6 1 52Q? H 1 -2 1
S 8, o 1 -1 0 54 1 1 4 0
s 8 1 5] -1 -1 0 S4Q 1 o 2 !
Q? 1 1 0o 12 2
52 o 1 2 -2 0 L
s 1 o -2 -2 0 _ 2/2 2 22

$35'Q 1 o 2 2 1

585Q o 1 -2 2 1 +(SPQ)A(SPQ%)(S7) +(Sh(SPQ?)?

i R0 0 +(SQASRAQY) +(SQHXSH)+()4(QY?].
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25.SQ(7) with (3,3 2. The F,, Eg, E;, and Eg theories
Theories based on any of the other exceptional gauge

50(1) | SUE) SUE) UQ1) Ur groups can be shown to flow to theories which are not
s 8 = ! ! ? s-confining. This is derived most easily by starting with the
Q2 = ! = ! § real group K. The lowest dimensional representations of
Q2 ! m -2 3 F, are the 26-dimensional fundamental representation and
b; ™ ! 2 ? the 52-dimensional adjoint. Since any theory with adjoint
5232 - 0 (1) 3 matter has a Coulomb branch on its moduli space, we can
S0 DD] ? O i restrict our attention to theories with only fundamentals. By

giving an expectation value to a fundamental one can break

F, to its maximal subgroup S©). Under S@9) the repre-

sentations decompose as follows: 26+9+16 and

213, <213 D D\D) D ) D 52—16+36. The 9, 16, 36 are the fundamental, spinor, and

+H(S)AQYH(STQRIASHQY) adjoint of S@9). When giving an expectation value to a

+(S2Q)2(S?)(Q?)2+(S2Q)4(S2Q?)(Q?)]. fundamental of i, the spinor component of its 9 de-
composition is eaten. Thus an, Fheory withN; fundamen-
tals flows to an S@®) theory with N; fundamentals and

26. The SAN) theories with Zp;—pg=4 N;—1 spinors. For nd\; is this S@9) theory s-confining,

Our normalization for the indices of SO groups is some-therefore no z theorys-confines.
what nonstandard. It follows from demanding that the index USINg this result, it is easy to show that none of the
is invariant under flows from SO(®) groups to their 9roups B, E;, and B s-confine. The lowest dimensional
SU(N) subgroups. In the normalization where the index off€Presentations of gare the(compley fundamental and the

the vector is 1 rather than 2, it is obvious that one can obtai@dioint. By giving an expectation value to a fundamental,
a superpotential that is regular at the origin for ON€ can flow to Iz, whereas expectation values for an adjoint

Sui—ue=1 or 2. In our normalization, this corresponds to lead to a Coulomb branch. Thus,; Bheories cannot be

Sui—pme=2 or 4. We have explicitly checked that none of S-confining either.

the Su,—pue=4 theories ares-confining by identifying ~_ BY giving an expectation value to a field in the 56-
flows to nons-confining theories. dimensional fundamental representation of &e can flow

The Su;—ue=4 SON) theories are examples of the to Eg, while an expectation value for the adjgint again yields
special case where the confining superpotential can be hol@ Coulomb branch. For £the lowest dimensional represen-
morphic at the origin without Eq(5) being satisfied. This t&tion is the adjoint, again leading to a Coulomb branch.
can only happen when and allx; have a common divisor. 1hus none of the E7g groups with arbitrary matter are
Just like the previously mentioned u;—ug=4 SON)  S-confining.
theories, such theories are unlikelygaconfine. The reason
is that while Eq.(5) is preserved under most flows along flat IV. OBTAINING NEW MODELS
directions, the property thaig and all u; have a common BY INTEGRATING OUT MATTER
divisor is not. Thus for most such theories one should be able
to find a flow to a nors-confining theory. We expect that
none of these “common divisor” theoriesconfine.

1
Weyn=13[(S?Q%)%($%) +(SQ%)(8°Q*)(S°Q) + (§°Q%)°

In the previous chapter we obtained a low-energy descrip-
tion for many theories which satisf¥ u;— ug=2. Since a
number of these theories contain matter in vectorlike repre-
_ sentations one can easily derive descriptions for theories
D. Exceptional groups with smaller matter content by integrating out fields. In this
The ana|ysis for exceptiona| groupszg:4' EG! E7, and way we obtain Confining theories with a quantum modified
Eg is surprisingly simple. The-confined spectrum of a & constraint, theories with dynamically generated superpoten-
gauge theory with 5 fundamentals has already been workeldpls and theories with multiple branches.
out in Refs.[8,9]. The representations of Lare real, thus
the invariant tensors include the two index symmetric tensor. A. Theories with quantum-deformed moduli spaces
Furthermore, there are two totally antisymmetric tensors ) i i
with three and four indices, respectively. The confined spec- N these theories a classical constraint of the form
trum is given in the following table: E(Hj}(i)zo (where X; are gauge—lnvarlant operatprss
modified quantum mechanically t&(IT;X;)=APII;X; .
1. G, with 5 [8] Here, the X; are some other combination of the gauge-
invariant operators, including the possibility that the quan-
U(Lr tum modification is justAP. The powerp must necessarily
be positive to reproduce the correct classical limit. Such a
modification of the classical constraint is only possible in
theories wher& u;— ug=0. To show this, consider assign-
ing R charge 0 to every chiral superfield. Titssymmetry is
1 anomalous and the anomaly has to be compensated by as-
_ 5 2n2 2, A2 signing R chargeX u;— ug to the scale of the gauge group
Wdy“_F[M TMEATHMB+ATB]. raised to the power of ﬁs one logp function coefficient

G2 SU,

Q |7
M=q?
A=
B=qQ

—
4]
Nt

omf|a
RN [R]
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AGBre=21i)2 [2]. Since the constraints have to respect this We have seen that a#-confining = u;— ug=2 theories
R symmetry one immediately sees thiatcan only appear in result in confining= uj— pwg=0 theories with a quantum
a constraint if it has vanishinB charge. Therefore, we con- modified constraint after integrating out a flavor. This does
clude that only theories witl2 u;—ug=0 may exhibit not imply that Eu;—us=2 theories which do not
guantum deformed moduli spaces. s-confine cannot result in confining theories with quantum
We can find all theories satisfyingu;—ug=0 by sim-  modified constraints after eliminating one flavor.
ply leaving out a flavor from the matter contents listed in  As an example we consider SU(4) with 3 +0 +3.
Tables | and Il for SU and Sp theories and by leaving out éThe theory with an additional flavor is not s-confining, it
vector from Table Ill for SO theories. The theories obtainedfiows to SU(2) with 8 0. Moreover, one can explicitly con-
from the s-confining ones are all confining with a quantum struct a dual description for SU(4) with 3 § +2( 0 + @ ) by
modified constraint. It follows from the procedure of inte- noting that this theory is equivalent to an SO(6) theory with
grating out a flavor that the form of the quantum modified 5 +2(S+5), where S and § denote a spinor and its con-
constraint isS(ITX) =A**. _ jugate. This dual can be obtained from the dual of SO(10)
In those cases where tiseconfining theory contains sev- ith one spinor and seven vectors [9]. The confining descrip-
eral meson type field&e.g.,QQ, QA2Q, etc) there will be  tion with one less flavor is obtained from the SO(8) theory
additional constraints which are not modified quantum me-with a spinor and five vectors [9]. The confining spectrum is
chanically[11,12. All constraints can be implemented by given in the table below:
adding them to the superpotential with Lagrange multipliers.

Here, we list only those SU theories which were not previ- SU) | SUB) U UQ), U(Dr
ously known in the literature. Similar results can be obtained A H ] 0 1 0
from thes-confining SO theories. In the case of 3Q(theo- Q o 1 1 -3 0
ries there is always one quantum modified constraint, while Q g 1 -1 3 0
the total number of constraints equals the number of opera- A? m 0 2 0
tors containing exactly two vectof3 in a symmetric repre- QAXQ g 0 —4 0
sentation of theQ-flavor symmetry. QQ 1 0 —6 0
In the following superpotentials we denote Lagrange mul- AQ? 1 2 -3 0
tipliers by Greek letters, the notation for the confined fields is AQ? 1 -2 3 0

defined in the corresponding tables in Sec. Ill.

1. SU(4) with 2 +2(0+0)
W=\(3T?M2—12THH—24M2— A8) + u(2MoM,+ HH).

2.8U() with § + [ +2(0+0)
W=\ (3M2T,T,+ T,HoHo+2T,M oM +3TSM2
+T2HoHo+2T2MoM +2T,B,B;Mo+B;B;M;
+HH+HoH T+ HoH Ti— A0 + u(3M2+T,M2

+T2M2+ T HoHo+B1BiMg+HoH+HgHy).

3. SU(S) with 2 + O +30
W=A[(A’Q)4(QQ)+(A’Q)(A%Q)(AQ?)— A
+u(AQ)(AQ?).
4. SU(6) with 2 +40
W=\[(A%Q%)2+ (A%)2(AQ?)2— A%
+u[(A*Q?)(AQY) + (A% (AQ?)?].
5. SU(6) with @ +3(0+0)
W=\(B;B;T+B3B3+M3+TM,M3— A1)

+u(M2Mo+TM3+ BBy +B;B3).

The gquantum modified constraint is
W=X[(QQ)*(A%)*+(A*)(QA’Q)?
+(A%Q?)(A’Q*) - A%(QQ)].

Note that one can eliminate the fiel@ Q) from the theory
by solving the quantum modified constraint. The remaining
fields match all anomalies of the ultraviolet theory. It would
be interesting to determine which of the remaining
> ui— ug=0 theories are confining with a quantum modi-
fied constraint.

B. Dynamically generated runaway superpotentials

Starting from the confining theories with a quantum de-
formed moduli space one obtains theories with dynamically
generated runaway superpotentials by integrating out more
flavors. Here we only list the dynamical superpotentials
which one finds by starting with theconfining SU theories
and which are not already in the literature. It is straightfor-
ward to obtain similar results from theeconfining SO theo-
ries by integrating out vectors. Our notation for the compos-
ites in the following superpotentials is defined in the
corresponding tables in Sec. Ill.

1. SU@) with 2 +F(O+0)

MM

- 6T°Mg+48M5’
A5

WF:OZO or WF:OZ_.

\/ﬁ

We-1
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2.5U(s) with § + J+F(0+0)
We_ 1= (A /I[MMT To+ToM2+T3MM, + T2M2
F=1 1 iviotit2 2Vl 1viovia 11

+T,B1B3M;—(T,Mo+T2My+B,By)?],

AG

(Tt AT, = T+ T2)

WF:0= =

3. SU(S) with 2 H+2 & [23]

All

(A%Q)?’

4. SU(6) with @ +F(O+0)

W AM,LM,
P22 T(M,Mg)2— (M3+TM2)?’

A3VX.

Wego==* ,
Pl XX TUMEEY? +x. 12

A5
WF=O:O or WF=0:_

7

where

5

8M
X= ?2—10M§M§+ 2MAM,T, y=M2—MZ2T,

z=4M3—M3T, x.=x+tyZ3T.

C. Theories with multiple branches

When integrating out flavors from a few of the
s-confining theories we find that there are multiple possible
solutions for the superpotential: one or more solutions with a
dynamically generated term, and a solution with vanishing
superpotential. This indicates that such theories have several
branches of vacua. There is not only a moduli space with a
smooth continuous parametrization but there is also a dis-
crete parameter distinguishing a discrete set of vacua. In our
examples there are two sets of vacua which are characterized
by W=0 with a nontrivial moduli space, and W« 1/fields
without a stable vacuum [5,11,12). A consistency check on
the assumption that the branch with vanishing superpotential
describes a confining theory is that the 't Hooft anomaly
matching conditions are satisfied. In addition to the previ-
ously described SU(4) with 2 H SU(6) with [ , also SO(14)
with one spinor field has multiple branches.

V. DYNAMICAL SUPERSYMMETRY BREAKING
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namical supersymmetry breaking. We begin by reviewing
the various mechanisms of dynamical supersymmetry break-
ing and then present new models which illustrate these pos-
sibilities.

A sufficient set of conditions for dynamical supersymme-
try breaking is that there are no classical flat directions and
that there is a spontaneously broken global symmigt6y.

In a nutshell, the argument can be summarized as follows. A
spontaneously broken global symmetry implies the presence
of a Goldstone boson. Since there are no noncompact flat
directions, there is no massless scalar which could combine
with the Goldstone boson into a supersymmetric multiplet.
Therefore, supersymmetry must be broken.

The spontaneous breaking of a global symmetry can be
achieved by one of three known mechanisms: by a dynami-
cally generated superpotentidl5], by a quantum modified
constrain{ 19], or by confining dynamic§10]. In the super-
symmetry breaking models based on confining dynamics a
suitably chosen tree-level superpotential combines with the
dynamically generated potential to give an effective
O’Raifeartaigh model. We will give examples of all three
mechanisms of dynamical supersymmetry breaking using
our new results presented in the previous sections. More
complicated mechanisms of dynamical supersymmetry
breaking appear in product group theories, where an inter-
play of the strong gauge dynamics and the presence of tree-
level Yukawa couplings results in dynamical supersymmetry
breaking[20].

A. Confining dynamics

The best known example of this type of model is an
SU(2) theory with a fieldQ in the three-index symmetric
representatiohl0]. It has been argued that this &Ytheory
confines without generating a superpotential for the confined
field T=Q%. In order to lift the only classical flat direction,
the superpotential termv=\Q* is added. This tree-level
superpotential becomes a linear term after confinement and
breaks supersymmetry. At low energies the theory is effec-
tively an O’Raifeartaigh model.

A similar example based on confining dynamics can be
found using the s-confining SU(7) theory with 2 J+6 T .*
The main difference compared to the ISS model is that the
confining SU(7) gauge group generates a superpotential for
the confined fields. The field content, the confined degrees of
freedom and the confining superpotential for this theory have
been described in Sec. IIT A. In order to lift the flat directions
we add the following renormalizable tree-level superpoten-
tial:

Wiree= A1Q1Q,+AQ3Q4+ A'Q5Qs+ A%Q,Q3
+A2Q,Qs+A2Q4Q;.

A detailed analysis shows that this superpotential lifts all flat
directions but preserves a U(XJ(1)r global symmetry.
After confinement of the S(7) gauge group the superpoten-
tial is

Our new results on the low-energy behavior of supersym- 4This model has been obtained independently by Nelson and Tho-
metric theories can be used to construct new models of dymas[21].
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_ AL (2] i ) 215 2 2_ A1

W=H12+H§4+Hé6+H§3+H§5+H§l+%H2N2. Wyee= Aij ()1 +BI(S); +A[(S7)°+(8)(S) 2~ A1),
where \ is a Lagrange multiplier enforcing the constraint.
The equations of motion with respect to the singlets are in-

The equations of motion with respect to the fielbléz, compatible with the quantum modified constraint, hence su-

H3,, His, H25, H35, andHZ, force nonzero VEV's for some persymmetry is broken.

of the H andN fields. This results in spontaneous breaking

of at least one of the global(W)’s. Therefore, supersymme-

C. Theories with a dynamically generated superpotential
try must be broken as well.

Most of the examples of models of dynamical supersym-
metry breaking are based on theories with a dynamically
B. Models with a quantum deformed moduli space generated superpotential. Here we show two new examples

A well-known model of dvnamical supersymmetry break- using our theories analyzed in the previous sections. We can
y persy y summarize our method for finding these models as follows:

ing based on a theory with a quantum deformed moduli . ! . .
space is the S(2) theory with four doublet€); and six sin- we start with a nonchiral theory which has a dynamically

i . . generated superpotential. We gauge a glold) symmetry
gletsS’ [19]. This supersymmetry breaking theory also has : - ; ;
tree-level superpotentiaW=\S1Q,Q,. Confining SU2) &hich makes the theory chiral, and we include some singlets

dynamics results in a quantum modified constraintWhiCh have nonzero charges under thelJUThe tree-level
PV =A°, whereM ;= Q,Q; . The equations of motion with superpotential together with the(l) D term lifts all flat

. N : L directions and supersymmetry is seen to be broken after the
respect to the single! give M.‘J' =0. This point is not on dynamically generated superpotential is added.
the quantum deformed moduli space, so supersymmetry is The first example is based on an SO(X2)(1) gauge

broken. ;
. S . . group with matter content
In this theory the flat directions corresponding to the sm-g P

gletsS’ are not lifted by the tree-level superpotential. After SO(12) U(1)
including the quantum corrections to the l{er potential, 2 1
the S! directions are no longer fl§R2]. This theory is non-
chiral, but it nevertheless breaks supersymmetry. The theory -4
avoids Witten’s no-go theorem for vectorlike theories be-
cause the Witten index of the theory changes along the
“pseudoflat” directionS'[19].

Similar models can be built using any theory which has a
guantum modified constraint. One can introduce a singlet for
every confined degree of freedom and a tree-level superpo-
tential W=3SM,. Here, theS"s are the singlets and the The independent S@2) invariant operators and their(L)
M,’s are the gauge invariant operators. This superpotentigtharges are
lifts all flat directions except for the ones corresponding to
the gauge singlet fields. Since the equations of motion with U(1)
respect to thes' set the VEV's of all gauge-invariant opera-
tors to 0, the quantum modified constraint cannot be obeyed
and supersymmetry is broken. This mechanism can be ap-
plied to any of our theories with quantum deformed moduli
space, whether or not the theory is chiral.

As an explicit example consider an §ptheory with five
spinors. The table of symmetries and invariants is

O @™ > O »w
O

Om)></_gQ,'
A N 00O M

50(7) | SU(B) U()r
S 8 O 0
52 (] 0
St ] 0

The tree-level superpotential

Wiree= AQ2

The quantum modified constraint isS9)°+ (S?)(S%)?

=A% We need to introduce the $D gauge singleta\;; sets theQ? operator to zero. Since the remaining (30
andB', whereA transforms as a conjugate symmetric tensorinvariants all have positive (1) charges, all flat directions
of SU(5), while B as a fundamental of S8). The superpo- are lifted by the Y1) D term. The S@L2) gauge group gen-
tential which sets all S@) invariants containing spinors to 0 erates a dynamical superpotential

is

A5

Wyee=A;;S? +B'SY,. Wdyn:[Qz(S4)2]1 \

The full superpotential after confinement is and the full superpotential is
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) AS We have given two necessary conditions for a theory to
W=AQ + [Q?(54)?]175' be s-confining. Using these conditions and the requirement

of ’tHooft anomaly matching we determined all

s-confining theories with a single gauge group. We listed

The equations of motion cannot be satisfied, so we concludseveral new examples of s-confining theories with SU(N)
that this theory breaks supersymmetry. Note that the field gauge groups. The SU(N) theory with H + H +3(o+ &)
B andC are only needed to cancel thel) anomalies. is s-confining for any N, while other new examples s-confine
A similar model can be obtained by using the (U  only for particular N. There are no new examples of s-con-
theory with a three-index antisymmetric tensor. The fieldfinement with Sp(N) gauge group. s-confinement in SO(N)
content is groups requires the presence of at least one spinorial repre-
sentation, which restricts N< 14. It turns out that most of the

SO(N) theories which satisfy our index condition are s-con-

fining.

SU(6) U(1) | SUEB) Tr%e quantity= u; — ug Which appears in our index for-
A a 1 1 mula is very useful for determining the dynamics of a given
Qi O -3 1 theory. For example, alls-confining theories satisfy
Q| O -3 1 Sui—pug=2, all theories which confine with a quantum
S| 1 6 1 modified constraint satisfy 2 u;—ug=0, and for
S, L. 4 1 Sui—pg=—2 the dynamically generated superpotential
Sl 2 o has the correct dependence to be generated by single in-

stantons.
An interesting possible application of our results on
s-confinement is to composite model building. Recently,
The tree-level superpotential several examples of models with quark-lepton compositeness
have been giveril2,24,25. All these models rely on the
— e recent exact results for the infrared spectrasafonfining
W=51(QQ)+S,(QA°Q) theories. In these models the dynamically generated superpo-
tentials can be used to give a natural explanation of the hi-
erarchy between the top and bottom quark nj2gs. A toy

again lifts all flat directions, and the presence of the dynami?nodel based on $B) with an antisymmetric tensd.2] has

cally generated superpotential of Sec. IV B breaks supersyMpe interesting feature that it generates three generations of
metry dynamically. quarks with a hierarchical structure for the Yukawa cou-
Clearly, there are other possibilities for constructing simi-  plings dynamically. We hope that the wealth of new
lar models. One can use theories that are chiral without gaug-  s-confining theories listed in this paper can be applied to
ing a U(1) symmetry, such as the SU(5) model with 2 [ and build further interesting and realistic models of composite-
2 0 [23]. Or one can make theories chiral by gauging a  N€SS.

larger subgroup of the global symmetries, an example is the Our resuI.tS can also be applied to dynamical supersym-
well-known 3-2 model [15] metry breaking. We have shown several new examples of

supersymmetry breaking models which illustrate different
dynamical mechanisms. These models use either
s-confining theories, or theories obtained from them by inte-
grating out flavors. Many other new models can be built
Determining the phase structure df=1 supersymmetric Using our exact results.
theories with arbitrary matter content is a very difficult prob-
lem. We have shown that it is possible to identify all theories ACKNOWLEDGMENTS
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