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I. INTRODUCTION

The number ofN51 supersymmetric gauge theories for
which we know exact results on their vacuum structure has
been growing steadily in the last two years. The great
progress was sparked by Seiberg’s conjectures about the in-
frared properties and phase structure of supersymmetric
QCD @1#. Following in his footsteps, others have obtained
results on a whole range of theories@2–13#. Most of the
discovered phenomena follow similar patterns in the differ-
ent theories, and one is tempted to ask if there is maybe a
more general approach than the model-specific trial and error
procedure that has been customary thus far.

Whereas a completely general approach that allows one to
understand all the obtained results seems impossibly difficult
to find, we can make much progress by focusing on the par-
ticular phenomenon of confinement. In fact, a frequently oc-
curing and relatively easily identified infrared behavior is
‘‘ s-confinement.’’ In a previous publication@13# we defined
ans-confining theory as a theory for which all the degrees of
freedom in the infrared are gauge-invariant composites of the
fundamental fields. Furthermore, we demand that the infra-
red physics is described by a smooth effective theory in
terms of these gauge invariants. This description should be
valid everywhere on the moduli space of vacua, including
the origin of field space. Finally, we also demand that an
s-confining theory generates a dynamical superpotential. At
the origin of moduli space all global symmetries of the
theory are unbroken and the global anomalies of the micro-
scopic theory are matched by the macroscopic gauge invari-
ants of the effective theory.

The best-known example of a theory which has been con-
jectured to bes-confining is supersymmetric QCD~SQCD!
with N colors andF5N11 flavors of fundamental and an-
tifundamental matterQ and Q̄ @1,14#. The gauge-invariant
confined degrees of freedom are mesonsM5QQ̄ and bary-
onsB5QN, B̄5Q̄N. At the origin of moduli space, all com-

ponents of the mesons and baryons are massless, and they
interact via the confining superpotential

W5
1

L2N21 ~detM2BMB̄!. ~1!

This description is also valid far from the origin of the
moduli space where the large expectation values of the fields
completely break the gauge group. In such a vacuum the
theory is in the Higgs phase. A smooth gauge-invariant de-
scription of both the Higgs and confining vacua of the theory
can only exist if there is no phase transition between the two
regions in moduli space. In particular, there should be no
gauge-invariant order parameter that distinguishes the two
phases.

To understand this in the example of SQCD, note that the
quarks transform in a faithful representation of the gauge
group SU(N). This implies that arbitrary test charges can be
screened by the dynamical quarks because the vacuum can
disgorge quark-antiquark pairs to screen charges transform-
ing in any representation of the gauge group. Thus a Wilson
loop will always obey a perimeter law because any charges
we might want to use to define the Wilson loop can be
screened. Our definition ofs-confinement above necessitates
that ans-confining theory is in such a ‘‘screening-confining’’
phase.

This situation should be contrasted with SU(N) with only
adjoint matter or SO(N) with vector matter. In both these
cases the matter does not transform in a faithful representa-
tion of the gauge group. Now there are charges that cannot
be screened by the dynamical quarks, and a Wilson loop can
serve as gauge-invariant order parameter to distinguish the
Higgs and the confining phases. As a result, such theories
cannot have a single smooth description of both the Higgs
and confining phases of the theory, thus they are not
s-confining.

In our previous publication@13#, we identified two criteria
which allow us to decide whether a given theory can be
s-confining without having to know the explicit infrared de-
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scription. If we limit our attention to theories with no tree-
level superpotential and only one gauge group, then the sym-
metries completely determine the form of any
nonperturbatively generated superpotential. Demanding that
this superpotential is smooth everywhere on the moduli
space yields the first of our two conditions. The other condi-
tion arises from studying the theory along some flat direction
in which the gauge group is broken to a subgroup, and the
theory may sufficiently simplify so that we can understand
its infrared physics. If we find a result that cannot be
smoothly connected to a confining phase, we know that the
whole theory is nots-confining either. We discuss the argu-
ments leading to these two conditions in Sec. II of this paper.
In Sec. III we apply our conditions to identify all theories
with a single gauge group and no tree-level superpotential
which s-confine. We give a complete list of the confined
spectra and superpotentials for alls-confining theories with
an arbitrary SU, SO, Sp, or exceptional gauge group. Using
the results for thes-confining theories, we then demonstrate
in Sec. IV how one can generate many more exact solutions
for other models by simply integrating out matter from the
s-confining theories. The models which we obtain in this
way display interesting dynamics: confinement with chiral
symmetry breaking, nonperturbatively generated superpoten-
tials which drive the vacuum to infinity, and confinement
with noninteracting composites.

In Sec. V we turn to applications of our results to model
building. We summarize the various known mechanisms of
dynamical supersymmetry breaking and illustrate each of the
mechanisms with a few examples which we construct using
our results of Secs. III and IV. Finally, we comment on the
possibility of using our models to construct composite mod-
els in the conclusions. We hope that our tables and superpo-
tentials in Secs. III and IV together with the explicit ex-
amples of Sec. V will prove to be a valuable resource for
model builders.

II. NECESSARY CRITERIA FOR s-CONFINEMENT

In this section we develop two necessary criteria which
allow us to identify alls-confining theories with a simple
gauge group and no tree-level superpotential. The first crite-
rion follows from holomorphy of the dynamically generated
superpotential, which can be determined using the global
symmetries of the theory. This criterion allows us to reduce
the number of theories that are candidates for
s-confinement to a manageable set. Our second criterion fol-
lows from explorations of regions in moduli space which are
easier to understand than the origin. As will be demonstrated
in Sec. III, these two conditions combined are sufficient to
identify all s-confining theories with a single gauge group
and no tree-level superpotential.

A. The index constraint

In this subsection, we derive a simple constraint on the
matter content ofs-confining theories which follows from
the requirement of holomorphy of the confining superpoten-
tial. In theories with a simple gauge group G and no tree-
level superpotential, the symmetries are sufficient to deter-
mine the form of any dynamically generated superpotential
completely@15#. A simple way to prove this makes use of

nonanomalousR symmetries. Define a U(1)R symmetry as
follows: all chiral superfields, except for one arbitrarily cho-
sen fieldf i , are assigned zeroR charge. The chargeq of the
remaining field is determined by requiring anomaly cancela-
tion of the mixed G2U(1)R anomaly:

~q21!m i2(
j5” i

m j1mG5qm i2(
all j

m j1mG50, ~2!

wherem i is the Dynkin index
1 of the gauge representation of

the fieldf i , and (q21) is theR charge of its fermion com-
ponent. These three terms arise from the contributions of the
fermion components off i , of all other matter superfields
f j with jÞ i , and of the gauge superfields, respectively. The
m j are the indices of the remaining matter representations,
they are multiplied by theR charges21 of the fermion
components off j , and finallymG is the index of the adjoint
representation of G multiplied by theR charge11 of the
gauginos.R invariance of the supersymmetric Lagrangian
requires the dynamically generated superpotential to have
R charge 2. This uniquely fixes the dependence of the super-
potential on the fieldf i :

W}~f i
m i !2/S ( j m j2mGD. ~3!

To determine the functional dependence on the other super-
fields, we note that the global symmetries contain a corre-
sponding U(1)R symmetry for each of the matter superfields,
and the superpotential has to haveR charge 2 under each
suchR symmetry. Finally, the dependence on the dynamical
scaleL can be determined by dimensional analysis or using
an anomalousR symmetry@2#. The result is

W}L3F)
i

S f i

L D m iG2/S ( j m j2mGD
. ~4!

There may be several~or no! possible contractions of gauge
indices, thus the superpotential can be a sum of several
terms. We require the coefficient of this superpotential to be
nonvanishing, then holomorphy at the origin implies that the
exponents of all fieldsf i are positive integers. Strictly
speaking, we should require holomorphy in the confined de-
grees of freedom which would imply that the exponents of
composites must be positive integers. Since we do not want
to have to determine all gauge invariants for this argument,
we settle for the weaker constraint on exponents of the fun-
damental fields. Therefore,2 ( jm j2mG51 or 2. However, in

1We normalize the index of the fundamental representations of SU
and Sp to 1 and of the vector of SO to 2. This definition ensures
invariance of the index when decomposing representations of
SO(2N) under the SU(N) subgroup. This is relevant to the flows
discussed in Sec. II B.
2Other solutions exist if allm i have a common divisord, then for

( jm j2mG5d or 2d the superpotential Eq.~5! may be regular. We
will argue at the end of Sec. III that these solutions generically do
not yield s-confining theories. Another possibility is that the coef-
ficient of the superpotential above vanishes. There are examples of
confining theories with vanishing superpotentials in the literature
@10#.
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our normalization of the index, anomaly cancelation further
constrains this quantity to be even; thus,

(
j

m j2mG52. ~5!

This formula summarizes our first necessary condition for
s-confinement, which enables us to rule out most theories
immediately. For example, for SQCD we find that the only
candidate is the theory withF5N11. Unfortunately, Eq.~5!
is not a sufficient condition. An example for a theory which
satisfies Eq.~5! but does nots-confine is SU(N) with an
adjoint superfield and one flavor. This theory is easily seen to
be in an Abelian Coulomb phase for generic vacuum expec-
tation values~VEV’s! of the adjoint scalars and vanishing
VEV’s for the fundamentals. In the following section, we
derive another necessary criterion which allows us to rule out
theories that satisfy the ‘‘index constraint’’ but do not
s-confine.

B. Flows ands-confinement

The second condition is obtained from studying different
regions on the moduli space of the theory under consider-
ation. A generic supersymmetric theory with vanishing tree-
level superpotential has a large moduli space of vacua. By
definition, ans-confining theory has a smooth description in
terms of gauge invariants everywhere on this moduli space.
There should be no singularities in the superpotential or the
Kähler potential and there should be no massless gauge
bosons anywhere.

Thus, we can test a given theory fors-confinement by
expanding around points that are far out in moduli space
where the theory simplifies. In the microscopic theory the
gauge group gets broken to a subgroup when we go out in
moduli space by giving large (^f&@L) expectation values
to some fields. In this vacuum, the gauge superfields corre-
sponding to broken symmetry generators get masses through
the super-Higgs mechanism and the remaining matter fields
decompose under the unbroken subgroup. This ‘‘reduced’’
theory has a smaller gauge group and may be easier to un-
derstand. If the original theory wass-confining then its con-
fined description should be valid at this point in moduli
space as well. Therefore, the reduced theory iss-confining if
the original theory was. This statement can be applied in two
directions.

Necessary condition: If the reduced theory does not have
a smooth description with only gauge-invariant degrees of
freedom, then the original theory cannot bes-confining. Suf-

ficient condition: If the original theory is known to be
s-confining, then all possible reduced theories~with a re-
maining unbroken gauge group! which the original theory
flows to ares-confining also. The confined spectrum and the
confining superpotential of the reduced theories can be ob-
tained by identifying the corresponding points in moduli
space in the confined description of the original theory and
integrating out all massive fields. In practice, this means
identifying the correct gauge-invariant fields which have
vacuum expectation values and integrating out fields which
now have mass terms in the superpotential using their equa-
tions of motion.

The reduced theories will always contain some gauge-
invariant fields in the high-energy description which origi-
nally transformed under the now broken gauge generators.
These fields do not have any interactions and are irrelevant
to the dynamics of the model. They can be removed from the
theory. In the confined description the fields corresponding
to these gauge singlets are only coupled through superpoten-
tial terms which scale to zero when the VEV’s are taken to
infinity, or which are irrelevant in the infrared.

A nontrivial application of the sufficient condition is
given by the flow from SU~4! with an antisymmetric tensor
and four ‘‘flavors’’ of fundamentals and antifundamentals to
Sp~4! with eight fundamentals. The SU~4! theory is known
to s-confine@4#. By giving an expectation value to the anti-
symmetric tensor the gauge group is broken to Sp~4!. All
components of the antisymmetric tensor field except for one
singlet are ‘‘eaten’’ by the super-Higgs mechanism, and the
four flavors of fundamentals and antifundamentals become
eight fundamentals of Sp~4!. Applying our sufficient crite-
rion, we conclude that the Sp theory iss-confining as well.
Its confined spectrum and superpotential can be obtained
from the spectrum and superpotential of the SU~4! theory.

A nontrivial example of a theory which can be shown not
to s-confine is SU~4! with three antisymmetric tensors and
two flavors. This theory satisfies our index condition, Eq.~5!,
and is therefore also a candidate fors-confinement. By giv-
ing a VEV to an antisymmetric tensor we can flow from this
theory to Sp~4! with two antisymmetric tensors and four fun-
damentals. VEV’s for the other antisymmetric tensors let us
flow further to SU~2! with eight fundamentals which is
known to be at an interacting fixed point in the infrared. We
conclude that the SU~4! with three tensors and Sp~4! with
two tensors and all theories that flow to them cannot be
s-confining either. This allows us to rule out the following
chain of theories, all of which are gauge anomaly free and
satisfy Eq.~5!:

~6!

Note that a VEV for one of the quark flavors of the
SU~4! theory lets us flow to an SU~3! theory with four fla-
vors which is s-confining. We must therefore be careful:
when we find a flow to ans-confining theory, it does not
follow that the original theory iss-confining as well. The

flow is only a necessary condition. However, in all our ex-
amples we find that a theory with a single gauge group and
no tree-level superpotential iss-confining if it is found to
flow to s-confining theories in all directions of its moduli
space.
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III. ALL s-CONFINING THEORIES

In this section, we present our results which we obtained
using the two conditions derived in Sec. II. We first created
a list of all theories with a single gauge group and matter
content satisfying the index constraint. Then we studied all
possible flat directions of the individual theories and checked
if they only flow to confining theories. We summarize these
results in the first table of each subsection. In the first col-
umn we list all theories satisfying the index constraint. In the
second column we indicate the result of the flows: theories
which can be shown to have a branch with an unbroken
Abelian gauge group we denote with ‘‘Coulomb branch,’’
for theories which can be shown to flow to a reduced theory
with a non-Abelian gauge group which is nots-confining we
indicate the gauge group of the reduced theory and its matter
content, all other theories ares-confining.

After identifying all s-confining theories in this way, we
explicitly construct the confined spectra for each
s-confining theory. The group theory used to obtain these
results can be found in Refs.@16–18#. We present our results
in tables where we indicate the matter content of the ultra-
violet theory in the upper part of the table, and the gauge-
invariant infrared spectrum in the lower part. The gauge
group and the Young tableaux of the representations of the
matter fields are indicated in the first column. The other
groups correspond to the global symmetries of the theory. In
addition to the listed global symmetries, there is also a global
U~1! with a G2U~1! anomaly which is broken by instantons.

Finally, we also give the confining superpotentials when
they are not too long. We denote gauge-invariant composites
by their constituents in parenthesis. The relative coefficients
of the different terms can be determined by demanding that
the equations of motion following from this superpotential
reproduce the classical constraints of the ultraviolet theory.
This also constitutes an important consistency check: in the
limit of large generic expectation values for fields^f&@L
the ultraviolet theory behaves classically and all its classical
constraints need to be reproduced by the infrared description.
Checking that all these constraints are reproduced and deter-
mining the coefficients is a very tedious exercise which we
only performed for some theories. Since we have not deter-
mined the coefficients of the superpotential terms for several
of the s-confining theories, it may turn out that some of the
terms listed in the confining superpotentials have vanishing
coefficients.

A more straightforward and also very powerful consis-
tency check is provided by the ’t Hooft anomaly matching
conditions. We explicitly checked that all global anomalies
match between the microscopic and macroscopic degrees of
freedom in every theory. Other consistency checks which we
performed for a subset of the theories include explorations of
the moduli spaces and adding masses for some matter fields
and checking consistency of the results. More details on
these techniques are described in Sec. IV.

A. The s-confining SU„N… theories

In this section, we present alls-confining theories based
on SU(N) gauge groups. We normalize the Dynkin index
and the anomaly coefficient of the fundamental representa-
tion to be one. With these conventions, the dimension, index

and anomaly coefficient of the smallest SU(N) representa-
tions are listed below:

Because the index of a representation of SU(N) grows
like Nk21 wherek is the number of gauge indices, there are
very few anomaly free representations which satisfy Eq.~5!.
These representations are listed in Table I. In the first col-
umn, we indicate the gauge group and the field content of the
theory. In the second column we give the flows which al-
lowed us to rule outs-confinement for a given theory. For
those theories which dos-confine we then list the spectra and
the confining superpotential in the following tables. For com-
pleteness, we also list thoses-confining theories which are
already known in the literature.

TABLE I. All SU theories satisfying( jm j2mG52. This list is
finite because the indices of higher index tensor representations
grow very rapidly with the size of the gauge group. We list the
gauge group and the field content of the theories in the first column.
In the second column, we indicate which theories ares-confining.
For the theories which do nots-confine we give the flows to non-
s-confining theories or indicate that there is a Coulomb branch on
the moduli space.
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Wdyn5
1

L2N21 @~QQ̄!N112~QN!~QQ̄!~Q̄N!#.

Wdyn5
1

L4N21 @~AN!~QQ̄!4~AQ̄2!N221~AN21Q2!~QQ̄!2~AQ̄2!N211~AN22Q4!~AQ̄2!N

1~Q̄2N!~AN!~AN22Q4!1~Q̄2N!~AN21Q2!2#.

Wdyn5
1

L2N @~ANQ!~QQ̄!3~AQ̄2!N211~AN21Q3!~QQ̄!~AQ̄2!N1~Q̄2N11!~ANQ!~AN21Q3!#.
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wherek50, . . . ,N21 andm51, . . . ,N. The number of terms in the confining superpotential grows quickly with the size of
the gauge group. Therefore we only present the superpotential for the SU~5! theory:

Wdyn5
1

L9 ~M0
3T1T21M1

31T2B3B̄31T2H0H̄0M01T2M1M0
21T1

3M0
31T1

2B3B̄31T1
2H0H̄0M01T1

2M1M0
21T1B1B̄1M0

2

1T1H0H̄0M11B1B̄1H0H̄01B1B̄1M1M01H1H̄1M01H1H̄0M0T11H̄1H0M0T11H̄1B̄1B31H1B1B̄31H0B1B̄3T1

1H̄0B̄1B3T11H1H̄0M11H̄1H0M1!.

Note that the termT1M1
2M0 is allowed by all symmetries, however, its coefficient is 0, which can be verified by requiring that

the equations of motion reproduce the classical constraints.

wherek50, . . . ,N21,m50, . . . ,N22 andn51, . . . ,N21. The case of SU~4! is different, because in SU~4! the two-index
antisymmetric tensor is self-conjugate. Therefore there is an additional SU~2! global symmetry. The corresponding table is

The superpotential for the SU~4! theory is
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Wdyn5
1

L7 ~T2M0
3212THH̄M0224M0M2

2224HH̄M2!,

where the relative coefficients are fixed by requiring that the equations of motion reproduce the classical constraints.

Wdyn5
1

L11~M0B1B̄1T1B3B̄3M01M2
3M01TM2M0

31 B̄1B3M21B1B̄3M2!.

Wdyn5
1

L9 @~A5!~A3Q̄!~AQ̄2!1~A3Q̄!3#.

Wdyn5
1

L9 @~A3Q̄!2~QQ̄!21~A3Q̄!~A2Q2Q̄!~AQ̄2!1~A3Q̄!~A2Q!~AQ̄2!~QQ̄!1~A2Q!2~AQ̄2!2#.
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Wdyn5
1

L11@~A4Q̄2!2~QQ̄!1~A4Q̄2!~A3QQ̄!~AQ̄2!1~A3!~A3QQ̄!~AQ̄2!21~A3!2~AQ̄2!2~QQ̄!#.

Note, that the term (A4Q̄2)(A3)(AQ̄2)(QQ̄) is allowed by the U~1! symmetries but not by the non-Abelian global symmetries.

Wdyn5
1

L13N
2H2.

B. The s-confining Sp„2N… theories

We now discuss thes-confining Sp(2N) theories. First,
we again summarize the group theoretical properties of the
simplest Sp(2N) representations. Contrary to SU(N) groups
there is no chiral anomaly for Sp(2N) groups. The only re-
quirement on the field content is that there is no Witten
anomaly, this is satisfied if the sum of the Dynkin indices of
the matter fields is even. Sp(2N) is the subgroup of
SU(2N) which leaves the tensorJab5(1N3N^ is2)

ab in-
variant. Irreducible tensors of Sp(2N) must be traceless with
respect toJab. One can obtain these irreducible representa-
tions by subtracting traces from the SU(2N) tensors. The
properties of these representations are summarized in the
table below. We use a normalization where the index of the
fundamental is one. This normalization is consistent with the
Sp(2N),SU(2N) embedding, under which 2N→2N. Thus
with these conventions the index of the matter fields does not
change under SU→Sp decompositions. The adjoint of
Sp(2N) is the two-index symmetric tensor:

With this knowledge one can again write down all
anomaly-free theories for which the matter content satisfies
Eq. ~5!. These theories are summarized in Table II. In the
first column, we indicate the gauge group and the field con-
tent of the theory. The second column gives a possible flow
to a non-s-confining theory or if the theory iss-confining, we

TABLE II. All Sp theories satisfying( jm j2mG52. This list is
finite because the indices of higher index tensor representations
grow very rapidly with the size of the gauge group. We list the
gauge group and the field content of the theories in the first column.
In the second column, we indicate which theories ares-confining.
For the remaining ones we give the flows to nonconfining theories
or indicate that there is a Coulomb branch on the moduli space.
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state that in the second column. The onlys-confining theo-
ries based on Sp(2N) groups are the two sequences that are
already known in the literature. We give the spectra and
dynamically generated superpotentials of these theories in
the tables below.

1. Sp~2N! with ~2N14! h †6‡

Wdyn5
1

L2N11 ~Q2!N12.

Herek52,3, . . . ,N andm50,1, . . . ,N21. The number of
terms in the superpotential grows quickly withN. For Sp~4!
the superpotential is

Wdyn5
1

L5 @~A2!~Q2!31~Q2!~QAQ!2#.

C. The s-confining SO„N… theories

SO(N) theories3 are distinct from the SU and Sp theories
because contrary to those groups SO(N) has representations
which cannot be obtained from products of the vector repre-
sentations. These are the spinorial representations. A theory
can bes-confining only if all possible test charges can be
screened by the matter fields. Spinors cannot be screened by
matter in the vector representation of SO. Thus, theories
without spinorial matter cannot bes-confining. This restricts
the number of possibles-confining SO(N) theories, because
the Dynkin index of the spinor representation grows expo-
nentially with the size of the gauge group. The biggest group
for which Eq. ~5! can be satisfied with matter including
spinor representations is SO~14!.

SO(N) theories~for N.6) do not have either chiral or
Witten anomalies. We do not consider theN<6 theories
because they can be obtained from our previous results by
using the following isomorphisms: SO~6!;SU~4!, SO~5!
;Sp~4!, SO~4!;SU~2!3SU~2!, SO~3!;SU~2!,
SO~2!;U~1!.

The spinor representations of SO(N) have different prop-
erties depending on whetherN is even or odd. For oddN,
there is just one spinor representation, while for evenN there
are two inequivalent spinors. ForN54k the two spinors are
self-conjugate while forN54k12 the two spinors are com-
plex conjugate to each other.

We use a normalization where the index of the vector of
SO(N) is 2. The reason is that under the embedding
SO(2N).SU(N) the vector of SO(2N) decomposes as

2N→N1N̄. If we do not want the index of the matter fields
to change under this decomposition we need to normalize the
index of the vector to two. The fundamental properties of the
smallest SO(N) representations are summarized in the tables
below. The adjoint of SO(N) is the two-index antisymmetric
tensor:

Since the vector and the spinors are the only representa-
tions that potentially have smaller index than the adjoint, it is
clear that candidates fors-confining theories contain only
vectors and spinors. For oddN we denote the field content
by (s,v), where s is the number of spinors andv is the
number of vectors. For evenN we use the notation
(s,s8,v), wheres ands8 are the numbers of matter fields in
the two inequivalent spinor representations andv is the num-
ber of vectors.

The SO~8! group requires special attention. The reason is
that there is a group automorphism which permutes the two
spinor and the vector representations. Therefore only relative
labelings of the representations are meaningful. For example
(4,3,0) and (0,3,4) in SO~8! are equivalent.

With this knowledge of group theory we can write down
all theories which satisfy Eq.~5!. These theories are listed in
Table III. Almost all of these theories ares-confining. The
only spectrum that has been given in the literature@9# is for
SO~7! with (5,1). Below we list the spectra and the confining
superpotentials for thes-confining SO(N) theories. Most of
the confining superpotentials are very complicated. We only
list those where the number of terms in the superpotential is
reasonably small.

1. SO~14! with „1,0,5…

3We do not distinguish between SO(N) and its covering group
Spin(N).

7848 55CSABA CSÁKI, MARTIN SCHMALTZ, AND WITOLD SKIBA



Wdyn5
1

L23@~S8Q4!2~Q2!1~S8Q4!~S6Q3!~S2Q3!

1~S8Q4!~S4Q4!~S4Q2!1~S8!2~Q2!5

1~S8!~S6Q3!~S2Q3!~Q2!21~S4Q2!4~Q2!

1~S6Q3!2~S4Q2!~Q2!1~S8!~S4Q4!2~Q2!

1~S8!~S4Q2!2~Q2!31~S6Q3!~S2Q3!~S4Q2!2

1~S6Q3!2~S4Q4!#.

Note that several terms allowed by U~1! symmetries are not
allowed by the full set of global symmetries. For example,
the SU~5! contraction in the term (S8Q4)(S8)(Q2)3 van-
ishes, since it is not possible to make an SU~5! invariant
from the third power of a symmetric tensor and one field in
the antifundamental representation. There are more examples
of such terms prohibited by non-Abelian global symmetries
in other theories in this section.

2. SO~13! with „1,4…

Note, that one could add the operatorS8Q4 to the above list
without affecting anomaly matching. However, there is a
mass term allowed for this operator, and by flowing to this
theory from SO~14! with (1,0,5) one finds that this mass
term is generated. ThusS8Q4 is not in the IR spectrum.
Similar operators appear in many others-confining SO(N)
theories. Since a mass term is always generated for such
operators, we do not include them in any of the forthcoming
s-confining spectra.

3. SO~12! with „1,0,7…

Wdyn5
1

L19@~S4Q6!2~Q2!1~S4Q6!~S2Q6!~S2Q2!

1~S4!~S2Q2!2~Q2!51~S4!~S2Q6!2~Q2!

1~S2Q2!4~Q2!31~Q2!7~S4!2#.

4. SO~12! with „2,0.3…

TABLE III. All SO( N) theories which contain at least one
spinor and satisfy( jm j2mG52. This list is finite because the in-
dex of the spinor representations grows exponentially withN. We
list the gauge group of the theory in the first column and the matter
content in the second column. As explained in the text, for oddN
(s,v) denotes the number of spinors and the number of vectors,
while for evenN (s,s8,v) denotes the numbers of the two inequiva-
lent spinors and vectors. In the third column, we indicate which
theories ares-confining. For the remaining ones we give the flows
to nonconfining theories or indicate that there is a Coulomb branch
on the moduli space.
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5. SO~12! with „1,1,3…

6. SO~11! with „1,6…

7. SO~11! with „2,2…

8. SO~10! with „4,0,1…

Wdyn5
1

L15@~S6Q!2~S4!1~S6Q!~S2Q!~S4!2

1~S2Q!2~S4!31~S4!4~Q2!#.

9. SO~10! with „3,0,3…

Wdyn5
1

L15@~S4Q2!31~S4Q2!2~S2Q!21~S4Q2!2~S4!~Q2!

1~S2Q3!2~S4!21~S2Q!2~Q2!2~S4!2

1~S2Q!4~Q2!~S4!1~Q2!3~S4!31~S2Q!6

1~S4!~S2Q3!~S4Q2!~S2Q!

1~S4Q2!~S4!~S2Q!2~Q2!1~S4Q2!~S4Q!4

1~S2Q3!~S2Q!3~S4!#.

10.SO~10! with „2,0,5…
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11.SO~10! with „3,1,1…

12.SO~10! with „2,1,3…

13.SO~10! with „1,1,5…

14.SO~10! with „2,2,1…

15.SO~9! with „4,0…

Wdyn5
1

L13@~S6!2~S4!1~S6!~S4!2~S2!1~S4!4

1~S4!3~S2!2#.

16.SO~9! with „3,2…
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17.SO~9! with „2,4…

18.SO~8! with „3,0,4…

Wdyn5
1

L11@~S2Q4!2~S2!1~S2Q4!~S2Q2!21~S2Q2!3~Q2!

1~S2!3~Q2!41~S2Q2!2~S2!~Q2!2#.

19.SO~8! with „2,1,4…

20.SO~8! with „3,3,1…

21.SO~8! with „2,2,3…

22.SO~7! with „6,0…

Wdyn5
1

L9 @~S4!31~S4!2~S2!21~S2!6#.

23.SO~7! with „5,1… †9‡

Wdyn5
1

L9 @~S4Q!2~S2!1~S4Q!~S2Q!~S4!1~S2Q!2~S4!

3~S2!1~Q2!~S2!~S4!21~S2!5~Q2!#.

24.SO~7! with „4,2…

Wdyn5
1

L9 @~S4Q!2~Q2!1~S4Q!~S2Q!~S2Q2!

1~S2Q!2~S2Q2!~S2!1~S4!~S2Q2!2

1~S2Q!2~S2!2~Q2!1~S2Q2!2~S2!21~S2!4~Q2!2#.
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25.SO~7! with „3,3…

Wdyn5
1

L9 @~S2Q3!2~S2!1~S2Q3!~S2Q2!~S2Q!1~S2Q2!3

1~S2!3~Q2!31~S2Q2!2~S2!~Q2!

1~S2Q!2~S2!~Q2!21~S2Q!2~S2Q2!~Q2!#.

26. The SO„N… theories with (µi2µG54

Our normalization for the indices of SO groups is some-
what nonstandard. It follows from demanding that the index
is invariant under flows from SO(2N) groups to their
SU(N) subgroups. In the normalization where the index of
the vector is 1 rather than 2, it is obvious that one can obtain
a superpotential that is regular at the origin for
(m i2mG51 or 2. In our normalization, this corresponds to
(m i2mG52 or 4. We have explicitly checked that none of
the (m i2mG54 theories ares-confining by identifying
flows to non-s-confining theories.

The (m i2mG54 SO(N) theories are examples of the
special case where the confining superpotential can be holo-
morphic at the origin without Eq.~5! being satisfied. This
can only happen whenmG and allm i have a common divisor.
Just like the previously mentioned(m i2mG54 SO(N)
theories, such theories are unlikely tos-confine. The reason
is that while Eq.~5! is preserved under most flows along flat
directions, the property thatmG and allm i have a common
divisor is not. Thus for most such theories one should be able
to find a flow to a non-s-confining theory. We expect that
none of these ‘‘common divisor’’ theoriess-confine.

D. Exceptional groups

The analysis for exceptional groups G2, F4, E6, E7, and
E8 is surprisingly simple. Thes-confined spectrum of a G2
gauge theory with 5 fundamentals has already been worked
out in Refs.@8,9#. The representations of G2 are real, thus
the invariant tensors include the two index symmetric tensor.
Furthermore, there are two totally antisymmetric tensors
with three and four indices, respectively. The confined spec-
trum is given in the following table:

1. G2 with 5 h †8‡

Wdyn5
1

L7 @M51M2A21MB21A2B#.

2. The F4, E6, E7, and E8 theories

Theories based on any of the other exceptional gauge
groups can be shown to flow to theories which are not
s-confining. This is derived most easily by starting with the
real group F4. The lowest dimensional representations of
F4 are the 26-dimensional fundamental representation and
the 52-dimensional adjoint. Since any theory with adjoint
matter has a Coulomb branch on its moduli space, we can
restrict our attention to theories with only fundamentals. By
giving an expectation value to a fundamental one can break
F4 to its maximal subgroup SO~9!. Under SO~9! the repre-
sentations decompose as follows: 26→119116 and
52→16136. The 9, 16, 36 are the fundamental, spinor, and
adjoint of SO~9!. When giving an expectation value to a
fundamental of F4, the spinor component of its SO~9! de-
composition is eaten. Thus an F4 theory withNf fundamen-
tals flows to an SO~9! theory with Nf fundamentals and
Nf21 spinors. For noNf is this SO~9! theory s-confining,
therefore no F4 theorys-confines.

Using this result, it is easy to show that none of the
groups E6, E7, and E8 s-confine. The lowest dimensional
representations of E6 are the~complex! fundamental and the
adjoint. By giving an expectation value to a fundamental,
one can flow to F4, whereas expectation values for an adjoint
lead to a Coulomb branch. Thus, E6 theories cannot be
s-confining either.

By giving an expectation value to a field in the 56-
dimensional fundamental representation of E7 one can flow
to E6, while an expectation value for the adjoint again yields
a Coulomb branch. For E8 the lowest dimensional represen-
tation is the adjoint, again leading to a Coulomb branch.
Thus none of the E6,7,8 groups with arbitrary matter are
s-confining.

IV. OBTAINING NEW MODELS
BY INTEGRATING OUT MATTER

In the previous chapter we obtained a low-energy descrip-
tion for many theories which satisfy(m i2mG52. Since a
number of these theories contain matter in vectorlike repre-
sentations one can easily derive descriptions for theories
with smaller matter content by integrating out fields. In this
way we obtain confining theories with a quantum modified
constraint, theories with dynamically generated superpoten-
tials and theories with multiple branches.

A. Theories with quantum-deformed moduli spaces

In these theories a classical constraint of the form
((P iXi)50 ~where Xi are gauge-invariant operators! is
modified quantum mechanically to((P iXi)5LpP jXj .
Here, theXj are some other combination of the gauge-
invariant operators, including the possibility that the quan-
tum modification is justLp. The powerp must necessarily
be positive to reproduce the correct classical limit. Such a
modification of the classical constraint is only possible in
theories where(m i2mG50. To show this, consider assign-
ingR charge 0 to every chiral superfield. ThisR symmetry is
anomalous and the anomaly has to be compensated by as-
signingR charge(m i2mG to the scale of the gauge group
raised to the power of its one loopb function coefficient
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L (3mG2(m i )/2 @2#. Since the constraints have to respect this
R symmetry one immediately sees thatL can only appear in
a constraint if it has vanishingR charge. Therefore, we con-
clude that only theories with(m i2mG50 may exhibit
quantum deformed moduli spaces.

We can find all theories satisfying(m i2mG50 by sim-
ply leaving out a flavor from the matter contents listed in
Tables I and II for SU and Sp theories and by leaving out a
vector from Table III for SO theories. The theories obtained
from thes-confining ones are all confining with a quantum
modified constraint. It follows from the procedure of inte-
grating out a flavor that the form of the quantum modified
constraint is((P iXi)5LSm i.

In those cases where thes-confining theory contains sev-
eral meson type fields~e.g.,QQ̄, QA2Q̄, etc.! there will be
additional constraints which are not modified quantum me-
chanically @11,12#. All constraints can be implemented by
adding them to the superpotential with Lagrange multipliers.
Here, we list only those SU theories which were not previ-
ously known in the literature. Similar results can be obtained
from thes-confining SO theories. In the case of SO(N) theo-
ries there is always one quantum modified constraint, while
the total number of constraints equals the number of opera-
tors containing exactly two vectorsQ in a symmetric repre-
sentation of theQ-flavor symmetry.

In the following superpotentials we denote Lagrange mul-
tipliers by Greek letters, the notation for the confined fields is
defined in the corresponding tables in Sec. III.

W5l~3T2M0
2212THH̄224M2

22L8!1m~2M0M21HH̄ !.

W5l~3M0
2T1T21T2H0H̄012T2M0M113T1

3M0
2

1T1
2H0H̄012T1

2M0M112T1B1B̄1M01B1B̄1M1

1H1H̄11H̄0H1T11H0H̄1T12L10!1m~3M1
21T2M0

2

1T1
2M0

21T1H0H̄01B1B̄1M01H0H̄11H̄0H1!.

W5l@~A3Q̄!2~QQ̄!1~A3Q̄!~A2Q!~AQ̄2!2L10#

1m~A3Q̄!~AQ̄2!.

W5l@~A4Q̄2!21~A3!2~AQ̄2!22L12#

1m@~A4Q̄2!~AQ̄2!1~A3!~AQ̄2!2#.

W5l~B1B̄1T1B3B̄31M2
31TM2M0

22L12!

1m~M2
2M01TM0

31 B̄1B31B1B̄3!.

We have seen that alls-confining(m i2mG52 theories
result in confining(m i2mG50 theories with a quantum
modified constraint after integrating out a flavor. This does
not imply that (m i2mG52 theories which do not
s-confine cannot result in confining theories with quantum
modified constraints after eliminating one flavor.

The quantum modified constraint is

W5l@~QQ̄!2~A2!31~A2!~QA2Q̄!2

1~A3Q2!~A3Q̄2!2L8~QQ̄!#.

Note that one can eliminate the field (QQ̄) from the theory
by solving the quantum modified constraint. The remaining
fields match all anomalies of the ultraviolet theory. It would
be interesting to determine which of the remaining
(m i2mG50 theories are confining with a quantum modi-
fied constraint.

B. Dynamically generated runaway superpotentials

Starting from the confining theories with a quantum de-
formed moduli space one obtains theories with dynamically
generated runaway superpotentials by integrating out more
flavors. Here we only list the dynamical superpotentials
which one finds by starting with thes-confining SU theories
and which are not already in the literature. It is straightfor-
ward to obtain similar results from thes-confining SO theo-
ries by integrating out vectors. Our notation for the compos-
ites in the following superpotentials is defined in the
corresponding tables in Sec. III.

WF515
L9M0

6T2M0
2148M2

2 ,

WF5050 or WF505
L5

AT2
.
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WF515~L11M1!/@M1M0T1T21T2M1
21T1

3M0M11T1
2M1

2

1T1B1B̄1M12~T2M01T1
2M01B1B̄1!

2#,

WF5056
L6

A~T21T1
2!~T16AT21T1

2!

.

W5
L11

~A3Q̄!2
.

WF525
L13M2M0

T~M2M0!
22~M2

21TM0
2!2

,

WF5156
L3Ax6

x1
2 x6T

2/M0
2z3y21x6 /z

,

WF5050 or WF505
L5

AT
,

where

x5
8M2

5

T
210M0

2M2
312M0

4M2T, y5M2
22M0

2T,

z54M2
22M0

2T, x65x6yz3/2/T.

C. Theories with multiple branches

V. DYNAMICAL SUPERSYMMETRY BREAKING

Our new results on the low-energy behavior of supersym-
metric theories can be used to construct new models of dy-

namical supersymmetry breaking. We begin by reviewing
the various mechanisms of dynamical supersymmetry break-
ing and then present new models which illustrate these pos-
sibilities.

A sufficient set of conditions for dynamical supersymme-
try breaking is that there are no classical flat directions and
that there is a spontaneously broken global symmetry@15#.
In a nutshell, the argument can be summarized as follows. A
spontaneously broken global symmetry implies the presence
of a Goldstone boson. Since there are no noncompact flat
directions, there is no massless scalar which could combine
with the Goldstone boson into a supersymmetric multiplet.
Therefore, supersymmetry must be broken.

The spontaneous breaking of a global symmetry can be
achieved by one of three known mechanisms: by a dynami-
cally generated superpotential@15#, by a quantum modified
constraint@19#, or by confining dynamics@10#. In the super-
symmetry breaking models based on confining dynamics a
suitably chosen tree-level superpotential combines with the
dynamically generated potential to give an effective
O’Raifeartaigh model. We will give examples of all three
mechanisms of dynamical supersymmetry breaking using
our new results presented in the previous sections. More
complicated mechanisms of dynamical supersymmetry
breaking appear in product group theories, where an inter-
play of the strong gauge dynamics and the presence of tree-
level Yukawa couplings results in dynamical supersymmetry
breaking@20#.

A. Confining dynamics

The best known example of this type of model is an
SU~2! theory with a fieldQ in the three-index symmetric
representation@10#. It has been argued that this SU~2! theory
confines without generating a superpotential for the confined
field T5Q4. In order to lift the only classical flat direction,
the superpotential termW5lQ4 is added. This tree-level
superpotential becomes a linear term after confinement and
breaks supersymmetry. At low energies the theory is effec-
tively an O’Raifeartaigh model.

Wtree5A1Q̄1Q̄21A1Q̄3Q̄41A1Q̄5Q̄61A2Q̄2Q̄3

1A2Q̄4Q̄51A2Q̄6Q̄1 .

A detailed analysis shows that this superpotential lifts all flat
directions but preserves a U(1)3U(1)R global symmetry.
After confinement of the SU~7! gauge group the superpoten-
tial is

4This model has been obtained independently by Nelson and Tho-
mas@21#.
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W5H12
1 1H34

1 1H56
1 1H23

2 1H45
2 1H61

2 1
1

L13H
2N2.

The equations of motion with respect to the fieldsH12
1 ,

H34
1 , H56

1 , H23
2 , H45

2 , andH61
2 force nonzero VEV’s for some

of theH andN fields. This results in spontaneous breaking
of at least one of the global U~1!’s. Therefore, supersymme-
try must be broken as well.

B. Models with a quantum deformed moduli space

A well-known model of dynamical supersymmetry break-
ing based on a theory with a quantum deformed moduli
space is the SU~2! theory with four doubletsQi and six sin-
gletsSi j @19#. This supersymmetry breaking theory also has a
tree-level superpotentialW5lSi jQiQj . Confining SU~2!
dynamics results in a quantum modified constraint
PfM5L4, whereMi j5QiQj . The equations of motion with
respect to the singletsSi j give Mi j50. This point is not on
the quantum deformed moduli space, so supersymmetry is
broken.

In this theory the flat directions corresponding to the sin-
gletsSi j are not lifted by the tree-level superpotential. After
including the quantum corrections to the Ka¨hler potential,
theSi j directions are no longer flat@22#. This theory is non-
chiral, but it nevertheless breaks supersymmetry. The theory
avoids Witten’s no-go theorem for vectorlike theories be-
cause the Witten index of the theory changes along the
‘‘pseudoflat’’ directionSi j @19#.

Similar models can be built using any theory which has a
quantum modified constraint. One can introduce a singlet for
every confined degree of freedom and a tree-level superpo-
tentialW5(SiMi . Here, theS

i ’s are the singlets and the
Mi ’s are the gauge invariant operators. This superpotential
lifts all flat directions except for the ones corresponding to
the gauge singlet fields. Since the equations of motion with
respect to theSi set the VEV’s of all gauge-invariant opera-
tors to 0, the quantum modified constraint cannot be obeyed
and supersymmetry is broken. This mechanism can be ap-
plied to any of our theories with quantum deformed moduli
space, whether or not the theory is chiral.

As an explicit example consider an SO~7! theory with five
spinors. The table of symmetries and invariants is

The quantum modified constraint is (S2)51(S2)(S4)2

5L10. We need to introduce the SO~7! gauge singletsAi j
andBi , whereA transforms as a conjugate symmetric tensor
of SU~5!, while B as a fundamental of SU~5!. The superpo-
tential which sets all SO~7! invariants containing spinors to 0
is

Wtree5Ai jS
2,i j1BiS4i .

The full superpotential after confinement is

Wtree5Ai j ~S
2! i j1Bi~S4! i1l@~S2!51~S2!~S4!22L10#,

wherel is a Lagrange multiplier enforcing the constraint.
The equations of motion with respect to the singlets are in-
compatible with the quantum modified constraint, hence su-
persymmetry is broken.

C. Theories with a dynamically generated superpotential

Most of the examples of models of dynamical supersym-
metry breaking are based on theories with a dynamically
generated superpotential. Here we show two new examples
using our theories analyzed in the previous sections. We can
summarize our method for finding these models as follows:
we start with a nonchiral theory which has a dynamically
generated superpotential. We gauge a global U~1! symmetry
which makes the theory chiral, and we include some singlets
which have nonzero charges under the U~1!. The tree-level
superpotential together with the U~1! D term lifts all flat
directions and supersymmetry is seen to be broken after the
dynamically generated superpotential is added.

The first example is based on an SO(12)3U(1) gauge
group with matter content

SO~12! U~1!

S 32 1

Q h 24

A 1 8

B 1 2

C 1 6

The independent SO~12! invariant operators and their U~1!
charges are

U~1!

Q2 28

S4 4

A 8

B 2

C 6

The tree-level superpotential

Wtree5AQ2

sets theQ2 operator to zero. Since the remaining SO~12!
invariants all have positive U~1! charges, all flat directions
are lifted by the U~1! D term. The SO~12! gauge group gen-
erates a dynamical superpotential

Wdyn5
L5

@Q2~S4!2#1/5
,

and the full superpotential is
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W5AQ21
L5

@Q2~S4!2#1/5
.

The equations of motion cannot be satisfied, so we conclude
that this theory breaks supersymmetry. Note that the fields
B andC are only needed to cancel the U~1! anomalies.

A similar model can be obtained by using the SU~6!
theory with a three-index antisymmetric tensor. The field
content is

The tree-level superpotential

W5S1~QQ̄!1S2~QA
2Q̄!

again lifts all flat directions, and the presence of the dynami-
cally generated superpotential of Sec. IV B breaks supersym-
metry dynamically.

VI. CONCLUSIONS

Determining the phase structure ofN51 supersymmetric
theories with arbitrary matter content is a very difficult prob-
lem. We have shown that it is possible to identify all theories
which belong to a certain class of confining theories. A sa-
lient feature of theses-confining theories is that the massless
degrees of freedom are given by the independent gauge-
invariant chiral operators. They describe the theory every-
where on the moduli space including the origin. Another
important characteristic is that there is a nonvanishing super-
potential for the confined degrees of freedom.

The quantity(m i2mG which appears in our index for-
mula is very useful for determining the dynamics of a given
theory. For example, alls-confining theories satisfy
(m i2mG52, all theories which confine with a quantum
modified constraint satisfy (m i2mG50, and for
(m i2mG522 the dynamically generated superpotential
has the correctL dependence to be generated by single in-
stantons.

An interesting possible application of our results on
s-confinement is to composite model building. Recently,
several examples of models with quark-lepton compositeness
have been given@12,24,25#. All these models rely on the
recent exact results for the infrared spectra ofs-confining
theories. In these models the dynamically generated superpo-
tentials can be used to give a natural explanation of the hi-
erarchy between the top and bottom quark mass@24#. A toy
model based on Sp~6! with an antisymmetric tensor@12# has
the interesting feature that it generates three generations of
quarks with a hierarchical structure for the Yukawa cou-
plings dynamically. We hope that the wealth of new
s-confining theories listed in this paper can be applied to
build further interesting and realistic models of composite-
ness.

Our results can also be applied to dynamical supersym-
metry breaking. We have shown several new examples of
supersymmetry breaking models which illustrate different
dynamical mechanisms. These models use either
s-confining theories, or theories obtained from them by inte-
grating out flavors. Many other new models can be built
using our exact results.
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