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Taking ~211!-dimensional pure Einstein gravity for arbitrary genusg>1 as a model, we investigate the
relation between the partition function formally defined on the entire phase space and the one written in terms
of the reduced phase space. The case ofg51 ~torus! is analyzed in detail and it provides us with good lessons
for quantum cosmology. We formulate the gauge-fixing conditions in a form suitable for our purpose. Then the
gauge-fixing procedure is applied to the partition functionZ for ~211!-dimensional gravity, formally defined
on the entire phase space. We show that basically it reduces to a partition function defined for the reduced
system, whose dynamical variables are (tA,pA). ~Here thetA’s are the Teichmu¨ller parameters and thepA’s
are their conjugate momenta.! As for the case ofg51, we find out thatZ is also related with another reduced
form, whose dynamical variables are not only (tA,pA), but also (V,s). @Heres is a conjugate momentum to
the two-volume~area! V of a spatial section.# A nontrivial factor appears in the measure in terms of this type
of reduced form. This factor is understood as a Faddeev-Popov determinant associated with the time-
reparametrization invariance inherent in this type of formulation. In this manner, the relation between two
reduced formulations becomes transparent in the context of quantum theory. As another result for the case of
g51, one factor originating from the zero modes of a differential operatorP1 can appear in the path-integral
measure in the reduced representation ofZ. It depends on how to define the path-integral domain for the shift
vectorNa in Z: If it is defined to include kerP1, the nontrivial factor does not appear. On the other hand, if the
integral domain is defined to exclude kerP1, the factor appears in the measure. This factor can depend on the
dynamical variables, typically as a function ofV, and can influence the semiclassical dynamics of the~211!-
dimensional spacetime. These results shall be significant from the viewpoint of quantum gravity and quantum
cosmology.@S0556-2821~97!06402-3#

PACS number~s!: 04.60.Kz, 04.60.Gw, 98.80.Hw

I. INTRODUCTION

Because of both its simplicity and nontrivial nature,
~211!-dimensional Einstein gravity serves as a good test
case for pursuing quantum gravity in the framework of gen-
eral relativity. In particular, because of the low dimensional-
ity, the global degrees of freedom of a space can be analyzed
quite explicitly in this case@1–4#.

Recently, back-reaction effects from quantum matter on
the global degrees of freedom of a semiclassical universe
were analyzed explicitly@5#. In this analysis, the~211!-
dimensional homogeneous spacetime with topology
M.T23R was chosen as a model. This problem was inves-
tigated from a general interest on the global properties of a
semiclassical universe, whose analysis has not yet been pur-
sued sufficiently@5–7#.

In this analysis, it was also investigated whether the path
integral measure could give a correction to the semiclassical
dynamics of the global degrees of freedom@5#. By virtue of
several techniques developed in string theory, one can give a
meaning to a partition function, formally defined as

Z5NE @dhab#@dpab#@dN#@dNa# exp~ iS!. ~1!

Herehab andpab are a spatial metric and its conjugate mo-
mentum, respectively;N andNa are the lapse and shift func-
tions, respectively;S is the canonical action for Einstein
gravity. It is expected thatZ reduces to the form

Z5NE @dV ds#@dtA dpA#@dN8#

3m~V,s,tA,pA!exp~ iSreduced!.

HereV, s, tA, andpA (A51,2) are, respectively, the two-
volume ~area! of a torus, its conjugate momentum, the Te-
ichmüller parameters, and their conjugate momenta;N8 is
the spatially constant part ofN; Sreducedis the reduced action
written in terms of V, s, tA, and pA . The factor
m(V,s,tA,pA) is a possible nontrivial measure, which can
cause a modification of the semiclassical evolution deter-
mined by S reduced. The result of Ref. @5# was that
m(V,s,tA,pA)51: The partition function defined as in Eq.
~1! is equivalent, after a suitable gauge fixing, to the one
defined directly from the reduced system,Sreduced. Though
this result looks natural at first sight, it is far from trivial.
One needs to extract a finite dimensional reduced phase
space from an infinite dimensional original phase space.
Therefore, it is meaningful to show that such a natural reduc-
tion is really achieved by a suitable gauge fixing.

The main interest in Ref.@5# was the explicit analysis of
the semiclassical dynamics of the tractable model,
M.T23R. Therefore, the analysis of the reduction of the
partition function was inevitably restricted to the special
model in question. Namely it was the case ofg51, where
g is a genus of a Riemann surface. Furthermore, the model
was set to be spatially homogeneous from the outset. It is
then desirable for completeness to generalize the analysis in
Ref. @5# to the general case of anyg>1.
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More significantly, there is one issue remaining to be
clarified in the case ofg51: The relation between the re-
duced system of the type of Ref.@2# and the one of the type
of Ref. @3# in the context of quantum theory. For brevity, let
us call the former formulation as thet-form, while the latter
one as the (t,V)-form. Thet-form takes (tA,pA) as funda-
mental canonical pairs and the action is given by@2#

S@tA,pA#5E ds$pA dtA/ds2V~s,tA,pA!%. ~2!

On the other hand the (t,V)-form uses (V,s) as well as
(tA,pA) and the action is given in the form@3#

S@~tA,pA!,~V,s!#5E dt$pA ṫA1sV̇2NH~tA,pA ,V,s!%.

~3!

„The explicit expression forH shall be presented later@Eq.
~23!#.… The key procedure in deriving the (t,V)-form ~in the
classical sense! is to chooseN5 spatially constant@3#. Since
the compatibility of this choice with York’s time-slicing is
shown by means of the equations of motion@3#, one should
investigate the effect of this choice in quantum theory. Fur-
thermore, the conditionN5 spatially constant is not in the
standard form of the canonical gauge, so that the analysis of
its role in the quantum level requires special cares. Since the
model analyzed in Ref.@5# was chosen to be spatially homo-
geneous, this issue did not make its appearance. We shall
make these issues clarified.

Regarding the (t,V)-form, there is another issue which is
not very clear. In this formulation, (V,s) joins to (tA,pA) as
one of the canonical pairs. Therefore@5#, *@ds# should ap-
pear in the final form ofZ as well as*@dV#. Since the
adopted gauge-fixing condition isp/Ah2s50 ~York’s
gauge@8#!, s plays the role of a label parametrizing a family
of allowed gauge-fixing conditions, so that it is not dynami-
cal in the beginning. Therefore, the appearance of*@ds# is
not apparent, and worthy of tracing from a viewpoint of a
general procedure of gauge fixing. We shall investigate these
points.

Independently from the analysis of Ref.@5#, Carlip also
investigated the relation between two partition functions, one
being defined on the entire phase space, and the other one on
the reduced phase space in the sense of thet-form @9#. With
regard to this problem, his viewpoint was more general than
Ref. @5#. He showed that, for the case ofg>2, the partition
function formally defined as in Eq.~1! is equivalent to the
one for the reduced system in thet-form. On the other hand,
the exceptional case ofg51 was not analyzed so much.
Indeed, we shall see later that the case ofg51 can yield a
different result compared with the case ofg>2. In this re-
spect, his analysis and the analysis in Ref.@5# do supplement
each other. Furthermore, his way of analysis is quite differ-
ent from the one developed in Ref.@5#. In particular, it looks
difficult to trace the appearance of*@ds# if his analysis is
applied to the case ofg51 in the (t,V)-form. It may be
useful, therefore, to investigate all the cases ofg>1 from a
different angle, namely by a developed version of the
method of Ref.@5#.

In view of these situations of previous work, we shall
present here the full analysis for all the casesg>1. In par-
ticular, a more detailed investigation for the case ofg51
shall be performed.

In Sec. II, we shall investigate forg>1 the reduction of
the partition function of Eq.~1!, to the one for the reduced
system in thet-form. In Sec. III, we shall investigate how
the (t,V)-form emerges wheng51 in the course of the
reduction of the partition function, Eq.~1!. We shall find out
that a nontrivial measure appears in the formula defining a
partition function, if the (t,V)-form is adopted. We shall see
that this factor is understood as the Faddeev-Popov determi-
nant associated with the reparametrization invariance inher-
ent in the (t,V)-form. Furthermore we shall see that another
factor can appear in the measure for the case ofg51, origi-
nating from the existence of the zero modes of a certain
differential operatorP1. It depends on how to define the
path-integral domain for the shift vectorNa in Z: If it is
defined to include kerP1, the nontrivial factor does not ap-
pear, while it appears if the integral domain is defined to
exclude kerP1 . We shall discuss that this factor can influ-
ence the semiclassical dynamics of the~211!-dimensional
spacetime withg51. These observations urge us to clarify
how to choose the integral domain forNa in quantum grav-
ity. Section IV is devoted to several discussions. In the Ap-
pendixes, we shall derive useful formulas which shall be-
come indispensable for our analysis.

II. THE PARTITION FUNCTION FOR „211…-GRAVITY

Let us consider a ~211!-dimensional spacetime,
M.S3R, whereS stands for a compact, closed, orientable
two-surface with genusg. The partition function for~211!-
dimensional pure Einstein gravity is formally given by

Z5NE @dhab#@dpab#@dN#@dNa#

3expS i E dtE
S
d2x ~pabḣab2NH2NaHa! D , ~4!

where1

H5~pabpab2p2!Ah212~ ~2!R22l!Ah, ~5!

Ha522Dbp
ab. ~6!

Here,l is the cosmological constant which is set to be zero
if it is not being considered.

TakingH5H(Ah), a canonical pair (Ah,p/Ah) can be
chosen to be gauge-fixed. One natural way to fix the gauge is
to impose a one-parameter family of gauge-fixing conditions:

1We have chosen units such thatc5\51 and such that the
Einstein-Hilbert action becomes just*RA2g up to a boundary
term. The spatial indicesa,b, . . . are raised and lowered byhab .
The operatorDa is the covariant derivative with respect tohab , and
(2)R stands for a scalar curvature of the two-surfaceS. Unless
otherwise stated, the symbolsp and h stand for habp

ab and
dethab , respectively, throughout this paper.
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x
1
:5

p

Ah
2s50 ~'sPR!, ~7!

wheres is a spatially constant parameter~York’s gauge@8#!.
Let us make clear the meaning of the gauge Eq.~7!.

We adopt the following notations: (P1
†w)a:522Dbw

ab

for a symmetric traceless tensorwab; p̃ab:5pab2 1
2 phab is

the traceless part ofpab and in particularp̃ 8ab stands for
p̃ 8ab¹ker P1

† .
Now, let Q:5p/Ah and Q8:5*Sd

2xAhQ/*Sd
2xAh,

which is the spatially constant component ofQ. Therefore,
P8(•):5*Sd

2x Ah (•)/*Sd
2xAh forms a linear map which

projectsQ to Q8. On the other hand,P512P8 projectsQ
to its spatially varying component. Note that (PQ,P8Q)
50 with respect to the natural inner product~Appendix A!.
Then, Eq.~7! can be recast as

x
1
:5PS p

AhD 50. ~8!

Next, we note thatHa522Dbp̃
ab5:(P1

†p̃)ab under the
condition of Eq. ~8!. Taking Ha5Ha(p̃ 8ab), a pair
(hab /Ah,p̃ 8abAh) shall be gauge-fixed. Thus we choose, as
a gauge-fixing condition,

x
2
:5

hab

Ah
2ĥab~tA!50 ~'tAPMg!, ~9!

where ĥab is an m-parameter family of reference metrics
(m52, 6g26 for g51, g>2, respectively! such that
det ĥab51; tA (A51, . . . ,m) denote the Teichmu¨ller pa-
rameters parametrizing the moduli spaceMg of S @10#.

At this stage, we recall@10# that a general variation of
hab can be decomposed asdhab5dWhab1dDhab1dMhab ,
wheredWhab is the trace part ofdhab ~Weyl deformation!,
dDhab5(P1v)ab :5Davb1Dbva2Dcv

chab for 'va

~the traceless part of a diffeomorphism!, and
dMhab 5 TAabdtA:5„]hab /]tA2 1

2 h
cd(]hcd /]tA)hab…dtA

~the traceless part of a moduli deformation!.2 It is easy to
show that@10# the adjoint ofP1 with respect to the natural
inner product~Appendix A! becomes (P1

†w)a:522Dbw
ab,

acting on a symmetric traceless tensorwab. @Therefore the
notation ‘‘P1’’ is compatible with the notation ‘‘P1

†’’ intro-
duced just after Eq.~7!.#

Now, the meaning of the gauge Eq.~9! is as follows. The
variation ofhab /Ah in the neighborhood ofĥab(t

A) is ex-
pressed as3

d$hab /Ah%5dD$hab /Ah%1dM$hab /Ah%.

Let Riem1(S) denote the space of unimodular Riemannian
metrics onS. We introduce projections of the tangent space
of Riem1(S) at ĥab(t

A), Tĥab(tA)„Riem1(S)…:

PD~d$hab /Ah%!5dD$hab /Ah%,

PM~d$hab /Ah%!5dM$hab /Ah%,

PD1PM51.

Then, the gauge Eq.~9! is recast as

x
2
5PD~d$hab /Ah%!50. ~10!

On Riem1(S) we can introduce a system of coordinates
in the neighborhood of eachĥab(t

A). Then@dhab# in Eq. ~4!
is expressed as@dAh#@dd$hab /Ah%#. ~It is easy to show that
the Jacobian factor associated with this change of variables is
unity.!

Finally let us discuss about the integral domain forNa in
Eq. ~4! for the case ofg51.4 Let us note that, under the
gauge Eq.~8!, we get

E
S
d2x NaHa52E

S
d2x ~P1N!abp̃

ab.

Thus, whenNaPkerP1, Na does not work as a Lagrange
multiplier enforcing the momentum constraint Eq.~6!. Then
there are two possible options for the path-ingegral domain
of Na :
~a! All of the vector fields onS, including kerP1.
~b! All of the vector fields onS, except for kerP1.

If we choose the option~a!, the integral overNa in Eq. ~4!
yields the factors det1/2(wa ,wb)d(P1

†p̃). Here$wa%a51,2 is a
basis of kerP1 for the case ofg51.5 The factor det1/2~wa,wb!
appears here since it is proportional to the volume of kerP1
with respect to the natural inner product.

If we choose the option~b!, the integral overNa yields
just a factord(P1

†p̃).
Integrating over the Lagrange multipliersN andNa, ~4!

reduces to

Z5NE @dhab#@dpab#B

3d~H!d~Ha!expS i E dtE
S
d2x pabḣabD , ~11!

where

2Needless to say, these quantities are defined forhab , a spatial
metric induced onS. Therefore, under the condition~9!, they are

calculated usingAhĥab(tA), and not justĥab(t
A).

3The symbold$•% shall be used to represent a variation whenever
there is a possibility of being confused with the delta function
d( • ).

4The author thanks S. Carlip for valuable remarks on this point.
5Let us recall that dim kerP156, 2, and 0 forg50, g51, and

g>2, respectively. On the other hand, dim kerP1
†50, 2, and

6g26 for g50, g51, andg>2, respectively. There is a relation
dim kerP12dim kerP1

†5626g ~Riemann-Roch theorem! @10#.
@Throughout this paper, dimW indicates the real dimension of a
spaceW, regarded as a vector space overR.#
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B4Hdet1/2~wa,wb! when g51 with the option ~a!

1 otherwise.

According to the Faddeev-Popov procedure@11#, we in-
sert into the right-hand side of Eq.~11! the factors

udet$H,x
1
%uudet$Ha,x

2
%ud~x

1
!d~x

2
!.

Note that, because$*vaHa,x
1
%52vaHa2vcDcx1

50 mod

Ha50 andx
1
50, the Faddeev-Popov determinant separates

into two factors as above.6 The determinants turn to simpler
expressions if we note the canonical structure of our system:

E
S
d2x pabdhab

5E
S
d2xS p̃ab1

1

2
phabD ~dWhab1dDhab1dMhab!

5E
S
d2xS p

Ah
dAh1~P1

†p̃8!ava1p̃abdMhabD .
Thus,

det $H,x
1
%5

]H
]Ah

,

det $Ha,x
2
%5S det ]Ha

]p̃ 8ab
D • ]x

2

]~dDhab!
5det8P1

†Ah.

Thus we get

Z5NE @dAh d~d$hab /Ah%!d~p/Ah! dp̃ab#B

3
]H
]Ah

det8P1
†Ahd~H!d~P1

†p̃ !d„P~p/Ah!…

3d„PD~d$hab /Ah%!…

3expF i E dtE
S
d2xS p̃ab1

1

2
phabD ḣabG . ~12!

We can simplify the above expression. First, the path in-
tegral with respect top/Ah in Eq. ~12! is of the form

I 15E d~p/Ah!d „P~p/Ah!…F~p/Ah!,

so that Eq.~B1! in Appendix B can be applied. Note that
ker P5 a space of spatially constant functions, which forms
a one-dimensional vector space overR. Now
dim kerP51, so thatdpA andd(pACW A) are equivalent, fol-

lowing the notation in Appendix B. FurthermoreP is a pro-
jection. Thus no extra Jacobian factor appears in this case.
Thus we get

I 15E @ds#F„P~p/Ah!50,s…,

wheres denotes a real parameter parametrizing kerP.
Second, the path integral with respect tod$hab /Ah% is of

the form

I 25E dd$hab /Ah%d „PD~d$hab /Ah%!…G~d$hab /Ah%!.

Note that kerPD5dM$hab /Ah%5Ah21dMhab and
det8PD51. Let $jA% (A51, . . . ,dim kerP1

†) be a basis of
ker PD . Then the factor det1/2(jA,jB) @see Eq.~B1!# is given
as

det1/2~jA,jB!5det~TA ,CB!det21/2~CA,CB!Ah21,
~13!

where $CA% (A51,...,dim kerP1
†) is a basis of kerP1

† .
This expression results in as follows. Carrying out a standard
manipulation@10,9,5#, 7

dhab5
dAh
Ah

hab1~P1v !ab1TAabdtA

5
dAh
Ah

hab1~P1ṽ !ab

1~TA ,CB!~C–,C–!21
BCCCdtA. ~14!

For the present purpose, the first and second terms are set to
be zero.~See footnote 2.! According to Appendix A, then, it
is easy to get Eq.~13!. Then with the help of Eq.~B1!, we
get

I 25E dtA det~TA ,CB! det21/2~CA,CB!Ah21

3G~dD$hab /Ah%50, tA!.

Here we understand that the integral domain for*dtA is
on the moduli spaceMg , and not the Teichmu¨ller space,
which is the universal covering space ofMg @10#. This is
clear becausetA appears in the integrandG only through
ĥab @Eq. ~9!#.

We note that the kinetic term in Eq.~12! becomes

6For notational neatness, the symbol of absolute value associated
with the Faddeev-Popov determinants shall be omitted for most of
the cases.

7BecauseP1
† is a Fredholm operator on a space of symmetric

traceless tensorsW, W can be decomposed asW5Im P1

%ker P1
† @12#. ThereforeTAabdtAPW is uniquely decomposed in

the form of P1u01(TA ,CB)(C–,C–)21
BCCCdtA. Then,

(P1ṽ )ab :5„P1(v1u0)…ab .
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E
S
d2xS p̃ab1

1

2
phabD ḣabU

x
1
5x

2
50

5E
S
d2xS p̃ab1

1

2
sAhhabD ḣabU

x
2
50

5~p̃ 8ab1pACAabAh,TBcd!ṫB1sV̇.

HereV:5*Sd
2xAh, which is interpreted as a two-volume

~area! of S. ~See Appendix A for the inner product of den-
sitized quantities.!

Finally, the path integral with respect top̃ab in Eq. ~4! is
of the form

I 35E dp̃ab d~P1
†p̃ !H~p̃ab!.

Using Eq.~B1!, this is recast as

I 35E dpA det1/2~CA,CB!~det8P1
†!21H~p̃ 8ab50, pA!.

Combining the above results forI 1, I 2, andI 3, the expres-
sion in Eq.~12! is recast as

Z5NE @dAh ds dtAdpA#
]H
]Ah

d~H!
det~TA ,CB!

det1/2~wa ,wb!
B

3expS i E
S
dt$pA~CA,TB!ṫB1sV̇% D . ~15!

The reason why the factor det21/2(wa ,wb) appears in Eq.
~15! for g51 shall be discussed below.@For the case of
g>2, the factor det21/2(wa ,wb) should be set to unity.#
Without loss of generality, we can choose a basis of
kerP1

† , $CA%, as to satisfy (TA ,CB)5dA
B.

Under our gauge choice, the equationH50 considered
as being an equation forAh, has a unique solution,
Ah5Ah(–;s,tA,pA), for fixeds, tA, andpA @2#. We there-
fore obtain

Z5NE @ds dtAdpA#det21/2~wa ,wb!B

3expS i E dt$pAṫA1sV̇~s,tA,pA!% D , ~16!

whereV(s,tA,pA):5*Sd
2x Ah(x;s,tA,pA), which is re-

garded as a function ofs, tA, andpA .
It is clear that there is still the invariance under the rep-

arametrizationt→ f (t) remaining in Eq.~16!. From the geo-
metrical viewpoint, this corresponds to the freedom in the
way of labeling the time-slices defined by Eq.~8!. ~This
point is also clear in the analysis of Ref.@2#. The treatment of
this point seems somewhat obscure in the analysis of Ref.
@9#.! The present system illustrates that the time-
reparametrization invariance still remains even after choos-
ing the time-slices@Eq. ~7! or Eq. ~8!#.

Equation~16! is equivalent to

Z5NE @ds dps dtAdpA#@dN8#det21/2~wa ,wb!A

3expS i E dt $pAṫA1psṡ2N8„ps1V~s,tA,pA!…% D ,
~17!

where the integration by parts is understood. This system has
a similar structure to a system of a relativistic particle and a
system of a nonrelativistic particle in a parametrized form
@13#. We shall discuss this point in detail in the final section.
One can gauge-fix the reparametrization symmetry by choos-
ing s5t, i.e., by imposing a conditionx5s2t50. The
Faddeev-Popov procedure@11# in this case reduces to simply
insertingd(s2t) into Eq. ~17!. Thus we obtain

Z5NE @dtAdpA#A

3expS i E ds$pA dtA/ds2V~s,tA,pA!% D . ~18!

Here

A5H det21/2~wa ,wb! when g51 with the option~b!

1 otherwise.

Looking at the exponent in Eq.~18!, we see that
V(s,tA,pA) plays the role of a time-dependent Hamiltonian
in the present gauge@2#. We see that the partition function
formally defined by Eq.~4! is equivalent to the partition
function defined by taking the reduced system as a starting
point, as can be read off in Eq.~18!. However, there is one
point to be noted. For the case ofg51 with the option~b!,
for which dim kerP152, the factor det21/2(wa ,wb) ap-
pears. This factor can cause a nontrivial effect. We shall
come back to this point in the next section. Typically, this
factor can be a function ofV(s,tA,pA) @see below, Eq.
~22!#. On the contrary, for the case ofg>2, and the case of
g51 with the option~a!, this factor does not appear.8

Let us discuss the possible factor det21/2(wa ,wb) in Eq.
~18!.

In the case ofg51, the space kerP1, which is equivalent
to a space of conformal Killing vectors, is nontrivial. Now
a special class of Weyl deformations represented
as dWhab5D•v0 hab , where v0PkerP1, is translated
into a diffeomorphism:D•v0 hab5(P1v0)ab1D•v0 hab
5Lv0hab . ~HereLv0 denotes the Lie derivative with respect
to v0.! Thus,dWhab5D•v0 hab , v0PkerP1 is generated by
Ha along the gauge orbit. Therefore it should be removed
from the integral domain for*@dAh# in Eq. ~12!. One easily
sees that the volume of kerP1, which should be factorized
out from the whole volume of the Weyl transformations,
is proportional to det1/2(wa ,wb). Therefore the factor
det21/2(wa ,wb) appears in Eq.~18!.

8The author thanks S. Carlip for helpful comments on this point.
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There is another way of explaining the factor
det21/2(wa ,wb) @5#. Let us concentrate on the diffeomor-
phism invariance in Eq.~4! characterized byHa50. The
Faddeev-Popov determinant associated with this invariance
can be related to the Jacobian for the change
hab→(Ah,va,tA). By the same kind of argument as in Eq.
~13!, one finds the Faddeev-Popov determinant to be

DFP5det~TA ,CB! det21/2~CA,CB!~det8P1
†P1!

1/2.

One way of carrying out the Faddeev-Popov procedure is to
insert 15*dLdet(]x/]L)d(x) into the path-integral for-
mula in question, wherex is a gauge-fixing function andL
is a gauge parameter. Then the path integral in Eq.~4! re-
duces to the form

I5E @dhab#@dAh dva dtA#@d* #d~hab2Ahĥab! f ~hab!

5E @dAh dva dtA#@d* # f ~Ahĥab!,

where@d* # stands for all of the remaining integral measures
includingDFP.

Now, we need to factorize outVDiff 0
, the whole volume

of diffeomorphisms homotopic to 1. This volume is related
to *@dva# as VDiff 0

5(*@dva#)•VkerP1
, where VkerP1

}det1/2(wa ,wb) @10#. Here we note that kerP1 is not in-
cluded in the integral domain of*@dva#: the diffeomorphism
associated with;v0Pker P1 is translated into a Weyl trans-
formation, asLv0hab5(P1v0)ab1D • v0 hab5D • v0 hab
~it is noteworthy that this argument is reciprocal to the pre-
vious one!, so that it is already counted in*@dAh#. In this
manner we get

I5VDiff 0E @dAh dtA#@d* #

det1/2~wa ,wb!
f ~Ahĥab!.

In effect, the volume of kerP1 has been removed from the
whole volume of the Weyl transformations, which is the
same result as the one in the previous argument.@Again, for
the case ofg>2, the factor det21/2(wa ,wb) should be set to
unity.# Furthermore, by factorizing the entire volume of dif-
feomorphisms,VDiff , and not justVDiff 0

, the integral domain

for *@dtA# is reduced to the moduli space,Mg @10,5#. The
intermediate step of factorizingVDiff 0

is necessary since the

va’s are labels parametrizing the tangent space of
Riem(S), the space of all Riemannian metrics onS.

III. ANALYSIS OF THE g51 CASE

We now investigate how the reduced canonical system in
the (t,V)-form @3# comes out in the partition function when
g51.

To begin with, let us recover*@dAh# and*@ds# in Eq.
~18!, yielding

Z5NE @dAh#@ds#@dtAdpA#A
]H
]Ah

d~H!d~s2t !

3expS i E dtH pA dtA

dt
1s

d

dt
V~s,tA,pA!J D . ~19!

Equation~19! is of the form

I5E @dAh#@d* #
]H
]Ah

d~H! f ~Ah!, ~20!

where@d* # stands for all of the remaining integral measures.
Now it is shown that forg51 the simultaneous differen-

tial equations, Eq.~5!, Eq. ~6!, Eq. ~7! @or Eq. ~8!#, and Eq.
~9! @or Eq. ~10!#, have a unique solution forAh, which is
spatially constant,Ah0:5F(tA,pA ,s) @2#. Thus the integral
region for *@dAh# in Eq. ~20! can be restricted to
D5$AhuAh5spatially constant%. Let us note thatAh is the
only quantity that in principle can depend on spatial coordi-
nates in Eq.~19!. Accordingly, only the spatially constant
components of the arguments of the integrand contribute to
the path integral.

Thus

I5E @d* # f ~Ah0!

5E
D

@dAh#@d* #H E
S
d2xAh

]H
]AhYE

S
d2x AhJ

3d S E
S
d2x HYE

S
d2xD f ~Ah!

5E
D
S @dAh#E

S
d2xD @d* #

]H

]V
d~H ! f̃ ~V!

5E @dV#@d* #
]H

]V
d~H ! f̃ ~V!

5E @dV#@d* #@dN8#
]H

]V
f̃ ~V!expS 2 i E dt N8~ t !H~ t !D ,

whereH:5*Sd
2x H, V:5*Sd

2x Ah, and f̃ (V):5 f (Ah).
The prime symbol inN8(t) is to emphasize that it is spatially
constant.

Thus we see that Eq.~19! is equivalent to

Z5NE @dV ds#@dtA dpA# @dN8#A
]H

]V
d~s2t !

3expS i E dt ~pA ṫA1sV̇2N8H ! D , ~21!

whereV andN8 are spatially constant, andH is the reduced
Hamiltonian in the (t,V)-form. @See below, Eq.~23!.#

We choose, as a gauge condition@see Eq.~9!# @5#,

hab5Vĥab, ĥab5
1

t2S 1 t1

t1 utu2D ,
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where t:5t11 i t2 and t2.0.9 Here we have already re-
placedAh with V5*SAh, noting thatAh is spatially con-
stant for the case ofg51. Then, it is straightforward to get

T1ab5
V

t2S 0 1

1 2t1D , T2ab5 V

~t2!2S 21 2t1

2t1 ~t2!22~t1!2D .
@See the paragraph next to the one including Eq.~9! for the
definition of $TA%.#

As a basis of kerP1
† , $CA%A51,2, the fact that

P1
†(TA)a :522DbTAab522]bTAab50 simplifies the situa-

tion. We can choose as$CA%A51,2

Cab
1 5

1

2S 0 t2

t2 2t1t2D , Cab
2 5

1

2S 21 2t1

2t1 ~t2!22~t1!2D ,
which satisfy (CA,TB)5dAB .

Now, let us consider the case of the option~b! ~Sec. II!. In
this case the factorA becomesA5det21/2(wa,wb). As a
basis of kerP1, $wa%a51,2, we can take spatially constant
vectors becauseDa5]a for the metric in question, and be-
cause constant vectors are compatible with the condition for
the allowed vector fields onT2. ~Note the fact that the Euler
characteristic ofT2 vanishes, along with the Poincare´-Hopf
theorem@14#.! Therefore, let us take

w1
a5l1S 10D , w2

a5l2S 01D ,
wherel1 andl2 are spatially constant factors. Then, we get

~wa ,wb!5S l1
2V2/t2 l1l2V

2t1/t2

l1l2V
2t1/t2 l2

2V2utu2/t2D .
Thus, we obtain

det1/2~wa ,wb!5ul1l2uV2. ~22!

On account of a requirement thatZ should be modular
invariant,ul1l2u can be a function of onlyV ands at most.
There seems no further principle for fixingul1l2u. Only
when we choose as ul1l2u5V22, the factor
det21/2(wa ,wb) in Eq. ~16! or Eq. ~18! has no influence. No
such subtlety occurs in the string theory, sinces does not
appear and sinceV is not important on account of the con-
formal invariance ~except for, of course, the conformal
anomaly!.

It is easy to see that, in our representation, the reduced
action in the (t,V)-form becomes

S5E
t1

t2
dt„pAṫA1sV̇2N8~ t !H…,

H5
~t2!2

2V
~p1

21p2
2!2

1

2
s2V2LV. ~23!

Here l52L (L.0) corresponds to the negative cosmo-
logical constant, which is set to zero when it is not consid-
ered.@The introduction ofl (,0) may be preferable to side-
step a subtlety of the existence of a special solution
p15p25s50 for l50. This special solution forms a coni-
cal singularity in the reduced phase space, which has been
already discussed in Ref.@2# and in Ref.@9#.# Therefore, we
get

2
]H

]V
5

~t2!2

2V2 ~p1
21p2

2!1
1

2
s21L . ~24!

As discussed in Sec. I, the choice ofN5 spatially con-
stant, which is consistent with the equations of motion, is
essential in the (t,V)-form. This procedure can be however
influential quantum mechanically, so that its quantum theo-
retical effects should be investigated. In particular we need to
understand the origin of the factor]H/]V in Eq. ~21!.

Let us start from the action in Eq.~23!. It possesses a
time-reparametrization invariance:

dtA5e~ t !$tA,H%, dpA5e~ t !$pA ,H%,

dV5e~ t !$V,H%, ds5e~ t !$s,H%,

dN85 ė~ t ! with e~ t1!5e~ t2!50. ~25!

In order to quantize this system, one needs to fix a time
variable. One possible gauge-fixing condition is
x:5s2t50. Then according to the Faddeev-Popov proce-
dure, the factor$x,H% d(x)52(]H/]V) d(s2t) is in-
serted into the formal expression forZ. The result is equiva-
lent to Eq.~19! up to the factorA.

Now we understand the origin of the nontrivial factor
]H/]V in Eq. ~19!. In order to shift from the (t,V)-form to
the t-form, it is necessary to demote the virtual dynamical
variablesV ands to the Hamiltonian and the time param-
eter, respectively. Then, the factor]H/]V appears as the
Faddeev-Popov determinant associated with a particular time
gauges5t.

In this manner, we found that the (t,V)-form is equiva-
lent to thet-form even in the quantum theory, provided that
the time-reparametrization symmetry remnant in the
(t,V)-form is gauge-fixed by a particular condition
x:5s2t50. In particular the key procedure of imposing
N5 spatially constant@3# turned out to be independent of the
equations of motion themselves and valid in the quantum
theory.~Of course the fact that it does not contradict with the
equations of motion is important.!

Finally it is appropriate to mention the relation of the
present result with the previous one obtained in Ref.@5#. In
Ref. @5# also, the case ofg51 was analyzed although the
model was restricted to be spatially homogeneous. The result
there was that the factor]H/]V did not appear in the mea-
sure although the (t,V)-form was adopted. This result is
reasonable because in Ref.@5# only the spatial diffeomor-
phism symmetry associated withHa was gauge-fixed explic-

9Throughout this section,t2 always indicates the second compo-
nent of (t1,t2), and never the square oft:5t11 i t2.
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itly. As for the symmetry associated withH, the Dirac-
Wheeler-DeWitt procedure was applied instead of the
explicit gauge-fixing.@Alternatively, one can regard that the
symmetry associated withH was gauge-fixed by a nonca-
nonical gaugeṄ50 @15#.# Therefore it is reasonable that
]H/]V did not appear in the analysis of Ref.@5#. Thus the
result of Ref.@5# is compatible with the present result.

IV. DISCUSSIONS

We have investigated how a partition function for~211!-
dimensional pure Einstein gravity, formally defined in Eq.
~4!, yields a partition function defined on a reduced phase
space by gauge fixing. We have shown that Eq.~4! reduces
to Eq. ~18!, which is interpreted as a partition function for a
reduced system in thet-form. For the case ofg>2, this
result is compatible with Carlip’s analysis@9#.

For the case ofg51, with the option ~b!, a factor
det21/2(wa ,wb) can arise as a consequence of the fact that
dim kerP1Þ0. This factor can be influential except when
the choice det1/2(wa ,wb)51 is justified. The requirement of
the modular invariance is not enough to fix this factor.

Furthermore Eq.~4! has turned out to reduce to Eq.~21!,
which is interpreted as a partition function for a reduced
system in the (t,V)-form with a nontrivial measure factor
]H/]V as well as the possible factor det21/2(wa ,wb). The
former factor was interpreted as the Faddeev-Popov determi-
nant associated with the time gauges5t, which was neces-
sary to convert from the (t,V)-form to the t-form. The
choice ofN5 spatially constant was the essential element to
derive the (t,V)-form in the classical theory. In particular
the equations of motion were used to show its compatibility
with York’s gauge @3#. Therefore the relation of the
(t,V)-form with the t-form in the quantum level was re-
quired to be clarified. Moreover, since the conditionN5
spatially constant is not in the form of the canonical gauge,
the analysis of its role in the quantum level was intriguing.
Our analysis based on the path-integral formalism turned out
to be powerful for studying these issues. Our result shows
that the (t,V)-form is equivalent to thet-form even in the
quantum theory, as far as the time-reparametrization symme-
try in the (t,V)-form is gauge-fixed byx:5s2t50. The
postulation of N5spatially constant in deriving the
(t,V)-form turned out to be independent of the equations of
motion and harmless even in the quantum theory.

These results are quite suggestive to quantum gravity and
quantum cosmology.

First, the measure factor similar to det21/2(wa ,wb) is
likely to appear whenever a class of spatial geometries in
question allows conformal Killing vectors (kerP1ÞB). This
factor can be influential on the semiclassical behavior of the
Universe.

The issue of the two options~a! and ~b! regarding the
path-integral domain of the shift vector~Sec. II! is interest-
ing from a general viewpoint of gravitational systems. If one
imposes that there should be no extra factor in the path-
integral measure for the reduced system, then the option~a!
is preferred. There may be other arguments which prefer one
of the two options.

As another issue, the variety of representations of the
same system in the classical level and the variety of the

gauge-fixing conditions result in different quantum theories
in general, and the relation between them should be more
clarified. The model analyzed here shall be a good test case
for the study of this issue.

To summarize what we have learned and to recognize
what needs to be clarified more, it is helpful to place our
system beside a simpler system with a similar structure. The
system of a relativistic particle@13# is an appropriate model
for illustrating the relation between thet-form and the
(t,V)-form.

Let xa:5(x0, xW ) and pa :5(p0 , pW ) be the world point
and the four momentum, respectively, of a relativistic par-
ticle. Taking x0 as the time parameter, the action for the
~positive energy! relativistic particle with rest massm is
given by

S5E dx0 S pW • dxW
dx0

2ApW 21m2D . ~26!

Equation~26! corresponds to thet-form @Eq. ~2!#. Now one
can promotex0 to a dynamical variable:

S5E dt $paẋ
a2N~p01ApW 21m2!%. ~27!

Here t is an arbitrary parameter such thatx0(t) becomes a
monotonic function oft; N is the Lagrange multiplier enforc-

ing a constraintp01ApW 21m250. The action Eq.~27! cor-
responds to the action appearing in Eq.~17!.

It is possible to takep21m250 with p0,0 as a con-

straint instead ofp01ApW 21m250. Then an alternative ac-
tion for the same system is given by

S5E
t1

t2
dt $paẋ

a2N H%,

H5p21m2. ~28!

Equation~28! corresponds to the (t,V)-form @Eq. ~3! or Eq.
~23!#.

The system defined by Eq.~28! possesses the time re-
parametrization invariance similar to Eq.~25!:

dxa5e~ t !$xa,H%, dpa5e~ t !$pa ,H%,

dN5 ė~ t ! with e~ t1!5e~ t2!50. ~29!

Thus the gauge-fixing is needed in order to quantize this
system. Here let us concentrate on two kinds of the gauge-
fixing condition:

~1! x
I
:5x02t50 ~canonical gauge!,

~2! x
II
:5Ṅ50 ~noncanonical gauge!.

Choosing the gauge condition~i!, one inserts the factors
$x

I
,H%d(x

I
)522p0 d(x02t) into the path-integral formula

according to the Faddeev-Popov procedure@11#. More rigor-
ously, the factorsu(2p0) $x

I
,H% d(x

I
) , or alternatively,

u(N) $x
I
,H% d(x

I
) should be inserted in order to obtain the

equivalent quantum theory to the one obtained by Eq.~26!
@13#. The factoru(2p0) selects the positive energy solution
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2p05ApW 21m2 among the two solutions ofH5p2

1m250 with respect top0. This gauge~i! corresponds to
the gaugex5s2t50 in the previous section. We observe
that a pair (x0, p0) corresponds to the pair (s, 2V) which
is obtained from an original pair (V, s) by a simple canoni-

cal transformation.@The relation 2p05ApW 21m2 corre-
sponds to the relationV5V(s,tA,pA).# Thus the additional
restriction factoru(2p0) should correspond tou(V), which
is identically unity because of the positivity ofV. It is quite
suggestive that one solution among the two solutions of
H50 @Eq. ~23!# with respect toV is automatically selected
becauseV is the two-volume ofS.

As for the other gauge~ii ! x
II
:5Ṅ50, it is quite different

in nature compared with~i! x
I
:5x02t50. Apparently the

path-integral measure becomes different. This point becomes
clear if the transition amplitude (x2

a u x1
a ) for the system

Eq. ~28! is calculated by imposing~i! and by imposing~ii !.
By the canonical gauge~i!, one obtains

~x2
a u x1

a! I5E d4p exp$ ipa~x2
a2x1

a!% u22p0ud~p21m2!,

if the simplest skeletonization scheme is adopted as in Ref.
@13#. @Here we set aside the question about the equivalence
with the system described by Eq.~26! so that the factor
u(2p0) is not inserted.# The gauge~ii ! can be handled@15#
by the Batalin-Fradkin-Vilkovisky method@16# instead of
the Faddeev-Popov method, and the result is

~x2
a u x1

a! II5E d4p exp$ ipa~x2
a2x1

a!%d~p21m2!.

Both ( x2
a u x1

a ) I and ( x2
a u x1

a ) II satisfy the Wheeler-
DeWitt equation but they are clearly different. One finds that
if another gauge (i8) x I8 :52(x0/2p0)2t50 is adopted in-
stead of ~i!, the resultant (x2

a u x1
a ) I8 is equivalent to

( x2
a u x1

a ) II . One sees that2(x0/2p0)}x
0A12(v/c)2

under the conditionH50, which is interpreted as the proper-
time.

Even in the present simple model, it is already clear that
only solving the Wheeler-DeWitt equation is not enough to
reveal the quantum nature of the spacetime. Then it is in-
triguing what the relation there is between the gauge condi-
tions and the boundary conditions for the Wheeler-DeWitt
equation. Apparently more investigations are needed regard-
ing the gauge-fixing conditions, especially the relation be-
tween the canonical gauges and the noncanonical gauges.
The system of~211!-dimensional Einstein gravity shall
serve as a good test candidate to investigate these points in
the context of quantum cosmology.
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APPENDIX A: THE JACOBIAN ASSOCIATED
WITH CHANGE OF INTEGRAL VARIABLES

We often need to change integral variables in
path integrals. LetXA and XA8 (A, A851, . . . ,n) denote
the original and the new variables, respectively, in terms
of which the line element is given asds2

5GABdX
AdXB„5:(dX,dX)…5GA8B8dX

A8dXB8. Then, a
natural invariant measure becomes@dX#5dnXAdetG
5dnX8AdetG8. In other words, we define a measure in an
invariant manner to satisfy 15*@dX#exp{2(dX,dX)}. Now,
a convenient way to find out the JacobianJ associated with
the change of variables,XA→XA8, is @17# as follows.

~i! RepresentdXA in terms ofdXA8,

dXA5~]XA/]XA8!dXA8 .

~ii ! Represent (dX,dX) in terms ofdXA8,

~dX,dX!5GAB

]XA

]XA8

]XB

]XB8
dXA8dXB8 .

~iii ! The Jacobian is given by setting

15JE dndX8exp$2~dX,dX!%, ~A1!

since this should be equivalent to 15J(AdetG8)21 up to
some unimportant numerical factor.

Here it may be appropriate to mention the natural line
element in our case. The ‘‘kinetic term’’K in the Hamil-
tonian constraint defines the geometrical structure of the con-
figuration space. It is in the form@see Eq.~5!#

K5E
S
d2xAh~hachbd2habhcd!

pab

Ah
pcd

Ah
,

whereS stands for a two-surface. Therefore, the inner prod-
uct between second-rank tensor fields which is compatible
with the geometrical structure of the configuration space is
given by

~w––, w8––!:5E
S
d2xAh~hachbd2habhcd!w

abw8cd .

Furthermore, the second term in the parenthesis is not impor-
tant in the following sense. We observe that

~w––, w8••!k:5E
S
d2xAh~hachbd1k habhcd!w

abw8cd

5E
S
d2xAh $w̃abw̃ab8 1~1/21k!ww8%,

where w̃ab and w stand for the traceless part ofwab and
habw

ab, respectively. Therefore, as far as the path integral is
concerned, the effect of the value ofk is absorbed into the
normalization factorN @10#. ~We exclude the singular case
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k521/2.!10 Thus we simply setk50. In this manner we are
given the natural inner product between second-rank tensor
fields, which is diffeomorphism invariant in accordance with
the principle of relativity. Afterwards we can extend the in-
ner product to other types of fields also. For instance

~ f , g!:5E
S
d2xAh fg,

~u –, u8 –!:5E
S
d2xAh habu

aub,

~w ––, w8 ––!:5E
S
d2xAh hachbdw

abw8cd .

For the case of densitized fields, an appropriate power of
Ah should be multiplied to the integrand in order to make the
inner product diffeomorphism invariant.

APPENDIX B: A FORMULA
FOR THE DELTA FUNCTION

Here we derive a formula which is essential in our discus-
sions@5#.

Let A be a linear~Fredholm! operator possibly with zero
modes. Let$CW A%A51,... ,dimkerA be a basis of kerA. Suppose
we evaluate an integralI5*dnXd(AXW ) f (XW ). Any vectorXW
PW in the domain ofA can be uniquely decomposed
as XW 5XW 81pACW A, where pA5(X,CB)(C–,C–)21

BA , with
(C–,C–)21 being the inverse matrix of (CA,CB). Now,
let us change the integral variables fromXW to (XW 8,pA).
The JacobianJ for this change is given as follows. Noting
that (dX,dX)5(dX8,dX8)1(CA,CB)pApB , we obtain
J5det1/2(CA,CB) @see Eq.~A1!#. Then I can be expressed
as

I5E dpAdXW 8 det1/2~CA,CB!d~AXW 8! f ~XW 8,pA!.

We thus obtain a formula

E dnXd~AXW ! f ~XW !

5E dpA det1/2~CA,CB!~det8A!21f ~XW 850W , pA!, ~B1!

where det8A denotes the determinant ofA onW/kerA ~i.e.,
the zero modes ofA are removed!.
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