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Taking (2+1)-dimensional pure Einstein gravity for arbitrary gergis1 as a model, we investigate the
relation between the partition function formally defined on the entire phase space and the one written in terms
of the reduced phase space. The casg-oi (torug is analyzed in detail and it provides us with good lessons
for quantum cosmology. We formulate the gauge-fixing conditions in a form suitable for our purpose. Then the
gauge-fixing procedure is applied to the partition functibfor (2+1)-dimensional gravity, formally defined
on the entire phase space. We show that basically it reduces to a partition function defined for the reduced
system, whose dynamical variables aré,p,). (Here ther™’s are the Teichriler parameters and the,’s
are their conjugate momenitas for the case ofj=1, we find out tha is also related with another reduced
form, whose dynamical variables are not oni(p,), but also ¥,0). [Here o is a conjugate momentum to
the two-volume(area V of a spatial section.A nontrivial factor appears in the measure in terms of this type
of reduced form. This factor is understood as a Faddeev-Popov determinant associated with the time-
reparametrization invariance inherent in this type of formulation. In this manner, the relation between two
reduced formulations becomes transparent in the context of quantum theory. As another result for the case of
g=1, one factor originating from the zero modes of a differential opef@jocan appear in the path-integral
measure in the reduced representatio oft depends on how to define the path-integral domain for the shift
vectorN, in Z: If it is defined to include keP, the nontrivial factor does not appear. On the other hand, if the
integral domain is defined to exclude Key, the factor appears in the measure. This factor can depend on the
dynamical variables, typically as a function \éf and can influence the semiclassical dynamics of(2hel)-
dimensional spacetime. These results shall be significant from the viewpoint of quantum gravity and quantum
cosmology[S0556-282(197)06402-3

PACS numbg(s): 04.60.Kz, 04.60.Gw, 98.80.Hw

I. INTRODUCTION

z=/\/f [dV do][d7 dpa][dN’]
Because of both its simplicity and nontrivial nature,

(2+1)-dimensional Einstein gravity serves as a good test X w(V, 0,7, pp) eXPi Sreduced -

case for pursuing quantum gravity in the framework of gen-

eral relativity. In particular, because of the low dimensional-

ity, the global degrees of freedom of a space can be analyzq hmiiler parameters, and their conjugate momema; is

quite explicitly in this C?S@—“]- the spatially constant part &f; S.q.ceqdiS the reduced action
Recently, back-reaction effects from quantum matter onitten in terms of V. o. 7~ and pa. The factor

the global degrees pf freedom o_f a semi(_:lassical univerSﬁ(V,U,TA,pA) is a possible nontrivial measure, which can
were analyzed explicithfS]. In this analysis, th&2+1)-  cayse a modification of the semiclassical evolution deter-
dimensional homogeneous spacetime with topoloQynined by Sges The result of Ref.[5] was that
M=T?xR was chosen as a model. This problem was invesp(v,glfA,pA): 1: The partition function defined as in Eq.
tigated from a general interest on the global properties of @1) is equivalent, after a suitable gauge fixing, to the one
semiclassical universe, whose analysis has not yet been puefined directly from the reduced systeBleg,ceqs ThoOUgh
sued sufficiently{5-7]. this result looks natural at first sight, it is far from trivial.

In this analysis, it was also investigated whether the patibne needs to extract a finite dimensional reduced phase
integral measure could give a correction to the semiclassicalpace from an infinite dimensional original phase space.
dynamics of the global degrees of freedf®j. By virtue of  Therefore, it is meaningful to show that such a natural reduc-
several techniques developed in string theory, one can giveton is really achieved by a suitable gauge fixing.
meaning to a partition function, formally defined as The main interest in Ref5] was the explicit analysis of
the semiclassical dynamics of the tractable model,
M=T?xR. Therefore, the analysis of the reduction of the
partition function was inevitably restricted to the special
model in question. Namely it was the casegef 1, where
Hereh,, and 72" are a spatial metric and its conjugate mo-g is a genus of a Riemann surface. Furthermore, the model
mentum, respectivelyl andN, are the lapse and shift func- was set to be spatially homogeneous from the outset. It is
tions, respectively;S is the canonical action for Einstein then desirable for completeness to generalize the analysis in
gravity. It is expected thaf reduces to the form Ref.[5] to the general case of am=1.

HereV, o, 7, andp, (A=1,2) are, respectively, the two-
volume (areaq of a torus, its conjugate momentum, the Te-

Z=NJ [dh,p][d7®][dN][dN,] exp(iS). (1)
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More significantly, there is one issue remaining to be In view of these situations of previous work, we shall
clarified in the case o§=1: The relation between the re- present here the full analysis for all the cagesl. In par-
duced system of the type of R¢2] and the one of the type ticular, a more detailed investigation for the casegef1
of Ref.[3] in the context of quantum theory. For brevity, let shall be performed.

us call the former formulation as theform, while the latter In Sec. Il, we shall investigate fag=1 the reduction of
one as the £,V)-form. The r-form takes ¢*,p,) as funda- the partition function of Eq(1), to the one for the reduced
mental canonical pairs and the action is given[By system in ther-form. In Sec. lll, we shall investigate how

the (r,V)-form emerges whemg=1 in the course of the
reduction of the partition function, E¢l). We shall find out
S[TAva]zf do{pa d/do—V(o,7™,pa)}.  (2)  that a nontrivial measure appears in the formula defining a
partition function, if the ¢,V)-form is adopted. We shall see
that this factor is understood as the Faddeev-Popov determi-
nant associated with the reparametrization invariance inher-
ent in the ¢,V)-form. Furthermore we shall see that another
factor can appear in the measure for the casg=ol, origi-
_ : VIl nating from the existence of the zero modes of a certain
S[(TA’DA)’(V'U)]_f dt{pa 7'+ oV=NH(7",pa,V. )} differential operatorP,. It depends on how to define the
(3 path-integral domain for the shift vectdt, in Z: If it is
defined to include kelP,, the nontrivial factor does not ap-
(The explicit expression foH shall be presented lat¢Eq.  pear, while it appears if the integral domain is defined to
(23)].) The key procedure in deriving the,(V)-form (in the  exclude keP,. We shall discuss that this factor can influ-
classical sengds to chooseN= spatially constanf3]. Since  ence the semiclassical dynamics of #et1)-dimensional
the compatibility of this choice with York’s time-slicing is spacetime withg=1. These observations urge us to clarify
shown by means of the equations of mot[@j, one should how to choose the integral domain fii, in quantum grav-
investigate the effect of this choice in quantum theory. Fur4ty. Section IV is devoted to several discussions. In the Ap-
thermore, the conditioN= spatially constant is not in the pendixes, we shall derive useful formulas which shall be-
standard form of the canonical gauge, so that the analysis @ome indispensable for our analysis.
its role in the quantum level requires special cares. Since the

On the other hand ther(V)-form uses V,o) as well as
(™,p,) and the action is given in the forfi3]

model analy;e(_j in Rets] was choseﬂ to be spatially homo- || THE PARTITION FUNCTION FOR (24+1)-GRAVITY
geneous, this issue did not make its appearance. We shall
make these issues clarified. Let us consider a (2+1)-dimensional spacetime,

Regarding the £,V)-form, there is another issue which is M=3XR, whereX stands for a compact, closed, orientable
not very clear. In this formulation){, o) joins to (7*,p,) as  two-surface with genug. The partition function for2+1)-
one of the canonical pairs. Therefdfg, [[do] should ap- dimensional pure Einstein gravity is formally given by
pear in the final form ofZ as well aji[dV]. Since the
adopted gauge-fixing condition isr/\h—o=0 (York's _ ab
gaug€g8]), o plays the role of a label parametrizing a family Z_Nf [dhaplldmILANIANG]
of allowed gauge-fixing conditions, so that it is not dynami-
cal in the beginning. Therefore, the appearancé[afo] is xex;( if dtj d?x (7*h,,—NH—NH?) |, (4)
not apparent, and worthy of tracing from a viewpoint of a P
general procedure of gauge fixing. We shall investigate these

points. wher
Independently from the analysis of R¢g], Carlip also
investigated the relation between two partition functions, one H= (71— 72 Vh~I=(PR—2)\) Vh, ()
being defined on the entire phase space, and the other one on
the reduced phase space in the sense ofteem [9]. With H3=— 2D, 7P, (6)

regard to this problem, his viewpoint was more general than

Ref.[5]. He showed that, for the case g¥2, the partition  Here,\ is the cosmological constant which is set to be zero
function formally defined as in Ed1) is equivalent to the if it is not being considered.

one for the reduced system in thdorm. On the other hand, Taking H="H(\/h), a canonical pair (h,7/+/h) can be
the exceptional case aj=1 was not analyzed so much. chosen to be gauge-fixed. One natural way to fix the gauge is
Indeed, we shall see later that the casgefl can yield a to impose a one-parameter family of gauge-fixing conditions:
different result compared with the caseg#$2. In this re-

spect, his analysis and the analysis in RBf.do supplement

each other. Furthermore, his way of analysis is quite differ- ‘we have chosen units such that=%A=1 and such that the
ent from the one developed in REB]. In particular, it looks  Einstein-Hilbert action becomes jugtRy—g up to a boundary
difficult to trace the appearance §fdo] if his analysis is  term. The spatial indices,b, ... are raised and lowered by, .
applied to the case aj=1 in the (r,V)-form. It may be The operatoD, is the covariant derivative with respecthg,, and
useful, therefore, to investigate all the casegafl froma (R stands for a scalar curvature of the two-surf@.eUnless
different angle, namely by a developed version of theotherwise stated, the symbols and h stand for h,,72" and
method of Ref[5]. deth,,, respectively, throughout this paper.
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Let Riem;(X) denote the space of unimodular Riemannian

X = % —0=0 (JoeR), (7) metrics onX. We introduce projections of the tangent space
of Riem,(2) at hyu(™), Th, (-4 (Riemy(2)):

whereo is a spatially constant parametdork’s gauge 8]).
Let us make clear the meaning of the gauge 3. Po(8{hap/Vh}) = 8p{hap/vh},

We adopt the following notations:P{w): = — 2D w?3®
for a symmetric traceless tensaf?; 72% = 72— 1 7hab is Pu(8{nap/Vh}) = du{hap/ Vh},
the traceless part of2® and in particularz’2° stands for
7' ker Pl Pot+Pu=1.

Now, let Q:==/\h and Q":=[sd*xvhQ/[sd?*x /h,
which is the spatially constant component@f Therefore, Then, the gauge Eq9) is recast as
P'(-):=[sd?> vh (-)/fsd?x\/h forms a linear map which
projectsQ to Q’. On the other handP=1—P" projectsQ X2=73D(5{hab/\/ﬁ})=0. (10
to its spatially varying component. Note thaP@,P’'Q)
=0 with respect to the natural inner prodyétppendix A).

On Riemy(2) we can introduce a system of coordinates
Then, Eqg.(7) can be recast as m(>) Y

in the neighborhood of eadhy,(7). Then[dh,y] in Eq. (4)

is expressed g=i\h][d&{h,,/Vh!]. (It is easy to show that
=P T _ 0 8 the Jacobian factor associated with this change of variables is
X, tS) :
vh unity.)

Finally let us discuss about the integral domain Kgrin
Next, we note that{2= _zob}ab:;(p’{})ab under the EQ. (4) for the case ofg=1. Let us note that, under the
condition of Eq. (8). Taking H2=H?3(7'2%), a pair dauge Eq(8), we get
(h,p/+/h, 73 \h) shall be gauge-fixed. Thus we choose, as
a gauge-fixing condition, j 4 NaHa=2f o2 (PyN) 70,
s s

hab .

X<

where h,, is an m-parameter family of reference metrics .
(m=2, 6g—6 for g=1, g=2, respectively S.l.JCh that (4 All of the vector fields or., including kerP;.
deth,,=1; 7 (A=1,...m) denote the Teichriller pa-  (b) All of the vector fields or,, except for keiP;.
rameters parametrizing the moduli spatg, of X [10]. If we choose the optiofe), the integral oveN, in Eq. (4)
At this stage, we recall10] that a general variation of yields the factors dé{@(%,@ﬁ) 5(p1;)_ Here{e,},_12iS @
hap can be decomposed @ap=Swhap* doNant dwhan,  basis of keiP; for the case ofj=1.° The factor def¥(¢,,¢;)
where 6yh,y, is the trace part obh,, (Weyl deformation),  appears here since it is proportional to the volume offker
OpNap=(P10)ap:=Davp+Dpva—Dcvthy,  for  Fv® it respect to the natural inner product.

hap(7)=0 (HTAEMg)v ©) Thus, whenN, e kerP;, N, does not work as a Lagrange

multiplier enforcing the momentum constraint E§). Then
there are two possible options for the path-ingegral domain

(the traceless part of a diffeomorphism and If we choose the optiorib), the integral oveN, yields
Suhap = Taapd™: = (dhp/ 97— 3 W4 oheq/ 97 hyp) 674 just a factors(P17).

(the traceless part of a moduli Qeformaﬁﬁrit is easy to Integrating over the Lagrange multipliels and N,,, (4)
show that[10] the adjoint of P, with respect to the natural equces to

inner product(Appendix A becomes Pjw)2: = — 2D w?",

acting on a symmetric traceless tenset®. [Therefore the

notation “P;” is compatible with the notation P]" intro- Z=Nf [dhap][d7*]B

duced just after Eq(7).]

Now, the meaning of the gauge H) is as follows. The
variation ofh,,/+h in the neighborhood oh,,(7) is ex-
pressed &s

><5(H)6(Ha)exp<i f dt LdZX wabhab), (11)

where

5{hab/\/ﬁ}= 5D{hab/\/ﬁ}+ 5M{hab/\/ﬁ}'

“The author thanks S. Carlip for valuable remarks on this point.

°Needless to say, these quantities are definechfgr a spatial SLet us recall that dim keP,=6, 2, and 0 forg=0, g=1, and
metric induced or. Therefore, under the conditid®), they are  g=2, respectively. On the other hand, dim k=0, 2, and
calculated using/ﬁﬁab(rA), and notjust‘ﬁab(rA). 6g—6 for g=0, g=1, andg=2, respectively. There is a relation

3The symbols{-} shall be used to represent a variation wheneverdim ker P, —dim ker PI=6—6g (Riemann-Roch theorem[10].
there is a possibility of being confused with the delta function[Throughout this paper, diW indicates the real dimension of a
8(-). spaceW, regarded as a vector space ofRet
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det”z(%,goﬁ) when g=1 with the option(a) lowing the notation in Appendix B. Furthermofis a pro-
jection. Thus no extra Jacobian factor appears in this case.

“ 1 otherwise.
Thus we get

According to the Faddeev-Popov proced{itd], we in-
sert into the right-hand side of E¢l1) the factors

11 [ tdoIF Pt =00,
(det,x}/|detH2,x.} | 8(x,) (x,).

where o denotes a real parameter parametrizing Rer
Note th X = —vaH? =0 Doy, =0 m i i '

ote that, becaustfvaH®, x,} = —vaH v cXy 0 mod Second, the path integral with respectd,,,//h} is of
H?=0 and x,=0, the Faddeev-Popov determinant separateg,e form
into two factors as aboveThe determinants turn to simpler
expressions if we note the canonical structure of our system:

2= [ dothan/ 15 (Pol S{has! \FDIG(S(has .

f d2X Wabﬁhab
s

Note that kerPp=dy{h,/Vh}=vh T6yh,, and
det Pp=1. Let{&"} (A=1,...,dim kerP]) be a basis of

= f d2x< aby %Whab> (8whap+ dohapt Syhan)  Ker Po. Then the factor déf(&%,£°) [see Eq(B1)] is given
s a

s
= f dzx(15\/ﬁ+(PIE’)ava+7rab5Mhab>. det/4 ¢A,¢B) =del( 7, VB)det YA WA, WB)h~1,
s \h (13)
Thus, where {¥*} (A=1,...,dim kerP]) is a basis of keP].
This expression results in as follows. Carrying out a standard
det{H,x,} = %, manipulation[10,9,5, ’
dvh
svh
a IH? aXZ t 5hab:£hab+(Plv)ab+ 77—\ab57A
det{H°,x,} =| det-— 5 |- 2o = det PL . vh
s\h ~
Thus we get =Whab+(Plv)ab
Z=/\/J [dvh d(8{h,,/Vh)d(=/h) d72]B +H(Ta, WO (W, ¥) g P oA (14
IH For the present purpose, the first and second terms are set to
x —— det PIVho(H) 8(PI7) 8(P(wlh)) be zero(See footnote 2.According to Appendix A, then, it
a\h is easy to get Eq(13). Then with the help of Eq(B1), we
X 8(Po( 8{hap/ V}) s

. (12) |2=f dr de(7,,¥8) det Y3 WA ¥B) h~T

Xex;{ijdtj d?x
s

We can simplify the above expression. First, the path in-
tegral with respect tar/\/h in Eq. (12) is of the form

- 1 .
’7Tab+ E’ﬂhab> hab

X G(8p{hap/\h}=0, 7).

Here we understand that the integral domain far™ is
on the moduli spaceM,, and not the Teichniler space,
|1=f d(m/\h) & (P(ml\n)F(al\h), which is the universal gc:overing space M, [10]. This is
clear because” appears in the integran@ only through
so that Eq.(B1) in Appendix B can be applied. Note that {_ [Eq. (9)].
ker P= a space of spatially constant functions, which forms ~\ye note that the kinetic term in E¢L2) becomes
a one-dimensional vector space oveR. Now

dim kerP=1, so thatdpa andd(pA\ffA) are equivalent, fol-

7BecausePI is a Fredholm operator on a space of symmetric
traceless tensorsV, W can be decomposed agV=Im P,

SFor notational neatness, the symbol of absolute value associatetlker PI [12]. ThereforeT,,,07 € W is uniquely decomposed in
with the Faddeev-Popov determinants shall be omitted for most othe  form  of Piug+ (7, ¥B) (¥, ¥) 1c¥Cs7”.  Then,
the cases. (P10 )ap:=(P1(v+Ug))ap -




- 1 .
maby EO’\/Hhab) hap

=jd2x
s

=(7 2+ paWAeh, Toeg) 75+ 0 V.

x,=0

Here V:=f2d2x\/ﬁ, which is interpreted as a two-volume
(area of 3. (See Appendix A for the inner product of den-
sitized quantities.

Finally, the path integral with respect %7 in Eq. (4) is
of the form

|3=J d72® S(PIT)H(720).

Using Eqg.(B1), this is recast as

|3=f dpa detX( WA WB)(det PI)~*H(7'2°=0, p,).

Combining the above results for, |5, andl 3, the expres-
sion in Eg.(12) is recast as

de(7,¥®)
det’q ¢, . ¢p)

z=Nf [dvh doddp,] ;75 S5(H)

xexrl(iLdt{pA(‘IfA,%)%BnL aV}|. (15

The reason why the factor dét¥(¢,, ,¢p) appears in Eq.
(15 for g=1 shall be discussed beloWfor the case of
g=2, the factor det*¥(¢p,,ppz) should be set to unity.
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Equation(16) is equivalent to
Z=Nf [do dp, dTAdpA][dN’]det‘l’z(goa,goﬁ)A

xexrl(if dt {pa™+p,o—N'(p,+V(a,™,pa)} |,
17

where the integration by parts is understood. This system has
a similar structure to a system of a relativistic particle and a
system of a nonrelativistic particle in a parametrized form
[13]. We shall discuss this point in detail in the final section.
One can gauge-fix the reparametrization symmetry by choos-
ing o=t, i.e., by imposing a conditiony=0—t=0. The
Faddeev-Popov procedur&l] in this case reduces to simply
inserting §(o—1t) into Eq.(17). Thus we obtain

xexp{ifdo{pA dMdo—V(o, ™ pa)}|. (18

Here

.

Looking at the exponent in Eq(18), we see that
V(o,7,pa) plays the role of a time-dependent Hamiltonian
in the present gauge?]. We see that the partition function
formally defined by Eq.(4) is equivalent to the partition
function defined by taking the reduced system as a starting
point, as can be read off in E¢L8). However, there is one
point to be noted. For the case @& 1 with the option(b),

det "¢, ,pp) when g=1 with the option(b)
1 otherwise.

Without loss of generality, we can choose a basis ofor which dim kerP,;=2, the factor det*¥(¢,,¢z) ap-

kerPl, {W*}, as to satisfy Tp, ¥B)=5,5.

Under our gauge choice, the equatisf+=0 considered
as being an equation forh, has a unique solution,
Jh=1h(-:a,7,pa), for fixed o, 7, andp, [2]. We there-
fore obtain

z=/\/f [do ddpaldet Y4 ¢, ,¢p)B

><exp(i f dt{pam+ V(a7 pa)} |, (16)

where V(o,7,pp):=[sd?x Vh(x;o,7,pa), Which is re-
garded as a function af, 7, andp, .

pears. This factor can cause a nontrivial effect. We shall
come back to this point in the next section. Typically, this
factor can be a function o¥/(o,7p,) [see below, Eq.
(22)]. On the contrary, for the case g&2, and the case of
g=1 with the option(a), this factor does not appehr.

Let us discuss the possible factor d¥(¢,, ¢p) In EQ.
(19).

In the case of=1, the space k&, which is equivalent
to a space of conformal Killing vectors, is nontrivial. Now
a special class of Weyl deformations represented
as owhap=D-vg hapy, where vgekerP,, is translated
into a diffeomorphism: D-vq hap=(P1vg)apt D -vg hap
=£Uohab. (Hereﬁvo denotes the Lie derivative with respect
tovg.) Thus, dwhap=D-vq hap, voe kerP; is generated by

It is clear that there is still the invariance under the rep-H® along the gauge orbit. Therefore it should be removed

arametrizatiort— f(t) remaining in Eq(16). From the geo-

from the integral domain fof[dy/h] in Eqg. (12). One easily

metrical viewpoint, this corresponds to the freedom in thesees that the volume of K, which should be factorized

way of labeling the time-slices defined by E@). (This

out from the whole volume of the Weyl transformations,

point is also clear in the analysis of RE?]. The treatment of is proportional to défz(goa,guﬁ). Therefore the factor
this point seems somewhat obscure in the analysis of Reﬂefllz((pa,goﬁ) appears in Eq(18).
[9]) The present system illustrates that the time-
reparametrization invariance still remains even after choos-
ing the time-slice$Eq. (7) or Eq. (8)].

8The author thanks S. Carlip for helpful comments on this point.
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There is another way of explaining the factor
det ¥ ¢,,pp) [5]. Let us concentrate on the diffeomor- zZ= Nf [d\/—][da][dTAdpA]A
phism invariance in Eq(4) characterized by#?=0. The \/—
Faddeev-Popov determinant associated with this invariance dA d
can be related to the Jacobian for the change Xex;{if dt[ Pa —+0’—V(0’,TA,pA)]). (29
h,s— (Vh,v?, 7). By the same kind of argument as in Eq. dt dt
(13), one finds the Faddeev-Popov determinant to be

5(7-{) o(o—t)

Equation(19) is of the form

App=de( 7, ,¥B) det Y3 WA WB)(det PIP,)2 oH
A f(Vh), (20

One way of carrying out the Faddeev-Popov procedure is to

insert 1=[dAdet(dx/dA)S(x) into the path-integral for- where[d*] stands for all of the remaining integral measures.

|=f [dvh][d*]

mula in question, wherg is a gauge-fixing function and Now it is shown that fog=1 the simultaneous differen-
is a gauge parameter. Then the path integral in Byre- tial equations, Eq(5), Eq. (6), Eq.(7) [or Eq.(8)], and Eq.
duces to the form (9) [or Eq. (10)], have a unique solution fogh, which is

spatially constantyhy: =F(7*,pa,o) [2]. Thus the integral
region for f[dvh] in Eq. (20) can be restricted to

|:J [dh,p][dVh dv? dA][d* ]8(ha,— Vg f(hap) D={\h|/h=spatially constant Let us note that/h is the
only quantity that in principle can depend on spatial coordi-

R nates in Eq.(19). Accordingly, only the spatially constant
=f [dvh do? d7][d*] f(Vhhyy), components of the arguments of the integrand contribute to
the path integral.
L Thus
where[ d* | stands for all of the remaining integral measures
including Agp.
Now, we need to factorize oW pfr the whole volume 'ZI [d*] f(\/ﬁo)

of diffeomorphisms homotopic to 1. This volume is related
to fl:zdv ] as Vlef0 (J[dv?]) VkerPlr Where Vker-P1 :f [d\/ﬁ][d*] f dZX\/ﬁ— f d?x \/H
xdet (¢a:®p) [10]. Here we note that ke, is not in- D s ah s
2 2
formation, as [’Uohab:(PlUO)ab—’_D ‘U hab: D. Uo hab J;d X H/J;d X) f(\/ﬁ)
(it is noteworthy that this argument is reciprocal to the pre-

cluded in the integral domain ¢f dv?]: the diffeomorphism
i it i i i oH ~
vious ong, so that it is already counted ifidvh]. In this :f ([d\/ﬁ]f dzx)[d*]ﬁ—vé(H) f(V)
D s

associated witlVvq e ker P, is translated into a Weyl trans-
manner we get

oH -
= | [dV][d*] ==8(H) f(V
[dvh d7A|[d* ] (P f[ I[d*] —8(H) f(V)

= Vo, det" (¢a Pp)

oH ~ ,
=f[dV][d*][dN’] ﬁ—vf(V)exp<—|jdt N’ (t)H (1) |,

In effect, the volume of ké¥; has been removed from the
whole volume of the Weyl transformations, which is the _
same result as the one in the previous argunjémain, for ~ whereH:=[sd* H, V:=[sd? h, and f(V):=f(\h).
the case ofy=2, the factor det'¥(¢,, ,¢p) should be setto The prime symbol ifN’(t) is to emphasize that it is spatially
unity.] Furthermore, by factorizing the entire volume of dif- constant.

feomorphismsyp , and not jusVpig , the integral domain Thus we see that Eq19) is equivalent to

for [[d7*] is reduced to the moduh spacé{, [10,5]. The

intermediate step of factorlzm\jD,ﬁ is necessary since the z_ \r [dV do][d™ dpa][dN’ ]A _H S(a—1)

v¥s are labels parametrizing the tangent space of
Riem(), the space of all Riemannian metrics Bn

><exp<if dt (pa }A+UV—N'H)) : (21)
I1l. ANALYSIS OF THE g=1 CASE . .
whereV andN’ are spatially constant, ardl is the reduced
We now investigate how the reduced canonical system iHamiltonian in the ¢,V)-form. [See below, Eq(23).]
the (r,V)-form [3] comes out in the partition function when  We choose, as a gauge conditimee Eq.(9)] [5],
g=1.
To begin with, let us recovef[d\h] and f[do] in Eq. 1( 1 7 )

(18), yielding hab:Vﬁabv Iaab:? 7t |T|2 )
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where 7:=7r'+i7% and 7?>0. Here we have already re-
placed vh with V= h, noting that\h is spatially con-
stant for the case aj=1. Then, it is straightforward to get

| |

[See the paragraph next to the one including @y for the
definition of {7A}.]

As a basis of kdPl, {¥A}a_,,, the fact that
PI(7a)a:=—2DTa®= — 20, 7a,2=0 simplifies the situa-

— 7t

()2 (74?2

0 1
1 27t

v -1

Tiab=—2
lab 7_2

\Y,

T | -
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(7%)2 1
H=— - (Pi+p3)— 502V —AV. (23

Here \=—A (A>0) corresponds to the negative cosmo-
logical constant, which is set to zero when it is not consid-
ered.[The introduction of\ (<0) may be preferable to side-
step a subtlety of the existence of a special solution
p;=p,=0=0 for A\=0. This special solution forms a coni-
cal singularity in the reduced phase space, which has been
already discussed in RgR2] and in Ref[9].] Therefore, we

get

tion. We can choose d0*}a_; oH  (72)2 1
— =y = oy (PP + 507 A (24)
0 72 -1 —7t
‘I’el\bzi 2 27472 \Pgbzi -1t (7)%=(hH2 ] As discussed in Sec. |, the choice Nf= spatially con-

which satisfy @*,75) = 8"g.

Now, let us consider the case of the optitih (Sec. I). In
this case the factoyd becomesA=det ¥*(¢,,¢z). As a
basis of kePy, {¢,},—12, We can take spatially constant
vectors becausP ,= d, for the metric in question, and be-

stant, which is consistent with the equations of motion, is
essential in the £,V)-form. This procedure can be however
influential quantum mechanically, so that its quantum theo-
retical effects should be investigated. In particular we need to
understand the origin of the facteH/dV in Eq. (21).

Let us start from the action in Eq23). It possesses a
time-reparametrization invariance:

cause constant vectors are compatible with the condition for

the allowed vector fields ofi?. (Note the fact that the Euler
characteristic off? vanishes, along with the Poincampf
theorem[14].) Therefore, let us take

o

where)\; and\, are spatially constant factors. Then, we ge

|

1
0

0
P1%=N\y 1

t

)\12V2/ '7'2 )\1)\2V2 'Tl/ 7'2

(Par@p)=| N AV2TY 2 N2V2 72 72

Thus, we obtain

detllz((Pa ,QD’B) = |)\1)\2|V2' (22)

On account of a requirement that should be modular
invariant,|\ ;\,| can be a function of only ando at most.
There seems no further principle for fixing i\,|. Only
when we choose as |[\\,|=V72, the factor
det ¥ ¢, ,¢p) in Eq.(16) or Eq.(18) has no influence. No
such subtlety occurs in the string theory, sireadoes not
appear and sinc¥ is not important on account of the con-
formal invariance (except for, of course, the conformal
anomaly.

It is easy to see that, in our representation, the reduce
action in the ¢,V)-form becomes

S= ftzdt(pA'TM oV —N'(H)H),
t

s=e(){™H}, Spa=e(t){pa,H},

SV=e(t){V,H}, &So=¢€(t){o,H},

SN'=€(t) with e(t;)=e(t,)=0. (25)
In order to quantize this system, one needs to fix a time
variable. One possible gauge-fixing condition is
x:=o—t=0. Then according to the Faddeev-Popov proce-
dure, the facto{y,H} &8(x)=—(dH/dV) S(o—1) is in-
serted into the formal expression far The result is equiva-
lent to Eq.(19) up to the factorA.

Now we understand the origin of the nontrivial factor
dH/aV in Eq. (19). In order to shift from the £,V)-form to
the r-form, it is necessary to demote the virtual dynamical
variablesV and o to the Hamiltonian and the time param-
eter, respectively. Then, the factéH/JV appears as the
Faddeev-Popov determinant associated with a particular time
gaugeo=t.

In this manner, we found that the,{/)-form is equiva-
lent to ther-form even in the quantum theory, provided that
the time-reparametrization symmetry remnant in the
(7,V)-form is gauge-fixed by a particular condition
x:=o—1t=0. In particular the key procedure of imposing
N= spatially constanit3] turned out to be independent of the
equations of motion themselves and valid in the quantum
H]eory.(Of course the fact that it does not contradict with the
equations of motion is importat.

Finally it is appropriate to mention the relation of the
present result with the previous one obtained in Ref. In
Ref. [5] also, the case of=1 was analyzed although the
model was restricted to be spatially homogeneous. The result

there was that the facteiH/oV did not appear in the mea-
sure although the #,V)-form was adopted. This result is

9Throughout this sectionz? always indicates the second compo- reasonable because in REE] only the spatial diffeomor-
nent of (r*,7), and never the square ef=7'+i72. phism symmetry associated witi® was gauge-fixed explic-
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ity. As for the symmetry associated witk/, the Dirac- gauge-fixing conditions result in different quantum theories
Wheeler-DeWitt procedure was applied instead of thdn general, and the relation between them should be more
explicit gauge-fixing[Alternatively, one can regard that the clarified. The model analyzed here shall be a good test case
symmetry associated with{ was gauge-fixed by a nonca- for the study of this issue.

nonical gaugeN=0 [15].] Therefore it is reasonable that 10 Summarize what we have learned and to recognize

gH/aV did not appear in the analysis of Ré&]. Thus the what needs to be clarified more, it is helpful to place our
result of Ref[5] is compatible with the present result. system beside a simpler system with a similar structure. The
system of a relativistic particlgl3] is an appropriate model

for illustrating the relation between the-form and the
(7,V)-form.

We have investigated how a partition function f@r-1)- Let x*:=(x° X) andp,:=(po, p) be the world point
dimensional pure Einstein gravity, formally defined in Eq.and the four momentum, respectively, of a relativistic par-
(4), yields a partition function defined on a reduced phasaicle. Taking x° as the time parameter, the action for the
space by gauge fixing. We have shown that @&j.reduces (positive energy relativistic particle with rest mass is
to Eq.(18), which is interpreted as a partition function for a given by
reduced system in the-form. For the case 0§=2, this

result is compatible with Carlip's analysig]. _dx =
For the case ofg=1, with the option(b), a factor S:J’ dx° P g0~ Vp?+m? . (26)
det*1’2(¢a,<pﬁ) can arise as a consequence of the fact that

dim ker P, #0. This factor can be influential except when Equation(26) corresponds to the-form [Eq. (2)]. Now one

the choice dé’fz((pa ,(plg) =1 is justified. The requirement of can promote(o to a dynamical variable:
the modular invariance is not enough to fix this factor.

Furthermore Eq(4) has turned out to reduce to E@1), ” = 5
which is interpretczad as a partition function for a (rj:-aduced S:f dt {px*=N(po+ Vp*+m?)}. (27)
system in the £,V)-form with a nontrivial measure factor
dHIoV as well as the possible factor déf(¢,,¢4). The Heret is an arbitrary parameter such theét) becomes a
former factor was interpreted as the Faddeev-Popov determinonotonic function of; N is the Lagrange multiplier enforc-
nant associated with the time gauge-t, which was neces- ing a constrainp,+ \/524- m?=0. The action Eq(27) cor-
sary to convert from the 71 V)-form to the r-form. The responds to the action appearing in Ebj7).
choice ofN= spatially constant was the essential element to |t is possible to takq:)2+ m2=0 with po<0 as a con-
derive the {,V)-form in the classical theory. In particular gy aint instead op,-+ p?+m?=0. Then an alternative ac-
th.e equations of motion were used to show |ts_ compatibility;jo, for the same system is given by
with York's gauge [3]. Therefore the relation of the
(7,V)-form with the r-form in the quantum level was re-

IV. DISCUSSIONS

t2 .
quired to be clarified. Moreover, since the conditibis S= t dt {p.x*—N H},
spatially constant is not in the form of the canonical gauge, !
the analysis of its role in the quantum level was intriguing. H=p2+m2. 29)

Our analysis based on the path-integral formalism turned out

to be powerful for studying these issues. Our result ShOWEquation(ZS) corresponds to ther(V)-form [Eq. (3) or Eq.
that the (,V)-form is equivalent to the~-form even in the  (23)].

quantum theory, as far as the time-reparametrization symme- The system defined by E428) possesses the time re-

try in the (r,V)-form is gauge-fixed by:=o—t=0. The  parametrization invariance similar to E@5):
postulation of N=spatially constant in deriving the

(7,V)-form turned out to be independent of the equations of “=e(t){x*H}, p,=e(t){p..H},
motion and harmless even in the quantum theory.
These results are quite suggestive to quantum gravity and SN=¢(t) with e(t;)=e€(t,)=0. (29

guantum cosmology.

First, the measure factor similar to dé/lz((pa,(pﬁ) is  Thus the gauge-fixing is needed in order to quantize this
likely to appear whenever a class of spatial geometries igystem. Here let us concentrate on two kinds of the gauge-
question allows conformal Killing vectors (Key# ). This  fixing condition:
factor can be influential on the semiclassical behavior of thei 0 . .
Universe. 1) X=X —t=0 (canonical gauge

The issue of the two optionéa) and (b) regarding the (2) x,:=N=0  (noncanonical gauge

path-integral domain of the shift vect@ec. I)) is interest- Choosing the gauge conditidi), one inserts the factors
ing from a general viewpoint of gravitational systems. If One{X,,H}5(X|) = —2p, 8(x°—1) into the path-integral formula

imposes that there should be no extra factor in the path: : .
integral measure for the reduced system, then the ogéon according to the Faddeev-Popov proced. More rigor-

is preferred. There may be other arguments which prefer ongusly, the factorsé( - po) {).(I’H} 5(X|_)’ or alternativ§ly,
of the two options. H(N){XI,H}(S(XI) should be inserted in order to obtain the

As another issue, the variety of representations of thequivalent quantum theory to the one obtained by @6)
same system in the classical level and the variety of th¢13]. The factord(—py) selects the positive energy solution
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+m2=0 with respect top,. This gauge(i) corresponds to

the gaugey=o—t=0 in the previous section. We observe  we often need to change integral variables in
Fhatb? Pa'rd‘(f . Po) corrgsptlands to thel;)am(. _\I/) which path integrals. Letx* and XA" (A, A’=1,...n) denote

is obtained from an original paiM, ) by a simple canoni- 5 qriginal and the new variables, respectively, in terms
cal transformation.[The relation —po=Vp?+m? corre- of which the line element is given asds’
sponds to the relatioh'=V(o,7,p,).] Thus the additional =G Apd XAdXB(=:(dX dx)):GA,B,dXA’dXB’_ Then. a
restriction factord(—p,) should correspond té(V), which natural invariant measure becomedX]=d"X\deG

is |dent|§:ally unity because. of the positivity ®f. It is quite —d"X’Jde’. In other words, we define a measure in an
suggestive that one solution among the two solutions of

-~ X : . invariant manner to satisfy= [[ dX]exp{—(8X,6X)}. Now,
H=0 [Eq..(23)] with respect toV is automatically selected a convenient way to find out the Jacobidmssociated with
becauseV is the two-volume ofS.

. ; A yA
As for the other gaugéi) x,:=N=0, it is quite different the change of variablex”—X", is [17] as follows.

. A N
in nature compared witki) x|:=x°—t=0. Apparently the (1) RepresentX™ in terms of X,
path-integral measure becomes different. This point becomes
clear if the transition amplitude &5 | x{ ) for the system

Eq. (28) is calculated by imposing) and by imposindii).

SXA= (XA IXA ) XA

By the canonical gauggé), one obtains (ii) Represent §X,5X) in terms of 6X*',
_ 2 SN
(x5 | xf),zJ d*p exg{ip.(x5—x1)} |—2p° 8(p%+m?), (5X,5X)=GABW Py SXA 6XB" .

if the simplest skeletonization scheme is adopted as in Ref.
[13]. [Here we set aside the question about the equivalence
with the system described by E{R6) so that the factor
6(—p°) is not inserted. The gaugelii) can be handlef15] 1:\]] d"oX'exp{ — (86X, 6X)}, (A1)
by the Batalin-Fradkin-Vilkovisky methofl16] instead of

the Faddeev-Popov method, and the result is

(iii) The Jacobian is given by setting

since this should be equivalent to=1(\/detG’) ! up to
some unimportant numerical factor.
(X3 | xj‘)”:j d*p expfipo(x5—x7)} 8(p?+m?). Here it may be appropriate to mention the natural line
element in our case. The “kinetic termK in the Hamil-
Both ( x¢ | x& ), and ( x§ | x& ), satisfy the Wheeler- tonian constraint defines the geometrical structure of the con-

DeWitt equation but they are clearly different. One finds thaffiguration space. It is in the forifsee Eq(5)]

if another gauge () x, :=—(x%/2py) —t=0 is adopted in-

stead of (i), the resultant (x§ | x{ ),/ is equivalent to K_f d2xh(h..he—hh )Tr_abTF_Cd

( x5 | x¥ ). One sees that (x%/2pg)<x®\1—(v/c)? =0 (Rachba—Naphea Jh V'

under the conditiotd =0, which is interpreted as the proper-

time. where3 stands for a two-surface. Therefore, the inner prod-

Even in the present simple model, it is already clear thaj,ct petween second-rank tensor fields which is compatible
only solving the Wheeler-DeWitt equation is not enough toyith the geometrical structure of the configuration space is
reveal the quantum nature of the spacetime. Then it is ingjyen py

triguing what the relation there is between the gauge condi-
tions and the boundary conditions for the Wheeler-DeWitt
equation. Apparently more investigations are needed regard-
ing the gauge-fixing conditions, especially the relation be-
tween the canonical gauges and the noncanonical gauggsyrthermore, the second term in the parenthesis is not impor-

The system of(2+1)-dimensional Einstein gravity shall tant in the following sense. We observe that
serve as a good test candidate to investigate these points in

the context of quantum cosmology.

(w, W,“)::J' dzx\/ﬁ(hachbd_habhcd)WabWICd :
3

W W)= [ PRk e o<
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k= —1/2.)1° Thus we simply sek=0. In this manner we are
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Let A be a linear(Fredholm operator possibly with zero

given the natural inner product between second-rank tens@hodes. Lef{ WAlo_;  gimken b€ @ basis of keA. Suppose

fields, which is diffeomorphism invariant in accordance with
the principle of relativity. Afterwards we can extend the in-
ner product to other types of fields also. For instance

(f, g):=f2d2xﬁ fq,

(u’, u"):=f d2xvh hyyudu®,
s

(W, W"')Z=f d?xh hychpgwaPw’ed
s

For the case of densitized fields, an appropriate power of

we evaluate an integral= [d"XS(AX)f(X). Any vector X

eW in the domain of A can be uniquely decomposed
as X=X'+paP*, wherepp= (X, ¥B) (¥, ¥) 154, with
(¥, )1 being the inverse matrix of ¥*,¥5). Now,
let us change the integral variables froXto (X',pa).
The Jacobiand for this change is given as follows. Noting
that (6X,6X)=(8X",6X")+ (VA ¥B)p,pg, we obtain
J=det/((PA ¥B) [see Eq.A1)]. Thenl can be expressed
as

|=JdpAd>Z' det( WA WB) S(AX') f(X',pa).

Jh should be multiplied to the integrand in order to make the

inner product diffeomorphism invariant.

APPENDIX B: A FORMULA
FOR THE DELTA FUNCTION

Here we derive a formula which is essential in our discus-

sions[5].

The Euclidean path integral witk<<—1/2 causes a trouble of

We thus obtain a formula

f d"XS(AX)f(X)

:J dp, det2(WA WB)(det A)~H(X' =0, pa), (B1)

divergence, which requires a special care. We shall not discuss this

issue here and understand that the Lorentzian path integral
adopted for such a case.

iwhere detA denotes the determinant &f on W/kerA (i.e.,
the zero modes oA are removed
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