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High temperature In(T) contributions in thermal field theory
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We calculate, to one-loop order, the TH(contributions of three-point functions in thg® and Yang-Mills
theory at high temperature. We find that these terms are Lorentz invariant and have the same structure as the
ultraviolet divergent contributions which occur at zero temperature. A simple argument, valid fpaiht
Green functions, is given for this behavip§0556-282(97)01210-]

PACS numbd(s): 11.10.Wx

. INTRODUCTION general argument concerning the Th(behavior ofN-point
gluon Green functions. This gives a simple explanation for
In thermal field theory one is often interested in the “hardthe fact that the In[) contributions always appear with the

thermal” loop contributions, meaning those terms whichsame coefficient as the residue of the ultraviolet pole part of

come from a region where the loop momenta are of the ordethe zero-temperature amplitude.

of the temperaturd, which is much larger than all external

momenta. These Green functions, which have a leading be-

havior at high temperature proportional T8, where much IIl. THE THREE-POINT SCALAR FUNCTION

studied in QCO{1-5]. They are an important tool iresum- In order to exhibit the behavior of subleading hard ther-
ming the QCD thermal perturbation theof$]. The hard 4| contributions in the simplest way, we consider the mass-
thermal region is also relevant for the determination of thgggg #3 model in six dimensions which is asymptotically
In(T) contributions(unlike the terms linear i which COMe  free. The Feynman diagram associated with the thermal
also from soft loop momentaThere have been several in- three-point function is shown in Fig.(d. The analytically
vestigations of the Inl) terms associated with the two-point continued imaginary time perturbation theory can be formu-
functions[1,7,8, but the corresponding calculations done in5ted[5,13] so as to express this function in terms of forward
connection with the three-point functions have been thus fagcattering amplitudes of on-shell particles, as illustrated in
restricted to particular configurations of their external MO-Fig. 1(b). Here Q=(|Q|,Q) is the four-momentum of the
menta[9-12]. on-shell thermal particle. There are six diagrams such as this

This work intends to study the hard thermalTj(contri-  gne which are obtained by permutations of the external mo-
butions associated with genetakee-point Green functions mentak; . These contributions can be written as

in thermal field theory. In order to discuss the logarithmic
dependence, we use the analytically continued imaginary-
time perturbation theor}j7] and relate these functions fior- _
ward scattering amplitudgs$,13). In Sec. II, we consider the ¥ (2m)®
three-point function in the¢® model in six dimensions,

Which has several similarities W'ith the ang-l\/!ills theory +permutation};+ QH—Q}N(|Q|), 2.1)
and is useful to illustrate the main points in a simpler con-

text. In Sec. Ill we study the hard thermal behavior of the
three-point function in the Yang-Mills theory. We focus on
the In(T) terms, and find a Lorentz invariant result which is
directly connected with the ultraviolet structure of the three-
point function atzero temperaturerhis conclusion, obtained
in the Feynman gauge, is in fact true in any gauliée have
explicitly verified this statement in a general class of covari-
ant gauges. Since this calculation requires a generalization
the method of forward scattering amplitudes, the corresponc
ing analysis will be reported elsewherén general, the de-
pendence upoii for high T is not necessarily related to the 0 0
ultraviolet divergence of the zero temperature amplitude. Ir 0

the Yang-Mills theory, for example, the leading behavior at & ks

high temperatures for all-gluon functions is proportional to
T2, although these functions are ultraviolet finite tor-4.
Hence, the above connection between therl)n¢ontribu-
tions and the ultraviolet behavior at zero temperature, which FIG. 1. (a) The three-scalar thermal loop diagram. Momentum
emerged after a rather involved calculation, may seem at firgind energy conservation is understood at each veftg@xAn ex-
somewhat surprising. For this reason we present in Sec. IV ample of the forward scattering graph connected with diagi@m

A8 dSQ[ 1 1
leQI[ 2Q-ky+ki —2Q ko +Kk3

whereN(|Q|) is the Bose-Einstein distribution

(@) )
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1 tribution, which comes from the region of high internal mo-
N(IQD) = == (2.2 menta|Q|~T>k;. Evaluating these terms, we then obtain
exp(|Q/T)—1 i
for the logarithmic dependence on the temperature the
Since in the hard thermal region we require large valuesimple Lorentz-invariant result

of |Q|, we may expand each denominator as \3

2Q-k+K 2Qk (2Q-k)? (2Q k)3

2.3 This equation may be compared with the ultraviolet diver-
gent contribution of the three-point function at zero tempera-
The first term has each denominator of the for@k;) % ture, evaluated in 6 2e dimensions:
Such terms would give individuallyf? contributions, but 3 ra2e
these actually cancel by the eikonal identity uv_ A M_z =
3 64n° 2¢ 647

3.t (29

1 1 1
Q-k1Q~k2+Q-k1Q-k3+Q-k2Q~k3:O' (24 where M is the renormalization scale. We see that the
In(T) contribution has the same structure as the ultraviolet
The second term in Eq2.3) is down by one power of divergent part at zero temperature, so that it may be naturally
ki/|Q| and would lead to individuall contributions, but combined with the In{1) term. The same behavior was pre-
such terms also cancel by symmetry un@er- — Q. Hence, viously noted in connection with the scalar self-energy func-

we are left with the following subleading contributions: tion [8].
)\3 5Q
[g=anr—s N(|Q|) IIl. THE THREE-GLUON FUNCTION
16(27
&2m) |Q| It is known that the above connection between thdn(
1 [ k2k3 (k3)2 (k3)2 contributions at high temperature and the ultraviolet pole
X Q- k,Q-k3| Q-k1Q-k, (Q-k1)? (Q-ky)? part at zero temperature is also exhibited by the two point

gluon function in the Yang-Mills theory1,8]. If this prop-
. erty continues to hold for the three-point gluon function,
+ permutatlon#;. (2.9 then, using the well-known result for the corresponding zero
temperature amplitude, we could immediately write for the
After some algebra, which makes use of the eikonal identityn(T) contributions the following ansatz:
(2.4) and the overall momentum conservation of the external

momenta, the above expression can be reduced to the form rgfzzsﬂ _ 1 L g2V |n(T), (3.1)
) 1koks 1277 MaHoks
\3 d°Q kik,- ks
Is=85m5 N(IQD) -k1)20- } where a;,a,,a; are color indices are Lorentz
82m®) QI (Q-k)?Q-k,Q ks where a;,a;,a; WL 2 1
indices, and
+ permutation}, (26) Villi‘f:‘jsz _ Ig fa1a2a3[ 77#1#2( kl_ k2);L3+ 77#2#3( k2_ k3)#1
which involves only homogeneous functions of zero degree F Dy (Ka—K) ] (3.2
in each of the external momenta. In order to perform this
integral, it is convenient to rewrite E¢2.6) as is the basic three gluon vertex. Equati¢hl) was obtained
replacing 1/(2) by In(1/T) in theT=0 ultraviolet divergent
A3 d|Q| k2K, kg three-gluon function, computed in tHeeynman gaugeln
F3:—8(277)5f Ta N(|Q|)J (0 -k)20 K0 ke what follows we will prove that this ansatz is indeed correct.

In the Feynman gauge thgole structureof the gluon
propagator is very similar to the scalar case considered in the
+permutation}, (2.7 previous section; there are ordymple polesThis is an im-
portant ingredient which makes it possible to formulate the
) _ _ imaginary time formalism in terms dérward scattering am-
where [d() denotes angular integration of the five- it des[5,13. It is then straightforward to write the follow-

dimensional unit vecto and Q=(1Q). ing expression for the three-gluon function
We have evaluated the angular integral, using the ap-

proach discussed in R¢E]. From the fact that the integrand Falaza3 (kyq,ky,k3)

is a dimensionless function of zero degree in the external Fakakts

momenta, one finds after some calculation that the angular 3 d%Q

integration just gives a factor of#8. In the integration over 9 3f N(|Ql|)

d|Q|, the lower limit must be chosen consistently with the “(2m?®) 2[Ql

range of validity of the expansion in E.3). However, its 13233 (

value is immaterial for the determination of the TH(con- X[SZ soiig K1, K2 K3, Q) +Q——Q], (3.3
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? N @;—fldf@ ki+(1-x)k;]-Q} 2

1_M.< >< A ki-ij-Q_ 0 X 477{[Xi (1=K Q)
0 3 Q Qo :fldX[in+(l_X)kj]72. (35)
@ ® i

The right-hand side of Eq3.5) was obtained using standard
Feynman parametrizatiorAfter an elementary angular inte-
2 gration, a manifestorentz scalaiis unveiled in the resulting
% ; , s Feynman parameter integral which can be explicitly per-
formed[5]. Thus, theLorentz covariancef the logarithmic
S i i contributions is established. This remarkable property, which
4 \ D A holds in spite of the fact that the angular integral is not a
el 5 o\, generally Lorentz-invariant process, was shown to be true in
/ 0 \ ‘ Ref. [5] for any angular integrand which is a function of
1 3 degree—2 in Q. We also note that, by power counting, the
In(T) contributions ofany hard thermalN-point function
_ ) will equally be a Lorentz-invariant quantity. In what follows
FIG. 2. The thermal three-gluon loop diagram. Wavy lines rep-ye wijl| use this property as an important tool for the explicit
resentgluons and the broken lines irfc) and (d) denoteeither computation of the IA() contributions.

ghl(l)Stf.or .'g(tjem?l r%Luonms'Jhri ntimrbirts 1r’1d2‘ el‘”;j_n:’;_repreéfntha Our simple ansatz given by E.1) is a very special case
cofiective index for e momenta, -orentz and color NCICEs. raMM¢ the most general Lorentz-covariant expression. In general,
(b) and (d) are examples of forward scattering amplitudes associ- L
. ! ) for each set of color indices, there are 14 tensor structures
ated, respectively, with the diagrart® and (c). All external mo- . . S .
menta are inward ankh - k,+ Ka=0 which can be formed using 3 Lorentz indices and the 2 in-
R dependent four-momenta. However, the explicit calculation
of the diagrams in Fig. 2 shows that the angular integrals in
Eq. (3.4) are such that the totally antisymmetric color factor
tude given by the sum of the diagrams shown in FIQQ) 2 f212233 factorizesand the result can be written as
and 2d) and the graphs obtained by permutations of their
external momenta and indices. We can now use a hard therr qo _ R
mal expansion such as E.3 for the denominators in f ——L 128 (ky ko ,k3,Q)

4 MMM
$41%2% (1, Ky ks, Q). o

Kakok3
As in the scalar case, odd powers@fwill cancel when = —jfa2233 4 (kq,Ky,Ks). (3.6)

the Q— — Q terms are added. From the momentum depen- Hafialts
dence of the Yang-Mills vertices it is easy to see that th .
resulting terms in the hard thermal expansion o?r herefore, t_he Loren.tz-covarlant .tenszlg,vmﬂs(kl,kz,kg.)
S1%2% (k. Kk, ks, Q) will be functions of decreasing de- must beantisymmetricunder any interchange of a pair of

T . _momenta and the corresponding Lorentz indices. A straight-
grees inQ starting from zero degree. Therefore, by naivefgrward but quite involved calculatiofwe have used the
power counting in Eq(3.3) we conclude that the terms of symbolic computer programapLE) yields

degree 0 and-2 in §°1°2% (k, ,k,,ks,Q) will produce re-

MqMoM3
spectively the leading? and the InT) contributions. The _[ad A
leading T? contribution does not vanish as in tl€ model AMleﬂs(kl’kZ’k3)_ 4W£M1M2M3(kl'k2'k3’Q)' 3.7
of the previous section and the result is well knoj#r-6].
Using a similar procedure as the one in E2,7), we get for

© @

whereSfLiZ;fs(kl,kz,kg,Q) is the forward scattering ampli-

P ’ where the tensor. kq,Ko,ks,Q) are given in the Ap-
the In(T) contributions an expression of the form per?d(iaxt @ (eNSOMS,. . uy(K1 K2 K, Q) are given in the Ap
T2z (Ky Ky Ka) We can perform the angular integrals for each individual

3pypoug 1102003 term of these expressions in a straightforward way, using for

instance the procedure of differentiation with respect to

3 a0 ~ ] . . .
__9 2In(T)f Sl pmaas ke By, (3.4) Ki,, as des-c.rlbe.d above. In practice, we found ea§|er to use a
4 4ar” Hikaty decomposition in terms of a set of tensfitd,15 built from
the basic tensors
where [d() denotes angular integration of the three-

dimensional  unit vector Q, Q=(1Q) and A (Ka ke ka) =7, (Ki—ko) . (3.9

zllifjia(kl,kz,ke,,(b) is a function of degree-2 in Q.
All angular integrals of the fornﬁd(lﬁillffjjs can be gen- A/il#z#s(kl Ko, ka) = (Ky Ko, = Ki Kap))
erated differentiating the following basic integral with re-

spect tok;,, [5]: X (Ky—ka) g
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M1M2ﬂ3(k1,k2,k3) (Kq- k2’7u1u2_k1u2k2u1) Q integratiqn has been performed'. Making eppropriate shifts
in Qq, one finds that such a term is proportional to a sum of
X (K Ko ka—=Ka, Ki-Ka), the form
,Ll#zﬂg,(kl,kz,kg) Mgy (K1 Ko Ka =Koy Ky -Ka) s= 3 1 42
- S 2+a 2+bk2 (12 +e> .
+ %(klﬂgkmlk?ﬁﬂz_k1M2k2M3k3M1)' Qp=2mniT (Qo ko )
#1#2:“3(k1’k2 K3)= 7, (K1 Ko ., wherea, b are constants ankl, is some linear combination

of the external energies with integral coefficierkds some
linear combination of the external momenta which may be
neglected in the high temperature limit, except when
The completeset is generated from the above equations in- QO\JIFVZkr?o\\C\?rs“eSﬂT:s 27liT, wherel is some integer and con-
cluding new tensors obtained from\M wuans(KLK2.K3), gider the contributions t@ from the regionsn®<12 and
i=1,2,3,4, and frorrS'M piotts (k1,kz,k3), j=1,2, by cyclic  n?>12, It turns out that the pole part arises from the summa-
permutations of K, 1), (Ko, 1), (Ks, ;3). This gives atotal  tion over the domain wherp|>|l], i.e., When|Q0|>|k0|

of 16 tensors in terms of which we write the most generalExpanding in this regiof4.2) in powers onO , we find that
expression ford,, ,...(Ki,K2,Kks). The coefficients of this the leading term gives a contribution involving theta func-

expansion can be obtained in a straightforward way by simtion £(1+2¢), which is defined in general 437]
ply solving a system of 16 equations. These equations are
obtained using the expressions in the Appendix and perform- *
ing the Lorentz indices contractions with each of the 16 ten- {(2)= 2
sors. The solution of this system will be, in general, scalar n=
functions ofk,,k,,k; involving angular integrals which can
always be reduced to E.5), or the special case of it when This function is analytic for all values of, except near the
ki=kj, when one uses the momentum conservatiompointz=1+2e¢, where it has a simple pole 12
k,+k,+ks;=0. In principle these scalars could have any At this stage, having performed the summation over the
kind of dependence on the external momenta involving Eqdiscrete frequencie®,=2niT, we can analytically con-
(3.5 and rational functions. However, the explicit calcula- tinue the external energies to continuous valuekgofiden-
tion shows that, after using the eikonal identity given by Eq.tifying in the complete thermal amplitude all contributions
(2 4), all coefficients vanish, except for the coefficients of which yield poles ak=0, and using the fact that the leading
A, M2M3(k1 k2,k3) =7, ., (Ki—kz),, and its cyclic permu- term inS'is proportional toT ~172¢, one obtains an expres-
tations which simplify to give just-1/3. Inserting these Sion of the form
terms into E3.6) and using Eq(3.4), we finally obtain the
result stated in Eq(3.2).

2 —
2 pua(Ke K2 ka) =Ky, Koy Koy 4Ky Koy Kay

1
et 4.3

M
AM' (k"T) (?) Znﬂl--w,\,(ki)
IV. DISCUSSION

1
To get a further understanding of the connection between —(2——|n—) Ruy (k). (4.9
the In(T) contributions and the ultraviolet behavior of the
Green functions at zero-temperature, let us consider the com-
plete thermal amplitude, which includes the zero-temperaturethere R, ..., is the residue of the ultraviolet divergent
part. This can be written, for instance in the Yang-Mills casepart of the Green function at zero temperature. This has the
where we omit for simplicity the color indices, as follows same structure, because of the renormalizability of the
[7,16]: theory, as the corresponding basic function appearing in the
Yang-Mills Lagrangian.
(Kig ki, T) = M2eT 2 . The above equat.ion .shows that for general Green func-
1027 Qo=2mniT tions, the In") contributions have the same form as the ul-
traviolet divergent terms which occur at zero temperature
3-2¢ and combine in a simple way with the M() terms. In par-
% f d QF”l"'”N(QO’Q Kio ki) ticular, if the Green function at zero temperature is ultravio-
(4.1) let convergent, the residug,, ..., must vanish and the

In(T) term should be absent at high temperature. This has
Here M is the renormalization scald;y/2#iT are integers been explicitly verified in the case of the electron-positron
andn runs over all integers. For fixed, the Q integral is  box diagram in thermal QEID18].
ultraviolet finite, having no poles a=0. In conclusion, we mention that the above property allows
In order to determine those terms which can yield an ul-us to include in a simple way the ij contributions into the
traviolet pole when the summation oveiis evaluated, let us running coupling constant(@) at high temperature. Several
examine a relevant contribution which is obtained after thenvestigations on this important topj¢9—-22 have exposed
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ambiguities which are related, at least in part, to the fact thatomplete thermal amplitude contains only a combination of
the thermal contributions tg(T) are not generally Lorentz- the form In(T/M). We thus obtain a gauge and Lorentz-
invariant functions. On the other hand, theTh(terms are invariant quantityg(T/M) which is relevant, for example, in
Lorentz invariant, being directly related to the ultraviolet be-the calculation of the pressure in thermal field theof23-
havior of the Green functions at zero temperature. It is welR5].

known that the effective coupling(«x/M) at zero tempera-

ture, wherex is a typical external momentum, involves a

logarithmic dependence of the form k/M). The « depen- ACKNOWLEDGMENTS
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APPENDIX

In this appendix we present the results for the integrand of the angular integrals corresponding to the diagrams of Fig. 2. In
terms of the individual contributions of each diagram, we can write

Ly pguy(Ke Ko kg, Q)= LR (Ko kg kg, Q)+ L0, (Ky,ka ks, Q)+ LI" (kg kp,K3,Q), (A1)

Mikot3 HiMot3

where

9k3'k3k3,u.177,u.2p.3 9k3'k377#11u3k3#2
+

L3290 (Kky,kp,ks,Q)=— +{cyclic permutations ofky, u1),(Kz,i2),(Ks, i3)},

Hakaks 8(Q-ks)? 8(Q-ks)?
(A2)
LI (Kq kg, k3,Q)=— kl“{( Z“ZQ’”{( ke kz“zé"p"a(liz' ) - Q“ZQ“iQ “1(k2;k2)2k1' “ (A3)
1hakts 16(Q-k2)%(Q-ky)  32(Q-k)*(Q-ky) 32(Q-k2)%(Q-ky)?
Q,1,Qu,Qu K2 Ka(ky-ky)? ) Kou K1y, Qu ko Kz N Kou K1y, Qu ke Ky
32(Q k)%(Q-kp)®  16(Q-kp)%(Q-ky)  16(Q-kp)(Q-ky)?
 2ugQu,Qu (ke ko)? N K2, Quy Quigka kaka Ky Kz, Qu Quuy(kakn)?
32(Q-k)(Q-kp)®  32(Q-k)%(Q-kp?  32(Q-kp)(Q-ky)®
 kaugQu,Qu (ko k2)? N Ko Qu,Quike-kaki ki Qu,Qu Quuy(ka ko)
32(Qk)%(Q-ky)  32(Q-k)%(Q-k)?  32(Q-kp)(Q-ky)*
N Ki, Qu,Quuy(Ko- k)2 N ki, Qu,Quy(ka k)? ki, Qu Quka-kaky-ky
32(Q-k)%(Q-ky)  32AQ-k)(Q-kp)®  32(Q-kp)%(Q-ky)?
N Ki,Qpu,Qu (Ko k)2 B Kip,Quu,Qu Ko KoKy ky N Kiu,Q_12Q, (Ki-ky)?
32(Q-k)*(Q-ky)  32(Q-kp)%(Q-ky)? 32(Q-k2)(Q-ky)?
N Q,1,Qu,Qu, (K2 k2)® N Kiu,Ke,,Qu ki Ki
32(Q k)% (Q-ky)  16(Q-kp)(Q-ky)?
+{cyclic permutations otky,u1),(Ks, mo),(Ks, 3)},
L9900 (ko ke O)= + Kou, TuyugKo K Ka KoKy, 7, N 5 (ky- kl)znl’vlﬂgéﬂg ST/ PALSELS) (Ad)

4012 2(0-k)(D-ky)  8(D-k)(O-kD?Z  2(O-kp)(Q-ky)

3 k2M277M1M3k1' kl 7],441/.1,3QM2( kl' k1)2+ anM3Q,lL2( k2' k2)2 4 kluznulp%kZ' k2
16(Q-ky)? 16(Q k)®  8(Q-k)(Qk)?  2(Q-ky)?

kl,uz 77,L1,L3k2' ko 3 kzuzﬂﬂluskz kp 3 kz,@?]ﬂlmkl' ki 5ki-ky 77ﬂ1,L3Q,L2k2' kz
+— = - = = + = = - = =
4(Q-k2)(Q-ky)  16(Q-k2)(Q-ky)  8(Q-kp)(Q-kq) 8(Q-k1)(Q-ky)?
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5 I(1 ' I(1 77#1#:3@#2'(2' k2 5 kl' k2 nﬂlyaé,uzkl' I'(1 kl' k1 7]#1#3QM2k2' k2
= = + = = - = =
8Q-k1(Q-kp)? 8(Q-k2)(Q-ky)? 8(Q-k2)(Q-ky)?

N klﬂsﬂulﬂzkl' Ky 3 3 klﬂsklﬂléuzkl' ki N 9QM2©u3QM1(k1' k1)3+ 9 k2M3QM2Qﬂ1(k2' ko)?
16(Q-k)?  8(Q-k)(Q-k)?  32(Q-k)(Q-kp)*  32(Q-kp)*(Q-ky)

N 3Ky, Ky -k B 3 Koy Koy K1y, B 3 Koy, My Ko Ko N 57u,,Kz- K2Q,u K1 Ky
8(Q-k)(Q-ky) 8(Q-k)(Q-kp) 16(Q-k)(Q-kp)  8(Q-kp)(Q-ky)?
77#2;/,3'(2 kZQu Ky k1 13 k2M k1M3QM2k1 Ky 5k1'k2ﬂuz,¢3©ulk2'k2 3k2ﬂ3k2M2©ﬂ1k1‘k1

8(Q-k)2(Q-ky)  16(Q-kp)(Q-ky)? 8(Q-k)2Qky)  8(Q-k)(Q-ky)?
3Ky, M ke k2+ 5Ky Ko7, Qpu,Ka- ke N 13Kp, K1,,,Qu Kz ke

16(Q-ky)? 8Q-k_2(Q-k;)? 16(Q-k»)4(Q-ky)

7]#1#2

9Ky, Qu,Qu Ko KaKiky 7, Ko KaQy ke -Ky 3Ky, K, QKo ko
32(Q-k)%Q k)2 8(Q-k)(Q-kp?  16(Q-kp)?(Q-ky)
3k1M3k1M1QM2k2'k2+ ﬂﬂzuskzulkz'kz N 3k2M37],L1M2k1‘k1 klﬂlﬂﬂzu3k1'k1
8(Q-k)%(Q-ky)  2(Q-k)(Q-kp)  16(Q-ky)? 4(Q-ky)?
3Kpu K2, Qu ko ko 9Kz, Q, Qi (ke k1)2i 13kp,, K1,,Qu Kz ko
T 160 kX Q k) | 320 k)@ k)® | 16(Q k)2 k)
N 77#1;,,2@73(k1‘ ky)? B ﬂﬂzfg(kl' kAl)ZQ,Ll+ klﬂikz,LzQMlAkz' k2 3 7Ky kAszlef?#skl' Ky
16(Q-ky)* 8(Q-k)(Q-kp)?  8(Q-k)A(Q-ky)  8(Q-k)(Q-ky)?
N 7Ky k277#1#ZQM3k2' kz_ 9 kZMZQMQMkz' KoKy - Kq N 9 k2MZQ#1©#3(k2' k2)2
8(Q-k2)?Q ky 32(Q-k2)%(Q-ky)? 32(Q-k2)*(Q-ky)
9k, Q,Q, (Ko ko)?  Ka ko ke kzﬂlkmpﬂskz-kz 3Ky, My K ks
2@ k) A k) 20 k)(O k) (@ kA k) 16(Q-k)(Q ky)

_ 3 kl;l,snp,l,usz' k2 n;l,z,uskz;l,lkl' kl 7]/1,1,4/,2( k2 kZ) Q,u3 3 k2,u,3k2,u2k1;1,1

16(0k)?  2(Qk)? | 80k Qky)  B(O k(O ky)

B 3 klflnﬂzﬁikz. Ky B 3 szskl- sz nwﬁ 3 kzﬁBnMM{kl- Ky N 3 |<A2M3|<1,i2klﬂl
8(Q k)(Q-k)  8(Qk)(Q-ky) 16(Q-ky)(Q-kp) 8Q-ky(Q-kp)

B Mgk, Ki- K 3k1M3anM2k2-k2_ 3Ky Ko Kiu, B Kou K1y, Qu ke Ky
4(Q-k)(Q-kp) 16(Q-ky)(Q-kp) 8Q-k_1(Q-ky)  8(Q-ko)(Q-ky)?
kzﬂiklﬂléﬂikz- Ky N 3 klﬂiklﬂzé ,jskl- Ky N 3 kzﬁikzﬂzé fgkl- kl_ nﬂlfz(kl- kAl)ZQﬂs
8(Q k)%Q-ky)  16(Q-k)(Q-kp)?  16(Q-k)(Q-kp)?  8(Q-k2)(Q-ky)?

N My K1 K1Q Ko ko N Ko K1,Quoki K 57, (Ko k2)?Q,, 13 Kou,K1,,Qu K1 Ky

8(Q-k2)%(Q-ky) (Q-k)(Q-kp)?  8(Q-k)%(Q-ky)  16(Q-kp)(Q-ky)?
|<1,¢3|<2,L2QM|<1 Ki  Kopy Ko Ko 9k2M3Q“2QM1(k1 k)2 9Kk,,Q,,Qu Ko Kaky Ky
8(Q-k)(Q-kp?  16(Q-k,)? 32(Q-k)(Q-k)®  32(Q-kp)?(Q-ky)?
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9Q,,Q,,,Qu K2 ka(ky-k1)?  9Q,,Q,.Q, (Ko ka)%ky ki 9Q,.Q,.Q, (ko kp)?
T 20 kAGk? | 20Qk)%Q k7 320k Q)
N 3Ky K1, Qu K Ky 3 Ky Ke,Quu ko ke ) Ty, Qg k)2
16(Q-k)(Q-kp)?  16(Q-kp)*(Q-ky)  16(Q-kp)®
9Ky, Qu,Qu(ki-kp)? 9Ky, Q. QKo kokyky 9Ky, Q, Q. (Ko kp)?
T R2@ 0k | 20kA0 k) 32(Qk)¥Q k)
B Kou K1y, Qu ke Ky N Kou, K1y, Qu ko ke 9 K, Quu,Quy (ke kl)z_ Mgy Qu, (Ko K2)?
4(Qk)(Qkp)?  4(Qk)*Qk)  32(Q-k)(Q-ky)? 16(Q-kp)®
N 3 |<lﬁil nﬂzﬂikl- Ky N 3k, ,isk%@ lilkz- |<2+ 3 kzﬂszﬁp Tzkl- kl_ 3 kzﬂszﬂpﬁsz. Ky
16(Q-k)(Q-ky)  8(Q-k)*(Q-ky)  16(Q-k2)(Q-ky)*  16(Q-kp)*(Q-ky)
+{cyclic permutations otk ,u1),(Ko, u0),(Kg, 3)}.
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