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We calculate, to one-loop order, the ln(T) contributions of three-point functions in thef3 and Yang-Mills
theory at high temperature. We find that these terms are Lorentz invariant and have the same structure as the
ultraviolet divergent contributions which occur at zero temperature. A simple argument, valid for allN-point
Green functions, is given for this behavior.@S0556-2821~97!01210-1#

PACS number~s!: 11.10.Wx

I. INTRODUCTION

In thermal field theory one is often interested in the ‘‘hard
thermal’’ loop contributions, meaning those terms which
come from a region where the loop momenta are of the order
of the temperatureT, which is much larger than all external
momenta. These Green functions, which have a leading be-
havior at high temperature proportional toT2, where much
studied in QCD@1–5#. They are an important tool inresum-
ming the QCD thermal perturbation theory@6#. The hard
thermal region is also relevant for the determination of the
ln(T) contributions~unlike the terms linear inT which come
also from soft loop momenta!. There have been several in-
vestigations of the ln(T) terms associated with the two-point
functions@1,7,8#, but the corresponding calculations done in
connection with the three-point functions have been thus far
restricted to particular configurations of their external mo-
menta@9–12#.

This work intends to study the hard thermal ln(T) contri-
butions associated with generalthree-point Green functions
in thermal field theory. In order to discuss the logarithmic
dependence, we use the analytically continued imaginary-
time perturbation theory@7# and relate these functions tofor-
ward scattering amplitudes@5,13#. In Sec. II, we consider the
three-point function in thef3 model in six dimensions,
which has several similarities with the Yang-Mills theory
and is useful to illustrate the main points in a simpler con-
text. In Sec. III we study the hard thermal behavior of the
three-point function in the Yang-Mills theory. We focus on
the ln(T) terms, and find a Lorentz invariant result which is
directly connected with the ultraviolet structure of the three-
point function atzero temperature. This conclusion, obtained
in the Feynman gauge, is in fact true in any gauge.~We have
explicitly verified this statement in a general class of covari-
ant gauges. Since this calculation requires a generalization of
the method of forward scattering amplitudes, the correspond-
ing analysis will be reported elsewhere.! In general, the de-
pendence uponT for high T is not necessarily related to the
ultraviolet divergence of the zero temperature amplitude. In
the Yang-Mills theory, for example, the leading behavior at
high temperatures for allN-gluon functions is proportional to
T2, although these functions are ultraviolet finite forN.4.
Hence, the above connection between the ln(T) contribu-
tions and the ultraviolet behavior at zero temperature, which
emerged after a rather involved calculation, may seem at first
somewhat surprising. For this reason we present in Sec. IV a

general argument concerning the ln(T) behavior ofN-point
gluon Green functions. This gives a simple explanation for
the fact that the ln(T) contributions always appear with the
same coefficient as the residue of the ultraviolet pole part of
the zero-temperature amplitude.

II. THE THREE-POINT SCALAR FUNCTION

In order to exhibit the behavior of subleading hard ther-
mal contributions in the simplest way, we consider the mass-
less f3 model in six dimensions which is asymptotically
free. The Feynman diagram associated with the thermal
three-point function is shown in Fig. 1~a!. The analytically
continued imaginary time perturbation theory can be formu-
lated@5,13# so as to express this function in terms of forward
scattering amplitudes of on-shell particles, as illustrated in
Fig. 1~b!. HereQ5(uQu,Q) is the four-momentum of the
on-shell thermal particle. There are six diagrams such as this
one, which are obtained by permutations of the external mo-
mentaki . These contributions can be written as

G35
l3

~2p!5
E d5Q

2uQu H F 1

2Q•k11k1
2

1

22Q•k21k2
2

1permutationsG1Q→2QJN~ uQu!, ~2.1!

whereN(uQu) is the Bose-Einstein distribution

FIG. 1. ~a! The three-scalar thermal loop diagram. Momentum
and energy conservation is understood at each vertex.~b! An ex-
ample of the forward scattering graph connected with diagram~a!.
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N~ uQu!5
1

exp~ uQu/T!21
. ~2.2!

Since in the hard thermal region we require large values
of uQu, we may expand each denominator as

1

2Q•ki1ki
2 5

1

2Q•ki
2

ki
2

~2Q•ki !
2 1

~ki
2!2

~2Q•ki !
3 1•••.

~2.3!

The first term has each denominator of the form (Q•ki)
21.

Such terms would give individuallyT2 contributions, but
these actually cancel by the eikonal identity

1

Q•k1Q•k2
1

1

Q•k1Q•k3
1

1

Q•k2Q•k3
50. ~2.4!

The second term in Eq.~2.3! is down by one power of
ki /uQu and would lead to individualT contributions, but
such terms also cancel by symmetry underQ→2Q. Hence,
we are left with the following subleading contributions:

G35
l3

16~2p!5
E d5Q

uQu
N~ uQu!

3H 1

Q•k2Q•k3
F k1

2k2
2

Q•k1Q•k2
2

~k1
2!2

~Q•k1!
2 2

~k2
2!2

~Q•k2!
2G

1permutationsJ . ~2.5!

After some algebra, which makes use of the eikonal identity
~2.4! and the overall momentum conservation of the external
momenta, the above expression can be reduced to the form

G35
l3

8~2p!5
E d5Q

uQu
N~ uQu!H k1

2k2•k3
~Q•k1!

2Q•k2Q•k3

1permutationsJ , ~2.6!

which involves only homogeneous functions of zero degree
in each of the external momenta. In order to perform this
integral, it is convenient to rewrite Eq.~2.6! as

G35
l3

8~2p!5
E` duQu

uQu
N~ uQu!E dVH k1

2k2•k3

~Q̂•k1!
2Q̂•k2Q̂•k3

1permutationsJ , ~2.7!

where *dV denotes angular integration of the five-
dimensional unit vectorQ̂ andQ̂[(1,Q̂).

We have evaluated the angular integral, using the ap-
proach discussed in Ref.@5#. From the fact that the integrand
is a dimensionless function of zero degree in the external
momenta, one finds after some calculation that the angular
integration just gives a factor of 8p2. In the integration over
duQu, the lower limit must be chosen consistently with the
range of validity of the expansion in Eq.~2.3!. However, its
value is immaterial for the determination of the ln(T) con-

tribution, which comes from the region of high internal mo-
mentauQu;T@ki . Evaluating these terms, we then obtain
for the logarithmic dependence on the temperature the
simple Lorentz-invariant result

G̃352
l3

64p3ln~T!. ~2.8!

This equation may be compared with the ultraviolet diver-
gent contribution of the three-point function at zero tempera-
ture, evaluated in 622e dimensions:

G3
UV5

l3

64p3

M2e

2e
.

1

64p3F 12e
1 ln~M !G , ~2.9!

where M is the renormalization scale. We see that the
ln(T) contribution has the same structure as the ultraviolet
divergent part at zero temperature, so that it may be naturally
combined with the ln(M ) term. The same behavior was pre-
viously noted in connection with the scalar self-energy func-
tion @8#.

III. THE THREE-GLUON FUNCTION

It is known that the above connection between the ln(T)
contributions at high temperature and the ultraviolet pole
part at zero temperature is also exhibited by the two point
gluon function in the Yang-Mills theory@1,8#. If this prop-
erty continues to hold for the three-point gluon function,
then, using the well-known result for the corresponding zero
temperature amplitude, we could immediately write for the
ln(T) contributions the following ansatz:

G̃3m1m2m3

a1a2a3 5
1

12p2g
2Vm1m2m3

a1a2a3 ln~T!, ~3.1!

where a1 ,a2 ,a3 are color indices,m1 ,m2 ,m3 are Lorentz
indices, and

Vm1m2m3

a1a2a3 52 ig f a1a2a3@hm1m2
~k12k2!m3

1hm2m3
~k22k3!m1

1hm3m1
~k32k1!m2

# ~3.2!

is the basic three gluon vertex. Equation~3.1! was obtained
replacing 1/(2e) by ln(1/T) in theT50 ultraviolet divergent
three-gluon function, computed in theFeynman gauge. In
what follows we will prove that this ansatz is indeed correct.

In the Feynman gauge thepole structureof the gluon
propagator is very similar to the scalar case considered in the
previous section; there are onlysimple poles. This is an im-
portant ingredient which makes it possible to formulate the
imaginary time formalism in terms offorward scattering am-
plitudes@5,13#. It is then straightforward to write the follow-
ing expression for the three-gluon function

Gm1m2m3

a1a2a3 ~k1 ,k2 ,k3!

5
g3

~2p!3
E d3Q

2uQu
N~ uQu!

3@Sm1m2m3

a1a2a3 ~k1 ,k2 ,k3 ,Q!1Q→2Q#, ~3.3!
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whereSm1m2m3

a1a2a3 (k1 ,k2 ,k3 ,Q) is the forward scattering ampli-

tude given by the sum of the diagrams shown in Figs. 2~b!
and 2~d! and the graphs obtained by permutations of their
external momenta and indices. We can now use a hard ther-
mal expansion such as Eq.~2.3! for the denominators in
Sm1m2m3

a1a2a3 (k1 ,k2 ,k3 ,Q).

As in the scalar case, odd powers ofQ will cancel when
theQ→2Q terms are added. From the momentum depen-
dence of the Yang-Mills vertices it is easy to see that the
resulting terms in the hard thermal expansion of
Sm1m2m3

a1a2a3 (k1 ,k2 ,k3 ,Q) will be functions of decreasing de-

grees inQ starting from zero degree. Therefore, by naive
power counting in Eq.~3.3! we conclude that the terms of
degree 0 and22 in Sm1m2m3

a1a2a3 (k1 ,k2 ,k3 ,Q) will produce re-

spectively the leadingT2 and the ln(T) contributions. The
leadingT2 contribution does not vanish as in thef3 model
of the previous section and the result is well known@4–6#.
Using a similar procedure as the one in Eq.~2.7!, we get for
the ln(T) contributions an expression of the form

G̃3m1m2m3

a1a2a3 ~k1 ,k2 ,k3!

52
g3

4p2ln~T!E dV

4p
Lm1m2m3

a1a2a3 ~k1 ,k2 ,k3 ,Q̂!, ~3.4!

where *dV denotes angular integration of the three-
dimensional unit vector Q̂, Q̂[(1,Q̂) and
Lm1m2m3

a1a2a3 (k1 ,k2 ,k3 ,Q̂) is a function of degree22 in Q̂.

All angular integrals of the form*dVLm1m2m3

a1a2a3 can be gen-

erated differentiating the following basic integral with re-
spect tokim l

@5#:

E dV

4p

1

ki•Q̂kj•Q̂
5E

0

1

dxE dV

4p
$@xki1~12x!kj #•Q̂%22

5E
0

1

dx@xki1~12x!kj #
22. ~3.5!

The right-hand side of Eq.~3.5! was obtained using standard
Feynman parametrization. After an elementary angular inte-
gration, a manifestLorentz scalaris unveiled in the resulting
Feynman parameter integral which can be explicitly per-
formed @5#. Thus, theLorentz covarianceof the logarithmic
contributions is established. This remarkable property, which
holds in spite of the fact that the angular integral is not a
generally Lorentz-invariant process, was shown to be true in
Ref. @5# for any angular integrand which is a function of
degree22 in Q̂. We also note that, by power counting, the
ln(T) contributions ofany hard thermalN-point function
will equally be a Lorentz-invariant quantity. In what follows
we will use this property as an important tool for the explicit
computation of the ln(T) contributions.

Our simple ansatz given by Eq.~3.1! is a very special case
of the most general Lorentz-covariant expression. In general,
for each set of color indices, there are 14 tensor structures
which can be formed using 3 Lorentz indices and the 2 in-
dependent four-momenta. However, the explicit calculation
of the diagrams in Fig. 2 shows that the angular integrals in
Eq. ~3.4! are such that the totally antisymmetric color factor
f a1a2a3 factorizesand the result can be written as

E dV

4p
Lm1m2m3

a1a2a3 ~k1 ,k2 ,k3 ,Q̂!

52 i f a1a2a3Am1m2m3
~k1 ,k2 ,k3!. ~3.6!

Therefore, the Lorentz-covariant tensorAm1m2m3
(k1 ,k2 ,k3)

must beantisymmetricunder any interchange of a pair of
momenta and the corresponding Lorentz indices. A straight-
forward but quite involved calculation~we have used the
symbolic computer programMAPLE! yields

Am1m2m3
~k1 ,k2 ,k3![E dV

4p
Lm1m2m3

~k1 ,k2 ,k3 ,Q̂!, ~3.7!

where the tensorsLm1m2m3
(k1 ,k2 ,k3 ,Q̂) are given in the Ap-

pendix.
We can perform the angular integrals for each individual

term of these expressions in a straightforward way, using for
instance the procedure of differentiation with respect to
kim l

as described above. In practice, we found easier to use a
decomposition in terms of a set of tensors@14,15# built from
the basic tensors

Am1m2m3

1 ~k1 ,k2 ,k3!5hm1m2
~k12k2!m3

, ~3.8!

Am1m2m3

2 ~k1 ,k2 ,k3!5~k1•k2hm1m2
2k1m2

k2m1
!

3~k12k2!m3
,

FIG. 2. The thermal three-gluon loop diagram. Wavy lines rep-
resentgluons and the broken lines in~c! and ~d! denoteeither
ghostsor internal gluons. The numbers 1, 2, and 3 represent a
collective index for the momenta, Lorentz and color indices. Graphs
~b! and ~d! are examples of forward scattering amplitudes associ-
ated, respectively, with the diagrams~a! and ~c!. All external mo-
menta are inward andk11k21k350.
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Am1m2m3

3 ~k1 ,k2 ,k3!5~k1•k2hm1m2
2k1m2

k2m1
!

3~k1m3
k2•k32k2m3

k1•k3!,

Am1m2m3

4 ~k1 ,k2 ,k3!5hm1m2
~k1m3

k2•k32k2m3
k1•k3!

1 1
3 ~k1m3

k2m1
k3m2

2k1m2
k2m3

k3m1
!,

Sm1m2m3

1 ~k1 ,k2 ,k3!5hm1m2
~k11k2!m3

,

Sm1m2m3

2 ~k1 ,k2 ,k3!5k1m3
k2m1

k3m2
1k1m2

k2m3
k3m1

.

The completeset is generated from the above equations in-
cluding new tensors obtained fromAm1m2m3

i (k1 ,k2 ,k3),

i51,2,3,4, and fromSm1m2m3

j (k1 ,k2 ,k3), j51,2, by cyclic

permutations of (k1 ,m1),(k2 ,m2),(k3 ,m3). This gives a total
of 16 tensors in terms of which we write the most general
expression forAm1m2m3

(k1 ,k2 ,k3). The coefficients of this
expansion can be obtained in a straightforward way by sim-
ply solving a system of 16 equations. These equations are
obtained using the expressions in the Appendix and perform-
ing the Lorentz indices contractions with each of the 16 ten-
sors. The solution of this system will be, in general, scalar
functions ofk1 ,k2 ,k3 involving angular integrals which can
always be reduced to Eq.~3.5!, or the special case of it when
ki5kj , when one uses the momentum conservation
k11k21k350. In principle these scalars could have any
kind of dependence on the external momenta involving Eq.
~3.5! and rational functions. However, the explicit calcula-
tion shows that, after using the eikonal identity given by Eq.
~2.4!, all coefficients vanish, except for the coefficients of
Am1m2m3

1 (k1 ,k2 ,k3)5hm1m2
(k12k2)m3

and its cyclic permu-

tations which simplify to give just21/3. Inserting these
terms into Eq~3.6! and using Eq.~3.4!, we finally obtain the
result stated in Eq.~3.1!.

IV. DISCUSSION

To get a further understanding of the connection between
the ln(T) contributions and the ultraviolet behavior of the
Green functions at zero-temperature, let us consider the com-
plete thermal amplitude, which includes the zero-temperature
part. This can be written, for instance in the Yang-Mills case
where we omit for simplicity the color indices, as follows
@7,16#:

Am1•••mN
~ki0 ,k i ,T!5M2eT (

Q052pniT

3E d322eQFm1•••mN
~Q0 ,Q,ki0 ,k i !.

~4.1!

HereM is the renormalization scale,ki0/2p iT are integers
and n runs over all integers. For fixedn, theQ integral is
ultraviolet finite, having no poles ate50.

In order to determine those terms which can yield an ul-
traviolet pole when the summation overn is evaluated, let us
examine a relevant contribution which is obtained after the

Q integration has been performed. Making appropriate shifts
in Q0, one finds that such a term is proportional to a sum of
the form

S5 (
Q052pniT

1

~Q0
21ak0

21bk2!~1/2!1e , ~4.2!

wherea, b are constants andk0 is some linear combination
of the external energies with integral coefficients.k is some
linear combination of the external momenta which may be
neglected in the high temperature limit, except when
Q0
21ak0

2 vanishes.
We now setk052p l iT , wherel is some integer and con-

sider the contributions toS from the regionsn2, l 2 and
n2. l 2. It turns out that the pole part arises from the summa-
tion over the domain whereunu@u l u, i.e., whenuQ0u@uk0u.
Expanding in this region~4.2! in powers ofQ0

21, we find that
the leading term gives a contribution involving thezeta func-
tion z(112e), which is defined in general as@17#

z~z!5 (
n51

`
1

nz
. ~4.3!

This function is analytic for all values ofz, except near the
point z5112e, where it has a simple pole 1/2e.

At this stage, having performed the summation over the
discrete frequenciesQ052pniT, we can analytically con-
tinue the external energies to continuous values ofk0. Iden-
tifying in the complete thermal amplitude all contributions
which yield poles ate50, and using the fact that the leading
term inS is proportional toT2122e, one obtains an expres-
sion of the form

Am1•••mN

e ~ki ,T!5SMT D 2e 1

2e
Rm1•••mN

~ki !

.S 12e
2 ln

T

M DRm1•••mN
~ki !. ~4.4!

whereRm1•••mN
is the residue of the ultraviolet divergent

part of the Green function at zero temperature. This has the
same structure, because of the renormalizability of the
theory, as the corresponding basic function appearing in the
Yang-Mills Lagrangian.

The above equation shows that for general Green func-
tions, the ln(T) contributions have the same form as the ul-
traviolet divergent terms which occur at zero temperature
and combine in a simple way with the ln(M ) terms. In par-
ticular, if the Green function at zero temperature is ultravio-
let convergent, the residueRm1•••mN

must vanish and the

ln(T) term should be absent at high temperature. This has
been explicitly verified in the case of the electron-positron
box diagram in thermal QED@18#.

In conclusion, we mention that the above property allows
us to include in a simple way the ln(T) contributions into the
running coupling constant g(T) at high temperature. Several
investigations on this important topic@19–22# have exposed
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ambiguities which are related, at least in part, to the fact that
the thermal contributions tog(T) are not generally Lorentz-
invariant functions. On the other hand, the ln(T) terms are
Lorentz invariant, being directly related to the ultraviolet be-
havior of the Green functions at zero temperature. It is well
known that the effective couplingḡ(k/M ) at zero tempera-
ture, wherek is a typical external momentum, involves a
logarithmic dependence of the form ln(k/M ). Thek depen-
dence in this term must be canceled by a corresponding de-
pendence in the ln(T/k) term at high temperature, since the

complete thermal amplitude contains only a combination of
the form ln(T/M ). We thus obtain a gauge and Lorentz-
invariant quantityḡ(T/M ) which is relevant, for example, in
the calculation of the pressure in thermal field theories@23–
25#.
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APPENDIX

In this appendix we present the results for the integrand of the angular integrals corresponding to the diagrams of Fig. 2. In
terms of the individual contributions of each diagram, we can write

Lm1m2m3
~k1 ,k2 ,k3 ,Q̂!5Lm1m2m3

tadpole ~k1 ,k2 ,k3 ,Q̂!1Lm1m2m3

ghost ~k1 ,k2 ,k3 ,Q̂!1Lm1m2m3

gluon ~k1 ,k2 ,k3 ,Q̂!, ~A1!

where

Lm1m2m3

tadpole ~k1 ,k2 ,k3 ,Q̂!52
9 k3•k3k3m1

hm2m3

8 ~Q̂•k3!
2

1
9 k3•k3hm1m3

k3m2

8 ~Q̂•k3!
2

1$cyclic permutations of~k1 ,m1!,~k2 ,m2!,~k3 ,m3!%,

~A2!

Lm1m2m3

ghost ~k1 ,k2 ,k3 ,Q̂!52
k1m3

k2m2
Q̂m1

k2•k2

16 ~Q̂•k2!
2~Q̂•k1!

2
k2m2

Q̂m1
Q̂m3

~k2•k2!
2

32 ~Q̂•k2!
3~Q̂•k1!

2
Q̂m2

Q̂m3
Q̂m1

~k2•k2!
2k1•k1

32 ~Q̂•k2!
3~Q̂•k1!

2
~A3!

1
Q̂m2

Q̂m3
Q̂m1

k2•k2~k1•k1!
2

32 ~Q̂•k2!
2~Q̂•k1!

3
2
k2m3

k1m1
Q̂m2

k2•k2

16 ~Q̂•k2!
2~Q̂•k1!

1
k2m3

k1m1
Q̂m2

k1•k1

16 ~Q̂•k2!~Q̂•k1!
2

2
k2m3

Q̂m2
Q̂m1

~k1•k1!
2

32 ~Q̂•k2!~Q̂•k1!
3

1
k2m2

Q̂m1
Q̂m3

k2•k2k1•k1

32 ~Q̂•k2!
2~Q̂•k1!

2
2
k2m2

Q̂m1
Q̂m3

~k1•k1!
2

32 ~Q̂•k2!~Q̂•k1!
3

2
k2m3

Q̂m2
Q̂m1

~k2•k2!
2

32 ~Q̂•k2!
3~Q̂•k1!

1
k2m3

Q̂m2
Q̂m1

k2•k2k1•k1

32 ~Q̂•k2!
2~Q̂•k1!

2
2
Q̂m2

Q̂m3
Q̂m1

~k1•k1!
3

32 ~Q̂•k2!~Q̂•k1!
4

1
k1m1

Q̂m2
Q̂m3

~k2•k2!
2

32 ~Q̂•k2!
3~Q̂•k1!

1
k1m1

Q̂m2
Q̂m3

~k1•k1!
2

32~Q̂•k2!~Q̂•k1!
3

2
k1m1

Q̂m2
Q̂m3

k2•k2k1•k1

32 ~Q̂•k2!
2~Q̂•k1!

2

1
k1m3

Q̂m2
Q̂m1

~k2•k2!
2

32 ~Q̂•k2!
3~Q̂•k1!

2
k1m3

Q̂m2
Q̂m1

k2•k2k1•k1

32 ~Q̂•k2!
2~Q̂•k1!

2
1
k1m3

Q̂_m2Q̂m1
~k1•k1!

2

32 ~Q̂•k2!~Q̂•k1!
3

1
Q̂m2

Q̂m3
Q̂m1

~k2•k2!
3

32 ~Q̂•k2!
4~Q̂•k1!

1
k1m3

k2m2
Q̂m1

k1•k1

16 ~Q̂•k2!~Q̂•k1!
2

1$cyclic permutations of~k1 ,m1!,~k2 ,m2!,~k3 ,m3!%,

Lm1m2m3

gluon ~k1 ,k2 ,k3 ,Q̂!51
k2m2

hm1m3
k2•k2

4 ~Q̂•k2!
2

2
k1•k2k1m2

hm1m3

2 ~Q̂•k1!~Q̂•k2!
1
5 ~k1•k1!

2hm1m3
Q̂m2

8 ~Q̂•k2!~Q̂•k1!
2

2
k1m2

hm1m3
k1•k1

2 ~Q̂•k2!~Q̂•k1!
~A4!

1
3 k2m2

hm1m3
k1•k1

16 ~Q̂•k1!
2

1
hm1m3

Q̂m2
~k1•k1!

2

16 ~Q̂•k1!
3

1
hm1m3

Q̂m2
~k2•k2!

2

8 ~Q̂•k1!~Q̂•k2!
2

1
k1m2

hm1m3
k2•k2

2 ~Q̂•k2!
2

1
k1m2

hm1m3
k2•k2

4 ~Q̂•k2!~Q̂•k1!
2
3 k2m2

hm1m3
k2•k2

16 ~Q̂•k2!~Q̂•k1!
1
3 k2m2

hm1m3
k1•k1

8 ~Q̂•k2!~Q̂•k1!
2
5 k1•k2hm1m3

Q̂m2
k2•k2

8 ~Q̂•k1!~Q̂•k2!
2
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2
5 k1•k1hm1m3

Q̂m2
k2•k2

8 Q̂•k1~Q̂•k2!
2

1
5 k1•k2hm1m3

Q̂m2
k1•k1

8 ~Q̂•k2!~Q̂•k1!
2

2
k1•k1hm1m3

Q̂m2
k2•k2

8 ~Q̂•k2!~Q̂•k1!
2

1
k1m3

hm1m2
k1•k1

16 ~Q̂•k1!
2

2
3 k1m3

k1m1
Q̂m2

k1•k1

8 ~Q̂•k2!~Q̂•k1!
2

1
9Q̂m2

Q̂m3
Q̂m1

~k1•k1!
3

32 ~Q̂•k2!~Q̂•k1!
4

1
9 k2m3

Q̂m2
Q̂m1

~k2•k2!
2

32 ~Q̂•k2!
3~Q̂•k1!

1
3 k1m3

hm1m2
k1•k2

8 ~Q̂•k1!~Q̂•k2!
2

3 k2m1
k2m2

k1m3

8 ~Q̂•k1!~Q̂•k2!
2
3 k2m3

hm1m2
k2•k2

16 ~Q̂•k1!~Q̂•k2!
1
5hm2m3

k2•k2Q̂m1
k1•k1

8 ~Q̂•k2!~Q̂•k1!
2

1
hm2m3

k2•k2Q̂m1
k1•k1

8 ~Q̂•k2!
2~Q̂•k1!

2
13k2m1

k1m3
Q̂m2

k1•k1

16 ~Q̂•k2!~Q̂•k1!
2

2
5 k1•k2hm2m3

Q̂m1
k2•k2

8 ~Q̂•k2!
2~Q̂•k1!

2
3 k2m3

k2m2
Q̂m1

k1•k1

8 ~Q̂•k2!~Q̂•k1!
2

2
3 k1m1

hm2m3
k2•k2

16 ~Q̂•k2!
2

1
5 k1•k2hm2m3

Q̂m1
k1•k1

8 Q̂•k_2~Q̂•k1!
2

1
13k2m3

k1m2
Q̂m1

k2•k2

16 ~Q̂•k2!
2~Q̂•k1!

1
9 k1m3

Q̂m2
Q̂m1

k2•k2k1•k1

32 ~Q̂•k2!
2~Q̂•k1!

2
2

hm1m2
k2•k2Q̂m3

k1•k1

8 ~Q̂•k2!~Q̂•k1!
2

2
3 k1m1

k1m2
Q̂m3

k2•k2

16 ~Q̂•k2!
2~Q̂•k1!

1
3 k1m3

k1m1
Q̂m2

k2•k2

8 ~Q̂•k2!
2~Q̂•k1!

1
hm2m3

k2m1
k2•k2

2 ~Q̂•k1!~Q̂•k2!
1
3 k2m3

hm1m2
k1•k1

16 ~Q̂•k1!
2

2
k1m1

hm2m3
k1•k1

4 ~Q̂•k1!
2

2
3 k2m1

k2m2
Q̂m3

k2•k2

16 ~Q̂•k2!
2~Q̂•k1!

1
9 k2m2

Q̂m1
Q̂m3

~k1•k1!
2

32~Q̂•k2!~Q̂•k1!
3

1
13k2m1

k1m3
Q̂m2

k2•k2

16 ~Q̂•k2!
2~Q̂•k1!

1
hm1m2

Q̂m3
~k1•k1!

2

16 ~Q̂•k1!
3

2
hm2m3

~k1•k1!
2Q̂m1

8 ~Q̂•k2!~Q̂•k1!
2

1
k1m3

k2m2
Q̂m1

k2•k2

8 ~Q̂•k2!
2~Q̂•k1!

2
7 k1•k2hm1m2

Q̂m3
k1•k1

8 ~Q̂•k2!~Q̂•k1!
2

1
7 k1•k2hm1m2

Q̂m3
k2•k2

8 ~Q̂•k2!
2Q̂•k1

2
9 k2m2

Q̂m1
Q̂m3

k2•k2k1•k1

32 ~Q̂•k2!
2~Q̂•k1!

2
1
9 k2m2

Q̂m1
Q̂m3

~k2•k2!
2

32 ~Q̂•k2!
3~Q̂•k1!

2
9 k1m3

Q̂m2
Q̂m1

~k2•k2!
2

32 ~Q̂•k2!
3~Q̂•k1!

1
k2m1

hm2m3
k1•k2

2 ~Q̂•k1!~Q̂•k2!
2
k2m1

k1m2
Q̂m3

k2•k2

~Q̂•k2!
2~Q̂•k1!

1
3 k1m3

hm1m2
k1•k1

16 ~Q̂•k1!~Q̂•k2!

2
3 k1m3

hm1m2
k2•k2

16 ~Q̂•k2!
2

2
hm2m3

k2m1
k1•k1

2 ~Q̂•k1!
2

1
hm1m2

~k2•k2!
2Q̂m3

8 ~Q̂•k2!
2~Q̂•k1!

1
3 k2m3

k2m2
k1m1

8 ~Q̂•k1!~Q̂•k2!

2
3 k1m1

hm2m3
k2•k2

8 ~Q̂•k1!~Q̂•k2!
2
3 k2m3

k1•k2hm1m2

8 ~Q̂•k1!~Q̂•k2!
1
3 k2m3

hm1m2
k1•k1

16 ~Q̂•k1!~Q̂•k2!
1
3 k2m3

k1m2
k1m1

8 Q̂•k1~Q̂•k2!

2
hm2m3

k2m1
k1•k1

4 ~Q̂•k1!~Q̂•k2!
2
3 k1m3

hm1m2
k2•k2

16 ~Q̂•k1!~Q̂•k2!
2

3 k1m3
k2m2

k1m1

8 Q̂•k_1~Q̂•k2!
2
k2m3

k1m1
Q̂m2

k1•k1

8 ~Q̂•k2!~Q̂•k1!
2

1
k2m3

k1m1
Q̂m2

k2•k2

8 ~Q̂•k2!
2~Q̂•k1!

1
3 k1m1

k1m2
Q̂m3

k1•k1

16 ~Q̂•k2!~Q̂•k1!
2

1
3 k2m1

k2m2
Q̂m3

k1•k1

16 ~Q̂•k2!~Q̂•k1!
2

2
hm1m2

~k1•k1!
2Q̂m3

8 ~Q̂•k2!~Q̂•k1!
2

1
hm1m2

k1•k1Q̂m3
k2•k2

8~Q̂•k2!
2~Q̂•k1!

1
k2m1

k1m2
Q̂m3

k1•k1

~Q̂•k2!~Q̂•k1!
2

2
5hm2m3

~k2•k2!
2Q̂m1

8 ~Q̂•k2!
2~Q̂•k1!

2
13k2m3

k1m2
Q̂m1

k1•k1

16 ~Q̂•k2!~Q̂•k1!
2

2
k1m3

k2m2
Q̂m1

k1•k1

8 ~Q̂•k2!~Q̂•k1!
2

2
k2m3

hm1m2
k2•k2

16 ~Q̂•k2!
2

1
9 k2m3

Q̂m2
Q̂m1

~k1•k1!
2

32 ~Q̂•k2!~Q̂•k1!
3

2
9 k2m3

Q̂m2
Q̂m1

k2•k2k1•k1

32 ~Q̂•k2!
2~Q̂•k1!

2
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2
9Q̂m2

Q̂m3
Q̂m1

k2•k2~k1•k1!
2

32 ~Q̂•k2!
2~Q̂•k1!

3
1
9Q̂m2

Q̂m3
Q̂m1

~k2•k2!
2k1•k1

32 ~Q̂•k2!
3~Q̂•k1!

2
2
9Q̂m2

Q̂m3
Q̂m1

~k2•k2!
3

32 ~Q̂•k2!
4~Q̂•k1!

1
3 k1m3

k1m2
Q̂m1

k1•k1

16 ~Q̂•k2!~Q̂•k1!
2

2
3 k1m3

k1m2
Q̂m1

k2•k2

16 ~Q̂•k2!
2~Q̂•k1!

2
hm1m2

Q̂m3~k2•k2!2

16 ~Q̂•k2!
3

2
9 k1m1

Q̂m2
Q̂m3

~k1•k1!
2

32 ~Q̂•k2!~Q̂•k1!
3

1
9 k1m1

Q̂m2
Q̂m3

k2•k2k1•k1

32 ~Q̂•k2!
2~Q̂•k1!

2
2
9 k1m1

Q̂m2
Q̂m3

~k2•k2!
2

32 ~Q̂•k2!
3~Q̂•k1!

2
k2m2

k1m1
Q̂m3

k1•k1

4 ~Q̂•k2!~Q̂•k1!
2

1
k2m2

k1m1
Q̂m3

k2•k2

4 ~Q̂•k2!
2~Q̂•k1!

2
9 k1m3

Q̂m2
Q̂m1

~k1•k1!
2

32 ~Q̂•k2!~Q̂•k1!
3

2
hm2m3

Q̂m1
~k2•k2!

2

16 ~Q̂•k2!
3

1
3 k1m1

hm2m3
k1•k1

16 ~Q̂•k2!~Q̂•k1!
1
3 k2m3

k2m2
Q̂m1

k2•k2

8 ~Q̂•k2!
2~Q̂•k1!

1
3 k2m3

k2m1
Q̂m2

k1•k1

16 ~Q̂•k2!~Q̂•k1!
2

2
3 k2m3

k2m1
Q̂m2

k2•k2

16 ~Q̂•k2!
2~Q̂•k1!

1$cyclic permutations of~k1 ,m1!,~k2 ,m2!,~k3 ,m3!%.
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