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Smooth bosonization as a quantum canonical transformation

Andrew J. Bordnér
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-01, Japan
(Received 28 February 1997

We consider a (¥ 1)-dimensional field theory which contains both a complex fermion field and a real
scalar field. We then construct a unitary operator that, by a similarity transformation, gives a continuum of
equivalent theories which smoothly interpolate between the massive Thirring model and the sine-Gordon
model. This provides an implementation of smooth bosonization proposed by Damgaard, Nielsen, and
Sollacher as well as an example of a quantum canonical transformation for a quantum field theory.
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I. INTRODUCTION model and the sine-Gordon model. Abelian bosonization is
an ideal test of this technique since the operator correspon-
Duality, or the quantum equivalence of field theories, al-dences between the fermionic and bosonic theories are
lows one to relate quantities in one theory, such as the paknown[7,8]. We will consider a theory which contains both
ticle spectrum and Green’s functions, to those of anotheférmions and bosons. A quantum canonical transformation of
theory. This concept is most useful when duality maps & theory with only fermions, the massive Thirring model,
theory with a strong coupling, in which perturbation theory Yields a continuum of theories with interacting fermions and
is invalid, to one with a weak coupling, in which a perturba- P0sons as well as the corresponding theory containing only
tive calculation may be performed. Unfortunately, manyP0sons, the sine-Gordon model.
such duality transformations are hypothetical since an ex-
plicit operator mapping is absent. Duality is usually demon-  1l. QUANTUM CANONICAL TRANSFORMATIONS
strated either by symmetry arguments, as in non-Abelian FOR A FIELD THEORY

bosonizatior{ ], by a path integral calculation, as Hidu- We first review quantum canonical transformations in

ality [2] and Abelian bosonizatiof8], or by a linear canoni- . ; .
y[2] I8l y guantum mechanics and next examine how to extend this

cal transformation, as iff duality [4]. - : ) )
The equivalence of two di%lferent guantum mechanicalfjeflnltlon to a quantum f_|eld the_(_)ry. We t_)egm by_con3|der-

ineories my bo rgorously establisnd by means of a smf0d LT LI e SSmeet obre it ony,

larity transformation of all quantum operators. These trans- ation is a similagrit transfo'rm:g[ion of the QuANTUM ODEra-

formations were established by Dirac as the quantum versiogJrS which ma: beydefined by its action an the cangnical

of canonical transformations in classical mechanics; th os"t'on and mgment mo ergt ando- in the original

former preserving the quantum commutators and the Iatteﬁ’h . btairn’ 3 , P h o hpl ' 'l

the Poisson brackets. More recently, Anderson further invedheory, to obtairg; andp; in the new theory

tigated these mappings, which he named “quantum canoni-

cal transformations,” and emphasized that they need not be q/=U(q,p)q;U"%(q,p), p/=U(q,p)p;U 1(q,p).

unitary as originally presumed but rather isometfk]. D)
Quantum canonical transformations map operafyri one

theory to®/ in another quantum theory b§/ =00,0-1  If the states also transform &)’ =U(q,p)|¢) then matrix
with U an operator composed of products of the canonicaf{lememS are preserygd an(q,p) is an |sometry. This
position and momentum operators. Such a transformatio ansformaﬂon. IS spemﬂed by an operatb(rq,p),wmch we
obviously preserves commutators of operators and both the§>Sume to be invertible. A quantum canpmcal trz_:msformatlon
ries have the same energy spectrum with eigenstates mapp@&o preserves the canonical commutation relations

as |E)’=U|E). Recently, in an interesting extension of

quantum canonical transformations to conformal field theo- [af .pj]1=[di.pj]=138;, 2
ries, Evans and Giannakis deriv@eduality transformation
rules for string fields on tofi6]. with all other commutators vanishing. These transformations

In this work, we investigate quantum canonical transfor-may be used to calculate some physical properties of a quan-
mations within a class of (*1)-dimensional quantum field tum mechanical system, for instance, the energy eigenstates
theories, namely the Abelian bosonization of free bosons andnd eigenvalues, by mapping a given model to another
fermions as well as the equivalence of the massive Thirringnodel whose solutions are known, such as the harmonic os-

cillator [5].
Quantum field theory is usually formulated in the interac-
*Electronic address: bordner@yukawa.kyoto-u.ac.jp tion picture where the Hamiltonian density operator is
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divided into the sum of a free paH, and an interacting part turbation theory, are independent of the choice of this parti-
Hi- The free field ¢(x) satisfies the operator equation tion of the Hamiltonian. The Green’s functions for the inter-

(919 p(X,t) =1[ fAYHo (Y, 1), b(X,1)]. We will assume that acting fieldsé,(x,t) may be expressed in terms of the free
exact physical quantities, i.e., calculated to all orders in perfields using the well-known equation

OIT*[ ¢¥a )~ b to)exp( — 1/ dx dt Hinf S(t)]) ]10)
(O] T* exp(— 1 [ dX’ dt' Hin H(X',1')])|0)

G(Xq, - - X0)=(O| T[ b (X1,t1) - - - ¢y (Xn,tn)]|0) =

()
|
T* operator products are necessary in this equation for the 0'(z,z2)=R{U"10(z,z)U}
theory that we will consider, the Thirring model, because of
the Schwinger term in the current algebra. However, follow- Rl Oz 2)+ [A,0(z z_)]
ing the arguments of Ref9], which notes that Eq3) yields ' B
Lorentz covariant expressions if tl& product is replaced 2
by the naive time-ordered product and a covariant renormal- + I—I[A,[A O(z,2)]]+ - |. (4)

ization scheme is employed, we consider usual time-ordered
products for this equation. Thus the quantities that we woul

dI'he second equality follows from the Baker-Campbell-
like to transform are vacuum expectation values of time-

Hausdorff relation. Since the two contour integrals in the
ordered products of the free fieldgx,t). Rather than using  commutator are equivalent to a single contour integral about
the algebra of the canonical operators at equal time in the this transformation may be easily calculated, given the
Heisenberg picture, or equivalently in the Sakirger pic-  wick contractions for the relevant fields. The resulting quan-
ture, to construct the operatbr which implements the trans- tum canonical transformation for the conformal field theory
formation, we may use the commutator of free fields at dif-looks superficially similar to the case for quantum mechanics

ferent  times [qS()Zl,tl),¢(§2,tz)]EA(iz—il,tz—tl). in that the free fields q&(z,z_), Hamiltonian density
A(x,t) is ac-number function. Since it appears difficult to H[ ¢(z,z)] and vacuum state transform as
constructU for a general theory we will consider here the

simpler case of a massless free fiebdin 1+1 spacetime ¢'(2,2)=R{U¢(z,2)U"1},

dimensions for which the powerful methods of conformal o o

field theory may be applied. H'[H(z,2)|=R{UH[ #H(z,2z)]U Y}, .
We consider the field theory defined on a circle, i.e., pe- ®)

riodic asx'—x+ 2L to avoid the infrared divergences ap- |0)'=U|0).

pearing in massless field theories. This periodicity also al-
lows a bijective map of the spacetime coordinates to the
complex plane with the origin excluded. Light cone coordi-
nates are defined aéiz(l/\/f)(xoix%). After a Wick ro- R{U[O4(2),0(w) U~ =R{UO,(2)U~ U O(w)U 1
tation from Minkowski space to Euclidean spage= —1x
one definesz=exd (2m/L)xg ] and likewise definesz in
terms ofxg . Hereafter we consider only time-ordered prod- =R{[0}(2),05(W)]}. (6)

ucts of operators, corresponding to radial-ordered products in

the conformal field theory, since only these have well-Once this transformation is performed the result may then be
defined vacuum expectation values in the Euclidean theorgnalytically continued back to Minkowski space. We will
for any value of spacetime coordinates of the operdttds ~ dive an explicit example of such a transformation for Abe-
We then define a general form fdd in the conformal lian bosonization in the following section.

) _ v We define two quantum field theories to be equivalent if
fleld theory asU._ ReXp.[99C(dZIZ7T')Q(.Z)+9SC(d z2m){,(2)] they are related by a quantum canonical transformation and a
=Rexp.A. The integration contou€ is chosen so that all

. finite wave function renormalization. Thus if the renormal-
operator products are radial ordered. If the operatbrand ;.. field®’ is defined asb’'=z"12¢’ then Green’s func-

() are Hermitian therU is unitary. The quantum canonical tions for the free fields in the two theories, in Minkowski
transformation of an operat@?(z, z) is defined as space, are related by

Transformation byJ also leaves invariant the radial-ordered
Commutator of two operators:

—U0,(w) U tuo,(n)u~1}
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O/ T[®' (X;,t,)- - D' (X,,t,)]|0) 1
< | [ ( 1 1) ) ( n n)]l_)> {¢ (XO Xl) lﬁﬁ 1)}|x°=y°_ 25”5,135()( _ )

=Z V20| T[ p(X1,t1) - - - p(Xn,tn)1|0).  (7) (13)

Furthermore the Green’s functions for the interacting fieldswhich gives for the complex field
in the new theory may, in principle, be calculated using Eq.

(7) and Eq.(3) with the interaction Hamiltoniai;,, . {zpa(xo,xl),¢Tﬁ(y°,y1)}|xo=yo: S.p8(xt=yhH. (14
IIl. FREE FERMION AND BOSON FIELDS The |ight cone fermion current is definedlas

- We begin with a (¥ 1)_—dim_ensional field theory cqntain— Ji(xF)=12L: ¢L(X+)Tij P (xF):,

ing both a complex fermion field and a real boson field pe-

riodic asx,—x;+v2L. The Hilbert space of this theory is a To 0 1 e

tensor product of the respective Fock spaces, with the =1 o0 (19

vacuum state
with ¢4 g=4¢1,. This current generates Ul)~SQ (2)
10)=10)bosor] O )termion- ®) symmetry transformationg, —e'“y, and likewiseJ{(x ")
In terms of light cone coordinates, the mode expansion fogenerates SK¥2) transformations of the fermion field. Since
the single real scalar fielg is J; and J; satisfy the wave equationlJ;=0J;=0 they
may each be divided into positive and negative frequency
1 . modes and a normal ordering defined for modes of each cur-
(X" XT)=q+ g+ 5 (PXT+pX )+ (X ,Xx7) (9  rent separately.
2L .
We also define a boson current

with L
I 1 271 ‘]b(x+)E\/_—(9+¢(X+) (16)
xt x)=—+ —| apexg — ——nx*
¢0( ) 2 aT n#on ap F{ L )
that generates a shift in the boson field by a constnt
vaexd = 2 e B(x )= p(x") +e.
n L Next, we will use the correspondence between a field

. theory of massless real bosons or fermions in Minkowski
= po(X") + (X "). (100  spacetime and conformal field theory in order to simplify
_ _ _ _ ~ calculations. After a Wick rotationx2= —1x° and defining
We have split the field$ into its zero modes, the axial z=exg(2m/L)x:] we have

chargeq andq_and their conjugate momenpaandﬁ and

the remaindexkpy. Hermiticity of ¢q(x) implies a§=a,n. - o 12 i—n

The nonvanishing commutation relationfa,,ap] LX) —y(2)= 2374 | ; byz (17)
= m‘Sm,—n ' Lam ,qn]= mb‘m,—n ) and[q,p]=[q P1=1 give )
the usual equal-time commutation relation and similarily for #/z(x~). The Wick contraction for these

0.1 o 1 L fermion fields is defined as
[H(X°, ), dod(Y°,y ) ] |xo=yo=18(x"—y").  (11)

A complex fermion field may be expressed in terms of

two real fields asy(x)= ¢*(x) +14%(x). The mode expan- i i(w)=:o Iow):+ A ) 18
sion for the real fermion fieldg'(x), i=1,2 is PADFW) =g (2 w):+ (zw) (18

S AL 1\ . 2m
(XX )ZZW‘_‘(E) En: 0 bneX[{—Tnx )

|2|>[wl,

For R fields,

A _ 1 \z+w
(ZW)=| 552 | ;= (19
" Oﬁep(—zmn) (12
1) PnX L™ and for NS fields,
Again, sincey/(x) are Hermitian bl)T=b'" , and the sum JVzw

extends over integer values for RamorR) (fields and half- A(zw)= (ZWTL)ﬂ (20)
integer values for Neveu-Schwa(®$S) fields. The nonvan-
ishing anticommutators for the fermion creation and annihi

Et_lon operators argbp,,by}=6" 6y, and likewise for !Repeated indices imply summation over them throughout this
bi,. The equal-time anticommutator for the real fermion paper. The following convention for thes matrices is used:
fle|dS |S 70=Uxx b% =_IUY’ '}/550-2_



7742 ANDREW J. BORDNER 55

Likewise, after the Change of Variab|e$+(,xf)_)(z,z_) The Hamiltonian denSity for the fermion field is

I 1 '
bo(X )= do(D)= ——2, —apz . (2D) Ho=5 4" dotp— (09" ¥] (27
2\/; n=o0 N
The Wick contraction forpo(2) is which implies that. . =1y2:¢. . : in terms of the real
fermion fields. The fermion Hamiltonian density may then be
|z|>|w], shown to be equal to the Sugawara form in terms of the

currents of Eq(15) [11,12:

1
$0(2)0e(W) = (2 bow) ~ 4= In[ 1- % (22

M=o [£33x )3+ £I2x 4] (28)

The operatorU(B) which implements the quantum ca- . L i
nonical transformation in the conformal field theory is de-T_he normal ordering ¥ is with respect to modeglpt™) and

fined as the radial-ordered exponential J(x7), ie., with J(x")== Jpexd —(2m/L)x"] the J,
with positiven are placed to the right. Choosifgy= 7/2 the
transformed fermion Hamiltonian density becomes

d
U(B)EReXF{INWB( b 5 o232
¢ L P T B 20+ KV
U(E>HOU (E)—T[i\]b(x )¢+¢Jb(x_)¢]

dz —
- fﬁcz IZ—¢0(Z)Jf(Z))]- (23 1 o
" = S{i[0: ) PPr+:[a- b(x)]%)
The contourC is chosen to be such that the complex coor- 1
dinates of all other operators lie within it; i.e., the limit _. 01 0 o 1y.
’ ’ == X7, X)) * (X7, X):
xomm—>oo is taken.U(B) is unitary and its inverse results 2 w )04 )
from U(B) by takingi— —1 and integrating over a contour P 29
C in which the coordinates of the other operators lie outside -
of it, i.e., in the limitx?,
One of the main properties &f (B) is that it transforms
the fermion current); and the boson current, into one
another. This may be seen by evaluating &j.for U(B).
Using the definition of the currents Eq4d.5) and(16), and
the Wick contractions Eq$18) and(22), we find the follow-
ing transformations of the currents:

y (Jf(z))ul _( cosB sinﬁ)(Jf(z)
(8) Jo(2) (B)= —sing cos8/\ Ju(2)

—s —00,

The second line follows from the definition of the boson
current, Eq(16), and the fact that the usual normal ordering
with respect to modes ap is identical to the normal order-
ing with respect to modes df,. Thus the quantum canonical
transformationU (#/2) transforms the Hamiltonian for a
free complex fermion field into one for a free real boson
field. The fermion field decouples, i.e., has no dynamics, and
) the theory is equivalent to that for a free boson field.

IV. COMPLETE BOSONIZATION OF THE MASSIVE
THIRRING MODEL

U(’G)(i(z_)) u-4p)= ( C(_)SB —sm,B) (i(z)) ) We next examine how the massive Thirring model trans-
Ju(2) SinB  coB /| J,(2) forms undetU (7/2), or complete bosonization. The Hamil-
(24)  tonian density for the massive Thirring model is
As expected, this transformation preserves the commutators ¢ - 1 —
of the boson and fermion currents Hhining=Ho+ M:gpifi+ 59 by, by o
[34(2),34(W)]=[Ip(2),Ip(W)]= T =Ho+ 1M(Y Tkt wRTi D) —29C L Tiwl )
X (YRTi Yk (30
[J#(2),dp(W)]=0 (25)

_ _ _ _ where the Hamiltonian density is expressed in terms of the

and likewise for the antiholomorphic currents. real chiral fermion fields. As discussed in RET], the cou-

Starting from a theory with only a free, massless complexling g must be greater thar /2 for the Thirring model
fermion, we examine how the Hamiltonian density trans-with nonzero mass in order for the theory to be well defined.
forms. In general the Hamiltonian density in terms of theBoth the mass and current-current terms have been regular-
light cone components of the energy-momentum temsgr  ized by normal ordering. We also use the interaction repre-
IS sentation with massless fields in which these terms are

treated as interactions.
H= %[6++(x+)+ 0. (x))]. (26) SityFiirsst considering the massless case, the Hamiltonian den-
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_o Thiring=Hb—29(. T ) (YT zd
Hm—o Thirring HO g('va ij l/IL)(wR |J¢R) 1//,_(z)=iexr( _J' ?f‘]f(g)) lﬂL(Zo)i. (36)
20
o
- T{i\]?(x*)iﬂ%jﬂx)i This suggests the expression
29 — 2dé
o W) . S wL<z>¢fI(w>=F<z,w>¢exp(— fw?ma)i (37)
Transforming byU (7/2) results in with
H;n:o Thirring:U<g) Hm=0 Thirring U_l(g) F(z,w)
—exp( f —J”)(g))wawl(w)exp( f Zd—fJP(&)).
2L2[¢‘]b(x+)¢+¢ b(X ):t W
(38)

29
——in(x ) Jp(X7)

F(z,w) is a function of the charges since it commutes with
J(2) and if one assumes, as in REL3], that any operator
that commutes with the currents is a function only of the

_ 1['((9 62t (0 d)%] chargesF(z,w) also commutes withy(u) for u#z,w so it
AR is actually ac-number function. Finally with the commuta-
tors
g
- ;:3+¢0,¢:. (32
w

. . - [347(2), yr(w)]= (—— —) (W),
The corresponding Lagrangian density is (39)

’ g : 37(2), ¢ (w) =z ! w),

Lo Thiring=| 5+ 5| Fubd i, (33 i (@ W=\ =~ 3 Al

which after a finite wave function renormalization becomesand the definition ofF(z,w) in Eq. (38) one obtains the
the Lagrangian density of a free massless boson field. Idifferential equations
order to transform the mass term we use the methods of

Ref. [13] to express products of the fermion fields in terms

1 1
of the currents. We next repeat the derivation for our case: a d,F(z,w)= ( -——+ > F(z,w),
complex fermion field on a compact space and currents de- Zmw ez (40)
fined by normal-ordered productk. may be divided into the
itive f des){") and tive f 1 1
posi |ve(7)requenc.y_ modes);”’ and negative frequency AuF(ZW) = + =V Fzw)
modesJ; ’/, containing, respectively, creation and annihila- Z—w 2w
tion operators. The zero mode df is divided evenly be-
tweenJ!{*) andJ{™). The normal-ordered product of a cur- with the solution
rent and a fermion field is defined as
ZW
: (+) . . () F(z,w)="1, \/_ 41
(29" (D=3 (D¢ (D +¢'(2)I; (7). (39 =W
Using the Sugawara correspondencel¢(#)J;(2)+  wheref, is a constant. Thus we arrive at
=2%2L:7[ 9,4 (2) 14/ (2): + €, with €=0,1/4 for, respec-
tively, NS or R fields, and the above definition of normal
ordering gives P(2) 1//L(w)—f0 ieX[{ f (&) |+. (42
1

Il $32(2)t 4 (w ITHEI (W) o (W)t Although this solution appears to be nonlocal it is in fact
2[ #;2 1z f( ) sz( )| (W) g (w) bilocal since it is independent of the integration path from

_ w to z. We next defines, (x,x )=y (x")yr(x") and
=Wdy i (W). (B9  o_(x*,x)=yL(x) ¢ (x"). Nonzero vacuum expectation
values of products of these operators must contain an equal
Integrating this equation and expressing the result in terms afumber of o, and o_ because of the S@2)X SOx(2)
the original complex fermion fielg/(z) = ¢*(2) + 14°(2), symmetry. We consider the product of operators
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iex;{f—.] (&) i:texp( f _Jf(g)) (43

with the equality following from the solution of E¢42). The value off; may be found by comparing the vacuum expectation
value of this operator

o.(z,2)0_(W, W)—f2

2

(44)

. _ o _ _ 1| zw
(Ol (z,2)a (W, w)|0)=(0]#'(2) ' (W)[0){O] ¢ (2) 4! (W)[0) = 52| -

with the operator in terms of the currents in E43). Because the vacuum expectation value of normal-ordered products of
current operators vanishefg,=1/( J2L).

We next find the transformation of the operator in E48) by U(#/2) to get the corresponding operator in the bosonic
theory

N W 2 -
U(m/2)04(2,2) 0 (W W)U~ X(m/2)= 55— exp2mi do(2) — do(W)1}::exp{2 [ do( 2) — o(W) I}:

2L%z—w
1 w|? - -
=507 \[; exp(2\/mI[ $o(2) + do( 2)1}::exp{— 24/ [ bo(W) + bo(W) ]}
(45
The last equality may be derived using the relation
@2V 60(2). - o= 2T d(W). :ezﬁl¢g”(z)e2ﬁ|¢g’)(z)e—2ﬁ|¢g“( e —2ymel (w) — 477[¢0 '(2), 65 (W)]. g2V $(2)~ do(W)]
z
= (_) 2V ¢o(2) = do(W)]- (46)
z—w
¢g+) and ¢§,_) are, respectively, the positive and negative frequency modeg,.of
Since Eq.(45) is valid for arbitrary|z|>|w| the transformation of the operatass. ando_ are
T — T 1 =5 -
U(— o.(z, Z)Ul(—) = —=(Vz2) hexp{2Jm [ ¢o(2) + ho( 2)1}:,
2 2) 2L
(47)
T — T 1 =5 -
Ul=|o_(z,z U‘1<—)=— zz:exp{— 2\ do(2) + po( 2)]}:.
(z)o (22)U7 5| = HpVzzexl=2(mldo(2)+ do(2)])
Finally, to compare with previous results in the literature we add the zero modgsdod ¢,
= 1I __—__1I___ 48
d(@)=a+pz—Inz+¢o(2), ¢(z2)=q+p —Inz+do(2), (48
and define normal-ordered expressions to hate the right ofq. Then the transformed operators become
T — T 1 — -
U(—) o.(z, z)U1<—> = ——zzexpl2Vm[(2)+ $(2)]}:,
2 2) L 49

0| 3]z 5~ etz < a:

This result agrees with the Frenkel-Kac fermionic vertex operator construction with fermion opératorthe transformed
theory[14,12]

W (2)=2"YL"Y2\[ziexd —2Vmd(2) i, Pl(z2)=2"VL " V2zzexd 2w ¢(2)]: €, (50

Ve(z)=2 YL 2z 2V m g(2)ier,  VE(Z)=2 YL Y2\ Ziex] —2\m (2) ] r,

ande_g are coordinate-independent fermionic operators which sgtigfyez} =0 and (e )?= (eg)?=1 [9]. The operators in
Eq. (50) then have the correct anticommutation relations for complex fermion fields.
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All that remains to be done to obtain the complete bosonized Hamiltonian density is a finite wave function renormalization
of ¢(x). The renormalized field (x) is defined asb(x)=a 1¢(x). We use a method similar to that used by Coleman in
order to regularize the expression : g a®(z)]: whereby one uses Wick’s theordin,9]

exp<|f\](x)¢(x)d2x =:ex4|f J(x)¢(x)d2x):ex;{—;f J(X)A(x—y;m)I(y)d?xd?y (51)

with J(x) set equal to & function and the propagatadr(x;m), which is singular for spacelike?— 0 replaced by the regulated
propagatorAR(x;m,A), which is finite in this limit

AROGM,A)=A(x,m)—A(x,m=A). (52)

A is a large cutoff mass. In our case=0 and, with the propagator of E(R2), the result for the fieldp, is

@2mdo(22): =

2T ady(2,2)-
i 0 2) (53)

L2A2 —a?+1
4772) €

The subscript on the normal-ordering symbol indicates with respect to which field the expression is normal-ordered. Adding
in the zero modes one obtains

L2A2

a2\ H(2,2).
e w|¢(zz)_¢_(4_ﬂ-2_

—a?+1 —
) |Z|<1/2)(a2—1):ezv‘?lad)(z,Z);(p _ (54

After collecting the previous results with=(1+g/#7) 2 and an analytical continuation back to Minkowski space, the
Lagrangian density,, corresponding to the bosonized massive Thirring model is

1 ., \/ﬁ L2A2\ 940 [\27
‘Cb_i-&,u,q)ﬁ O:— T\ 2.2 ex I

The coefficienta of cosaad in the potential, which is renormalization scheme independent, agrees with that derived using
different method$7,8]. Thex® dependence of the unrenormalized potential term is necessary for it to have a definite scaling
dimension, i.e., in conformal field theory conformal weighBt3). Wave function renormalization maintains this property
however changes the scaling dimension. The operator in the potential term ofb&gnow has scaling dimension
(1+9g/m). This term is therefore superrenormalizable only within the allowed range of the cougkng/2. Finally, the
finite wave function renormalization gives the correctly normalized kinetic term in the Lagrangian, however the transformed
fermion operators in the new theor¥, r, no longer satisfy fermionic anticommutation relations.

-1/2

-1
1+—> x°
a

‘cos2\/m

1+ =
o

V. SMOOTH BOSONIZATION OF THE MASSIVE THIRRING MODEL

The previous solution of the massive Thirring model in terms of the currents may also be used to find a continuum of
equivalent theories which contain interactions between the boson and fermion field by transforming the Thirring model
Hamiltonian density byJ(8). The result for the massless Thirring model is

o 1 - o
U(ﬂ)Hm:OThirringU 71(:8) = COS2ﬂ7_[m:0Thirring"_SmZ:BIHm:OThirring—’_ TSII’]Z,B[ 71-(‘]f‘]b_ Jd b) +9(J¢J b—J f‘]b)]'

(56)

The Hamiltonian density for the massless Thirring madgL o thiring @nd its bosonic equivalefty,_ o thiring are given in Egs.
(31D and (32), respectively. One follows the same procedure as for the case of complete bosonization to calculate the
transformed mass term, namely transform the fermion currents in the operator solutiorrof, giving

Vzw

Z—W

2 zd¢ .
iexr“ ?(COgng(g)+S|nﬂJb(§)])i

w

- — 1
U(B)o(z, Z)cr,(W,W)U‘l(,g):Iz

2dé S —
xiexp{ fw?_g[—cos&]f(§)+sinﬁJb(§)]>¢. (57

Substituting the definition of the boson current, Ebg), and reordering the boson terms gives
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— 2(1-sir?B)
U(B)o.(z,2)0_(w,wW)U (B)— |W||z|1 2siPp|_*

Z—W

X :exp{Z\/% sinB[ ¢o(2) +%(z_)]}: rexp{ — 2\/;| SinB[ ¢o(W)

- zdg
+ ¢o(W)1}: 1:ex;( COSBJW?Jf(@) ¥

zdé—
Xiexr{—cosefw?_ng(f))i. (58

There is no simple operator expression for the normal-ordered exponents of the fermion currents in this equation in terms of
the fermion fieldsyyr. Therefore the fermionic sector of the transformed theory will be formulated in terrgs arid J ¢

rather thany, and ¢r. This is not such a radial reformulation of the theory since operators with nonvanishing vacuum
expectation values in the original theory, the massive Thirring model, may also be expressed entirely in terms of the fermion
currents, using the equations given previously. Next, in order to obtaiin the new theory we separate the normal-ordered
exponent of the fermion current, foz|>|w| as

zd zd wd
ieXFHCOSBfW;Jf(g)Hi:i(EXD 0053( L;Jf(@—fwng(§)>i

—CO§B zd wd
=(i) iexr{ cost éJf(é))iiexp( cost é\]f(g))i. (59

Z—W

An adiabatic cutoffe™ €€ with e small, is implied in the integration. After substituting this relation in Exp) the result is a
product of two factors, each with dependence on only one coordinate. Therefore the transfarraesl

_ 1 - zd 7dé
U(,3)0+(Z,Z)U1(B)=E|Z|1ieXp[2\/;lSinB[¢o(Z)+¢o(Z)]}iieXF{COSB<L;Jf(f)—L ?—ng(f)) s

(60)
1 ng zd¢
U(B)o_(z,2)U"Y(B)= J_ |2]:exp{— 2\/m1SInB[ bo(2) + ho( 2)1}: ieXI{COSG( T (§)+f g—Jf(E)H
This implies that the transformed fermion operators, for examplgz) =U(B) % (z)U~1(8), are
\I,L(Z):Z—1/4L—1/2\/E;ex|;[—2\/;|sinﬂ¢o(z)]:¢exr( —cos@jZd—;Jf(g))ieL,
sy —12 e : 2d§
Wl(z)=2"V4 7127 1:ex;{2\/;|sm,8gb0(z)]::tex;<cosGJ ?Jf(g))ﬂ;q,
i (61)

Wr(Z)=2 Y4 12\(7 L exd 2\ misinBd( 2)]: iexp{ -~ cos@j:_d?_g\]_f(g) Ter,

\Ifgg(2_)=2‘1’4L‘1’2\/?exp[—Zﬁlsinﬁgo(z_)]:iexr( costz_d?_gJ_f(5> teg.

€, and eg have the same definition as in E®§0). These transformed fermion operators also satisfy the correct anticommu-
tation relations for complex fermion fields.
Next we perform a finite renormalization of both the fermion and the boson currents. The renormalization of the boson

currents is equivalent to renormalization of the boson f'ge(d,z_). The renormalized fields are defined as

I(2)=d(z)co, IT(2)=3¢(z)coB, P(z,2)= (2 2)sinB. (62

Using the same method as in the last section to express the normal-ordered exponentials of expressions ¢ggriairang
J; in terms of the renormalized quantities, E§0) becomes
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- 1 47 zd
[uw)m(z,z)u1<ﬁ>]ren=ﬁ|z|l(L exp(2\m[ bo(2)+ do( - iexr{( [Gao-| g—ng(f))
3
— 1 4r? — zd
[U(,B)O'(Z,Z)U1(,3)]renzﬁ|z|<|_2_7\2)5eXp{_2\/;|[¢0(Z)+¢o(Z)]}5¢eXF{( [Sowo+ ]’ ngm

Collecting the transformed operators of E¢s6) and (63) in terms of the renormalized fields the transformed Hamiltonian
density’H,,,, in Minkowski space becomes

2:]—2:&+<I>(9_<I>:+
o

£

2 x*t X~
xiexlel( L d§+JfR(§+)—L d&IRE)

[(8+ )?

NG

+—J$(

L

Hien= +i(-D)

29
2L2(¢<Jf>2¢+¢( >2¢+;J$T$)

I+ ]| e -

ﬁ(W
):exp(—Z\/;KI)):

22w
t+ex x0

2 x+ X~
xiexlel(—Jm dg+J$(§+>+L d?ﬁ*(f‘))i}

g

07+CD+—(9,CI) g
a

9 D+—5,P
ar

x°> exp(2\md):

L

(64)

VI. DISCUSSION implementing this bosonization transformation. It would be

interesting to investigate similar operators for other duality
transformations. Although the quantum canonical transfor-
mation in this paper is linedin the currenty as are all such
transformations in quantum field theory presented to date,
the method of transformation by a unitary operator opens up
the possibility of finding transformations not within this
P o ; . class. Finally, it is important to understand the exact relation
ant, but only if ¢ is a pseudoscalar. This is particularly in- between the various methods of demonstrating duality: path

teresting for the suggestion of Damgaaedal. Of_ using integral manipulations, linear canonical transformations, and
smooth bosonization to construct exact Cheshire cat ba

8perator transformations. This would allow comparison be-
models in 11 dimensions to describe QCD bound state P P

Stween the results derived using these complementary meth-
[15]. In these models the interior of the bag has fermion 9 P y

fields, namely quarks, whereas outside the bag the relevant
degrees of freedom are the scalar fields, namely mesons.
Smooth bosonization allows a continuous transition from the
fermionic theory to the bosonic one with interactions be-
tween them only near the bag surface. This interpretation is We thank R. Sasaki and J. Ding for useful discussions and
consistent with the method of smooth bosonization presentecomments. This work was supported by the National Science
in this paper since the meson fieldl, has the correct parity. Foundation under Grant No. 9415225 and the Japan Society
We have also presented an explicit unitary operatofor the Promotion of Science.

If we consider parity transformation® we find that
PU(B)P t=U(—p) for a scalargp. HoweverU(p) is in-
variant under a parity transformation df is a pseudoscalar,
i.e., Pop(x0,x1) P 1= — ¢(x° —x1). Therefore since we start
with the parity invariant massive Thirring model, the trans-
formed Hamiltonian density of Eq64) is also parity invari-

ACKNOWLEDGMENTS

[1] E. Witten, Commun. Math. Phy82, 455(1984. the Spring School and Workshop, Trieste, Italy, 1994, edited

[2] E. Witten, “On S Duality in Abelian Gauge Theory,” Princ-
eton IAS Report No. IASSNS-HEP-95-36, hep-th/9505186
(unpublished

[3] C. P. Burgess and F. Quevedo, Nucl. PH§421, 373(1994;

M. R. Garousi, Phys. Rev. B3, 2173(1996.

[4] E. Alvarez, L. Alvarez-Gaumeand Y. Lozano, inString

Theory, Gauge Theory, and Quantum GrayRyoceedings of

by R. Dijkraaf et al. [Nucl. Phys. B (Proc. Supp). 41, 1
(1995]; A. Giveon, M. Porrati, and E. Rabinovici, Phys. Rep.
244, 77 (1994).

[5] A. Anderson, Phys. Lett. BO5, 67 (1993; 319 157 (1993.

[6] M. Evans and I. Giannakis, Phys. Rev. 44, 2467 (199J);
Nucl. Phys.B472, 139(1996.

[7] S. Coleman, Phys. Rev. D1, 2088(1975.



7748 ANDREW J. BORDNER 55
[8] S. Mandelstam, Phys. Rev. 11, 3026(1975; B. Klaiber, in [11] H. Sugawara, Phys. Ret70, 1659 (1968; C. Sommerfield,
Lectures in Theoretical PhysicdProceedings of the Tenth ibid. 176, 2019(1968.
Boulder Summer Institute for Theoretical Physics, edited by A.[12] P. Goddard and D. Olive, Int. J. Mod. Phys.1A303(1986.
Barut and W. Brittin(Gordon and Breach, New York, 1968 [13] G. F. Dell’Antonio, Y. Frishman, and D. Zwanziger, Phys.

Vol. X-A. Rev. D6, 988(1972.
[9] T. Banks, D. Horn, and H. Neuberger, Nucl. PhB408 119  [14] |. B. Frenkel, J. Funct. Anak4, 259 (1981).
(1976. o [15] P. H. Damgaard, H. B. Nielsen, and R. Sollacher, Nucl. Phys.
[10] P. A. M. Dirac, Rev. Mod. PhySZl, 392(1949, S. Fubini, R. B385, 227 (1993, P. H. Damgaard, H. B. Nielsen, and R.
Jackiw, and A. Hanson, Phys. Rev.1732(1973; C. Love- Sollacher, Phys. Lett. 96 132(1992.

lace, Nucl. PhysB99, 109 (1975.



