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We consider a (111)-dimensional field theory which contains both a complex fermion field and a real
scalar field. We then construct a unitary operator that, by a similarity transformation, gives a continuum of
equivalent theories which smoothly interpolate between the massive Thirring model and the sine-Gordon
model. This provides an implementation of smooth bosonization proposed by Damgaard, Nielsen, and
Sollacher as well as an example of a quantum canonical transformation for a quantum field theory.
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I. INTRODUCTION

Duality, or the quantum equivalence of field theories, al-
lows one to relate quantities in one theory, such as the par-
ticle spectrum and Green’s functions, to those of another
theory. This concept is most useful when duality maps a
theory with a strong coupling, in which perturbation theory
is invalid, to one with a weak coupling, in which a perturba-
tive calculation may be performed. Unfortunately, many
such duality transformations are hypothetical since an ex-
plicit operator mapping is absent. Duality is usually demon-
strated either by symmetry arguments, as in non-Abelian
bosonization@1#, by a path integral calculation, as inS du-
ality @2# and Abelian bosonization@3#, or by a linear canoni-
cal transformation, as inT duality @4#.

The equivalence of two different quantum mechanical
theories may be rigorously established by means of a simi-
larity transformation of all quantum operators. These trans-
formations were established by Dirac as the quantum version
of canonical transformations in classical mechanics; the
former preserving the quantum commutators and the latter
the Poisson brackets. More recently, Anderson further inves-
tigated these mappings, which he named ‘‘quantum canoni-
cal transformations,’’ and emphasized that they need not be
unitary as originally presumed but rather isometric@5#.
Quantum canonical transformations map operatorsÔi in one
theory to Ôi8 in another quantum theory byÔi85ÛÔi Û

21

with Û an operator composed of products of the canonical
position and momentum operators. Such a transformation
obviously preserves commutators of operators and both theo-
ries have the same energy spectrum with eigenstates mapped
as uE&85ÛuE&. Recently, in an interesting extension of
quantum canonical transformations to conformal field theo-
ries, Evans and Giannakis derivedT-duality transformation
rules for string fields on tori@6#.

In this work, we investigate quantum canonical transfor-
mations within a class of (111)-dimensional quantum field
theories, namely the Abelian bosonization of free bosons and
fermions as well as the equivalence of the massive Thirring

model and the sine-Gordon model. Abelian bosonization is
an ideal test of this technique since the operator correspon-
dences between the fermionic and bosonic theories are
known @7,8#. We will consider a theory which contains both
fermions and bosons. A quantum canonical transformation of
a theory with only fermions, the massive Thirring model,
yields a continuum of theories with interacting fermions and
bosons as well as the corresponding theory containing only
bosons, the sine-Gordon model.

II. QUANTUM CANONICAL TRANSFORMATIONS
FOR A FIELD THEORY

We first review quantum canonical transformations in
quantum mechanics and next examine how to extend this
definition to a quantum field theory. We begin by consider-
ing quantum mechanics in the Schro¨dinger picture, with only
the states evolving with time. A quantum canonical transfor-
mation is a similarity transformation of the quantum opera-
tors, which may be defined by its action on the canonical
position and momentum operatorsqi and pi in the original
theory, to obtainqi8 andpi8 in the new theory

qi8[U~q,p!qiU
21~q,p!, pi8[U~q,p!piU

21~q,p!.
~1!

If the states also transform asuc&8[U(q,p)uc& then matrix
elements are preserved andU(q,p) is an isometry. This
transformation is specified by an operatorU(q,p), which we
assume to be invertible. A quantum canonical transformation
also preserves the canonical commutation relations

@qi8 ,pj8#5@qi ,pj #5ıd i j , ~2!

with all other commutators vanishing. These transformations
may be used to calculate some physical properties of a quan-
tum mechanical system, for instance, the energy eigenstates
and eigenvalues, by mapping a given model to another
model whose solutions are known, such as the harmonic os-
cillator @5#.

Quantum field theory is usually formulated in the interac-
tion picture where the Hamiltonian density operator is*Electronic address: bordner@yukawa.kyoto-u.ac.jp
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divided into the sum of a free partH0 and an interacting part
Hint . The free fieldf(x) satisfies the operator equation
(]/] t)f(xW ,t)5ı@*dyWH0(yW ,t),f(xW ,t)#. We will assume that
exact physical quantities, i.e., calculated to all orders in per-

turbation theory, are independent of the choice of this parti-
tion of the Hamiltonian. The Green’s functions for the inter-
acting fieldsf I(xW ,t) may be expressed in terms of the free
fields using the well-known equation

G~x1 , . . . ,xn![^0uT@f I~xW1 ,t1!•••f I~xWn ,tn!#u0&5
^0uT* @f~xW1 ,t1!•••f~xWn ,tn!exp~2ı*dxW8dt8Hint@f~xW8,t8!#!# u0&

^0uT* exp~2ı*dxW8dt8Hint@f~xW8,t8!# !u0&
.

~3!

T* operator products are necessary in this equation for the
theory that we will consider, the Thirring model, because of
the Schwinger term in the current algebra. However, follow-
ing the arguments of Ref.@9#, which notes that Eq.~3! yields
Lorentz covariant expressions if theT* product is replaced
by the naive time-ordered product and a covariant renormal-
ization scheme is employed, we consider usual time-ordered
products for this equation. Thus the quantities that we would
like to transform are vacuum expectation values of time-

ordered products of the free fieldsf(xW ,t). Rather than using
the algebra of the canonical operators at equal time in the
Heisenberg picture, or equivalently in the Schro¨dinger pic-
ture, to construct the operatorU which implements the trans-
formation, we may use the commutator of free fields at dif-

ferent times @f(xW1 ,t1),f(xW2 ,t2)#[D(xW22xW1 ,t22t1).

D(xW ,t) is a c-number function. Since it appears difficult to
constructU for a general theory we will consider here the
simpler case of a massless free fieldf in 111 spacetime
dimensions for which the powerful methods of conformal
field theory may be applied.

We consider the field theory defined on a circle, i.e., pe-
riodic asx1→x11A2L to avoid the infrared divergences ap-
pearing in massless field theories. This periodicity also al-
lows a bijective map of the spacetime coordinates to the
complex plane with the origin excluded. Light cone coordi-
nates are defined asx6[(1/A2)(x06x1). After a Wick ro-
tation from Minkowski space to Euclidean spacexE

052ıx0

one definesz[exp@(2pı/L)xE
1# and likewise definesz̄ in

terms ofxE
2 . Hereafter we consider only time-ordered prod-

ucts of operators, corresponding to radial-ordered products in
the conformal field theory, since only these have well-
defined vacuum expectation values in the Euclidean theory
for any value of spacetime coordinates of the operators@10#.
We then define a general form forU in the conformal

field theory asU[Rexpı@rC(dz/2pı)V(z)1rC(d z̄/2pı)V̄( z̄)#
[RexpıA. The integration contourC is chosen so that all
operator products are radial ordered. If the operatorsV and
V̄ are Hermitian thenU is unitary. The quantum canonical
transformation of an operatorO(z, z̄ ) is defined as

O8~z, z̄ !5R$U21O~z, z̄ !U%

5RHO~z, z̄ !1ı@A,O~z, z̄ !#

1
ı2

2!
@A,@A,O~z, z̄ !##1•••J . ~4!

The second equality follows from the Baker-Campbell-
Hausdorff relation. Since the two contour integrals in the
commutator are equivalent to a single contour integral about
z this transformation may be easily calculated, given the
Wick contractions for the relevant fields. The resulting quan-
tum canonical transformation for the conformal field theory
looks superficially similar to the case for quantum mechanics
in that the free fields f(z, z̄ ), Hamiltonian density
H@f(z, z̄ )# and vacuum state transform as

f8~z, z̄ ![R$Uf~z, z̄ !U21%,

H8@f~z, z̄ !#[R$UH@f~z, z̄ !#U21%,
~5!

u0&8[Uu0&.

Transformation byU also leaves invariant the radial-ordered
commutator of two operators:

R$U@O1~z!,O2~w!#U21%5R$UO1~z!U21UO2~w!U21

2UO2~w!U21UO1~z!U21%

[R$@O18~z!,O28~w!#%. ~6!

Once this transformation is performed the result may then be
analytically continued back to Minkowski space. We will
give an explicit example of such a transformation for Abe-
lian bosonization in the following section.

We define two quantum field theories to be equivalent if
they are related by a quantum canonical transformation and a
finite wave function renormalization. Thus if the renormal-
ized fieldF8 is defined asF8[Z21/2f8 then Green’s func-
tions for the free fields in the two theories, in Minkowski
space, are related by
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^0u8T@F8~xW1 ,t1!•••F8~xWn ,tn!#u0&8

5Z2n/2^0uT@f~xW1 ,t1!•••f~xWn ,tn!#u0&. ~7!

Furthermore the Green’s functions for the interacting fields
in the new theory may, in principle, be calculated using Eq.
~7! and Eq.~3! with the interaction HamiltonianH int8 .

III. FREE FERMION AND BOSON FIELDS

We begin with a (111)-dimensional field theory contain-
ing both a complex fermion field and a real boson field pe-
riodic asx1→x11A2L. The Hilbert space of this theory is a
tensor product of the respective Fock spaces, with the
vacuum state

u0&5u0&boson̂ u 0 & fermion. ~8!

In terms of light cone coordinates, the mode expansion for
the single real scalar fieldf is

f~x1,x2!5q1 q̄1
1

2L
~px11 p̄x2!1f0~x

1,x2! ~9!

with

f0~x
1,x2![

ı

2Ap
(
nÞ0

1

nFanexpS 2
2pı

L
nx1D

1 ānexpS 2
2pı

L
nx2D G

[f0~x
1!1f̄0~x

2!. ~10!

We have split the fieldf into its zero modes, the axial
chargesq and q̄ and their conjugate momentap and p̄ , and
the remainderf0. Hermiticity of f0(x) impliesan

†5a2n .
The nonvanishing commutation relations@am ,an#

5mdm,2n , @ ām ,ān#5mdm,2n , and@q,p#5@ q̄ , p̄ #5ı give
the usual equal-time commutation relation

@f~x0,x1!,]0f~y0,y1!#ux05y05ıd~x12y1!. ~11!

A complex fermion field may be expressed in terms of
two real fields asc(x)[c1(x)1ıc2(x). The mode expan-
sion for the real fermion fieldsc i(x), i51,2 is

c i~x1,x2!5
1

23/4S 1L D 1/2(
n

F S 10D bni expS 2
2pı

L
nx1D

1S 01D b̄ n
i expS 2

2pı

L
nx2D G . ~12!

Again, sincec i(x) are Hermitian (bn
i )†5b2n

i and the sum
extends over integer values for Ramond (R) fields and half-
integer values for Neveu-Schwarz~NS! fields. The nonvan-
ishing anticommutators for the fermion creation and annihi-
lation operators are$bm

i ,bn
j %5d i jdm,2n and likewise for

b̄m
i . The equal-time anticommutator for the real fermion

fields is

$ca
i ~x0,x1!,cb

j ~y0,y1!%ux05y05
1

2
d i jdabd~x12y1!

~13!

which gives for the complex field

$ca~x0,x1!,cb
†~y0,y1!%ux05y05dabd~x12y1!. ~14!

The light cone fermion current is defined as1

Jf~x
1![ıA2L:cL

i ~x1!Ti jcL
j ~x1!:,

T[S 0 1

21 0D ~15!

with cL,R[c1,2. This current generates UL(1);SOL(2)
symmetry transformationscL→eıacL and likewise J̄ f(x

2)
generates SOR(2) transformations of the fermion field. Since
Jf and J̄ f satisfy the wave equationhJf5h J̄ f50 they
may each be divided into positive and negative frequency
modes and a normal ordering defined for modes of each cur-
rent separately.

We also define a boson current

Jb~x
1![

L

Ap
]1f~x1! ~16!

that generates a shift in the boson field by a constante,
f(x1)→f(x1)1e.

Next, we will use the correspondence between a field
theory of massless real bosons or fermions in Minkowski
spacetime and conformal field theory in order to simplify
calculations. After a Wick rotation,xE

052ıx0 and defining
z[exp@(2pı/L)xE

1# we have

cL
i ~x1!→c i~z!5

1

23/4S 1L D 1/2(
n

bn
i z2n ~17!

and similarily for cR
i (x2). The Wick contraction for these

fermion fields is defined as

uzu.uwu,

c i~z!c j~w!5:c i~z!c j~w!:1d i jD~z,w!. ~18!

For R fields,

D~z,w!5S 1

25/2L D z1w

z2w
~19!

and for NS fields,

D~z,w!5S 1

23/2L D Azw
z2w

. ~20!

1Repeated indices imply summation over them throughout this
paper. The following convention for theg matrices is used:
g0[sx , g1[2ısy , g5[sz .
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Likewise, after the change of variables (x1,x2)→(z, z̄ )

f0~x
1!→f0~z!5

ı

2Ap
(
nÞ0

1

n
anz

2n. ~21!

The Wick contraction forf0(z) is

uzu.uwu,

f0~z!f0~w!5:f0~z!f0~w!:2
1

4p
lnS 12

w

z D . ~22!

The operatorU(b) which implements the quantum ca-
nonical transformation in the conformal field theory is de-
fined as the radial-ordered exponential

U~b![RexpF ı2ApbS R
C

dz

2pız
f0~z!Jf~z!

2 R
C

d z̄

2pı z̄
f̄0~ z̄ ! J̄ f~ z̄ !D G . ~23!

The contourC is chosen to be such that the complex coor-
dinates of all other operators lie within it; i.e., the limit
xmin
0 →` is taken.U(b) is unitary and its inverse results
from U(b) by taking ı→2ı and integrating over a contour
C in which the coordinates of the other operators lie outside
of it, i.e., in the limit xmax

0 →2`.
One of the main properties ofU(b) is that it transforms

the fermion currentJf and the boson currentJb into one
another. This may be seen by evaluating Eq.~4! for U(b).
Using the definition of the currents Eqs.~15! and ~16!, and
the Wick contractions Eqs.~18! and~22!, we find the follow-
ing transformations of the currents:

U~b!S Jf~z!

Jb~z!
DU21~b!5S cosb sinb

2sinb cosb D S Jf~z!

Jb~z!
D ,

U~b!S J̄ f~ z̄ !

J̄ b~ z̄ !
DU21~b!5S cosb 2sinb

sinb cosb D S J̄ f~z!

J̄ b~z!
D .

~24!

As expected, this transformation preserves the commutators
of the boson and fermion currents

@Jf~z!,Jf~w!#5@Jb~z!,Jb~w!#5
zw

~z2w!2
,

@Jf~z!,Jb~w!#50 ~25!

and likewise for the antiholomorphic currents.
Starting from a theory with only a free, massless complex

fermion, we examine how the Hamiltonian density trans-
forms. In general the Hamiltonian density in terms of the
light cone components of the energy-momentum tensorumn

is

H5
1

2
@u11~x1!1u22~x2!#. ~26!

The Hamiltonian density for the fermion field is

H0
f 5

ı

2
@c†]0c2~]0c

†!c# ~27!

which implies thatu665ıA2:c6
i ]6c6

i : in terms of the real
fermion fields. The fermion Hamiltonian density may then be
shown to be equal to the Sugawara form in terms of the
currents of Eq.~15! @11,12#:

H0
f 5

p

2L2
@‡Jf

2~x1!‡1‡ J̄ f
2~x2!‡#. ~28!

The normal ordering ‡ is with respect to modes ofJ(x1) and
J̄ (x2), i.e., with J(x1)[(nJnexp@2(2pı/L)x1# the Jn
with positiven are placed to the right. Choosingb5p/2 the
transformed fermion Hamiltonian density becomes

US p

2 DH0
f U21S p

2 D5
p

2L2
@‡Jb

2~x1!‡1‡ J̄ b
2~x2!‡#

5
1

2
$:@]1f~x1!#2:1:@]2f̄~x2!#2:%

5
1

2
:]mf~x0,x1!]mf~x0,x1!:

[H0
b . ~29!

The second line follows from the definition of the boson
current, Eq.~16!, and the fact that the usual normal ordering
with respect to modes off is identical to the normal order-
ing with respect to modes ofJb . Thus the quantum canonical
transformationU(p/2) transforms the Hamiltonian for a
free complex fermion field into one for a free real boson
field. The fermion field decouples, i.e., has no dynamics, and
the theory is equivalent to that for a free boson field.

IV. COMPLETE BOSONIZATION OF THE MASSIVE
THIRRING MODEL

We next examine how the massive Thirring model trans-
forms underU(p/2), or complete bosonization. The Hamil-
tonian density for the massive Thirring model is

HThirring5H0
f 1m: c̄c:1

1

2
g: c̄gmcc̄gmc:

5H0
f 1ım~cL

i Ti jcR
j 1cR

i Ti jcL
j !22g~ :cL

i Ti jcL
j : !

3~ :cR
i Ti jcR

j : ! ~30!

where the Hamiltonian density is expressed in terms of the
real chiral fermion fields. As discussed in Ref.@7#, the cou-
pling g must be greater than2p/2 for the Thirring model
with nonzero mass in order for the theory to be well defined.
Both the mass and current-current terms have been regular-
ized by normal ordering. We also use the interaction repre-
sentation with massless fields in which these terms are
treated as interactions.

First considering the massless case, the Hamiltonian den-
sity is
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Hm50 Thirring5H0
f 22g~cL

i Ti jcL
j !~cR

i Ti jcR
j !

5
p

2L2F‡Jf2~x1!‡1‡ J̄ f
2~x2!‡

1
2g

p
Jf~x

1! J̄ f~x
2!G . ~31!

Transforming byU(p/2) results in

Hm50 Thirring8 5US p

2 DHm50 Thirring U
21S p

2 D
5

p

2L2F‡Jb2~x1!‡1‡ J̄ b
2~x2!‡

2
2g

p
‡Jb~x

1! J̄ b~x
2!G

5
1

2
@ :~]1f!2:1:~]2f!2:#

2
g

p
:]1f]2f:. ~32!

The corresponding Lagrangian density is

Lm50 Thirring8 5S 121
g

2pD :]mf]mf:, ~33!

which after a finite wave function renormalization becomes
the Lagrangian density of a free massless boson field. In
order to transform the mass term we use the methods of
Ref. @13# to express products of the fermion fields in terms
of the currents. We next repeat the derivation for our case: a
complex fermion field on a compact space and currents de-
fined by normal-ordered products.Jf may be divided into the
positive frequency modesJf

(1) and negative frequency
modesJf

(2) , containing, respectively, creation and annihila-
tion operators. The zero mode ofJf is divided evenly be-
tweenJf

(1) andJf
(2) . The normal-ordered product of a cur-

rent and a fermion field is defined as

‡Jf~z!c i~z!‡[Jf
~1 !~z!c i~z!1c i~z!Jf

~2 !~z!. ~34!

Using the Sugawara correspondence ‡Jf(z)Jf(z)‡
523/2L:z@]zc

i(z)#c i(z):1e, with e50,1/4 for, respec-
tively, NS or R fields, and the above definition of normal
ordering gives

1

2F R dz

2pız
‡Jf

2~z!‡,cL
i ~w!G52ıTi j‡Jf~w!cL

j ~w!‡

5w]wcL
i ~w!. ~35!

Integrating this equation and expressing the result in terms of
the original complex fermion fieldc(z)5c1(z)1ıc2(z),

cL~z!5‡expS 2E
z0

zdj

j
Jf~j! DcL~z0!‡. ~36!

This suggests the expression

cL~z!cL
†~w!5F~z,w!‡expS 2E

w

zdj

j
Jf~j! D ‡ ~37!

with

F~z,w!

5expS E
w

zdj

j
Jf

~1 !~j ! DcL~z!cL
†~w!expS E

w

zdj

j
Jf

~2 !~j ! D .
~38!

F(z,w) is a function of the charges since it commutes with
J(z) and if one assumes, as in Ref.@13#, that any operator
that commutes with the currents is a function only of the
charges.F(z,w) also commutes withc(u) for uÞz,w so it
is actually ac-number function. Finally with the commuta-
tors

@Jf
~1 !~z!,cL~w!#5S w

w2z
2
1

2DcL~w!,
~39!

@Jf
~2 !~z!,cL

†~w!#5S z

z2w
2
1

2DcL
†~w!,

and the definition ofF(z,w) in Eq. ~38! one obtains the
differential equations

]zF~z,w!5S 2
1

z2w
1

1

2zDF~z,w!,
~40!

]wF~z,w!5S 1

z2w
1

1

2wDF~z,w!

with the solution

F~z,w!5 f 0
Azw
z2w

, ~41!

where f 0 is a constant. Thus we arrive at

cL~z!cL
†~w!5 f 0

Azw
z2w

‡expS 2E
w

zdj

j
Jf~j! D ‡. ~42!

Although this solution appears to be nonlocal it is in fact
bilocal since it is independent of the integration path from
w to z. We next defines1(x

1,x2)[cL
†(x1)cR(x

2) and
s2(x

1,x2)[cR
†(x2)cL(x

1). Nonzero vacuum expectation
values of products of these operators must contain an equal
number of s1 and s2 because of the SOL(2)3SOR(2)
symmetry. We consider the product of operators
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s1~z, z̄ !s2~w,w̄!5 f 0
2UAzw
z2w

U2‡expS E
w

zdj

j
Jf~j! D ‡‡expS 2E

w̄

z̄d j̄

j̄
J̄ f~ j̄ !D ‡ ~43!

with the equality following from the solution of Eq.~42!. The value off 0 may be found by comparing the vacuum expectation
value of this operator

^0us1~z, z̄ !s2~w,w̄!u0&5^0uc i~z!c i~w!u0&^0u c̄ i~ z̄ !c̄ i~w̄!u0&5
1

2L2
UAzw
z2w

U2 ~44!

with the operator in terms of the currents in Eq.~43!. Because the vacuum expectation value of normal-ordered products of
current operators vanishes,f 051/(A2L).

We next find the transformation of the operator in Eq.~43! by U(p/2) to get the corresponding operator in the bosonic
theory

U~p/2!s1~z, z̄ !s2~w,w̄!U21~p/2!5
1

2L2
UAzw
z2w

U2:exp$2Apı@f0~z!2f0~w!#%::exp$2Apı@f̄0~ z̄ !2f̄0~w̄!#%:

5
1

2L2
UAw

z
U2:exp$2Apı@f0~z!1f̄0~ z̄ !#%::exp$22Apı@f0~w!1f̄0~w̄!#%:.

~45!

The last equality may be derived using the relation

:e2Apıf0~z!::e22Apıf0~w!:5e2Apıf0
~1 !

~z!e2Apıf0
~2 !

~z!e22Apıf0
~1 !

~w!e22Apıf0
~2 !

~w!5e4p[f0
~2 !

~z!,f0
~1 !

~w!] :e2Apı[f0~z!2f0~w!] :

5S z

z2wD :e2Apı[f0~z!2f0~w!] : . ~46!

f0
(1) andf0

(2) are, respectively, the positive and negative frequency modes off0.
Since Eq.~45! is valid for arbitraryuzu.uwu the transformation of the operatorss1 ands2 are

US p

2 Ds1~z, z̄ !U21S p

2 D5
1

A2L
~Az z̄!21:exp$2Apı@f0~z!1f̄0~ z̄ !#%:,

~47!

US p

2 Ds2~z, z̄ !U21S p

2 D5
1

A2L
Az z̄:exp$22Apı@f0~z!1f̄0~ z̄ !#%:.

Finally, to compare with previous results in the literature we add the zero modes tof0 and f̄0,

f~z![q1p
1

4pı
lnz1f0~z!, f̄~ z̄ ![ q̄1 p̄

1

4pı
ln z̄1f̄0~ z̄ !, ~48!

and define normal-ordered expressions to havep to the right ofq. Then the transformed operators become

US p

2 Ds1~z, z̄ !U21S p

2 D5
1

A2L
Az z̄:exp$2Apı@f~z!1f̄~ z̄ !#%:,

~49!

US p

2 Ds2~z, z̄ !U21S p

2 D5
1

A2L
Az z̄:exp$22Apı@f~z!1f̄~ z̄ !#%:.

This result agrees with the Frenkel-Kac fermionic vertex operator construction with fermion operatorsC in the transformed
theory @14,12#

CL~z!5221/4L21/2Az:exp@22Apıf~z!#:eL , CL
†~z!5221/4L21/2Az:exp@2Apıf~z!#:eL ,

~50!

CR~ z̄ !5221/4L21/2A z̄ :exp@2Apıf̄~ z̄ !#:eR , CR
†~ z̄ !5221/4L21/2A z̄ :exp@22Apıf̄~ z̄ !#:eR ,

andeL,R are coordinate-independent fermionic operators which satisfy$eL ,eR%50 and (eL)
25(eR)

251 @9#. The operators in
Eq. ~50! then have the correct anticommutation relations for complex fermion fields.
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All that remains to be done to obtain the complete bosonized Hamiltonian density is a finite wave function renormalization
of f(x). The renormalized fieldF(x) is defined asF(x)5a21f(x). We use a method similar to that used by Coleman in
order to regularize the expression :exp@2ApıaF(z)#: whereby one uses Wick’s theorem@7,9#

expS ıE J~x!f~x!d2xD5:expS ıE J~x!f~x!d2xD :expS 2
1

2E J~x!D~x2y;m!J~y!d2xd2yD ~51!

with J(x) set equal to ad function and the propagatorD(x;m), which is singular for spacelikex2→0 replaced by the regulated
propagatorDR(x;m,L), which is finite in this limit

DR~x;m,L![D~x,m!2D~x,m5L!. ~52!

L is a large cutoff mass. In our casem50 and, with the propagator of Eq.~22!, the result for the fieldf0 is

:e2Apıf0~z, z̄ !:f0
5S L2L2

4p2 D 2a211

:e2ApıaF0~z, z̄ !:F0
. ~53!

The subscript on the normal-ordering symbol indicates with respect to which field the expression is normal-ordered. Adding
in the zero modes one obtains

:e2Apıf~z, z̄ !:f5S L2L2

4p2 D 2a211

uzu~1/2!~a221!:e2ApıaF~z, z̄ !:F . ~54!

After collecting the previous results witha5(11g/p)21/2 and an analytical continuation back to Minkowski space, the
Lagrangian densityLb corresponding to the bosonized massive Thirring model is

Lb5
1

2
:]mF]mF:2A2m

L S L2L2

4p2 D g/~p1g!

expFA2p

L S 11
g

p D 21

x0G :cos2ApS 11
g

p D 21/2

F:F . ~55!

The coefficienta of cosaF in the potential, which is renormalization scheme independent, agrees with that derived using
different methods@7,8#. Thex0 dependence of the unrenormalized potential term is necessary for it to have a definite scaling
dimension, i.e., in conformal field theory conformal weight (1

2,
1
2). Wave function renormalization maintains this property

however changes the scaling dimension. The operator in the potential term of Eq.~55! now has scaling dimension
(11g/p). This term is therefore superrenormalizable only within the allowed range of the coupling,g,p/2. Finally, the
finite wave function renormalization gives the correctly normalized kinetic term in the Lagrangian, however the transformed
fermion operators in the new theory,CL,R , no longer satisfy fermionic anticommutation relations.

V. SMOOTH BOSONIZATION OF THE MASSIVE THIRRING MODEL

The previous solution of the massive Thirring model in terms of the currents may also be used to find a continuum of
equivalent theories which contain interactions between the boson and fermion field by transforming the Thirring model
Hamiltonian density byU(b). The result for the massless Thirring model is

U~b!Hm50 ThirringU
21~b!5cos2bHm50 Thirring1sin2bHm50 Thirring8 1

1

2L2
sin2b@p~JfJb2 J̄ f J̄ b!1g~Jf J̄ b2 J̄ fJb!#.

~56!

The Hamiltonian density for the massless Thirring modelHm50 Thirring and its bosonic equivalentHm50 Thirring8 are given in Eqs.
~31! and ~32!, respectively. One follows the same procedure as for the case of complete bosonization to calculate the
transformed mass term, namely transform the fermion currents in the operator solution ofs1s2 , giving

U~b!s1~z, z̄ !s2~w,w̄!U21~b!5
1

2L2
UAzw
z2w

U2‡expS E
w

zdj

j
~cosbJf~j!1sinbJb~j!# D ‡

3‡expS E
w̄

z̄ d j̄

j̄
@2cosb J̄ f~ j̄ !1sinb J̄ b~ j̄ !# D ‡. ~57!

Substituting the definition of the boson current, Eq.~16!, and reordering the boson terms gives
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U~b!s1~z, z̄ !s2~w,w̄!U21~b!5
1

2L2
uwuuzu122sin2bU 1

z2wU
2~12sin2b!

3:exp$2Apısinb@f0~z!1f̄0~ z̄ !#%::exp$22Apısinb@f0~w!

1f̄0~w̄!#%:‡expS cosbE
w

zdj

j
Jf~j! D ‡

3‡expS 2cosbE
w̄

z̄ d j̄

j̄
J̄ f~ j̄ !D ‡. ~58!

There is no simple operator expression for the normal-ordered exponents of the fermion currents in this equation in terms of
the fermion fieldscL,R . Therefore the fermionic sector of the transformed theory will be formulated in terms ofJf and J̄ f
rather thancL and cR . This is not such a radial reformulation of the theory since operators with nonvanishing vacuum
expectation values in the original theory, the massive Thirring model, may also be expressed entirely in terms of the fermion
currents, using the equations given previously. Next, in order to obtains6 in the new theory we separate the normal-ordered
exponent of the fermion current, foruzu.uwu as

‡expF S cosbE
w

zdj

j
Jf~j! D G‡5‡exp cosbS Èzdj

j
Jf~j!2 Èwdj

j
Jf~j! D ‡

5S z

z2wD 2cos2b

‡expS cosb Èzdj

j
Jf~j! D ‡‡expS cosb Èwdj

j
Jf~j! D ‡. ~59!

An adiabatic cutoff,e2ej with e small, is implied in the integration. After substituting this relation in Eq.~58! the result is a
product of two factors, each with dependence on only one coordinate. Therefore the transformeds6 are

U~b!s1~z, z̄ !U21~b!5
1

A2L
uzu21:exp$2Apısinb@f0~z!1f̄0~ z̄ !#%:‡expFcosbS Èzdj

j
Jf~j!2 È z̄ d j̄

j̄
J̄ f~ j̄ !D G‡,

~60!

U~b!s2~z, z̄ !U21~b!5
1

A2L
uzu:exp$22Apısinb@f0~z!1f̄0~ z̄ !#%:‡expFcosbS 2 Èzdj

j
Jf~j!1 È z̄ d j̄

j̄
J̄ f~ j̄ !D G‡.

This implies that the transformed fermion operators, for example,CL(z)5U(b)cL(z)U
21(b), are

CL~z!5221/4L21/2Az:exp@22Apısinbf0~z!#:‡expS 2cosb Èzdj

j
Jf~j! D ‡eL ,

CL
†~z!5221/4L21/2Az21:exp@2Apısinbf0~z!#:‡expS cosb Èzdj

j
Jf~j! D ‡eL ,

~61!

CR~ z̄ !5221/4L21/2A z̄21:exp@2Apısinbf̄0~ z̄ !#:‡expS 2cosb È z̄ d j̄

j̄
J̄ f~ j̄ !D ‡eR ,

CR
†~ z̄ !5221/4L21/2A z̄ :exp@22Apısinbf̄0~ z̄ !#:‡expS cosb È z̄ d j̄

j̄
J̄ f~ j̄ !D ‡eR .

eL andeR have the same definition as in Eq.~50!. These transformed fermion operators also satisfy the correct anticommu-
tation relations for complex fermion fields.

Next we perform a finite renormalization of both the fermion and the boson currents. The renormalization of the boson
currents is equivalent to renormalization of the boson fieldf(z, z̄ ). The renormalized fields are defined as

Jf
R~z!5Jf~z!cosb, J̄ f

R~ z̄ !5 J̄ f~ z̄ !cosb, F~z, z̄ !5f~z, z̄ !sinb. ~62!

Using the same method as in the last section to express the normal-ordered exponentials of expressions containingf, Jf , and
J̄ f in terms of the renormalized quantities, Eq.~60! becomes
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@U~b!s1~z, z̄ !U21~b!# ren5
1

A2L
uzu21S 4p2

L2L2D :exp$2Apı@f0~z!1f̄0~ z̄ !#%:‡expF S Èzdj

j
Jf~j!2 È z̄ d j̄

j̄
J̄ f~ j̄ !D G‡,

~63!

@U~b!s2~z, z̄ !U21~b!# ren5
1

A2L
uzuS 4p2

L2L2D :exp$22Apı@f0~z!1f̄0~ z̄ !#%:‡expF S 2 Èzdj

j
Jf~j!1 È z̄ d j̄

j̄
J̄ f~ j̄ !D G‡.

Collecting the transformed operators of Eqs.~56! and ~63! in terms of the renormalized fields the transformed Hamiltonian
densityHren8 in Minkowski space becomes

Hren8 5
1

2
@ :~]1F!2:1:~]2F!2:#2

g

p
:]1F]2F:1

p

2L2S ‡~Jf
R!2‡1‡~ J̄ f

R!2‡1
2g

p
Jf
RJ̄ f

RD
1

Ap

L FJfRS ]1F1
g

p
]2F D2 J̄ f

RS ]2F1
g

p
]1F D G1

m

A2LS 4p2

L2L2D FexpS 2
2A2p

L
x0D :exp~2ApıF!:

3‡exp
2pı

L S Èx1

dj1Jf
R~j1!2 Èx2

dj2 J̄ f
R~j2! D ‡1expS 2A2p

L
x0D :exp~22ApıF!:

3‡exp
2pı

L S 2 Èx1

dj1Jf
R~j1!1 Èx2

dj2 J̄ f
R~j2! D ‡G . ~64!

VI. DISCUSSION

If we consider parity transformationsP we find that
PU(b)P215U(2b) for a scalarf. HoweverU(b) is in-
variant under a parity transformation iff is a pseudoscalar,
i.e.,Pf(x0,x1)P2152f(x0,2x1). Therefore since we start
with the parity invariant massive Thirring model, the trans-
formed Hamiltonian density of Eq.~64! is also parity invari-
ant, but only iff is a pseudoscalar. This is particularly in-
teresting for the suggestion of Damgaardet al. of using
smooth bosonization to construct exact Cheshire cat bag
models in 111 dimensions to describe QCD bound states
@15#. In these models the interior of the bag has fermion
fields, namely quarks, whereas outside the bag the relevant
degrees of freedom are the scalar fields, namely mesons.
Smooth bosonization allows a continuous transition from the
fermionic theory to the bosonic one with interactions be-
tween them only near the bag surface. This interpretation is
consistent with the method of smooth bosonization presented
in this paper since the meson field,f, has the correct parity.

We have also presented an explicit unitary operator

implementing this bosonization transformation. It would be
interesting to investigate similar operators for other duality
transformations. Although the quantum canonical transfor-
mation in this paper is linear~in the currents!, as are all such
transformations in quantum field theory presented to date,
the method of transformation by a unitary operator opens up
the possibility of finding transformations not within this
class. Finally, it is important to understand the exact relation
between the various methods of demonstrating duality: path
integral manipulations, linear canonical transformations, and
operator transformations. This would allow comparison be-
tween the results derived using these complementary meth-
ods.
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