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Light-front Hamiltonian methods are being developed to attack bound-state problems in QCD. In this paper
we advance the state of the art for these methods by computing the well-known Lamb shift in hydrogen starting
from first principles of QED. There are obvious but significant qualitative differences between QED and QCD.
In this paper, we discuss the similarities that may survive in a nonperturbative QCD calculation in the context
of a precision nonperturbative QED calculation. Central to the discussion are how a constituent picture arises
in a gauge field theory, how bound-state energy scales emerge to guide the renormalization procedure, and how
rotational invariance emerges in a light-front calculation.@S0556-2821~97!03012-9#

PACS number~s!: 11.10.Ef, 12.20.Ds

I. INTRODUCTION

Why is the calculation of the Lamb shift in hydrogen,
which at the level of detail found in this paper was largely
completed by Bethe in 1947@1#, of any real interest today?
While completing such a calculation using new techniques
may be very interesting for formal and academic reasons, our
primary motivation is to lay groundwork for precision
bound-state calculations in QCD. The Lamb shift provides
an excellent pedagogical tool for illustrating light-front
Hamiltonian techniques, which are not widely known; but
more importantly it presents three of the central dynamical
and computational problems that we must face to make these
techniques useful for solving QCD: How does a constituent
picture emerge in a gauge field theory? How do bound-state
energy scales emerge nonperturbatively? How does rota-
tional symmetry emerge in a nonperturbative light-front cal-
culation?

These questions can be answered in detail in QED. The
answers clearly change in QCD, and we point out several
places where this is clear, but we hope that much of the
computational framework successfully employed in QED
will survive.

In order to formulate these questions in a more precise
fashion, we first outline the general computational strategy
we employ. First, we use the renormalization group to pro-
duce a regulated effective HamiltonianHl , wherel is a
cutoff and renormalization is required to remove cutoff de-
pendence from all physical quantities. At this point we have
a regulated Hamiltonian that contains all interactions found
in the canonical Hamiltonian, a finite number of new rel-
evant and marginal operators~each of which contains a func-
tion of longitudinal momenta because longitudinal locality is
not maintained in light-front field theory!, and an infinite
number of irrelevant operators as would occur in any cutoff
theory. This complicated Hamiltonian cannot be directly di-
agonalized, and since we want to solve bound-state problems
we cannot solve it using perturbation theory. The second step
is to approximate the full Hamiltonian, using

Hl5H01~Hl2H0![H01V, ~1!

whereH0 is an approximation that can be solved nonpertur-

batively andV is treated in bound-state perturbation theory
~BSPT!. The test ofH0 is whether BSPT converges or not.

We can now reformulate the questions above. Is there a
scalel at whichH0 does not require particle emission and
absorption? What are the few-body interactions inH0 that
generate the correct nonperturbative bound-state energy
scales? Is there a few-body realization of rotational invari-
ance; and if not, how does rotational symmetry emerge in
BSPT? We should emphasize that for our purposes we are
primarily interested in answering these questions for low-
lying bound states, and refinements may be essential to dis-
cuss highly excited states or bound-state scattering.

It is essential thatl, which governs the degree to which
states are resolved, be adjusted to obtain a constituent ap-
proximation. Ifl is kept large with respect to all mass scales
in the problem, arbitrarily large numbers of constituents are
required in the states because constituent substructure is re-
solved. A constituent picture can emerge if high-free-energy
states couple perturbatively to the low-free-energy states that
dominate the low-lying bound-states. In this case the cutoff
can be lowered until it approaches the nonperturbative
bound-state energy scale and perturbative renormalization
may be employed to approximate the effective Hamiltonian.
In QED we note that the range into which the cutoff must be
lowered is

ma2!l̃!ma, ~2!

where l̃5l2mp2me as will be explained later, andm is
the reduced mass of hydrogen. If the cutoff is lowered to this
range, hydrogen bound-states are well approximated using
proton-electron states and including photons and pairs per-
turbatively.

It is an oversimplification to say the constituent picture
emerges because the QED coupling constant is very small.
Photons are massless, and regardless of how smalla is, one
must in principle use a nearly degenerate bound-state pertur-
bation theory that includes extremely low-energy photons
nonperturbatively. This is not required in practice, because
the Coulomb interaction which sets the important energy
scales for the problem produces neutral bound-states from
which long wavelength photons effectively decouple. Be-
cause of this, even though arbitrarily small energy denomi-
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nators are encountered in BSPT due to mixing of electron-
proton bound-states and states including extra photons,
BSPT can converge because emission and absorption matrix
elements vanish sufficiently rapidly.

The well-known answer to the second question above is
the two-body Coulomb interaction sets the nonperturbative
energy and momentum scales appropriate for QED. We have
already used the results of the Bohr scaling analysis that
reveals that the bound-state momenta scale asp;ma and
the energy scales asE;ma2. As a result the dominant pho-
ton momenta are also of orderma, and the corresponding
photon energies are of orderma. This is what makes it pos-
sible to use renormalization to replace photons with effective
interactions. The dominant photon energy scale is much
greater than the bound-state energy scale, so thatl can be
perturbatively lowered into the window in Eq.~2! and pho-
tons are not required in the state to leading order. A similar
analysis in QCD will reveal qualitatively different results. If
a constituent picture emerges, the dominant interaction will
be confining and the dominant gluon energy scale will be
directly affected by confinement. A confining interaction au-
tomatically generates a mass gap for gluon production.

Finally we discuss rotational invariance in a light-front
approach. In light-front field theory, boost invariance is ki-
nematic, but rotations about transverse axes involve interac-
tions. Thus rotational invariance is not manifest and all cut-
offs violate rotational invariance in light-front field theories.
In QED it is easy to see how counterterms inHl arise during
renormalization that repair this symmetry perturbatively;
however, the issue of nonperturbative rotational symmetry is
potentially much more complicated. We first discuss leading
order BSPT and then turn to higher orders.

To leading order in a constituent picture we require a
few-body realization of rotational symmetry. This is simple
in nonrelativistic systems, because Galilean rotations and
boosts are both kinematic. In QED the constituent momenta
in all low-lying bound-states are small, so a nonrelativistic
reduction can be used to deriveH0. Therefore to leading
order in QED we can employ a nonrelativistic realization of
rotational invariance. This type of approach can be tried in
QCD, but it is not essential that it work because alternative
few-body realizations of the full set of Lorentz symmetries
exist.

At higher orders in BSPT rotational invariance will not be
maintained unless corrections are regrouped. We have com-
puted hyperfine structure and shown that terms from first-
order and second-order BSPT are required to obtain angular
momentum multiplets@2#. The guiding principle in this and
all higher order calculations is to expand not in powers of
V, but in powers ofa and ln(a). H0 should provide the
leading term in this expansion for BSPT to be well behaved,
and subsequent terms should emerge from finite orders of
BSPT after appropriate regrouping. Powers ofa appear
through explicit dependence of interactions ona, and
through the dependence of leading order eigenvalues and
eigenstates ona introduced by interactions inH0. This sec-
ond source of dependence can be estimated using the fact
that momenta scale asma in the bound-state wave functions.
Of more interest for this paper is the appearance of ln(a),
which is signaled by a divergence in unregulated bound-state

perturbation theory. As has long been appreciated, such loga-
rithms appear when the number of scales contributing to a
correction diverges.

The existence of a small parameter simplifies the nonper-
turbative calculation of bound-state observables consider-
ably, and it has been suggested that a similar expansion be
employed to guide light-front QCD calculations even if it
requires the introduction of masses that violate rotational in-
variance away from the critical value of the coupling@3#. We
do not detail this proposal, but a thorough understanding of
such expansions in QED is almost certainly necessary before
one has any hope of using this approach for QCD.

We proceed with a description of our Lamb shift calcula-
tion. In hydrogen there is a small amplitude for a bound
electron to emit and reabsorb a photon, which leads to a
small shift in the binding energy. This is the dominant source
of the Lamb shift, and the only part of this shift we compute
in this paper. This requires electron self-energy renormaliza-
tion, but removal of all the bare cutoffL̃ dependence re-
quires a complete fourth order calculation, which is beyond
the scope of this paper. We work with a finite bare cutoff
L̃5mA2, and show that our results are independent of the
effective cutoffl̃.

The energy scale for the electron binding energy is
ma2, while the scale for photons that couple to the bound
states isma. This energy gap makes the theory amenable to
the use of effective Hamiltonian techniques. For simplicity,
we use a Bloch transformation@4# in this paper to remove the
high-energy scale~i.e.,ma) from the states, and an effective
Hamiltonian is derived which acts in the low-energy space
alone. This effective Hamiltonian is treated in BSPT, as out-
lined above. The difference between the 2S1/2 and the
2P1/2 energy levels, which are degenerate to lowest order, is
calculated.

We divide the calculation into two parts, low- and high-
energy intermediate photon contributions. The low-energy
photons satisfyuku,l̃, while the high-energy intermediate
photons satisfyl̃,uku,m. l̃ is the effective cutoff for the
theory, which is chosen to lie in the range given in Eq.~2!.
This choice lies between the two dominant energy scales in
the problem and allows us to avoid near degeneracy prob-
lems. When an actual number is required we use

l̃5aAam;631024m. ~3!

Note that the spectrum of the exact effective Hamiltonian is
independent ofl̃, but our approximations introducel̃ depen-
dence. The range forl̃ is chosen so that the errors appear at
a higher order ina than we compute.

One further introductory comment, the high-photon-
energy (l̃,uku,m) part of the shift is further divided into
two regionsl̃,uku,b andb,uku,m, whereb is an arbi-
trary parameter chosen in the rangema!b!m. This simpli-
fies the calculation with appropriate approximations being
used in the respective regions. The result must obviously be
independent of this arbitrary division pointb, and is, unless
‘‘nonmatching’’ approximations are used in the respective
regions.

We now outline the paper. In Sec. II we discuss the the-
oretical framework of this light-front Hamiltonian approach,

7716 55BILLY D. JONES AND ROBERT J. PERRY



and in Sec. III we proceed to discuss the origin of the Cou-
lomb interaction in this framework. Section IV contains the
heart of the Lamb shift calculation. In the final section, Sec.
V, we summarize and discuss our results.

II. THEORETICAL FRAMEWORK

In this paper, the proton will be treated as a point particle.
The Lagrangian for the electron, proton, and photon system
is (e.0)

L52
1

4
FmnF

mn1 c̄e~ i ]”1eA”2me!ce

1 c̄ p~ i ]”2eA”2mp!cp . ~4!

The reduced mass of the system is defined in the standard
way

m5
memp

me1mp
5me@12me /mp1O~1/mp

2!#. ~5!

Note that in this paper we take the limitmp→` because we
are only interested in the dominant part of the Lamb shift.
The Lagrangian leads to the following canonical Hamil-
tonian in the light-cone gaugeA150:

H5E d2x'dx2H, ~6!

H5
1

2
~] iAj !21je

†~ is i] i1es iAi2 ime!

3
1

i ]1 @~ is i] i1es iAi1 ime!je#

1jp
†~ is i] i2es iAi2 imp!

3
1

i ]1 @~ is i] i2es iAi1 imp!jp#

2
1

2
J1

1

~]1!2
J11J1

] i

]1 Ai . ~7!

Note thati51,2 only; J152e(jp
†jp2je

†je), ands i are the
standard SU~2! Pauli matrices. The dynamical fields are
Ai , je , and jp , the transverse photon and two-component
electron and proton fields, respectively. For the relation be-
tweenc andj and a comprehensive summary of our light-
front conventions see Appendix A.

The free Hamiltonian is

h5Hu~e50!5E
p
(
s

S bs†~p!bs~p!
p'21me

2

p1

1Bs
†~p!Bs~p!

p'21mp
2

p1 1as
†~p!as~p!

p'2

p1 D , ~8!

plus the antifermions. The notation for our free spectrum is
hu i &5« i u i & with ( i u i &^ i u51, where the sum overi implies a
sum over all Fock sectors, momenta, and spin. Next, we

normal order all interactions and neglect zero modes. The
canonical interactions from Eq.~7! that we use in this paper
are

v1e5E d2x'dx2V1e , v1p5E d2x'dx2V1p ,

v25E d2x'dx2V2 , ~9!

with

V1e5eje
†s iAi

1

i ]1 @~ is i] i1 ime!je#

1eje
†~ is i] i2 ime!

1

i ]1 @s iAije#22eje
†je

] i

]1 Ai ,

~10!

V1p52ejp
†s iAi

1

i ]1 @~ is i] i1 imp!jp#

2ejp
†~ is i] i2 imp!

1

i ]1 @s iAijp#12ejp
†jp

] i

]1 Ai ,

~11!

V252
1

2
J1

1

~]1!2
J1. ~12!

These are the photon emission and absorption by the elec-
tron, photon emission and absorption by the proton, and in-
stantaneous photon interactions, respectively.

Given the canonical HamiltonianH, we cut off the theory
by requiring the free energies of all states to satisfy

« i<
P'21L2

P1 , ~13!

whereL is the bare cutoff andP5(P1,P') is the total
momentum of the hydrogen state. Then, with a Bloch trans-
formation we remove the states with free energies satisfying

P'21l2

P1 <« i<
P'21L2

P1 , ~14!

where l is the effective cutoff. The result is an effective
Hamiltonian Hl acting in the low-energy
(« i<P'2/P11l2/P1) space alone. We do not discuss the
derivation ofHl any further, but instead refer the interested
reader to Appendix B.

GivenHl , we then make the following division:

Hl5H01~Hl2H0![H01V, ~15!

whereH0 is an approximation that can be solved nonpertur-
batively ~for this QED calculation! andV is treated in BSPT.
The test ofH0 is whether BSPT converges or not and,
closely related: is thel dependence of the spectrum weak-
ened by higher orders of BSPT?
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III. LOWEST ORDER SCHRÖ DINGER EQUATION

The primaryassumptionwe make in this QED bound-
state calculation is that the Coulomb interaction dominates
all other physics. In this work we will treat the Coulomb
interaction between the electron and proton to all orders in
all Fock sectors. After this assumption, the kinematic length
scale of our system is fixed,

a0;
1

p
;

1

ma
;
137

m
,

which then fixes our dynamical time and length scale,

t;
1

p2/~2m!
;

1

ma2;
1372

m
.

As is well known, dynamical changes occur very slowly in
this system. Note that in this QED calculation we will treat
photons as free since they carry no charge and interact very
weakly at low energies. This of course changes drastically
for QCD since gluons do carry color charge and interact
strongly at low energies. After choosingH0, thea scaling of
our BSPT is fixed, and the spectrum is then calculated to
some desired order ina and lna.

In the Coulomb gauge, the Coulomb interaction appears
directly in the canonical Hamiltonian, which of course is not
true in the light-cone gauge.1 In the light-cone gauge, the
Coulomb interaction arises from a combination of two types
of interactions in our effective Hamiltonian, instantaneous
photon exchange and the two time orderings of dynamical
photon exchange. Graphically this is shown in Fig. 1. These

interactions arise from first- and second-order effective inter-
actions, respectively. See Eq.~B10! of Appendix B for the
form of the effective HamiltonianHl .

The time-independent Schro¨dinger equation in light-front
coordinates that the sum of the three time-ordered diagrams
in Fig. 1 satisfies is2

SM
N

22
k821me

2

x8
2

k821mp
2

12x8
D f̃N~x8k8se8sp8!

5(
sesp

E d2k/~2p!2E
0

1

dx/~4p!Ṽc f̃N~xksesp!.

~16!

M
N

2 is the mass squared eigenvalue of the statef̃N , where

‘‘ N’’ labels all the quantum numbers of this state. The tildes
will be notationally convenient below. We have introduced
the following Jacobi variables:

pe5~xP1,k1xP'!, ~17!

pe85~x8P1,k81x8P'!, ~18!

where pe and pe8 are the initial and final electron three-
momentum, respectively, and

pe1pp5pe81pp85P5~P1,P'! ~19!

is the total momentum of the hydrogen state. Note thatk is a
two vector. The norm is defined by

(
sesp

E d2k/~2p!2E
0

1

dx/~4p!f̃N* ~xksesp!f̃N8~xksesp!

5dNN8. ~20!

Ṽc is the sum of the interactions given by the three diagrams
in Fig. 1, and will not be written in all its gory detail.3 The
leading order term ofṼc in a nonrelativistic expansion is
defined asVc and is written below.

The nonrelativistic expansion is defined in the following
way. A coordinate change which takes the range of longitu-
dinal momentum fractionxP@0,1# to kzP@2`,`# is de-
fined

x5
kz1Ak21kz

21me
2

Ak21kz
21me

21Ak21kz
21mp

2
. ~21!

This step can be taken for relativistic kinematics, but there
may be no advantage. Then, the nonrelativistic expansion is
an expansion inupu/m; i.e., we assume

1However, a confining potential does appear directly in the ca-
nonical Hamiltonian in the light-cone gauge, which is a convenient
starting point for QCD@5#.

2For a derivation of Eq.~16! from the Schro¨dinger equation in
Fock space see Eqs.~81! to ~83! in Sec. III B 1 of Ref.@2#.
3The interested reader should consult Eqs.~70! and ~71! and the

discussion below in Sec. III A 2 of Ref.@2#; these equations are for
the equal mass case, but are readily generalized to the unequal mass
case. Also note that in this reference we used a similarity transfor-
mation instead of a Bloch transformation; the Bloch transformation
was chosen for the current paper because of its simplicity.

FIG. 1. The effective interactions that add to give the Coulomb
potential. ‘‘H’’ implies that the photon energy is greater thanl̃.
‘‘L’’ implies that the electron kinetic energy is less thanl̃. We
choosema2!l̃!ma; these ‘‘H’’ and ‘‘L’’ constraints can thus be
removed to leading order.
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m@upu, ~22!

where we have defined a new three vector in terms of our
transverse Jacobi variablek and our new longitudinal mo-
mentum variablekz which replaces our longitudinal momen-
tum fractionx:

p[~k,kz!. ~23!

Note that the free mass squared in the Schro¨dinger equation
~16! after this coordinate change, becomes

k21me
2

x
1

k21mp
2

12x
5~Ame

21p21Amp
21p2 !2

5~me1mp!
212~me1mp!

3F p22m2
p4~me2mp!

2

8mme
2mp

2 1OS upu6

m5 D G ,
~24!

which is invariant under rotations in the space of vectors
p—but not invariant underpz boosts. Here we begin to see
longitudinal boost invariance being replaced by a kinematic
rotational invariance in the theory.m is the reduced mass
given in Eq.~5!.

Now note that the leading order term ofṼc in an expan-
sion in upu/m is contained in

Ṽc;~me1mp!
2S 2

4e2

qz
2 1

4e2q'2

qz
2q2

uHD dsese8dspsp8uL ,

~25!

where

q5p82p, ~26!

uL5u„l22~Ame
21p21Amp

21p2 !2…

3u„l22~Ame
21p821Amp

21p82 !2…, ~27!

uH5uF S ~me1mp!
212~me1mp!

q2

2uqzu
D2l2G

3uFL22S ~me1mp!
212~me1mp!

q2

2uqzu
D G . ~28!

Note thatuL and uH are the constraints that arise from the
Bloch transformation.

It is convenient to define new cutoffs which subtract off
the total free constituent masses of the state:

l̃[l2~me1mp!, ~29!

L̃[L2~me1mp!. ~30!

In the limitmp→` we requirel̃ andL̃ to be held fixed. Note
that this implies

l22~me1mp!
2

2~me1mp!
5l̃1

l̃2

2~me1mp!
;

~mp→`!

l̃, ~31!

L22~me1mp!
2

2~me1mp!
5L̃1

L̃2

2~me1mp!
;

~mp→`!

L̃. ~32!

In terms of these new cutoffs,uL anduH above become

uL5uF l̃2
p2

2m
1OS upu4

m3 D GuF l̃2
p82

2m
1OS up8u4

m3 D G ,
~33!

uH5uS q2

2uqzu
2l̃D uS L̃2

q2

2uqzu
D . ~34!

To see the Coulomb interaction arising from theuep& sec-
tor alone, we make the following requirements~which are
motivated from the previous two equations!:

upu2

m
!l̃!upu

and

L̃@upu, ~35!

also demanded forup8u of course. These constraints will be
maintained consistently in this paper. Given these restric-
tions we have

uL'1, ~36!

uH'1. ~37!

Ṽc becomes

Ṽc;Vc , ~38!

where

Vc[~me1mp!
2S 2

4e2

qz
2 1

4e2q'2

qz
2q2 D dsese8dspsp8

52~me1mp!
2S 4e2q2 D dsese8dspsp8. ~39!

To finish showing how the Coulomb interaction arises in
a light-front Hamiltonian approach, we need to know the
Jacobian of the coordinate transformation of Eq.~21!:
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J~p!5
dx

dkz
5

~kz1Ap21me
2!~Ap21mp

22kz!

Ap21me
2Ap21mp

2~Ap21me
21Ap21mp

2 !

5
1

me1mp
F11kzS 1

me
2

1

mp
D2

~p212kz
2!

2memp
1OS upu3

m3 D G .
~40!

It is also convenient to redefine the norm:

dNN85(
sesp

E d2k/~2p!2E
0

1

dx/~4p!f̃N* ~xksesp!

3f̃N8~xksesp!

5(
sesp

E d3pJ~p!/~16p3!f̃N* ~psesp!f̃N8~psesp!

[(
sesp

E d3pfN* ~psesp!fN8~psesp!. ~41!

In this last line the tildes are removed from the wave func-
tions by defining

fN~psesp![AJ~p!

16p3f̃N~psesp!. ~42!

Putting it all together, the leading order expression for Eq.
~16! in an expansion inupu/m given the restrictions of Eq.
~35! is

S 2bn1
p82

2mDfN~p8se8sp8!5
a

2p2E d3p

~p2p8!2
fN~pse8sp8!,

~43!

which we see is the nonrelativistic Schro¨dinger equation of
hydrogen.m is the reduced mass and2bn is the binding
energy defined by

bn5
Mn

22~me1mp!
2

2~me1mp!
. ~44!

The well-known bound spectrum is

bn52
Ryd

n2
, ~45!

where Ryd5ma2/2 of course. Note that Eq.~43! fixes the
a scaling ofupu:

upu;ma. ~46!

Thus we see that the restrictions of Eq.~35! become

ma2!l̃!ma

and

L̃@ma, ~47!

which is consistent with Eq.~2! as advertised earlier.

IV. LAMB SHIFT CALCULATION

Given our lowest order spectrum, we proceed with BSPT.
As advertised, this will be divided intolow andhigh inter-
mediate photon energy calculations. Before proceeding with
these respective calculations, we discuss whether Coulomb
exchange can be treated perturbatively or nonperturbatively
in the respective regions.

For the low-energy intermediate photon, the Coulomb in-
teraction between the intermediate electron and proton must
be treated nonperturbatively, whereas this interaction can be
treated perturbatively for the high-energy intermediate pho-
ton contribution. This is seen by noting that each additional
Coulomb exchange contributes a Coulomb matrix element
and an energy denominator which is dominated by the larger
photon energy scale. Thus each additional Coulomb ex-
change contributes

K a

ur u L
uku

<
ma2

ukumin
. ~48!

For the low-energy photon contribution, in principle
ukumin50, and each additional Coulomb exchange can con-
tribute order 1, and therefore must be treated nonperturba-
tively. Of course, when the Coulomb interaction is treated
nonperturbatively, low-energy intermediate protons and elec-
trons form bound states from which long-wavelength pho-
tons decouple. This nonperturbative effect leads to
ukumin;16.64 Ryd; see Eq.~121! below. For the high-energy
photon contributionukumin5l̃ and from Eq.~3! each addi-
tional Coulomb exchange thus contributes at most

ma2

l̃
5Aa;8.5 3 1022, ~49!

and can therefore be treated perturbatively.

A. Low-energy contribution

The low-energy shift arises from two sources which are
shown in Fig. 2. The first term comes from the low-energy
photon emission part of the effective Hamiltonian
^auv1eub&, treated in second-order BSPT. Recall Eqs.~9! and
~10! for the form ofv1e .

4 The second term is the result of
renormalizing the one loop electron self-energy: a counter-
term is added to the second-order self-energy effective inter-
action in ^auHlub&, which results in a finite~except for in-

4Note that the term where the proton emits and subsequently ab-
sorbs a photon is down by two powers of the proton mass with
respect to the term where the electron emits and absorbs a photon.
This result is subtle though, because it is true only after the light-
front infrared divergences have canceled between two diagrams
analogous to the ones in Fig. 2.
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frared divergences! shift to the electron self-energy. This is
shown in Fig. 3. The counterterm is fixed by requiring the
electron self-energy to evolve coherently with the cutoff. The
details of defining this counterterm, for the equal mass case,
can be found in Sec. III A 1 of Ref.@2#. A discussion of the
physical ideas behind coupling coherence can be found in
Ref. @6#, and references therein.

Before proceeding with the calculation, we define the
binding energy of hydrogen2BN in terms of the mass-
squared,MN

2 :

MN
25~me1mp1BN!2. ~50!

AssumingBN is finite asmp→` we have

MN
22~me1mp!

2

2~me1mp!
5BN1

BN
2

2~me1mp!
;

~mp→`!

BN . ~51!

Recalling Eq.~44!, which is the definition of the zeroth order
binding 2bn in terms of the zeroth order mass-squared
Mn

2 ; and also defining the mass-squared correctionsdMN
2 by

MN
25Mn

21dMN
2 , ~52!

combined with Eq.~51!, gives

BN5bn1
dMN

2

2~me1mp!
;

~mp→`!

bn1
dMN

2

2mp
. ~53!

Defining the binding corrections2dBN by

BN5bn1dBN , ~54!

combined with Eq.~53!, gives

dBN5
dMN

2

2mp
, ~55!

a useful formula to be used below. This formula is useful
becausedMN

2 is calculated below, butdBN is the quantity
that is measured.

The low-energy calculation proceeds as follows. The first
term of Fig. 2 is a second-order BSPT shift which contrib-
utes the following to the mass-squared eigenvalue:

dML1
2 5(

N8
E
k
(
sg

u^cN~P!uv1easg

† ~k!ucN8~P2k!&u2uL1
DEN1~vol!

2 ,

~56!

wherek andsg are the photon’s three-momentum and spin,
respectively,P5(P1,P') is the total momentum of the hy-
drogen statecN , andv1e is the photon emission interaction
given in Eq.~9!. uL1 restricts the energies of the initial, in-
termediate, and final states to be below the effective cutoff
(l21P'2)/P1. The explicit form of these restrictions is dis-
cussed below. Continuing the description of Eq.~56!,

E
k
5E d2k'dk1u~k1!

16p3k1 5E d3k

~2p!3~2uku!
. ~57!

The last step comes from recalling that for a photon
k15k01k35uku1k3. The denominator and volume factors
are

vol5E d2x'dx2516p3d3~P2P!, ~58!

DEN15P1SP'21Mn
2

P1 2
~P2k!'21Mn8

2

~P2k!1 2
k'2

k1 D .
~59!

The two-body states are

FIG. 2. The low-energy contribution of Sec. IV A. Diagram L1
represents the shift arising from treating photon emission below the
cutoff l̃ in second-order BSPT, where the intermediate electron-
proton are bound by the Coulomb potential. Diagram L2 is an ef-
fective self-energy interaction~plus counterterm!, arising from the
removal of photon emission above the cutoffl̃, treated in first-order

BSPT.b̄ (2,l ) is the average excitation energy of then52 state; see
Eqs.~115! and ~116! and the discussion above them for details.

FIG. 3. The sum of an effective self-energy interaction arising
from the removal of photon emission above the cutoffl̃ and a
counterterm. The counterterm is fixed by coupling coherence. The
result is the interaction in diagram L2 of Fig. 2.
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ucN~P!&5E
pepp

Ape1pp116p3d3~P2pe2pp!

3f̃N~pepp!bse
† ~pe!Bsp

† ~pp!u0&, ~60!

ucN8~P2k!&5E
k1k2

Ak11k2116p3d3~P2k2k12k2!

3f̃N8~k1k2!bs
e8
†

~k1!Bs
p8
†

~k2!u0&, ~61!

wherefN are solutions to Eq.~43!, the nonrelativistic Schro¨-
dinger equation of hydrogen, andf̃N is related tofN by Eq.
~42!.

Straightforward algebra leads to

dML1
2 5(

N8

c E
k
E
pe

u~P12pe
1!E

pe8
u~P12pe8

1!

3E
k1k3

~pe
1pe8

1k1
1k3

1!„16p3d3~k1k32pe!…

3„16p3d3~k1k12pe8!…f̃N* ~pe8 ,P2pe8!

3f̃N8~k1 ,P2k2k1!f̃N8
* ~k3 ,P2k2k3!

3f̃N~pe ,P2pe!
N1uL1
DEN1

, ~62!

where N and N8 are shorthands for (n,l ,ml) and
(n8,l 8,ml8), respectively, the usual principal and angular mo-
mentum quantum numbers of nonrelativistic hydrogen. The
‘‘ c’’ on the sum emphasizes the fact that the continuum
states must be included also. See Eq.~59! for DEN1. N1 is
given by

N15(
se8sg

^0ubse~pe8!v1ebs
e8
†

~k1!asg

† ~k!u0&^0ubs
e8
~k3!asg

~k!v1ebse
† ~pe!u0&

Ape1pe81k1
1k3

1
„16p3d3~k1k32pe!…„16p

3d3~k1k12pe8!…
~63!

@for v1e see Eq.~9!#, which after some algebra becomes

N15~4pa!F2me
2S 1

pe
1 2

1

k3
1D S 1

pe8
1 2

1

k1
1D

1S 2kik1 2
k1
i ~se!

k1
1 2

pe8
i~ s̄ e!

pe8
1 D

3S 2kik1 2
pe
i ~se!

pe
1 2

k3
i ~ s̄ e!

k3
1 D G , ~64!

where we have defined a new object

pi~s!5pi1 ise i j pj . ~65!

Notation: i51,2 only, s561 only, s̄52s, e12
52e2151, ande115e2250.

We now discussuL1 and then simplifydML1
2 further. Re-

call Eqs. ~24! and ~29!. We see that after the coordinate
change defined by Eq.~21!, in themp→` limit,

uL15u~l̃2T1!uS l̃2
p2

2m
1O~a4! D uS l̃2

p82

2m
1O~a4! D ,

~66!

T15uku1A~p2k!21me
22me, ~67!

where we have used the fact that the wave functions restrict
upu;ma. Recall that we are always assuming
ma2!l̃!ma. Thus,uL1 can be simplified:

uL1'u~l̃2T1!. ~68!

From the form of Eq.~67!, we see that this constrains the
photon momentum to satisfy

uku<l̃, ~69!

to leading order ina.
Note that the constraints coming fromuL1 , summarized

by Eq.~69!, require the photon momenta indML1
2 of Eq. ~62!

to satisfy

k!pe ,pe8 . ~70!

Thus, Eq.~62! can be simplified further:

dML1
2 '(

N8

c E
k
E
pe

u~P12pe
1!E

pe8
u~P12pe8

1!

3~pe
1pe8

1!f̃N* ~pe8 ,P2pe8!

3f̃N8~pe8 ,P2pe8!f̃N8
* ~pe ,P2pe!

3f̃N~pe ,P2pe!
N1

DEN1
U

~k35pe ,k15p
e8 ,uku<l̃!

.

~71!

In themp→` limit, P1→mp , and DEN1 becomes

DEN152mp~bn2bn82uku!@11O~1/mp!#, ~72!

where we have usedk'2/k11k152uku, valid for an on-
mass-shell photon~all particles in a Hamiltonian approach
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are on-mass shell!. 2bn is the binding energy of nonrelativ-
istic hydrogen defined in Eq.~44!, with numerical value
Ryd/n2 for the bound states.

In the region of integration,uku<l̃5maAa!upu, so after
the coordinate change of Eq.~21! @recall Eq.~23!# we have

N1

4pa
5
4k'2

k12 1
4k'2

k1m
1
4p'

•p8'

m2

2
4k'

k1m
•S p'1p8'2

p'pz
m

2
p8'pz8

m D 1O~a2Aa!.

~73!

The rest of the integrand is even underk'→2k', so these
terms in the last line, odd ink', do not contribute.

Putting it all together, recalling Eq.~55!, we have

dBL15
dML1

2

2mp
'

a

4p2(
N8

c E d3k

uku
u~l̃2uku!

3E d3pE d3p8fN* ~p8!

3fN8~p8!fN8
* ~p!fN~p!

3
k'2/k121k'2/k1m1~p'

•p8'!/m2

bn2bn82uku
, ~74!

where we recalled Eq.~42!, the relation betweenfN and
f̃N . This is infrared (k1→0) divergent, but we must add
diagram L2 of Fig. 2 to get the total low-energy shift.

As previously mentioned, Diagram L2 of Fig. 2 arises
from the sum of an effective second-order electron self-
energy interaction and a counterterm defined such that the
electron self-energy runs coherently. The result of this inter-
action is to add the following to the binding:

dBL25
dML2

2

2mp
52

a

4p2(
N8

c E d3k

uku
u~l̃2uku!

3E d3pE d3p8fN* ~p8!fN8~p8!fN8
* ~p!

3fN~p!
k'2/k121k'2/k1m1~p'

•p8'!/m2

Ap21me
22A~p2k!21me

22uku
.

~75!

Given the constraintuku<l̃!upu, this becomes

dBL2'
a

4p2(
N8

c E d3k

uku
u~l̃2uku!

3E d3pE d3p8fN* ~p8!fN8~p8!fN8
* ~p!

3fN~p!
k'2/k121k'2/k1m1~p'

•p8'!/m2

uku
.

~76!

This is the famous subtraction that Bethe performed in 1947
@1#. In our approach it arose as a consequence of coupling
coherence.

dBL2 is infrared divergent (k1→0) as isdBL1 . This di-
vergence arises from the first two terms ofN1 ~the ones
independent ofp andp8). Noting that

uku5
1

2S k
'2

k1 1k1D ;
~k1→0!

k'2

2k1 ,

we have

bn2bn82uku ;
~k1→0!

2
k'2

2k1 ,

and these infrared divergent contributions from the first two
terms ofN1 cancel, leaving an infrared finite shift:

dBL5dBL11dBL25
a

4p2(
N8

c E d3k

uku
u~l̃2uku!

3E d3pE d3p8fN* ~p8!fN8~p8!fN8
* ~p!

3fN~p!
p'
•p8'

m2 S 1

bn2bn82uku
1

1

uku D ~77!

5S 23D a

4p2(
N8

c E d3k

uku
u~l̃2uku!E d3p

3E d3p8fN* ~p8!fN8~p8!fN8
* ~p!

3fN~p!
p•p8

m2 S 1

bn2bn82uku
1

1

uku D . ~78!

This last step followed after averaging over directions as
dictated by rotational invariance.

Equation~78! is easy to integrate, and our final result for
the low-energy photon contribution is

dBL5
2a

3pm2(
N8

c

~bn82bn!lnUl̃1bn82bn

bn82bn
Uu^fNup̂ufN8&u

2

~79!

5
2a

3pm2(
N8

c

~bn82bn!lnU l̃

bn82bn
Uu^fNup̂ufN8&u

2,

~80!

where in this last step we recalledl̃@ma2. Note thel̃ de-
pendence in the result. This will cancel after we correctly
add the contributions coming from high energy intermediate
photons, which now follows.

B. High-energy contribution

The high-energy shift arises from three sources which are
shown in Fig. 4. These are first-order BSPT shifts due to
third and fourth order effective interactions~see Appendix
B!. The net result of these three diagrams is
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2
a

2p2q2
→2

a

2p2q2
~11dVH!, ~81!

whereq is the exchanged momentum of the electron, and

dVH5dVH11dVH21dVH3 , ~82!

with

dVH15
1

2Eku~pe8
12k1!u~pe

12k1!NH1uH1

3S ~P1!2

~M0
22M2!~M0

22M 82!

1
~P1!2

~M08
22M2!~M08

22M 82! D , ~83!

dVH252
1

2Eku~pe8
12k1!u~pe

12k1!NH2uH2

3
~P1!2

~M0
22M 82!~M08

22M 82!
, ~84!

dVH352
1

2Eku~pe8
12k1!u~pe

12k1!NH3uH3

3
~P1!2

~M0
22M2!~M08

22M2!
. ~85!

The factors6 1
2 in front arise from the form of the Bloch

transformation@see Eq.~B10! of Appendix B#. The vertex
factors are given by

NH15~N1!~k1→p
e82k,k3→pe2k! , ~86!

NH25~N1!~k1→p
e82k,k3→p

e82k,pe→p
e8! , ~87!

NH35~N1!~k1→pe2k,k3→pe2k,p
e8→pe! , ~88!

whereN1 was defined in Eq.~64!. The free state masses are
given by

M05Ap21me
21Ap21mp

2, ~89!

M085Ap821me
21Ap821mp

2, ~90!

M5uku1A~p2k!21me
21Ap21mp

2, ~91!

M 85uku1A~p82k!21me
21Ap821mp

2. ~92!

The Bloch transformation constrains the free masses of
the states. As discussed before, the ‘‘L’’ restrictions in Fig. 4
can be removed givenl̃@ma2. However, the ‘‘H’’ restric-
tions lead to important constraints given by theuH factors
above, which we now discuss. They constrain the free
masses to satisfy@recall Eqs.~29!–~32!#

l̃<M2me2mp<L̃, ~93!

l̃<M 82me2mp<L̃, ~94!

whereM andM 8 are defined in Eqs.~91! and ~92!, respec-
tively.

As already mentioned, for convenience of calculation, we
will divide this high-energy contribution into two regions,
l̃<uku<b and b<uku<m ~region oneand region two, re-
spectively!, with ma!b;mAa!m. Recall, ma2

!l̃;maAa!ma. We now show how this division into
these two regions arises as a result of the constraints of Eqs.
~93! and ~94!.

In this first regionuku!m, and Eqs.~93! and~94! become

l̃<uku1
~p2k!2

2m
;uku<b, ~95!

l̃<uku1
~p82k!2

2m
;uku<b, ~96!

which is as we have already stated~recall that we always
assumemp→` and drop the 1/mp corrections since we are
just after the dominant shift!.

The analysis of the second region is slightly more com-
plicated becauseuku@ma, and near the upper limituku;m.
Since uku@ma in this region, Eqs.~93! and ~94! both be-
come

b<uku1Ak21m22m<L̃. ~97!

This is just a linear constraint,

bS 2m1b

2m12bD<uku<
L̃

2S L̃12m

L̃1m
D , ~98!

FIG. 4. The high-energy contribution of Sec. IV B. These are
third- and fourth-order effective interactions treated in first-order
BSPT. These effective interactions arise from the removal of pho-
ton emission above the cutoffl̃. ‘‘ b’’ is an arbitrary scale, required
to satisfyma!b!m, that was introduced to simplify the calcula-
tion. Note theb independence of the result. The total contribution is
a sum of Fig. 2 and Fig. 4. Note thel̃ independence of the com-
bined result.
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which, since we chooseb!m, becomes

b<uku<
L̃

2S L̃12m

L̃1m
D . ~99!

The electron self-energy renormalization is performed in this
paper, but we do not deal with removing the fullL̃ depen-
dence. A full analysis of this dependence requires a complete
fourth order calculation, which is beyond the scope of this
paper. We cut off the photon momentum at the electron
mass, and proceed. Note that from Eq.~99!, this choice cor-
responds toL̃ 252m2. The point of calculating these high-
photon-energy contributions is to show that our results are
independent of the effective cutoffl̃.

Taking a sample denominator we have

~M0
22M2!5~M01M !~M02M !

'2mpS p22m2uku2
~p2k!2

2m D
'22mpuku, ~100!

in the first region and

~M0
22M2!5~M01M !~M02M !

'2mp~m2uku2Ak21m2!

'22mpS uku1
uku2

2m D , ~101!

in the secondregion.
Using these previous formulas, includingP1→mp as

mp→`, Eqs.~83!–~85!, after summing, become

dVH8 52
a

4p

q'2

m2 E
21

1

dcosuE
l̃

bduku
uku F11OS uku

m D G ,
~102!

in the first region~the ‘‘prime’’ on dVH signifies thefirst
region! and

dVH9 52
a

4p

q'2

m2 E
21

1

dcosuE
b

mduku
uku F11cn

uku
m

~11cosu!

2cd
uku
m

1OS uku2

m2 D G , ~103!

in the second region~the ‘‘double prime’’ ondVH signifies
the secondregion!. In the second region since the photon
momentum is not necessarily smaller than the electron mass,
we have kept two terms in theuku/m expansion of the inte-
grand. In theO(uku/m) term we have introduced two con-
stantscn and cd , which denotenumeratorand energyde-
nominatorcorrections, respectively. Hereafter we setcn51
and cd51, as given by the theory. Note that in combining
dVH1 , dVH2, and dVH3 , many cancellations occur; most
noteworthy, each contribution is individually infrared diver-
gent (k1→0), but in the sum the divergences cancel. These
final equations are easily integrated, and we have

dVH8 52
a

2p

q'2

m2 lnS b
l̃
D , ~104!

dVH9 52
a

2p

q'2

m2 lnSmb D . ~105!

In the second region note that theO(uku/m) terms coming
from numerator and energy denominator corrections cancel,
leaving the order 1 piece alone. The combined high-energy
contribution is

dVH5dVH8 1dVH9 52
a

2p

q'2

m2 lnSm
l̃
D , ~106!

which is independent ofb, as required for consistency. Re-
call thatq5p82p: the difference between the final and ini-
tial electron momenta.

From the definition ofdVH @see Eq.~81!#, we see that this
correction shifts the energy levels an amount

dBH52
a

2p2E d3pd3p8fN* ~p8!S dVH

~p2p8!2DfN~p!.

~107!

Combining this with Eq.~106! gives

dBH5
a2

4p3m2 lnSm
l̃
D E d3pd3p8fN* ~p8!

3S ~p'2p8'!2

~p2p8!2 DfN~p! ~108!

5
a2

6p3m2 lnSm
l̃
D S E d3p fN~p! D 2, ~109!

where in this last step we averaged over directions and noted
that the wave function at the origin is real. For more details
on this averaging over directions see Appendix C.

C. Total contribution

In this section we combine the results of the last two
sections for the low- and high-photon energy contributions,
and perform the required sums and integrations to calculate
the total shift between the 2S1/2 and 2P1/2 energy levels of
hydrogen.

Adding Eqs.~80! and ~109! gives for the total shift

dB5dBL1dBH

5
2a

3pm2(
N8

c

~bn82bn!lnU l̃

bn82bn
Uu^fNup̂ufN8&u

2

1
a2

6p3m2 lnSm
l̃
D S E d3pfN~p! D 2. ~110!

For the second term we have
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S E d3pfN~p! D 25„~2p!3/2fN~x50!…2

5
~2p!3

p Sma

n D 3d l ,0 . ~111!

The (2p)3 factor arose because of our normalization choice
@see Eq.~41!#.

The first term of Eq.~110! is the famous Bethe log and
must be calculated numerically, summing over all bound and
continuum states. Following standard convention we define
an average excitation energyb̄ (n,l ):

lnS b̄ ~n,l !

Ryd
D(
N8

c

~bn82bn!u^fNup̂ufN8&u
2

5(
N8

c

~bn82bn!lnUbn82bn

Ryd Uu^fNup̂ufN8&u
2. ~112!

The sum on the left is evaluated by standard techniques
@Hc5p2/(2m)2a/r #:

(
N8

c

~bn82bn!u^fNup̂ufN8&u
2

5
1

2
^fNu@ p̂,Hc#•p̂1p̂•@Hc ,p̂#ufN&

52
1

2
^fNu@ p̂•,@ p̂,Hc##ufN&

52
1

2
^fNu@ p̂•,2 i¹W ~2a/r !#ufN&

52
1

2
^fNu~2 i !2¹W 2~2a/r !ufN&

52
1

2
~2 i !2~2a!~24p!^fNud3~r !ufN&

52aSma

n D 3d l ,0 . ~113!

This vanishes forlÞ0, but the average excitation energy
b̄ (n,l ) is defined@it is just a way to catalogue the numerical
sum on the right of Eq.~112!, the quantity we need to know#
with the sum on the left-hand side set to its value forl50. In
summary,b̄ (n,l ) for all states is defined by

lnS b̄ ~n,l !

Ryd
D 2aSma

n D 3

5(
N8

c

~bn82bn!lnUbn82bn

Ryd Uu^fNup̂ufN8&u
2. ~114!

Without further ado, this sum has been evaluated by Huff
@8#. His results for then52 levels are

b̄ ~2,0!516.639 342 03~1! Ryd, ~115!

b̄~2,1!50.970 429 318 6~3! Ryd, ~116!

where the figures in parentheses give the number of units of
estimated error in the last decimal place~Huff’s estimates!.

Combining the results,

dB2S1/2
5

2a

3pm2 lnS l̃

b̄ ~2,0!
D 2aSma

n D 3

1
a2

6p3m2 lnSm
l̃
D ~2p!3

p Sma

n D 3

5
a3Ryd

3p
lnS m

b̄ ~2,0!
D , ~117!

dB2P1/2
5

2a

3pm2 lnS Ryd

b̄ ~2,1!
D 2aSma

n D 3

5
a3Ryd

3p
lnS Ryd

b̄ ~2,1!
D . ~118!

Note the cancellation of thel̃ dependence. Thus, the Lamb
shift is

dBLamb5dB2S1/2
2dB2P1/2

5
a3Ryd

3p
lnS mb̄ ~2,1!

Rydb̄ ~2,0!
D ~119!

5~104724! MHz ~2p\!51043 MHz ~2p\!,
~120!

where we use Ref.@9# and the average excitation energies of
Eqs.~115! and~116!. Note that the 2P1/2 shift is only about
one half of a percent of the 2S1/2 shift.

V. SUMMARY AND DISCUSSION

In a light-front Hamiltonian approach, we have shown
how to do a consistent Lamb shift calculation for the
n52, j51/2 levels of hydrogen over the photon energy
scales

0↔ma2↔l̃↔ma↔b↔m,

with the choicesma2!l̃!ma andma!b!m. In a consis-
tent set of diagrams we showed howl̃ and b dependence
cancel leaving the dominant part of the Lamb shift, 1043
MHz. For completeness, then52 spectrum of hydrogen is
shown in Fig. 5.

If we compare the three regions we see the following
results~we only compare for the 2S1/2 shift since the 2P1/2
shift is negligible within our errors!:

~0<uku<l̃!dBLamb;
a3Ryd

3p
lnS l̃

16.64 RydD
;46 MHz ~2p\!;4%, ~121!
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~ l̃<uku<b!dBLamb;
a3Ryd

3p
lnS b

l̃
D ;667 MHz ~2p\!

;64%, ~122!

~b<uku<m!dBLamb;
a3Ryd

3p
lnSmb D;334 MHz ~2p\!

;32%, ~123!

where we usedl̃5maAa andb5mAa, consistent choices
used throughout this paper. As expected on physical grounds
~see the Introduction!, photons with momentum

uku;1/a0;ma, ~124!

couple the strongest to the hydrogen system. As seen above,
the effects of photons of this momentum amounted to about
2/3 of the Lamb shift, the dominant part of this experimen-
tally observed shift.

In this paper, the one loop electron self-energy renormal-
ization was performed. The complete one loop renormaliza-
tion was not needed to obtain the dominant part of the Lamb
shift. Our answer, 1043 MHz, turned out to be accurate.
However, to obtain more precision, the full one loop renor-
malization must be performed of course. Also, each of our
five diagrams~of Figs. 2 and 4! were infrared (kphoton

1 →0)
divergent. However, both the sum of the two low-photon-
energy diagrams and the sum of the three high-photon-
energy diagrams were infrared finite.

The state of the art for the bound-state problem in a light-
front Hamiltonian gauge theory in four dimensions has been
advanced in this paper. In applying these methods to QCD,
the general computational strategy described in the Introduc-
tion does not change. However, gluons carry color charge
and interact strongly at low energies, thus the answers to the
three questions posed in the initial paragraph of the Introduc-
tion change drastically. For a constituent picture to emerge
the massless gluons must be confined, so that it costs energy

to add a low-momentum gluon to the system.5 It has been
shown that the second order effective interactions~including
the very important first order instantaneous-gluon potential!
are confining@5#, which is promising. Given confinement,
we can lower the effective cutoff below the gluon production
threshold perturbatively and obtain a constituent approxima-
tion. As in QED, we cannot lower the effective cutoff below
the nonperturbative bound-state energy scale. Thus Eq.~2! of
hydrogen in QCD becomes

LQCD!l̃!Egluon;Mglueball/2. ~125!

SinceLQCD ranges from 200–400 MeV~depending on the
renormalization scheme that is chosen! andMglueball ranges
from 1500–1700 MeV, this constraint can be satisfied and it
becomes plausible to attack QCD by the same computational
strategy that was outlined and carried out for the Lamb shift
in QED in this paper.
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APPENDIX A: LIGHT-FRONT CONVENTIONS

In this appendix we write our light-front conventions for
the electron, proton, and photon system:

V65V06V3, where Vm is any four vector.

g15F 0 0

2i 0G ; g25F0 22i

0 0 G .
a i5g0g i5F 0 s i

s i 0 G ;
i51,2; s i are SU~2! Pauli matrices.

L15
1

2
g0g15F1 0

0 0G ; L25
1

2
g0g25F0 0

0 1G .
c65L6c; c5c11c2 .

ce15F je

0 G ; cp15F jp

0 G ; e for electron, p for proton.

ce25F 0

1

i ]1@„s i~ i ] i1eAi !1 ime…je#
G .

5The energy of this confined low momentum gluon can be inter-
preted as an effective gluon mass if it is convenient.

FIG. 5. Then52 hydrogen spectrum: fine structure, Lamb shift,
and hyperfine structure.F5L1Se1Sp.
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cp25F 0

1

i ]1@„s i~ i ] i2eAi !1 imp…jp#
G .

A25
22

~]1!2
J112

] i

]1 Ai .

J152e~jp
†jp2je

†je!; e.0.

A150.

In momentum space the field operators are expanded as
~at x150):

Ai~x!5 (
s561

E
q
„es

i as~q!e2 iq•x1H.c.…,

je~x!5 (
s561

xsE
p
Ap1

„bs~p!e2 ip•x1d s̄
†
~p!e1 ip•x

…,

jp~x!5 (
s561

xsE
p
Ap1

„Bs~p!e2 ip•x1D s̄
†
~p!e1 ip•x

…,

with

e1
i 5

21

A2
~d i ,11 id i ,2!, e21

i 5
1

A2
~d i ,12 id i ,2!,

x
1
5S 10D , x

1̄
5S 01D .

Note that s̄[2s. Also, we are using the shorthand

E
p
f ~p!5E d4p

~2p!4
2pd~p22m2!u~p0! f ~p!

5E d2p'dp1u~p1!

16p3p1 f ~p!up25~p'21m2!/p1.

The fermion helicity can only take on the values61/2, how-
ever, we defineh35s/2; therefore, ‘‘s’’ can only take on the
values61. The commutation~anticommutation! relations
and free Fock states are given by

@al~q!,al8
†

~q8!#516p3q1d3~q2q8!dll8

„d3~p!5d2~p'!d~p1!…,

$bs~p!,bs8
†

~p8!%5$ds~p!,ds8
†

~p8!%

516p3p1d3~p2p8!dss8,

$Bs~p!,Bs8
†

~p8!%5$Ds~p!,Ds8
†

~p8!%

516p3p1d3~p2p8!dss8,

^p1s1up2s2&516p3p1
1d3~p12p2!ds1s2,

up1s1&5bs1
† ~p1!u0&, etc.

APPENDIX B: BLOCH TRANSFORMATION

In this appendix we discuss a derivation of our effective
Hamiltonian via a Bloch transformation@4#. We use the
Bloch transformation to separate the low- and high-energy
scales of the problem and derive an effective Hamiltonian
acting in the low-energy space alone with an identical low-
energy spectrum to the bare Hamiltonian. In this appendix,
we closely follow Sec. IV of Ref.@7#, where a discussion,
including the original references, and derivation of a general
effective Bloch Hamiltonian can be found.

We start with a bare time-independent Schro¨dinger equa-
tion

HLuCL&5EuCL&. ~B1!

Then projection operators onto the low- and high-energy
spacesPL andPH , respectively, are defined,

PL5uS l21P'2

P1 2hD , ~B2!

PH5uS L21P'2

P1 2hD uS h2
l21P'2

P1 D , ~B3!

PL1PH5uS L21P'2

P1 2hD , ~B4!

whereu(x) is a step function. Then an effective Hamiltonian
acting in the low-energy space alone with an equivalent low-
energy spectrum toHL is sought.L andl are the bare and
effective cutoffs respectively withl,L.6 P5(P1,P') is
the total momentum of the hydrogen state.h is the free
Hamiltonian of the hydrogen system of Eq.~8!.

Proceeding, a new operatorR is defined that connects the
PL andPH spaces:

PHuCL&5RPLuCL&. ~B5!

More explicitly ((nun&^nu51)

R5(
n,m

^nuCL&^CLum&
PHun&^muPL

^CLuPLuCL&
, ~B6!

which shows thatRPHuCL&50 andR†PLuCL&50, etc. For
the construction ofR, see Eq.~4.4! in Ref. @7#.

This leads to the following time-independent Schro¨dinger
equation for the effective Hamiltonian:

HluFl&5EuFl&. ~B7!

E is the same eigenvalue as in Eq.~B1!. The stateuFl& is a
projection onto the low-energy space with the same norm as
uCL& in Eq. ~B1!:

uFl&5A11R†RPLuCL&; ~B8!

Hl is a Hermitian effective Hamiltonian given by

6The shorthands (l21P'2)/P1→l and (L21P'2)/P1→L are
often used when it does not lead to confusion.
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Hl5
1

A11R†R
~PL1R†!HL~PL1R!

1

A11R†R
.

~B9!

Note thatHl acts in the low-energy space alone. To summa-
rize, Hl of Eq. ~B9! is guaranteed to have the same low-
energy spectrum as the bare HamiltonianHL ; also, after
diagonalizingHl , the bare stateuCL& of Eq. ~B1!, if de-
sired, is obtained through Eqs.~B8! and ~B5!.7

DefiningHL5h1vL , whereh is the free field theoretic
Hamiltonian andvL are the bare interactions,8 to third order
in vL , the effective Hamiltonian is given by

^auHlub&5^auh1vLub&1
1

2(i S ^auvLu i &^ i uvLub&
Dai

1
^auvLu i &^ i uvLub&

Dbi
D

1
1

2(i , j S ^auvLu i &^ i uvLu j &^ j uvLub&
DaiDa j

1
^auvLu i &^ i uvLu j &^ j uvLub&

DbiDb j
D

2
1

2(c,i S ^auvLu i &^ i uvLuc&^cuvLub&
DbiDci

1
^auvLuc&^cuvLu i &^ i uvLub&

DaiDci
D

1OS ( ^vL&4/~«high2« low!3D . ~B10!

D ia5« i2«a , with hu i &5« i u i &. We are usingua&,ub&, . . . , to
denote low-energy states~states inPL) and u i &,u j &, . . . , to
denote high-energy states~states inPH). See the already
mentioned Ref.@7# for a description of an arbitrary order~in
perturbation theory! effective Hamiltonian and also for a
convenient diagrammatic representation of the same.

APPENDIX C: AVERAGING OVER DIRECTIONS

In this appendix we calculate the following Coulomb ma-
trix element:

I'5E d3pE d3p8fN* ~p8!
~p'2p8'!2

~p2p8!2
fN~p!, ~C1!

to verify the step taken from Eqs.~108! and ~109! in the
paper. It is useful to define another integral:

I z5E d3pE d3p8fN* ~p8!
~pz2pz8!2

~p2p8!2
fN~p!. ~C2!

Now note that

I5I'1I z5E d3pE d3p8fN* ~p8!fN~p!

5
~2p!3

p Sma

n D 3d l ,0 , ~C3!

where in this last step we recalled Eq.~111! and the fact that
the wave function at the origin is real.

For l50, the wave function satisfies

fn,0,0~p!5fn,0,0~ upu!. ~C4!

Thus, by symmetry, forl50,

I z5
1

3
I5

~2p!3

3p Sma

n D 3, ~C5!

which from Eq.~C3!, for l50, gives

I'5
2

3
I5

2~2p!3

3p Sma

n D 3. ~C6!

For lÞ0, first note thatI50. Thus, forlÞ0,

I'52I z ; ~C7!

we will calculateI z below which then impliesI' . Next note
that in position space

I522p2E d3xfN* ~x!S ¹W 2
1

uxu DfN~x!, ~C8!

using ¹W 2(1/uxu)524pd3(x). Thus, for lÞ0, in position
space

I z522p2E d3x fN* ~x!S ¹W z
2 1

uxu DfN~x!. ~C9!

Note that there is nouxu→0 ambiguity in this previous equa-
tion because forlÞ0, the wave function vanishes at the ori-
gin. Carrying out the derivative gives

I z522p2E d3xfN* ~x!S 2113z2/uxu2

uxu3 DfN~x!.

~C10!

This matrix element was performed in the first appendix of
Bethe and Salpeter’s textbook@10#. We use two of their for-
mulas,~3.26! and ~A29!.9 Equation~C10! integrated gives

7This stateuCL&, will span the whole space, but will correspond
to the respective low-energy eigenvalue. The bare states that corre-
spond to the respective high-energy eigenvalues cannot be obtained
from the effective HamiltonianHl ; we must of course use the bare
HamiltonianHL to accomplish this task.
8h is written in terms of renormalized parameters, and it is con-

venient to definevL5v1dvL , wherev is the canonical field theo-
retic interactions written in terms of renormalized parameters and
dvL are the counterterms that must be determined through the pro-
cess of renormalization. See Eqs.~6! and ~7! for the canonical
Hamiltonian of the hydrogen system.

9Warning to the reader: In this text, they use atomic units
\5c5m5a51, som anda have to be placed back into the for-
mulas.
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I z522p2 r23 c~ l ,ml !, ~C11!

with

r235
1

l ~ l11!~ l11/2!Sma

n D 3, ~C12!

c~ l ,ml !52113S 2l 212l2122ml
2

~2l13!~2l21!
D . ~C13!

Thus, recalling Eq.~C7!, our result forlÞ0 is

I'52p2 r23 c~ l ,ml !. ~C14!

For l51, I' is not 0, so what is going on? The answer
lies in the fact that we really want to take matrix elements in
the u j ,mj& basis not theuml ,ms& basis, and based on rota-
tional invariance, our results should be independent ofmj .
To proceed, note that the interactions we considered in this
paper conservedms and our matrix elements were indepen-
dent ofms . Next, note that the result, Eq.~C14!, is even
under ml→2ml . Given this, the Clebsch-Gordan coeffi-
cients for the 2P1/2 states imply

^ j51/2,mj uVu j51/2,mj&5
1

2l11 (
ml52 l

l

^ml uVuml&,

~C15!

wherel51. Now note thatI' given by Eq.~C14! averaged
overml vanishes:

1

2l11 (
ml52 l

l

I'50, ~C16!

where we used

1

2l11 (
ml52 l

l

ml
25

1

3
l ~ l11!, ~C17!

an obvious result after the answer is known. This result@Eq.
~C16!# was used in the step that led from Eq.~108! to Eq.
~109! in the paper, and this appendix is now complete.
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