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Lamb shift in a light-front Hamiltonian approach
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Light-front Hamiltonian methods are being developed to attack bound-state problems in QCD. In this paper
we advance the state of the art for these methods by computing the well-known Lamb shift in hydrogen starting
from first principles of QED. There are obvious but significant qualitative differences between QED and QCD.

In this paper, we discuss the similarities that may survive in a nonperturbative QCD calculation in the context
of a precision nonperturbative QED calculation. Central to the discussion are how a constituent picture arises
in a gauge field theory, how bound-state energy scales emerge to guide the renormalization procedure, and how
rotational invariance emerges in a light-front calculatig®0556-282(197)03012-9

PACS numbedps): 11.10.Ef, 12.20.Ds

l. INTRODUCTION batively andV is treated in bound-state perturbation theory
(BSPT). The test ofH, is whether BSPT converges or not.
Why is the calculation of the Lamb shift in hydrogen,  We can now reformulate the questions above. Is there a
which at the level of detail found in this paper was largely scalex at which#, does not require particle emission and
completed by Bethe in 194[1], of any real interest today? absorption? What are the few-body interactionsHp that
While completing such a calculation using new techniquegyenerate the correct nonperturbative bound-state energy
may be very interesting for formal and academic reasons, oWcales? Is there a few-body realization of rotational invari-
primary motivation is to lay groundwork for precision ance; and if not, how does rotational symmetry emerge in
bound-state calculations in QCD. The Lamb shift providesBSPT? We should emphasize that for our purposes we are
an excellent pedagogical tool for illustrating light-front primarily interested in answering these questions for low-
Hamiltonian techniques, which are not widely known; butlying bound states, and refinements may be essential to dis-
more importantly it presents three of the central dynamicatuss highly excited states or bound-state scattering.
and computational problems that we must face to make these |t is essential thak, which governs the degree to which
techniques useful for solving QCD: How does a constituenktates are resolved, be adjusted to obtain a constituent ap-
picture emerge in a gauge field theory? How do bound-statgroximation. If\ is kept large with respect to all mass scales
energy scales emerge nonperturbatively? How does rotan the problem, arbitrarily large numbers of constituents are
tional symmetry emerge in a nonperturbative light-front cal-required in the states because constituent substructure is re-
culation? solved. A constituent picture can emerge if high-free-energy
These questions can be answered in detail in QED. Thetates couple perturbatively to the low-free-energy states that
answers clearly change in QCD, and we point out severajominate the low-lying bound-states. In this case the cutoff
places where this is clear, but we hope that much of thgan be lowered until it approaches the nonperturbative
computational framework successfully employed in QEDpound-state energy scale and perturbative renormalization
will survive. may be employed to approximate the effective Hamiltonian.

In order to formulate these questions in a more precisgn QED we note that the range into which the cutoff must be
fashion, we first outline the general computational strategyowered is

we employ. First, we use the renormalization group to pro-

duce a regulated effective Hamiltonidt, , where\ is a ma?< <ma, 2
cutoff and renormalization is required to remove cutoff de- _

pendence from all physical quantities. At this point we hava/vhere)\=)\—mp—me as will be explained later, anoh is

a regulated Hamiltonian that contains all interactions foundhe reduced mass of hydrogen. If the cutoff is lowered to this
in the canonical Hamiltonian, a finite number of new rel-range, hydrogen bound-states are well approximated using
evant and marginal operataieach of which contains a func- proton-electron states and including photons and pairs per-
tion of longitudinal momenta because longitudinal locality isturbatively.

not maintained in light-front field theoyy and an infinite It is an oversimplification to say the constituent picture
number of irrelevant operators as would occur in any cutofemerges because the QED coupling constant is very small.
theory. This complicated Hamiltonian cannot be directly di-Photons are massless, and regardless of how smiall one
agonalized, and since we want to solve bound-state problemgust in principle use a nearly degenerate bound-state pertur-
we cannot solve it using perturbation theory. The second stepation theory that includes extremely low-energy photons

is to approximate the full Hamiltonian, using nonperturbatively. This is not required in practice, because
the Coulomb interaction which sets the important energy
Hy=Ho+(H\—Ho)=Ho+V, D scales for the problem produces neutral bound-states from

which long wavelength photons effectively decouple. Be-
whereH, is an approximation that can be solved nonpertur-cause of this, even though arbitrarily small energy denomi-
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nators are encountered in BSPT due to mixing of electronperturbation theory. As has long been appreciated, such loga-
proton bound-states and states including extra photonsithms appear when the number of scales contributing to a
BSPT can converge because emission and absorption matigerrection diverges.
elements vanish sufficiently rapidly. The existence of a small parameter simplifies the nonper-
The well-known answer to the second question above i§urbative calculation of bound-state observables consider-
the two-body Coulomb interaction sets the nonperturbativetbly, and it has been suggested that a similar expansion be
energy and momentum scales appropriate for QED. We hav@nployed to guide light-front QCD calculations even if it
already used the results of the Bohr scaling analysis thd€duires the introduction qf. masses that violate rotational in-
reveals that the bound-state momenta scalp-asna and ~ Variance away from the critical value of the coupli#g. We
the energy scales &~ ma?. As a result the dominant pho- do not detall_thls _proposql, but a thorou_gh understanding of
fon momenta are also of ordeta, and the corresponding such expansions in QED is almost certainly necessary before

photon energies are of ordeta. This is what makes it pos- one has any hope of using this approach for QCD.

. o : . We proceed with a description of our Lamb shift calcula-
sible to use renormalization to replace photons with effectlva[ion In hydrogen there is a small amplitude for a bound

interactions. The dominant photon energy scale is MUCRjaciron to emit and reabsorb a photon, which leads to a
greater than the bound-state energy scale, SON&N be  gmg| shift in the binding energy. This is the dominant source
perturbatively lowered into the window in E) and pho-  f the Lamb shift, and the only part of this shift we compute

tons are not required in the state to leading order. A similagy this paper. This requires electron self-energy renormaliza-
analysis in QCD will reveal qualitatively different results. If tion, but removal of all the bare cutoft dependence re-

a constituent picture emerges, the dominant interaction wilyires a complete fourth order calculation, which is beyond
be confining and the dominant gluon energy scale will behe scope of this paper. We work with a finite bare cutoff

directly affected by confinement. A confining interaction a“'sz\/E, and show that our results are independent of the
tomatically generates a mass gap for gluon production. effective cutoffx.

Finally we discuss rotational invariance in a light-front 1,4 energy scale for the electron binding energy is
approach. In light-front field theory, boost invariance is ki- ma?2, while the scale for photons that couple to the bound
nematic, but rotations about transverse axes involve interaggates igna. This energy gap makes the theory amenable to
tions. Thus rotational invariance is not manifest and all cutyhe yse of effective Hamiltonian techniques. For simplicity,
offs violate rotational invariance in light-front field theories. we use a Bloch transformatig] in this paper to remove the
In QED it is easy to see how countertermdHp arise during  high-energy scalé.e., ma) from the states, and an effective
renormalization that repair this symmetry perturbatively;Hamiltonian is derived which acts in the low-energy space
however, the issue of nonperturbative rotational symmetry igilone. This effective Hamiltonian is treated in BSPT, as out-
potentially much more complicated. We first discuss leadingined above. The difference between thé&,2 and the
order BSPT and then turn to higher orders. 2P,,, energy levels, which are degenerate to lowest order, is

To leading order in a constituent picture we require acalculated.
few-body realization of rotational symmetry. This is simple  \we divide the calculation into two parts, low- and high-
in nonrelativistic systems, because Galilean rotations angnergy intermediate photon contributions. The low-energy
boosts are both kinematic. In QED the constituent moment3notons satisfy{k|<x, while the high-energy intermediate
in all low-lying bound-states are small, so a nonrelativisticphotons satisf;X<|k|<m. Y is the effective cutoff for the
reduction can be used to deriié,. Therefore to leading theory, which is chosen to lie in the range given in E2).

order in QED we can employ a nonrelativistic realization OfThis choice lies between the two dominant energy scales in

rotational i.n\'/ariance. Thi§ type O.f approach can be tried_ ir‘the problem and allows us to avoid near degeneracy prob-
QCD, but it is not essential that it work because alternatlvqems When an actual number is required we use

few-body realizations of the full set of Lorentz symmetries
exist.
At higher orders in BSPT rotational invariance will not be

maintained u.nless corrections are regrouped. We have COote that the spectrum of the exact effective Hamiltonian is
puted hyperfine structure and shown that terms from first- = L . ~
dependent ok, but our approximations introdueedepen-

order and second-order BSPT are required to obtain angulé‘? ~
momentum multiplet§2]. The guiding principle in this and dence. The range for is chosen so that the errors appear at
all higher order calculations is to expand not in powers of2 higher order inx than we compute. _

YV, but in powers ofa and Ing). H, should provide the One further introductory comment, the high-photon-
leading term in this expansion for BSPT to be well behavedenergy §<|k|<m) part of the shift is further divided into
and subsequent terms should emerge from finite orders afvo regionsa<|k|<b and b<|k|<m, whereb is an arbi-
BSPT after appropriate regrouping. Powers @fappear trary parameter chosen in the range<<b<m. This simpli-
through explicit dependence of interactions @n and fies the calculation with appropriate approximations being
through the dependence of leading order eigenvalues angsed in the respective regions. The result must obviously be
eigenstates or introduced by interactions ify. This sec- independent of this arbitrary division poibt and is, unless
ond source of dependence can be estimated using the fa@tonmatching” approximations are used in the respective
that momenta scale &s« in the bound-state wave functions. regions.

Of more interest for this paper is the appearance ad)in( We now outline the paper. In Sec. Il we discuss the the-
which is signaled by a divergence in unregulated bound-stateretical framework of this light-front Hamiltonian approach,

A= aJam~6x10"*m. 3
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and in Sec. lll we proceed to discuss the origin of the Counormal order all interactions and neglect zero modes. The
lomb interaction in this framework. Section IV contains the canonical interactions from E¢7) that we use in this paper
heart of the Lamb shift calculation. In the final section, Secare

V, we summarize and discuss our results.

2yl — 2L —
Vie= | dx-dX Vi, v =f dox-dx Vqp,
Il. THEORETICAL FRAMEWORK le f leo Tlp tp

In this paper, the proton will be treated as a point particle.

The Lagrangian for the electron, proton, and photon system 02=J d?tdxV,, 9
is (e>0)
1 with
£=—ZFWFW+ Ye(id+eA—mg) i, 1
_ Vie=eélo A [(io'd +ime)&c]
+yp(id—eA—my) ;. (4) _
o oo J
The reduced mass of the system is defined in the standard +e§l(i<r'z9'—ime)m—+[a'A'§e]—2€§l§ea—+A',
way
(10)
_ MeMp 2
m=———=mg1—m./my+O(1/mp)]. (5) 1
Me+ M, P V= —ett g A—[(io g +i
1p~ eng' ot [(io'd |mp)§p]
Note that in this paper we take the linmit,— o because we 1 5
are only interested in the dominant part of the Lamb shift. P T I N S P 1t 9 i
The Lagrangian leads to the following canonical Hamil- egplio’d |mp)m+[aA§p]+2e§p§p (9+A’
i ; ; +_0-
tonian in the light-cone gauggé™ =0: (11)
H=f d2tdx H, (6) 1 1
VZZ—EJ+WJ+. (12)
1 . o
H==(d A2+ El(io' g+ e’ Al—im These are the photon emission and absorption by the elec-
5 (0 A2+ gl )

tron, photon emission and absorption by the proton, and in-

1 o o stantaneous photon interactions, respectively.
xm—+[(i o'd'+ed'A'+img) & Given the canonical Hamiltoniad, we cut off the theory
by requiring the free energies of all states to satisfy
Tei i Al
+¢é(ic'd—ed’A'—im
gp( p) PL2+A2
&S ——— (13

1 i N 2N
Xi(?—+[(|0'ﬁ —ed'A +|mp)§p]

where A is the bare cutoff andP=(P*,P") is the total

- E‘]+ 1 Jt+ gt &_IAi_ (7 ~ momentum of the hydrogen state. Then, with a Bloch trans-
27 (9)° a* formation we remove the states with free energies satisfying
Note thati =1,2 only; J* =2e(&}¢,— £l&.), and o' are the PL24)\2 PL24 A2
standard S(2) Pauli matrices. The dynamical fields are D SES T oE (14

A', &, and§,, the transverse photon and two-component

electron and proton fields, respectively. For the relation beynere ) is the effective cutoff. The result is an effective

tweeny and§ and a comprehgnsive summary of our light- yamiltonian H, acting in the low-energy

front conventions see Appendix A. (e;<P-2IP"+\?/P") space alone. We do not discuss the
The free Hamiltonian is derivation ofH, any further, but instead refer the interested

reader to Appendix B.

2 2
h=H| (60 = fpz (bl(p)bs(p) P pt e GivenH, , we then make the following division:
L2+ m2 P Hyx=Ho+ (H\—Ho)=Ho+V, (15

+Bl<p>Bs<p>p—+"+al(p>as<p>Z—+, ®

whereH, is an approximation that can be solved nonpertur-
batively (for this QED calculatiohandV is treated in BSPT.
plus the antifermions. The notation for our free spectrum isThe test of H, is whether BSPT converges or not and,
h|i)=¢;|i) with =;|i)(i|=1, where the sum overimplies a  closely related: is tha& dependence of the spectrum weak-
sum over all Fock sectors, momenta, and spin. Next, wened by higher orders of BSPT?
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interactions arise from first- and second-order effective inter-
actions, respectively. See E@10) of Appendix B for the
form of the effective Hamiltoniam, .

H H The time-independent Schiimger equation in light-front
L L L L L L coordinates that the sum of the three time-ordered diagrams

% + ? + § in Fig. 1 satisfies 5

12 2 12 2
( , KZHmg k'?+m

COULOMB INTERACTION

p

N x’ 1-x’

DX k'sisp)

- , . =§ dZK/(ZW)Zfoldﬂ(4w)vc BN(XKSeSp).
= q e
: (16)
» 22 ) Mﬁ is the mass squared eigenvalue of the staje where
( Aot 46741 e ) “N” labels all the quantum numbers of this state. The tildes
a? a2 2 32 will be notationally convenient below. We have introduced

the following Jacobi variables:
FIG. 1. The effective interactions that add to give the Coulomb

potential. “H” implies that the photon energy is greater than Pe=(XP",k+XxP"), 17)
“L” implies that the electron kinetic energy is less than We , I ,
choosema?<\<ma; these “H” and “L” constraints can thus be Pe=(X"P".k"+X'Ph), (18)

removed to leading order. - )
g where p. and p, are the initial and final electron three-

Ill. LOWEST ORDER SCHRO DINGER EQUATION momentum, respectively, and

The primaryassumptionrwe make in this QED bound- Pet Pp=Pe+ pF’)=P=(P+,PL) (19
state calculation is that the Coulomb interaction dominates
all other physics. In this work we will treat the Coulomb is the total momentum of the hydrogen state. Note thata
interaction between the electron and proton to all orders ifiwo vector. The norm is defined by
all Fock sectors. After this assumption, the kinematic length

o 1 —~ ~
scale of our system is fixed, 2 de/(Z”)zf X/ (A7) B (XKSeSp) s (XKSeSp)
SeS 0
1 1 137 °
ao~6~m~w. = O - (20

V. is the sum of the interactions given by the three diagrams
in Fig. 1, and will not be written in all its gory detallThe

1 1 1372 leading order term of/; in a nonrelativistic expansion is
defined asv. and is written below.

The nonrelativistic expansion is defined in the following
As is well known, dynamical changes occur very slowly in Way- A coordinate change which takes the range of longitu-
this system. Note that in this QED calculation we will treat din@l momentum fractionce[0,1] t0 x;e[—,] is de-
photons as free since they carry no charge and interact verfiped

which then fixes our dynamical time and length scale,

t

T pFm me? m

weakly at low energies. This of course changes drastically 5

for QCD since gluons do carry color charge and interact "= Kzt VK™t Kz + Mg 21)
strongly at low energies. After choosiftg,, the a scaling of V2 + 2+ mi+ kP + i+ mg '

our BSPT is fixed, and the spectrum is then calculated to

some desired order i and Irno. This step can be taken for relativistic kinematics, but there

In the Coulomb gauge, the Coulomb interaction appearsnay be no advantage. Then, the nonrelativistic expansion is
directly in the canonical Hamiltonian, which of course is notan expansion ifp|/m; i.e., we assume
true in the light-cone gaudeln the light-cone gauge, the
Coulomb interaction arises from a combination of two types
of interactions in our effective Hamiltonian, instantaneous 2For a derivation of Eq(16) from the Schrdinger equation in
photon exchange and the two time orderings of dynamicafock space see Eq&1) to (83) in Sec. Ill B 1 of Ref.[2].
photon exchange. Graphically this is shown in Fig. 1. These 3The interested reader should consult EF§) and(71) and the
discussion below in Sec. Il A 2 of Reff2]; these equations are for
the equal mass case, but are readily generalized to the unequal mass
'However, a confining potential does appear directly in the cacase. Also note that in this reference we used a similarity transfor-
nonical Hamiltonian in the light-cone gauge, which is a convenientmation instead of a Bloch transformation; the Bloch transformation
starting point for QCO5]. was chosen for the current paper because of its simplicity.
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m>|p|, (22 N2— (Mgt mp)?  ~ N2 -
2(me+ M (mer - N GD
where we have defined a new three vector in terms of our (Me-+mp) (Me+Mp) (i)
transverse Jacobi variable and our new longitudinal mo-
mentum variablac, which replaces our longitudinal momen- -
tum fractionx: A2—(mg+my)? ~ A? ~
> =A+ 5 ~ A (32
(Me+mp) (me+ mp)(mpﬂw)

p=(x,K7). (23

Note that the free mass squared in the Sdimger equation In terms of these new cutoff#, and ¢ above become

(16) after this coordinate change, becomes

2 2 K2 0 —e[X p2+o pl* 0|\ IOI2+o LN
K*+mg +m B L “om ™ ~5m =ik
” Ty~ (Vme+pP+ mi+p? )2 33
= (Me+mp)?+2(me+m,)
¢ o\~ &
p?  p*(me—mp)? ||0|6 0H=0(——>\ 0(1\——). (34)
2m™ gmgme O\ e | 2la] 2la]

(24) To see the Coulomb interaction arising from te@) sec-
tor alone, we make the following requiremeritghich are

which is invariant under rotations in the space of vectors Smotivated from the previous two equations

p—but not invariant undep, boosts. Here we begin to see
longitudinal boost invariance being replaced by a kinematic

rotational invariance in the theoryn is the reduced mass |p|2
given in Eq.(5). _
Now note that the leading order term ¥&f in an expan-
sion in|p|/m is contained in
and
Y +my)? 4’ +4e a° Oy | 85 o s 0
(et M| =gz gz O Fse O A=pl, (35
(25)
where also demanded fap’| of course. These constraints will be
maintained consistently in this paper. Given these restric-
tions we have
q=p’'—p, (26)
~1
0= 00— (NmZ+ p?+ 2+ 7 )?) o=t (39
2_ 2 12 2 12 \2
9P ~
0= 0{ (Me+Mp)2+2(Me+ mp)2|q |) )\2} V. becomes
q2 ~
X 6] A?—| (mg+mj)? +2(Metmp)5r— 20 |) . (28 Ve~ Ve, (38
Note thaté, and 6, are the constraints that arise from the where
Bloch transformation.
It is convenient to define new cutoffs which subtract off 4e?  4e?qt2
the total free constituent masses of the state: Ve=(me+m,) ( ?+W) Os 5sps;,
z z
A=\—(Mg+my), (29) 42
e Mp = —(Me+my)? 7 5Se5é55p5{3' (39
A=A—(mg+m,). (30)

To finish showing how the Coulomb interaction arises in

In the limit m,— we reqmre)\ andA to be held fixed. Note a light-front Hamiltonian approach, we need to know the

that this implies

Jacobian of the coordinate transformation of E21l):
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+ 2+ 2 2+ 2_
P =G~ 7= (Kzz sz rzne)(jp zmp Iz(Z) 2
Kz 2+ mZypZ+ma(Vp?+mi+ VpZ+m )

B PO I S B BT N .
Cmetm, "z me m,/  2mgm, md) |

(40)

It is also convenient to redefine the norm:

San =2 JdZK/(zw)ZJ:dx/mw)?bN*(szesp)
SeSp
><EN’(XKSeSp)

= | d®pI(p)/(167°) Pn* (PScSp) bn (PSeSp)

SeSp

=2 | d®pei(pseSy) dn (PSeSp)- (41)

SeSp

In this last line the tildes are removed from the wave func-

tions by defining

J(p) ~

Eﬁd’N( psesp) . (42)

d’N(pSeSp) =
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AS>ma, (47)

which is consistent with Eq2) as advertised earlier.

IV. LAMB SHIFT CALCULATION

Given our lowest order spectrum, we proceed with BSPT.
As advertised, this will be divided intow and high inter-
mediate photon energy calculations. Before proceeding with
these respective calculations, we discuss whether Coulomb
exchange can be treated perturbatively or nonperturbatively
in the respective regions.

For the low-energy intermediate photon, the Coulomb in-
teraction between the intermediate electron and proton must
be treated nonperturbatively, whereas this interaction can be
treated perturbatively for the high-energy intermediate pho-
ton contribution. This is seen by noting that each additional
Coulomb exchange contributes a Coulomb matrix element
and an energy denominator which is dominated by the larger
photon energy scale. Thus each additional Coulomb ex-
change contributes

o
Ir] ma?

=

|k| |k|min.

(48)

For the low-energy photon contribution, in principle
|k|min=0, and each additional Coulomb exchange can con-

Putting it all together, the leading order expression for Eqtribute order 1, and therefore must be treated nonperturba-

(16) in an expansion irfp|/m given the restrictions of Eq.
(35 is

<_B+p_,2)¢>(’3’5')=af T on(psesy)
" 2m) NP S =52 | (p—pr)? “pep@g)

which we see is the nonrelativistic Schinger equation of
hydrogen.m is the reduced mass andp,, is the binding
energy defined by

Mz—(mg+my)?

Pn= 2(me+mp) (44
The well-known bound spectrum is
Ryd
Bn=—"7 (45)

where Ryd=ma?/2 of course. Note that Eq43) fixes the
a scaling of|p|:

|p|~ma. (46)

Thus we see that the restrictions of E85) become

ma?<\<ma

and

tively. Of course, when the Coulomb interaction is treated
nonperturbatively, low-energy intermediate protons and elec-
trons form bound states from which long-wavelength pho-
tons decouple. This nonperturbative effect leads to
|k|min~16.64 Ryd; see Eq121) below. For the high-energy
photon contributionk|,i,=\ and from Eq.(3) each addi-
tional Coulomb exchange thus contributes at most

2
Ma
— =\Ja~85 x 1072 (49

and can therefore be treated perturbatively.

A. Low-energy contribution

The low-energy shift arises from two sources which are
shown in Fig. 2. The first term comes from the low-energy
photon emission part of the effective Hamiltonian
(av1elb), treated in second-order BSPT. Recall E§.and
(10) for the form ofv..* The second term is the result of
renormalizing the one loop electron self-energy: a counter-
term is added to the second-order self-energy effective inter-
action in{a|H,|b), which results in a finitg€except for in-

“Note that the term where the proton emits and subsequently ab-
sorbs a photon is down by two powers of the proton mass with
respect to the term where the electron emits and absorbs a photon.
This result is subtle though, because it is true only after the light-
front infrared divergences have canceled between two diagrams
analogous to the ones in Fig. 2.
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LOW ENERGY CONTRIBUTION R_ecglling Eq.({14), which is the definition of the zeroth order
binding — 3, in terms of the zeroth order mass-squared
Mﬁ; and also defining the mass-squared correct&?MﬁI by

Lot L M&= M5+ oMY, (52)
kq y kg ./_\ . . .
ZG % 9 - QPe %9 combined with Eq(51), gives
&
diagram L1 diagram L2 By 3 SM% s M3 53
=Bnts—"7 ~ + .
N " 2(me+ mp)(mpﬂw) n Zmp
_ Defining the binding corrections 6By by
o3 Ryd In =2
3n B
Bn=Bnt 6By, (54)
FIG. 2. The low-energy contribution of Sec. IV A. Diagram L1 ) ] ]
represents the shift arising from treating photon emission below thombined with Eq(53), gives
cutoff N\ in second-order BSPT, where the intermediate electron-
proton are bound by the Coulomb potential. Diagram L2 is an ef- 2
. ; . h oMy
fective self-energy interactiofplus counterterm arising from the SBy= (55)
removal of photon emission above the cutoftreated in first-order 2rnp

BSPT.RZ,I) is the average excitation energy of the 2 state; see . .
Egs. (115 and (116) and the discussion above them for details. & useful formula to be used below. This formula is useful

becauseﬁMﬁ is calculated below, bubBy is the quantity
frared divergencesshift to the electron self-energy. This is that is measured.
shown in Fig. 3. The counterterm is fixed by requiring the  The low-energy calculation proceeds as follows. The first
electron self-energy to evolve coherently with the cutoff. Theterm of Fig. 2 is a second-order BSPT shift which contrib-

details of defining this counterterm, for the equal mass casetes the following to the mass-squared eigenvalue:
can be found in Sec. Il A 1 of Ref2]. A discussion of the

physical ideas behind coupling coherence can be found in

Ref.[6], and references therein. |<¢N(P)|Ulealy( K)| o (P—K))|2614

Before proceeding with the calculation, we define the 5M51=2 kSZ DEN, (vol)2 :
binding energy of hydrogen-By in terms of the mass- N i (56)
squaredM3:

wherek ands,, are the photon’s three-momentum and spin,
M2 = (me-+ my+ By)2 (50) respectlvely,P=(73+,7?l)_|s the total momentum _of the hy-
drogen stately, andv 4. is the photon emission interaction
AssumingBy is finite asm,—o we have given in Eq.(9). 6., restricts the energies of the initial, in-
termediate, and final states to be below the effective cutoff
M2~ (mg+m;)2 B2 (N2+P-2)/P*. The explicit form of these restrictions is dis-
W: Nt m(m;w)BN. (51)  cussed below. Continuing the description of Esf),
21,1 + + 3
SELF-ENERGY RENORMALIZATION f _ f d*k-dk™o(k™) _ j d°k 57)
K 167k * (2m)3(2]k])
H
i&i e The last step comes from recalling that for a photon
+ k™ =k%+k3=|k|+k3. The denominator and volume factors
are
Lo oL volzf d’xtdx™ =16738%(P-P), (58)
PREEME(PRREME, K2
FIG. 3. The sum of an effective self-energy interaction arising DEN,=P Pt (P-kT kT

from the removal of photon emission above the cutofaind a (59
counterterm. The counterterm is fixed by coupling coherence. The
result is the interaction in diagram L2 of Fig. 2. The two-body states are
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P))= + +16 36\? P— o 2 _ : +_ At +_ A+
l¥n(P)) fpepp Pe Pp 167°5°(P—pe—Pp) M2, NE fkfpee(P pe)fpéH(P p.t)
X bn(PePp)b (Pe)BI (Pp)[0),  (60) el
NIRRT (PO X f%(pe pe ki k3 ) (1673 8%(k+ k3= pe))

X (16m3 33 (k+ky—pg)) dr(pe . P—pL)

[ (P—K))= fk ki 1675 Pk~ ko) X P (ke P—k—kp) B, (ks P—k—ks)
172
X B (kek)bl, (kB (kp)[0),  (61) X Fa(Do P po) (62
o (Kiko) Sé( 1) SQ( 2)|0), N(Pes P~ Pe DEN,’

where N and N’ are shorthands for n(l,m,) and
. _ . (n’,1”,m), respectively, the usual principal and angular mo-
wheredy are solutions to Eq43), the nonrelativistic SChF0  mantym quantum numbers of nonrelativistic hydrogen. The

dinger equation of hydrogen, amkl, is related topy by Eq.  “c” on the sum emphasizes the fact that the continuum
(42). states must be included also. See E&9) for DEN4. N; is
Straightforward algebra leads to given by

2 <O|bse(pé)v1ebZ'(kl)a;/(k)|0><0|bsé(k3)asy(k)vleble(pe)|0>
N, = - 63
Uy VpapLTk ks (16353 (K+ kg~ Pe))(16m35% K+ ky — py) (©9

[for v See Eq(9)], which after some algebra becomes  From the form of Eq.(67), we see that this constrains the
photon momentum to satisfy

3 o2 1 1 1 1 _
Nl—(47ra) mg E—E pé—Jr— E |k|$}\, (69)
2kl Ki(se) PLi(se) to leading order in.
Tk oLt Note that the constraints coming frof,;, summarized
! € by Eq.(69), require the photon momenta &#M?; of Eq. (62)
2kl pie(Se) ki3( Se) to satisfy
X of Tk I (64)
Pe 3 K<Ppe,Pe- (70)
where we have defined a new object o
Thus, Eq.(62) can be simplified further:
p'(s)=p'+ise; pl. (65) .
— 2 __ _ At A
Notation: i=1,2 only, s=+*1 only, s=-s, €, M= fkf 0(P" —pe )f ,0(P"—pe")
N’ Pe Pe
= €1~ l, al’ld611= €20= 0.
We now discus¥, ; and then simplifySM fl further. Re- X(pa p(';)gﬁ(pé ,P—pL)
call Egs. (24) and (29). We see that after the coordinate _ _
change defined by Eq21), in the m,— o limit, X nr(Pe, P—Pe) br:(Pe, P—Pe)
0= 00— Ty 8| K= P+ 0(a) | o T P+ O (o X B Do P Po) s
L= 6( 1) om (a”) 5m ()], N(Pe,P—Pe DEN:|\ . ., \k\<X).
(66) 3 el pe’ =

(71)

T1=|k|+ V(p—k)Z+mZ—m, (67)

where we have used the fact that the wave functions restrict
|pl~ma. Recall that we are always assuming DEN;=2m,(B,— Bn — [kD[1+O(1/my)], (72

ma?<x<ma. Thus, 6, can be simplified:

In the m,— limit, P*—m,, and DEN, becomes

_ where we have usel"?/k*+k*=2|k|, valid for an on-
01~ 60(N—Ty). (68 mass-shell photoitall particles in a Hamiltonian approach
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are on-mass shell— 3, is the binding energy of nonrelativ-
istic hydrogen defined in Eq44), with numerical value
Ryd/n? for the bound states.

In the region of integratiorik|<X\=ma+/a<|p|, so after
the coordinate change of E(R1) [recall Eq.(23)] we have

Nl _4kJ_2 4kJ_2 4pJ_.prJ_
Aga k' - k*m m?
4kl .l 1L
oo BB Pe oot ),

(73
The rest of the integrand is even under— —k*, so these

terms in the last line, odd ik‘, do not contribute.
Putting it all together, recalling E455), we have

a <& [ d3k
2o |0
x [ @ [ @ giie)
X (P") b (P) dn(P)

ku/k*2+ k-2/km+ (pt-p’t)/m?
Bn ﬂn’_|k| '

o(x—1k|)

(74

where we recalled Eq42), the relation betweerpy and

$y. This is infrared k™ —0) divergent, but we must add
diagram L2 of Fig. 2 to get the total low-energy shift.

As previously mentioned, Diagram L2 of Fig. 2 arises
from the sum of an effective second-order electron self-
energy interaction and a counterterm defined such that the
electron self-energy runs coherently. The result of this inter-

action is to add the following to the binding:

5|v| EZ

o ¢ d3k _

— — O(n—]|k
> f PO IkD
Xf dspf d3p’ dX(p") e (P') by (P)

ki2/k+2+ k-2/k ™ m+(pt-p't)/m?
VPP +mz—(p—k)?+mZ— K|

X on(p)

(75

Given the constrain|1k|$5(<|p|, this becomes

a & d3k _
5BL2*m§ fm O(n—1k])

><J d“‘pf d3p’ &R (p") e (P') by (P)

k-2/k* 2+ k- 2k m+ (pt - p't)/m?
[K| '

X pn(p)

(76)
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This is the famous subtraction that Bethe performed in 1947
[1]. In our approach it arose as a consequence of coupling
coherence.

8B, is infrared divergentK™ —0) as iséB, ;. This di-
vergence arises from the first two terms Mf (the ones
independent op andp’). Noting that

1 kJ_Z kJ_2

_ | + —

|k|_2( k+ +k ) . 2k+1

(k" —0)
we have
12
IBn_Bn'_“(l +~ _T,
(k™ —0)

and these infrared divergent contributions from the first two
terms ofN, cancel, leaving an infrared finite shift:

5B, = 0B i+ OBLy=— i fdake('i IK])
L L1 L2 47T2N/ |k|

deSpf d®p’ (P ) e (P') b (P)

.l

p .pll/ 1 i)
\Bo B =k ") 77

2 Cordk -~
(3 [ o

xf d®p’ S350 b (p) 6%, (p)

X on(p)

p-p’

X ¢N(p)F (78)

N 1
Bn_Bn’_|k| |k| .
This last step followed after averaging over directions as
dictated by rotational invariance.

Equation(78) is easy to integrate, and our final result for

the low-energy photon contribution is

2 ¢ X"'Bn’_lgn
5BL:TCI;2% (Bn’_ﬁn)lnw )?
(79
22 (,Bn’ ﬁn)ln B >|
(80)

where in this last step we recalled>ma?. Note the\ de-
pendence in the result. This will cancel after we correctly
add the contributions coming from high energy intermediate
photons, which now follows.

B. High-energy contribution

The high-energy shift arises from three sources which are
shown in Fig. 4. These are first-order BSPT shifts due to
third and fourth order effective interactiorisee Appendix
B). The net result of these three diagrams is
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HIGH ENERGY CONTRIBUTION Ni1=(N1) (k;—p K kg—pe-k) » (86)
H H _
L AL LAL L Niz= (N1) (1, —p! ~kkg—p,~kpe—p.) (87)
Pe kilks Pe + Pe Pe! Pe
N N N Do Nig= (N1) (k;—p—kky—pe—kp,—Pe) * (88)
diagram H1 H diagram H2 whereN; was defined in Eq(64). The free state masses are
L L/k\L given by
pe ! Pe Pe
+ N 9 Mo=\p?+mi+ \p?+m?, (89)
diagram H3 M{=p'2+mZ+ \/p’2+mf,, (90)
@3Ryd (jnb in ) M= [k|+ V(p—k)Z+mZ+ Jp?+m, (91)
3xn A
M’ = K|+ V(p' —k)2+mi+ \p 2+ m>. (92)

FIG. 4. The high-energy contribution of Sec. IV B. These are
third- and fourth-order effective interactions treated in first-order The Bloch transformation constrains the free masses of
BSPT. These effective interactions arise from the removal of phothe states. As discussed before, the “L” restrictions in Fig. 4
ton emission above the cutoff “ b" is an arbitrary scale, required can be removed giveﬁ> ma2. However, the “H” restric-

to satisfyma<b<m, that was introduced to simplify the calcula- {jons |ead to important constraints given by thg factors
tion. Note theb independence of the result. The total contribution isabove which we now discuss. They constrain the free

a sum of Fig. 2 and Fig. 4. Note theindependence of the com- | 1555es to satisfirecall Eqs.(29)—(32)]
bined result.

A<M —me—mpgx, (93
- 5 (1+ 8V 81
T2 2772q2( H)» (81 ASM'—m—m,<A, (94
whereq is the exchanged momentum of the electron, and vyhtalreM andM’ are defined in Eq991) and(92), respec-
tively.
Ny= V1 + Vot Vi, (82 As already mentioned, for convenience of calculation, we

will divide this high-energy contribution into two regions,

with A<|k|<b and b<|k|<m (region oneand region twq re-

spectively, with ma<b~mya<m. Recall, ma?

_ R o4 <A~maJa<ma. We now show how this division into
5\/”1_5 ka(pe ~kT)0(pe —k")Nk1bh1 these two regions arises as a result of the constraints of Egs.
(93) and (94).
><( (P*)? In this first region k|<m, and Egs(93) and(94) become
(M5—M?)(MG—M"?) _ (pk?
2 A<|k|+ ~|k|=b, (95
N (P7) 83 2m
(Mg*=M?)(Mg"=M ") J* .
~ p —

1
Vo= — EJ 0(pe” —k*)B(Pe —k"INp2642
K which is as we have already statéecall that we always
(PH)? assumem,— and drop the I, corrections since we are
X (84)  just after the dominant shijt
(Mg=M")(Mg"—M"?) The analysis of the second region is slightly more com-
plicated becausgk|>mea, and near the upper limjk|~m.

1 , Since |k|>ma in this region, Eqs(93) and (94) both be-
5VH3: - Efka(pe+ - k+)6( p; - k+)NH36H3 come | |
(P*)? b<|k|+ Vk?+ mZ—m<A. (97)

X o 2 (85

Mg—M“)(My“—M L . .
(Mo /(Mo ) This is just a linear constraint,
The factors* 3 in front arise from the form of the Bloch om+b N
transformation[see Eq.(B10) of Appendix B|. The vertex bl ———|<|k|<=
factors are given by 2m+2b 2

(99)

A+2m
A+m |’
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which, since we chooske<m, becomes a g2 (b
) Vu=—5_ =z =|, (104
Al A+2m ™ MmN
b<|k|<=| = . (99
2\ A+m @ g2 (m
The electron self-energy renormalization is performed in this ™ m

paper, but we do not deal with removing the falldepen-
dence. A full analysis of this dependence requires a comple
fourth order calculation, which is beyond the scope of thi
paper. We cut off the photon momentum at the electr
mass, and proceed. Note that from E®p), this choice cor-
responds to\ =2m?. The point of calculating these high- -2
photon-energy contributions is to show that our results are SVy=8V|+ 8Vj,=— 5= —;In(:), (106
independent of the effective cutoff ™ m A

Taking a sample denominator we have

In the second region note that tk|k|/m) terms coming
%om numerator and energy denominator corrections cancel,
Sleaving the order 1 piece alone. The combined high-energy
Nontribution is

which is independent db, as required for consistency. Re-

(M2=M2)=(Mg+M)(Mo—M) call thatq=p’ —p: the difference between the final and ini-
tial electron momenta.
p? (p—k)? From the definition 0BV [see Eq(81)], we see that this
~2 k
~<Mp ﬁ_| - om correction shifts the energy levels an amount
~—2my|K|, (100 a oV
P 5BH:_WJ dgpdsp'%(p')(ﬁ én(p).
in thefirst region and (107)
(M§=M?)=(Mo+M)(Mo—M) Combining this with Eq(106) gives
~2my(m— k| = Vk?+m?) 2 "
— a 33N A* (N
k|2 5BH——3—2|”(=) f d°pd”p’ éR(p’)
~—2my| K|+ %) (101) 4mme
X —2—(pl_pd)2 108
in the secondregion. (pp)? | NP (108

Using these previous formulas, includir1@+—>mp as
m,—, Egs.(83)—(85), after summing, become 2

:“_m(T)Uda on( ))2 (109

, o qLZ 1 bd|k| (|k|> 671.3m2 ’x’ p N p ’

WH__EF _1dC089ﬁ)\W 1+0 H s
(102

where in this last step we averaged over directions and noted

in the first region(the “prime” on 6V, signifies thefirst 5 the wave function at the origin is real. For more details

region and on this averaging over directions see Appendix C.
@ qi md|k| K| -
Vy=— s —1dC089 ) W 1+Cnﬁ(1+0039) C. Total contribution
In this section we combine the results of the last two
K| k|2 sections for the low- and high-photon energy contributions,
- dﬁJrO me/ | (103 and perform the required sums and integrations to calculate

the total shift between theS},, and 2P, energy levels of
in the second regiofthe “double prime” onéVy, signifies  hydrogen.
the secondregion. In the second region since the photon Adding Egs.(80) and (109 gives for the total shift
momentum is not necessarily smaller than the electron mass,

we have kept two terms in thé|/m expansion of the inte- oB= 5B, + oBy

grand. In theO(|k|/m) term we have introduced two con- 20 & N

stantsc,, and cq, which denotenumeratorand energyde- =———> (Bn—Bn)ln —‘|<¢N|f)|¢,\,,>|2
nominatorcorrections, respectively. Hereafter we sgt=1 3T Bn = Bn

andcy=1, as given by the theory. Note that in combining 2 2

6V, 6V, and 6Vy3, many cancellations occur; most +a_|n 2 (J' d3p¢N(p)) _ (110
noteworthy, each contribution is individually infrared diver- 67°m” "\

gent k" —0), but in the sum the divergences cancel. These
final equations are easily integrated, and we have For the second term we have
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(J d3p¢N(p))2=((2w)3’2¢N(X=0))2 B(2)=0970429318@) Ryd, (116

(2m)3 ma\® where the figures in parentheses give the number of units of
= (_) 80 (111  estimated error in the last decimal plag¢tuff's estimates
T \n Combining the results,
The (27)3 factor arose because of our normalization choice ~ 3
2a N Mma
[see Eq(41)]. OBy = ——In| = 2a<—)
The first term of Eq(110 is the famous Bethe log and 12 37m B(2,0 n
must be calculated numerically, summing over all bound and
continuum states. Following standard convention we define a? m\| (27)3/ ma)3
an average excitation energ(n,|): T 6 mme Y 7 \n
3
- ) _ a”Ryd m
c ﬁ 3
=3 (Bu—Bo)n| = )2 (12 _ 2o By Me
NE Ryd 6Bop, = 3ame " B(2.1) 2a n
The sum on the left is evaluated by standard techniques 3
Ryd Ryd
[He=p?/(2m)— alr] = 2. (118
37 T\ B2
- ) ~
% (Bor= Bo)l(énlpl o) Note the cancellation of the dependence. Thus, the Lamb
shift is
1 - a R
= §<¢N|[D,Hc]'p+ p-[Hc.pllén) «*Ryd [ mB(2.1)
5BLamb: 5825:”2_ 5sz1/2: 37 In Rydaz 0) (119)

1 ~ ~
=- §<¢N|[p ![p!HC]]|¢N>

=(1047-4) MHz (27%)=1043 MHz (27h),
1 -~ - (120
=- §<¢N|[p' ,—iV(—alr)][on)
1 where we use Ref9] and the average excitation energies of
_ = —i)2V2(— af Egs.(115 and(116). Note that the P4, shift is only about
(nl(=DVH=aln)|¢n) one half of a percent of theS3,, shift.

1
== 5 (=)A= a)(—4m)(n| 8N bn) V. SUMMARY AND DISCUSSION
ma 3 In a light-front Hamiltonian approach, we have shown
:2a<_ S 0. (113 how to do a consistent Lamb shift calculation for the
' n=2, j=1/2 levels of hydrogen over the photon energy
scales

This vanishes fol #0, but the average excitation energy

Rn,l) is definedit is just a way to catalogue the numerical
sum on the right of Eq.112), the quantity we need to kndw
with the sum on the left-hand side set to its valuelfe0. In

summary,ﬂn,l) for all states is defined by

B(n,l)
n( Ryd )2 (T

0 ma’—A—ma—bem,

with the choicesna?<A<ma andma<b<m. In a consis-
tent set of diagrams we showed howand b dependence
3 cancel leaving the dominant part of the Lamb shift, 1043
MHz. For completeness, the=2 spectrum of hydrogen is
shown in Fig. 5.

If we compare the three regions we see the following

B 2 results(we only compare for the &, shift since the P,;,
—E (Bnr = Bn)In|—5-7— Ryd e (114 shift is negligible within our errojs
Without further ado, this sum has been evaluated by Huff ~ o°Ryd x
[8]. His results for then=2 levels are (0<|K[<N\) 6B Lamp™ 37 " 16.64 Ry

3(2,00=16.639 342 0@L) Ryd, (115 ~46 MHz (27h)~4%, (121
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THE HYDROGEN SPECTRUM: n = 2 to add a low-momentum gluon to the systerit.has been
shown that the second order effective interactionsluding

2P3/0 Foo the very_important first qrder ingtgntanepus—gluon potential
. ——— E 53.7 MHz are confining[5], which is promising. Given confinement,
we can lower the effective cutoff below the gluon production
threshold perturbatively and obtain a constituent approxima-
10969.1MHz tion. As in QED, we cannot lower the effective cutoff below
the nonperturbative bound-state energy scale. ThusZeqf
hydrogen in QCD becomes
284/2 F=1 N
T E 177.56 MHz AQCD< A< Egluon~ M gluebal/z- (125)
op 1057.8 MHz _
1/2 F=1 . .

L Foo  59.19 MHz Since A gcp ranges from 200-400 MeVdepending on the
renormalization scheme that is chos@md M g epa ranges
from 1500—-1700 MeV, this constraint can be satisfied and it

fine structure hyperfine structure becomes plausible to attack QCD by the same computational
strategy that was outlined and carried out for the Lamb shift
fs:ls:hfs =10:1:1/10 in QED in this paper.

FIG. 5. Then=2 hydrogen spectrum: fine structure, Lamb shift,
and hyperfine structuré&=L + S+ S, ACKNOWLEDGMENTS
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~ o®Ryd (b
()\s|k|sb)5BLamb~?ln —;— ~667 MHz (27h)
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3Ryd m APPENDIX A: LIGHT-FRONT CONVENTIONS
(b=<|k|<m)éB amp™~ 3. In b ~334 MHz (27h) '
In this appendix we write our light-front conventions for
~32%, (123 the electron, proton, and photon system:
where we used = ma+/a andb=my/a, consistent choices VE=VOxV3  where V* is any four vector.

used throughout this paper. As expected on physical grounds

(see the Introduction photons with momentum . [o o 0 — Zi}
Y = o Y =
K|~ L/ag~ma, (124) 21 0 0 0
couple the strongest to the hydrogen system. As seen above, o 0 o _
the effects of photons of this momentum amounted to about EEYYE S ool

2/3 of the Lamb shift, the dominant part of this experimen-
tally observed shift.

In this paper, the one loop electron self-energy renormal-
ization was performed. The complete one loop renormaliza-
tion was not needed to obtain the dominant part of the Lamb 1,
shift. Our answer, 1043 MHz, turned out to be accurate. +=37Y Y =
However, to obtain more precision, the full one loop renor-
malization must be performed of course. Also, each of our
five diagrams(of Figs. 2 and # were infrared k;hoton—>0)
divergent. However, both the sum of the two low-photon-
energy diagrams and the sum of the three high—photon-(ﬁ _
energy diagrams were infrared finite. er

The state of the art for the bound-state problem in a light-
front Hamiltonian gauge theory in four dimensions has been 0
advanced in this paper. In applying these methods to QCD,
the general computational strategy described in the Introduc- Pe-= i i o i i .

: —[(o'(id'+eA)+ime)ée]

tion does not change. However, gluons carry color charge id

and interact strongly at low energies, thus the answers to the

three questions posed in the initial paragraph of the Introduc-—

tion change drastically. For a constituent picture to emerge 5The energy of this confined low momentum gluon can be inter-
the massless gluons must be confined, so that it costs energyeted as an effective gluon mass if it is convenient.

i=1,2; ¢ are SUY2) Pauli matrices.

1 0
0 0

1
. .0,
;AL Y

0 0
0 1)

pe=Acth Y=oty

; e forelectron, p for proton.

ge| &
o}’ ¥+~ g
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0 APPENDIX B: BLOCH TRANSFORMATION
Yo_=| 1 . o . In this appendix we discuss a derivation of our effective
P T i i—eA)+ . . . .
i(;+[(‘7("9 eA)+imp)ép] Hamiltonian via a Bloch transformatiopd]. We use the
Bloch transformation to separate the low- and high-energy
-2 i scales of the problem and derive an effective Hamiltonian
AT =—J" +2—A' acting in the low-energy space alone with an identical low-

=
(%) energy spectrum to the bare Hamiltonian. In this appendix,
_ t tey. we closely follow Sec. IV of Ref[7], where a discussion,
= - >0. ; X o -
2e(&péptete)i €20 including the original references, and derivation of a general
AT=0 effective Bloch Hamiltonian can be found.
' We start with a bare time-independent Salinger equa-

In momentum space the field operators are expanded 3N

(atx*=0):
) HA ) =E[ ). ®1
Al(x)= >, f(eisas(q)e*‘q'“r H.c), Then projection operators onto the low- and high-energy
s==1Jg spaces, andPy, respectively, are defined,
o . N2+ PL2
£(X)= 2 xsf Vp* (by(p)e~ P X+ di¢p)etiP), P =0 —ZDL—h , (B2)
s=*1 p P
+Pt2 A2+ P2
£p(X)= 2 ﬂxsf JpF(B{(p)e~ P *+Dl(p)eiPX), Py= a( = h)a(h—T), (B3)
with A2+ PL2
P +Py=¢60 T—h , (B4)
_1 .
=—(81+i8,), € .= 81— 89),
1 \/5( ELES \/5( 117192 whered(x) is a step function. Then an effective Hamiltonian
acting in the low-energy space alone with an equivalent low-
1 0 energy spectrum tél, is sought. A and\ are the bare and
X =\ol X141 effective cutoffs respectively with <A.® P=(P*,P") is

the total momentum of the hydrogen state.is the free
Hamiltonian of the hydrogen system of E).
Proceeding, a new operat@ is defined that connects the

d*p P, and Py spaces:
ff(p)=f(277)42w5(p2—m2)6(p°)f(p)
P PulWA)=RP[¥,). (BS)

d*p“dp” a(p")
Wf(p”p*:(pi-brmz)/p*-

Note thats=—s. Also, we are using the shorthand

More explicitly (Z,|/n){n|=

ny(m
The fermion helicity can only take on the valued/2, how- R=> (n|¥ N (¥,|m )% (B6)
ever, we defindi;=s/2; therefore, ‘6” can only take on the nm
values 1. The commutatiortanticommutation (e1ations yich shows tharP, ¥ ,) =0 andRP,[¥,)=0, ete. For
9 y the construction ofR, see Eq(4.4) in Ref.[7].
This leads to the following time-independent Sainger

T AN 34+ 3 o~/ ,
[av(a).ay.(a")]=16m7q" 5%(a—a") oy equation for the effective Hamiltonian:

(%(p)=8*(p")a(p™)), H,|®,)=E|®,). (B7)

{bs(p).bl,(p")}={ds(p).dL(p")} E is the same eigenvalue as in EB1). The statd®, ) is a
_ 3+ o projection onto the low-energy space with the same norm as
16w p &%(p p )535’1 |\I,A> in Eq (Bl)
T ’
{B<(p),BL(p")}={Dy(p),D L (p")} |D,)=VI+RTRP ¥ ,); (B8)

— 3At SBrh_n' ,
16m°p™ 5" (P=P") sy, H, is a Hermitian effective Hamiltonian given by

(P181|p2S2) =16m°p; 6%(p1—Pp2) s, s,

6 2 2 + 2 2 +
ot The shorthands\?+ P2)/P* —\ and A%+ P2)/P"— A are
|P1sy) = bsl(p1)|o>’ etc. often used when it does not lead to confusion.
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to verify the step taken from Eg$108 and (109 in the

1 1
Hy=———=(P + RHH\(P + R)—. paper. It is useful to define another integral:
A 1+RR( LT RDHA(PL )ﬁ—HRR
(B9) (p,—py)?
_ Iz=fd3pf d3p’¢’.§(p’)(z_—,z)2¢N(p). (€2
Note thatH, acts in the low-energy space alone. To summa- P—p
rize, H, of Eq. (B9) is guaranteed to have the same low-
) ) Now note that
energy spectrum as the bare Hamiltonidn ; also, after
diagonalizingH, , the bare stat¢¥ ,) of Eq. (B1), if de-
sired, is obtained through Eq&8) and (B5).’ I=|L+IZ=J d3pf d3p’ o¥(p") dn(p)
DefiningH,=h+wv,, whereh is the free field theoretic
Hamiltonian andy, are the bare interactiofigp third order (2m)% ma)\®
in v, , the effective Hamiltonian is given by =] G0 (C3)
(a|H,|bY=(alh+uv |b)+ EE (alvaliXilvalb) where in this last step we recalled Ef11) and the fact that
» A 29 Ay the wave function at the origin is real.
. For|=0, the wave function satisfies
+M)
Ap ®n,0.dP)= bnodpD- (CH
N 32 (@vali)ifvali){ilvalb) Thus, by symmetry, fot=0,
243 Al
H amal | _1|_(277)3 ma 3 e
+<a|vA|i><i|vA|j><j|vA|b>) 3" 3 () (©
ApiAp;
g _bJ_ which from Eq.(C3), for I =0, gives
1< ((@lvaliXilvale)(clvalb)
—52 A AL 2 2(2m)3(ma\®
Ci biAci === — (Co
o 173 3 n
+<a|vA|C><C|vA||><||UA|b>
ALA For | #0, first note that =0. Thus, forl #0,
== (C7)
+0(2 (v A)Y (ehigh—e1ow) |- (B10) - ‘
we will calculatel , below which then implie$, . Next note
Aia=€;—€,, With h|i)=g;|i). We are usinga),|b), ..., to  thatin position space
denote low-energy statdstates inP,) and|i),|j), ..., to .
denote high-energy statdstates inP,). See the already |=—2 2J' d3x (V*z_) cs
mentioned Ref[7] for a description of an arbitrary ordén m XN (X) [X| Pn(x), (€8
perturbation theony effective Hamiltonian and also for a R
convenient diagrammatic representation of the same. using V2(1/|x|)=—4m83%(x). Thus, for1+#0, in position
space
APPENDIX C: AVERAGING OVER DIRECTIONS 1
In this appendix we calculate the following Coulomb ma- l= _Zﬂzf d* ¢R(x) ng) AN (X). (C9Y

trix element:

Ll Note that there is nfx|—0 ambiguity in this previous equa-
Ii:J dspJ d3p’¢>’,\‘,(p’)(p —P 2) on(p), (C tion because fol# 0, the wave function vanishes at the ori-
/) H

(p—p gin. Carrying out the derivative gives
o [ s x| —13Z7IX?
"This state] ¥, ), will span the whole space, but will correspond l;=—2m" | d°x¢y(X) |x|§ PN (X).
to the respective low-energy eigenvalue. The bare states that corre- (C10

spond to the respective high-energy eigenvalues cannot be obtained
from the effective Hamiltoniai, ; we must of course use the bare This matrix element was performed in the first appendix of
HamiltonianH , to accomplish this task. Bethe and Salpeter’s textbopk0]. We use two of their for-

8h is written in terms of renormalized parameters, and it is con-mulas,(3.26) and (A29).° Equation(C10) integrated gives
venient to define y=v + dv, , wherev is the canonical field theo-
retic interactions written in terms of renormalized parameters and
v, are the counterterms that must be determined through the pro-*Warning to the reader: In this text, they use atomic units
cess of renormalization. See Eq$) and (7) for the canonical #=c=m=a=1, som anda have to be placed back into the for-
Hamiltonian of the hydrogen system. mulas.
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I,=—2m2 r 3 c(l,m), (C11) , _ 1
’ <J=1/2,m,-|V|J=1/2-m,->=mmE | (my[V|m;),
. =
with (15
— 1 ma\ 3
= | (C12 .
I(I+1)(1+1/2)\ n wherel=1. Now note thal, given by Eq.(C14) averaged
over m, vanishes:
| 212421 —1-2m?
c(l,m)=—-1+3 PO (C13 .
Thus, recalling Eq(C7), our result forl #0 is 2|+1m|2_, 1,=0, (C16
|, =272 173 c(l,m). (C14)

) ) ) where we used
Forl=1, |, is not 0, so what is going on? The answer

lies in the fact that we really want to take matrix elements in

the |j,m;) basis not thgm,,m,) basis, and based on rota- 1 , 1

tional invariance, our results should be independentpf mm2—| my=z1(+1), (€17
To proceed, note that the interactions we considered in this !

paper conservethg and our matrix elements were indepen-

dent of mg. Next, note that the result, E§C14), is even an obvious result after the answer is known. This reldtdt
under m——m;. Given this, the Clebsch-Gordan coeffi- (C16)] was used in the step that led from EG08 to Eq.

cients for the P, states imply (109 in the paper, and this appendix is now complete.
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