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Spin factor in the path integral representation for the Dirac propagator in external fields
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We study the problem of the spin factor both it Band 2+1 dimensions, two cases which are essentially
different in this respect. Doing all Grassmann integrations in the corresponding path integral representations for
the Dirac propagator we get representations with a spin factor in an arbitrary external field. Thus, the propa-
gator appears to be presented by means of a bosonic path integral only. Then we use the representations with
a spin factor for calculations of the propagator in some configurations of external fields: namely, in a constant
uniform electromagnetic field and in its combination with a plane wave fj8@8556-282(197)02112-7

PACS numbds): 11.10.Ef

I. INTRODUCTION an arbitrary external field in 81 dimensions can be done,
so that an expression for the SF was derived as a given
Propagators of relativistic particles in external fieldsfunctional of the bosonic trajectory. Having such a represen-
(electromagnetic, non-Abelian, or gravitationabntain im-  tation with the SF, one can use it to calculate the propagator
portant information about the quantum behavior of these parin some particular cases of external fields. This method of
ticles. Moreover, if such propagators are known in an arbi-calculation provides automatically an explicit spinor struc-
trary external field, one can find exact one-particle Greenure of the propagators which can be used for concrete cal-
functions in the corresponding quantum field theory, takingculations in the Furry picturésee, for exampld,10,11).
functional integrals over all external fields. The Dirac propa- In the recent work of13] the propagator of a spinning
gator in an external electromagnetic field is distinguishedbarticle in an external field was presented via a path integral
from that of a scalar particle by a complicated spinor struc4in arbitrary dimensions. It turns out that the problem has
ture. The problem of its path integral representation has atdifferent solutions in even and odd dimensions. In even di-
tracted researchers’ attention for a long time. Thus, Feynmensions the representation is just a generalization of the
man, who first wrote his path integral for the probability one in four dimensions mentioned above. In odd dimensions
amplitude in nonrelativistic quantum mechanji¢$ and then the solution was presented for the first time and differs es-
wrote a path integral for the causal Green function of thesentially from the even-dimensional case. However, the
Klein-Gordon equatior(scalar particle propagatof2], had problem of SF was not discussed there.
also made an attempt to derive a representation for the Dirac In the present paper we continue the consideration of the
propagator via a bosonic path integla). After the introduc-  problems related to the SF conception. Namely, we discuss
tion of the integral over Grassmann variables by Berezin iderivation of the SF both in even and odd dimensions on the
turned out that it is possible to present this propagator viexamples of 3-1 and 2+1 cases and then we use path inte-
both bosonic and Grassmann variables; the latter describgral representations with the SF to calculate the propagators
spinning degrees of freedom. Representations of this kinéh some configurations of external fields. If-3 dimensions
have been discussed in the literature for a long time in difwe present a simple derivation of the SF, avoiding some
ferent context$4]. Nevertheless, attempts to write the Dirac unnecessary steps in the original brief pa@mwhich them-
propagator via only a bosonic path integral continued. Thusselves needed some additional justification. In this way the
Polyakov [6] assumed that the propagator of a free Diracmeaning of the surprising possibility of complete integration
electron inD =3 Euclidean space-time can be presented byver Grassmann variables becomes clear. Then we use the
means of a bosonic path integral similar to the scalar particleepresentation with the SF for calculations of the propagator
case, modified by the so-called spin fact®F). This idea in a constant uniform electromagnetic field and its combina-
was developed if7], e.g., to write the SF for Dirac fermi- tion with a plane wave. Because of the fact that this method
ons, interacting with a non-Abelian gauge field in of calculation provides automatically an explicitmatrix
D-dimensional Euclidean space-time. In those representastructure of the propagator, the representations obtained dif-
tions the SF itself was presented via some additional bosonifer from those found by other methods, for example, differs
path integrals and ity-matrix structure was not defined ex- from the well-known Schwinger formula in a constant uni-
plicitly. Surprisingly, it was shown ifi9] that all Grassmann form electromagnetic field. To compare both representations
integrations in the representation of the Dirac propagator itwe prove in Appendix B some complicated decompositions
of functions on they matrices. In 21 dimensions we
present a derivation of the SF for the first time using the
*On leave from the Institute for Nuclear Research and Nuclearepresentation for the propagator obtaine@lia]. We calcu-
Energy, Sofia, Bulgaria. late then the propagator in these dimensions in a constant
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electromagnetic field by means of the representation with the [y*(id,—gA,)— m]SS(x,y)=— 6*(x—y), (1)
SF. The result is new and cannot be derived from(8el)-
dimensional case by means of a dimensional reduction.

where x=(x*), [v*, y"].=27%*", n*"=diag(1l-1,—1,

Il. SPIN FACTOR IN 3 +1 DIMENSIONS —1), andu,»=0,1,2,3.
A. Integration over Grassmann variables In Ref. [8] the following Lagrangian path integrgl repre-
sentation for the propagator was obtained i 13dimen-

The propagator of a relativistic spinning particle in an
external electromagnetic field ,(x) is the causal Green
function S°(x,y) of the Dirac equation in this field:

sions:

SC S (Xoutrxm) 5

S° exp{ly Mn]f deof dXof M(e) DeLOD)(fX Dxf quef Dm,

1 X2 e
X Dyex if — —— —m?—gx*A, +iegF,,y "
J¢<0>+¢<1>o v p{ ol 2e 2 gxX"A, gF.. "¢
xr N
+i e —my® | x—i "+ ety x |d7+ (1) $"(0) , @
6=0

where  pr=0pk YO="y0915258=,0,102,3=1,5 4™ "], =27 m,n=0,1,2,3,5 andy™"=diag(1-1,—1,—1,
—1); 6" are auxiliary Grassmann(odd variables, anticommuting by definition with they matrices;
x#(7), e(7), and m¢(7) are bosonic trajectories of integratiaff}(7), x(7), and m,(7) are odd trajectories of integration;
the boundary conditions

X(0)=Xin, X(1)=Xou, €(0)=¢ey, yN(0)+y"(1)=6", x(0)=xo
take place; the measuh(e) and Dy have the form
1.
f Dz/rexp( f l/fnl//ndT]
#(0)+¢(1)=0 0

andd, /96" stands for the left derivatives. The propaga@rcan be expressd®] only through a bosonic path integral over
the coordinatex. The Grassmann integrations ougrcan be performed even without changiggor velocities like in[9].
Instead, after integration over,,
conditions[ 8]

-1

M(e)= poexp{if epsz] Dy=Dy , ©)

Yr=3(&"+ 0", 4
Then introducing odd sourcegs,(7) for the new variableg"(7), we get
~ 1 ([~ d,) (> Xout X xxt e : ge
c_ _ n_’_ _ [l V.22 " _ 2V hu v
S 2exp(|y Mn] fo deOM(eo)Lin Dxexp{ i TS + 5 m<+gXx *AM} 7 O x F,,x 0
X, [ )
X —’L*(—/+0")—m*(—/+05 R[x,p, 0] , 6)
€ |\ dp, ops p=0,=0
where
1
R[X,p,0]= Df exp[_gn*gn_ %gﬂ* gV_ _eoaﬂ*f *§V+Pn*§n] , (6)
£0)+£(1)=0 4
1 ) -1
D§=D§U D& eXp[—én*§“] )
£0)+£(1)=0 4

Here condensed notations are used in whiich is understood as a matrix with continuous indices,

m,, € andy one can go back to Grassmann variables obeying antiperiodic boundary
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Ful 7)) =F ,,(X(7)8(7—7") , ®

and integration over is denoted by a star, e.g.,

. 1 .
gn*gn: fo gn(T)gn(T)dT .

Sometimes discrete indices will be also omitted. In this case all tensors of second rank have to be understood as matrices with
lines marked by the first contravariant indices of the tensors and with columns marked by the second covariant indices of the
tensors.

The Grassmann Gaussian path integral in By .can be evaluated straightforwardly4] to be

i ?@»Pﬂ)*uﬂy(gw

9 .
R[x,p,ﬁ]zexw’—eoTrJ dg’R(g’)*]-'] exp[ p’+ ?PA*G)A)—pS*p#, 9
0

where
uﬂv(g):nuvé,(’r_ T,)_geO‘FMV(T!T,) ' (10)

andR(g) is the inverse té4(g), considered as an operator acting in the space of the antiperiodic functions,

d
d—TRW(QIT, )= g&F s (X(MR\(Gl7,7') = 7,,0(7—7'),
R,w(g|1,7')= —RMV(9|O,T) , V7e(0,1. (11
Substituting Eq(9) into Eq. (5) and performing then the functional differentiations with respegi,tp we get

Se— _ :Lexp{iwn &/]fwd M(e )fXOUthexp{— | ] x
2 Y 90" 0 € 0 in 2

XHok X

y
+egm+gxtA,

8 5
G_O*K”Va —mé

2,2
g-e € [~
X 1—%Baﬁeaeﬁ+ =B, ;B**#6°91 263 ex ——Of dg'TrR(g")*F}| (12)
4 16 2J)o o
where the following notation is used:
B,uV: FM)\*K)\V’ B*MV:%GQ'BMVBaﬁ’ K;w: WﬁgeoR,u\(g)*wa (13

and e#”*# is Levi-Civita symbol normalized by?1%*=1.
Differentiation with respect t@" in Eq. (12) replaces the products of the variabgsby the corresponding antisymme-

trized products of the matricés". Finally, passing to the propagatsf and using the identities

,y[%,yﬂ),VJ - yky[uyV] — 2,7>\[M,),V], »y[:“l. .. —yMs] =0, o*'=i ),[u,yV], (14)

where antisymmetrization over the corresponding sets of indices is denoted by square brackets, one gets
i (= Xout .
S tourkn) =5 | deo | “Dx Mieo)@x,e5] exlilx.eal) 15
Xin

wherel[X,eq] is the action of a relativistic spinless patrticle,

| - fl . XA(x) | d 16
[X,e0]=— . 2_eo+fm +gXA(X) | d7, (16)
and®[ x,eq] is the SF,
L ig : g%} s
D[x, €o]=|m+(2€9) X“*K ) (27"~ gegB ")y, — Z(m%ﬂLX“*Kﬂwh)BKVUWWL ml—BB’;BB“By

xexp[—%f:dg'ﬂn(g')*f] . 17)
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B. Propagator in a constant uniform electromagnetic field

In the case of a constant uniform fielé (,= cons}, which we are going to discuss in this section, the functionals
R, K, andB do not depend on the trajectoxyand can be calculated straightforwardly:

expleogF(7—7")} ,

R(Qg)= 1(7]8(7‘ T)—tanh&

F 2 F
K=( n—tanh%) explgeF7r), B= ﬁtanh& (18

Using them in Eq(17) and integrating over whenever possible, we obtain the SF in the constant uniform field:

v i F 1 F F\# 1/ (1.
d[x, eo]=(detcosl=gr%) [ {1—5 tanh&) a’”+4 tanh&) tanh&) y® +e— f xexp(geOFr)dr)
Mmv mv 0 0
F F i F
X n—tanh%)Hn—tanhg%)y—zy tanhg%) ot? ] . (29
v

We can see that in the field under consideration the SF i®ne can see that the path integral in E2B) is, in fact, the
linear in the trajectoryx*(7). That facilitates the bosonic kernel of the Klein-Gordon propagator in the proper-time
integration in expressiofi5). representation. This path integral can be presented as
In spite of the fact that the SF is a gauge-invariant object,
the total propagator is not. It is clear from expressiab) 0 i (1 5 o )
where one needs to choose a particular gauge for the poten- fo DYJ Dpex Ejo (P°—y“—geyFy)dr
tials A, . Namely, we are going to use the potentials
A, ,=—3F, X" (20

%

Det(n,uv eOF,uva ):|_1/2
Det(7,,5%)

for the constant uniform fiel&,, = const. Thus, one can see 0 i1 _

that the path integrdll5) is quasi Gaussian in the case under xf Dyf Dpexp{ _f (pz—yz)dr] .
consideration. Let us make there the shift:y+x,, with 0 2Jo

X¢ @ solution of the classical equations of motion,

Canceling the factor Det{ 7,,,) in the ratio of the determi-

ol . ) nants one obtains
§=0@xﬂ—geoFMx”=0 , (21
Det (7,07~ 9eoF ,9;) _ Det(— 8,2 +geF”,d,)
subjected to the boundary conditions,(0)=Xx;,, and Det(mwﬁz) Det(— 8%
Xe(1)=Xou- Then the new trajectories of integration, (24)

obey zero boundary conditiong0)=y(1)=0. Because of

the quadratic structure of the actibfx,ep] and the linearity One can also make the replacement
of the SF inx, one can make the following substitutions in

the path integral: g2e?

e
— 172+ gegF d,— — 1%+ T"F2 , (25)
€o
Ily+Xe, €o]—=1[Xal, €] +I[y, €]+ m?
wherel stands for the unit 4 4 matrix, in the right-hand side
(RHS) of Eq. (24), because the spectra of both operators

q)[y—"_xcll eO]_>(I)[XCI! eO]:\P(XOUtv Xin eO)- (22) coincide. |ndeed,

Doing also a convenient replacement of variables

g€ g€
p—p/eo, y—yi/eo, we get —|a§+ge0FaT:ex;1(7F~r)(—|33+T°F2)
) i1[Xc, €ol
ZJ 7 W (Xout, Xin, €p) €77l %0 xex;{—?FT> , (26)
0 i1 . .
x fo DYJ DDEXP[EL (p*—y*—geyFy)dr| . and zero boundary conditions are invariant under the trans-

formation y—exp@eF#2)y. Then, using Eq(25) and the
(23)  value of the free path integr8],



1

8w

Dyf Dpexp{ fdr(p -y?) ]

related, in fact, to the definition of the measure, we obtain

el Xl €l

1 (=dey
SCZWJ — ¥V (Xouts Xin» €0) €
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F -1/2
- S|n||_ge0
:3277_2 0 deO detg—F \I,(Xoutu Xin s eO)

ig [ ig
X exﬁ{ ?XoutFXin_ Eeomz_ Z (Xout_ Xin)

0 eo
geF
Det(—la2+—gzegF2> h XFCO&( 2 )(X"“t_xi”))' %2
T4
Det(—14) @) where
The ratio of the determinants can be written now as gey
2 2 \I’(Xoutyxmaeo) m+ - (Xout Xln)F(COth_ 1) }
e
Det(—la2+ u|:2) ,
T 4 q geOF |
Det(—12) etcosh>—11-3
22 gegF 1
=expTr In(—laf+%F2)—ln(—la§) x| tanh——| o+ ge“’“‘”
v
2 2,2 -1
e g A€
:expT{?onf dx A(—|a§+T°F2> } tanhgi tanhgi) ¥®| . (33
0
af nv

2.2

g N |\

— 2 2

—exptr2 fd)\)\g,( I+—4 F) }
(28)

The trace in the infinite-dimensional space in the last line of
Eq. (28) is taken and only one in the four-dimensional space
remains. Using the formula

> (2
n=1

n+ Kz)_l:iCOthK— !
2K 2k2"

which is also valid ifk is an arbitrary 44 matrix, and
integrating in Eq.(28), we find

2e2 E
Det( —15%+ %FZ) smh%
= 2
Det(—14%) det geoF (29
2
Thus,
e gF 1/2
1 . sth
St= 302 f dey det—gF
><\I,(XOU'[! Xin1 eO)e”[XCl'eo] ’ (30)

where the function¥ (Xq., Xin, €p) iS the SF on the classi-
cal trajectoryx.,. The latter can be easily found solving Eg.
(2D):

Xo=[exp(geF) — 7]~ *[exp(g€F ) (Xou— Xin)
+exp(g€F ) Xin— Xout -
Substituting Eq(31) into Egs.(22) and(30), we obtain

31)

Doing the differentiation with respect
formula (34) into a form which is convenient for the com-
parison with our representatid80):

Now we are going to compare the representati@® with
the Schwinger formul415], which has been derived in the

same case of a constant field by means of the proper-time
method. The Schwinger representation has the form

S (Xout» Xin) = y"(' —gA,(Xoy) | +M
out: Ain 372 axﬂm ou
F —-1/2
sinh> -
i
X exp{ E 9XoutXin— eOmz — (Xout™ Xin)
E
><g7coth£&(xOut Xin) — g§0F o iale }

(34

)

ot We transform

= —-1/2
Sinh> -

deo detg—F

32 \I}S(Xoutvxin 1e0)

g i g
X exp[ | ExoutFXin_ zeomz_ | Z(Xout_ Xin)

X Fcotl'( g) (Xour— xm)} , (35

where the functionV g is given by
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g gegF wherea,(¢) is a vector-valued function of a real variable
W s(Xout:Xin 1€0) =| M+ 5 (Xou— Xin) F| cOth———1 ]y ¢ andn is a normalized isotropic vectar*= (1, n),
e 2_ 2_
xexp( —i %gFMO"“’) . (36) n“=0, n°=1, (39

: d the field
Thus one need only compare the functiohsand¥s. They produces the fie

coincide, since the following formula takes platse Ap-

com
pendix B, wherew,,, is an arbitrary antisymmetric tensor: FEorinx =F ,,+f,,(nx), (40

i A w [ w , which is a superposition of the constant fidig, and the
exp{ — Zwﬂ,,o" )— detcos% 1- > tanhi ot plane-wave field
o
1 0] w = ' _ ’
4= gaBuv tanhi tanhe| 45 f . (nx)=n,a’,(nx)—n,a’,(nx).
8 2B 2 .
(37) Without loss of generality we may chooag to be transver-
sal:
In fact, the latter formula presents a linear decomposition of
a finite Lorentz transformation in the independenimatrix n“a,(¢)=0. (41)

structures.

The dependence of the SB[x,ey] on the trajectory
x*(7) is twofold. In addition to the direct dependenicee
Eq. (17)], there is an indirect one through the external field.

C. Propagator in a constant uniform field
and a plane wave field

The four-potential In the case under consideration the field depends gm)
comb L only through the scalar combinatiomx(7). Replacing the
A, == 2F X +ag(nx), (38)  latter by an auxiliary scalar trajectory(r) one obtains
- L - ig L — g2es_
BLx,b,60]=| M (2€0) 4K 0 (27"~ 9B ) ye— 5 (Mo + X4 1y PV By 0 + Mg B o B* 92
€ (9 ~
Xexp[—?f dg’TrR(g’)*fCOmb(qS)], (42)
0

whereff?ymwr— ) =[F ot fuld(7)]8(7,7') and f D DA (S-mI_ ]

— Fcomb( QZS)*K)\
_ _ into the RHS of Eq(15) and using Eq(47) one transforms
K= nM,,+geoRMV(g)*F°°mb( ?), (43)  the path integraf15) into a quasi-Gaussian one of the simple
form
J ~
75~ —9eF ™ () [R(al7,7') = 78(7,7), (44) i (= (e
S*(Xout:Xin) = EJ' deof D¢ DA el)\*¢f Dx M(eg)
0 Xin
R(g|1,1)=—-R(g|0,7), Vre(0,). (45) _ _
X B[, b,e0]expliT[X, ¢, €] —iA*(nX)}.
Obviously, 49
ROl sr=nxin=RQ:  Klyi=mn=K, The action functional
§|¢(7)=nx(r): B, (46) 1. e g
TIx, ¢,e0]= — x*x——m — Zx* Fax—ga( )X
and, therefore, [X, ¢.€0] 2 2 ga(¢)
(49
®[x,nx,e0] = P[X,€]. (47)

[whereF(r,7')=F&(7—7')] contains only linear and bilin-
Inserting the integral of & function, ear terms irx (and the bilinear part does not depend on the
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wave potentiala,). The SFEI3[x,¢,e0] is linear inx and

7707

Namely, let us choose the wave vectoto coincide with

(following the same way of reasoning as in the case of & real eigenvector of the matrk (see Appendix A

constant field one finds

= —-1/2
1 = sinh(‘%
— iIN*(p—nXq)
se Ezfo deo detg—F J D¢ D\e q
X B[x, b, eolel Xa bl (50)
wherex, is the solution to the equation
Xq—g€FXq=€oAN—eoga’ (¢) ¢ , (51)
obeying the boundary conditions
Xq(o):Xina Xq(l)zxout- (52

Introducing an appropriate Green functiéi+ G(r,7') for
the second-order operator,

5? ]
"o 9&F - |G(r,T)=98(r=7), (53
g(0,1)=6(1,1)=G(7,00=G(7,1)=0, Vre(0,1),
(54)
one presents this solution in the form
Xq=Xat €G*[A\N—ga' () $]. (55)

The value of the action functional[ x, ¢,e,] on the solution
Xq Is given by

TIXq,b,80]= 1 [Xa,0]—ga( p)*Xq

- Dgal(¢)-AnlxGr[ga’(¢)$-An]

F_ n"=—¢&n n=0, n?=1.

nv

In this casenxy=nXy, and, moreover, the action functional
(49) is “on-shell” invariant with respect to longitudinal
shifts

Xq(T)—=Xg(7)+a(m)n, a(0)=a(1)=0, (59

by virtue of Eq.(58) and the transversalit{4l) of the wave
potentiala,, . ThenT[xq ,¢,ey] does not depend on,

T[xq, ¢.0]=T[%y, b0, (60)
where
Xy =X~ g€G*[a’ (¢) ¢] (61)
is a solution to the equation
Xu—geoF Xy=—geod' (4) b , (62)

obeying the boundary condition&2). However, the SF
ED[Xq ,&,€p] does not show this invariance and, therefore, is
\ dependent. Presenting as a sumx,=X;+eygn*\, and
substituting it into the expansion of the SF in the antisym-
metrized products of matrices,

D[x,¢,€0]=| &g Xx*+K,,,

v 9€o~ VL@
Y+ Bap?"y vﬁ])

+m

geos .
1+ TB"BY[ ’yB]

g’e3_
+ yBaﬁBMV’y[a’yﬁ')’M'yﬂ)}A[(ll)!eo]a
+AN*(Xq—Xa), (56)
(63)
where
Thxel= - e 2me 8 o Al .e0]=exp — @fgdg'Trmg')*fwmw) :
I[X,eo]——z—eo *X— 5 m —Ex*}'*x (57 2 Jo
(64)
is the action in a uniform constant fiekl ]
The functional integral oven in Eq. (48) is a quasi- We obtain
Gaussian one of a simple forftet us recall thak, is linear
in \; see Eq(55)] and the integration can be done explicitly. E)[Xq:¢ae0]:(’§[xtr:¢ae0]+ A*I[ .0l (65)

The result is a formula for the propagator in which the only
functional integration is over the scalar trajectogy(r).
However, the latter integration is hardly to be performed

- g€y~
— nKo(r) v V.
explicitly in the general casffor arbitrarya,,(#)]. Never- I[$,80]=n"G,xKh| y"+ 4 Bap?"y VB])A[‘ﬁ*eO]'

theless, there exists a specific combina{ibhfor which the (66)
integration can be done and explicit formulas for the propa-

gator to be derived. The latter are comparable with the cor- 5

responding Schwinger-type formulgkd], which are also ex- (r) N 2 /

plicit in this case. grn) z?r’g( n): 67)
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It turns out thatl[ ¢»,ey] does not depend ogh. First, ex-

pandingR in powers off and using Eqs(58) and(41) one
derives thatA[ ¢,ey] coincides with the expression

_ € (9 _
A(e0)=exp[?f0 dg’TrR(g)*ﬁ.

S
n, K% =

(68)

Second;
n,K%:=3%(nKn)n,. (69

Indeed, using the definition@6) one finds thai satisfies
the equation

J —
—-—9&[F+((t)]K(1)=0 (70
and the boundary conditions
K(0)+K(1)= (71)

Multiplying Eqg. (70) by n and using the properti€$8) and
(41) we find

(%—geoé’) nK=0, nK(0)+nK(1)=2n. (72

At the same timenK obeys Eq.(72). Therefore,nK and

nK coincide. Then using Eq(41) and the properties of
n,n (see Appendix A one gets Eq(69). Third, using the
same properties of the electromagnetic field one can derive -

’B’aB:B—aB‘Fnab'B_banﬁ, (73)

whereb,, depends onrp andB is given by Eq.(18). Substi-
tuting Eq.(73) into Eq. (66) and using Eq(58) one finds

O e e I e L B
I[¢,eo]—Z(ng n)x(nKn)/n,y +Tnv(Baﬁ+nabﬁ

—bang) Yy ¥y | Aley),

and the contribution of theb)-dependent terms vanishes by

virtue of the complete antisymmetry of”y*y#l. Therefore

I[ #,e0] can be replaced by

l(eo)=n“9ir,i*K"(7 + =4 Bag?"y*y ) (€o).
(74

Substituting Eq.(74) into Eqg. (65 and then into Eq(50),
using Eq.(60) and

)\(T)ei)\*qﬁ: —j 6¢( 7_) iNx¢p

YIn this section we denote bﬁ(g), K, and B the quantities
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and integrating by parts we find

F —-1/2
smh%

1
S= 39 fdeo det———

= f D¢ D)\ei)\*(d)fnxd)
g

~ o~ —
X ¢[Xtr,¢,eo]—<5—¢| [Xn,qﬁ,eo])* | (&)

X exp{iT [ Xy, b,eol}. (79

Inserting the derivative

S~ .
5_¢| [Xtrl¢1e0]: _a,(¢)xtrr

and using Eqgs(73) and(66) we transform Eq(75) into the
form

F —-1/2
Sinh> >~

1
S= 39,2 Jdeo det—

iIN*(p—nXg)
oF J D¢ DA€

Xa’)[;vgﬁveozlexp{i’r[xtr1¢160]}7 (76)

where
Xt=xt+genta’ ()X .
One can straightforwardly check thatsatisfies the equation

(77

and the boundary condition®2). The trajectoryx,, in the
actionT can be replaced by due to the invariance of the

actionT[x, ¢,e,] under the longitudinal shifté9). The in-
tegration over\ and ¢ is straightforward now. One needs

only to take into account th5t| $=nxy=Xcomb is the solution

[subjected to the boundary conditiof®®) ] to the equation of
motion

X~ geolF ,,+n,al()]X"=—gesal(#) ¢

;(étomb_ g eO[ F+ f(nxcomb)]'uv)-(gomb: 0. (78)
Indeed, Eq(77) turns out to be equivalent to E(8) when
d=nxy and the relatiomx.,m=NX is taken into account.
Therefore,

('I;[;(‘v(ﬁveO“(b:nXd: q)[xcombveO]!

T[;:¢ve0]|dz:nxa: I[Xcomb: €0l (79
Finally, we get
F -1/2
sinh -~
X O Xcomb, €] €' [Xeomd-€ol, (80)

given by Eq.(18), i.e., corresponding to the case of a constant

uniform field F.

where
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Ly ge where
D[ Xcombs€0]=| €9 Xgomb*K,u,v Y+ = 4 Baﬁ'y[ Y ')’B]) _
igeg (1
g6, A[nxd,eo]:Texp[—%f dr{F+f(nxgy(7))],,0""
0
+m| 1+ TBaﬂy[a'yﬁ] (87)
9%e} — ige
+ 35 BapBu VY vy | |Aeo). (8D =exp — 0"
The vectorxgoms, Satisfies Eq(78) and can be presented as 'geof A7 9%F(1-2912¢ (nx (7))
: 1 .
XCOml{T):TAeXF{_geOf Fcomt(nxcl(T))dT]X(l)! Xe*geoF(I*ZT)/Z]’uVO.MV, (88)

®2 and T denotes chronological product. Taking the derivative
where T, denotes the antichronological product. On thein Eq. (86) one can use the relation
other hand, the tensor trajectoly(7) satisfies Eq.(70)
where one has to replagg by nx, . Therefore

IxH |[Xcombveo] p,u(l)! (89)
1 out
K(T)=TAexpr —geOJ' Fcomb(nxd)dr] K(1), (83
T where
e (1) i I[X, 0]
. . =——11X,€p]|x=x
Xeomt K = Xcomg DIK(1). (84) R

Substituting Eq(84) into Eg. (81) and taking into account s the on-shell momentum, in particular,
the relationB,zB,,,;= B[,sB ., we find

P(1) =€y Xcomd 1) + 9EAC™ NXoyy). (90)

q)[xcombieo] e0 Xcomb(l)K;w(l)

On the other hand,

., 9€ b
x|y +TBQB7[ Yy ]) Y A[NXg 8] =0. 1)
out
+mi 1+ %Bam ¥? Indeed, one gets from E¢31), with the aid of Eq.(58),
o] e 9€olT_
B B A n
+ 37 BHBBM,,y YR yFyY ) A(ep). é’Xgut[nXC'( T)]= Wnﬂy . (92

(859 Then, using the representatit88) for A[nx,,eq], Eqs.(39)
and (41), and the properties of the matrices, one easily
derives Eq.(91). Differentiating in Eq.(86), one obtains,
with the aid of Eqs(88), (89), and(91),

A representation for the propagator in this specific field
combination characterized by the relatigs8)] was given in
terms of the proper-time integral only {12,10. Another

more complicated representation has been obtained before in F\ 12

[5]. In our notation the representatiph2,10 can be written L smh&

as
SC(Xout,Xm) J deo detg—F

. 1
S (Xou Xin) = [ ‘yﬂ( ! &Xgut_ gA'f‘omb(nXO“t) m 3272 X \If%omb(xout,xin ,80) €' [Xcombol | (93)
F —-1/2 h
sin eo where
f deo deTF W L™ Xout: Xin €0) =[ €5 Kegrif 1) ¥, MIALNXg ,€5].
x !l Xeomb: €I A nxy , €], (86)  Using the identitiegB8) and (B9) one can verify that

\I,%omb(xoutvxin aeo) = q)[xcomba eO]-
2The operatorT xexp{—gey/*F°™{nx.)d 7} preserves the scalar
product due to the antisymmetry of the stress tensor. Thus the representatiori80) and (86) are equivalent.
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ll. SPIN FACTOR IN 2 +1 DIMENSIONS [v*,9"].=27*", p*’=diag(l~1,—1), and u,»=0,1,2.

A. Derivation of the spin factor In this particular case they obey the relations

In 2+1 dimensions the equation for the Dirac propagator y . P
has the form a Propag [y*,7"]=—2i "™y, Yi=5e" “Yoo. (99

{y"id,—gA,(X)]-miS(x,y)=—38%x~y), (94 In Ref. [13] a path integral representation for the Dirac
propagator was obtained in arbitrary odd dimensions. In par-
wherey matrices in 2-1 dimensions can be taken, for ex- ticular, in the case under consideration this representation
ample, in the form y°=¢3, y'=ic? y?’=-ic!, reads

SC:%eXp( ae”” deof d)(of M(e)DeLODXf Dxf Dwf vaw)wf(l

w2

_Jl X e At iodE. g
xXexp i . _2_e_§m —gxM +iegk,, ¢
2i : o .
+x ;eﬂmxl‘lpr"—m)—lzpﬂwV+ me+vy|dr+ %(1):,0“(0)] , (96)
=0

where x(7), p(7), e(7), and w(7) are even and i 1 . N
W(1), x1(7), x2(7), vi(7), and v,(7) are odd trajecto- +2—eoj0d7 X (T)K (1)K 5(7) y*»P
ries, obeying the boundary conditions(0)=x;,, x(1)

=Xou, ©(0)=€o, x(0)=xo, and/(0)+¢(1)=0, and the & (9, ,
notation used is Xexp — Efo dg'TrR(g")*xF (98)
X=X1X2» VX=vixit+vaxz, dx=dx; dxz, is the SF and I[x,e0], R(g)=R(g|r,"), and K=
K(7), B, F are defined by Eqg16), (13), and(8), respec-
Dx=Dyx; Dx,, Dwv=Dv; Dv,. tively.

Because of the relatior(85), one can also present the SF

The measurd/ (e) is defined by Eq(3) in the corresponding in the form
dimensions and

_i%m’Lg)'(*r( ))u
X% 4 4 g) U,
’ Lm)wu)owem[ fo ud dT]

1 . € (9
+ —(x*T), |y ex ——f dg'TrR(g')xF},
. . . 2eg 2Jo
Integrating over the Grassmann variables in the same way as

in the case of 31 dimensions we get (99

d[Xx,e0]=

i
m-+ —Xxr +
-1 € (9)

Dy=D

where
l’v(g I»L(g| V)\Rv)\(gh-r/r)! ulL:eMaBBdﬁn

T,f= E#V}\GPQBKVQK)\[;.

SC(XoutaXin)

N Xout )
= Efo deyM(ep) fxm DX ®[x,eq]exgfil [X,e0]},

where B. Dirac propagator in a constant uniform field
) in 2+1 dimensions
D[x,e0]=| | m+ '_Jld,, E#w\)-(#«( TR (g|, 7)) In the case of a constant uniform fiefd,,= const one
€oJo can calculate the propagator explicitly integrating over the
bosonic trajectories. Following the same method as in Sec. Il
x| 1+ ?Bam“yﬁ) and taking into account that, irt2L dimensions,

i 0 ' ei wl4
=M(e Dx ex ——X*X ,
2M(€) fo p{ 2e, ] 2(2meg)¥
3We will refer to some formulas from the previous sections with-
out specifying that the number of dimensions is 2now. one gets for the propagat®7),
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. geOF —-1/2 J _1,:
sinh—— — 1 [Xci€0]= — €5 (X)) (1) = GAL(Xou) -

iwl4 o IxH

SC: 372‘[ deo deE out

2(4m)*<Jo gF .
Then one obtains

x el D[ x, €], (100 .
SC B e| wl4 s deo ge
wherexy, R(g), K,B are given by Eqgs(31) and(18). (Xout: Xin) = 42m)%)o Jog . 9@
The antisymmetric matrices,,, can be classified by the sth
value of the invarianty (see Appendix A In the case _
©>>0 one can find a Lorentz frame in which the magnetic X W (Xout:Xin ,€0) €' Xei -l (103
field vanishes. On the other han@?<0 implies that the
electric field vanishes in an appropriate Lorentz frame. Thavhere
casep?=0, F#0 corresponds to nonvanishing electric and 1 NN
magnetic fields of “equal magnitude(and this property is W's(Xout:Xin ,€0) =[ €9 ", Xci(1) + m]ed0ras :
Lorentz invariant We will consider the cas@?+0. The (104
2_ . . . .
Cas%"’ =0 can be easily treated, e.g., taking the limit Comparing Egs(101) and (103 using the identitiegsee
L . . . Appendix B
The integration overr in expression98) for ®[x.,eq]
can be done. Indeed, from EJ81) and(18) one derives
exp{%FaﬁyO‘yﬂ] =1+ ?Baﬁyayﬁ COShw%,
Xo(7)=e9%F (" Dx (1),  K(7)=e9%F(7" 1K (1), (105
9% T— a T— 9% a
Riun(9l7,7)=— T(ege"':( V) (e9%0F () PB4, VueXp{TFaBV VB]
where the operator efgey)F(7—1)} respects the scalar prod- _ KY (1) K (1) v@yB— %B”‘
uct and detexjge,F(7—1)}=1. Finally, calculating the deter- 2w o(1) K1) ¥y 2
minants involved by means of E¢A7), one gets
9€ w. B g€e
. x| 1+ TBaﬁy vy coshz—, (106
=1 I 3de_eo i el ol d[x 6], , . o
16(2m)°Jo \Je, .  9€¢ one can verify that both representations coincide.
sth
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APPENDIX A: SOME PROPERTIES
OF ANTISYMMETRIC TENSORS
x| 1+ %Baﬁy“yﬁ) ]coshgeﬂ. (101
4 2 1. Antisymmetric tensors in 3+1 dimensions

he The antisymmetric matri¥ ,, has, in the case of nonva-

On the other hand, one can obtain a representation for the '™~ © . ; S
nishing invariants, four isotropic eigenvectors, namely,

propagator using the Schwinger proper-time methed do

not present the calculations hgr8uch a representation has Fn'=—¢n,, FWW=5n_M, F,,m'=iHm,,

the form
F,,m’'=—iHm,, (A1)
SC(Xouthin):[')"u(i m _gAp,(Xout) +m .
MXout where& and’H are real numbers. The eigenvectors are sup-
_ posed to be normalized,
] f e ge
16(27)° AN = —mfm =
627)°)o \/e_osinlgezoso nn,=—m‘m,=2, (A2)
while all the other scalar products vanish. The makigan
X il DXel €0l g9€oF ap " Y14, (102  be presented in the form

To compare both representations we take the derivative in

o — iH — _
Eg. (102 and use Fur=5 (NN, =n,n,) + 5=(m,m,=m,m,), (A3)

w
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and, thereforeF? has the spectral decomposition Aw Aw
- § tr wtanh— tanh—
F2=E2P.— H?P,,, (A4)
where P, and P, are orthogonal projection operators onto +20 n_tanl«?)\_w v
some two-dimensional subspaces, 2 v

2 _ _p.p.— _ 1
= = = +P,=
Pg Pg, PH PH’ PgPH PHPg 0, Pg PH 7, + gealgﬁywaﬁ

Aw
tanh7) yS]. (B4)
trPg=trP,=2. (A5) mr

2. Antisymmetric tensors in 2+1 dimensions On the other hand, with the aid of the identities

An antisymmetric matrix has eigenvalues ¢, — o, o Patt= gt gfl— g pPr—i(n ol + nfr o
wheré ¢?>=tr F? is the invariant of the tensor. In the case
of nonvanishinge there exist three eigenvectors Bf and
F2 is proportional to a projection operatBronto some two-
dimensional subspace:

_ 7701110.[3/.L_ ﬂﬁMUaV)— e_aﬁ,uv,yS,
A T (B85)

F2— 0P P?—p. t4P—2, PF—FP—=F. (A6) and using the antisymmetry propewy,,= — ,,, one finds

i
Then, for an even functioh, — Zwa’“’M()\w)
h(F)=h(0)(1-P)+h(¢)P, (A7) .
Ao\ Y1 No\ i
while, for an odd one, =| detcoshy-| | 71| wtanh-| = 7€
h(F)=—h(e) (A8) Ao Ao B L ap
® ?)- X tanh? tanh7 €apr 00— Z0ap0
Kp mv
The case of vanishing (andF+#0) corresponds to a nilpo- 1 o
tent matrix,F3=0. +§e“'8’“’waﬁ tanh?) 5 (B6)
y7a%
APPENDIX B: SOME IDENTITIES INVOLVING Then, using the identity
» MATRICES
: . € eP1B2B3P4
1. y-matrix structure of Lorentz transformation ajayagay
in the spinor representation
Let us denote by (w) the expression in the RHS of Eq. = (-1 5‘;(1a )af,fa 15, )5§‘(‘a .
(37). We are going to check that the matrix-valued function P ! 2 8 4
M (N w) of a real parametex satisfies the differential equa-
tion we get
I Mo = Lo, ommOn B1 - 0T M)
d the initial conditi 1’2 1
and the initial condition (detcosh— {Ztr wtanh—
M(0)=1. (B2)
ANw
The latter is trivial, and so let us concentrate on the proof of — § tr wtanh? tanh?+2w n— tanf‘? )
Eq. (B1). s
Using the identity 1 o
X gtV + — e*Buvy, B tanh—) Y. (B7)
4e“PHY(ST) opT 1= €PH'T 15T, 1S, (B3) 8 v
whereS is an arbitrary tensor andl is antisymmetric, one The RHS's of Egs.(B4) and (B7) coincide. Therefore
can put the derivatived/d\) M (A w) into the form M (N w) obeys Eq(B1). This completes the proof of formula
(37).
d w\?(1 \w
—M(Aw)=| detcosh— —tr| wtanh— . _ _
di 2 4 2 2. Decompositions of some functions oty matrices

Let us consider th& exponeni87) whereF is a uniform
“We recall that, in accordance with our notation, constant fieldf is a plane-wave field, and E456) takes
tr F2=(F?)~ =F~F",. place. We are going to prove the identities



A[NXg,€0]=

9&
1+ TBaB'y P!
g%e?__

TS

°B,;B* 5)A<eo> (88)

Y*A[NX 8] =KA(D)| y"+

g€ —
TBaﬁy[W“vB])A(eo),
(B9)

whereB andK are defined by Eq13) for the combination

as it was described whil@, corresponding to the case of
constant uniform field, is given by E¢18), and

_ € (9 _
A(e0)=exW’ - Efo dg’TrR(g’)*f}

H
= cosh&cos%

Presenting thel' exponent in the form(88) and using Eq.
(37) one obtains

2,2
geO a g eO— D*a 5
7 Bap? YA+ =B gB* Py )

X A(€g)+ Qup ¥, (B10)

where

98— — 1
Q="3"A(e0)(B—B)+5C, (B11)

1
ngeofo dr e9%F(1-202¢ (ny (7))e~ 9%F(1-2772

(B12)

In order to find a convenient representation Bowe present

K, which is a solution, obeying Eq71), to Eq. (70), for

¢=nXy, in the form
K(r)=

2V(D)[p+V(1)] 4, (B13)

where

V(r)=T exp[ 96 f OTFcomb(nxd(T’))d T'} (B14)

is the solution to the equation

d

2.~ 9&F —g&f(nxy(7) V(n)=0.  (B1Y

Then, using the defining equatidd3) for B (in which F
must be understood &%°™) and Eqs(B13) and(B14), one
derives

(B16)

2 —2[p+V(1)]?t
geo{n 7+ V( I

Correspondingly, from Eq(18) we obtain
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= 2 -1 Fr
:E{ﬂ_z[ﬂ"‘vo(l)] b, Vo(7)=e9%F7,
(B17)
Solving Eq.(B15) we find
1/2 C 1/2
V(1)=Vo1)| 7+ C+—| V1), (B18)

by virtue of the nilpotency10] of C. Then we substitute Eq.
(B19) into Eq. (B16) and after straightforward transforma-
tions obtain

— 1 F F\~ 1t
B-B= ( cosh& C( cosh& (B19
g 2
One can verify, using the transversaligl) of a,,, thaP
C=PCP;+P,CP;. (B20)

On the other hand, because of the evenness of the function,

F\~ 1 £\~ 1 -1
( cosh%) = ( coshg;i) Pet+ coss% Py .
(B21)

We substitute EqgB20) and(B21) into Eq.(B19) to get, by
virtue of the propertiegA5) of the projection operatorBg

and P,
— 1
B-B= (
g€

g -1
oshgi COS—— geott C.

> (B22)

Finally, inserting Eq(B22) into Eq.(B11) and using

_ H\ L
A(gy)= coshg% cos%) , (B23)

one finds thaQ=0 and that the identityB8) takes place.
Going to the identityB9) we use Eqs(B8) and(14), the
identity

1

°= = 31 e VYV

Yy

and the antisymmetr3, ;= B,z to bring the LHS into the
form

’y’"‘A[nXd,eo]:[(ﬂB'f—%BM +%
g€
X WI;BHB_ FBPUB* pUElj}aB) ,y[v,ya,yﬂ]}
X A(ep). (B24)
From Egs.(B13) and(B16) one obtains
K(1)=n+ ?B (B25)

5The projection operatorB, and P,, are defined in Appendix A.
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9€

Kuto(DBag = nunBap+ = BunBag - (B26)

Because of the antisymmetry Bf

2
=— B

7 B*«

BuiBag = BruiBag pB™ € prap

and, substituting in Eq(B26), we get

g€ .
Kﬂlv(l)Baﬁ] = nM[VBaB] - TBKPB* pelwaﬁ'

(B27)
Finally, we use EqsB25) and(B27) in Eq. (B24) to get Eq.
(B9).

3. Identities involving v matrices in 2+1 dimensions
To prove the identity105) let us introduce
¢=€eM"NF ,,  Z2=—4¢2

and transform the LHS of Eq105) using Eq.(95):

DMITRI M. GITMAN AND STOIAN I. ZLATEV

g€ g€e izy  gee
- LRV I
exp{ 7 Fuy y] Cosh—2 (1 2¢tanh_2 )

Taking into account Eqgs(13) and (A8) and the relation
izy=—vyFy, one gets Eq(105).

Using Egs.(105), (18), and(95) we find that the identity
(106 is equivalent to the pair of identities

')’,uBa,g’}’a’)’B— 2| GMV)\BVafy[afyﬁ] + | 6#1})\81})\: O,
(B29)

e**A(B" B~ B"B,z)=0. (B29)
To prove Eq.(B28) one only needs the properties of the
matrices and Eq95). Because of EqY18) and (A8), iden-
tity (B29) is equivalent to

e’*A(B",B";—B"B ) =0,

which can be checked expressiRgn terms ofz:
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