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We study the problem of the spin factor both in 311 and 211 dimensions, two cases which are essentially
different in this respect. Doing all Grassmann integrations in the corresponding path integral representations for
the Dirac propagator we get representations with a spin factor in an arbitrary external field. Thus, the propa-
gator appears to be presented by means of a bosonic path integral only. Then we use the representations with
a spin factor for calculations of the propagator in some configurations of external fields: namely, in a constant
uniform electromagnetic field and in its combination with a plane wave field.@S0556-2821~97!02112-7#

PACS number~s!: 11.10.Ef

I. INTRODUCTION

Propagators of relativistic particles in external fields
~electromagnetic, non-Abelian, or gravitational! contain im-
portant information about the quantum behavior of these par-
ticles. Moreover, if such propagators are known in an arbi-
trary external field, one can find exact one-particle Green
functions in the corresponding quantum field theory, taking
functional integrals over all external fields. The Dirac propa-
gator in an external electromagnetic field is distinguished
from that of a scalar particle by a complicated spinor struc-
ture. The problem of its path integral representation has at-
tracted researchers’ attention for a long time. Thus, Feyn-
man, who first wrote his path integral for the probability
amplitude in nonrelativistic quantum mechanics@1# and then
wrote a path integral for the causal Green function of the
Klein-Gordon equation~scalar particle propagator! @2#, had
also made an attempt to derive a representation for the Dirac
propagator via a bosonic path integral@3#. After the introduc-
tion of the integral over Grassmann variables by Berezin it
turned out that it is possible to present this propagator via
both bosonic and Grassmann variables; the latter describe
spinning degrees of freedom. Representations of this kind
have been discussed in the literature for a long time in dif-
ferent contexts@4#. Nevertheless, attempts to write the Dirac
propagator via only a bosonic path integral continued. Thus,
Polyakov @6# assumed that the propagator of a free Dirac
electron inD53 Euclidean space-time can be presented by
means of a bosonic path integral similar to the scalar particle
case, modified by the so-called spin factor~SF!. This idea
was developed in@7#, e.g., to write the SF for Dirac fermi-
ons, interacting with a non-Abelian gauge field in
D-dimensional Euclidean space-time. In those representa-
tions the SF itself was presented via some additional bosonic
path integrals and itsg-matrix structure was not defined ex-
plicitly. Surprisingly, it was shown in@9# that all Grassmann
integrations in the representation of the Dirac propagator in

an arbitrary external field in 311 dimensions can be done,
so that an expression for the SF was derived as a given
functional of the bosonic trajectory. Having such a represen-
tation with the SF, one can use it to calculate the propagator
in some particular cases of external fields. This method of
calculation provides automatically an explicit spinor struc-
ture of the propagators which can be used for concrete cal-
culations in the Furry picture~see, for example,@10,11#!.

In the recent work of@13# the propagator of a spinning
particle in an external field was presented via a path integral
in arbitrary dimensions. It turns out that the problem has
different solutions in even and odd dimensions. In even di-
mensions the representation is just a generalization of the
one in four dimensions mentioned above. In odd dimensions
the solution was presented for the first time and differs es-
sentially from the even-dimensional case. However, the
problem of SF was not discussed there.

In the present paper we continue the consideration of the
problems related to the SF conception. Namely, we discuss
derivation of the SF both in even and odd dimensions on the
examples of 311 and 211 cases and then we use path inte-
gral representations with the SF to calculate the propagators
in some configurations of external fields. In 311 dimensions
we present a simple derivation of the SF, avoiding some
unnecessary steps in the original brief paper@9# which them-
selves needed some additional justification. In this way the
meaning of the surprising possibility of complete integration
over Grassmann variables becomes clear. Then we use the
representation with the SF for calculations of the propagator
in a constant uniform electromagnetic field and its combina-
tion with a plane wave. Because of the fact that this method
of calculation provides automatically an explicitg-matrix
structure of the propagator, the representations obtained dif-
fer from those found by other methods, for example, differs
from the well-known Schwinger formula in a constant uni-
form electromagnetic field. To compare both representations
we prove in Appendix B some complicated decompositions
of functions on theg matrices. In 211 dimensions we
present a derivation of the SF for the first time using the
representation for the propagator obtained in@13#. We calcu-
late then the propagator in these dimensions in a constant
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electromagnetic field by means of the representation with the
SF. The result is new and cannot be derived from the~311!-
dimensional case by means of a dimensional reduction.

II. SPIN FACTOR IN 3 11 DIMENSIONS

A. Integration over Grassmann variables

The propagator of a relativistic spinning particle in an
external electromagnetic fieldAm(x) is the causal Green
functionSc(x,y) of the Dirac equation in this field:

@gm~ i ]m2gAm!2m#Sc~x,y!52d4~x2y!, ~1!

where x5(xm), @gm, gn#152hmn, hmn5diag(1,21,21,
21), andm,n50,1,2,3.

In Ref. @8# the following Lagrangian path integral repre-
sentation for the propagator was obtained in 311 dimen-
sions:

Sc5Sc~xout,xin!52 S̃cg5,

S̃c5expH i g̃n
] l
]unJ E0`de0E dx0E

e0

M ~e!DeE
x0

DxE
xin

xout
DxE DpeE Dpx

3E
c~0!1c~1!5u

DcexpH i E
0

1F2
ẋ2

2e
2
e

2
m22gẋmAm1 iegFmncmcn

1 i S ẋmcm

e
2mc5D x2 icnċ

n1peė1pxẋGdt1cn~1!cn~0!J U
u50

, ~2!

where g̃ m5g5gm, g̃55 g̃0g̃1g̃2g̃35g0g1g2g35g5, @gm,gn#152hmn, m,n50,1,2,3,5, andhmn5diag(1,21,21,21,
21); un are auxiliary Grassmann~odd! variables, anticommuting by definition with theg matrices;
xm(t), e(t), and pe(t) are bosonic trajectories of integration;cn(t), x(t), and px(t) are odd trajectories of integration;
the boundary conditions

x~0!5xin , x~1!5xout, e~0!5e0 , cn~0!1cn~1!5un, x~0!5x0

take place; the measureM (e) andDc have the form

M ~e!5E DpexpH i2E01ep2dtJ , Dc5DcF E
c~0!1c~1!50

DcexpH E
0

1

cnċ
ndtJ G21

, ~3!

and] l /]un stands for the left derivatives. The propagator~2! can be expressed@9# only through a bosonic path integral over
the coordinatesx. The Grassmann integrations overc can be performed even without changingc for velocities like in@9#.
Instead, after integration overpe , px , e, andx one can go back to Grassmann variables obeying antiperiodic boundary
conditions@8#

cn5 1
2 ~jn1un!. ~4!

Then introducing odd sourcesrn(t) for the new variablesjn(t), we get

S̃c52
1

2
expH i g̃n

] l
]unJ E0`de0M ~e0!E

xin

xout
DxexpH 2 i F ẋm! ẋm

2e0
1
e0
2
m21gẋm!AmG2

ge0
4

um!Fmn!unJ
3F ẋm

e0
!S d l

drm
1umD2m!S d l

dr5
1u5D GR@x,r,u#U

r50,u50

, ~5!

where

R@x,r,u#5E
j~0!1j~1!50

Dj expH 14 jn! j̇n2
ge0
4

jm!Fmn!jn2
ge0
2

um!Fmn!jn1rn!jnJ , ~6!

Dj5DjF E
j~0!1j~1!50

Dj expH 14 jn! j̇nJ G21

. ~7!

Here condensed notations are used in whichFmn is understood as a matrix with continuous indices,
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Fmn~t,t8!5Fmn„x~t!…d~t2t8! , ~8!

and integration overt is denoted by a star, e.g.,

jn! j̇n5E
0

1

jn~t!j̇n~t!dt .

Sometimes discrete indices will be also omitted. In this case all tensors of second rank have to be understood as matrices with
lines marked by the first contravariant indices of the tensors and with columns marked by the second covariant indices of the
tensors.

The Grassmann Gaussian path integral in Eq.~6! can be evaluated straightforwardly@14# to be

R@x,r,u#5expH 2e0TrE
0

g

dg8R~g8!!FJ expH S rm2
ge0
2

Qk!FkmD!Umn~g!!S rn1
ge0
2
Fnl!QlD2r5! ṙ5J , ~9!

where

Umn~g!5hmnd8~t2t8!2ge0Fmn~t,t8! , ~10!

andR(g) is the inverse toU(g), considered as an operator acting in the space of the antiperiodic functions,

d

dt
Rmn~gut,t8!2ge0Fm

l
„x~t!…Rln~gut,t8!5hmnd~t2t8!,

Rmn~gu1,t!52Rmn~gu0,t! , ;tP~0, 1!. ~11!

Substituting Eq.~9! into Eq. ~5! and performing then the functional differentiations with respect torn , we get

S̃c52
1

2
expH i g̃n

] l
]unJ E0`de0M ~e0!E

xin

xout
DxexpH 2

i

2
F ẋm! ẋm

e0
1e0m

21gẋmAmG J F ẋm

e0
!Kmnun2mu5G

3F12
ge0
4

Babuaub1
g2e0

2

16
BabB*

abu0u1u2u3GexpH 2
e0
2 E0

`

dg8TrR~g8!!FJ U
u50

, ~12!

where the following notation is used:

Bmn5Fml!K n
l , B* mn5 1

2 eabmnBab , Kmn5hmn1ge0Rml~g!!F n
l , ~13!

andemnab is Levi-Cività symbol normalized bye012351.
Differentiation with respect toun in Eq. ~12! replaces the products of the variablesun by the corresponding antisymme-

trized products of the matricesi g̃n. Finally, passing to the propagatorSc and using the identities

g [lgmgn]5glg [mgn]22hl[mgn] , g [m1
•••gm5]50, smn5 ig [mgn] , ~14!

where antisymmetrization over the corresponding sets of indices is denoted by square brackets, one gets

Sc~xout,xin!5
i

2E0
`

de0E
xin

xout
Dx M~e0!F@x,e0# exp$ i I @x,e0#% , ~15!

whereI @x,e0# is the action of a relativistic spinless particle,

I @x,e0#52E
0

1F ẋ2
2e0

1
e0
2
m21gẋA~x!G dt , ~16!

andF@x,e0# is the SF,

F@x, e0#5Fm1~2e0!
21ẋm!Kml~2hlk2ge0B

lk!gk2
ig

4
~me01 ẋm!Kmlgl!Bknskn1m

g2e0
2

16
Bab* Babg5G

3expH 2
e0
2 E0

g

dg8TrR~g8!!FJ . ~17!
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B. Propagator in a constant uniform electromagnetic field

In the case of a constant uniform field (Fmn5 const!, which we are going to discuss in this section, the functionals
R, K, andB do not depend on the trajectoryx and can be calculated straightforwardly:

R~g!5
1

2S h«~t2t8!2tanh
ge0F

2 Dexp$e0gF~t2t8!% ,

K5S h2tanh
ge0F

2 Dexp~ge0Ft! , B5
2

ge0
tanh

ge0F

2
. ~18!

Using them in Eq.~17! and integrating overt whenever possible, we obtain the SF in the constant uniform field:

F@x, e0#5S detcoshge0F2 D 1/2HmF12
i

2S tanhge0F2 D
mn

smn1
1

4S tanhge0F2 D
mn

* S tanhge0F2 D mn

g5G1
1

e0
S E

0

1

ẋexp~ge0Ft!dt D
3S h2tanh

ge0F

2 D F S h2tanh
ge0F

2 Dg2
i

2
gS tanhge0F2 D

mn

smnG J . ~19!

We can see that in the field under consideration the SF is
linear in the trajectoryxm(t). That facilitates the bosonic
integration in expression~15!.

In spite of the fact that the SF is a gauge-invariant object,
the total propagator is not. It is clear from expression~15!
where one needs to choose a particular gauge for the poten-
tials Am . Namely, we are going to use the potentials

Am52 1
2Fmnx

n ~20!

for the constant uniform fieldFmn5 const. Thus, one can see
that the path integral~15! is quasi Gaussian in the case under
consideration. Let us make there the shiftx→y1xcl , with
xcl a solution of the classical equations of motion,

dI

dx
50⇔ ẍm2ge0Fmnẋ

n50 , ~21!

subjected to the boundary conditionsxcl(0)5xin , and
xcl(1)5xout. Then the new trajectories of integration,y,
obey zero boundary conditionsy(0)5y(1)50. Because of
the quadratic structure of the actionI @x,e0# and the linearity
of the SF inx, one can make the following substitutions in
the path integral:

I @y1xcl , e0#→I @xcl , e0#1I @y, e0#1
e0
2
m2,

F@y1xcl , e0#→F@xcl , e0#5C~xout, xin , e0!. ~22!

Doing also a convenient replacement of variables
p→p/Ae0, y→yAe0, we get

Sc5
i

2E0
`de0
e0
2 C~xout, xin , e0! e

iI [xcl , e0]

3E
0

0

DyE DpexpH i2E01~p22 ẏ22ge0yFẏ!dtJ .

~23!

One can see that the path integral in Eq.~23! is, in fact, the
kernel of the Klein-Gordon propagator in the proper-time
representation. This path integral can be presented as

E
0

0

DyE DpexpH i2E01~p22 ẏ22ge0yFẏ!dtJ
5FDet ~hmn]t

22ge0Fmn]t!

Det ~hmn]t
2! G21/2

3E
0

0

DyE DpexpH i2E01~p22 ẏ2!dtJ .

Canceling the factor Det (2hmn) in the ratio of the determi-
nants one obtains

Det ~hmn]t
22ge0Fmn]t!

Det ~hmn]t
2!

5
Det ~2dn

m]t
21ge0F n

m ]t!

Det ~2dn
m]t

2!
.

~24!

One can also make the replacement

2I]t
21ge0F]t→2I]t

21
g2e0

2

4
F2 , ~25!

whereI stands for the unit 434 matrix, in the right-hand side
~RHS! of Eq. ~24!, because the spectra of both operators
coincide. Indeed,

2I]t
21ge0F]t5expS ge02 Ft D S 2I]t

21
g2e0

2

4
F2D

3expS 2
ge0
2

Ft D , ~26!

and zero boundary conditions are invariant under the trans-
formation y→exp(ge0Ft/2)y. Then, using Eq.~25! and the
value of the free path integral@8#,
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i

2E0
0

DyE DpexpH i2E dt~p22 ẏ2!J 5
1

8p2 ,

related, in fact, to the definition of the measure, we obtain

Sc5
1

8p2E
0

`de0
e0
2 C~xout, xin , e0! e

iI [xcl , e0]

3FDet S 2I]t
21

g2e0
2

4
F2D

Det ~2I]t
2!

G21/2

. ~27!

The ratio of the determinants can be written now as

Det S 2I]t
21

g2e0
2

4
F2D

Det ~2I]t
2!

5expTrF lnS 2I]t
21

g2e0
2

4
F2D 2 ln~2I]t

2!G
5expTrFe022 F2E

0

g

dl lS 2I]t
21

l2e0
2

4
F2D 21G

5exptrFe022 F2E
0

g

dl l (
n51

` S p2n2I1
l2e0

2

4
F2D 21G .

~28!

The trace in the infinite-dimensional space in the last line of
Eq. ~28! is taken and only one in the four-dimensional space
remains. Using the formula

(
n51

`

~p2n21k2!215
1

2k
cothk2

1

2k2 ,

which is also valid ifk is an arbitrary 434 matrix, and
integrating in Eq.~28!, we find

Det S 2I]t
21

g2e0
2

4
F2D

Det ~2I]t
2!

5detS sinh
ge0F

2

ge0F

2

D . ~29!

Thus,

Sc5
1

32p2E
0

`

de0
S detsinhe0gF2

gF
D 21/2

3C~xout, xin , e0!e
iI [xcl ,e0] , ~30!

where the functionC(xout, xin , e0) is the SF on the classi-
cal trajectoryxcl . The latter can be easily found solving Eq.
~21!:

xcl5@exp~ge0F !2h#21@exp~ge0Ft!~xout2xin!

1exp~ge0F !xin2xout# . ~31!

Substituting Eq.~31! into Eqs.~22! and ~30!, we obtain

Sc5
1

32p2E
0

`

de0
S detsinhge0F2

gF
D 21/2

C~xout, xin , e0!

3expH ig2 xoutFxin2
i

2
e0m

22
ig

4
~xout2xin!

3FcothS ge0F2 D ~xout2xin!J . ~32!

where

C~xout,xin ,e0!5Fm1
g

2
~xout2xin!FS cothge0F2 21DgG

3Adetcosh
ge0F

2 F12
i

2

3S tanhge0F2 D
mn

smn1
1

8
eabmn

3S tanhge0F2 D
ab

S tanhge0F2 D
mn

g5G . ~33!

Now we are going to compare the representation~32! with
the Schwinger formula@15#, which has been derived in the
same case of a constant field by means of the proper-time
method. The Schwinger representation has the form

Sc~xout, xin!5
1

32p2FgmS i ]

]xout
m 2gAm~xout! D 1mG

3E
0

`

de0
S detsinhge0F2

gF
D 21/2

3expH i2FgxoutFxin2e0m
22~xout2xin!

3
gF

2
coth

ge0F

2
~xout2xin!2

ge0
2

FmnsmnG J .
~34!

Doing the differentiation with respect toxout
m we transform

formula ~34! into a form which is convenient for the com-
parison with our representation~30!:

Sc5
1

32p2E
0

`

de0
S detsinhge0F2

gF
D 21/2

CS~xout,xin ,e0!

3expH i g2 xoutFxin2 i

2
e0m

22 i
g

4
~xout2xin!

3FcothS ge0F2 D ~xout2xin!J , ~35!

where the functionCS is given by
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CS~xout,xin ,e0!5Fm1
g

2
~xout2xin!FS cothge0F2 21DgG

3expS 2 i
e0g

4
FmnsmnD . ~36!

Thus one need only compare the functionsC andCS . They
coincide, since the following formula takes place~see Ap-
pendix B!, wherevmn is an arbitrary antisymmetric tensor:

expS 2
i

4
vmnsmnD5Adetcosh

v

2F12
i

2S tanhv2 D
mn

smn

1
1

8
eabmnS tanhv2 D

ab
S tanhv2 D

mn

g5G .
~37!

In fact, the latter formula presents a linear decomposition of
a finite Lorentz transformation in the independentg-matrix
structures.

C. Propagator in a constant uniform field
and a plane wave field

The four-potential

Am
comb52 1

2Fmnx
n1am~nx!, ~38!

wheream(f) is a vector-valued function of a real variable
f andn is a normalized isotropic vectornm5(1, n),

n250, n251, ~39!

produces the field

Fmn
comb~nx!5Fmn1 f mn~nx!, ~40!

which is a superposition of the constant fieldFmn and the
plane-wave field

f mn~nx!5nma8n~nx!2nna8m~nx!.

Without loss of generality we may chooseam to be transver-
sal:

nmam~f!50. ~41!

The dependence of the SFF@x,e0# on the trajectory
xm(t) is twofold. In addition to the direct dependence@see
Eq. ~17!#, there is an indirect one through the external field.
In the case under consideration the field depends onxm(t)
only through the scalar combinationnx(t). Replacing the
latter by an auxiliary scalar trajectoryf(t) one obtains

F̃@x,f,e0#5Fm1~2e0!
21ẋm!K̃ml~2hlk2ge0B̃

lk!gk2
ig

4
~me01 ẋm!K̃mlgl!B̃knskn1m

g2e0
2

16
B̃abB̃*

abg5G
3expH 2

e0
2 E0

g

dg8TrR̃~g8!!Fcomb~f!J , ~42!

whereFmn
comb(fut2t8)5@Fmn1 f mn„f(t)…#d(t,t8) and

B̃mn5Fml
comb~f!!K̃ n

l ,

K̃mn5hmn1ge0R̃mn~g!!Fcomb~f!, ~43!

Fh ]

]t
2ge0F

comb
„f~t!…GR̃~qut,t8!5hd~t,t8!, ~44!

R̃~gu1,t!52R̃~gu0,t!, ;tP~0,1!. ~45!

Obviously,

R̃~g!uf~t!5nx~t!5R~g!, K̃uf~t!5nx~t!5K,

B̃uf~t!5nx~t!5B, ~46!

and, therefore,

F̃@x,nx,e0#5F@x,e0#. ~47!

Inserting the integral of ad function,

E Df Dleil!~f2nx!51,

into the RHS of Eq.~15! and using Eq.~47! one transforms
the path integral~15! into a quasi-Gaussian one of the simple
form

Sc~xout,xin!5
i

2E0
`

de0E Df Dl eil!fE
xin

xout
Dx M~e0!

3F̃@x,f,e0#exp$ i Ĩ @x,f,e0#2 il!~nx!%.

~48!

The action functional

Ĩ @x,f,e0#52
1

2e0
ẋ! ẋ2

e0
2
m22

g

2
x!F̄! ẋ2ga~f!! ẋ

~49!

@whereF̄(t,t8)5Fd(t2t8)# contains only linear and bilin-
ear terms inx ~and the bilinear part does not depend on the
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wave potentialam). The SFF̃@x,f,e0# is linear in x and
~following the same way of reasoning as in the case of a
constant field! one finds

Sc5
1

32p2E
0

`

de0
S detsinhge0F2

gF
D 21/2

E Df Dleil!~f2nxq!

3F̃@xq ,f,e0#e
i Ĩ [xq ,f,e0] , ~50!

wherexq is the solution to the equation

ẍq2ge0Fẋq5e0ln2e0ga8~f!ḟ , ~51!

obeying the boundary conditions

xq~0!5xin , xq~1!5xout. ~52!

Introducing an appropriate Green functionG5G(t,t8) for
the second-order operator,

Fh ]2

]t2
2ge0F

]

]tGG~t,t8!5hd~t2t8!, ~53!

G~0,t!5G~1,t!5G~t,0!5G~t,1!50, ;tP~0,1!,
~54!

one presents this solution in the form

xq5xcl1e0G!@ln2ga8~f!ḟ#. ~55!

The value of the action functionalĨ @x,f,e0# on the solution
xq is given by

Ĩ @xq ,f,e0#5 Ī @xcl ,e0#2ga~f!! ẋcl

2
e0
2

@ga8~f!ḟ2ln#!G!@ga8~f!ḟ2ln#

1ln!~xq2xcl!, ~56!

where

Ī @x,e0#52
1

2e0
ẋ! ẋ2

e0
2
m22

g

2
x!F̄! ẋ ~57!

is the action in a uniform constant fieldF.
The functional integral overl in Eq. ~48! is a quasi-

Gaussian one of a simple form@let us recall thatxq is linear
in l; see Eq.~55!# and the integration can be done explicitly.
The result is a formula for the propagator in which the only
functional integration is over the scalar trajectoryf(t).
However, the latter integration is hardly to be performed
explicitly in the general case@for arbitrary am(f)#. Never-
theless, there exists a specific combination@5# for which the
integration can be done and explicit formulas for the propa-
gator to be derived. The latter are comparable with the cor-
responding Schwinger-type formulas@10#, which are also ex-
plicit in this case.

Namely, let us choose the wave vectorn to coincide with
a real eigenvector of the matrixF ~see Appendix A!:

Fmnn
n52Enm , n250, n251. ~58!

In this casenxq5nxcl , and, moreover, the action functional
~49! is ‘‘on-shell’’ invariant with respect to longitudinal
shifts

xq~t!→xq~t!1a~t!n, a~0!5a~1!50, ~59!

by virtue of Eq.~58! and the transversality~41! of the wave
potentialam . Then Ĩ @xq ,f,e0# does not depend onl,

Ĩ @xq ,f,e0#5 Ĩ @xtr ,f,e0#, ~60!

where

xtr5xcl2ge0G!@a8~f!ḟ# ~61!

is a solution to the equation

ẍtr2ge0Fẋtr52ge0a8~f!ḟ , ~62!

obeying the boundary conditions~52!. However, the SF
F̃@xq ,f,e0# does not show this invariance and, therefore, is
l dependent. Presentingxq as a sumxq5xtr1e0Gn!l, and
substituting it into the expansion of the SF in the antisym-
metrized products ofg matrices,

F̃@x,f,e0#5Fe021ẋm!K̃mnS gn1
ge0
4
B̃abg [ngagb] D

1mS 11
ge0
4
B̃abg [agb]

1
g2e0

2

32
B̃abB̃mng [agbgmgn] D GL@f,e0#,

~63!

L@f,e0#5expH 2
e0
2 E0

g

dg8TrR̃~g8!!Fcomb~f!J .
~64!

we obtain

F̃@xq ,f,e0#5F̃@xtr ,f,e0#1l! l @f,e0#, ~65!

l @f,e0#5nkGkm
~r !!K̃ n

m S gn1
ge0
4
B̃abg [ngagb] DL@f,e0#,

~66!

G~r !~t,t8!5
]

]t8
G~t,t8!. ~67!
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It turns out thatl @f,e0# does not depend onf. First, ex-
pandingR̃ in powers off and using Eqs.~58! and ~41! one
derives thatL@f,e0# coincides with the expression

L̄~e0!5expH e02 E0gdg8TrR̄~g!!F̄J . ~68!

Second,1

nmK̃ n
m 5nmK̄ n

m 5 1
2 ~nK̄n̄ !nn . ~69!

Indeed, using the definitions~46! one finds thatK̃ satisfies
the equation

F ]

]t
2ge0@F1 f „f~ t !…#G K̃~t!50 ~70!

and the boundary conditions

K̃~0!1K̃~1!52h. ~71!

Multiplying Eq. ~70! by n and using the properties~58! and
~41! we find

S ]

]t
2ge0EDnK̃50, nK̃~0!1nK̃~1!52n. ~72!

At the same timenK̄ obeys Eq.~72!. Therefore,nK̃ and
nK̄ coincide. Then using Eq.~41! and the properties of
n, n̄ ~see Appendix A! one gets Eq.~69!. Third, using the
same properties of the electromagnetic field one can derive

B̃ab5 B̄ab1nabb2banb , ~73!

whereba depends onf and B̄ is given by Eq.~18!. Substi-
tuting Eq.~73! into Eq. ~66! and using Eq.~58! one finds

l @f,e0#5
1

4
~nG~r ! n̄ !!~nK̄n̄ !Fnngn1

ge0
4

nn~ B̄ab1nabb

2banb!g [ngagb] GL̄~e0!,

and the contribution of thef-dependent terms vanishes by
virtue of the complete antisymmetry ofg [ngagb] . Therefore
l @f,e0# can be replaced by

l̄ ~e0!5nkGkm
~r !!K̄ n

m S gn1
ge0
4
B̄abg [ngagb] D L̄~e0!.

~74!

Substituting Eq.~74! into Eq. ~65! and then into Eq.~50!,
using Eq.~60! and

l~t!eil!f52 i
d

df~t!
eil!f,

and integrating by parts we find

Sc5
1

32p2E
0

`

de0
S detsinhge0F2

gF
D 21/2

E Df Dleil!~f2nxcl!

3F F̃@xtr ,f,e0#2S d

df
Ĩ @xtr ,f,e0# D! l̄ ~e0!G

3exp$ i Ĩ @xtr ,f,e0#%. ~75!

Inserting the derivative

d

df
Ĩ @xtr ,f,e0#52a8~f!ẋtr ,

and using Eqs.~73! and ~66! we transform Eq.~75! into the
form

Sc5
1

32p2E
0

`

de0
S detsinhge0F2

gF
D 21/2

E Df Dleil!~f2nxcl!

3F̃@ x̃ ,f,e0#exp$ i Ĩ @xtr ,f,e0#%, ~76!

where

x̃m5xtr
m1ge0n

ma8k~f!ẋtr
k .

One can straightforwardly check thatx̃ satisfies the equation

ẍ̃m2ge0@Fmn1nman8~f!# ẋ̃ n52ge0am8 ~f!ḟ ~77!

and the boundary conditions~52!. The trajectoryxtr in the
action Ĩ can be replaced byx̃ due to the invariance of the
action Ĩ @x,f,e0# under the longitudinal shifts~59!. The in-
tegration overl andf is straightforward now. One needs
only to take into account thatx̃ uf5nxcl

[xcomb is the solution
@subjected to the boundary conditions~52!# to the equation of
motion

ẍcomb
m 2ge0@F1 f ~nxcomb!#

m
nẋcomb

n 50. ~78!

Indeed, Eq.~77! turns out to be equivalent to Eq.~78! when
f5nxcl and the relationnxcomb5nxcl is taken into account.
Therefore,

F̃@ x̃ ,f,e0#uf5nxcl
5F@xcomb,e0#,

Ĩ @ x̃ ,f,e0#uf5nxcl
5I @xcomb,e0#. ~79!

Finally, we get

Sc5
1

32p2E
0

`

de0
S detsinhge0F2

gF
D 21/2

3F@xcomb,e0#e
I [xcomb,e0] , ~80!

where

1In this section we denote byR̃(g), K̄, and B̄ the quantities
given by Eq. ~18!, i.e., corresponding to the case of a constant
uniform fieldF.
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F@xcomb,e0#5Fe021ẋcomb
m !KmnS gn1

ge0
4

Babg [ngagb] D
1mS 11

ge0
4

Babg [agb]

1
g2e0

2

32
BabBmng [agbgmgn] D GL̄~e0!. ~81!

The vectorẋcomb satisfies Eq.~78! and can be presented as

ẋcomb~t!5TAexpH 2ge0E
t

1

Fcomb
„nxcl~t!…dtJ ẋ~1!,

~82!

where TA denotes the antichronological product. On the
other hand, the tensor trajectoryK(t) satisfies Eq.~70!
where one has to replacef by nxcl . Therefore

K~t!5TAexpH 2ge0E
t

1

Fcomb~nxcl!dtJK~1!, ~83!

and2

ẋcomb!K5 ẋcomb~1!K~1!. ~84!

Substituting Eq.~84! into Eq. ~81! and taking into account
the relationB[abBmn]5 B̄[abB̄mn] we find

F@xcomb,e0#5Fe021ẋcomb
m ~1!Kmn~1!

3S gn1
ge0
4

Babg [ngagb] D
1mS 11

ge0
4

Babg [agb]

1
g2e0

2

32
B̄abB̄mng [agbgmgn] D GL̄~e0!.

~85!

A representation for the propagator in this specific field
combination@characterized by the relation~58!# was given in
terms of the proper-time integral only in@12,10#. Another
more complicated representation has been obtained before in
@5#. In our notation the representation@12,10# can be written
as

Sc~xout,xin!5FgmS i ]

]xout
m 2gAm

comb~nxout! D 1mG 1

32p2

3E
0

`

de0
S detsinhge0F2

gF
D 21/2

3eiI [xcomb,e0]D@nxcl ,e0#, ~86!

where

D@nxcl ,e0#5TexpH 2
ige0
4 E

0

1

dt@F1 f „nxcl~t!…#mnsmnJ
~87!

5expH 2
ige0
4

FmnsmnJ
2
ige0
4 E

0

1

dt@ege0F~122t!/2f „nxcl~t!…

3e2ge0F~122t!/2#mnsmn, ~88!

andT denotes chronological product. Taking the derivative
in Eq. ~86! one can use the relation

]

]xout
m I @xcomb,e0#52pm~1!, ~89!

where

pm~t!52
d

d ẋm
I @x,e0#ux5xcomb

is the on-shell momentum, in particular,

p~1!5e0
21ẋcomb~1!1ge0A

comb~nxout!. ~90!

On the other hand,

gm
]

]xout
m D@nxcl ,e0#50. ~91!

Indeed, one gets from Eq.~31!, with the aid of Eq.~58!,

gm
]

]xout
m @nxcl~t!#5

ege0Et21

ege0E21
nmgm. ~92!

Then, using the representation~88! for D@nxcl ,e0#, Eqs.~39!
and ~41!, and the properties of theg matrices, one easily
derives Eq.~91!. Differentiating in Eq.~86!, one obtains,
with the aid of Eqs.~88!, ~89!, and~91!,

Sc~xout,xin!5
1

32p2E
0

`

de0
S detsinhge0F2

gF
D 21/2

3CS
comb~xout,xin ,e0!e

iI [xcomb,e0] , ~93!

where

CS
comb~xout,xin ,e0!5@e0

21ẋcomb
m ~1!gm1m#D@nxcl ,e0#.

Using the identities~B8! and ~B9! one can verify that

CS
comb~xout,xin ,e0!5F@xcomb,e0#.

Thus the representations~80! and ~86! are equivalent.

2The operatorTAexp$2ge0*t
1Fcomb(nxcl)dt% preserves the scalar

product due to the antisymmetry of the stress tensor.
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III. SPIN FACTOR IN 2 11 DIMENSIONS

A. Derivation of the spin factor

In 211 dimensions the equation for the Dirac propagator
has the form

$gm@ i ]m2gAm~x!#2m%Sc~x,y!52d3~x2y!, ~94!

whereg matrices in 211 dimensions can be taken, for ex-
ample, in the form g05s3, g15 is2, g252 is1,

@gm,gn#152hmn, hmn5diag(1,21,21), and m,n50,1,2.
In this particular case they obey the relations

@gm,gn#522i emnlgl , gm5
i

2
emnlgngl . ~95!

In Ref. @13# a path integral representation for the Dirac
propagator was obtained in arbitrary odd dimensions. In par-
ticular, in the case under consideration this representation
reads

Sc5
1

2
expS igm

] l
]umD E

0

`

de0E dx0E
e0

M ~e!DeE
x0

DxE
xin

xout
DxE DpE DnE

c~0!1c~1!5u
Dc

3expH i E
0

1F2
ẋ2

2e
2
e

2
m22gẋmA

m1 iegFmncmcn

1xS 2ie emnlẋ
mcncl2mD2 icmċn1pė1nẋ Gdt1cm~1!cm~0!J U

u50

, ~96!

where x(t), p(t), e(t), and p(t) are even and
c(t), x1(t), x2(t), n1(t), and n2(t) are odd trajecto-
ries, obeying the boundary conditionsx(0)5xin , x(1)
5xout, e(0)5e0 , x(0)5x0 , andc(0)1c(1)5u, and the
notation used is

x5x1x2 , nẋ5n1ẋ11n2ẋ2 , dx5dx1 dx2 ,

Dx5Dx1 Dx2 , Dn5Dn1 Dn2 .

The measureM (e) is defined by Eq.~3! in the corresponding
dimensions,3 and

Dc5DcF E
c~0!1c~1!50

DcexpH E
0

1

cmċmdtJ G21

.

Integrating over the Grassmann variables in the same way as
in the case of 311 dimensions we get

Sc~xout,xin!

5
i

2E0
`

de0M ~e0!E
xin

xout
Dx F@x,e0#exp$ i I @x,e0#%, ~97!

where

F@x,e0#5F Sm1
i

e0
E
0

1

dt emnlẋ
m~t!Rnl~gut,t! D

3S 11
ge0
4

BabgagbD

1
i

2e0
E
0

1

dt emnlẋ
m~t!K a

n ~t!K b
l ~t!gagbG

3expH 2
e0
2 E0

g

dg8TrR~g8!!FJ ~98!

is the SF and I @x,e0#, R(g)[R(gut,t8), and K[
K(t), B, F are defined by Eqs.~16!, ~13!, and~8!, respec-
tively.

Because of the relations~95!, one can also present the SF
in the form

F@x,e0#5Hm1
i

e0
ẋ!r ~g!1F S 2 i

ge0
4

m1
g

4
ẋ!r ~g! Dua

1
1

2e0
~ ẋ!T!aGgaJ expH 2

e0
2 E0

g

dg8TrR~g8!!FJ ,
~99!

where

rm~g![rm~gut!5emnlRnl~gut,t!, um5emabBab ,

Tm
r5emnlerabKn

aK
l

b .

B. Dirac propagator in a constant uniform field
in 211 dimensions

In the case of a constant uniform fieldFmn5 const one
can calculate the propagator explicitly integrating over the
bosonic trajectories. Following the same method as in Sec. II
and taking into account that, in 211 dimensions,

i

2
M ~e0!E

0

0

Dx expH 2
i

2e0
ẋ! ẋJ 5

eip/4

2~2pe0!
3/2,

one gets for the propagator~97!,

3We will refer to some formulas from the previous sections with-
out specifying that the number of dimensions is 211 now.
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Sc5
eip/4

2~4p!3/2
E
0

`

de0
S detsinhge0F2

gF
D 21/2

3eiI [xcl ,e0]F@xcl ,e0#, ~100!

wherexcl , R(g), K,B are given by Eqs.~31! and ~18!.
The antisymmetric matricesFmn can be classified by the

value of the invariantw ~see Appendix A!. In the case
w2.0 one can find a Lorentz frame in which the magnetic
field vanishes. On the other hand,w2,0 implies that the
electric field vanishes in an appropriate Lorentz frame. The
casew250, FÞ0 corresponds to nonvanishing electric and
magnetic fields of ‘‘equal magnitude’’~and this property is
Lorentz invariant!. We will consider the casew2Þ0. The
case w250 can be easily treated, e.g., taking the limit
w→0.

The integration overt in expression~98! for F@xcl ,e0#
can be done. Indeed, from Eqs.~31! and ~18! one derives

ẋcl~t!5ege0F~t21!ẋcl~1!, K~t!5ege0F~t21!K~1!,

R[mn]~gut,t!52
ge0
4

~ege0F~t21!!m
a~ege0F~t21!!n

bBab ,

where the operator exp$ge0F(t21)% respects the scalar prod-
uct and detexp$ge0F(t21)%51. Finally, calculating the deter-
minants involved by means of Eq.~A7!, one gets

Sc5A i

16~2p!3
E
0

`de0

Ae0

gw

sinh
ge0w

2

eiI [xcl ,e0]F@xcl ,e0#,

F@xcl ,e0#5HmS 11
ge0
4

BabgagbD1
i

2e0
ẋm~1!

3emnlFK a
n K b

l gagb2
ge0
2

Bnl

3S 11
ge0
4

BabgagbD G J coshge0w2 . ~101!

On the other hand, one can obtain a representation for the
propagator using the Schwinger proper-time method~we do
not present the calculations here!. Such a representation has
the form

Sc~xout,xin!5FgmS i ]

]xout
m 2gAm~xout! D 1mG

3A i

16~2p!3
E
0

`de0

Ae0

gw

sinh
ge0w

2

3eiI [xcl ,e0]ege0Fabgagb/4. ~102!

To compare both representations we take the derivative in
Eq. ~102! and use

]

]xout
m I @xcl ,e0#52e0

21~ ẋcl!m~1!2gAm~xout!.

Then one obtains

Sc~xout,xin!5
eip/4

4~2p!3/2
E
0

`de0

Ae0

gw

sinh
ge0w

2

3CS~xout,xin ,e0!e
iI [xcl ,e0] , ~103!

where

CS~xout,xin ,e0!5@e0
21gmẋcl

m~1!1m#ege0Fabgagb/4.
~104!

Comparing Eqs.~101! and ~103! using the identities~see
Appendix B!

expH ge04 FabgagbJ 5S 11
ge0
4

BabgagbD coshge0w2 ,

~105!

gmexpH ge04 FabgagbJ
5

i

2
emnlFK a

n ~1! K b
l ~1!gagb2

ge0
2

Bnl

3S 11
ge0
4

BabgagbD Gcoshge0w2 , ~106!

one can verify that both representations coincide.
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APPENDIX A: SOME PROPERTIES
OF ANTISYMMETRIC TENSORS

1. Antisymmetric tensors in 311 dimensions

The antisymmetric matrixFmn has, in the case of nonva-
nishing invariants, four isotropic eigenvectors, namely,

Fmnn
n52Enm , Fmn n̄

n5E n̄m , Fmnm
n5 iHmm ,

Fmnm̄
n52 iHm̄m , ~A1!

whereE andH are real numbers. The eigenvectors are sup-
posed to be normalized,

n̄mnm52m̄mmm52, ~A2!

while all the other scalar products vanish. The matrixF can
be presented in the form

Fmn5
E
2

~ n̄mnn2nm n̄ n!1
iH
2

~m̄mmn2mmm̄n!, ~A3!
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and, therefore,F2 has the spectral decomposition

F25E2PE2H2PH , ~A4!

wherePE and PH are orthogonal projection operators onto
some two-dimensional subspaces,

PE
25PE , PH

2 5PH , PEPH5PHPE50, PE1PH5h,

trPE5trPH52. ~A5!

2. Antisymmetric tensors in 211 dimensions

An antisymmetric matrix has eigenvalues 0,w, 2w,
where4 w25tr F2 is the invariant of the tensor. In the case
of nonvanishingw there exist three eigenvectors ofF, and
F2 is proportional to a projection operatorP onto some two-
dimensional subspace:

F25w2P, P25P, trP52, PF5FP5F. ~A6!

Then, for an even functionh,

h~F !5h~0!~12P!1h~w!P, ~A7!

while, for an odd one,

h~F !5
F

w
h~w!. ~A8!

The case of vanishingw ~andFÞ0) corresponds to a nilpo-
tent matrix,F350.

APPENDIX B: SOME IDENTITIES INVOLVING
g MATRICES

1. g-matrix structure of Lorentz transformation
in the spinor representation

Let us denote byM (v) the expression in the RHS of Eq.
~37!. We are going to check that the matrix-valued function
M (lv) of a real parameterl satisfies the differential equa-
tion

d

dl
M ~lv!52

i

4
vmnsmnM ~lv! ~B1!

and the initial condition

M ~0!51. ~B2!

The latter is trivial, and so let us concentrate on the proof of
Eq. ~B1!.

Using the identity

4eabmn~ST!abTmn5eabmnTabTmn trS, ~B3!

whereS is an arbitrary tensor andT is antisymmetric, one
can put the derivative (d/dl)M (lv) into the form

d

dl
M ~lv!5S detcoshlv

2 D 1/2H 14trS vtanh
lv

2 D

2
i

8F trS vtanh
lv

2 D tanhlv

2

12vS h2tanh2
lv

2 D G
mn

smn

1
1

8
eabmnvabS tanhlv

2 D
mn

g5J . ~B4!

On the other hand, with the aid of the identities

sabsmn5hamhbn2hanhbm2 i ~hamsbn1hbnsam

2hansbm2hbmsan!2eabmng5,

skrg55 1
2 ekrtssts ~B5!

and using the antisymmetry propertyvmn52vnm one finds

2
i

4
vsmnM ~lv!

5S detcoshlv

2 D 1/2F14trS vtanh
lv

2 D2
i

64
ekrmn

3S tanhlv

2 D
kr

S tanhlv

2 D
mn

eabltv
abslt2

i

4
vabsab

1
1

8
eabmnvabS tanhlv

2 D
mn

g5G . ~B6!

Then, using the identity

ea1a2a3a4
eb1b2b3b4

52(
P

~21! [P]dP~a1!

b1 dP~a2!

b2 dP~a3!

b3 dP~a4!

b4 ,

we get

2
i

4
vmnsmnM ~lv!

5S detcoshlv

2 D 1/2H 14trS vtanh
lv

2 D
2

i

8F trS vtanh
lv

2 D tanhlv

2
12vS h2tanh2

lv

2 D G
mn

3smn1
1

8
eabmnvabS tanhlv

2 D
mn

g5J . ~B7!

The RHS’s of Eqs.~B4! and ~B7! coincide. Therefore
M (lv) obeys Eq.~B1!. This completes the proof of formula
~37!.

2. Decompositions of some functions ong matrices

Let us consider theT exponent~87! whereF is a uniform
constant field,f is a plane-wave field, and Eq.~56! takes
place. We are going to prove the identities

4We recall that, in accordance with our notation,
tr F25(F2) m

m 5F n
mF m

n .

7712 55DMITRI M. GITMAN AND STOIAN I. ZLATEV



D@nxcl ,e0#5S 11
ge0
4

Babg [agb]

1
g2e0

2

16
B̄abB̄*

abg5D L̄~e0!, ~B8!

gmD@nxcl ,e0#5K n
m ~1!S gn1

ge0
4

Babg [ngagb] D L̄~e0!,

~B9!

whereB andK are defined by Eq.~13! for the combination
as it was described whileB̄, corresponding to the case of
constant uniform field, is given by Eq.~18!, and

L̄~e0!5expH 2
e0
2 E0

g

dg8TrR̄~g8!!F̄J
5cosh

ge0E
2

cos
ge0H
2

.

Presenting theT exponent in the form~88! and using Eq.
~37! one obtains

D@nxcl ,e0#5S 11
ge0
4

Babg [agb]1
g2e0

2

16
B̄abB̄*

abg5D
3L̄~e0!1Qabg [agb] , ~B10!

where

Q5
ge0
4

L̄~e0!~ B̄2B!1
1

4
C, ~B11!

C5ge0E
0

1

dt ege0F~122t!/2f „nxcl~t!…e2ge0F~122t!/2.

~B12!

In order to find a convenient representation forB we present
K, which is a solution, obeying Eq.~71!, to Eq. ~70!, for
f5nxcl , in the form

K~t!52V~t!@h1V~1!#21, ~B13!

where

V~t!5T expH ge0E
0

t

Fcomb
„nxcl~t8!…dt8J ~B14!

is the solution to the equation

F ]

]t
2ge0F2ge0f „nxcl~t!…GV~t!50. ~B15!

Then, using the defining equation~13! for B ~in which F
must be understood asFcomb) and Eqs.~B13! and~B14!, one
derives

B5
2

ge0
$h22@h1V~1!#21%. ~B16!

Correspondingly, from Eq.~18! we obtain

B̄5
2

ge0
$h22@h1V0~1!#21%, V0~t!5ege0Ft.

~B17!

Solving Eq.~B15! we find

V~1!5V0
1/2~1!S h1C1

C2

2 DV0
1/2~1!, ~B18!

by virtue of the nilpotency@10# of C. Then we substitute Eq.
~B18! into Eq. ~B16! and after straightforward transforma-
tions obtain

B2 B̄5
1

ge0
S coshge0F2 D 21

CS coshge0F2 D 21

. ~B19!

One can verify, using the transversality~41! of am , that
5

C5PECPH1PHCPE . ~B20!

On the other hand, because of the evenness of the function,

S coshge0F2 D 21

5S coshge0E2 D 21

PE1S cosge0H2 D 21

PH .

~B21!

We substitute Eqs.~B20! and~B21! into Eq.~B19! to get, by
virtue of the properties~A5! of the projection operatorsPE
andPH ,

B2 B̄5
1

ge0
S coshge0E2 cos

ge0H
2 D 21

C. ~B22!

Finally, inserting Eq.~B22! into Eq. ~B11! and using

L̄~e0!5S coshge0E2 cos
ge0H
2 D 21

, ~B23!

one finds thatQ50 and that the identity~B8! takes place.
Going to the identity~B9! we use Eqs.~B8! and~14!, the

identity

gmg552
1

3!
e krs

m gkgrgs,

and the antisymmetryBab5B[ab] to bring the LHS into the
form

gmD@nxcl ,e0#5F S h b
m 1

ge0
2

B b
m Dgb1

ge0
4

3S h n
mBab2

ge0
4!

BrsB*
rse nab

m Dg [ngagb] G
3L̄~e0!. ~B24!

From Eqs.~B13! and ~B16! one obtains

K~1!5h1
ge0
2

B, ~B25!

5The projection operatorsPE andPH are defined in Appendix A.

55 7713SPIN FACTOR IN THE PATH INTEGRAL . . .



Km[n~1!Bab]5hm[nBab]1
ge0
2

Bm[lBab] . ~B26!

Because of the antisymmetry ofB,

Bm[lBab]5B[mnBab]52
2

4!
BkrB*

kremnab ,

and, substituting in Eq.~B26!, we get

Km[n~1!Bab]5hm[nBab]2
ge0
4!

BkrB*
kremnab .

~B27!

Finally, we use Eqs.~B25! and~B27! in Eq. ~B24! to get Eq.
~B9!.

3. Identities involving g matrices in 211 dimensions

To prove the identity~105! let us introduce

zm5emnlFnl , z2524w2,

and transform the LHS of Eq.~105! using Eq.~95!:

expH ge04 FmngmgnJ 5cosh
ge0w

2 S 12
izg

2w
tanh

ge0w

2 D .
Taking into account Eqs.~13! and ~A8! and the relation
izg52gFg, one gets Eq.~105!.

Using Eqs.~105!, ~18!, and~95! we find that the identity
~106! is equivalent to the pair of identities

gmBabgagb22i emnlB a
n g [agb]1 i emnlB

nl50,
~B28!

erab~B a
n B b

l 2BnlBab!50. ~B29!

To prove Eq.~B28! one only needs the properties of theg
matrices and Eq.~95!. Because of Eqs.~18! and ~A8!, iden-
tity ~B29! is equivalent to

erab~B a
n B b

l 2BnlBab!50,

which can be checked expressingF in terms ofz:

Fmn5 1
2 emnlz

l.

@1# R. P. Feynman, Rev. Mod. Phys.20, 367 ~1948!.
@2# R. P. Feynman, Phys. Rev.80, 440 ~1950!.
@3# R. P. Feynman, Phys. Rev.84, 108 ~1951!.
@4# E. S. Fradkin,Proceedings of the P. N. Lebedev Physics Insti-

tute ~Nauka, Moscow, 1965!, Vol. 29, p. 7; B. M. Barbashov,
Sov. Phys. JETP48, 607 ~1965!; I. A. Batalin and E. S. Frad-
kin, Teor. Mat. Fiz.5, 190~1970!; M. Henneaux and C. Teitel-
boim, Ann. Phys.~N.Y.! 143, 127 ~1982!; N. V. Borisov and
P. P. Kulish, Teor. Mat. Fiz.51, 335 ~1982!; A. M. Polyakov,
Gauge Fields and Strings~Harwood Academic, Chur, Switzer-
land, 1987!; V. Ya. Fainberg and A. V. Marshakov, JETP Lett.
47, 565 ~1988!; Phys. Lett. B211, 81 ~1988!; Nucl. Phys.
B306, 659 ~1988!; Proceedings of PhIAN~Nauka, Moscow,
1991!, Vol. 201, p. 139; J. Ambjorn, B. Durhuus, and T. Jon-
sson, Nucl. Phys.B330, 509 ~1990!; E. S. Fradkin, D. M.
Gitman, and Sh. M. Shvartsman,Quantum Electrodynamics
with Unstable Vacuum~Springer-Verlag, Berlin, 1991!; E. S.
Fradkin and D. M. Gitman, Phys. Rev. D44, 3230~1991!; D.
M. Gitman and A. V. Saa, Class. Quantum Grav.10, 1447
~1993!; T. M. Aliev, V. Ya. Fainberg, and N. K. Pak, Nucl.
Phys.B429, 321 ~1994!; J. W. van Holten,ibid. B457, 375
~1995!.

@5# I. A. Batalin and E. S. Fradkin, Teor. Mat. Fiz.5, 190 ~1970!.
@6# A. M. Polyakov, inFields, Strings and Critical Phenomena,

Proceedings of the Les Houches Summer School, Les

Houches, France, 1988, edited by E. Bre´zin and J. Zinn-Justin,
Les Houches Summer School Proceedings Vol. 49~North-
Holland, Amsterdam, 1990!; Gauge Fields and Strings~Har-
wood Academic, Chur, Switzerland, 1987!; Mod. Phys. Lett. A
3, 325 ~1988!.

@7# G. M. Korchemsky, Phys. Lett. B322, 334~1989!; Int. J. Mod.
Phys. A7, 339 ~1992!; J. Grundberg, T. H. Hansson, and A.
Karlhede, Phys. Rev. D41, 2642 ~1990!; Nucl. Phys.B347,
420 ~1990!; A. I. Karanikas and C. N. Ktorides, Phys. Rev. D
52, 5883~1995!.

@8# Fradkin and Gitman@4#.
@9# D. M. Gitman and Sh. M. Shvartsman, Phys. Lett. B318, 122

~1993!; 331, 449~E! ~1994!.
@10# E. S. Fradkin, D. M. Gitman, and Sh. M. Shvartsman,Quan-

tum Electrodynamics with Unstable Vacuum~Springer-Verlag,
Berlin, 1991!.

@11# I. L. Buchbinder, S. D. Odintsov, and I. L. Shapiro,Effective
Action in Quantum Gravity~IOP Publishing, Bristol, 1992!; S.
D. Odintsov, Fortschr. Phys.38, 371 ~1990!; 39, 621 ~1991!.

@12# D. M. Gitman, M. D. Noskov, and Sh. M. Schvartsman, Int. J.
Mod. Phys. A6, 4437~1991!.

@13# D. M. Gitman, Nucl. Phys. B~to be published!.
@14# F. A. Berezin,Method of Second Quantization~Nauka, Mos-

cow, 1965!.
@15# J. Schwinger, Phys. Rev.82, 664 ~1951!.

7714 55DMITRI M. GITMAN AND STOIAN I. ZLATEV


