
D-branes and near extremal black holes at low energies

Juan Maldacena*
Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08855

~Received 30 December 1996!

It has been observed recently that many properties of some near extremal black holes can be described in
terms of bound states ofD-branes. Using a nonrenormalization theorem we argue that theD-brane description
is the correct quantum gravity description of the black hole at low energies. The low-energy theory includes the
black hole degrees of freedom that account for the entropy and describes also Hawking radiation. The descrip-
tion is unitary and there seems to be no information loss at low energies.@S0556-2821~97!03112-3#

PACS number~s!: 04.70.Dy, 11.27.1d

I. INTRODUCTION

Recently@1# the entropy of extremal black holes in string
theory was calculated by counting the number bound states
of D-branes. TheD-brane description corresponds to the
weak-coupling limit while the black hole description corre-
sponds to strong coupling. In the first case the gravitational
radius of the configuration is smaller than the string scale
while it is bigger than the string scale for the latter. Extremal
black holes are supersymmetric Bogomol’ni-Prasad-
Sommerfield~BPS! solutions. Supersymmetric nonrenormal-
ization arguments ensure that we can do the counting of
states at small coupling and then extrapolate the result to the
strong-coupling domain. This ensures that theD-brane
counting agrees with the classical area law for the black hole
entropy@1#.

While this explains the agreement found for extremal BPS
solutions@1–4# it has not been clear whyD-brane calcula-
tions for near extremal black holes also agree with black
holes. The agreement includes entropy counting@5–9# as
well as more detailed dynamical properties such as absorp-
tion cross sections and Hawking radiation@10–15#

Here we give a rationale for this agreement for a class of
near extremal five-dimensional black holes~in the so-called
dilute gas region!. The excitations of theD-brane system at
low energies are described in terms of a moduli space ap-
proximation. Using a nonrenormalization theorem we argue
that this low-energy theory receives no corrections when we
increase the coupling and we go from theD-brane region
into the black hole region. Therefore, the same moduli space
describes the low-energy dynamics in the black hole region.
We then argue that the energy of the excitations accounting
for the entropy and Hawking radiation are low enough to be
described within the low-energy field theory. In order to do
this we estimate the size of the corrections to the low-energy
theory, we estimate this on the weakly coupled side and we
see that extending this criterion to the strong-coupling region
gives a sensible picture.

We start in Sec. II by describing the regime of interest,
the type of black holes considered as well as the low-energy
condition. In Sec. III we describe the low-energyD-brane

theory and argue that it can be extrapolated to strong cou-
pling, provided the energy is low enough, we also give the
condition that the energy has to satisfy. In Sec. IV we ex-
plain why things calculated in the two regions should agree.
In Sec. V we study the possibility ofD-brane emission. In
Sec. VI we argue that these results imply that the dynamics
for these black holes is unitary at low energies.

II. LOW ENERGY FIELD THEORY

We start with type IIB string theory compactified on
T55T43S1. We consider five-dimensional black holes~or
six-dimensional long strings! parametrized by the four clas-
sical parametersr 0, r n , r 1, r 5, the four parameters corre-
spond to three charges and the mass. The explicit solution is
written in @16# and we follow the conventions there. The
charges correspond to a system ofQ5 D-five-branes wrapped
on T5, Q1 D-one-branes wrapped onS1 and momentum
P5n/R alongS1.

We consider the dilute gas region defined by@13#

r 0 ,r n!r 1 ,r 5 ~2.1!

for reasons that will become clearer later. In most of the
discussion we take the size of theT4 to be small, of order
V4;a82 andS1 very long ~we will discuss what changes if
S1 is small later on! and we takea851 ~all lengths are
measured in units ofAa8). We also takeQ1;Q5;Q, all
these approximations are done for simplicity and clarity in
the argument and it is straightforward to extend the argu-
ments for more general values ofV4 andQ1ÞQ5. Under
these conditionsr 1;r 5. The typical gravitational radius of
the black hole isr g

25max$r 1
2 ,r 5

2%;gQ. The gravitational ra-
dius is defined by the condition that the redshift between a
static observer and the asymptotic observer becomes of order
one.

In all our discussion the couplingg is smallg!1 so that
closed string effects are small. However, the effective open
string coupling isgQ since it is like a largeN gauge theory1

(N5Q). When the coupling is weakgQ!1 then we are in
the domain of validity of theD-brane perturbation theory. If
gQ@1 we say that the coupling is strong and we are in the

*Electronic address: malda@physics.rutgers.edu 1The open string coupling isgopen;Ag.
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semiclassical black hole domain. Note that this definition of
strong coupling is not the strong-coupling regiong@1 which
is present in usual discussions on string dualities. Here we
have strong coupling because of the large numberQ of
branes.

We also consider the low-energy field theory, the theory
were the energies of all particles satisfy

v2r g
2!1 or v2gQ!1. ~2.2!

For example, in a scattering process the energies of the par-
ticles measured at infinity satisfy Eq.~2.2!. In this limit the
Compton wavelength of the particle is much bigger than the
size of the black hole, so the black hole appears effectively
as a pointlike system from the point of view of the low-
energy theory on the bulk. Note that energies are low with
respect to 1/r g which can itself be very low, for an astro-
nomical size black hole this energy is extremely low, in par-
ticular much smaller than the string scale, the compactifica-
tion scale, and other microscopic scales in the problem. The
various scales are depicted in Fig. 1.

In the low-energy black hole region one can do calcula-
tions using the method of quantum fields on a fixed classical
background, this is the semiclassical domain, it is the domain
in which Hawking radiation occurs, for near extremal black
holes the wavelength of Hawking radiation is much bigger
than the gravitational size of the black hole, 1/TH@r g . If
1!r 0

21r n
2 , r 1

2 , r 5
2 these calculations do not receive anya8

corrections.2 One can compute Hawking radiation in this
way, absorption cross sections, etc. The traditional semiclas-
sical view @17,18# is that in this case we can only have a
thermal description of the system, the emitted particles do
not know about the microscopic state of the black hole.

There are, however, things that we cannot do in this low-
energy domain, we cannot measure the local geometry, since
waves have wavelengths much greater than the gravitational
radius, the observer at infinity cannot measure the precise
shape of the metric outside the horizon. His measuring rod is
longer than the black hole. For him the black hole is as a
pointlike system that can absorb energy and radiate it back
thermally. It should be noted, however, that the absorption
cross section depends on some features of the geometry, so it
is in some sense a measure of the geometry, but not detailed
enough to sense the precise form of the metric.

III. D-BRANE LOW-ENERGY THEORY, MODULI SPACE
APPROXIMATION

We will now concentrate on the open string sector of the
theory describing the excitations of theD-branes. This sector
becomes strongly coupled in the black hole region. This
theory is a (111)-dimensional field theory with~4,4! super-
symmetry since this is the supersymmetry left unbroken by
the extremalD-branes (1D15D branes!. This supersymme-
try is similar toN52 in D54. These theories have vector
multiplets and hypermultiplets. In two dimensions the vector
multiplet and hypermultiplet seem very similar, both have
four physical scalar components. The distinction between
them is that they have different transformation properties un-
derR symmetries. This was discussed in the context of three-
dimensional theories in@19# where the same problem ap-
peared. To understand this it is useful to think of this theory
as the dimensional reduction of a six-dimensionalN51
theory. In six dimensions there is a SU~2!R symmetry, the
vector multiplet has no scalar components and its bosonic
components are trivial under the SU~2!R . On the other hand,
the hypermultiplet has four scalar components transforming
as the 2 of SU(2)R . When we reduce to two dimensions we
have an extra SO~4!;SU(2)L̃3SU(2)R̃ R symmetry, again
the vector and hypermultiplets will transform differently un-
der theseR symmetries and that is what distinguishes them.
It is interesting also that the two SU~2! factors coming from
SO~4! are correlated with the chirality in the
(111)-dimensional theory;L̃ and R̃ denote also left and
right moving. The vector multiplets are related to separation
of the branes in the extended four spatial dimensions and the
hypermultiplets correspond to ‘‘dissolving’’ the one-branes
inside the five-brane@20#. This SO~4! symmetry of the gauge
theory corresponds the SO~4! rotational symmetry of the
five-dimensional black hole@2#.

When we go to low energies we will keep only the mass-
less excitations and terms in the Lagrangian which are at
most quadratic in the velocities. TheD-brane low-energy
theory consists of 4Q1Q5 massless fields parametrizing the
moduli space of the bound state of one-branes and five-
branes. The moduli space is topologically

M5~T4!Q1Q5/S~Q1Q5!, ~3.1!

whereS(m) is the permutation group ofm elements. This
moduli space was obtained by duality arguments~by Vafa
@21#! and it was later shown in@22,23# that this gives a
microscopic counting of BPS states with chargesn, Q1, Q5
which is fully U-duality invariant. Summarizing, the situa-
tion is that we know by indirect arguments that the moduli
space should be Eq.~3.1!, at least topologically. In principle
one could calculate the metric on this moduli space in the
weakly coupledD-brane theory.

As in four @24# and three@25# dimensions it is possible to
prove that supersymmetry implies that there are no couplings
between vectors and neutral hypermultiplets. A simple way
to see this is the following,3 first we choose two left moving

2If r 0@1 it is easy to see that there is a smooth horizon, of size
bigger thana8, however, we could also have a smooth horizon in
the extremal limitr 050, as long asr n@1 @in other words, as long
as we have three large charges (n, Q1, Q5)#.

3I thank D. Kabat for pointing out an error in my previous argu-
ment.

FIG. 1. Various scales in the problem, withr 0, r n!r 1, r 5!l.
The sizes of the circles give an idea of the areas of the three-spheres
andl is the typical wavelength of the particles we scatter.
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and two right moving supercharges out of the~4,4! available
and we realize explicitly a~2,2! supersymmetry by using
~2,2! superfields. In terms of~2,2! superfields the hypermul-
tiplet decomposes into a pair of chiral multipletsfh and the
vector decomposes into a chiral multipletfv and a twisted
chiral multipletx @26#. The general~2,2! Lagrangian for chi-
ral and twisted chiral fields was considered in@26#. It is
determined by a single functionK(fp , f̄q , xa , x̄ b) which
gives the metric and antisymmetry tensor field (B field! of a
nonlinears model

Gpq̄5]p] q̄K, Gab̄52]a] b̄K,

Bp b̄5]p] b̄K, Bq̄a5] q̄]aK, ~3.2!

and the rest vanishes, including the metric components mix-
ing the chiral and twisted chiral multipletsGpb̄50 and
Bp q̄5Ba b̄50. If we now perform a SU(2)L̃ rotation on the
system we can define new (28,28) charges so that the chiral
multiplets coming from the vector multiplet become twisted
chiral and vice versa,fv85x, x85fv , the chiral multiplets
coming from the hypermultipletsfh stay as chiral multiplets.
Combining the constraints of~2,2! invariance with (28,28)
invariance we conclude that the metric andB-field compo-
nents mixing the hypermultiplets with the vector multiplets
vanish, Gfhfv

5Gfhx5Bfhfv
5Bfhx50. Using Eq. ~3.2!

we see that thes model factorizes K5K(fh ,f̄h)
1K(fv ,f̄v ,x, x̄ ). The hypermultiplet metric is then hyper-
Kähler since thes model has~4,4! supersymmetry and it has
no torsion (B field! @27#. The vector multiplet moduli space
corresponds to the models studied in@26# and it is a gener-
alized ‘‘hyper-Kähler’’ manifold, which in some cases can
be reduced, via a duality transformation, to a usual hyper-
Kähler manifold@26#. In any case, the conclusion is that the
hypermultiplets are decoupled from the vector multiplets.4

We are interested in the hypermultiplet moduli space
since it parametrizes the space of possible bound state con-
figurations@1,28#. Following the ideas in@29# we regard the
coupling constant as a background field, which should then
be a vector multiplet since it appears in front of the gauge
kinetic term, an interaction that would be forbidden if it were
a hypermultiplet. This implies that there are no corrections,
perturbative or nonperturbative, to the hypermultiplet moduli
space. This implies that the hyper-Ka¨hler metric, once we
calculate it, is not renormalized when we increase the cou-
pling.

In two dimensions we also have to worry about the fact
that vacuum expectation values are not well defined for
massless fields. It is more accurate to speak about the result-
ing conformal field theory rather than the moduli space itself.
It is a conformal field theory because a hyper-Ka¨hler metric
is Ricci flat @27#. The statement would be that the conformal
field theory can be extrapolated from weak to strong cou-
pling. However, there is another related problem which is
that the branches on the moduli space are not so well sepa-

rated. There is a nonvanishing probability for the system to
wander into the vector moduli space, which corresponds
physically to the emission ofD-branes, the scalars of the
vector multiplet correspond to separating the brane in the
extendedR4 spatial dimensions. We will argue in Sec. VI
that this process is highly suppressed for entropy reasons.
Similar problems appear when nonrenormalization theorems
are applied to the quantum mechanics ofD-zero-branes
@30,31#.

As an aside, notice that there are indeed corrections to the
vector moduli space, for example, if a one-brane is far from
the five-branes then the moduli space is classically flat but
there is a one-loop correction coming from integrating out
the massive~1,5! strings that gives thegQ/r 2 correction to
the metric in moduli space@32#. This also shows that the
coupling constant is indeed in a vector multiplet, otherwise it
could not have affected the vector multiplet moduli space.

Note that the ‘‘D-brane theory’’ that has been applied to
compute the entropy@5# and scattering cross sections@11,13#
was precisely this moduli space approximation to the motion
of the D-branes since only the massless excitations on the
branes were taken into account. So it is this moduli space
approximation that has been observed, by direct calculation,
to agree with the semiclassical results at strong coupling.

The conclusion is then that at low enough energies the
excitations of the system are correctly described by this
moduli space approximation, even for strong coupling. Now
the question is: what energies are ‘‘low enough?’’

First let us estimate, in the weak-coupling theory, what
the mass of the least massive states is. One appealing picture
is to think of the one brane charge as carried by instantons on
the five-brane gauge theory@20#. However, this parametriza-
tion is physically reasonable only whenQ1!Q5 ~more pre-
cisely r 1

2!r 5
2) otherwise the total energy in the instantons is

comparable to the energy of the five-branes and the five-
brane might bend or deform where there are many instan-
tons. In other words, higher order terms in a Dirac-Born-
Infeld-type action of the five-brane might be important. In
the case ofQ1;Q5 it seems more reasonable to consider a
set of two intersecting three-branes~intersecting along the
S1). Then the massless degrees of freedom are somehow
associated to theQ1Q5 intersection lines. The transverse
space of each set of three-branes is a two torus~say of size
a8). The three-branes look like points on this two torus. If
we assume that theQ three-branes are uniformly distributed
we find that the distance between one and the nearest neigh-
bor is typically r 2;1/Q, so thatm2;1/Q.

Corrections due to the massive modes will go like

g
v2

m2 . ~3.3!

This implies that the corrections due to the lightest massive
mode are proportional to

gQv2!1, ~3.4!

which is small in the regime defined by Eq.~2.2!. There are
also some other possibly light modes likeD-strings going
between two different three-branes, which would have a
massm2;1/gQ and an interaction strength of order 1, giv-
ing corrections proportional to Eq.~3.4! again. There are

4They are decoupled locally but there could be some global iden-
tifications, which can usually be seen classically and will not affect
our later argument. I thank N. Seiberg for pointing this out to me.
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points in the moduli space where some states could become
light, for example, if two three-branes come close to each
other. This seems to affect a small fraction of the hypermul-
tiplets (Q of them vs a total ofQ2) therefore it will result in
a small correction. Since there is a large number of massive
states there are largeN(5Q) effects going like

gQ
v2

m̄2
, ~3.5!

wherem̄ is the average mass andgQ is the effective large
N(5Q) coupling. Butm̄2;1 since the typical distance be-
tween any two three-branes is of the order of the compacti-
fication volume, so that we get Eq.~2.2! again. Presumably
all other effects we could imagine would also be proportional
to Eq. ~3.4!. The different regions in parameter space are
shown in Fig. 2.

In the case that the radius of the circle is small the low-
energy theory corresponds to a (111)-dimensional field
theory whose target space is the moduli space~3.1! but now
on small circle. The fact that we divided out by the permu-
tation group enables us to have twisted sectors in the low-
energy conformal field theory which correspond to long mul-
tiply wound ‘‘fractional’’ strings@23#. These twisted sectors
support excitations whose energy gap is much smaller than
1/R (R is the radius ofS1). The gap actually becomes
1/RQ1Q5 which is much smaller thanTL , TR in the limit of
large charges@33#.

IV. D-BRANE VERSUS BLACK HOLE COMPUTATIONS

We saw in the previous section that the moduli space
metric for the system of one- and five-branes is not changed
as we make the coupling strong. This nonrenormalization
theorem ensures that there are some low-energy processes
that can be calculated in the strong-coupling regime~the
black hole regime!. The entropy of the system will be accu-
rately given by the moduli space approximation if the typical
energy of the massless modes, which is proportional to
TL , TR , satisfies Eq.~2.2!. This is indeed the case if
r 0, r n!r 1, r 5 since the temperatures are bounded by
TL,R<Ar 021r n

2/r 1r 5!1/r g @5#. So we conclude that the en-

tropy is accurately given by theD-brane moduli space ap-
proximation, provided we are in the dilute gas region~2.1!.

Now let us turn to the scattering processes considered in
@11,13#. The scalar considered there was an internal compo-
nent of the metrichi j of the four-torus. Since this metric
appears in the moduli space metric of the low-energy
D-brane theory, we conclude that its coupling to the mass-
less degrees of freedom is not renormalized.

The calculations@15# that probe the higher order terms in
the Nambu action might also be understood by using this line
of argument. The moduli space~3.1! seems to imply that the
excitations of the system are ‘‘fractional’’ strings; this is in-
deed true for BPS states@23#. It seems natural that these
strings should couple to the background metric with the
Nambu action. This deserves a more careful analysis.

V. BLACK HOLE FRAGMENTATION 5

One of the possible decay modes of a black hole is by
emission of charged particles, by which the black hole loses
its charge; in some sense it fragments into the elementary
constituents. In principle it can emit Kaluza-Klein~KK ! mo-
mentum, one-brane winding charge, and five-brane charge;
the first one can be described in theD-brane moduli space
approximation described above@12,13# and the last two cor-
respond to someD-brane leaving the system. If we have a
near extremal black hole which carries three charges large
n, Q1, Q5 then there is an entropic suppression factor for the
emission of charged particles. For example, if it emits one
unit of KK momentum, then the change in the extremal black
hole entropy isdS5pAQ1Q5 /n. The emission amplitude
therefore has a phase space suppression factore2dS. If all
charges are large thendS is very large. This is independent
of whether we are in the dilute gas approximation or not,
here the question is whether the quantized values of the
charges are large or not.

In our discussion above we have ignored the possibility
that theD-branes leave the black hole since all our discus-
sion concentrated on the hypermultiplet moduli space. As
long asR is not too smallR>a8 D-brane emission will be
suppressed because of the change in entropy
dS;pAQ5nL,R /Q1 which is large in the regionr 0

21r n
2@1

corresponding to black holes with smooth horizons and small
a8 corrections. The conclusion is that theD-brane system
corresponding to smooth, big, classical black hole solutions
always have largenL or nR so thatD-brane emission is sup-
pressed. Momentum emission~KK charge! could or could
not be suppressed.6 Indeed, if the radius ofS1 is very large,
thenn can be very large while we are still in the dilute gas
region. One should also ensure that theD-one-branes do not
‘‘locally’’ separate from theD-five-branes in the transverse
directions. Indeed, it can be seen that if a part of a
D-one-brane of lengthl51/TL,R ~the typical wavelength of
particles! is repeated in the transverse directions, then the
decrease of the entropy will be of the orderdS;Q5@1 so

5Many of the remarks in this section originated in discussions
with A. Strominger.
6The situation isU-duality asymmetric because we are insisting in

g!1 andR>a8.

FIG. 2. Different regions in the space of parameters of a near
extremal configuration.D-brane results can be extrapolated for low
energies.
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that this process is indeed suppressed. In this case KK charge
emission is not suppressed and the black hole, more properly
a black string, will discharge. In the case thatR is small, say,
of the order ofa8 then we could take allQ1, Q5, n to be
large in fixed proportions, then the charged emission will be
suppressed. This can be intuitively understood by remember-
ing that all charged particles would have large masses so
they are not likely to be emitted. In fact, the suppression
factor goes likee21/RTL @13#. It is very important that in this
case~smallR) the moduli space includes twisted sectors rep-
resenting multiple windings, ensuring a small energy gap and
the existence of the low-energy excitations that account for
the entropy. Notice that the total energy of the excitations on
the moduli space is large but the temperature is small, due to
the large number of degrees of freedom.

These reasons explaining whyD-brane emission is sup-
pressed also justify our restriction to the hypermultiplet
moduli space in theD-brane analysis of Sec. IV. It seems
that the best scenario for discussing the excitation and decay
of an extremal black hole is the one withR small and large
Q1, Q5, N, since in this case the black hole does not frag-
ment, it has a smooth geometry from the classical point of
view and can be described by theD-brane moduli space as
long as we are in the dilute gas and low-energy regions~2.2!.

VI. INFORMATION LOSS

We have shown above that starting with aD-brane system
we can go to strong coupling and still continue having the
same description at low energies. It includes back reaction
and it keeps track of the black hole microstates. The descrip-
tion is unitary, the unitarity problem disappears when we use
the full string theory.

At the same time we have the traditional semiclassical
description of the black hole. Since both descriptions pertain
to the same physical object they should somehow agree. The
semiclassical results are recovered when we trace over the
black hole microstates provided by theD-brane description.
It is important here that we are restricted to low energies
~2.2!; at low energies the black hole already looks like a

pointlike system, so that replacing it by theD-brane moduli
space theory just amounts to providing a description of the
black hole states and their interactions with the outside
world. This effective low-energy theory is similar in spirit to
the low-energy description of the scattering of massless fer-
mions off a magnetic monopole~Callan-Rubakov effect!
@34#, where one replaces the monopole by a rotator sitting at
the origin. It is clear that the low-energyD-brane moduli
space Hamiltonian is unitary; massive modes provide just
small corrections. A big difference between the two descrip-
tions is that theD-brane description keeps track of the black
hole microstates. Only after tracing them out we get the
usual thermodynamic description.

There is an interesting question: what exactly is the prob-
lem about the usual information loss argument in this case?
The answer is not totally clear, it is an interesting problem.
Hawking’s thermal matrix@18# relies on tracing over the
modes that go into the black hole, theD-brane picture sug-
gests that one should think of these modes as part of the
black hole excitations, so it is not reasonable to trace over
them if one is keeping track of the changes in the black hole
microstate as the radiation is emitted. There have been many
suggestions in the literature of things that could be wrong
such as some nonlocality of string theory at high relative
boosts@35#, the ideas of black hole complementarity@36#,
etc.

Even though this argument says that there is no informa-
tion loss at low energies there could indeed be information
loss at higher energies since theD-brane moduli space de-
scription is valid only at low energies. So the general ques-
tion remains open but there is a corner~low energies! from
which it seems eliminated. It would be nice to extend these
arguments to near extremal four-dimensional black holes.

It is a pleasure to thank V. Balasubramanian, T. Banks,
M. Douglas, D. Kabat, D. Lowe, S. Mathur, J. Polchinski, N.
Seiberg, S. Shenker, A. Strominger, and C. Vafa for discus-
sions, valuable comments, and suggestions. This work was
supported in part by U.S. DOE Grant No. DE-FG02-
96ER40559.
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