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Recent developments in string theory have brought forth considerable interest in time-dependent hair on
extended objects. This novel new hair is typically characterized by a wave profile along the horizon and
angular momentum quantum numbersl ,m in the transverse space. In this work, we present an extensive
treatment of such oscillating black objects, focusing on their geometric properties. We first give a theorem of
purely geometric nature, stating that such wavy hair cannot be detected by any scalar invariant built out of the
curvature and/or matter fields. However, we show that the tidal forces detected by an infalling observer diverge
at the ‘‘horizon’’ of a black string superposed with a vibration in any mode withl>1. The same argument
applied to longitudinal (l50) waves detects only finite leading-order tidal forces. We also provide an example
with a manifestly smooth metric, proving that at least a certain class of these longitudinal waves have regular
horizons.@S0556-2821~97!06610-1#

PACS number~s!: 04.70.Dy, 04.50.1h, 11.25.Mj

I. INTRODUCTION

One of the most confounding puzzles about black holes in
general relativity is the apparent incompatibility between
their extremely simple structure, governed by the famous
no-hair uniqueness theorems@1#, and their generically large
thermodynamic entropy@2#. The former indicates that the
complexity associated with the latter is not encoded in the
classical solutions. The crux of the no-hair theorems in gen-
eral relativity is that regardless of how a black hole was
formed it is completely described once its mass, spin, and
Abelian electric or magnetic charges are determined. All
other types of long-range interactions, such as scalars with or
without self-interactions, massive or non-Abelian gauge
fields, etc., are excluded because they would either lead to
naked singularities@1# or would be unstable and thus would
disappear shortly after the formation of the black hole@3#.
More specifically, the machinery of the no-hair theorems
rests on the assumption of regularity of a stationary null
surface, i.e., the event horizon, and the demonstration that it
leads to the vanishing of all matter charges, other than Abe-
lian, which could carry long-range interactions. Because the
equivalence principle demands that the fields be coupled
minimally to gravity, the vanishing of charges in stationary
spherically symmetric space-times implies the vanishing of
the external fields or hair. A small deviation from these re-
sults are black holes with non-Abelian hair, where the hair
arises because of the nonlinearities in the gauge field equa-
tions of motion; however, this hair is unstable to perturba-
tions, with the hairy black hole rapidly decaying into a bald
one @3#. The final result is that all of the structure of the
configuration which collapsed into a black hole not encom-

passed by mass, spin, and Abelian charges must have been
radiated away in the process of formation of the hole.

Recent developments in nonminimal models of gravity,
and especially in string theory, where the modifications of
general relativity have a firmer foundation, have brought
about some explicit counterexamples to the no-hair theorems
@4#. Namely, the models considered involve new nonminimal
couplings which provide extra sources in the equations of
motion. However, whereas the particular solutions to these
modified equations carry nontrivial long-range hair exterior
to black holes, there are no new constants of integrations and
so these aberrations of the no-hair theorems are deviations in
letter only and not in spirit. The new charges are completely
determined by the charges already present in Einstein’s
theory, and the nonminimal hair is secondary~as opposed to
the primary hair carried directly by the black hole charges!.1

Nevertheless, the secondary hair does affect thermodynamic
properties of black holes, changing the expressions for both
the temperature and the entropy@4#.

Another kind of black hole hair may appear if we abandon
the constraint of stationarity@5–11#. Recent developments in
string theory have brought forth a considerable interest in
time-dependent hair on black holes and extended objects. In
particular it has been suggested that such hair might give a
classical accounting of the black hole entropy@8,11,15#. In
any event, one might expect that this situation would be a
more realistic description of a black hole, because stationary
black holes could exist only as ‘‘hermits’’ in complete soli-
tude; yet their very nature precludes this, as their own gravi-
tational field permeates the whole Universe and communi-
cates with all of its inhabitants. The principal obstacle to
studying nonstationary problems is an enormous complexity
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1The secondary hair will be stable because the monopole charges
do not vanish, in contrast with the non-Abelian hair mentioned
above.
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of gravitational equations of motion, often resulting in their
intractability. Indeed, there are comparatively few exact non-
stationary localized solutions known to date, and none of
them corresponding in all important aspects to the physical
picture of black holes. Still, some of these solutions may
provide useful models to study realistic hairy black holes.
Most of these solutions arise because we can embed four-
dimensional black holes in higher dimensions via a proce-
dure inverse to dimensional reduction~thus, the term
‘‘oxidation’’—see, e.g.,@24#!. In certain special cases, the
resulting oxidized solution has a null, hypersurface-
orthogonal, Killing vector@12–16#. They can be used as a
natural starting point for the construction of a more general
family of nonstationary solutions characterized by a set of
arbitrary functions. The presence of this isometry indicates
that there exists a much larger family of wavelike solutions
which reduces to the black-hole-like solution for the special
choice of its degrees of freedom. A similar correspondence
exists, for example, between the Brinkmann wave solutions
in general relativity and flat space. We can get a glimpse of
this larger family by using a solution-generating technique
defined by Garfinkle and Vachaspati@17# as a method to
restore some of the original wave degrees of freedom. The
resulting solutions still possess a null hypersurface-
orthogonal Killing vector, and thus describe a gravitational
disturbance propagating through the original environment at
the speed of light, i.e., a gravitational wave.

A fundamental question of interest is to determine if this
larger family still has a regular null surface, which can be
reached by causal or null geodesics, i.e., an event horizon. In
this paper, we will examine this question for a certain family
of five-dimensional black strings with a single wave profile
function in an (l ,m) multipole mode. First, however, we will
give a theorem of purely geometric nature~valid in any
theory of gravity which assumes a pseudo-Riemannian ge-
ometry as the basis for the description of gravitational inter-
actions! that such wavy hair generated by the Garfinkle-
Vachaspati technique@17# cannot be detected by any scalar
invariant built out of the curvature and/or matter fields. How-
ever, in our example, we will show that the tidal forces mea-
sured by an infalling observer diverge at the ‘‘horizon’’ of
the black string superposed with a vibration in any mode
with l>1. Hence the solutions with excited dipole or higher
multipole modes contain null singularities. The same argu-
ment applied to the monopole mode shows that the leading
order tidal forces are finite. We will also construct a class of
monopole wave profiles for which the metric is manifestly
smooth. Hence at least some of the wavy strings indeed have
regular horizons.

The paper is organized as follows. In the next section, we
give a review of the wave-generating technique, outlining the
conditions the matter distribution must satisfy for the method
to work. In Sec. III we present our theorem on the elusive
nature of Garfinkle-Vachaspati waves, and give its detailed
proof. Section IV contains the derivation of the explicit form
of the wave–black-string solution and a brief discussion of
some of its properties. We show that these solutions contain
null singularities for all higher multipole modes (l>1) later
in Sec. IV. In the last section, we construct an explicit family
of longitudinal wave (l50) solutions for which the metric
is analytic on the horizon~and not only continuous, as

shown in@9#!. Finally, we present our conclusions and con-
sider directions for future investigations.

II. GARFINKLE-VACHASPATI WAVES

In this section, we review the wave-generating technique
of Garfinkle and Vachaspati@17#. In doing so, we outline the
situations in which it may be applied, i.e., the restrictions
which must be satisfied by the metric and matter fields. The
crucial requirement is that the solution possess a null,
hypersurface-orthogonal, Killing vector. The resulting pres-
ence of a null coordinate allows one to effectively ‘‘linear-
ize’’ Einstein’s equations and restore hidden wave degrees of
freedom. The method was originally proposed for the Yang-
Mills-Higgs system coupled to gravity and applied to straight
cosmic string solutions in four dimensions@17#. It was later
extended to gravity coupled to a scalar and a two-form po-
tential in five dimensions in the context of low-energy string
theory @18#. It was also used to construct similar wavy ax-
ionic strings in Refs.@6,7#. The following description will
consider gravity in arbitrary dimensions coupled to a matter
sector including various scalars as well as a set of different
p-form potentials. Thus this discussion shows that this tech-
nique is quite generally applicable in supergravity or low-
energy string theories@19#.

Let us assume an action of the form

I5E dDxA2gSR~g!2
1

2(a ha~f!~¹fa!
2

2
1

2(p f p~f!F ~p11!
2 D . ~1!

Thus, as well as the metric, we have included a collection of
scalar fieldsfa , which appear with nonderivative couplings
in the coefficient functions,ha(f) and f p(f). The above
action also involves a set ofp-form potentialsA(p) through
their field strengthsF (p11)5dA(p) . Hence there is a~Abe-
lian! gauge invariance associated with these fields,
dA(p)5dl (p21) . Note that this action is written in terms of
the Einstein-frame metric, by which we mean that there are
no couplings to anyfa appearing in the Ricci scalar term of
Eq. ~1!. Now the gravity equations of motion may be written
as

Rm
n2 1

2 dm
nR5 1

2 T
m

n , ~2!

where

Tm
n5(

a
ha~f!@gmr]rfa]nfa2

1
2 dm

n ~grl]rfa]lfa!#

1(
p

f p~f!$~p11!@F ~p11!#
mr1•••rp@F ~p11!#nr1 . . . rp

2 1
2 dm

n@F ~p11!#
r1•••rp11@F ~p11!#r1•••rp11

%, ~3!

while the matter field equations may be written as

05]m@Agha~f!gmn]nfa#2 1
2Ag(

b

]hp~f!

]fa
¹mfb¹mfa

7626 55NEMANJA KALOPER, ROBERT C. MYERS, AND HAROLD ROUSSEL



2 1
2Ag(

p

] f p~f!

]fa
@F ~p11!#

r1•••rp11@F ~p11!#r1•••rp11
,

~4!

05]m$Ag fp~f!@F ~p11!#
mr1•••rp%. ~5!

For later purposes, we have been explicit about the appear-
ance of the spacetime indices in these equations.

Now within this theory let us assume a solution
(g,fa ,A(p)) for which there exists a vector fieldk

m which is

null: kmkm50; ~6!

hypersurface orthogonal:¹ [mkn]5k[m¹n]S; ~7!

and Killing: ¹~mkn)50. ~8!

Combining these equations, it is easy to show thatk has a
vanishing Lie derivative onS, i.e., LkS5km]mS50. Since
we wishk to yield an invariance of the full solution, it is also
assumed to have a vanishing Lie derivative on the matter
fields; i.e., the matter fields are form invariant along the flow
of k. Hence,

Lkfa5km]mfa50, ~9!

LkF ~p11!5~dik1 i kd!F ~p11!5dikF ~p11!50, ~10!

where the latter usesLv5div1 i vd on forms withi v denot-
ing the interior product, and the Bianchi identities
dF(p11)50. This form invariance of the matter fields guar-
antees that the stress-energy tensor is form invariant, as it
must be given that Einstein’s equations~2! are satisfied. Note
that for the form fields, the vanishing Lie derivative is im-
posed on the physical field strengths rather than the gauge-
variant potentials — the latter may vary by a gauge transfor-
mation along thek flow, LkA(p)5dl (p21) . In the following,
we will further require that these fields satisfy an additional
transversality constraint, namely,

i kF ~p11!5k`u~p21!. ~11!

Here, the right-hand side is the wedge product of the one-
form kmdx

m with some (p –1!-form u (p21) , which neces-
sarily satisfiesi ku (p21)50 since (i k)

2F (p11)50—see Sec.
III A, for details.

The solutions satisfying the above conditions can be in-
terpreted as gravity waves. Consider the coordinate system
adapted to the flow ofk—as well as the cyclic coordinate
v, there is a coordinateu, given ‘‘roughly’’ by the integral of
the dual one-formk5kmdx

m. The vanishing Lie derivatives,
Eqs.~8!, ~9!, and~10!, simply means that none of the fields
depend onv. Hence the only ‘‘time’’ dependence can arise
through the null coordinateu and, hence, represents pertur-
bations moving at the speed of light in a certain direction of
the space-time. The Garfinkle-Vachaspati~GV! solution-
generating technique extends the solution by restoring addi-
tional wave degrees of freedom. To do this, they define a
new metric by@17#

gmn8 5gmn1eSCkmkn , ~12!

while leaving all of the matter fields unchanged.2 The con-
figuration (g8,fa ,Ap) also yields a solution provided the
function C satisfies appropriate constraints. These restric-
tions will guarantee that after the metric is modified the form
of the explicit fields appearing in the equations of motion
remains unchanged. Hence Eq.~12! is promoted to a map on
the space of solutions. In order to maintain the wave inter-
pretation of the new solution, first one requires thatk have a
vanishing Lie derivative onC, i.e., km]mC50. One may
verify that this ensures that the hypersurface orthogonal and
Killing conditions, Eqs.~7! and~8!, are still satisfied with the
new metric~with the sameS). It is also obvious that the null
condition ~6! still holds with g8. To determine what other
restrictions must be imposed onC, one must consider the
changes which the map~12! induces in the equations of mo-
tion, Eqs.~2!–~5!.

We begin by demonstrating that the matter field equations
are invariant under Eq.~12!. First note that the determinant
of the metric would only be modified by terms proportional
to kmkm . However, sincek is null, the determinant is invari-
ant: det(g8)5det(g). On the other hand, the inverse to the
metricgmn8 is given by

g8mn5gmn2eSCkmkn. ~13!

Now, given the transversality constraint~11!, we see that
raising all of the indices of the form fields with the new
metric yields

@F ~p11!8 #m1•••mp115@F ~p11!#
m1•••mp111p~p11!

3k[m1km2@u~p21!#
m3•••mp11]

5@F ~p11!#
m1•••mp11, ~14!

where in the first line terms with more powers ofk have
automatically vanished sincei ku (p21)50. Given this result
as well as the invariance of det(g), it is clear that the equa-
tions of motion for the form fields~5! are left unchanged by
the map~12!. Further, given the vanishing Lie derivative~9!,
it is clear thatg8mn]nfa5gmn]nfa and hence the scalar
equations~4! are also unchanged. Thus we have shown that
the configuration (g8,fa ,Ap) provides a solution of all of
the matter field equations.

The same considerations as above also show that the
stress-energy tensor with mixed indicesTm

n , given in Eq.
~3!, remains unchanged when the metric is modified as in Eq.
~12!. The only step which remains in examining the gravity
equation is to compute the change of the mixed-index Ein-
stein tensor. This is reduced to computing the change in the
Ricci tensor only, because the Ricci scalar may be eliminated
from Eq.~2! usingR5@1/(22D)#Tm

m in D dimensions. It is
straightforward to calculate that the Christofel symbols for
the two metrics are related byG8nl

m 5Gnl
m 1Vnl

m where

Vnl
m 5 1

2 @¹n~eSCkmkl!1¹l~eSCkmkn!2¹m~eSCknkl!# .
~15!

2Throughout this section,km5gmnk
n. However, from the defini-

tion of the metricgmn8 and the fact thatk is null, it does not matter
which metric we use to lower and raise the index ofk.
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Further, using the properties ofk, as well as
km]mS505km]mC, one can show that Vmn

m 505

km¹lVmn
l 5Vml

r Vrn
l . Thus one finds thatR8ln5Rln

1¹rVln
r and hence

R8m
n5Rm

n1eSCkmklRln1¹r~Vln
r gml!. ~16!

Again, using the properties ofk, one can show that
klRln5kn¹2S/2. Substituting this into Eq.~16! and after a
few more manipulations, we finally arrive at@17#

R8m
n5Rm

n2 1
2e

Skmkn¹2C. ~17!

Therefore, the variation of the mixed Ricci tensorRm
n under

Eq. ~12! is proportional to¹2C, and so vanishes if we de-
mand thatC solve the covariant Laplace equation~in the
background defined bygmn).

Therefore, given a solution for which Eqs.~6!–~11! are
satisfied, then Eq.~12! provides a map to a new solution
provided

km]mC50 and ¹2C50. ~18!

We note that the condition¹2C50 is really just the spatial
Laplace equation sincekm]mC50. Furthermore, the latter
indicates that the moduli of the new solutions only depend
on the retarded time—u, above—and therefore they still rep-
resent gravitational waves.

The preceding discussion was phrased in terms of the
Einstein-frame metric. However, in some instances~such as
the example in Sec. IV!, it is more convenient to work in
terms of a conformally related metric, e.g.,

g̃mn5ea~f!gmn. ~19!

Given in terms ofg̃, the action will contain nonminimal cou-
plings of the scalar fields to the Ricci scalar. It is straightfor-
ward to show that most of the constraints~6!–~11! are un-
changed when written in terms of the conformally
transformed metric. The only change is that the hypersurface
orthogonal condition~7! becomes

¹̃ [mk̃n]5 k̃[m¹n]S̃ where S̃5S2a~f!. ~20!

Here we have denotedk̃m5g̃mnk
n. Thus the map~12! be-

comes

g̃ mn8 5g̃mn1eS̃C k̃mk̃n , ~21!

which is equivalent tog̃mn8 5ea(f)gmn8 . Finally, of course, the
constraints onC, which ensure that Eq.~21! provides a so-
lution of the gravitational equations of motion, are identical
to those appearing in Eq.~18!. The latter may be written as
follows, when expressed in terms ofg̃:

km]mC50 and ]m~e~22D !a~f!/2A2g̃ g̃mn]nC!50,
~22!

where againD denotes the dimension of the spacetime.
Before concluding this section, let us mention a few

simple extensions of the original action~1! for which the
preceding discussion would still be applicable. First, we
could add a scalar potentialU(f) ~which could then include

a cosmological constant! to Eq. ~1!. This would modify the
stress energy~3! by a term proportional todm

nU(f), as well
as adding a]fa

U term to the scalar equations~4!. Both of
these terms are obviously invariant under the map~12! and
so the above construction is still valid.

Another nonminimal coupling, which commonly arises
among the form fields, is Chern-Simons-like terms appearing
in the definition of the field strengths; e.g., for some choice
of m andn, F (m1n11)5dA(m1n)1aA(m)`dA(n) , where we
still assumeF (m11)5dA(m) andF (n11)5dA(n) . This defini-
tion leads to two modifications in the equations of motion.
~Note that forF (m1n11) the Bianchi identity is also modified,
dF(m1n11)5aF (m11)`F (n11) , but this has no conse-
quences for the present discussion.! First, Eq.~5! is modified
for p5m by the introduction of a source term which is pro-
portional to

Ag @F ~m1n11!#
r1•••rmm1•••mn11@F ~n11!#m1•••mn11

. ~23!

With the same transversality constraint onF (m1n11) as
above, Eq.~11!, we still conclude that its form with all indi-
ces raised remains invariant, as in Eq.~14!, and hence this
new term is also unchanged by Eq.~12!. The second change
is the appearance of a source term in Eq.~5! for p5n. In this
case, upon applying the equation of motion~5! for
p5n1m, this second source term takes precisely the same
form as above, merely interchanging the roles ofm andn.
Therefore it is also invariant under the map~12!. Thus the
GV procedure will still be valid for solutions where these
Chern-Simons-like couplings make nontrivial contributions.

The final extension which we will consider is the addition
of topological interactions, e.g.,

E A~ l !dA~m!dA~n! ,

wherel 1m1n125D. Such an interaction again modifies
the equations of motion~5! for p5l ,m,n by the introduc-
tion of source terms of the form, e.g.,

Ag«m1•••m l n1•••nm11r1•••rn11@F ~m11!#n1•••nm11

3@F ~n11!#r1•••rn11
,

where« is the Levi-Civitàtensor inD dimensions. Given the
invariance of the determinant of the metric,«85« as forms.
Hence we must compare raising all of the indices withg8
andg. Given Eq.~13!, we see that

«8mn•••r5«mn•••r2DeSCk[mukl«lun•••r]5«mn•••r,
~24!

where the vanishing of the second term in the first line relies
on a result proved in the following section—see Eq.~40!.
Therefore the new source terms are again unchanged by the
map ~12!, and so these topological interactions provide no
obstruction for this solution-generating technique.
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III. THE ELUSIVE WAVE

Generically, it is the case that the original solution and
that carrying a wave induced by Eq.~12! are not diffeomor-
phic; however, the wave turns out to be very elusive. In this
section, we will present a theorem of a very general nature,
showing that all the scalar curvature invariants of the two
metrics related by the wave-generating technique are in fact
identical. Thus, no curvature invariant of the oscillating met-
ric can be used to detect the presence of the gravitational
wave. The theorem generalizes in a straightforward way to
include any scalar invariants constructed from both the met-
ric and matter fields.

To prove this result, we need only assume the existence of
a metricgmn which admits a null, hypersurface-orthogonal,
Killing vector. We do not require that the metric solve Ein-
stein’s or any other equations. Thus our result is purely geo-
metrical in nature and holds for any metric satisfying the
symmetry condition. The precise statement of the theorem is
as follows.

If gmn is a pseudo-Riemannian metric admitting a null,
hypersurface-orthogonal, Killing vector km, and gmn8
5gmn1k kmkn , wherek is any scalar Lie derived by k to
zero, i.e.,Lkk50, then all of the scalar curvature invariants
of gmn8 are exactly identical to the corresponding curvature
invariants of gmn .

Hence the GV transform~12! provides one example of
such metrics withk5eSC. In the following, we will refer to
gmn as the original metric,gmn8 as simply the primed or
shifted metric, andk as the wave profile, in analogy to the
last section.

Before presenting the details, let us first give a brief
sketch of our proof. Before examining the curvature invari-
ants, we establish two crucial results. First, contractingkm

with any tensor constructed from the original metric, its cur-
vature, and covariant derivatives of the curvature and/or any
scalars with a vanishing Lie derivative underk produces a
sum of terms in each of whichk appears uncontracted. Sec-
ond, any tensor~e.g., the curvature or covariant derivatives
thereof! in the primed background may be written as the sum
of that for the original metric plus ak-dependent term, for
which all of the contributions are at least bilinear in the Kill-
ing vectork. These two results set the stage for an examina-
tion of the scalar curvature invariants. There we find that all

of the newk-dependent terms vanish by combining the pre-
vious two results with the fact thatk is null. Hence, we
conclude that the original and the corresponding primed in-
variants are identical. As a consequence, no evidence of the
wave profilek can be detected in any of the curvature in-
variants of the metric. This result represents a generalization
of the previous studies of curvature invariants of geometries
admitting null, covariantly constant, Killing vectors@20,21#.
An immediate corollary of this theorem is that ifgmn repre-
sents an extended black object with a regular horizon to
which we add a GV wave as in the last section, then the
oscillations will not produce new scalar curvature
singularities—however, in later sections, we will discuss the
limitations of this statement with explicit examples.

A. Useful formulas

Let us start by listing some important formulas which
arise from the existence of a null, hypersurface-orthogonal,
Killing vector. As stated before @in Eq. ~7!#, the
hypersurface-orthogonal condition amounts to¹ [mkn]
5k[m¹n]S for some scalarS which can be determined from
the metric. Combining this with the Killing condition~8!
yields

¹mkn5 1
2 ~km¹nS2kn¹mS! . ~25!

Further, it is not difficult to see that the Killing condition
alone leads to

¹n¹mkl5krRrnml , ~26!

as can be determined by considering the commutator of two
covariant derivatives acting onk. We also note that we may
express

krRrnls5¹s¹lkn2¹l¹skn5k[l¹s]¹nS2 1
2k[l¹s]S¹nS,

~27!

using Eq.~25!. Recall the expression for the Lie derivative of
a general tensorTm1 . . .mp

n1 . . . nq
:

LvTm1•••mp
n1•••nq

5vl¹lT
m1•••mp

n1•••nq
2Tl•••mp

n1•••nq
¹lv

m12•••2Tm1•••l
n1•••nq

¹lv
mp1Tm1•••mp

l•••nq
¹n1

vl1•••

1Tm1•••mp
n1•••l

¹nq
vl. ~28!

From this definition and the Killing condition~8!, one may show that the Lie derivative with respect to a Killing vectorLk
commutes with the covariant derivative. Begin by considering

¹mLkTn1•••nq
5kl¹m¹lTn1•••nq

1¹lTn1•••nq
¹mk

l1•••1¹mTn1•••l
¹nq

kl1Tl•••nq
¹m¹n1

kl1•••1Tn1•••l
¹m¹nq

kl

5kl¹l¹mTn1•••nq
1¹lTn1•••nq

¹mk
l1•••1¹mTn1•••l

¹nq
kl

1@Tl•••nq
~Rl

n1rm1Rrmn1
l!kr1•••1Tn1•••l

~Rl
nqrm1Rrmnq

l!kr#

5Lk¹mTn1•••nq
, ~29!
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using Eq.~26! and the standard commutator

@¹m ,¹l#Tn1•••nq
5Rr

n1lmTr•••nq
1•••.

Hence,@Lk ,¹m#Tn1•••nq
50. The case where@Lk ,¹m# acts

on a tensor with some raised indices is trivially related to this
one becauseLkgnl505¹mg

nl. Similarly, one can show
LkRrlnm50, as well asLkS5km¹mS50. Further, recall, by
definition,Lkk5km¹mk50. We will find all of these formu-
las useful below when evaluating the contractions of tensors
with the null vectork.

B. Contraction identities

The first step is to show that for any tensor built out of the
original curvature, any scalars with vanishing Lie derivative
underk ~i.e.,S andk), and any number of covariant deriva-
tives ~with respect to the original connection! acting on ei-
ther of these, the contractionkmTn1•••npml1•••lq

is at least

linear in vectorkm ; i.e., it can be expressed as a linear com-
bination of terms which factorize as some tensor of rank
lower by 2 and the vectork:

kmTn1•••npml1•••lq
5 (

n51

p

knn
un1•••nn•••npl1•••lq

~n!

1 (
n51

q

kln
un1•••npl1•••ln•••lq

~p1n! ,

~30!
where underlining an index denotes its deletion from the
expression.~For convenience, we will work with only cova-
riant, i.e., ‘‘downstairs,’’ indices.! This is true in the few
simple cases encountered so far, e.g.,km¹mS505km¹mk

and krRrnls as given in Eq.~27!. Let us now show that it
holds in general for what we denote as ‘‘primary’’ tensors,
namely, tensors obtained by an arbitrary number of covariant
derivatives acting on the curvature or the scalarsS,k. The
proof relies on mathematical induction and makes essential
use of Eq.~25! which allows any covariant derivative ofk to
be reexpressed in terms on undifferentiatedk’s. First, we
establish the result for the simplest cases: For any scalarB
Lie derived to zero byk, we havekm¹mB50 and further

km¹n¹mB5km¹m¹nB5¹n~km¹mB!2¹mB¹nk
m

52 1
2kn ¹mS¹mB, ~31!

using Eq.~25!. Now combiningLkRabgs50 and Eq.~27!,
we find

km¹mRabgs5Rm
bgsk[m¹a]S1•••1Rabg

mk[m¹s]S

5kaubgs
~1! 1•••1ksuabg

~4! , ~32!

where in the second line we collect the like terms. Explicitly,
one finds, e.g.,ubgs

(1) 52 1
2(¹

mRmbgs1¹b¹ [gS ¹s]S) and
uags
(2) 52 1

2(¹
mRamgs2¹a¹ [gS ¹s]S). Similarly,

ka¹mRabgs5¹m~kaRabgs!2Rabgs¹mk
a

5kmūbgs
~1! 1•••1ksūmbg

~4! , ~33!

again using Eqs.~25! and ~27!.
So now let us assume that Eq.~30! holds for all primary

tensors of rankq or less. Now, by our definition, a primary
tensor of rankq11 will be obtained by covariant derivative
acting on a primary tensor of rankq, i.e.,¹lTl1•••lq

. Hence
we consider

km¹l1
Tml2•••lq

5¹l1
~kmTml2•••lq

!2Tml2•••lq
¹l1

km

5 (
n52

q

¹l1
~kln

ul2•••ln•••lq

~n! !1 1
2 Tml2•••lq

km¹l1
S2 1

2 Tml2•••lq
kl1

¹mS

5 (
n52

q

~kln
¹l1

ul2•••ln•••lq

~n! 1¹l1
kln

ul2•••ln•••lq

~n! 1 1
2 kln

ul2•••ln•••lq

~n! ¹l1
S!2 1

2 kl1
Tml2•••lq

¹mS

5 (
n52

q

~kln
¹l1

ul2•••ln•••lq

~n! 1 1
2 kl1

¹ln
S ul2•••ln•••lq

~n! !2 1
2 kl1

Tml2•••lq
¹mS

5 (
n51

q

kln
ūl1•••ln•••lq

~n! , ~34!

after collecting the like terms into the tensorsū (n). Of course, the same result follows ifkm is contracted with any of the other
indices onT above. The last possibility iskm¹mTl1•••lq

. Here we useLkTl1•••lq
50 which holds by@Lk ,¹m#50 and the fact

that bothS and the curvature have a vanishing Lie derivative underk. Thus,

km¹mTl1•••lq
52Tml2•••lq

¹l1
km2•••2Tl1•••lq21m¹lq

km

5 1
2 ~Tml2•••lq

¹l1
S1•••1Tl1•••lq21m¹lq

S!km2 1
2 ~Tml2•••lq

kl1
1•••1Tl1•••lq21mklq

!¹mS

5 (
n51

q

kln
ũl1•••ln•••lq

~n! , ~35!
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where we applied Eq.~30! for rank-q primary tensors in the
second line and gathered the like terms. With Eqs.~34! and
~35!, we have shown that Eq.~30! holds for any indexm on
a primary tensor of rankq11. Therefore by induction this
factorization property is established for all primary tensors.

At this stage, we must consider the ‘‘secondary’’ tensors,
i.e., the u tensors produced in the contractions ofk with
primary tensors—although here we will leave many of the
details to the reader. Considering the simplest examples in
Eqs.~27! and~31!–~33!, one finds that theu tensors are not
simply primary tensors, but rather involve certain products
and/or contractions of primary tensors. However, in those
particular examples, it is not hard to show that they share
two important properties in common with the primary ten-
sors:~i! Theu ’s have a vanishing Lie derivative underk, and
~ii ! upon contraction withk, they factorize as in Eq.~30!.
Having established that these conditions apply in the sim-
plest cases, it is straightforward to formulate an inductive
proof to show that they also apply for theu tensors produced
from primary tensors of higher rank. One would begin by
assuming that~i! and~ii ! hold for theu ’s arising from rank-
q primary tensors, and then examine those produced at rank
q11. In the case considered in Eq.~34!, one has

ūl2•••lq

~1! 5
1

2(n51

q

¹ln
Sul2•••ln•••lq

~n! 2
1

2
¹mSTml2•••lq

,

ūl1•••ln•••lq

~n! 5¹l1
ul2•••lq

~n! for n.1. ~36!

It is easy to show thatū (1) will satisfy both the Lie derivative
and factorization properties because all of the components of
which it is comprised~i.e., u (n)’s, T, ¹S) do. For n.1,
ū (n) will be Lie derived to zero byk becauseu (n)’s are and
@Lk ,¹m#50. Given the vanishing Lie derivative and that
factorization~30! holds for theu (n)’s, one would extend this
condition to theū (n) tensors in the same way as in Eqs.~34!
and ~35! for the primary tensors. One should then examine
the ũ ’s arising in Eq.~35! for that particular case of rank-
(q11) primary tensors. One is again able to show that both
~i! and ~ii ! apply for theseu tensors as well, although the
index gymnastics is somewhat more involved. Furthermore,
the proof of these properties extends in a similar way to any
‘‘higher-order’’ tensors, that is, any newu ’s produced by
contractingk with u tensors.

Now this intermediate result for theu tensors is necessary
in order to show that the factorization property~30! also
holds for products of primary tensors, with arbitrary contrac-
tions of pairs of indices. Our principal tool here is again
mathematical induction. We begin by considering quantities
of the simple productTn1•••np11l1•••lq

(1) T(2)l1•••lqv1•••v l
,

where bothT(1) and T(2) are primary tensors. Using the
properties of primary tensors, we find

kmTn1•••m•••npl1•••lq

~1! T~2!l1•••lq
v1•••v l

5 (
n51

p

knn
un1•••nn•••npl1•••lq

~n,1! T~2!l1•••lq
v1•••v l

1 (
n51

q

kln
un1•••npl1•••ln•••lq

~p1n,1! T~2!l1•••lq
v1•••v l

. ~37!

Here the first term has the required form, and so forq50,
i.e., no contractions, we would have the desired result. How-
ever, for q>1, we need to look at the cross terms in the
second sum, e.g.,

kl1
un1•••npl2•••lq

~p11,1! T~2!l1•••lq
v1•••v l

5un1•••npl2•••lq

~p11,1! (
n52

q

klnu~n,2!l2•••ln•••lq
v1•••v l

1un1•••npl2•••lq

~p11,1! (
n51

l

kvn
u~q1n,2!l1•••lq

v1•••vn•••v l
.

~38!

Here we will have arrived at the desired form ifq51, but for
q>2, we have generated further cross terms in whichk is
contracted back onu (p11,1). However, since theu ’s also fac-
torize according to Eq.~30! as described above, we may
continue this procedure. Now given thatq, the number of
contractions, is finite, this ‘‘ladder’’ ofk contractions will
eventually terminate, since at each step the number of con-
tracted index pairs is reduced by one in each of the subse-
quent cross terms. Therefore after a finite number of steps,
we arrive at a factorization without any contractions yielding
the desired form. Given this result, it is obvious that we may
in a similar way extend Eq.~30! to apply for an arbitrary
product of primary tensors, including arbitrary contractions.

To conclude this subsection, we consider contractions of
k with the Levi-Civitàtensor,«, i.e., the volume form on the
D-dimensional spacetime. To analyze this case, we resort to
local coordinate patches adapted to the properties ofk. First,
the Killing condition ~8! indicates that we can find a cyclic
coordinate such thatkm]m5(]/]v). Next the hypersurface
orthogonal condition~7! indicates that we can find a dual
coordinate such thatkmdx

m5e2Sdu. In this local coordinate
patch, one of the free indices inkm«ma•••b must then take the
valueu, and hence we can write

i k«5k`u, ~39!

where in this caseu is some (D–2!-form. However, as writ-
ten this result is coordinate independent and so must hold in
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general.3 Thus we have shown that the Levi-Civita` tensor
factorizes in the same way as the primary tensors.

In fact, the resultingu satisfies Eq.~30! as well in a trivial
way sincei ku50. This result is again most easily derived
using the local coordinates introduced above. Because of the
antisymmetry of the Levi-Civita` tensor, none of the indices
on the right-hand side of Eq.~39! correspond to the cyclic
coordinatev. Hencei ku50 with this choice of coordinates,
but this equation must then be valid in general.

As an aside, we note that the preceding discussion is
equally applicable for theu (p21) arising in the transversality
constraint~11!: i kF (p11)5k`u (p21) . In this case, using the
adapted coordinates, the antisymmetry of the field strength
F (p11) ensures thatu (p21) does not carry av index. Hence
one finds thati ku (p21)50.

Given the previous results, our final conclusion is that Eq.
~30! applies for an arbitrary product of primary tensors and
Levi-Cività tensors, including arbitrary contractions.

C. Shift in tensors

Next we consider the difference between tensors calcu-
lated for the original and primed metrics. First the shift in the
connection coefficientsVnl

m 5G8nl
m 2Gnl

m is given by

Vnl
m 5

1

2
@¹n~k kmkl!1¹l~k kmkn!2¹m~k knkl#!

5
1

2
~kmkl¹nk1kmkn¹lk2knkl¹mk! ~40!

2
k

2
~kmkl¹nS1kmkn¹lS22knkl¹mS!, ~41!

using Eq. ~25!. The corresponding shift in the curva-
ture is then R8m

nls5Rm
nls1¹lVns

m 2¹sVnl
m 1Vns

r Vrl
m

2Vnl
r Vrs

m . However, the vanishing Lie derivatives
Lkk505LkS lead to Vns

r Vrl
m 2Vnl

r Vrs
m 50. Hence the

shifted curvature reduces to

R8m
nls5Rm

nls1¹lVns
m 2¹sVnl

m . ~42!

Hence the curvature with all covariant indices is
Rmnls8 5Rmnls12gmr¹ [lVs]n

r 1k kmk
rRrnls. Now, using

Eq. ~27!, as well as rewriting 2gmr¹ [lVs]n
r with Eq. ~25!,

we arrive at

Rmnls8 5Rmnls12k[m¹n]¹ [lk ks]24k k[m¹n]¹ [lS ks]

13k[m¹n]k k[l¹s]S13k[m¹n]S k[l¹s]k

25k k[m¹n]S k[l¹s]S. ~43!

Here the key observation is that the primed curvature can be
decomposed asRmnls8 5Rmnls1xmnls , where the tensor
xmnls is bilinear in the vectorkm .

In fact, a similar decomposition holds for any
covariant derivative of the curvature. To establish
this result, first note that¹r8Rmnls8 5¹rRmnls1xrmnls ,

where xrmnls5¹rxmnls2Vrm
v Rvnls8 2Vrn

v Rmvls8 2Vrl
v

Rmnvs8 2Vrs
v Rmnlv8 . It is straightforward to show that the

tensorxrmnls is bilinear in the vectork. This is clear for
¹x using Eqs.~25! and~43!, and for theVR terms using Eq.
~40!. Now similarly theVx terms are quartic ink, but a
closer examination shows that the sum of these terms van-
ishes. Then, by induction, we see that ifxr1•••rnmnls is at

least bilinear inkm , thenxrr1•••rnmnls must also be so. This
is again straightforward by combining the above formulas in
the definition ofx:

xrr1•••rnmnls[¹r8¹r1
8 •••¹rn

8 Rmnls8 2¹r¹r1
•••¹rn

Rmnls

5¹rxr1•••rnmnls1Vrr1

v xv•••rnmnls1•••

1Vrr1

v ¹v•••¹rn
Rmnls1•••.

Hence, all of the newk-dependent terms appearing in the
primed curvature and covariant derivatives thereof,
xrr1•••rnmnls , are at least bilinear ink. A detailed inspection

shows thatxr1•••rnmnls contains a sum of terms of order

k2p with p51,2, . . . ,11 bn/2c, wherebn/2c denotes the inte-
ger part ofn/2. The precise powers will not be important
below, the key point being that they all begin atk2.

Finally we close this subsection by noting that the Levi-
Cività tensor is invariant under the shift between the original
and primed metrics, i.e.,«m•••r8 5«m•••r . This result follows
since, as noted in Sec. II, the determinants of the two metrics
are equal becausek is null.

D. Scalar curvature invariants

We are now ready to consider the scalar curvature invari-
ants which can be built for the shifted metric. The most
general invariant will consist of an arbitrary product of cur-
vatures, covariant derivatives thereof,4 and Levi-Cività ten-
sors, with their indices~all assumed to be covariant! con-
tracted by the inverse metricg8mn. Hence a generic term is of
the form

I85)
j51

N

Tn
1
j
•••n

qj

j8 )
k51

K

«
l
1
k
•••l

D
k8 )
l51

M

g8a lb l, ~44!

along with a rule for contracting the upper with the lower
indices. Here( j51

N qj1DK52M , whereD is the dimension
of the spacetime. In fact, one need only considerK50 or
1 since the product of two Levi-Civita` tensors can be re-
duced to a sum of products of metric tensors.

Now, from the previous subsection, we know that all of
the tensors in the first product can be decomposed as
Tm1•••mn

8 5Tm1•••mn
1xm1•••mn

, wherexm1•••mn
is at least bi-

linear in the vectork. Further, we have«85« while the
inverse metric is given byg8mn5gmn2kkmkn. Hence we see
that the invariant~44! can be decomposed as

3Equation~39! is the essential result required to prove Eq.~24!.

4Here one might also include covariant derivatives of the scalar
S which are implicitly geometric tensors derived from the original
metric. Admitting these extra tensors would not change our conclu-
sions.
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I85)
j51

N

~Tn
1
j
•••n

qj

j 1xn
1
j
•••n

qj

j !)
k51

K

«l
1
k
•••l

D
k )
l51

M

~ga lb l

2kka lkb l !5I1J, ~45!

whereI is the invariant of the same algebraic structure as
I8 but constructed for the original geometry. The difference
J then contains all of the information about the wave. Sim-
ply multiplying out the terms in Eq.~45!, we may write

J5(
i51

km1kn1
•••km ikn i T̂m1n1•••m in i

, ~46!

where the tensorsT̂ are products of primary tensors and pos-
sibly Levi-Cività tensors, including contractions bygmn.
Given the results of Sec. II C, we are assured thatJ is at
least bilinear ink. Note that antisymmetry of indices, e.g., in
«, may eliminate certain contributions above. However, from
Sec. III B, we know that the tensorsT̂ factorize as in Eq.~30!
when contracted withk. Hence we conclude thatJ
}kmk

m50 and soI85I. Thus we see that any scalar curva-
ture invariant is identical for the original and primed metrics,
which concludes our proof of the theorem.

We note that we can easily generalize our theorem to
cover scalar invariants constructed using both the geometry
and matter fields. As in Sec. II, we consider a matter sector
including various scalarsfa andp-form potentialsA(p) . We
also require that these fields satisfy the same constraints as
there: They are form invariant along thek flow, i.e.,
Lkfa505LkF (p11) as in Eqs. ~9! and ~10!. The field
strengths are transverse to the flow, i.e.,i kF (p11)
5k`u (p21) as in Eq. ~11!. Recall that we also have
i ku (p21)50. Given these results, one can further show that
Lku (p21)50—this is easily shown by referring to the local
coordinate patches introduced at the end of Sec. III B.

Let us then reconsider the contraction identities proved in
Sec. III B. Given the properties imposed on the matter fields
above, it is straightforward to extend the discussion to in-
clude the scalars, the field strengths, and covariant deriva-
tives of these, as primary tensors which satisfy the factoriza-
tion equation~30!. Similarly one may also show that all
higher-order tensors and hence arbitrary products of the pri-
mary tensors satisfy the same factorization property. Next as
in Sec. III C, we consider the shift in tensors calculated for
the original and primed metrics. While the scalars and field
strengths themselves are not affected by the shift in the met-
ric, using Eq.~40! as well as Eq.~25!, it is clear that the
shifts in covariant derivatives of these fields will always be
at least bilinear in the vectork. Hence both of the crucial
results established for the curvature and its covariant deriva-
tives are easily extended to the matter fields and their cova-
riant derivatives. Thus the invariant~44! can be extended so
that theT also include these latter fields, and the same final
result still holds; i.e., the invariant is independent of the
wave profilek.

In summary, then, we find the rather surprising result that
all scalar invariants, involving any number of covariant de-
rivatives of the curvature and/or matter fields, are identical
for both the original and the shifted metrics. The essential
requirement that the original metric has to satisfy is to have

a null, hypersurface-orthogonal, Killing vector, which is
supplemented with certain constraints on the matter fields as
well. Thus no scalar invariant contains any information about
the wave profilek, and hence to determine how the geometry
has been modified, one must consider quantities such as tidal
forces or nonlocal holonomies. We emphasize that our theo-
rem is of a purely geometric nature and holds for any theory
of gravity in any number of dimensions, as long as it as-
sumes a pseudo-Riemannian geometry as the basis of the
description of gravitational phenomena.

IV. FIVE-DIMENSIONAL BLACK STRING

Our original motivation in this project was to investigate
the properties of extended black objects in higher dimensions
carrying time-dependent or wavy hair. The theorem of the
previous section tells us that coordinate-invariant probes are
inadequate to examine the properties of such undulating so-
lutions constructed through the GV technique. Hence, to
study the smoothness of the horizon in the presence of a
wave in the next section, we are led to consider the existence
of parallelly propagated curvature singularities. In order to
do so, however, we must consider a concrete example. Thus,
in this section, we present a family of undulating black
strings which are low-energy solutions of heterotic string
theory in five dimensions. We begin with a stationary solu-
tion with a null hypersurface-orthogonal Killing vector,
which results from uplifting a four-dimensional solution first
written down by Cveticˇ and Youm@14#. Then we apply the
GV technique to generate oscillations on the string. Similar
oscillations of singular strings were considered in Refs.@6,5#
and of black strings in Refs.@9,15,8#.

The low-energy action for heterotic string theory in five
dimensions includes the terms

I5E d5xA2Ge22F@R~G!14~¹F!22 1
12H

22~¹s!2

2 1
4e

2sF22 1
2e

22sF̂2#, ~47!

as well as the metric; we have included two scalars, the
dilaton F and a modulus fields; two gauge fields with
Fmn5]mAn2]nAm and F̂mn5]mÂn2]nÂm ; and the Kalb-
Ramond field with

Hmnl5]mBnl2 1
2 ~AmF̂nl1ÂmFnl!1~cyclic permutations!.

~48!

The metric above is the so-called string-frame metric. The
Einstein-frame metric would be given by

gmn5e24F/3Gmn. ~49!

With the latter metric then, the dilaton coupling in the Ein-
stein term is eliminated and the action becomes

I5E d5xA2g@R~g!2 4
3 ~¹F!22 1

12e
28F/3H22~¹s!2

2 1
4 e

2s24F/3F22 1
4e

22s24F/3F̂2#. ~50!
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However, we choose to present our solution in terms of the
string-frame metric, which has a much simpler appearance in
the present case.

We will be interested in the following black string solu-
tion: The string frame metric is

ds25
f

h
du21

2

h
du dv1kl @dr21r 2~du21sin2u df2!#,

~51!

while the remaining fields are given by

B5
1

h
du`dv,

A52P1cosu df, Â5P2cosu df,

e2s5l /k, e4F5kl /h2, ~52!

where we defined the functions

f[11
Q1

r
, h[11

Q2

r
,

k[11
P1

r
, l [11

P2

r
. ~53!

Hence this configuration is specified by four different param-
eters. The solution could be simplified by setting all of these
equal; however, we wish to illustrate that our results apply in
the generic case. We will assume that all of the constants are
positive in order that our solution properly describe a black
string with a horizon atr50.

Considering the asymptotic metric, one has, for larger ,

ds2→du212 du dv1dr21r 2dV

52dt21dy21dr21r 2dV, ~54!

wherey5u1v andt5v. Hence we should considery as the
spatial coordinate running parallel to the string, whilet is the
asymptotic time. Note that asr→0, grr.P1P2 /r

2, indicat-
ing the presence of a degenerate horizon. Near the horizon,
the metric becomes

ds2.
Q1

Q2
du21

2r

Q2
du dv1P1P2F S drr D 21dV2G .

~55!

The solution has two Killing vectors which are of interest

km]m5]v5] t1]y , hm]m5]u5]y. ~56!

~These are in addition to the standard rotational Killing vec-
tors for u andf.! The first of these is the null generator of
the horizon. In this role,k has the rather unusual feature that
it is null everywhere—not just at the horizon. Further, it is
not given by ] t in the asymptotic coordinates; rather, we
havekm]m5]v5] t1]y . Here the]y contribution is related
to the presence of linear motion along they direction. The
coefficient may be interpreted as the ‘‘horizon velocity,’’
which in the present case is 1, i.e., the speed of light.

The null Killing vector k is hypersurface orthogonal as
well, satisfying

¹ [mkn]5k[m¹n] lnh, ~57!

whereh is the same function defined in Eq.~53!. Hence the
metric admits the symmetry desired for the wave-generating
technique. It is also straightforward to show that the matter
fields satisfy the appropriate conditions~9!–~11!. Hence, fol-
lowing the discussion of Sec. II, we apply Eq.~21! to define
a new string-frame metric

Gmn8 5Gmn1hCkmkn , ~58!

where, following Eq.~22!, C is chosen to satisfy

km¹mC50 and ]m~e22FA2GGmn]nC!50.
~59!

The first condition is simply]vC50; i.e.,C is independent
of v. In the present case, the second condition reduces to
¹F
2C50, i.e., Laplace’s equation on a flat spatial metric in

the transverse coordinates (r ,u,f). Thus the general solution
for Eq. ~59! may be written as

C5(
l ,m

@alm~u! r l1blm~u! r2~ l11!#Ylm~u,f!, ~60!

whereYlm(u,f) are usual spherical harmonics, andalm and
blm are arbitrary functions ofu.

Let us consider the various perturbations in turn. The case
with r l and l50 yields an asymptotically flat metric, which
in fact is diffeomorphic to the original:

ds825
1

h
@ f1a~u!# du21

2

h
du dv1kl ~dr21r 2dV!

5
f

h
du21

2

h
du dṽ1kl ~dr21r 2dV!, ~61!

wheredṽ5dv1 1
2a(u)du. Note that the constant term inf is

a special constant case of these perturbations, and so could
also be eliminated in the same way. With the choicer l and
l.1, the metric is not asymptotically flat, and so we do not
consider these solutions as providing perturbations intrinsic
to the black string, i.e., ‘‘wavy’’ hair. Instead they would be
more accurately described as embedding the string in a space
filled with ~asymptotic! gravitational radiation. The same is
apparently true for ther l mode with l51, but in fact this
solution yields an asymptotically flat metric, as is seen as
follows @6,5#: First introduce Cartesian coordinates on the
transverse space, in which case the wavy metric becomes

ds825
1

h
@ f1ai~u!xi #du21

2

h
du dv1kl dxidx

i .

~62!

However, the coordinate transformation

ṽ5v1Ȧix
i2

1

2E
u

Ȧi
2du,

x̃ i5xi2Ai , ~63!
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with 2Äi[ai , produces a metric which is manifestly asymp-
totically flat:

ds̃25
1

h
@ f1~hkl 21!Ȧi

2#du2

1
2

h
du@dṽ1~hkl 21!Ȧidx̃

i #1kl dxidx
i .

~64!

These waves represent oscillations of the string in the trans-
verse space.

The perturbations generated withr2( l11) are all localized
near the horizon and leave the metric asymptotically flat.
Hence we may consider these deformations as candidates for
‘‘wavy’’ hair on the black string. Forl.0, these deforma-
tions produceguu→` as we approach the ‘‘horizon’’ at
r50. Note, however, that this divergence does not effect the
volume elementA2g, and so we should be careful in decid-
ing whether or not these perturbations produce a true
singularity5 at r50. In the next section, we will see that in
fact with l.0 these solutions are singular, and hence we are
only left with a wavy black string forl50, in which case

ds825
1

h S f1 b~u!

r Ddu21 2

h
du dv1kl ~dr21r 2dV!.

~65!

These perturbations represent longitudinal waves carrying
momentum along the string without oscillations. Note that
theQ1 term in f represents a constant contribution tob(u).
One may wonder if this wave is really physical or merely an
artifact of an awkward choice of coordinates, given our theo-
rem on the elusiveness of the wave profile. To see that it is
indeed physical, we can compute its mass per unit length.
Since the oscillating string~65! is asymptotically flat, and we
can use the coordinates of Eq.~54!, we can determine the
mass per unit length according todE/dy52(1/
8p)*S«ybcdedx

bdxc¹dje, where all the tensors are defined
in the Einstein frame. The vector fieldj5] t here is the
asymptotic generator of time translations, and the integration
is carried over a sphere at spatial infinity. The result is
dE/dy5@P11P21Q213Q113b(y2t)#/6, and since the
mass per unit length depends on the wave profile, we see that
the solution is really a superposition of the string and the
wave and so is clearly different form the stationary string,
whereb50.

A. Parallel propagated singularities

Having applied the GV technique to the original solution
above, we have apparently generated a large family of oscil-
lating black string solutions. However, as discussed above,
we have reason to worry that some of the modes may actu-

ally introduce a curvature singularity at the null surface
which was originally the black string’s horizon. Normally
the approach to proving the existence of a horizon would be
to find coordinates in which the metric is analytic at the null
surface in question. For the present undulating solutions,
finding such coordinates is an enormous problem~see, e.g.,
@9#!. While we address this question for the monopole waves,
i.e., those withl5m50, in the following section, the task at
hand is in fact much simpler. We wish to show that for
l.0 a given null hypersurface is not a horizon, which simply
requires finding any geometric quantity which diverges when
the surface is approached along some geodesic. By the prop-
erties of our original black string and the approach used to
generate their wavy counterparts, the theorem of Sec. III tells
us that no scalar invariant involving the curvature and/or the
matter fields contains any information about the waves.
Therefore, given that all scalar invariants are insensitive to
the oscillations and thus to any singularity which they may
introduce, we resort to alternative means of probing the
wavy geometry.

Tidal forces prove to be a good tool for resolving our
problem. If we approach the null surface along a geodesic,
and we allow our observer to be slightly nonlocal~e.g., a
string which may indeed seem the natural probe in the
present context!, this observer will be able to determine the
differences between the gravitational forces acting at differ-
ent points. These forces are determined by the Riemann cur-
vature measured in the rest frame of our observer. One may
object to the notion of the observer’s rest frame, as we have
just said that the observer of interest is nonlocal. We will
assume that the extension of the observer is controllably
small, and hence that the center-of-mass frame represents a
good reference frame in which to express the results.

Still, identifying a convenient geodesic trajectory to fol-
low in the presence of a general oscillation proves to be
beyond our abilities. The reason is that one cannot find
enough integrals of motion to solve the problem in terms of
quadratures. We therefore restrict our attention to wave pro-
files which are constant inu. In this case the extra Killing
vectorhm]m5]u yields an additional constant of the motion,
enabling us to find analytically suitable geodesics for any
mode. These solutions should be a very good approximation
for backgrounds with slowly varying wave profiles. When
we compute the full curvature of an undulating string, we
can see that anyu dependence only adds contributions of a
subleading order. Hence, if the curvature turns out to be di-
vergent as some hypersurfacer5const is approached, the
constant profile solutions will contain all the information
about the leading order of divergences.

We present our calculations in several steps. First we will
show that for each mode of oscillation there exists a geodesic
stretching between the null surface and the asymptotic
infinity—hence showing that both of these regions belong to
the space time. Next we will construct the Lorentz transfor-
mation relating a natural stationary orthonormal frame to the
rest frame of the observer moving along the geodesic. Fi-
nally we will consider the orthonormal frame curvature and
boost it to the frame of the infalling observer, in order to find
the tidal forces which he measures. The divergences found in
this way are equivalent to parallelly propagated curvature
singularities. We will isolate the leading divergences of the

5The divergence inguu does indicate a divergence of the norm of
the Killing vectorhm]m5]u , which could be interpreted as a geo-
metric singularity@10#. One should still demonstrate thatr50 is
accessible to causal observers, i.e., that this region ‘‘belongs’’ to the
spacetime, as is done in our following analysis.
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tidal forces for all modes both atr50 and asymptotically,
finding that all the localized multipoles withl>1 have un-
bounded tides on the null surface and that all the growing
multipole modes withl>2 have divergences at asymptotic
infinity.

1. Geodesics

We begin by examining the timelike geodesics of a wavy
solution which is excited by a single mode. We will demon-
strate that there are always geodesics extending between
r50 and the asymptotic regionr→`, and the former is
reached in finite affine time when starting from finiter .
Hence this null surfacer50 must be included in the mani-
fold described by the wavy solution.

We may write the general solution as

ds252F2du dv1F3
2du21

1

F1
2 @dr21r 2~du21sin2u df2!#,

~66!

where

F25
1

h
, F1

25
1

kl
, f 3

25
f1C

h
,

C5B~u!r bPl
m~cosu!cos@mf1d~u!#, ~67!

and f ,h,k,l are defined in Eq.~53!. To produce a simple real
metric, we have expressed the angular dependence in terms
of an associated Legendre function of the first kind,
Pl
m(cosu), as well as the cos(mf1d) factor, rather than using

spherical harmonics as in Eq.~60!. Those solutions~60! are
then reproduced by settingb52( l11) or l , which corre-
sponds to what we will call the localized and the growing
modes, respectively. However, for much of the following
analysis, we will leave this exponent asb in order to empha-
size the contributions coming from the differentiation of this
factor. In principle the amplitudeB and the phased are
arbitrary functions ofu, but as discussed above, to simplify
the analysis of the geodesics, we will set both of these to be
constants in the following. This will be enough to identify
the leading divergences, and should still provide good ap-
proximation in the case of a slowu dependence. In fact we
will set d50, which can be attained with a simple shift of
f.

As usual, to obtain the geodesic equations, we simply
consider the LagrangianL5(ds/dl)2, and write down the
Euler-Lagrange equations. Because the Lagrangian does not
contain a potential, the effective Hamiltonian is conserved,
giving (ds/dl)25const. Given this integral of motion, we
need not consider the Euler-Lagrange equation for the radial
coordinate. In addition, the two translational Killing vectors
]u ,]v produce two more first integrals, which leaves us with
second-order differential equations only for the two angular
coordinates. Hence the equations for timelike geodesics are

F2u85p2v, F2v81F3
2u85p,

2F2v8u81F3
2u821

1

F1
2 ~r 821r 2u821r 2sin2uf82!521,

2S r 2u8

F1
2 D 8

52
r 2sinucosu

F1
2 f821

B

h
r b
dPl

m~cosu!

du
cosmf u82,

~68!

2S r 2sin2uF1
2 f8D 8

52m
B

h
r bPl

m~cosu!sinmf u82,

where we expressed the integrals of motion asv and p.
When b,0, one finds that in the asymptotic region~54!
these correspond to the energy~which is assumed to be posi-
tive! and linear momentum alongy, respectively. The last of
these equations may be solved by settingf5fn5(p/m)n
with n50,1, . . . ,2m21 for mÞ0, while form50 we may
fix f to be any constant. Now, with the constantf, the first
term on the right-hand side~RHS! of the second-to-last equa-
tion also vanishes. Hence the latter equation is solved if we
now chooseu5u05const, whereu0 corresponds to an ex-
tremum of Legendre functionPl

m(cosu). Then the indepen-
dent set of equations defining these radial geodesics may be
written, usingF3

25@ f1(2)nBrbPl
m(cosu0)#/h,

u85
p2v

F2
, v85

p

F2
1@ f1~2 !nBrbPl

m~cosu0!#
v2p

h F2
2 ,

~69!

r 825@ f1~2 !nBrbPl
m~cosu0!#

F1
2

h F2
2 ~v2p!2

12
F1
2

F2
~v2p!p2F1

2 . ~70!

Now we must chooseu0 andfn , as well as the constants
v and p, in such a way that our geodesics~a! extend to
infinity and ~b! reach the null surfacer50. We need the
former to ensure that our observer is physically connected to
recording devices infinitely far away from the gravitational
source. The second condition that the geodesic does not turn
before reachingr50 is necessary because we want to probe
this region for singularities.

We begin by considering the localized modes with
b52( l11),0. From the radial equation~70!, we see that
as r→`, for which h, F1,2→1 and r b→0, and so
r 82→v22p221. Thus we requirev>Ap211 so that the
geodesics extend to infinity. Now, in the limitr→0, we have
F25h21}r , F1

2}r 2, and f}1/r . Thus the leading contribu-
tion on the RHS of Eq.~70! comes from ther b term when
b,21, and hence we must chooseu0 and n such that
(2)nBPl

m(cosu0).0 in order that no turning points occur
before reachingr50. For l>1 there exist many extrema of
Pl
m(cosu), and it is straightforward to verify that one has

enough freedom to choose the angles in order that the geo-
desic reachesr50 ~even for the casem50). For the special
caseb521 or l50, turning points are evaded6 as long as
Q11B.0.

6Note then that forl50 and B,2Q1, one has solutions for
which the radial geodesics can never reachr50. As pointed out in
Ref. @22# however, when they direction is compactified in this case,
there appear closed timelike curves, which can communicate with
observers at infinity, implying the breakdown of chronology. In any
event, we will ignore this pathological case in the following.
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For the growing modes withb5 l>0, the analysis is
similar to that above. Note that in this case the interpretation
of v andp would not be correct since the asymptotic struc-
ture of the metric is modified. Beginning with the limit
r→0, we can ignore ther b contribution in Eq.~70! and in
fact one finds that this region is always reached without im-
posing any constraints. In the asymptotic regionr→`, the
r b term dominates Eq.~70! for b.0, and we must again
choose the angles such that (2)nBPl

m(cosu0).0 if the geo-
desics are to extend all the way to infinity without turning
back. For the special caseb505 l , the constraint to reach
the asymptotic region becomes (v2p)(v1p1B)>1
which can always be satisfied with an appropriate choice for
the integrals of the motion.

In the following, it will be convenient to absorb
(2)nPl

m(cosu0) into the amplitude. Hence we define
B0[(2)nBPl

m(cosu0). For the special case withb521 and
l50, we setB0[Q11B.

2. Lorentz transformation

Hence we have defined an interesting set of radial geode-
sics for which the tangent vector is given byVm5dxm/dl,
where

u85
p2v

F2
, v85

p

F2
1~ f1B0r

b!
v2p

h F2
2 ,

r 856S ~ f1B0r
b!

F1
2

h F2
2 ~v2p!212

F1
2

F2
~v2p!p2F1

2D 1/2,
~71!

andu8505f8. Here the2 (1) sign corresponds to inward
~outward! directed geodesics. We will want to examine the
tidal forces in the rest frame of an observer moving with this
five-velocity. Hence, as an intermediate step, we determine
the Lorentz transformation which takes us from a natural
stationary frame, in which the curvature is easily calculated,
to the observer’s freely falling frame.

First to define our stationary orthonormal frame, we com-
plete the squares in our general metric~66!:

ds252
F2
2

F3
2dv

21F3
2S du1

F2

F3
2dv D 2

1
1

F1
2 @dr21r 2~du21sin2u df2!#. ~72!

We see that an obvious orthonormal basis of one-forms is

e05
F2

F3
dv, e45F3du1

F2

F3
dv, er5

dr

F1
,

eu5
r du

F1
, ef5

rsinu df

F1
. ~73!

Note that in this basis,e0 is distinguished as the unit-time-
like one-form, at least everywhere along our radial

geodesics.7 In this frame, we haveVa5eamV
m, where the

eam are the components of the fu¨nfbein ~73!,

V05
F3

F2
~v2p!1

p

F3
, V45

p

F3
,

Vr56S F3
2

F2
2 ~v2p!212

~v2p!p

F2
21D 1/2, ~74!

along withVu505Vf. As a check, one may easily verify
thathabV

aVb521.
Now we wish to find a Lorentz transformation which

takes a unit-time-like vectorNa5d0
a into the observer’s five-

velocity: Va5LabN
b. Then applying this transformation to

our stationary fu¨nfbein ~73! would produce a natural basis of
orthonormal one-forms which the observer might use in his
rest frame. Of course, we are left with some ambiguity in the
choice of the SO~1,4! matrix defining this Lorentz transfor-
mation. One approach to resolving this ambiguity is defining
the transformation by parallell propagating the stationary
frame in from infinity along our radial geodesic. Since
Vu505Vf, a much less labor-intensive approach is to sim-
ply take the uniquely defined SO~1,2! matrix mixing only the
0, 4, andr directions. The latter will differ from that defined
through parallel propagation by an SO~4! transformation
mixing the spatial one-forms. Such a rotation, however, will
not introduce any new divergences, and hence it suffices to
consider the simpler boost. One can think of this transforma-
tion as the result of parallelly propagating in not our station-
ary fünfbein ~73! but rather a rotated version of it. The sim-
pler SO~1,2! Lorentz transformation may be written as

Lab5S V0 V4 Vr 0 0

V4 11
~V4!2

V0~V011!

V4 Vr

V0~V011!
0 0

Vr V4 Vr

V0~V011!
11

~Vr !2

V0~V011!
0 0

0 0 0 1 0

0 0 0 0 1

D .

~75!

At this point let us comment at the behavior of the five-
velocity in the regions of interest. Forb<21 andr→0, the
dominant factor is F3}r

(b11)/2, leading to
V0.(v2p)AB0Q2 r

(b21)/2.Vr , while V4.0. Hence the
observer is accelerated to almost a null radial geodesic as he
nearsr50, andL approaches an infinite boost in the radial
direction. Forb>0, F3 and all of the components ofV

a are
finite at this null surface. Similarly, forb.0 and r→`,
F3}r

b/2 again dominates to producing the five-velocity
V0.(v2p)AB0r

b/2.Vr andV4.0. Hence Eq.~75! yields

7This is guaranteed sinceF2
25h22 is trivially positive, while we

ensured thatF3
2.0 in order that the geodesics reached between

r50 andr→`. The sole exception, which we ignore, is the case
b505 l for which we could haveF3

2,0 if B,Q1.
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an infinite radial boost asr→`. Finally, we note that for
b<1 andb50, F3 and all of the components ofVa andL
remain finite in the asymptotic region.

3. Divergent tides

Now we wish to examine the tidal forces experienced by
an observer following our radial geodesics. We will focus
here on the curvature components with all indices in the
0,4,r subspace, and study the corresponding components in
the observer’s rest frame. Since our Lorentz transformation
~75! does not mix these indices with theu,f directions, it
simplifies our presentation to only consider these compo-
nents. Our omission of the components carrying angle indi-
ces does not imply that they are finite. In fact the compo-
nents with two indices in theu,f subspace also typically
diverge whenever we find divergences in the following
analysis and in qualitatively the same way, as discussed at
the end of this section. Our final results are that divergent
gravitational tides appear on the null surfacer50 for the
localized modes withb,21 and at asymptotic infinity for
the growing modes withb.2.

With our definition of the orthonormal basis~73!, it is
straightforward to compute the curvature in this frame. As
discussed above, we focus on the curvatures in the 0,4,r
subspace for which the nonzero components are

R4r4r52
F1

F3
F38 F181

F1
2

F2F3
F38 F282

F1
2

F3
F392

F1
2

F3
2 ~F38!2

2
F1
2

4F2
2 ~F28!2,

R0r0r52
F1

F3
F38 F181

F1
2

F2F3
F38 F282

F1
2

F3
F392

F1
2

F3
2 ~F38!2

1
F1
2

F2
F291

F1

F2
F28 F182

3F1
2

4F2
2 ~F28!2,

R04045
F1
2

4F2
2 ~F28!2,

R4r0r52
F1

F3
F38 F181

F1
2

F2F3
F38 F282

F1
2

F3
F392

F1
2

F3
2 ~F38!2

1
F1
2

2F2
F291

F1

2F2
F28F182

F1
2

2F2
2 ~F28!2, ~76!

where the primes indicate partial derivatives with respect to
r .

Now we wish to considerr→0. To simplify our calcula-
tions further, we only consider the leading order of these
curvature components. This approach is consistent, because
we will see that all of the nonzero components~76! are of the
same order of magnitude at the null surface. In fact these
terms are all finite there, and so any divergence in the tidal
forces can only arise from the boost matrix~75! upon trans-
forming to the observer’s rest frame. Given the discussion at
the end of the previous subsection then, it is clear that the
only possible divergences will occur for the modes

b52( l11),0. For these modes, as r→0,
F1→r /AP1P2, F18→1/AP1P2, F19→2(P11P2)/
(P1P2)

23/2, F2→r /Q2, F28→1/Q2, F29→22/Q2
2, and

F3→AB0 /Q2r
2 l /2, F38→2( l /2)AB0 /Q2r

2 l /221, and
F39→@ l ( l12)/4#AB0 /Q2r

2 l /222, and so the above curvature
components~76! reduce to

R4r4r→2
112b~b11!

4P1P2
, R0r0r→

122b~b11!

4P1P2
,

R0404→
1

4P1P2
, R4r0r→2

b~b11!

2P1P2
. ~77!

Transforming to the observer’s rest frame,
R̂abcd5LakL

b
lL

c
mL

d
nR

klmn, we find

R̂abcd→
1

4P1P2
$D1

abcd22b~b11!D2
abcd%, ~78!

where

D1
4r4r521, D1

0r0r51,

D1
0404→1, D1

4r0r50,

D2
4r4r→~V0!2.~v2p!2B0Q2 r

b21, D2
0r0r→1,

D2
0404→~Vr !2.~v2p!2B0Q2 r

b21,

D2
4r0r→V4~Vr !2.p~v2p!2AB0Q2

3 r ~b23!/2. ~79!

Hence we see that there are divergences but that they only
appear in the terms proportional tob(b11). The
b-independent contributions are essentially boost invariant.
These divergences are therefore absent forb521 or l50.
This result might have been expected since in this case, for a
constant wave profile, the solution is essentially the original
regular black string with a modifiedQ1. The leading diver-
gences are easily seen to be

R̂4r4r→2
l ~ l11!

2

B0Q2~v2p!2

P1P2r
l12 , R̂0r0r→

122l ~ l11!

4P1P2
,

R̂0404→2
l ~ l11!

2

B0Q2~v2p!2

P1P2r
l12 ,

R̂4r0r→2
l ~ l11!

2

AB0Q2
3~v2p!2p

P1P2r
l /212 . ~80!

So we see that for all higher multipoles with
b52( l11),21 or l.0 there appear singular tidal forces
on the null surfacer50. Because these divergences will not
be canceled by any other terms of the metric for slowly os-
cillating strings, we conclude that all these space-times have
a null singularity atr50. Hence, the excitation of these
higher modes on the black string results in the appearance of
naked singularities, and so the resulting solutions are no
longer black strings after all. Thus we rule out all of these
higher multipoles as a variety of nonstationary hair.

7638 55NEMANJA KALOPER, ROBERT C. MYERS, AND HAROLD ROUSSEL



A similar calculation shows that the growing wave modes
with b5 l.1 have diverging tidal forces in the limit
r→`. In this limit, F1→1, F18 ,F19→0, F2→1, F28 ,F29→0,
and F3→AB0r

b/2, F38→(b/2)AB0r
b/221, and F39→(b(b

22)/4)AB0r
b/222, and hence to the leading order, the cur-

vature components~76! become

R4r4r5R0r0r52R4r0r→2
b~b21!

2r 2
. ~81!

The boosted curvatures, to the leading order, are given by

R̂abcd→2
b~b21!

2r 2
D2
abcd. ~82!

The terms proportional toD1
abcd are all of the subleading

order. The limiting values ofD2
abcdwhenr→` are given by

D2
4r4r→~v2p!2B0r

b, D2
0r0r→1,

D2
0404→~v2p!2B0r

b, D2
4r0r→@v2p1p~v2p!2#B0r

b/2,
~83!

and so the leading divergences are easily seen to be

R̂4r4r5R̂0r0r→2
b~b21!

2
~v2p!2B0r

b22,

R̂4r0r→
b~b21!

2
~v2p1p~v2p!2!AB0r

b/222. ~84!

Hence we find diverging tides in the asymptotic region for
all b.2. Forb52 we find finite tides at infinity; however,
this implies that at infinity the energy density approaches a
constant, and hence the total energy per unit length of this
wave diverges. Indeed, this might have been expected as
these solutions are not asymptotically flat. Instead, they rep-
resent geometries with gravitational wave energy concen-
trated far away from the black string.

To close this section, we will discuss the results for the
remaining orthonormal components of the curvature tensor.
It turns out that there are two cases to consider:Rabcd and
Raabb wherea,b take values in 0,4,r while the remaining
frame indices areu or f. Straightforward evaluation shows
that the curvature components with an odd number of angle
indices vanish when evaluated on our radial geodesics which
were chosen so that]uF3

2505]fF3
2. Further, like the com-

ponents in Eq.~76!, the nonvanishing components consid-
ered here remain finite in the stationary frame~73!. So
clearly the boost~75!, which is trivial in the angle directions,
cannot introduce any divergences inR̂abcd. Now, for the
Raabb, we have symbolicallyR̂5L2R upon boosting to the
observer’s rest frame, where we have only indicated the non-
trivial components of the boost matrix. Because theRaabb

are everywhere finite, the tidal forces here diverge only as
badly as the leading-order divergence inL2. As r→0, this is
1/r l12 for b52( l11), and asr→`, this isr l for b5 l , just
as found above. Note that various cancellations above re-
duced the singularities from what one might expect forL4.
Also, as above, the original curvature components supply a
factor of l ( l11) multiplying these divergent terms so that

the special casesb521,0,1 survive without any divergent
tidal forces. These qualitative arguments are confirmed with
direct evaluation. Hence one finds that there are no worse
divergences than found by considering only the 0,4,r sub-
space.

Again, our final conclusion is that all of the modes with
b52( l11),21 in fact produce null singularities at
r50, while for b5 l.1 singularities appear in the
asymptotic regionr→`.

V. LONGITUDINAL AND TRANSVERSE OSCILLATIONS

We now return to consider the case of the longitudinal
waves ~65! with l50,b521 and that of the transverse
waves~61! with l515b. The preceding analysis revealed
no divergent tidal forces in either of these cases. There is still
the possibility that divergent tidals might occur when the
analysis is extended to consider derivatives of the curvature
~much like the case discussed in@23#!. In the case of the
transverse waves, the worry would be that problems arise in
the asymptotic region where the Lorentz boost~75! is diver-
gent. However, recall that a coordinate transformation~63!
was found for which the metric became manifestly asymp-
totically flat.8 Hence one will never find any divergent tidal
forces asr→`. In fact, for the transversal waves one can
argue that the divergence of the Lorentz transformation~75!
is not physical, but comes from an incorrect choice of gauge
in the limit r→`. Namely, in this case one could view the
asymptotically flat form of the transverse wave metric~64!
with Ȧi5const as the correct example of the leading-order
behavior of slowly oscillating transverse waves. The fact that
this solution is asymptotically flat implies that the Lorentz
transformation~75! must be finite in the limitr→`.

For the longitudinal waves, the potential problem would
be atr50 where again divergent components appear in the
transformation~75!. A definitive demonstration of the regu-
larity of these solutions would require finding a coordinate
transformation for which the metric~65! becomes analytic at
the null surface. For a wave profile constant inu, we recover
the original solution~51! with a modified charge in which
case it is straightforward to find the analogue of Eddington-
Finkelstein coordinates, both past and future. For the nonsta-
tionary case, Horowitz and Marolf@9# have shown that this
solution has a continuous~but not necessarily smooth! metric
at r50. Further, our theorem shows that all the scalar cur-
vature invariants of this solution are identical to the original
black string, while our preceding analysis found no evidence
of diverging tidal forces for slowly oscillating strings. In
fact, we can make an even stronger statement about the ‘‘in-
visibility’’ of the monopole wave: If we compute the curva-
ture of the oscillating string in an appropriate orthonormal
basis ~see below!, we find that it does not depend on the
wave at all. Given all these results, one is tempted to conjec-
ture that the longitudinal waves are completely regular, and
so we are led to attempt a construction of analytic coordi-
nates. It turns out that we can find such coordinates at least
for a certain class of wave profiles. A rather surprising result

8Recall that no divergent tidals were found forl505b either, but
in Eq. ~61! this mode was shown to be purely the result of a coor-
dinate transformation.
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in our analysis is the quantization of a certain constant
present in the test function, coming from the requirement
that all the derivatives of the metric be continuous as the null
surface is approached. It is not clear to us at present whether
this quantization is an artifact of our ansatz or whether it
really represents a physical effect. We will defer a more
detailed investigation of this issue to future work. At this
point, we can only provide some guidelines explaining how
we have arrived at the analytic ansatz and the associated
quantization condition.

We begin by considering the longitudinal waves de-
scribed by the metric~65! which may be written

ds25S 11
Q12Q21b~u!

r1Q2
Ddu21 2r

r1Q2
du dv

1~r1P1!~r1P2!S dr2r 2 1dV D . ~85!

Now the coordinate transformationdv5dv̂1$@Q12Q2
1b(u)]/2Q2%du simplifies the metric somewhat, producing

9

ds25p2~u! du21
2r

r1Q2
du dv̂

1~r1P1!~r1P2!S dr2r 2 1dV D , ~86!

where

p2~u!5@Q11b~u!#/Q2 . ~87!

Implicitly we assume thatp2(u).0 — see footnote 6 — and
as usualdV is the metric on a two-sphere. We see that the
location of the null surface remains atr50 and that it ap-
pears to be a metric singularity: We know, however, that if
p2 were a constant, we could easily show that this singularity
is just a coordinate artifact, as we have mentioned above. Let
us therefore try to follow this argument as closely as pos-
sible. We can put the (v̂,u) part of the metric in the form
conformal to the constantp2 case, by defining a new coor-
dinatez, dz5p2(u)du andq(z)51/p(u), in which case the
metric becomes

ds25q2~z!Fdz21 2r

r1Q2
dz dv̂G

1~r1P1!~r1P2!S dr2r 2 1dV D . ~88!

Now we can introduce new coordinatesṽ and z̃ in analogy
with the tortoise coordinates we would usually define for a
stationary solution. A bit of algebra leads to the choice

dṽ5dv̂1
P11P2

2AP1P2

dr

r 2
~r1Q2!S r1

2P1P2

P11P2
D ,

dz̃5dz2AP2

P1

dr

r
~r1P1!. ~89!

These coordinates are oriented towards the future portion of
the null surface, and they clearly show the location of the
future horizon asr→0 along with v̂→1` and z→2`.
Reversing the signs of the shifts tov̂ andz, we can go to the
past horizon. These coordinate transformations are designed
to absorb the metric singularity manifest in ther22 factor
appearing ingrr . If we rewrite the metric~87! in terms of the
tortoise coordinates~89!, we find

ds25q2~z!H dz̃212
r

r1Q2
dz̃ dṽ12AP2

P1

r1P1

r1Q2
dr dṽ

2
P12P2

AP1P2

dr dz̃J 1~r1P1!~r1P2!

3F12q2~z!

r 2
dr21dVG . ~90!

Herez is to be understood as an implicit function ofz̃ and
r : z5 z̃1(AP2 /P1)@r1P1ln(r/P1)#, and it diverges to2`
as r→0 as dictated by the logarithm. Now, ifq251, the
divergent grr term in Eq. ~90! would be absent, and we
would obtain a smooth metric at the null surfacer50. Can
we now select a wave profileq2(z) such that a similar can-
cellation still occurs in the limitr→0? The answer turns out
to be in the affirmative: Consider a functionq2(z) which in
the limit z→2` converges to 12A2exp@(21a)z/AP1P2#
for some positivea. Substituting the appropriate coordinate
transformationz5z( z̃,r ) in this expression, we get that in
the limit r→0 the wave profile to the leading order is
q2512A2(r /P1)

21aeF( z̃ ,r ), where for convenience we have
defined the linear function F( z̃,r )[(21a)( z̃
1AP2 /P1 r )/AP1P2. As long asa>0, this is precisely of
the form needed to cancel the pole ingrr . The metric, in this
limit, becomes

ds25H 12A2S r

P1
D 21a

eF~ z̃ ,r !J H dz̃212
r

r1Q2
dz̃ dṽ12AP2

P1

r1P1

r1Q2
dr dṽ2

P12P2

AP1P2

dr dz̃J 1~r1P1!~r1P2!

3FA2

P1
2 S r

P1
D a

eF~ z̃ ,r !dr21dVG , ~91!

9If one now constructs an orthonormal frame analogous to that of Eq.~73! found for the metric~72!, one would find that the wave profile
p2(u) completely disappears from the frame components of the curvature tensor.
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which is smooth atr50.
At this point, however, we can push these arguments one

step further. A glance at the metric~91! immediately shows
that all of its derivatives with respect to the angles and the
coordinatesz̃ and t̃ are well defined as the horizon is
approached—we ignore subleading terms inq2 for the mo-
ment. Moreover, ifa is chosen to be an non-negative integer,
i.e.,a50,1,2,. . . , it is easily verified that all the derivatives
with respect tor are also well defined in this limit. Indeed,
we see that the only possibly contentious terms in the metric
are the factorsr 21a and r a. If a were not integral with
N.a.N21, then takingN r-derivatives of the metric
would produce factors which diverge asr→0. At this point,
we cannot tell whether this divergence could cause some
covariant derivative of the curvature tensor to diverge as well
~resulting in a null singularity as in@23#!, or if it could be
removed by another even more clever change of coordinates.
On the other hand, for integrala, we see that after taking
some number of derivatives of the metric with respect tor ,
the contentious factors disappear altogether, leaving an ex-
pression which is perfectly well defined asr→0 and
z→2`.

It is a matter of a simple counting of powers to convince
oneself that all these conclusions remain unchanged if the
function q2(z) can be written as a uniformly convergent
power seriesq2(z)512(n52

` An
2wn for w5exp(nz/AP1P2)

andz→2`. The subleading contributions would be integer
powers of the leading term, therefore still having well-
definedr derivatives. The requirement of uniform conver-
gence ensures that the summations and derivatives commute,
resulting in the conclusion that the profileq2 is itself analytic
on the horizon. This allows us to extend our arguments in
order to analytically continue the solution through the past
horizonz→`, as well as the future horizon atz→2`. For
example, consider a wave profile of the form
q2(z)512A2/cosh(kz/AP1P2) for some positive integer10

k>2. Expanding this profile in the limitz→2` ~future ho-
rizon!, we find q2(z)512A2(m50

` (21)mexp@(2m1

1)kz/AP1P2], precisely of the form guaranteeing the exis-
tence of the limitr→0. If we approach the past horizon
instead, with z→`, we find q2(z)512A2(m50

` (21)m

exp@2(2m11)kz/AP1P2#, again rendering the limit well de-
fined. Hence we see that with this example we really have
constructed a wavy black string with regular future and past
horizons. Of course, this example is easily generalized e.g.,
by taking linear combinations of inverse cosh’s with differ-
ent integersk or by taking a wave profile of the form
A2/(wk1w2k8) with independentk and k8. Hence, as we
have claimed above, we see that at least for a certain class of
wave profiles, the longitudinal wave solutions are analytic at
r50, which therefore can be identified as a regular event
horizon. Hence we can think of these waves as time-
dependent hair on the black string. Clearly, our argument is
only an existence proof. It would be interesting to prove that
the general family of longitudinal waves is regular or to de-
termine the precise conditions which the wave profile must

satisfy in order to ensure regularity. We note here that for all
of our examples above the profiles have essentially compact
support in thez coordinate, and therefore in the horizon limit
the waves are exponentially damped, the solution approach-
ing the stationary string.

One could also consider introducing transverse and longi-
tudinal waves on the black string at the same time. This
would amount to adding to the line element~85! a term of
the form, e.g.,

r 2a~u!cosu

r1Q2
du2. ~92!

In this case, we would perform all of the same transforma-
tions described above with the result that the final metric
~90! is modified by the addition of

q4~z!
a~z!cosu

r1Q2
S rdz̃1AP2

P1
~r1P1!dr D 2, ~93!

where we have rewrittena(u) asa(z). Now regularity of the
horizon is secured by demanding thata(z) is an analytic
function of z̃ and r . The latter is easily accomplished with
wave forms similar to those discussed forq(z)2 above.

VI. DISCUSSION

In this work, we have investigated geometric properties of
Garfinkle-Vachaspati waves, obtained by superposing gravi-
tational oscillations on stationary solutions with null
hypersurface-orthogonal Killing vectors. We have first given
a detailed discussion of the adaptation of this solution-
generating technique to a variety of supergravity models, re-
laxing some of the matter sector constraints imposed previ-
ously @17#. Then we have developed a purely geometric
theorem, stating that the GV modes are completely invisible
to any scalar invariants constructed from the metric and mat-
ter. The proof of our theorem does not rely on the dynamics
at all. It is a consequence of the null symmetry, which must
be present in order to interpret the solutions as waves, and
hence it applies to any metric which can be represented in
the generalized Kerr-Schild form with respect to the symme-
try. Thus our theorem holds in any theory of gravity and in
an arbitrary number of dimensions.

As a consequence, it is evident that one must further scru-
tinize wavy string geometries using noninvariant probes,
such as tidal forces. Recall that we have in fact shown that
none of the scalar invariants changes under the Garfinkle-
Vachaspati map. In group-theoretic language, they are in-
variants of the orbits of the solution-generating map. Now,
this could suggest that the wavy strings might contain curva-
ture singularities identical to those of the corresponding sta-
tionary solutions belonging to the same orbit. Consider, e.g.,
the stationary solutions with all charges equal. Since they
correspond to the extremal Reissner-Nordstrom black
strings, with traversible horizons and spacelike curvature sin-
gularities at the core, one could be tempted to conjecture that
all the GV wavy modes superposed on such solutions also
have similar curvature singularities—for the curvature sca-
lars are exactly the same, and in particular also blow up at
the ‘‘core.’’ However, in general this is incorrect. The argu-

10Note that we would requireA2,1 in order to ensure that
p251/q2.0, as assumed above.
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ment is incomplete because it does not answer whether such
singular regions can be causally connected to the physically
interesting parts of the spacetime, such as the asymptotic
infinity. Thus it becomes evident that the notion of singular-
ity is a far more complex issue here: In the examples of
oscillating solutions we have encountered, some of the sin-
gularities encoded in scalar invariants may not belong to the
physical spacetime, because no causal geodesics can ever
reach it. The simplest example of such behavior is given by
the solutions discussed by Gibbons, Horowitz, and
Townsend@22#. These solutions correspond to the choice of
the wave degree of freedomC such thatf1b(u)/r51 in
Eq. ~65!. Although they belong to the same GV orbit as the
stationary extremal Reissner-Nordstro¨m strings, their causal
structure is dramatically different: In order to get the analytic
extension across the horizon, one has to extricate the region
normally associated with the ‘‘interior’’ of the black string
from the physical spacetime, and replace it with a mirror
image of the ‘‘exterior.’’ The resulting manifold is a com-
pletely nonsingular spacetime with a horizon, with the topol-
ogy of the anti–de-Sitter horizon crossed with a sphere, di-
viding two asymptotically flat regions. Noncurvature
singularities, manifest in the presence of geodesic incom-
pleteness, may reemerge if one attempts to compactify some
of the longitudinal directions in order to descend to lower
dimensions. Nevertheless, these singularities are typically
milder than the original ones which got cut out in the process
of analytic extension. Therefore we can see that our theorem
states that scalar invariants are identical as analytic functions
of the coordinates on each GV orbit. Observers ‘‘surfing’’ on
GV waves of differing geometries, however, may choose to
access different regions of this ‘‘complex’’ coordinate plane
as physical, and hence see different divergences. We believe
that this unusual behavior is peculiar to wavy strings~or
more generally wavyp-branes! and hence pathological.

With this in hindsight, we have found that most of the
undulating solutions cannot be interpreted as black strings:
The excitation of any localized multipole mode withl>1
gives rise to a naked null singularity as opposed to an event
horizon. Similarly, oscillations of growing modes withl>2
result in divergences very far away from the string. To un-
cover these divergences, we have found a timelike geodesic
for each excited multipole, which extends to infinity and
reaches the null surface in a finite affine time. We have then
propagated an observer along this geodesic to the vicinity of
the region of geometry we wished to explore, and isolated
the leading divergences of the curvature forms Lorentz trans-
formed to the rest frame of the infalling observer. These
divergences translate into infinite physical forces detectable
by the observer, and hence must be interpreted as naked
singularities.

One could easily generalize these conclusions to include
the waves propagating in the remaining ‘‘internal’’ dimen-
sions, which we have ignored until now because they were
passive spectators for the most part of our investigation. In
the framework of heterotic string theory this can be done as
follows: We could take the tensor product of the string-frame
solution ~51! with a four-torus, lifting it to nine dimensions.
This is guaranteed to be a solution of the effective action of
heterotic string theory in nine dimensions, with the matter
fields identical to those of the original five-dimensional so-

lution ~51!. We could then view the Laplacian constraint of
Eq. ~18! as a linear combination of the spacetime and inter-
nal parts. From the solution~51!, the Laplacian constraint in
the Einstein frame in nine dimensions can be decomposed as
¹W x
2C1kl¹W y

2C50, with k and l defined in Eq.~53!. The

operators¹W x
2 and¹W y

2 denote the flat space Laplacians in the
3D spatial sections and the internal space, respectively. Be-
cause the internal space is a four-torus, we can expand the
wave profileC in the Fourier series with respect to the in-
ternal space basis, which consists of the exponentials of lin-
ear combinations of the internal coordinates exp(icW•yW). The
coefficients of the coordinates are integer multiples of the
inverse radii of the torus, and would give rise to the mass of
the transversal part of the wave profileM25( i51

4 ci
2 . In par-

ticular, the zero modes, corresponding toc15•••5c450
would trivially reduce to the case of the massless spacetime
waves we have discussed in the main part of the paper. These
are the only scalar harmonics on the torus and hence we can
ignore them. All the massive modes however turn out to be
naked singularities. This can be seen as follows: The space-
time part of the Laplacian for each massive mode of the
wave profile becomes¹W x

2CM5M2klCM . Now, using the
spherical symmetry of the stationary solution to implement
the separation of variablesCM5RMlYlm , we at last obtain
the equation for the radial degree of freedom:

r 2R̈Ml12rṘMl2@ l ~ l11!1M2P1P2

1M2~P11P2!r1M2r 2#RMl50. ~94!

From the general theory of differential equations, we know
that this equation has two classes of solutions—localized
~approaching a constant asr→`) and growing~diverging in
the limit r→`). The latter do not represent wavy strings but
rather waves filling up the whole spacetime—and hence lead
to divergences far away from the string, as in the case of the
massless growing modes discussed in Sec. IV. This can be
seen as follows: SubstitutingRMl5RMl /r in Eq. ~94! and
keeping only the leading terms in the limitr→`, we find
R̈Ml5M2RMl . Hence the growing modes diverge at infinity
asRMl.exp(Mr)/r—i.e., faster than any power, and so they
must produce naked singularities far away from the string for
all l . The former case is more interesting, because by the
same arguments as above, far away from the string, these
solutions damp out as exp(2Mr)/r. Thus they might be in-
terpreted as wavy strings—except that they are singular in
the limit r→0. To show this, we note that the pointr50 is
a regular singular point of the differential equation~94!.
Hence all the solutions admit Laurent series representation,
with the leading power beingr b. From Eq. ~94! we find
b5@216A114l ( l11)14M2P1P2#/2. The plus sign in
the definition ofb leads to finite~in fact, vanishing! limits of
the radial function asr→0 and, as we know from the theory
of differential equations, it must correspond to the growing
solutions which are singular at infinity. The minus sign gives
solutions which diverge asRMl.1/r ubu on the null surface. In
particular, even whenl50, the wave profile diverges with
the negative powerb52(11A114M2P1P2)/2. As we
have seen in Sec. IV, such divergences could produce infinite
tides—and since nowb(b11)5M2P1P2Þ0, the tides we
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have computed there diverge even for the monopole mode.
Similarly, we can see that other localized massive multipole
modes also have divergent tides on the null surface. Hence
we see that all the nontrivial internal modes lead to naked
singularities, which can be detected by tidal forces.

In the case of localizedl50 and growingl51 modes, we
have found a special subclass of wavy strings which are ana-
lytic on, and everywhere outside of, the null surface, and not
only continuous—thus extending the earlier results of
Horowitz and Marolf@9,10#. A puzzling feature of our spe-
cial family of analytic black strings with nonstationary hair is
obviously the quantized nature of the parametera. The
quantization ofa in a technical sense is more similar to, say,
the quantization of the radial modes of an electron in a hy-
drogen atom, where we also require that the wave function of
the system is analytic — yet the obvious absence of any
quantum-mechanical scales precludes the possibility that our
quantization is of microscopic origin. On the other hand, it is
possible that this is just an artifact of our choice of the form
of the wave profile yielding analytic metric. In our opinion,
this ambiguity merits further interest.

Finally, we should remark once more that our analytic
examples comprise only an existence proof of time-
dependent hair. They do not encompass the generall50 and
l51 modes. Specifically, we do not cover arguably the most
interesting case when the coordinate along the string is com-
pact, which is a candidate for a hairy black hole in four
dimensions. Given our demonstration above that the excita-
tion of the passive internal dimensions leads to naked singu-
larities, we should note here that the compact wavy strings

may also be singular. A simple argument supporting this
could be based on the fact that the compact wave profiles are
periodic functions. Hence the exponential damping of the
wave in the horizon limit, manifest in Eq.~91! and crucial
for demonstrating analyticity of the metric in our examples,
is absent. This actually turns out to be correct — but to prove
that the compact wavy strings are indeed singular requires a
careful examination of the tides beyond the leading order,
and will be given in the forthcoming work of Horowitz and
Yang @25#. So, while our examples show that it is possible to
have wavy strings with regular horizons, and that the waves
can be understood as time-dependent hair on black objects,
this identification must be applied sparingly and discrimina-
tively. In general, the wavy solutions are not hairy black
strings, or decompactified black holes, because they contain
regions with infinite tides, which render the solutions singu-
lar. Thus it appears unlikely that the classical wave modes
alone can give the complete accounting of the microscopic
black hole degrees of freedom, as proposed in@8,11,15#. The
excitation of most of these modes turns the original black
string into a very bright object. Hence such modes cannot be
interpreted as black hole hair — in a manner of speaking,
they are too curly to weave a smooth spacetime.
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