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Wavy strings: Black or bright?
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Recent developments in string theory have brought forth considerable interest in time-dependent hair on
extended objects. This novel new hair is typically characterized by a wave profile along the horizon and
angular momentum quantum numbérm in the transverse space. In this work, we present an extensive
treatment of such oscillating black objects, focusing on their geometric properties. We first give a theorem of
purely geometric nature, stating that such wavy hair cannot be detected by any scalar invariant built out of the
curvature and/or matter fields. However, we show that the tidal forces detected by an infalling observer diverge
at the “horizon” of a black string superposed with a vibration in any mode Wi . The same argument
applied to longitudinal I(=0) waves detects only finite leading-order tidal forces. We also provide an example
with a manifestly smooth metric, proving that at least a certain class of these longitudinal waves have regular
horizons.[S0556-282(197)06610-1

PACS numbg(s): 04.70.Dy, 04.50+h, 11.25.Mj

[. INTRODUCTION passed by mass, spin, and Abelian charges must have been
radiated away in the process of formation of the hole.

One of the most confounding puzzles about black holes in Recent developments in nonminimal models of gravity,
general relativity is the apparent incompatibility betweenand especially in string theory, where the modifications of
their extremely simple structure, governed by the famougeneral relativity have a firmer foundation, have brought
no-hair uniqueness theorerfis], and their generically large about some explicit counterexamples to the no-hair theorems
thermodynamic entropy2]. The former indicates that the [4]. Namely, the models considered involve new nonminimal
complexity associated with the latter is not encoded in thecouplings which provide extra sources in the equations of
classical solutions. The crux of the no-hair theorems in genmotion. However, whereas the particular solutions to these
eral relativity is that regardless of how a black hole wasmodified equations carry nontrivial long-range hair exterior
formed it is completely described once its mass, spin, andb black holes, there are no new constants of integrations and
Abelian electric or magnetic charges are determined. Allso these aberrations of the no-hair theorems are deviations in
other types of long-range interactions, such as scalars with detter only and not in spirit. The new charges are completely
without self-interactions, massive or non-Abelian gaugedetermined by the charges already present in Einstein’s
fields, etc., are excluded because they would either lead tiheory, and the nonminimal hair is secondéag opposed to
naked singularitie§1] or would be unstable and thus would the primary hair carried directly by the black hole chajdes
disappear shortly after the formation of the black hi8é Nevertheless, the secondary hair does affect thermodynamic
More specifically, the machinery of the no-hair theoremsproperties of black holes, changing the expressions for both
rests on the assumption of regularity of a stationary nulthe temperature and the entrofg).
surface, i.e., the event horizon, and the demonstration that it Another kind of black hole hair may appear if we abandon
leads to the vanishing of all matter charges, other than Abethe constraint of stationarifyp—11]. Recent developments in
lian, which could carry long-range interactions. Because thatring theory have brought forth a considerable interest in
equivalence principle demands that the fields be coupletime-dependent hair on black holes and extended objects. In
minimally to gravity, the vanishing of charges in stationary particular it has been suggested that such hair might give a
spherically symmetric space-times implies the vanishing otlassical accounting of the black hole entrdj8y11,15. In
the external fields or hair. A small deviation from these re-any event, one might expect that this situation would be a
sults are black holes with non-Abelian hair, where the haimore realistic description of a black hole, because stationary
arises because of the nonlinearities in the gauge field equalack holes could exist only as “hermits” in complete soli-
tions of motion; however, this hair is unstable to perturba-tude; yet their very nature precludes this, as their own gravi-
tions, with the hairy black hole rapidly decaying into a baldtational field permeates the whole Universe and communi-
one[3]. The final result is that all of the structure of the cates with all of its inhabitants. The principal obstacle to
configuration which collapsed into a black hole not encom-studying nonstationary problems is an enormous complexity

*Electronic address: kaloper@avatar.uwaterloo.ca 1The secondary hair will be stable because the monopole charges
"Electronic address: rem@hep.physics.mcgill.ca do not vanish, in contrast with the non-Abelian hair mentioned
*Electronic address: roussel@hep.physics.mcgill.ca above.
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of gravitational equations of motion, often resulting in their shown in[9]). Finally, we present our conclusions and con-
intractability. Indeed, there are comparatively few exact nonsider directions for future investigations.

stationary localized solutions known to date, and none of

them corresponding in all important aspects to the physical Il. GARFINKLE-VACHASPATI WAVES

picture of black holes. Still, some of these solutions may h i ) h ) hni
provide useful models to study realistic hairy black holes. fg‘ t f_|sk|sect|c()jn\,/wehreV|etv1v7t ?vzjaye—generatlngﬂ'gec tﬂlque
Most of these solutions arise because we can embed foug-ituaatlirolr?s (iana\r/]vhicr?cit anfga[ b g' an I?ér&g isg’ V\;ﬁeOL:elsTreictigns
dimensional black holes in higher dimensions via a proce- ! 1t may pphied, 1.€., ;

) . . . which must be satisfied by the metric and matter fields. The
dure inverse to dimensional reductiofthus, the term

“oxidation”—see, e.g..[24])). In certain special cases, the crucial requirement is that the solution possess a null,
i See, €.g.,124). P ’ hypersurface-orthogonal, Killing vector. The resulting pres-
resulting oxidized solution has a null, hypersurface-

- ence of a null coordinate allows one to effectively “linear-
orthogonal, Killing vecto12-16. They can be used as a jze” Einstein’s equations and restore hidden wave degrees of

natural starting point for the construction of a more genera reedom. The method was originally proposed for the Yang-

family of nonstationary solutions characterized by a set of, . : ; . .
arbitrary functions. The presence of this isometry indicates'vIIIIS Higgs system coupled to gravity and applied to straight

that there exists a much larger family of wavelike solutionscosmic string solutions in four dimensiofts7]. It was later
9 y extended to gravity coupled to a scalar and a two-form po-

\évr:g(i::erigliﬁejgorg; t())lfa ?rl;'ggéi;"k: :i?:ﬁlt;?ncgc;:éseosn%eeﬂiltential in five dimensions in the context of low-energy string
9 ' P eory[18]. It was also used to construct similar wavy ax-

exists, for example, between the Brinkmann wave SOIUtlonionic strings in Refs[6,7]. The following description will

m_general relat_|V|ty and_flat space._We can ge_t a g||mp§e Otonsider gravity in arbitrary dimensions coupled to a matter
this larger family by using a solution-generating technique

defined by Garfinkle and Vachaspéti7] as a method to sector including various scalars as well as a set of different

restore some of the original wave dearees of freedom Th%-form potentials. Thus this discussion shows that this tech-
: : 9 9 ) ique is quite generally applicable in supergravity or low-
resulting solutions still possess a null hypersurface-

orthogonal Killing vector, and thus describe a gravitationalenergy string theoneBlQ].. f the f
disturbance propagating through the original environment at Let us assume an action of the form
the speed of light, i.e., a gravitational wave. 1
A fundamental question of interest is to determine if this |=f de\/—_g( R(g)— =, ha(¢)(Vepa)?
larger family still has a regular null surface, which can be 2%
reached by causal or null geodesics, i.e., an event horizon. In 1
this paper, we will examine this question for a certain family - —E fp(¢)F(2p+l)) ) 1)
of five-dimensional black strings with a single wave profile 2%

function in an {,m) multipole mode. First, however, we will . . .
(m) P Thus, as well as the metric, we have included a collection of

give a theorem of purely geometric natugealid in any ) _ . o .
theory of gravity which assumes a pseudo-Riemannian gé:gcalar fieldsp,, which appear with nonderivative couplings
In the coefficient functionsh,(¢) and f (#). The above

ometry as the basis for the description of gravitational inter-"" " X \
actions that such wavy hair generated by the Garfinkle-2ction also involves a set gi-form potentialsA,) through
Vachaspati techniquiL7] cannot be detected by any scalar tN€ir field strengths= .. 1)=dA, . Hence there is #Abe-
invariant built out of the curvature and/or matter fields. How-'1@" gauge invariance associated with these fields,
ever, in our example, we will show that the tidal forces mea-9A(n) = d\(p-1) - Note that this action is written in terms of
sured by an infalling observer diverge at the “horizon” of the Einstein-frame metric, by which we mean that there are
the black string superposed with a vibration in any modgl® couplings to any), appearing in the Ricci scalar term of
with 1=>1. Hence the solutions with excited dipole or higher E9- (1)- Now the gravity equations of motion may be written
multipole modes contain null singularities. The same argu®S
ment applied to the monopole mode shows that the leading L L
order tidal forces are finite. We will also construct a class of R¥,— 30" R=5TH,, 2
monopole wave profiles for which the metric is manifestly
smooth. Hence at least some of the wavy strings indeed hayghere
regular horizons.

. The paper is organized as foIIo_ws. In thg next sec;ti_on, WeT"FE ha(B)[0"00,Badyda— Lom (gphapqsao—,)\(ﬁa)]
give a review of the wave-generating technique, outlining the a
conditions the matter distribution must satisfy for the method
to work. In Sec. Il we present our theorem on the elusive wpi--p
nature of Garfinkle-Vachaspati waves, and give its detailed +Ep Tl @RPFDIF ) P penlvoy o,
proof. Section IV contains the derivation of the explicit form
of the wave—black-string solution and a brief discussion of -2 & F(pr)]™ pp+1[F(p+l)]p1'”pp+1}' ©)
some of its properties. We show that these solutions contain _ ) _
null singularities for all higher multipole modes1) later ~ While the matter field equations may be written as
in Sec. IV. In the last section, we construct an explicit family

itudi - i - i dhp( )
of longitudinal wave (=0) solutions for which the metric  q_ h iy _1 AR V) v
is analytic on the horizonand not only continuous, as RRCLICOLRCN 2@% Iba PoVuda
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L afy(b) while leaving all of the matter fields unchange@he con-
-3V W[F([wrl)]pl PP F pe]pyppy figuration @',¢a.,A,) also yields a solution provided the
P a function ¥ satisfies appropriate constraints. These restric-
(4)  tions will guarantee that after the metric is modified the form
of the explicit fields appearing in the equations of motion
0=4,4 \/afp((ﬁ)[F(pH)]#Pr Pl (5) remains unchanged. Hence E#2) is promoted to a map on
the space of solutions. In order to maintain the wave inter-
For later purposes, we have been explicit about the appeagretation of the new solution, first one requires thétave a
ance of the spacetime indices in these equations. vanishing Lie derivative on?, i.e., k“J,¥=0. One may
Now within this theory let us assume a solution yerify that this ensures that the hypersurface orthogonal and
(9, ¢a.A(p) for which there exists a vector field whichis  Killing conditions, Eqs(7) and(8), are still satisfied with the
new metric(with the sameS). It is also obvious that the null
null: k*k,=0; ®  condition () still holds with g’. To determine what other
restrictions must be imposed ob, one must consider the
changes which the ma@i2) induces in the equations of mo-
tion, Egs.(2)—(5).
We begin by demonstrating that the matter field equations
are invariant under Eq12). First note that the determinant

vanishing Lie derivative or§, i.e., £,S=k*3,S=0. Since of the metric would iny t?e modified by terms prpp_ortmnal
et to k¥k,, . However, since is null, the determinant is invari-

we wishk to yield an invariance of the fu]l S(_)Iut|on, itis also ant: detg’) =det(g). On the other hand, the inverse to the
assumed to have a vanishing Lie derivative on the matter

fields; i.e., the matter fields are form invariant along the ﬂowmetric 9, IS given by
of k. Hence, g'#r=gh’— eSTkEK”. (13)
Lyda=k"3,¢,=0, ©)

hypersurface orthogonal: v k,;=k;,V,;S; (7)
and Killing: V,k,=0. (8)

Combining these equations, it is easy to show th&ias a

Now, given the transversality constraifitl), we see that
raising all of the indices of the form fields with the new

L= (At dF oy =didFp,n =0 (A0 on S ields

where the latter use§,=di,+i,d on forms withi, denot-

ing the interior product, and the Bianchi identities [Fipen)™prt=[Fprg 1 o2+ p(p+ 1)

dFp+1)=0. This form invariance of thg matter_ field_s guar- x Kl#1k#2] a(pil)]ﬂs...ﬂpﬂ]
antees that the stress-energy tensor is form invariant, as it
must be given that Einstein’s equatici@ are satisfied. Note =[Fprp]Ha#er, (14

that for the form fields, the vanishing Lie derivative is im-

posed on the physical field strengths rather than the gaug#¢here in the first line terms with more powers bfhave
variant potentials — the latter may vary by a gauge transforautomatically vanished sindg6,_1)=0. Given this result
mation along the flow, £iA ) =d\ ,_1). In the following, ~ as well as the invariance of dgt)( it is clear that the equa-
we will further require that these fields satisfy an additionaltions of motion for the form fields5) are left unchanged by

transversality constraint, namely, the map(12). Further, given the vanishing Lie derivative),
it is clear thatg'#”d,¢,=09*"d,¢, and hence the scalar
ikF o1y =KN\Op-1). (1))  equationg4) are also unchanged. Thus we have shown that

the configuration §’, #,,A;) provides a solution of all of
Here, the right-hand side is the wedge product of the onethe matter field equations.

form k,dx" with some @ —I)-form 6,_,), which neces- The same considerations as above also show that the
sarily satisfiesiyf,—1)=0 since ()°F(p+1)=0—see Sec. stress-energy tensor with mixed indic&,, given in Eq.
lI'A, for details. (3), remains unchanged when the metric is modified as in Eq.

The solutions satisfying the above conditions can be in{12). The only step which remains in examining the gravity
terpreted as gravity waves. Consider the coordinate systeequation is to compute the change of the mixed-index Ein-
adapted to the flow ok—as well as the cyclic coordinate stein tensor. This is reduced to computing the change in the
v, there is a coordinate, given “roughly” by the integral of  Ricci tensor only, because the Ricci scalar may be eliminated
the dual one-fornk=k ,dx*. The vanishing Lie derivatives, from Eq.(2) usingR=[1/(2—D)]T*, in D dimensions. It is
Egs.(8), (9), and(10), simply means that none of the fields straightforward to calculate that the Christofel symbols for
depend orv. Hence the only “time” dependence can arise the two metrics are related dy'“ =T'% + Q¥ where
through the null coordinata and, hence, represents pertur-
bations moving at the speed of light in a certain direction on/:x: L[V (eSWkrky ) + V, (e5WkHk,) — VA(eSWk k)] .
the space-time. The Garfinkle-Vachasp&BV) solution- (15)
generating technique extends the solution by restoring addi-
tional wave degrees of freedom. To do this, they define a=———
new metric by[17] “Throughout this sectiork, =g, ,k*. However, from the defini-

, tion of the metricg,,, and the fact thak is null, it does not matter
9= 9t €K,k , (12 \which metric we use to lower and raise the indesof
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Further, using the properties ofk, as well as a cosmological constanto Eq.(1). This would modify the

k“9,S=0=k*d,¥, one can show thatQ/ =0= stress energyB) by a term proportional té*,U(¢), as well
My . g
kMV)\Q;\w:QZ)\sz_ Thus one finds thatR’,,=R,, as adding &, U term to the scalar equatiortd). Both of
+V,Qf, and hence these terms are obviously invariant under the ri&®) and
N N so the above construction is still valid.
R'#, =R, +eSPkHR,,+V,(Q8,0Y).  (16) Another nonminimal coupling, which commonly arises

among the form fields, is Chern-Simons-like terms appearing
in the definition of the field strengths; e.g., for some choice
of mandn, Fmins1)=dAmsn + aAm/\dAy,, , where we

still assume= 1,4 1)=d Ay andF 4 1)=dA, . This defini-
tion leads to two modifications in the equations of motion.
(Note that forF 1, 1 1) the Bianchi identity is also modified,
dF(m+n+1)=aFm+1/\F(n+1), but this has no conse-
guences for the present discussjdfirst, Eq.(5) is modified

for p=m by the introduction of a source term which is pro-

Again, using the properties ok, one can show that
k'R, ,=k,V2S/2. Substituting this into Eq(16) and after a
few more manipulations, we finally arrive gt7]

R'#,=RH,— 35k, V2V, (17)

Therefore, the variation of the mixed Ricci ten$tt, under
Eq. (12) is proportional toV2¥, and so vanishes if we de-
mand that¥ solve the covariant Laplace equati¢n the

background defined bg,,,). portional to
Therefore, given a solution for which Eq&6)—(11) are
satisfied, then Eq(12) provides a map to a new solution \/5 [F(m+n+1)]”l"'9m“1'"“n+1[F(n+1)]ﬂl...ﬂn+1. (23
provided
k#9,¥=0 and V2P =0. (18  With the same transversality constraint 0y, n+1) as

above, Eq(11), we still conclude that its form with all indi-

We note that the conditioR ¥ =0 is really just the spatial ces raised remains invariant, as in Etd), and hence this
Laplace equation sinck*d,¥=0. Furthermore, the latter new term is also unchanged by E42). The second change
indicates that the moduli of the new solutions only depends the appearance of a source term in &jyfor p=n. In this
on the retarded time-; above—and therefore they still rep- case, upon applying the equation of motiaB) for
resent gravitational waves. p=n+m, this second source term takes precisely the same

The preceding discussion was phrased in terms of théorm as above, merely interchanging the rolestofand n.
Einstein-frame metric. However, in some instantgsch as  Therefore it is also invariant under the méf®). Thus the
the example in Sec. IV it is more convenient to work in - GV procedure will still be valid for solutions where these

terms of a conformally related metric, e.g., Chern-Simons-like couplings make nontrivial contributions.
T =exd The final extension which we will consider is the addition
9 =€ "0y (19 of topological interactions, e.g.,

Given in terms ofg, the action will contain nonminimal cou-

plings of the scalar fields to the Ricci scalar. It is straightfor-

ward to show that most of the constrairi®—(11) are un- J AdAmdAnm) ,
changed when written in terms of the conformally

transformed metric. The only change is that the hypersurface _ . . . -
orthogonal conditior(7) becomes where/+m+n+2=D. Such an interaction again modifies

the equations of motioKs) for p=/,m,n by the introduc-
’V”[M’EV] :’lz[,uvv]’é where S=s— a( ). (20) tion of source terms of the form, e.g.,

CH;:]ee;ve have denotekl,=g,,k”. Thus the map12) be- \/58:“1"'M/Vl"'Vm+1P:L'"Pn+l[F(m+1)]V1.__Vm+1

-~ X[Fm+nlpy oy
§.,=G,,+eSWKK,, (21) Prbnes

which is equivalent t@’;w=e‘”(¢)g;w. Finally, of course, the Wheree is the Levi-Civitatensor inD dimensions. Given the

constraints on¥’, which ensure that Eq21) provides a so- invariance of the determinant of the metric,=¢ as forms.
lution of the gravitational equations of motion, are identicalHence we must compare raising all of the indices vgth
to those appearing in E418). The latter may be written as andg. Given Eq.(13), we see that

follows, when expressed in terms of

_ tuvep— g p_DeSPklelk, gMvi el = guveop
ko, F=0 and 3,(e@ D@2 [—ggury,1)=0, ° ° M °

12 (24)

where agairD denotes the dimension of the spacetime.  where the vanishing of the second term in the first line relies

Before concluding this section, let us mention a fewon a result proved in the following section—see E40).
simple extensions of the original actigd) for which the  Therefore the new source terms are again unchanged by the
preceding discussion would still be applicable. First, wemap (12), and so these topological interactions provide no
could add a scalar potentibll(¢) (which could then include obstruction for this solution-generating technique.
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lll. THE ELUSIVE WAVE of the newk-dependent terms vanish by combining the pre-
vious two results with the fact thdt is null. Hence, we

. . . conclude that the original and the corresponding primed in-
that carrying a wave induced by E(.2) are not diffeomor- variants are identical. As a consequence, no evidence of the

phic; however., the wave turns out to be very elusive. In thi%/vave profilex can be detected in any of the curvature in-

section, we will present a theorem of a very general natureyarjants of the metric. This result represents a generalization

showing that all the scalar curvature invariants of the tWout the previous studies of curvature invariants of geometries

metrics related by the wave-generating technique are in fag{dmitting null, covariantly constant, Killing vectofg0,21].

identical. Thus, no curvature invariant of the oscillating met-an immediate corollary of this theorem is thatgf,, repre-

ric can be used to detect the presence of the gravitationglents an extended black object with a regular horizon to

wave. The theorem generalizes in a straightforward way tqvhich we add a GV wave as in the last section, then the

include any scalar invariants constructed from both the metpscillations will not produce newscalar curvature

ric and matter fields. singularities—however, in later sections, we will discuss the
To prove this result, we need only assume the existence dimitations of this statement with explicit examples.

a metricg,,,, which admits a null, hypersurface-orthogonal,

Killing vector. We do not require that the metric solve Ein- A. Useful formulas

stein’s or any other equations. Thus our result is purely geo- - . .
y q burely’ g Let us start by listing some important formulas which

metrical in natl_J(e and holds'for any metric satisfying thg rise from the existence of a null, hypersurface-orthogonal
symmetry condition. The precise statement of the theorem I%illing vector. As  stated befc;re)[/i% Eq. (7)] thge ’
as follows. ) o ) !
. : : : - hypersurface-orthogonal condition amounts 6, k
If is a pseudo-Riemannian metric admitting a null, ) el
G P 9 =k, VS for some scala6 which can be determined from

- illi M /
rlypersurface orthogonalf Killing vector k_and %v  the metric. Combining this with the Killing conditiof8)
=0,k k,k,, wherex is any scalar Lie derived by k to yields

Generically, it is the case that the original solution and

. # v . .
zero, i.e.,Lyxk=0, then all of the scalar curvature invariants

of g;w are exactly identical to the corresponding curvature
invariants of g,,, . V,k,= 1 (k,V,S—k,V,S) . (25)

Hence the GV transfornil2) provides one example of
such metrics withc=eS¥. In the following, we will refer to  Further, it is not difficult to see that the Killing condition
d., as the original metricg,, as simply the primed or alone leads to
shifted metric, and« as the wave profile, in analogy to the
last section.

Before presenting the details, let us first give a brief
sketch of our proof. Before examining the curvature invari-
ants, we establish two crucial results. First, contracktfig
with any tensor constructed from the original metric, its cur-
vature, and covariant derivatives of the curvature and/or an
scalars with a vanishing Lie derivative undemproduces a
sum of terms in each of whick appears uncontracted. Sec-
ond, any tenso(_e.g., the curvature or covariant derivatives KPR a0 =V oV 1K, = VoV ok, =k V o)V, S— 2KV o SV,S,
thereoj in the primed background may be written as the sum 27)
of that for the original metric plus &-dependent term, for
which all of the contributions are at least bilinear in the Kill-
ing vectork. These two results set the stage for an examinausing Eq.(25). Recall the expression for the Lie derivative of
tion of the scalar curvature invariants. There we find that alla general tensof#1 - LI

v,V k=kR (26)

PYUN

as can be determined by considering the commutator of two
covariant derivatives acting dn We also note that we may
¥éxpress

=

EvTﬂl"'Mle__‘Vq:v}\v)\T/-Ll"'/-’«pyl_..Vq_T)\"'#le_“VqV)\Uﬂl— - _Tﬂl--~>\V1.__qu)\vup_;_-r#l-”ﬂp}\_quvvlvk_y -

+Tu1~-~upvl.,,hvqu*. (28

From this definition and the Killing conditio(8), one may show that the Lie derivative with respect to a Killing veaipr
commutes with the covariant derivative. Begin by considering

VﬂﬁkTvl, vy kAV#VATvl_ _.Vq+VATV1, ,_VqV#kM . +V#T,,1< . .AVquMrT)\_ ,.quﬂvvlku . +TV1, . .AVMVqux
= kAVxV,LTvr ) ~Vq+ VKTVl. . VqV,Lk“r o+ V”Tvl, ) ,KVqux

A N A A
T (Rt Ry KT, (RY, Ry, K]

=LV, To g (29)
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using Eq.(26) and the standard commutator andk’R,,\, as given in Eq(27). Let us now show that it
) holds in general for what we denote as “primary” tensors,
[V VAT =R T namely, tensors obtained by an arbitrary number of covariant

derivatives acting on the curvature or the scalars. The
Hence,[ L,V u]T,,...,,=0. The case wherpLly,V,] acts  proof relies on mathematical induction and makes essential
on a tensor with some raised indices is trivially related to thisuse of Eq(25) which allows any covariant derivative &fto
one because,g”*=0=V ,g"*. Similarly, one can show be reexpressed in terms on undifferentiates. First, we
LiR,\.,=0, as well as(,S=k*V ,S=0. Further, recall, by establish the result for the simplest cases: For any s&lar
definition, Lk =k*V ,k=0. We will find all of these formu-  Lie derived to zero bk, we havek*V ,B=0 and further

las useful below when evaluating the contractions of tensors
with the null vectork. k“v,v,B=k*V,V B=V (k*V B)-V, BV k*

o =—3k, V#SV B, (31
B. Contraction identities

The first step is to show that for any tensor built out of theUSing EQ.(25). Now combining£,R,s,,=0 and Eq.(27),
original curvature, any scalars with vanishing Lie derivative V€ find
underk (i.e., Sandk), and any number of covariant deriva- KEY _
. . L . . R =R*, K,V 1S+ - +R, 5,k ,V 1S
tives (with respect to the original connectipacting on ei- papyo T Byotip T el apy Mlu o]
ther of these, the contractioln“TVl“,,,le,,_Aq is at least :kaafgly)ﬁ - +k09514,§7. (32)
linear in vectork,, ; i.e., it can be expressed as a linear com- ) ) ) o
bination of terms which factorize as some tensor of rankvhere in the SGCCEI;])CI line we collect the like terms. Explicitly,
lower by 2 and the vectdk: one finds, e.g.05,,= = 3(V*R.py, 1 VzV(,S V5 S) and

i 02, = = AV Ry = VoV [,S Vg S). Similarly,
KET oy =20 K O
17 Vpkhy g A=1 noY1n pr1 g kaV,uRaByU:VM(kaRa,Byo)_Raﬁyavlu,ka
d —k 6D 4. 4k gD
+ E k)\ 0(p+n) N \ N kﬂaﬁyo'—‘r + kaglu,ﬁyi (33)
=L again using Eqs(25) and (27).
(30) So now let us assume that EQO) holds for all primary

where underlining an index denotes its deletion from thel€nsors of rankq or less. Now, by our definition, a primary
expression(For convenience, we will work with only cova- tensor of rankg+1 will be obtained by covariant derivative
riant, i.e., “downstairs,” indice$. This is true in the few acting on a primary tensor of rank i.e., V\Ty ..., . Hence
simple cases encountered so far, ey ,S=0=k*V ,«  we consider

kMVxle\Z- g Vxl(k”Tm\z- : -xq) _TM)\Z- : -Aqvxlk”

o)

V(K 00 ) F 3 Ty KV S 3 T K, TS

n

Il
M=

(kanMeg’;}“An.“Aqu Vxlkxnegr;)u_xnmwr 3 kxnagr;)”mnw)\qVMS)— 2k Ty 2 VS

2

n

I
=}
1M =
N

(kxnvxleg\r;).-mn.»-)\q"‘ %kxlvxns 95\?»-)\”-“%)_ %k)\le\z.,_)\qV“S

ag\n). Ape Ay ? (34

n A17 tAnt TR

q
:2 Ky
n=1

after collecting the like terms into the tensat®. Of course, the same result followskif is contracted with any of the other
indices onT above. The last possibility ls/‘V#TM, g Here we use,T), .. _hqzo which holds by £,V ,]=0 and the fact

that bothS and the curvature have a vanishing Lie derivative urkdérhus,

k'uV/'LT)\l'”)\q: _T#)\z,.,)\qv)\lkl’“— N _T)\lmkq,l,uvquﬂ
= %(T,U,}\z---)\qv)\ls_l— T +T}‘1""\q—1MV’\qS)kM_ %(T/‘L)‘Z"'Aqk)‘l_l— cee +T)\1...>\q_1#k)\q)V”S
q —~
=2 ko B0 g (35
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where we applied Eq.30) for rank<q primary tensors in the k”TS,l) o T@M1 A
second line and gathered the like terms. With Eg4) and P
(35), we have shown that E¢30) holds for any indexw on

p
a primary tensor of rankj+1. Therefore by induction this = 21 kvne(yrl'.l.).y vphy ..AqT(Z)M'”)‘q Lo
factorization property is established for all primary tensors. " -
At this stage, we must consider the “secondary” tensors,

i.e., the § tensors produced in the contractions lofwith q
primary tensors—although here we will leave many of the (p+n,1) (2hqg--\

; A ; ; +E Kna 0o vy apng L Mg (37)
details to the reader. Considering the simplest examples in n=1 NP PphatiAnttRg e

Egs.(27) and(31)—(33), one finds that thé tensors are not
simply primary tensors, but rather involve certain products
and/or contractions of primary tensors. However, in thosedere the first term has the required form, and soder0,
particular examples, it is not hard to show that they sharg.e., no contractions, we would have the desired result. How-
two important properties in common with the primary ten-ever, forq=1, we need to look at the cross terms in the
sors:(i) The #’s have a vanishing Lie derivative underand  second sum, e.g.,

(i) upon contraction withk, they factorize as in Eq.30).

Having established that these conditions apply in the sim-

plest cases, it is straightforward to formulate an inductive k, ¢(P*%V —~— T@ri g
proof to show that they also apply for ti#etensors produced P

from primary tensors of higher rank. One would begin by g

assuming thati) and(ii) hold for the #’s arising from rank- = 9(V'i'+-l-'ul;x2...an§_:2 kx”ﬂ(“'z”‘Z”'ﬁ”'*qwl,._wl
g primary tensors, and then examine those produced at rank -
g+1. In the case considered in E@4), one has

1@

(p+1,0) (Q+N2N1- - \q
O s ng 2y Koyl oy g

13 - 1, (39
:Engl V)‘nsa)\z"'}‘n"')‘q_ EV STM)‘Z"')‘q’

oY,
Here we will have arrived at the desired formgif 1, but for
_ g=2, we have generated further cross terms in whidls
0§\nl)“.}\n.”}\q:V)\le;\r;)...}\q for n>1. (36)  contracted back oA®®* %, However, since the's also fac-
- torize according to Eq(30) as described above, we may
continue this procedure. Now given thaf the number of
contractions, is finite, this “ladder” ok contractions will

and factorization properties because all of the components ventua_lly terminate, since at each step the number of con-
racted index pairs is reduced by one in each of the subse-

S : : m
%;Ch,'t IS cpmpr|§ed(|.e., 0", T, Vs) dcz.n)!:orn>1, quent cross terms. Therefore after a finite number of steps,
™" will be Lie derived to zero by becausey'™'s are and e grrive at a factorization without any contractions yielding
[£«.V,]=0. Given the vanishing Lie derivative and that the desired form. Given this result, it is obvious that we may
factorization(30) holds for thed(™’s, one would extend this in a similar way extend Eq(30) to apply for an arbitrary
condition to thed™ tensors in the same way as in E¢34) product of primary tensors, including arbitrary contractions.
and (35) for the primary tensors. One should then examine To conclude this subsection, we consider contractions of

(g+1) primary tensors. One is again able to show that botfP-dimensional spacetime. To analyze this case, we resort to
(i) and (ii) apply for thesed tensors as well, although the local coordinate patches adapted to the propertids Birst,

index gymnastics is somewhat more involved. Furthermoret,he Ki_lling condition (8) indicates that we can find a cyclic
oordinate such that“d,=(d/dv). Next the hypersurface

the proof of these properties extends in a similar way to an)? o 4 '
“higher-order” tensors, that is, any new's produced by orthogonal condition(7) indicates that we can find a dual

. . coordinate such that, dx*=e~Sdu. In this local coordinate
contractingk with 6 tensors. “

Now this intermediate result for th@tensors is necessary patch, one of the free indices Ms““' -p must then take the
. o valueu, and hence we can write
in order to show that the factorization propei$0) also
holds for products of primary tensors, with arbitrary contrac-
tions of pairs of indices. Our principal tool here is again i e=k/\o (39)
mathematical induction. We begin by considering quantities '
of the simple productT(Vll).,,VpH}\l_,,AqT(z)”l'“)‘qw
where bothT®) and T(® are primary tensors. Using the where in this cas# is some D—2)-form. However, as writ-
properties of primary tensors, we find ten this result is coordinate independent and so must hold in

It is easy to show that™® will satisfy both the Lie derivative

1 op
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generaP Thus we have shown that the Levi-Civitansor ~ where Xpuna=Y pXumo™ QLpuRomo™ Qo Riono ™ oy
factorizes in the same way as the primary tensors. R, vwo— QpeR), - It is straightforward to show that the

In fact, the resulting satisfies Eq(30) as well in atrivial - tensory,,,,. is bilinear in the vectok. This is clear for
way sincei, #=0. Th_|s resu_lt is again most easily derived v y using Eqs(25) and(43), and for theQ)R terms using Eq.
using the local coordinates introduced above. Because of tha0). Now similarly the Qy terms are quartic ik, but a
antisymmetry of the Levi-Civitdensor, none of the indices closer examination shows that the sum of these terms van-
on the rlght-hand side of EC(39) Correspond to the CyC||C ishes. Then, by induction, we see thatXi; N is at
coordinatev. Hencei, 6=0 with this choice of coordinates T ’ Lo P :

. o k ] ' least bilinear irk,, , theny,, ..., ..\, Must also be so. This
but this equation must then be valid in general. . i iahf db 1 nb_ ing the ab ; las i
As an aside, we note that the preceding discussion it% again straightiorward by combining the above formulas in

equally applicable for thé,_, arising in the transversality "¢ definition of:

constraint(11): ixF ,+1)=K/\f_1y. In this case, using the —y'y '

. { " = ...V'R -VV ...V. R
adapted coordinates, the antisymmetry of the field strengthXPf’l"'PnM""" Vo Vpn wna~ VoV Vo Rune
F(o+1) ensures thad,_ 1y does not carry @ index. Hence _ ®
or(1pe+fi)nds tha’lkﬁ(pfl()pz 0)_ =VoXp, - pumnet Qpp Xo - purno ™

Given the previous results, our final conclusion is that Eq. +0° V ...V R ...
. . . pp P “UVAO .
(30) applies for an arbitrary product of primary tensors and n

Levi-Civita tensors, including arbitrary contractions. Hence, all of the newc-dependent terms appearing in the

primed curvature and covariant derivatives thereof,

Xppy--pouvio are at least bilinear ik. A detailed inspection
Next we consider the difference between tensors calcushows thaty, ..., .o CONtains a sum of terms of order

lated for the original and primed metrics. First the shift in they2e with p=1,2, ... 1+|n/2], where|n/2] denotes the inte-

connection coefficient§), ="'}, —I'}; is given by ger part ofn/2. The precise powers will not be important
1 below, the key point being that they all beginkét
QL =2V ,(k kM) + YV, (k k#K,) = VA(k KKy ]) Finally we close this subsection by noting that the Levi-
2 Civita tensor is invariant under the shift between the original
1 and primed metrics, i.ea;’t,..p=s#.4,p. This result follows
= = (K"K, V ,k+ KK,V k— K K\ V#K) (40)  since, as noted in Sec. Il, the determinants of the two metrics
2 are equal becaudeis null.

C. Shift in tensors

— g(kﬂk)\vys+ k“k,V,S— 2k, k,V~S), (42 D. Scalar curvature invariants

We are now ready to consider the scalar curvature invari-
using Eq. (25). The corresponding shift in the curva- ants which can be built for the shifted metric. The most
ture is then R, , =R, ,+V,Q% —V, 04 +0° 0¥ general invariant will c_ons_ist of an arbitrary p_rodu_gt of cur-
Q0% 0% . However, the vanishing Lie derivatives Vatures, covariant derivatives theréadind Levi-Civitaten-
,Cszoi,CkS lead to QO O —QF Q% =0. Hence the sors, with the|_r indicegall _assumed to be coyaném:on-
shifted curvature reduceggtop I ';Lac:ced by the inverse metrif #”. Hence a generic term is of

e form

R,MV)\O': RMV)\O'+V)\Q¢/LU—VUQ¢}\' (42) N K M

i el o T gres, (44)
1 DI=1

Hence the curvature with all covariant indices is j k=1

! R#V)\(,'FZQMPV[)\Q";]V'FK K.k’R,,\s NoOw, using

Eam(%) as well as rewriting gMPV[AQf;]V with Eqg. (25), along with a rule for contracting the upper with the lower
we arrive at indices. Herex]L,q;+ DK =2M, whereD is the dimension
of the spacetime. In fact, one need only considerO or
,'M,,ZR,M,,Jr 2K,V Vi Koy =4k K,V VS Ky 1 since the product of two Levi-Civitéensors can be re-

duced to a sum of products of metric tensors.
3KV ik Kpn Vo S+ 3k, VS K Vo« Now, from the previous subsection, we know that all of
—5x k,V,;S KV S. 43y  the tensors in the first product can be decomposed as
l'Ll,,,Mn—TMl__,Mn+)(ﬂl,,_#n, wherey,,, ..., is at least bi-
Here the key observation is that the primed curvature can bgnear in the vectork. Further, we haves’=¢ while the
decomposed aR,,,, =R, st Xuno, Where the tensor inverse metric is given by’ #”=g+*— kk“k”. Hence we see
X uwro 1S bilinear in the vectok, . that the invariant44) can be decomposed as
In fact, a similar decomposition holds for any
covariant derivative of the curvature. To establish
this result, first note thatV R, ,\,=V R.net Xppmo “Here one might also include covariant derivatives of the scalar
S which are implicitly geometric tensors derived from the original
metric. Admitting these extra tensors would not change our conclu-
SEquation(39) is the essential result required to prove E2y). sions.



55 WAVY STRINGS: BLACK OR BRIGHT? 7633

K M a null, hypersurface-orthogonal, Killing vector, which is
I'= H (TVJ1 "VJQ.JFXle'“Vf] ) [1 sx‘;...xgH (guh supplemented with c_ertai|_’1 constraints on the matter fields as
=1 i i k=1 =1 well. Thus no scalar invariant contains any information about
— kKB =T+ 7, (45) the wave profilec, and hence to determine how the geometry

has been modified, one must consider quantities such as tidal
whereZ is the invariant of the same algebraic structure ad0rces or nonlocal holonomies. We emphasize that our theo-

T’ but constructed for the original geometry. The difference’®™M IS of & purely geometric nature and holds for any theory

J then contains all of the information about the wave. sim-Of gravity in any nu_mber O_f dimensions, as long as It as-
ply multiplying out the terms in Eqi45), we may write sumes a pseudo-Riemannian geometry as the basis of the
description of gravitational phenomena.

«7:2«1 kFk"L KKy (46) IV. FIVE-DIMENSIONAL BLACK STRING

R Our original motivation in this project was to investigate
where the tensor$ are products of primary tensors and pos-the properties of extended black objects in higher dimensions
sibly Levi-Civita tensors, including contractions bg*”. carrying time-dependent or wavy hair. The theorem of the
Given the results of Sec. Il C, we are assured {fids at  previous section tells us that coordinate-invariant probes are
least bilinear irk. Note that antisymmetry of indices, e.g., in inadequate to examine the properties of such undulating so-
£, may eliminate certain contributions above. However, fromlutions constructed through the GV technique. Hence, to
Sec. Il B, we know that the tensofsfactorize as in Eq30) ~ study the smoothness of the horizon in the presence of a
when contracted withk. Hence we conclude thaty  Wave in the next section, we are led to consider the existence
ok, k“=0 and saZ'=Z. Thus we see that any scalar curva- of parallelly propagated curvature singularities. In order to
ture invariant is identical for the original and primed metrics, d0 S0, however, we must consider a concrete example. Thus,
which concludes our proof of the theorem. in _thls section, we present a faml_ly of undulatln_g bla_ck

We note that we can easily generalize our theorem t&trings which are low-energy solutions of heterotic string
cover scalar invariants constructed using both the geomet?eory in five dimensions. We begin with a stationary solu-
and matter fields. As in Sec. Il, we consider a matter sectofon With a null hypersurface-orthogonal Killing vector,
including various scalarg, andp-form potentialsA ;) . We Whlch results from upjlftlng a four-dimensional solution first
also require that these fields satisfy the same constraints ¥4itten down by Cveticand Youm[14]. Then we apply the
there: They are form invariant along thie flow, i.e., GV_tec_hnlque tp generat_e oscillations on the sfmng. Similar
Lyba=0=LyF(pr1) as in Egs.(9) and (10). The field oscillations of S|_ngule_1r strings were considered in R3]
strengths are transverse to the flow, i.€4F(pi1) and of black strings in Ref$9,15,8. _ o
=Kk 6 1) as in Eq.(11). Recall that we also have The _Iow—gnergy action for heterotic string theory in five
i0p-1y=0. Given these results, one can further show thaflimensions includes the terms
L8, 1y=0—this is easily shown by referring to the local
coordinate patches introduced at the end of Sec. Il B. _ 5, [ ~a20 2 1442 2

Let us then reconsider the contraction identities proved in I_J d°x/~Ge [RIG)+4(V®)"=1zH"~ (Vo)

Sec. Il B. Given the properties imposed on the matter fields L dees 1 —ogid

above, it is straightforward to extend the discussion to in- —3€F =36 “7F7], (47)
clude the scalars, the field strengths, and covariant deriva-

tives of these, as primary tensors which satisfy the factorizaas well as the metric; we have included two scalars, the
tion equation(30). Similarly one may also show that all dilaton & and a modulus fieldr; two gauge fields with
higher-order tensors and hence arbitrary products of the erMFﬁMAV—avAM and |‘:MV=3#AV_(9VAM; and the Kalb-
mary tensors satisfy the same factorization property. Next aRamond field with

in Sec. 1l C, we consider the shift in tensors calculated for

the original and primed metrics. While the scalars and fiel
strengths themselves are not affected by the shift in the met- #**
ric, using Eq.(40) as well as Eq(25), it is clear that the

shifts in covariant derivatives of these fields will always beThe metric above is the so-called string-frame metric. The
at least bilinear in the vectdt. Hence both of the crucial Einstein-f i d be ai bg '
results established for the curvature and its covariant deriva=' o' Tame Metric would be given by

tives are easily extended to the matter fields and their cova-  aarm

riant derivatives. Thus the invariatd4) can be extended so =6 G- (49)
that theT also include these latter fields, and the same final

result still holds; i.e., the invariant is independent of theWith the latter metric then, the dilaton coupling in the Ein-
wave profilex. stein term is eliminated and the action becomes

In summary, then, we find the rather surprising result that
all scalar invariants, involving any number of covariant de- _
rivatives of the curvature and/or matter fields, are identical 'ZJ d*xV=g[R(g)— § (V®)?~ Fe *"°H?~(Vo)?
for both the original and the shifted metrics. The essential
requirement that the original metric has to satisfy is to have ~ — 3?7 42— Lg 2040132 (50)

=39,B,,—3(A,F,\+A,F,)+(cyclic permutations
(48)
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However, we choose to present our solution in terms of the The null Killing vectork is hypersurface orthogonal as
string-frame metric, which has a much simpler appearance iwell, satisfying
the present case.

We will be interested in the following black string solu- Vikn =K,V ,lnh, (57)

tion: The string frame metric is whereh is the same function defined in E(3). Hence the

f 2 metric admits the symmetry desired for the wave-generating
dszzﬁ du?+ h du dv+k/ [dr2+r2(d6?+sirfg d¢?)], technique. It is also straightforward to show that the matter
(51) fields satisfy the appropriate conditio(®—(11). Hence, fol-
lowing the discussion of Sec. II, we apply EGJ) to define
while the remaining fields are given by a new string-frame metric
1 G,,=G,,th¥kKk,, (58
B= - du/\dv, ) ) .
h where, following Eq.(22), ¥ is chosen to satisfy
A=—P,cosd dp, A=P,cod d¢, k“V,¥=0 and d,(e *"J-GG*"3,¥)=0. -
59
20_ o 40 _ | /1h2
e=s1k, e kIR, (52) The first condition is simply, ¥ =0; i.e., ¥ is independent
where we defined the functions of v. In the present case, the second condition reduces to
VE\P=0, i.e., Laplace’s equation on a flat spatial metric in
Q; Q, the transverse coordinates ¢, ¢). Thus the general solution
f=1+-——, h=1+--, for Eq. (59) may be written as
P P _ 4 —(1+1)
=100 el 53 W= 2 [am(u) '+ bim() 1YY in(6,4), (60

. . . - . whereY (8, ®) are usual spherical harmonics, amg, and
Hence this configuration is specified by four different param—blm are arbitrary functions of.

Zteri'Thf(])st?/gjrtlc\)/\?ecv?ius,lﬁ t%eillsllrsntfellfleetdhg%/ osuittrlggu?[! gf thlesir? Let us consider the various perturbations in turn. The case
thqe éneric casé We will assume that all of the constgrﬁ)tz a?Nith ' and| =0 ylelds an asymptotically flat metric, which
9 ' iR fact is diffeomorphic to the original:

positive in order that our solution properly describe a black

string with a horizon at =0. 1 2
Considering the asymptotic metric, one has, for large ds’2=ﬁ[f+a(u)] du?+ ; du dv+k/(dr2+r2dQ)
ds?—du?+2du dv+dr?+r2dQ f 5
= — 2+ — + 2+ 2
— —dt+ dy?+dr?+r2dQ, (54 p dur du dole/(dreridd), (61

wherey=u+uv andt=v. Hence we should considgras the =~ wheredv=dv + za(u)du. Note that the constant term fris
spatial coordinate running parallel to the string, whils the ~ a special constant case of these perturbations, and so could
asymptotic time. Note that as—0, g,,=P;P,/r?, indicat-  also be eliminated in the same way. With the chaitand
ing the presence of a degenerate horizon. Near the horizoh>1, the metric is not asymptotically flat, and so we do not
the metric becomes consider these solutions as providing perturbations intrinsic
to the black string, i.e., “wavy” hair. Instead they would be
Qp , 2r dr more accurately described as embedding the string in a space
ds’~ Q_zd” + Q, du dv+PyP; | — filled with (asymptoti¢ gravitational radiation. The same is
(55) apparently true for the' mode withl=1, but in fact this
solution yields an asymptotically flat metric, as is seen as
The solution has two Killing vectors which are of interest follows [6,5]: First introduce Cartesian coordinates on the
transverse space, in which case the wavy metric becomes

2

+d92}.

ktd,=d,=d+3dy, h*d,=ad,=dy. (56)

1 , 2 :
(These are in addition to the standard rotational Killing vec- dS'ZZE[Hai(U)X']d u>+ py du dv+k/ dxdx.
tors for # and ¢.) The first of these is the null generator of (62)
the horizon. In this rolek has the rather unusual feature that
it is null everywhere—not just at the horizon. Further, it is However, the coordinate transformation
not given byd; in the asymptotic coordinates; rather, we
haVEkp'ﬁM:&U:&t-i-éy. Here t_heay contribut_ion i_s related S AX— EJUA-Zdu
to the presence of linear motion along thedirection. The ! 2 e
coefficient may be interpreted as the “horizon velocity,” S
which in the present case is 1, i.e., the speed of light. X'=x'—A' (63
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with 2A;=a; , produces a metric which is manifestly asymp- ally introduce a curvature singularity at the null surface
totically flat: which was originally the black string’s horizon. Normally
the approach to proving the existence of a horizon would be
to find coordinates in which the metric is analytic at the null
surface in question. For the present undulating solutions,
finding such coordinates is an enormous probleee, e.g.,
+ E du[dv + (hk/ — l)A_d")'('i] +k/ dxdx. [9]). While we address this question for the monopole waves,
h ' ! i.e., those with =m=0, in the following section, the task at
(64) hand is in fact much simpler. We wish to show that for
>0 a given null hypersurface is not a horizon, which simply
These waves represent oscillations of the string in the trangequires finding any geometric quantity which diverges when
verse space. the surface is approached along some geodesic. By the prop-
The perturbations generated with( %) are all localized ~erties of our original black string and the approach used to
near the horizon and leave the metric asymptotically flatgenerate their wavy counterparts, the theorem of Sec. Il tells
Hence we may consider these deformations as candidates f@$ that no scalar invariant involving the curvature and/or the
“wavy” hair on the black string. Fol >0, these deforma- mMmatter fields contains any information about the waves.
tions produceg,,—= as we approach the “horizon” at Therefore, given that all scalar invariants are insensitive to
r=0. Note, however, that this divergence does not effect théhe oscillations and thus to any singularity which they may
volume element/—g, and so we should be careful in decid- introduce, we resort to alternative means of probing the

ing whether or not these perturbations produce a trudvavy geometry. _
singularity atr=0. In the next section, we will see that in  1idal forces prove to be a good tool for resolving our

fact with >0 these solutions are singular, and hence we ar@roblem. If we approach the null surface along a geodesic,

only left with a wavy black string fot=0, in which case and we allow our observer to be slightly nonlocalg., a
string which may indeed seem the natural probe in the

2 present context this observer will be able to determine the
du’+ A du dv+k/(dr?+r2dQ). differences between the gravitational forces acting at differ-
(65) ent points. These forces are determined by the Riemann cur-
vature measured in the rest frame of our observer. One may

These perturbations represent longitudinal waves carryingPiect to the notion of the observer's rest frame, as we have
momentum along the string without oscillations. Note thatust said that the observer of interest is nonlocal. We will
the Q, term in f represents a constant contributionbiu). ~ assume that the extension of the observer is controllably
One may wonder if this wave is really physical or merely ansmall, and hence that _the c_enter-of-mass frame represents a
artifact of an awkward choice of coordinates, given our theo900d reference frame in which to express the results.

rem on the elusiveness of the wave profile. To see that it is Still, identifying a convenient geodesic trajectory to fol-
indeed physical, we can compute its mass per unit lengtdoOW in the presence of a general oscillation proves to be
Since the oscillating string5) is asymptotically flat, and we Peyond our abilities. The reason is that one cannot find
can use the coordinates of EG4), we can determine the €nough integrals of motion to solve the problem in terms of
mass per unit length according todE/dy=—(1/ quadratures. We therefore restrict our attention to wave pro-

87T)f58ybcdéixbdX°Vd§e, where all the tensors are defined files which are cqnstant in. In_this case the extra KiIIir_1g

in the Einstein frame. The vector field=J, here is the Vectorh®d,=a, yields an additional constant of the motion,
asymptotic generator of time translations, and the integratio§nabling us to find analytically suitable geodesics for any
is carried over a sphere at spatial infinity. The result ismode. These solutions should be a very good approximation
dE/dy=[P;+P,+Q,+3Q;+3b(y—1)]/6, and since the for backgrounds with slowly varying wave p'roflles.. When
mass per unit length depends on the wave profile, we see th4e compute the full curvature of an undulating string, we
the solution is really a superposition of the string and thet@n see that any dependence only adds contributions of a

wave and so is clearly different form the stationary String,subleading order. Hence, if the curvature turns out to be di-
whereb=0. vergent as some hypersurface-const is approached, the

constant profile solutions will contain all the information
about the leading order of divergences.
We present our calculations in several steps. First we will
Having applied the GV technique to the original solution show that for each mode of oscillation there exists a geodesic
above, we have apparently generated a large family of osciktretching between the null surface and the asymptotic
lating black string solutions. However, as discussed abovénfinity—hence showing that both of these regions belong to
we have reason to worry that some of the modes may actuhe space time. Next we will construct the Lorentz transfor-
mation relating a natural stationary orthonormal frame to the
rest frame of the observer moving along the geodesic. Fi-
SThe divergence im,, does indicate a divergence of the norm of nally we will consider the orthonormal frame curvature and
the Killing vectorh*4,=4,, which could be interpreted as a geo- boost it to the frame of the infalling observer, in order to find
metric singularity[10]. One should still demonstrate the=0 is  the tidal forces which he measures. The divergences found in
accessible to causal observers, i.e., that this region “belongs” to th¢his way are equivalent to parallelly propagated curvature
spacetime, as is done in our following analysis. singularities. We will isolate the leading divergences of the

1 .
d§2:H[f+(hk/— 1)A?]du?

1 b(u
deZZ_(erQ
h r

A. Parallel propagated singularities
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t?da! forces for all mode_s both at_=0 and_asymptotically, r20’\"  r2sinfcosy , B dP"(cosd) s
finding that all the localized multipoles witt=1 have un- 2| —3 = + FF'BTCOSTIQ'J u-,
bounded tides on the null surface and that all the growing 1 1 69)
multipole modes with=2 have divergences at asymptotic )
infinity. r’sifg |’ B som - 2
—Fz ' =—mﬁr"PI (cosf)sinme¢ u’?,
1

1. Geodesics where we expressed the integrals of motion«asand p.

We begin by examining the timelike geodesics of a wavywhen <0, one finds that in the asymptotic regi¢4)
solution which is excited by a single mode. We will demon-these correspond to the energyhich is assumed to be posi-
strate that there are always geodesics extending betweeie) and linear momentum along respectively. The last of
r=0 and the asymptotic region—, and the former is these equations may be solved by settifig ¢b,= (7/m)n

reached in finite affine time when starting from finite  with n=0,1,...,2n—1 for m#0, while form=0 we may

Hence this null surface=0 must be included in the mani- fix ¢ to be any constant. Now, with the constahtthe first

fold described by the wavy solution. term on the right-hand sid@®HS) of the second-to-last equa-
We may write the general solution as tion also vanishes. Hence the latter equation is solved if we

1 now choosed= 6,=const, wheref, corresponds to an ex-
o .
ds?=2F,du dv + F2du2+ —[dr2+r2(d62+sirtd d¢?)], tremum of Legendre functioR|"(cosd). Then the indepen-
2 A Ff[ ( al dent set of equations defining these radial geodesics may be
(66)  written, usingF3=[f+(—)"BrfP"(cosp)]/h,

where P P _\ngApm ©=p
u F, v I:2+[f+( )"Brfp, (cosﬁo)]h =2
I S P R
2= 1Tk 3T TR ) (69)
12_ _\npBpMm 1 2
¥ =B(u)rfP{'(cos)cogme+ S(w)l,  (67) sl (2B cos) Jz (07 p)
o : 2
andf,h,k,| are defined in Eq53). To produce a simple real 1 2
metric, we have expressed the angular dependence in terms +2|:_2("’_ P)p—F1. (70

of an associated Legendre function of the first kind,now we must choos®, and ¢,,, as well as the constants
PI"(cost), as well as the cos{p+ d) factor, rather than using , and p, in such a way that our geodesit® extend to
spherical harmonics as in E(0). Those solution$60) are  infinity and (b) reach the null surface=0. We need the
then reproduced by setting=—(l+1) orl, which corre-  former to ensure that our observer is physically connected to
sponds to what we will call the localized and the growingyecording devices infinitely far away from the gravitational
modes, respectively. However, for much of the following soyrce. The second condition that the geodesic does not turn
analysis, we will leave this exponent gsin order to empha-  pefore reaching =0 is necessary because we want to probe
size the contributions coming from the differentiation of this tpig region for singularities.

factor. In principle the amplitud® and the phaseS are We begin by considering the localized modes with
arbitrary functions ofl, but as discussed above, to simplify g— —(]+1)<0. From the radial equatiofv0), we see that
the analysis of the geodesics, we will set both of these to bgs r ., for which h, F,,—1 and r¥—0, and so
constants in the following. This will be enough to identify 12, ,2_ 2.1 Thys we requiran=Jp2+1 so that the

the leading divergences, and should still provide good apgeqdesics extend to infinity. Now, in the linmit>0, we have
proximation in the case of a slow dependence. In fact we F,=hlur, F2xr2, andf=1/fr. Thus the leading contribu-

will set 6=0, which can be attained with a simple shift of tion on the RHS of Eq(70) comes from the'® term when

¢. . . . : B<-—1, and hence we must choosg and n such that
As usual, to obtain the geodesic equations, we S'mply(—)”BP,m(coseo)>O in order that no turning points occur

consider the Lagrang|_ah—(ds/d)\) » and write d(_)wn the before reaching=0. Forl=1 there exist many extrema of
Euler-Lagrange equations. Because the Lagrangian does n,g (cost), and it is straightforward to verify that one has
contain a potential, the effective Hamiltonian is conserved, ! ! 9 .
giving (ds/d\)2=const. Given this integral of motion, we eno_ugh freedom to choose the angles in order that th_e geo-
need not consider the Euler-Lagrange equation for the radiaﬂes'C rSa_crlles=|O_((()av;an fpr the patsm=0). Fg%r;helspemal
coordinate. In addition, the two translational Killing vectors cas::,[é;o ori=1, turning points are evadeas long as
dy,d, produce two more first integrals, which leaves us with Q1 )

second-order differential equations only for the two angular

coordinates. Hence the equations for timelike geodesics are6N te then that forl =0 and B< -0 h uti .
ote then that tor=0 an —Q1, ONe has solutions tor

Fou'=p—w, Fu '+ F%u’ =p, which the radial geodesics ca_n ne.ver. reaetD. As_ .poir_1ted 'out in
Ref.[22] however, when thg direction is compactified in this case,
1 there appear closed timelike curves, which can communicate with
Iyl 2,12 _ 12 212 2ai /2:_ b f i | hb kd fh |
2Fu'u +Fgu' e+ = (r'c+re@’ “+r s|n2¢9¢ ) 1, observers at infinity, implying the breakdown of chronology. In any
Fi event, we will ignore this pathological case in the following.
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For the growing modes witBB=1=0, the analysis is geodesicg.In this frame, we have/®=e? V¥, where the
similar to that above. Note that in this case the interpretatiomaaM are the components of therffibein (73),

of w andp would not be correct since the asymptotic struc-
ture of the metric is modified. Beginning with the limit Fs p
r—0, we can ignore the? contribution in Eq.(70) and in V0=F—(w—p)+ o V4=F—,
fact one finds that this region is always reached without im- 2 3 3
posing any constraints. In the asymptotic regien «©, the

r? term dominates Eq(70) for >0, and we must again
choose the angles such that ("B P}"(costp)>0 if the geo-
desics are to extend all the way to infinity without turning
back. For the special cagg=0=1, the constraint to reach along with V®=0=V*. As a check, one may easily verify
the asymptotic region becomesw{ p)(w+p+B)=1 that 7,,V3VP= —1.

which can always be satisfied with an appropriate choice for now we wish to find a Lorentz transformation which

thel intehgral]? Icl)f the mo'tion..” 0 , bsorb takes a unit-time-like vectdi®= 63 into the observer’s five-
(—)r’l‘Pf“(E(E:os; )Owr'::g’ tlr:e WzI;\m I'et ggnvﬁgfg toe adse(f)'rne velocity_: Vé= ITabNb._ Then applying this transformation to

1 C0%0) 1 plitude. € W N€ our stationary fafbein (73) would produce a natural basis of
Bo=(—)"BP/(cosf)). For the special case with=—1 and  qrthonormal one-forms which the observer might use in his

F2 _ 12
Y Ei(w—|o>2+2—(“’Ff’)'°—1 N
2

=0, we setBy=Q;+B. rest frame. Of course, we are left with some ambiguity in the
_ choice of the SQ@.,4) matrix defining this Lorentz transfor-
2. Lorentz transformation mation. One approach to resolving this ambiguity is defining

Hence we have defined an interesting set of radial geoddhe transformation by parallell propagating the stationary

sics for which the tangent vector is given M¢=dx#/dx,  frame in from infinity along our radial geodesic. Since
where VP=0=V?, a much less labor-intensive approach is to sim-

ply take the uniquely defined §02) matrix mixing only the
0, 4, andr directions. The latter will differ from that defined

u'= P w, v'=£+(f+ Borﬁ)w_g, through parallel propagation by an 8 transformation
Fa Fa h F mixing the spatial one-forms. Such a rotation, however, will
not introduce any new divergences, and hence it suffices to
Fi Fi 12 consider the simpler boost. One can think of this transforma-
r'==|(f+ Borﬁ)h—z(w—p)z‘*' 2—(w—p)p—Fi| tion as the result of parallelly propagating in not our station-
F2 F2 funfbein (73) but rather a rotated version of it. The sim-
(71) ary funfbe _ it.
pler SA1,2) Lorentz transformation may be written as
andd’'=0=¢'. Here the— (+) sign corresponds to inward 0 4 .
(outward directed geodesics. We will want to examine the v v v 0 0
tidal forces in the rest frame of an observer moving with this . (VH?2 \VARVL
five-velocity. Hence, as an intermediate step, we determine Vi o1+ VOVO+1)  VO(VO+1) 0
the Lorentz transformation which takes us from a natural a 4 "2
stationary frame, in which the curvature is easily calculated, L%= Vi vtV 1+ (V1) 0 0
to the observer’s freely falling frame. VO(VO+1) VO(VO+1)
First to define our stationary orthonormal frame, we com- 0 0 0 1 0
plete the squares in our general met66):
0 0 0 01
F3 F, \? (79
ds’=— —5dv?+F3| du+ —zdv)
F3 F3 At this point let us comment at the behavior of the five-

1 velocity in the regions of interest. Fgr<—1 andr—0, the
+ 5 [dr2+r2(d6?+sir6 d¢?)]. (72 dominant factor is Faxr#*Y2  jeading to
F1 VO=(w—p)BeQ, r#~V2=V" while V4=0. Hence the
observer is accelerated to almost a null radial geodesic as he
We see that an obvious orthonormal basis of one-forms is nearsr =0, andL approaches an infinite boost in the radial

direction. For3=0, F; and all of the components & are

F dr finite at this null surface. Similarly, fo3>0 andr—oo,
0 T2 4 2 . y
e :F_de’ e"=Fsdu+ F_3dv’ € =E F,xrf?2 again dominates to producing the five-velocity
VO=(w—p)/Bor#2=V" andV*=0. Hence Eq(75) yields
rdé rsiné d
e'=—-, e¢=—¢. (73)
F1 Fi This is guaranteed sindes=h"? is trivially positive, while we

ensured thaF35>0 in order that the geodesics reached between
Note that in this basis® is distinguished as the unit-time- r=0 andr—. The sole exception, which we ignore, is the case
like one-form, at least everywhere along our radialg=0=I for which we could havé3<0 if B<Q,.
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an infinite radial boost as—c. Finally, we note that for B=-—(1+1)<0. For these modes, asr—Q0,
B<1 andB=0, F; and all of the components &2 andL  F,—r/\P;P,, F1—1//P.Py, Fi——(Py+Py)/
remain finite in the asymptotic region. (P1Py) %2 F,—r1/Q,, F(—1/Q,, ’2’_>—2/Q§, and
F3—Bo/Qor "2, Fi——(1/2)yBy/Qr 271, and
F53—[1(1+2)/4]\Bo/Q,r ~""272, and so the above curvature
Now we wish to examine the tidal forces experienced bycomponentg76) reduce to
an observer following our radial geodesics. We will focus
B 1+28(8+1) ROrOr 1-28(8+1)

3. Divergent tides

here on the curvature components with all indices in the

Ar4r - - C
0,4r subspace, and study the corresponding components in R 4P,P, - 4P,P,
the observer's rest frame. Since our Lorentz transformation
(75 does not mix these indices with the¢ directions, it 1 B(B+1)

. i . . 0404 4rOr
simplifies our presentation to only consider these compo- R ﬁ—4P1P2’ R — — 2P,P, (77)

nents. Our omission of the components carrying angle indi-
ces does not imply that they are finite. In fact the compo- Transforming to the observers rest frame,
nents with two indices in th&,¢ subspace also typically ~apcd a1 bjc 1 d okimn .
diverge whenever we find divergences in the followin REE= LALAL kR, we find
g g g
analysis and in qualitatively the same way, as discussed at 1
the end of this section. Our final results are that divergent Rabed_,__—
gravitational tides appear on the null surfaceO for the
localized modes withB<—1 and at asymptotic infinity for
the growing modes witl8>2.

With our definition of the orthonormal basig3), it is A4T4_ 1 AOTOr_q
straightforward to compute the curvature in this frame. As ! ’ ! '
discussed above, we focus on the curvatures in the 0,4,
subspace for which the nonzero components are

abcd abc
4P1P2{A1 _ZB(,B+1)A2 d}, (78)

where

A2404—>1, AirOI'ZO,

Fi F2 F2  F2 AT = (VO)2=(0—p)?BeQ, 171, A -1,
R = — Py Fit e Fa o Fam 2 (Fy)?
3 23 3 Ag4044}(vr)2:(w_ p)ZBOQZ rﬁ—l’
2
_ —12'(Fé)2, A4r0r4>v4(vr)22 ( _ )2 B Q3 r(,8—3)/2 (79)
4F35 2 plo—p o2 .
= 2 2 2 Hence we see that there are divergences but that they only
RO = — IR Fl4 — 2 FL Fy— —F4— —5(F})? appear in the terms proportional t@(B8+1). The
Fs FaF3 Fs F3 B-independent contributions are essentially boost invariant.
2 F 32 These divergences are therefore absentdfer—1 or|=0.
+ _1|:'2f+ —1F§ Fl— —é(Fé)z, This result might have been expected since in this case, for a
Fa F2 4F5 constant wave profile, the solution is essentially the original

regular black string with a modifie@,. The leading diver-

2 gences are easily seen to be

F

R0404:4F7(F2)2' 2

2 — —
garar_, _ 1UHD) BoQa(0=p)” g 17210+ 1)

F, F2 F2 F2 2 P,P,r'*2 4P,P,
RUO=— = Fy Fit e Fa P Fam =2 (Fy)?
3 23 3 3 R0404 I(1+1) BoQo(w—p)?
P, F_,, F§ 2 P2
+oE, Fot gE, PR gz (FY°, (76)

o 1(1+1) VBoQ3(@—p)?p
where the primes indicate partial derivatives with respect to R —~- 2 P,P,r'2+2
r.

Now we wish to consider—0. To simplify our calcula- So we see that for all higher multipoles with
tions further, we only consider the leading order of these8=—(I+1)<—1 orl>0 there appear singular tidal forces
curvature components. This approach is consistent, becausa the null surface =0. Because these divergences will not
we will see that all of the nonzero compone(it§) are of the  be canceled by any other terms of the metric for slowly os-
same order of magnitude at the null surface. In fact theseillating strings, we conclude that all these space-times have
terms are all finite there, and so any divergence in the tidah null singularity atr=0. Hence, the excitation of these
forces can only arise from the boost mat(B5) upon trans- higher modes on the black string results in the appearance of
forming to the observer’s rest frame. Given the discussion ataked singularities, and so the resulting solutions are no
the end of the previous subsection then, it is clear that théonger black strings after all. Thus we rule out all of these
only possible divergences will occur for the modeshigher multipoles as a variety of nonstationary hair.

(80)



55

WAVY STRINGS: BLACK OR BRIGHT?

7639

A similar calculation shows that the growing wave modesthe special case8= —1,0,1 survive without any divergent

with B=I1>1 have diverging tidal forces in the limit
r—co. In this limit, F;—1, F{,F{—0, F,—1, F},F3—0,
and F3— \Bor??, F3—(B/2)\VBor??71, and F3—(B(B
—2)/4)\Bor#?72, and hence to the leading order, the cur-
vature component&76) become

A1)

R4r4r:ROr0r: _R4r0r_> > >
r

(81)
The boosted curvatures, to the leading order, are given by

. -1
Rabcdﬂ_ ﬂ(gr )Agbcd_ (82)

The terms proportional ta\2°°? are all of the subleading
order. The limiting values aA2°°dwhenr —c are given by

A421r4r_)(w_p)280r,81 A(Z)rOr_>1'

A3 (0=p)®Borf, A7 —~[w—p+p(o—p)*]Bor 2,

(83
and so the leading divergences are easily seen to be
B(B—1)

|‘Q4r4r: ﬁOrOr_>_ 5

(0—p)?Borf~2,

B(B—1)

I’:‘{ArOr_) 5

(0—p+p(w—p)?)VBor? 2. (84)

Hence we find diverging tides in the asymptotic region for
all B>2. For B=2 we find finite tides at infinity; however,
this implies that at infinity the energy density approaches
constant, and hence the total energy per unit length of thi
wave diverges. Indeed, this might have been expected
these solutions are not asymptotically flat. Instead, they re
resent geometries with gravitational wave energy conce
trated far away from the black string.

To close this section, we will discuss the results for the .2 ) . :
gase it is straightforward to find the analogue of Eddington-

remaining orthonormal components of the curvature tenso
It turns out that there are two cases to consid®&° and
R2eb5 \where a, 8 take values in 0,4, while the remaining
frame indices ar& or ¢. Straightforward evaluation shows
that the curvature components with an odd number of angl

indices vanish when evaluated on our radial geodesics whic

were chosen so that,F5=0=d,F35. Further, like the com-
ponents in Eq(76), the nonvanishing components consid-
ered here remain finite in the stationary frarti€3). So
clearly the boos(75), which is trivial in the angle directions,
cannot introduce any divergences R"°Y Now, for the

R2eb5 e have symbolicalljR=L2R upon boosting to the

n

tidal forces. These qualitative arguments are confirmed with
direct evaluation. Hence one finds that there are no worse
divergences than found by considering only the 10,guyb-
space.

Again, our final conclusion is that all of the modes with
B=—(1+1)<—-1 in fact produce null singularities at
r=0, while for B=I>1 singularities appear in the
asymptotic regiom — oo,

V. LONGITUDINAL AND TRANSVERSE OSCILLATIONS

We now return to consider the case of the longitudinal
waves (65) with 1=0,=—1 and that of the transverse
waves(61) with |=1= 8. The preceding analysis revealed
no divergent tidal forces in either of these cases. There is still
the possibility that divergent tidals might occur when the
analysis is extended to consider derivatives of the curvature
(much like the case discussed [i23]). In the case of the
transverse waves, the worry would be that problems arise in
the asymptotic region where the Lorentz bo@d) is diver-
gent. However, recall that a coordinate transformatied)
was found for which the metric became manifestly asymp-
totically flat® Hence one will never find any divergent tidal
forces asr—o. In fact, for the transversal waves one can
argue that the divergence of the Lorentz transformatity
is not physical, but comes from an incorrect choice of gauge
in the limit r —oo. Namely, in this case one could view the
asymptotically flat form of the transverse wave met6d)

with A;=const as the correct example of the leading-order
behavior of slowly oscillating transverse waves. The fact that
this solution is asymptotically flat implies that the Lorentz
transformation(75) must be finite in the limir — .
For the longitudinal waves, the potential problem would

e atr=0 where again divergent components appear in the
5ansformation(75). A definitive demonstration of the regu-
arity of these solutions would require finding a coordinate
transformation for which the metri®5) becomes analytic at
the null surface. For a wave profile constantiinwve recover
the original solution(51) with a modified charge in which

Finkelstein coordinates, both past and future. For the nonsta-
tionary case, Horowitz and Maro®] have shown that this
solution has a continuouybut not necessarily smogtmetric
gt r=0. Further, our theorem shows that all the scalar cur-
ature invariants of this solution are identical to the original
lack string, while our preceding analysis found no evidence
of diverging tidal forces for slowly oscillating strings. In
fact, we can make an even stronger statement about the “in-
visibility” of the monopole wave: If we compute the curva-
ture of the oscillating string in an appropriate orthonormal
basis (see beloy, we find that it does not depend on the
wave at all. Given all these results, one is tempted to conjec-

observer's rest frame, where we have only indicated the norture that the longitudinal waves are completely regular, and

trivial components of the boost matrix. Because Ri&°?

so we are led to attempt a construction of analytic coordi-

are everywhere finite, the tidal forces here diverge only asates. It turns out that we can find such coordinates at least

badly as the leading-order divergence.ih Asr—0, this is
12 for B=—(1+1), and as — =, this isr' for B=1, just

for a certain class of wave profiles. A rather surprising result

as found above. Note that various cancellations above re=——

duced the singularities from what one might expectLfér
Also, as above, the original curvature components supply
factor of (I +1) multiplying these divergent terms so that

8Recall that no divergent tidals were found fer 0= g either, but
i Eq. (61) this mode was shown to be purely the result of a coor-
dinate transformation.
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in our analysis is the quantization of a certain constanNow we can introduce new coordinatesandz in analogy
present in the test function, coming from the requirementwith the tortoise coordinates we would usually define for a
that all the derivatives of the metric be continuous as the nultationary solution. A bit of algebra leads to the choice
surface is approached. It is not clear to us at present whether

this quantization is an artifact of our ansatz or whether it do=do+ P1t P d_zr(r+Q2) r+ ﬂ ,

really represents a physical effect. We will defer a more 2\P.P, T P1+P>
detailed investigation of this issue to future work. At this P.dr

point, we can only provide some guidelines explaining how dz=dz— \/2—(r+ P,). (89)
we have arrived at the analytic ansatz and the associated Pyr

guantization condition.
We begin by considering the longitudinal waves de-These coordinates are oriented towards the future portion of

scribed by the metri¢65) which may be written the null surface, and they clearly show the location of the
future horizon asr —0 along witho— +o% and z— —.
Q1= Qatb(u)) _ , L
ds?=| 1+ —————|du?+ ———du dv Reversing the signs of the shiftstoandz, we can go to the
r+Q, r+Q,

past horizon. These coordinate transformations are designed
to absorb the metric singularity manifest in the? factor

. (85 appearing irg,, . If we rewrite the metri¢87) in terms of the
tortoise coordinate&39), we find

2

dr
+(r+Py)(r+Py) r—2+dQ

Now the coordinate transformationlv =do +{[Q;—Q,
+b(u)]/2Q,}du simplifies the metric somewhat, producing

r _ Por+P _
d52=q2(z){d22+2 dzZ do+2\/—>——>dr do

r+Q; Pir+Q,
2 2 -
ds*=p?(u) du +H_Q2dudv b, P, d~]
2 - dr dz; +(r+Py)(r+Py)
HOPY(Py)| 0], (89 VP1P2
1-9%(2) ,
where X Tdr +dQ|. (90
pA(W)=[Q1+b(w))/Q,. (87

Herez is to be understood as an implicit function ofand
Implicitly we assume thgp?(u)>0 — see footna 6 — and r: z=7+ (\VP,/P)[r+P,In(r/P,)], and it diverges to—o
as usuald() is the metric on a two-sphere. We see that theg5 ;.0 as dictated by the logarithm. Now, i?=1, the
location of the null surface remains a0 and that it ap- divergentg,, term in Eq.(90) would be absent, and we
pears to be a metric singularity: We know, however, that if,;,o,1d obtain a smooth metric at the null surface0. Can
p? were a constant, we could easily show that this singularityye now select a wave profilg?(z) such that a similar can-
is just a coordinate artifact, as we have mentioned above. Lelg|jation still occurs in the limit —07? The answer turns out
us therefore try to follow this argument as closely as poSyq pe in the affirmative: Consider a functigf(z) which in
sible. We can put theu(u) part of the metric in the form the limit z— — converges to  AZexf(2+a)z\/P,P,]
conformal to the constani” case, by defining a new coor- for some positiver. Substituting the appropriate coordinate
dinatez, dz=p?(u)du andq(z) =1/p(u), in which case the  transformationz=z(Z,r) in this expression, we get that in
metric becomes the limit r—0 the wave profile to the leading order is
d2=q(2) q’°=1-A%(r/P,)?>"«eF(z" where for convenience we have

2r
dZ2+ dz dv

r+Q, defined the linear function F(Z,r)=(2+a)(z
, +P,/P; r)/{P,P,. As long asa=0, this is precisely of
r . SEEAR
+(F+Py)(r +Py)| — +dQ (89) t_he_ form needed to cancel the polegn . The metric, in this
r limit, becomes

2+«
r = r Por+P P,—P
d?=11-A2| | @ d7242——d7 dv+2\/ som—mndr dv — ——=dr dZ| +(r+Py)(r +P
{ Pl) r+Q2 P1r+Q2 /P1P2 ( l)( 2)
AZ[r "
X| 52 —) e =Ndr2+dQ |, (©1)
1 1

°If one now constructs an orthonormal frame analogous to that of &} found for the metriq72), one would find that the wave profile
p?(u) completely disappears from the frame components of the curvature tensor.
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which is smooth at =0. satisfy in order to ensure regularity. We note here that for all
At this point, however, we can push these arguments onef our examples above the profiles have essentially compact
step further. A glance at the metri®1) immediately shows support in thez coordinate, and therefore in the horizon limit
that all of its derivatives with respect to the angles and théhe waves are exponentially damped, the solution approach-
coordinatesz and t are well defined as the horizon is Ing the stationary string.
approached—we ignore subleading termsyinfor the mo- C_)ne could also consider intrOQUcing transverse and Iongi—
ment. Moreover, iz is chosen to be an non-negative integer,{udinal waves on the black string at the same time. This
ie.,a=0,12,..., itiseasily verified that all the derivatives WOuld amount to adding to the line elem&#) a term of
with respect tor are also well defined in this limit. Indeed, the form, e.g.,
we see that the only possibly contentious terms in the metric
are the factorg?*® andr®. If « were not integral with
N>a>N-—1, then takingN r-derivatives of the metric r+Q;
would produce factors which diverge as>0. At this point,

r2a(u)cosd
Lduz. (92

we cannot tell whether this divergence could cause somi! this case, we would perform all of the same transforma-
covariant derivative of the curvature tensor to diverge as welfions described above with the result that the final metric
(resulting in a null singularity as if23]), or if it could be  (90) is modified by the addition of
removed by another even more clever change of coordinates. 2
On the other hand, for integral, we see that after taking (2 a(z)cos e \/E(rJrPl)dr) (93
some number of derivatives of the metric with respect,to r+Q, P,
the contentious factors disappear altogether, leaving an ex-
pression which is perfectly well defined as—0 and where we have rewrittea(u) asa(z). Now regularity of the
Z— —®, horizon is secured by demanding thefz) is an analytic

It is a matter of a simple counting of powers to convincefunction of Z andr. The latter is easily accomplished with
oneself that all these conclusions remain unchanged if theave forms similar to those discussed &{z)? above.
function g2(z) can be written as a uniformly convergent

power serieq’(z)=1—35_,A2w" for w=expnzP;P,) VI. DISCUSSION
andz— —«. The subleading contributions would be integer ) ) ) ) ]
powers of the leading term, therefore still having well- N this work, we have investigated geometric properties of

definedr derivatives. The requirement of uniform conver- Garfinkle-Vachaspati waves, obtained by superposing gravi-
gence ensures that the summations and derivatives commutgtional oscillations on stationary solutions with null
resulting in the conclusion that the profid is itself analytic ~ hypersurface-orthogonal Killing vectors. We have first given
on the horizon. This allows us to extend our arguments it detailed discussion of the adaptation of this solution-
order to analytically continue the solution through the pasgenerating technique to a variety of supergravity models, re-
horizonz— o, as well as the future horizon at>—o. For  laxing some of the matter sector constraints imposed previ-
example, consider a wave profile of the form ously [17]. Then we have developed a purely geometric
92(2) = 1— A2/coshkz \/P,P,) for some positive integ&? theorem, statl_ng th_at the GV modes are complete]y invisible
k=2. Expanding this profile in the limiz— — oo (future ho- to any scalar invariants constructed from the metric and mat-
rizon), we find q2(z)=1—A2S"_ (—1)"exg(2m+ ter. The_proof of our theorem does not rely on the c!ynamlcs
1)kzlJP,P,], precisely of the form guaranteeing the exis- atall. Itis a consequence of the null sym.metry, which must
172l Pre y Y 9 . be present in order to interpret the solutions as waves, and
.tence of th-e limitr —0. If we azpproach th2e faSt honnfon hence it applies to any metric which can be represented in
instead, with z—x, we find q%(2)=1-A"Zn_o(—1) the generalized Kerr-Schild form with respect to the symme-
fE;r):gd_ (Iig:cle)ﬁle\/ Zézzt]ﬁ ;gva\l/li?hrter:}geer;(nfn;[glee l:/r\?eltrvevzllllydﬁz-iv %y. Thus our theorem holds in any theory of gravity and in
. n arbitrary number of dimensions.
constructed a wavy black string with regular future and past ag cor)llsequence, it is evident that one must further scru-
horizons. Of course, this example is easily generalized e.gtinize wavy string geometries using noninvariant probes,
by taking linear combinations of inverse cosh’s with differ- ,cp s tidal forces. Recall that we have in fact shown that
ent integersk or by taking a wave profile of the form npone of the scalar invariants changes under the Garfinkle-
A%/(wk+w~K') with independenk and k’. Hence, as we Vachaspati map. In group-theoretic language, they are in-
have claimed above, we see that at least for a certain class vériants of the orbits of the solution-generating map. Now,
wave profiles, the longitudinal wave solutions are analytic athis could suggest that the wavy strings might contain curva-
r=0, which therefore can be identified as a regular eventure singularities identical to those of the corresponding sta-
horizon. Hence we can think of these waves as timetionary solutions belonging to the same orbit. Consider, e.g.,
dependent hair on the black string. Clearly, our argument ishe stationary solutions with all charges equal. Since they
only an existence proof. It would be interesting to prove thatcorrespond to the extremal Reissner-Nordstrom black
the general family of longitudinal waves is regular or to de-strings, with traversible horizons and spacelike curvature sin-
termine the precise conditions which the wave profile musgularities at the core, one could be tempted to conjecture that
all the GV wavy modes superposed on such solutions also
have similar curvature singularities—for the curvature sca-
ONote that we would required®<1 in order to ensure that lars are exactly the same, and in particular also blow up at
p?=1/g>>0, as assumed above. the “core.” However, in general this is incorrect. The argu-
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ment is incomplete because it does not answer whether sudtition (51). We could then view the Laplacian constraint of
singular regions can be causally connected to the physicallizg. (18) as a linear combination of the spacetime and inter-
interesting parts of the spacetime, such as the asymptotital parts. From the solutiofb1), the Laplacian constraint in
infinity. Thus it becomes evident that the notion of singular-the Einstein frame in nine dimensions can be decomposed as
ity is a far more complex issue here: In the examples oViW¥ +kIV;¥ =0, with k and | defined in Eq.(53). The

oscillating solutions we have encountered, some of the Sirbperatorsﬁi and V*i denote the flat space Laplacians in the
gularities encoded in scalar invariants may not belong to th@p spatial sections and the internal space, respectively. Be-
physical spacetime, because no causal geodesics can eygiuse the internal space is a four-torus, we can expand the
reach it. The simplest example of such behavior is given byyave profileW in the Fourier series with respect to the in-
the solutions discussed by Gibbons, Horowitz, andiernal space basis, which consists of the exponentials of lin-
Townsend 22]. These solutions correspond to the cho.ice Ofear combinations of the internal coordinates 15([50 The

the wave degree of freedofif such thatf+b(u)/r=1in  cqefficients of the coordinates are integer multiples of the

Eq. (69). Although they belong to the same GV orbit as thejnyerse radii of the torus, and would give rise to the mass of
stationary extremal Reissner-Nordstrestrings, their causal the transversal part of the wave prof=3*_,c2. In par-

structure is dramatically different: In order to get the analyticticular the zero modes, corresponding dp:-l-l- — =0
extension across the horizon, one has to extricate the regi ’ ' 4
normally associated with the “interior” of the black string
from the physical spacetime, and replace it with a mirro
image of the “exterior.” The resulting manifold is a com-

pletely nonsingular spacetime with a horizon, with the topol-

Nould trivially reduce to the case of the massless spacetime
waves we have discussed in the main part of the paper. These
Tare the only scalar harmonics on the torus and hence we can
ignore them. All the massive modes however turn out to be
0gy o the anti-de-Siter horizon crossed with a sphere, dige ™ S TCER I8 TR 1€ SEER BB U Bl SRS
viding two asymptotically flat regions. Noncurvature

. =2 _ 2 .
singularities, manifest in the presence of geodesic incomWave profile become§ Wy, =Mkl . Now, using the

pleteness, may reemerge if one attempts to compactify somrpherical symmetry qf the stationary solution to implement
of the longitudinal directions in order to descend to lowerth® separation of variable¥y =Ry Yy, we atllast obtain
dimensions. Nevertheless, these singularities are typicall{’® €guation for the radial degree of freedom:

milder than the original ones which got cut out in the process o ) 5

of analytic extension. Therefore we can see that our theorem F“Rui+2rRy —[I(1+1)+M“P;P;

states that scalar invariants are identical as analytic functions 2 2.9 _

of the coordinates on each GV orbit. Observers “surfing” on FMA(PL+P)r+MrIRy = 0. (94
GV waves of differing geometries, however, may choose t . . .
access different regions of this “complex” coordinate pIaneOFrom the general theory of differential equations, we know

as physical, and hence see different divergences. We belie\%at this gquatlon has wo classes of S.0|UtI.OHS—.|OC_a|Ized
that this unusual behavior is peculiar to wavy strifgs (@pproaching a constant es»=) and growing(diverging in

more generally wavyp-branes and hence pathological. the limitr—o0). The latter do not represent wavy strings but
With this in hindsight, we have found that most of the rather waves filling up the whole spacetime—and hence lead

undulating solutions cannot be interpreted as black stringst.O divergences _far away fro”." the string, as in the case of the

The excitation of any localized multipole mode witkr 1 rmassless growing modes discussed in Sec. IV. This can be

gives rise to a naked null singularity as opposed to an eve een as follows: SUbS.t'tu“nBM':.RM' /r_|nl Eq. (94) 3”0'
horizon. Similarly, oscillations of growing modes wit2 ~ <ccPNd Zonly the leading terms in the limit-, we find
result in divergences very far away from the string. To un-"m=M“Ry; . Hence the growing modes diverge at infinity
cover these divergences, we have found a timelike geodesfS Rmi=expMr)/r—i.e., faster than any power, and so they
for each excited multipole, which extends to infinity and Must produce naked sm.gulantles-far away from the string for
reaches the null surface in a finite affine time. We have thell |. The former case is more interesting, because by the
propagated an observer along this geodesic to the vicinity c}@Me arguments as above, far away from the string, these
the region of geometry we wished to explore, and isolateolutions damp out as expMr)/r. Thus they might be in-
the leading divergences of the curvature forms Lorentz trans€rpreted as wavy strings—except that they are singular in
formed to the rest frame of the infalling observer. Thesgthe limitr—0. To show this, we note that the point:0 is
divergences translate into infinite physical forces detectabl@ regular singular point of the differential equatiédd).
by the observer, and hence must be interpreted as nakd¢nce all the solutions admit Laurent series representation,
singularities. with the leading power being”. From Eq.(94) we find
One could easily generalize these conclusions to includ@=[—1* V1+4I(I+1)+4M?P,P,]/2. The plus sign in
the waves propagating in the remaining “internal” dimen- the definition ofg leads to finitg(in fact, vanishing limits of
sions, which we have ignored until now because they weréhe radial function as—0 and, as we know from the theory
passive spectators for the most part of our investigation. I®f differential equations, it must correspond to the growing
the framework of heterotic string theory this can be done asolutions which are singular at infinity. The minus sign gives
follows: We could take the tensor product of the string-framesolutions which diverge ey, =1/r/#! on the null surface. In
solution (51) with a four-torus, lifting it to nine dimensions. particular, even wheh=0, the wave profile diverges with
This is guaranteed to be a solution of the effective action ofthe negative powerB=—(1+ J1+4M?P,P,)/2. As we
heterotic string theory in nine dimensions, with the matterhave seen in Sec. IV, such divergences could produce infinite
fields identical to those of the original five-dimensional so-tides—and since noy8(8+ 1)=M?2P,P,#0, the tides we
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have computed there diverge even for the monopole modenay also be singular. A simple argument supporting this
Similarly, we can see that other localized massive multipolecould be based on the fact that the compact wave profiles are
modes also have divergent tides on the null surface. Hengeeriodic functions. Hence the exponential damping of the
we see that all the nontrivial internal modes lead to nakedvave in the horizon limit, manifest in E§91) and crucial
singularities, which can be detected by tidal forces. for demonstrating analyticity of the metric in our examples,
In the case of localizeb=0 and growing =1 modes, we is absent. This actually turns out to be correct — but to prove
have found a special subclass of wavy strings which are andhat the compact wavy strings are indeed singular requires a
lytic on, and everywhere outside of, the null surface, and notareful examination of the tides beyond the leading order,
only continuous—thus extending the earlier results ofand will be given in the forthcoming work of Horowitz and
Horowitz and Marolf[9,10]. A puzzling feature of our spe- Yang[25]. So, while our examples show that it is possible to
cial family of analytic black strings with nonstationary hair is have wavy strings with regular horizons, and that the waves
obviously the quantized nature of the parameter The can be understood as time-dependent hair on black objects,
guantization ofx in a technical sense is more similar to, say, this identification must be applied sparingly and discrimina-
the guantization of the radial modes of an electron in a hytively. In general, the wavy solutions are not hairy black
drogen atom, where we also require that the wave function o$trings, or decompactified black holes, because they contain
the system is analytic — yet the obvious absence of anyegions with infinite tides, which render the solutions singu-
guantum-mechanical scales precludes the possibility that od@r. Thus it appears unlikely that the classical wave modes
guantization is of microscopic origin. On the other hand, it isalone can give the complete accounting of the microscopic
possible that this is just an artifact of our choice of the formblack hole degrees of freedom, as proposel@ih1,15. The
of the wave profile yielding analytic metric. In our opinion, excitation of most of these modes turns the original black
this ambiguity merits further interest. string into a very bright object. Hence such modes cannot be
Finally, we should remark once more that our analyticinterpreted as black hole hair — in a manner of speaking,
examples comprise only an existence proof of time-they are too curly to weave a smooth spacetime.
dependent hair. They do not encompass the geher@land
=1 modes. Specifically, we do not cover arguably the most
interesting case when the coordinate along the string is com-
pact, which is a candidate for a hairy black hole in four We would like to thank Gary Horowitz and Don Marolf
dimensions. Given our demonstration above that the excitdor helpful conversations. This work was supported in part
tion of the passive internal dimensions leads to naked singlby NSERC of Canada and in part by Fonds FCAR du Que-
larities, we should note here that the compact wavy stringbec.
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