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Topological invariants, instantons, and the chiral anomaly on spaces with torsion
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In a spacetime with nonvanishing torsion there can occur topologically stable configurations associated with
the frame bundle which are independent of the curvature. The relevant topological invariants are integrals of
local scalar densities first discussed by Nieh and YMiY). In four dimensions, the NY fornN=(T?
AT,—Rapne?ne?) is the only closed four-form invariant under local Lorentz rotations associated with the
torsion of the manifold. The integral & over a compacb-dimensionalEuclidean manifold is shown to be
a topological invariant related to the Pontryagin classes oft501) and SOD). An explicit example of a
topologically nontrivial configuration carrying a nonvanishing instanton number proportionf@\ ts con-
structed. The chiral anomaly in a four-dimensional spacetime with torsion is also shown to contain a contri-
bution proportional td\, in addition to the usual Pontryagin density related to the spacetime curvature. The
violation of chiral symmetry can thus depend on the instanton number of the tangent frame bundle of the
manifold. Similar invariants can be constructedDn>4 dimensions and the existence of the corresponding
nontrivial excitations is also discuss¢&0556-282(197)01312-X]

PACS numbes): 04.50:+h, 02.40.Vh, 04.90-e

[. INTRODUCTION From a group-theoretic point of view, the curvature two-
form is the commutator of the covariant derivative for the
In the traditional approach to gravitation theory, torsionconnection of the group of rotations on the tangent space of
plays no significant role in the spacetime geometry. Torsiorthe manifold [SO(D) or SOD-1,1), for Euclidean or
is commonly set equal to zero from the start and there seemdinkowskian signature, respectivély This is reflected by
to be no compelling experimental reason to relax this condithe fact that the curvature depends on the group connection
tion. In a more geometric approach, however, the affine and?, alone. In contrast, no analogous simple geometric inter-
metric properties of the spacetime geometry are independeptetation can be assigned to torsifffor a discussion on this
notions and should, therefore, be described by dynamicallpoint, see Sec. Il, belowThis is perhaps one reason why
independent fields: the spin connectiad, and the local torsion has been perceived as less fundamental than curva-
frames(vielbein) €2, respectiveljf1]. In the tradition of gen- ture since the early days of general relatiig}. Neverthe-
eral relativity these two fields are assumed to be linked byess, torsion appears rather naturally in the commutator of
the torsion-free conditiofi®=0, where the torsion two-form two covariant derivatives for the group of diffeomorphisms

is defined by of a manifold in a coordinate badi8],
a_ a b
T=de’+w AL (1) [VM!VV]VA: _szv)\vA_i_ Réﬂva’ (3)
This expression is similar to that of the curvature two- _ .

form, whereV” represents any tens@r spinoy under diffeomor-

phisms or under the group of tangent rotations, R@ds the
R, =dw?,+ w? 0%, (2)  curvature tensor in the corresponding representation. Here

curvature and torsion play quite different role“l's’;w is the

whose vanishing is not to be imposadoriori. structure function for the diffeomorphism group dﬁ@iw is

From these two expressions, curvature seems to be moeecentral charge. From this expression it is clear that one can
fundamental than torsion: the definitid®) depends on the consider equally well spaces with curvature and no torsion,
existence of the connection field alone, whereas torsion deand “teleparallelizable” spaces with zero curvature and non-
pends on both the connection and the vielbein. On the otheranishing torsion. Both possibilities are special cases of the
hand, since on any smooth metric manifold a local framegeneric situation.

(vielbein) is necessarily always defined, torsion can exist

even if the connection vanishes. This implies that in a geo=

metric theory of spacetime the local frame structure is as Here we will assume the signature to be Euclidean. Whenever
basic a notion as the connection and, therefore, torsion argpacetime is mentioned, the appropriate Wick rotation will be as-
curvature should be treated on a similar footing. sumed.
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Another realm where curvature plays an important role is T~ 6””“’Tyxp- 9
in the characterization of the topological structure of the
manifold. It is a remarkable result of differential geometry
that certain global features of a manifold are determined b
some local functionals of its intrinsic geometry. The four-
dimensional Pontryagin and Euler classes,

his component of the torsion tensor is the one that couples
o the spin3 fields[7]. This is one of the irreducible pieces
of the first Bianchi identity. In a metric-affine space, the 1st
Bianchi identity can be decomposed according to=18 +
1 6 + 1. And the “1” is that corresponding to Ed8) [8].
P“:WJ’ R2°AR,p, (4) In the next sectionN is shown to be related to the
My Pontryagin class, shedding some light on the origin of its
topological nature. Section Il contains the construction of a
E :LJ €00 REARY (5) field configuration that exhibits the relevant instanton num-
4 320% w, abd ' ber. In Sec. IV, the contribution dfl to the chiral anomaly
and the corresponding index theorem are discussed. A gen-
are well-known examples. For compact manifolds in foureral discussion, in particular, about the possibility of having
dimensions, andE, take integer values that label topologi- similar invariants in higher dimensions, are contained in Sec.
cally distinct four-geometries. Although these topological in-V.
variants are given in terms of local functions, their values
depend on the global properties of the manifold. These topo-
logical invariants are expected to be related to physical ob- Il. RELATION TO THE PONTRYAGIN CLASS
servables as, for instance, in the case of anomalies. The |t seems natural to investigate the extent to which the

Pontryagin class can be defined for any compact gauge groyfienh-van invariant(7) is analogous to the Pontryagin and

G, on any even-dimensional compact manifold, Euler invariants. In particular, it would be interesting to
P[] = 1 P F) know whether the integral dfl over a compact manifold has
[G] = on+lpn /Mzn{d—'(ﬂ—« ’ (6)  a discrete spectrum as is the caseHEgrandP,,.
n

This question can be answered by embedding the group of
rotations on the tangent space, @{dnto SQ5). This can be
done quite naturally combining the spin connection and the

whereF is the curvature two-form for the group whose
generators are normalized so tha{GG,} = 8,,, and the
braces| . . .} indicate a particular product of traces of prod- vierbein toaether in a connection for in the form
ucts of F's (see[4]). Since the curvature two-form for the [6,9,10 9 ®

manifold (R3) in the standard representation is antisymmet-" '’
ric, the Pontryagin fornof the manifold Pp[ SO(D)] is only

defined forD=4n. In contrast with the Pontryagin forms, 3P Eea

the Euler form cannot be defined for a generic gauge group I

G. WAB= 1 : (10
Invariants analogous to these, constructed using the tor- )

sion tensor are less known. The lowest-dimensional torsional |

invariant is the four-form first discussed by Nieh and Yan

(NY) [5], wherea,b=1,2,...,4 A,B=1,2,...,5.Note that the con-
stant| with dimensions of length has been introduced to
match the standard units of the connectibn') and those of

This is th | rivial locall t four-F hich the vierbein (°). In the usual embedding of the Lorentz
IS 1S the only nontrivial locally exact four-form which van-- ., into the(anti-) de Sitter groupl is called the radius of

ishes in the apsence of torsion gnd is clearly independent e Universe and is related to the cosmological constant
the Pontryagin and Euler densities. In any local patch Wher%|A| =172

the vierbein is well defined\ can be written as

N=T3\T,— Ry ere. 7)

The curvature two-form constructed frond”8 is

N=d(e® T,), (8
1
and is, therefore, locally exact. More explicitly, N and R*°— FeaAeb |_Ta1
N’ are the NY densities ford,e), and @’,e’), where FAB=dWAB+WAC \WCB=
o'=w+t\, e'=e+{, thenA=N-N’ is locally exact(a _ETb 0
total derivative. If the deformation betweew and w’ is |
globally continuousA is globally exact. ThereforgN is a (11

topological-invariant quantity in the same sense as the
Pontryagin and Euler numbers. Similar invariants can be de- |t js then direct to check that the Pontryagin density for

fined in higher dimensions as discussed6h SQ(5) is the sum of the Pontryagin density for @Dand the
The three-forme®AT, is a Chern-Simons-like form that Nieh-Yan density:

can be used as a Lagrangian for the dreibein in three dimen-
sions. The dual of this three-form in four dimensions is also
known as the totally antisymmetric part of the torsi@on-

2
X X X o AB — pab 4+ [T2 __pab )
torsion and is sometimes also referred tokagorsion: PP ae=R™/ Rap I2[T NTamRTneanep]. (12)
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This shows, in particular, that 1
e, det=3x2x 272, (16)
[E

2
I—fM N=P,[SO(5)]~P,[SA4)] (13

Thus, using Eq(8), one concludes that the above result
corresponds to the integral of the Nieh-Yan form oV
is indeed a topological invariant, as it is the difference of twoThe factor 3 comes from the fact that there are three inde-
Pontryagin classes. pendent fields summed in the integrand of Et6). Each
From Eq.(13) one can directly read off the spectrum of term in the sum contributes twice the area of the unit three-
IN. As is well known, the Pontryagin class Bf,[G] takes ~ Sphere (2r?). _ . .
on integer valuesthe instanton numbgof the correspond- Configurations with other instanton numbers can be easily
ing homoptopy groupll,,_1(G) (see, e.g.[4]). In the case 9enerated by simply choosing different winding numbers for
at hand,I15[SO(5)]=Z and 15[ SO(4)]=Z+Z. Thus, the each of the three tangent vect@'s In the example above,
integral of the Nieh-Yan invariant over a compact manifold €ach of these vectors makes a complete turn around the equa-

x=u=0, respectively. We are thus led to conclude that, in
general,
f N=constX(z;+2z,+z3), zeZ. (149
M 1
I—szN=4w2(zl+zz+23), zeZ. (17
lIl. INSTANTON

) . . The instanton presented here is analogous to the one dis-
It is of interest to construct an example geometry withossed by D'Auria-Reggii2]. Their's is also associated to a
nonvanishing/yN. As it is seen from Eq(8), the integral  gjngularity in the vierbein structure of the manifold, but has

Eq. (14) can be evaluated integrating of the three-foem  \anishing NY number and nonzero Pontryagin and Euler
AT? over the boundaryM. numbers.

A particular example of a geometry characterized by non-
vanishingf N is easily constructed using the fact tiiimay
be nonzero even if the curvature vanishes. The simplest ex-
ample occurs iR*, where the connection can be chosen to It is well known that the existence of anomalies can be
vanish everywhere»s?°=0. Consider now a vierbein field attributed to the topological properties of the background
that approaches a regular configurationr as>. The ques- where the quantum system is defined. In particular, for a
tion is how to cover the sphere at infinitg{) with an ev- massless spig-field in an externalnot necessarily quan-
erywhere regular set of independent vectors. tized) gauge fields, the anomaly for the conservation law of
It is a classical result on fibre bundles ti8itis parallel- the chiral current is proportional to the Pontryagin form for
izable, i.e., there exist three linearly independent globallythe gauge group:
defined vector fields over the sphéfd]. Using this fact it is

IV. CHIRAL ANOMALY

possible to take one of the vierbein fields along the radius 1
(e) and the other three tangent to ti$3. Defining the ’?M<‘]g>:mTrFAF' (18)
sphere through its embedding Rf, x?+y?+z?+u?=r?,
we chose on its surface The question then naturally arises as to whether the tor-
sional invariants can produce similar physically observable
| effects[6].
erder, Kimura [13], Delbourgo and Salafi4], and Eguchi and

Freund[15] evaluated the quantum violation of the chiral
| current conservation in a four-dimensional Riemannian
el=—(ydx—xdy—udz+zdu), backgroundwithout torsion finding it proportional to the
r Pontryagin density of the manifold:

| 1
e2=r—2(—zdx—udy+xdz+ydu), (15 %UEL):WRabARab- (19

| This result, was also supported by the computation of
e3=— (udx—zdy+ydz—xdu). Alvarez-Gaumend Witten[16], of all possible gravitational
r anomalies and the Atiyah-Singer index for the Dirac operator
for massless fermions in a curved background, and the com-
These fields are well defined for#0 and can be plete study of consistent non-Abelian anomalies on arbitrary
smoothly continued inside the sphere, for instance, rescalinganifolds by Bonora, Pasti, and Torih7].
it by a function that vanishes as—~0 and approaches 1 for It has been sometimes argued that the presence of torsion
r—oo, In any case, it is clearly impossible to do this without could not affect the chiral anomalgee, e.g.[17-20). This
producing a singular point whee# vanishes. The integral of is motivated by the fact that the Pontryagin number is insen-
e,AT? over a sphere of any radius is sitive to the presence of torsion, as it is obvious from Egs.
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(2) and(4). This does not prove, however, that the anomaly
is given by the Pontryagin class and nothing else. A(X)=22 e(X) ¥l ysin. (25
As for the Atiyah-Singer index theorem, it is fairly clear "
that the difference between the number of left- and right- L
handed zero modes should not jump under any continuoud/ith the standard regularization is
deformation of the geometry. Therefore, the index could not g2
ol

change under adiabatic inclusion of torsion in the connec- . .
g AX)=2lim lim Tr
The square of the Dirac operator is given by

y—X M—o

a(xy). (26

tion. However, nothing can be said priori about the
changes of the index undeéiscontinuousmodifications in
the torsion, as it might happen if flat spacetime is replaced by
one containing a topologically nontrivial configuration.

The integral of an anomaly must be a topological invari-
ant[21] and, therefore, the assertion above would be true if V2=V*V,—ekepetd?TS, V) +3e4epJ*P%R g, ,
there were no other independent topological invariants that (27)
could be constructed out of the torsion tensor.

Direct computations of the chiral anomaly in spaces withwhereJ,,= [ va, 5] is the generator of S@) in the spino-
torsion were first done by ObukhdV], and later by Yajima rial representation.
and collaborator$19,22. These authors find a number of  The Diracé on a curved background is represented by
torsion-dependent contributions to the anomaly which are
not clearly interpreted as densities of topological invariants. d*k
In a related work, Mavromatog20] calculates the Atiyah- (x,y)= f ——— e VL), (29

. ) . : (2m)
Singer index of the Dirac operator in the presence of curl-
free H torsion. He finds a contribution which is an exact
form by virtue of his assumptioricurl-free H torsion
amounts to assumingd(e®~T,)=0] and is, therefore,
dropped out.

In all the previous casdg,19,23 (and in[20] if one does
not assum@&H=0), the NY term appears among many oth-
ers. Many of these torsional pieces, including the NY term,
are divergent when the regulator is removed, which was in-
terpreted as an indication that these terms were a regulator +O(M~?), (29
artifact and should, therefore, be ignored.

Here we recalculate the anomaly with the Fujikawa The leading contribution of torsion to the anomaly
method[23,24 and explicitly show the dependence of the (M?/47?)N diverges as the regulator is removed in agree-

where 3(x,y) is the geodesic biscald®5]. Applying the
operator exp{?/M?) on Eq.(26), taking the limity—x, and
tracing over spinor indices, one finds

1
A= W[RabARab—l— 2M2(T A T2= R, pre?ne”) ]

anomaly on the NY four-form. ment with the results of7,19,22,20.
Consider a massless Dirac spinor on a curved background A finite result would be obtained if the vierbein were
with torsion. The action is rescaled as
i _
—_ | 44 ~ 1
S= 2[ d*xeyV ¢+ H.c., (20 e, ea:Wea_ (30)

where the Dirac operator is given by
In that case the expression for the anomaly becoftdesp-

V=ev"V,, (21)  ping the tilde$
heree,* is the inverse of the tetraef,, y® are the Dirac
3 - . D7 1 2
y matrices, andv , is the covariant derivative for the $9 A(x) = Rab/\Rab+_2(Ta/\Ta_ Rap e%reb) |.
connection in the appropriate representation. 82 |
This action is invariant under rigid chiral transformations (31
p—e'7sy, (22) It is interesting to observe that if in the earlier results of

Refs.[7,19,23, one makes the same rescaling, all but one of
%he torsional contributions to the anomaly vanish in the limit
M —oo, The remaining term .

wheree is a real constant parameter. This symmetry leads t
the classical conservation law
d,JE=0, (23

w

2In a Pauli-Villars regularization scheme, such divergent terms
would be eliminated by an appropriate choice of regulator mass
parameters. This scheme, however, rests on the assumption that at
(9M<J§>=A(X), (24 high energy, spacetime has Poincameariance, but this is not a
trivial assumption in the presence of gravity. We thank G. 't Hooft
where for pointing this out to us.

whereJ{ = ee y2ysip.
The chiral anomaly is given by



7584 OSVALDO CHANDIA AND JORGE ZANELLI 55

V. DISCUSSION Note that a construction similar to the one for the three-
and seven-spheres cannot be repeated in any other dimension
because only the one-, three-, and seven-spheres admit a glo-
Topological invariants associated to the spacetime torsiopally defined basis of vector field&1]. In general, the maxi-
exist in higher dimensions whose occurrence, howevermum number of independent global vectors that can be de-

is very hard to predict for arbitraryp [6]. An obvious fined onS""! is given by Radon’s formul§26],
family of these invariants forD=4k is of the form

NX=NANA- - -N, but there are others which do not fall into pn=2°+8d—1, (35)
this class. For example, in 14 dimensions, the 14-form

(TAR%ARPARC e A(T,ARE,1€P) is a locally exact. The  wheren is written as

numbern(D) of independent torsional invariants for a given

A. Higher dimensions

dimension is as follows: n=(odd integey2°16, (36)

D 2 4 6 8 10 12 14 With c<3 andd positive integers. From this formula, it is
clear that for all odd-dimensional spheres=1, while for

n(D) 0 1 0 4 0 12 1 even-dimensional spher¢sddn), p,=0.

Thus, it is only in four dimensions that the NY class can

The instanton constructed here is easily generalized fof€ COMPuted in a curvature-free background.
D=8, where there are four NY form¢he wedge product is
implicitly assumedg, B. Anomaly

In Sec. IV we argued that the anomaly could be made

— N2
Ny=N% finite if one were to rescale the tetrad as
N,= (R3RP)N, el—ei=(IM) e}, Two remarks are in order: First, it
should be stressed that this is the only rescaling that is
Nz=4(T,R%eP)(T.e®) +(T,T%)?— (e,R%e")?, needed_to yield a finite result_. Second, the Lagrangian for the
tetrad field has not been discussed and, therefore, the re-
N,=T,R%R.T¢—e,R% R".R%,e’. (32)  placemente—e is purely formal and can have no physical
5 o _ _ consequences as long as its dynamics is not specified.
Of all these, only T,T%)“=d[€°T,T°T,] survives if the In our analysise is an external(classical background

space is assumed to be curvature-free. The integration overf@id. One could view the rescaling of the vierbein as an
seven-sphergi+ - - - +x5=r? embedded oi® can be eas- invariance of the action, provided the Dirac field is suitably
ily performed using a frame formed by one radial one-formrescaled as well. This transformation was also considered by
(e") and seven orthonormal field€'f, tangent toS’. The  Nieh and Yan in[27]. However, in order for this invariance
e’s are generated using the canonical isomorphism betweesf the action to be interpreted as a symmetry generated by
R® and the octonion algebra: multiplyirgj by each of the charges acting on the fields, one should include a scale-
seven generators of the algebra, and seven orthonormal fielélsvariant Lagrangian foe.

tangent to the sphere are produced. The first one is The vierbein has units dimass® and is, therefore, not of
1 3 . 5 5 the same canonical dimension as the connectioell Ifs to
€= — XpdX; + X1 A%~ X4dX* + X3d X" — Xgd X+ X50 X be regarded as part of a connection of (5Q the limit
— xgdX"+%;0x8, (33) M — oo keepingl fixed could be interpreted as a way to turn

the SQ@4)-invariant action(20) into that for a spinor mini-
and the rest are similarly obtained. The integral is thus dnally coupled to an S®) connection28]. In this case, the
combinatorial factor times the volume of ti&& (7%/3). chiral anomaly is then given bf,[ SO(5)], which is pre-
In eight dimensions the integral &f is not simply equal ~ cisely Eq.(31).
to the difference of the Pontryagin classes of(9Cand
SQ(8), as one could naively expect by analogy with the case C. Index

D=4. The Pontryagin density of 3 is The Atiyah-Singer index for the Dirac operator in the ab-

1 sence of torsion is given by the Pontryagin number. Obvi-
Tr(FY — = (Tr(F?))?=Tr(R*) — 2(Tr(R?))? ously, asP is independent of the vierbein, its invariance
2 under continuous deformations of the geometry also allows
4 for continuous deformations of the local frames and, in par-
+|—4[(2TaRabeb)(Taea) ticular, for the addition of torsion. A different issue is
whether the presence of torsion can affect the index of the
4 Dirac operator through these invariants.
+(e,R%,e®)N]+ I—Z[eaRe‘bRbcRcded In [20] it is shown that there is a torsional contribution to
the index although it is set equal to zero by the additional
+3ITr(RHON-T,R3HRP.TC]. (34 requirement of curl-freél torsion, and our resu(B1) agrees
with that conclusion. The expression of the anomégy)
The first two terms are the Pontryagin form of @D but the indicates that if the index is calculated for an (S{0connec-
terms that depend on the torsion vanish R3,=0. tion, the result would reproduce our expresdiaf).
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Note addedIn the process of writing this article, we re-
ceived a draft by Obukhov, Mielke, Budczies, and Hetd]
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helpful comments. We would like to extend our special
thanks to C. Teitelboim for useful discussions and for his

where the instanton of Sec. Ill is reobtained in a somewhagrucial advice at a critical stage of this work. We gratefully

different analysis, and our result for the anom@) is also
found in the heat kernel approach.
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