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In a spacetime with nonvanishing torsion there can occur topologically stable configurations associated with
the frame bundle which are independent of the curvature. The relevant topological invariants are integrals of
local scalar densities first discussed by Nieh and Yan~NY!. In four dimensions, the NY formN5(Ta

`Ta2Rab`ea`eb) is the only closed four-form invariant under local Lorentz rotations associated with the
torsion of the manifold. The integral ofN over a compactD-dimensional~Euclidean! manifold is shown to be
a topological invariant related to the Pontryagin classes of SO(D11) and SO(D). An explicit example of a
topologically nontrivial configuration carrying a nonvanishing instanton number proportional to*N is con-
structed. The chiral anomaly in a four-dimensional spacetime with torsion is also shown to contain a contri-
bution proportional toN, in addition to the usual Pontryagin density related to the spacetime curvature. The
violation of chiral symmetry can thus depend on the instanton number of the tangent frame bundle of the
manifold. Similar invariants can be constructed inD.4 dimensions and the existence of the corresponding
nontrivial excitations is also discussed.@S0556-2821~97!01312-X#

PACS number~s!: 04.50.1h, 02.40.Vh, 04.90.1e

I. INTRODUCTION

In the traditional approach to gravitation theory, torsion
plays no significant role in the spacetime geometry. Torsion
is commonly set equal to zero from the start and there seems
to be no compelling experimental reason to relax this condi-
tion. In a more geometric approach, however, the affine and
metric properties of the spacetime geometry are independent
notions and should, therefore, be described by dynamically
independent fields: the spin connectionva

b and the local
frames~vielbein! ea, respectively@1#. In the tradition of gen-
eral relativity these two fields are assumed to be linked by
the torsion-free conditionTa50, where the torsion two-form
is defined by

Ta5dea1va
b`eb. ~1!

This expression is similar to that of the curvature two-
form,

Ra
b5dva

b1va
c`vc

b , ~2!

whose vanishing is not to be imposeda priori.
From these two expressions, curvature seems to be more

fundamental than torsion: the definition~2! depends on the
existence of the connection field alone, whereas torsion de-
pends on both the connection and the vielbein. On the other
hand, since on any smooth metric manifold a local frame
~vielbein! is necessarily always defined, torsion can exist
even if the connection vanishes. This implies that in a geo-
metric theory of spacetime the local frame structure is as
basic a notion as the connection and, therefore, torsion and
curvature should be treated on a similar footing.

From a group-theoretic point of view, the curvature two-
form is the commutator of the covariant derivative for the
connection of the group of rotations on the tangent space of
the manifold @SO(D) or SO(D21,1), for Euclidean or
Minkowskian signature, respectively#.1 This is reflected by
the fact that the curvature depends on the group connection
va

b alone. In contrast, no analogous simple geometric inter-
pretation can be assigned to torsion.@For a discussion on this
point, see Sec. II, below.# This is perhaps one reason why
torsion has been perceived as less fundamental than curva-
ture since the early days of general relativity@2#. Neverthe-
less, torsion appears rather naturally in the commutator of
two covariant derivatives for the group of diffeomorphisms
of a manifold in a coordinate basis@3#,

@¹m ,¹n#VA52Tmn
l ¹lV

A1RBmn
A VB, ~3!

whereVA represents any tensor~or spinor! under diffeomor-
phisms or under the group of tangent rotations, andRB

A is the
curvature tensor in the corresponding representation. Here
curvature and torsion play quite different roles:Tmn

l is the
structure function for the diffeomorphism group andRBmn

A is
a central charge. From this expression it is clear that one can
consider equally well spaces with curvature and no torsion,
and ‘‘teleparallelizable’’ spaces with zero curvature and non-
vanishing torsion. Both possibilities are special cases of the
generic situation.

1Here we will assume the signature to be Euclidean. Whenever
spacetime is mentioned, the appropriate Wick rotation will be as-
sumed.
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Another realm where curvature plays an important role is
in the characterization of the topological structure of the
manifold. It is a remarkable result of differential geometry
that certain global features of a manifold are determined by
some local functionals of its intrinsic geometry. The four-
dimensional Pontryagin and Euler classes,

P45
1

8p2E
M4

Rab
`Rab , ~4!

E45
1

32p2E
M4

eabdcR
ab

`Rcd, ~5!

are well-known examples. For compact manifolds in four
dimensionsP4 andE4 take integer values that label topologi-
cally distinct four-geometries. Although these topological in-
variants are given in terms of local functions, their values
depend on the global properties of the manifold. These topo-
logical invariants are expected to be related to physical ob-
servables as, for instance, in the case of anomalies. The
Pontryagin class can be defined for any compact gauge group
G, on any even-dimensional compact manifold,

~6!

whereF is the curvature two-form for the groupG whose
generators are normalized so that Tr$GaGb%5dab , and the
braces$ . . . % indicate a particular product of traces of prod-
ucts ofF ’s ~see@4#!. Since the curvature two-form for the
manifold (Rab) in the standard representation is antisymmet-
ric, the Pontryagin formof the manifold, PD@SO(D)# is only
defined forD54n. In contrast with the Pontryagin forms,
the Euler form cannot be defined for a generic gauge group
G.

Invariants analogous to these, constructed using the tor-
sion tensor are less known. The lowest-dimensional torsional
invariant is the four-form first discussed by Nieh and Yan
~NY! @5#,

N5Ta`Ta2Rab`ea`eb. ~7!

This is the only nontrivial locally exact four-form which van-
ishes in the absence of torsion and is clearly independent of
the Pontryagin and Euler densities. In any local patch where
the vierbein is well defined,N can be written as

N5d~ea`Ta!, ~8!

and is, therefore, locally exact. More explicitly, ifN and
N8 are the NY densities for (v,e), and (v8,e8), where
v85v1l, e85e1z, then D5N2N8 is locally exact~a
total derivative!. If the deformation betweenv and v8 is
globally continuous,D is globally exact. Therefore,*N is a
topological-invariant quantity in the same sense as the
Pontryagin and Euler numbers. Similar invariants can be de-
fined in higher dimensions as discussed in@6#.

The three-formea`Ta is a Chern-Simons-like form that
can be used as a Lagrangian for the dreibein in three dimen-
sions. The dual of this three-form in four dimensions is also
known as the totally antisymmetric part of the torsion~con-
torsion! and is sometimes also referred to asH torsion:

ea`Ta;emnlrTnlr . ~9!

This component of the torsion tensor is the one that couples
to the spin-12 fields @7#. This is one of the irreducible pieces
of the first Bianchi identity. In a metric-affine space, the 1st
Bianchi identity can be decomposed according to 165 9 1
6 1 1. And the ‘‘1’’ is that corresponding to Eq.~8! @8#.

In the next sectionN is shown to be related to the
Pontryagin class, shedding some light on the origin of its
topological nature. Section III contains the construction of a
field configuration that exhibits the relevant instanton num-
ber. In Sec. IV, the contribution ofN to the chiral anomaly
and the corresponding index theorem are discussed. A gen-
eral discussion, in particular, about the possibility of having
similar invariants in higher dimensions, are contained in Sec.
V.

II. RELATION TO THE PONTRYAGIN CLASS

It seems natural to investigate the extent to which the
Nieh-Yan invariant~7! is analogous to the Pontryagin and
Euler invariants. In particular, it would be interesting to
know whether the integral ofN over a compact manifold has
a discrete spectrum as is the case forE4 andP4.

This question can be answered by embedding the group of
rotations on the tangent space, SO~4! into SO~5!. This can be
done quite naturally combining the spin connection and the
vierbein together in a connection for SO~5! in the form
@6,9,10#

WAB5F vab 1

l
ea

2
1

l
eb 0

G , ~10!

wherea,b51,2, . . . ,4 A,B51,2, . . . ,5.Note that the con-
stant l with dimensions of length has been introduced to
match the standard units of the connection (l21) and those of
the vierbein (l 0). In the usual embedding of the Lorentz
group into the~anti-! de Sitter group,l is called the radius of
the Universe and is related to the cosmological constant
(uLu5 l22).

The curvature two-form constructed fromWAB is

FAB5dWAB1WAC
`WCB5F Rab2

1

l 2
ea`eb

1

l
Ta

2
1

l
Tb 0

G .
~11!

It is then direct to check that the Pontryagin density for
SO~5! is the sum of the Pontryagin density for SO~4! and the
Nieh-Yan density:

FAB
`FAB5Rab

`Rab1
2

l 2
@Ta`Ta2Rab

`ea`eb#. ~12!
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This shows, in particular, that

2

l 2EM4

N5P4@SO~5!#2P4@SO~4!# ~13!

is indeed a topological invariant, as it is the difference of two
Pontryagin classes.

From Eq.~13! one can directly read off the spectrum of
*N. As is well known, the Pontryagin class ofP2n@G# takes
on integer values~the instanton number! of the correspond-
ing homoptopy group,P2n21(G) ~see, e.g.,@4#!. In the case
at hand,P3@SO(5)#5Z andP3@SO(4)#5Z1Z. Thus, the
integral of the Nieh-Yan invariant over a compact manifold
M must be a function of three integers:

E
M
N5const3~z11z21z3!, ziPZ. ~14!

III. INSTANTON

It is of interest to construct an example geometry with
nonvanishing*MN. As it is seen from Eq.~8!, the integral
Eq. ~14! can be evaluated integrating of the three-formea
`Ta over the boundary]M .

A particular example of a geometry characterized by non-
vanishing*N is easily constructed using the fact thatN may
be nonzero even if the curvature vanishes. The simplest ex-
ample occurs inR4, where the connection can be chosen to
vanish everywherevab50. Consider now a vierbein field
that approaches a regular configuration asr→`. The ques-
tion is how to cover the sphere at infinity (S`

3 ) with an ev-
erywhere regular set of independent vectors.

It is a classical result on fibre bundles thatS3 is parallel-
izable, i.e., there exist three linearly independent globally
defined vector fields over the sphere@11#. Using this fact it is
possible to take one of the vierbein fields along the radius
(er) and the other three tangent to theS3. Defining the
sphere through its embedding inR4, x21y21z21u25r 2,
we chose on its surface

er5
l

r
dr,

e15
l

r 2
~ydx2xdy2udz1zdu!,

e25
l

r 2
~2zdx2udy1xdz1ydu!, ~15!

e35
l

r 2
~udx2zdy1ydz2xdu!.

These fields are well defined forrÞ0 and can be
smoothly continued inside the sphere, for instance, rescaling
it by a function that vanishes asr→0 and approaches 1 for
r→`. In any case, it is clearly impossible to do this without
producing a singular point whereea vanishes. The integral of
ea`Ta over a sphere of any radius is

1

l 2ES3ea`dea533232p2. ~16!

Thus, using Eq.~8!, one concludes that the above result
corresponds to the integral of the Nieh-Yan form overR4.
The factor 3 comes from the fact that there are three inde-
pendent fields summed in the integrand of Eq.~16!. Each
term in the sum contributes twice the area of the unit three-
sphere (2p2).

Configurations with other instanton numbers can be easily
generated by simply choosing different winding numbers for
each of the three tangent vectorsei . In the example above,
each of these vectors makes a complete turn around the equa-
torial lines defined by the planesx5y50, x5z50, and
x5u50, respectively. We are thus led to conclude that, in
general,

1

l 2EMN54p2~z11z21z3!, ziPZ. ~17!

The instanton presented here is analogous to the one dis-
cussed by D’Auria-Regge@12#. Their’s is also associated to a
singularity in the vierbein structure of the manifold, but has
vanishing NY number and nonzero Pontryagin and Euler
numbers.

IV. CHIRAL ANOMALY

It is well known that the existence of anomalies can be
attributed to the topological properties of the background
where the quantum system is defined. In particular, for a
massless spin-12 field in an external~not necessarily quan-
tized! gauge fieldG, the anomaly for the conservation law of
the chiral current is proportional to the Pontryagin form for
the gauge group:

]m^J5
m&5

1

4p2TrF`F. ~18!

The question then naturally arises as to whether the tor-
sional invariants can produce similar physically observable
effects@6#.

Kimura @13#, Delbourgo and Salam@14#, and Eguchi and
Freund @15# evaluated the quantum violation of the chiral
current conservation in a four-dimensional Riemannian
backgroundwithout torsion, finding it proportional to the
Pontryagin density of the manifold:

]m^J5
m&5

1

8p2R
ab

`Rab . ~19!

This result was also supported by the computation of
Alvarez-Gaume´ and Witten@16#, of all possible gravitational
anomalies and the Atiyah-Singer index for the Dirac operator
for massless fermions in a curved background, and the com-
plete study of consistent non-Abelian anomalies on arbitrary
manifolds by Bonora, Pasti, and Tonin@17#.

It has been sometimes argued that the presence of torsion
could not affect the chiral anomaly~see, e.g.,@17–20#!. This
is motivated by the fact that the Pontryagin number is insen-
sitive to the presence of torsion, as it is obvious from Eqs.
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~2! and ~4!. This does not prove, however, that the anomaly
is given by the Pontryagin class and nothing else.

As for the Atiyah-Singer index theorem, it is fairly clear
that the difference between the number of left- and right-
handed zero modes should not jump under any continuous
deformation of the geometry. Therefore, the index could not
change under adiabatic inclusion of torsion in the connec-
tion. However, nothing can be saida priori about the
changes of the index underdiscontinuousmodifications in
the torsion, as it might happen if flat spacetime is replaced by
one containing a topologically nontrivial configuration.

The integral of an anomaly must be a topological invari-
ant @21# and, therefore, the assertion above would be true if
there were no other independent topological invariants that
could be constructed out of the torsion tensor.

Direct computations of the chiral anomaly in spaces with
torsion were first done by Obukhov@7#, and later by Yajima
and collaborators@19,22#. These authors find a number of
torsion-dependent contributions to the anomaly which are
not clearly interpreted as densities of topological invariants.
In a related work, Mavromatos@20# calculates the Atiyah-
Singer index of the Dirac operator in the presence of curl-
free H torsion. He finds a contribution which is an exact
form by virtue of his assumption@curl-free H torsion
amounts to assumingd(ea`Ta)50# and is, therefore,
dropped out.

In all the previous cases@7,19,22# ~and in@20# if one does
not assumedH50), the NY term appears among many oth-
ers. Many of these torsional pieces, including the NY term,
are divergent when the regulator is removed, which was in-
terpreted as an indication that these terms were a regulator
artifact and should, therefore, be ignored.

Here we recalculate the anomaly with the Fujikawa
method@23,24# and explicitly show the dependence of the
anomaly on the NY four-form.

Consider a massless Dirac spinor on a curved background
with torsion. The action is

S5
i

2E d4xec̄¹” c1H.c., ~20!

where the Dirac operator is given by

¹” 5ea
mga¹m , ~21!

hereea
m is the inverse of the tetradeam , ga are the Dirac

g matrices, and¹m is the covariant derivative for the SO~4!
connection in the appropriate representation.

This action is invariant under rigid chiral transformations

c→ei«g5c, ~22!

where« is a real constant parameter. This symmetry leads to
the classical conservation law

]mJ5
m50, ~23!

whereJ5
m5eea

mc̄gag5c.
The chiral anomaly is given by

]m^J5
m&5A~x!, ~24!

where

A~x!52(
n

e~x!cn
†g5cn . ~25!

With the standard regularization,A is

A~x!52 lim
y→x

lim
M→`

TrFg5expS ¹” 2

M2D Gd~x,y!. ~26!

The square of the Dirac operator is given by

¹” 25¹m¹m2ea
meb

nec
lJabTmn

c ¹l1 1
2ea

meb
nJabJcdRcdmn ,

~27!

whereJab5
1
4@ga ,gb# is the generator of SO~4! in the spino-

rial representation.
The Diracd on a curved background is represented by

d~x,y!5E d4k

~2p!4
eik

m¹mS~x,y!, ~28!

whereS(x,y) is the geodesic biscalar@25#. Applying the
operator exp(¹” 2/M2) on Eq.~26!, taking the limity→x, and
tracing over spinor indices, one finds

A5
1

8p2 @Rab
`Rab12M2~Ta`Ta2Rab`ea`eb!#

1O~M22!. ~29!

The leading contribution of torsion to the anomaly
(M2/4p2)N diverges as the regulator is removed in agree-
ment with the results of@7,19,22,20#.2

A finite result would be obtained if the vierbein were
rescaled as

ea→ ẽa5
1

Ml
ea. ~30!

In that case the expression for the anomaly becomes~drop-
ping the tildes!

A~x!5
1

8p2 SRab
`Rab1

2

l 2
~Ta`Ta2Rab`ea`eb! D .

~31!

It is interesting to observe that if in the earlier results of
Refs.@7,19,22#, one makes the same rescaling, all but one of
the torsional contributions to the anomaly vanish in the limit
M→`. The remaining term isN.

2In a Pauli-Villars regularization scheme, such divergent terms
would be eliminated by an appropriate choice of regulator mass
parameters. This scheme, however, rests on the assumption that at
high energy, spacetime has Poincare´ invariance, but this is not a
trivial assumption in the presence of gravity. We thank G. ’t Hooft
for pointing this out to us.
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V. DISCUSSION

A. Higher dimensions

Topological invariants associated to the spacetime torsion
exist in higher dimensions whose occurrence, however,
is very hard to predict for arbitraryD @6#. An obvious
family of these invariants forD54k is of the form
Nk5N`N`•••N, but there are others which do not fall into
this class. For example, in 14 dimensions, the 14-form
(Ta`Ra

b`Rb
c`Rc

d`ed)`(Ta`Ra
b`eb) is a locally exact. The

numbern(D) of independent torsional invariants for a given
dimension is as follows:

D 2 4 6 8 10 12 14

n(D) 0 1 0 4 0 12 1

The instanton constructed here is easily generalized for
D58, where there are four NY forms~the wedge product is
implicitly assumed!,

N15N2,

N25~Ra
bR

b
a!N,

N354~TaR
a
be

b!~Tae
a!1~TaT

a!22~eaR
a
be

b!2,

N45TaR
a
bR

b
cT

c2eaR
a
bR

b
cR

c
de

d. ~32!

Of all these, only (TaT
a)25d@eaTaT

bTb# survives if the
space is assumed to be curvature-free. The integration over a
seven-spherex1

21•••1x8
25r 2 embedded onR8 can be eas-

ily performed using a frame formed by one radial one-form
(er) and seven orthonormal fields (ei), tangent toS7. The
ei ’s are generated using the canonical isomorphism between
R8 and the octonion algebra: multiplyinger by each of the
seven generators of the algebra, and seven orthonormal fields
tangent to the sphere are produced. The first one is

e152x2dx11x1dx22x4dx
31x3dx

42x6dx
51x5dx

6

2x8dx
71x7dx

8, ~33!

and the rest are similarly obtained. The integral is thus a
combinatorial factor times the volume of theS7 (p4/3).

In eight dimensions the integral ofN2 is not simply equal
to the difference of the Pontryagin classes of SO~9! and
SO~8!, as one could naively expect by analogy with the case
D54. The Pontryagin density of SO~9! is

Tr~F4!2
1

2
„Tr~F2!…25Tr~R4!2 1

2 „Tr~R
2!…2

1
4

l 4
@~2TaR

a
be

b!~Tae
a!

1~eaR
a
be

b!N#1
4

l 2
@eaR

a
bR

b
cR

c
de

d

1 1
2 Tr~R

2!N2TaR
a
bR

b
cT

c#. ~34!

The first two terms are the Pontryagin form of SO~8!, but the
terms that depend on the torsion vanish forRa

b50.

Note that a construction similar to the one for the three-
and seven-spheres cannot be repeated in any other dimension
because only the one-, three-, and seven-spheres admit a glo-
bally defined basis of vector fields@11#. In general, the maxi-
mum number of independent global vectors that can be de-
fined onSn21 is given by Radon’s formula@26#,

rn52c18d21, ~35!

wheren is written as

n5~odd integer!2c16d, ~36!

with c<3 andd positive integers. From this formula, it is
clear that for all odd-dimensional spheresrn>1, while for
even-dimensional spheres~oddn), rn50.

Thus, it is only in four dimensions that the NY class can
be computed in a curvature-free background.

B. Anomaly

In Sec. IV we argued that the anomaly could be made
finite if one were to rescale the tetrad as
em
a→ ẽm

a5( lM )21em
a . Two remarks are in order: First, it

should be stressed that this is the only rescaling that is
needed to yield a finite result. Second, the Lagrangian for the
tetrad field has not been discussed and, therefore, the re-
placemente→ ẽ is purely formal and can have no physical
consequences as long as its dynamics is not specified.

In our analysise is an external~classical! background
field. One could view the rescaling of the vierbein as an
invariance of the action, provided the Dirac field is suitably
rescaled as well. This transformation was also considered by
Nieh and Yan in@27#. However, in order for this invariance
of the action to be interpreted as a symmetry generated by
charges acting on the fields, one should include a scale-
invariant Lagrangian fore.

The vierbein has units of~mass!0 and is, therefore, not of
the same canonical dimension as the connection. Ife/ l is to
be regarded as part of a connection of SO~5!, the limit
M→` keepingl fixed could be interpreted as a way to turn
the SO~4!-invariant action~20! into that for a spinor mini-
mally coupled to an SO~5! connection@28#. In this case, the
chiral anomaly is then given byP4@SO(5)#, which is pre-
cisely Eq.~31!.

C. Index

The Atiyah-Singer index for the Dirac operator in the ab-
sence of torsion is given by the Pontryagin number. Obvi-
ously, asP is independent of the vierbein, its invariance
under continuous deformations of the geometry also allows
for continuous deformations of the local frames and, in par-
ticular, for the addition of torsion. A different issue is
whether the presence of torsion can affect the index of the
Dirac operator through these invariants.

In @20# it is shown that there is a torsional contribution to
the index although it is set equal to zero by the additional
requirement of curl-freeH torsion, and our result~31! agrees
with that conclusion. The expression of the anomaly~31!
indicates that if the index is calculated for an SO~5! connec-
tion, the result would reproduce our expression@28#.
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Note added. In the process of writing this article, we re-
ceived a draft by Obukhov, Mielke, Budczies, and Hehl@29#
where the instanton of Sec. III is reobtained in a somewhat
different analysis, and our result for the anomaly~29! is also
found in the heat kernel approach.
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