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Gauging N=2 supersymmetric nonlinear o models in the Atiyah-Ward space-time
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We build up a class oN=2 supersymmetric nonlinear models in anN=1 superspace based on the
Atiyah-Ward space-time d2+2)-signature metric. We also discuss the gauging of isometries of the associated
hyper-Kalerian target spaces and present the resulting gauge-covariant supersymmetric action functional.
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PACS numbgs): 04.50:+h, 11.10.Lm, 11.30.Pb

I. INTRODUCTION forming their gauging by means of the approach developed
in Ref.[15].

In the recent years much attention has been paid to the Our paper is organized as follows. In Sec. Il we describe
construction of new classical field models in the Atiyah-in a self-contained fashion all the necessary steps needed to
Ward space-time of2+2)—signature metri¢1]. As demon- build up the gaugedN=1 supersymmetricc model in
strated in Refs[2,3], this structure emerges in connection D=2+2 dimensionsa problem already addressed in Ref.
with a consistenN=2 superstring theory, whose underlying [11]) and state the essential notions on hypehi&ageom-
superconformal algebra requires a complex manifold as th&try which are crucial for th&l=2 extension of the follow-
relevant space-time background. ing section; Seq. lll is then devoted to thg studyNof 2

From the viewpoint of mathematics, the Atiyah-Ward SUP€rsymmetry in thél=1 superspace of Atiyah and Ward
space-time is also quite attractive when regarded as a foupd 10 the gauging of the hyper-Kiarian o model in the
dimensional arena in which one could introduce self-duaf°Mext of a certain Kalerian vector supermultiplet. I.n Sec.
Yang-Mills connections[4,5]. In fact, these objects are V we interpret our results and present our conclusions.

known to play a significant role as a field-theoretical tool in -
the Donaldson’s program on algebraic geomé¢€and, as Il. THE HYPER?SPEEEE?SE o MODEL IN
conjectured by Ward7], may be also of importance in the

classification of lower-dimensional integrable models. We begin the present investigation by focusing on the
In view of these facts, it seems also interesting to build upconstruction of gauget=1 supersymmetrier models in

and analyze supersymmetric Yang-Mills theories in thethe Atiyah-Ward space-time. The notation and conventions

Atiyah-Ward space-time. Indeed, such models were first confor a superspace with base space-time possessing a 2

sidered by Gatest al. in Refs.[9], where a superspace for- signature are the same as[ib0]. To build up the action

malism adapted to the+2 signature was introduced: the functional for a class of Kiaeriano models we will follow

so-calledN=1 superspace of Atiyah-Ward. Other related as-here the well-known method of Zuminf21] (see Refs.

pects in this domain were further investigated in Hap].  [22,23 for an extensive discussion on Kar geometry. We

Moreover, in Ref[ll], one was able to present a Supersym_intrOducel a set of CompleX chiral and antichiral Superfi6|d3,

metric nonlinearc model also in the Atiyah-Ward super- ®' and=' (i=1,... n), with their component field expan-

space and to couple its associated scalar superfields toS#ns written as

super-Yang-Mills gauge sector through the gauging of isom- S T o |

etries of the target manifolfil2—20. Clearly, the class of QI=A+i0¢y +16°F +i60"00,A

theories focused here should be necessarily understood in the 1907~ i 102720 Al

sense of the dimensional reduction framework used by Ward T20760"0, —36°6°0A, @

in [7]. In that scheme, one may eventually obtain new ex-

amples of integrable field models in two dimensidisse

also Ref[8]). . . +56%00+9,X' — 676°0018, ?)
This is the purpose of the present work: to give a detailed _ _ _ _

account on the construction and gauging of supersymmetriwhere A' and B' are complex scalar fields)' and’y' are

o models in the manner of Atiyah and Ward. Specifically, Majorana-Weyl spinors an&' and G' are complex scalar

we will be concerned here with hyper-Klarian o models  auxiliary fields. One has to observe that, differently to the

possessindN=2 supersymmetries, one of them being non-Minkowskian situation, the scalar superfields at hand do not

linerarly realized and, subsequently, with the issue of perchange their chirality properties under the complex conjuga-

tion operation:

='=B'+i6Y' +i6°G +i65+0d B!

*Electronic address: kitty@cbpfsul.cat.cbpf.br _
TElectronic address: mwerneck@cbpfsul.cat.cbpf.br The Grassmann coordinatésand  are Majorana-Wey! spinors.
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D,d'=D,®*=0, and
D EIZD E*izo (3) I,j:].,...,‘h andi,j=l,...,n.
with It is clear now that the particular form @f7; will entail a
number of consequences for the geometry of ouUnl&@an
D =d —i6%.: target manifold. The most general type oftier transforma-
©oe “ tion one can perform upon the potenti@iwhile keeping the
D,=d.—16%.,,, (4  action(5) invariant and the metri¢8) unchanged is
and K—K' =K+ 7(®)+ 7*(®*)+p(E)+p*(E*), (10)
D 5.}:_2“,#_& D,.,D }:{5 5'}=O with (7,%*) and (p,p*) standing for arbitrary chiral and
o aape «=p TRl antichiral functions, respectively. Hence, every isometry
D, ,&M]:[Bé,aﬂ]zo_ transformation of the target manifold will be a symmetry of

Eq. (5) provided its action orK writes into a form compat-

Now, one writes down a rather specific supersymmetric acible  with —Eq.  (10.  The  Kiling  vectors
tion to govern the dynamics of the scalar superfields. Wé ka(®),75(E), x5 (®*), 75 (E*)] are the generators of the

takée isometry groupg and satisfy the usual Lie algebraic rela-
tions:
_ 4,42 012 D i gyxi ki - o ) S S )
=2 aXPOTK@ SOOI, O g e i, s R
where the Kaler potentialK decomposes into two conju- TiaT{J,i_Ting:x,i:fabCT{:’ T;iT;’ji—T;iT;’%: alT )
gated pieces as below: 11

K(®LE,d* E*)=H(® E*)+H*(d*',E'). (6) wheref,C are the structure constants. A global isometry

) o transforms the target coordinates as
The pure scalar sector stemming from the projection of Eq.

(5) into component fields is given by q)'i:exp(LNK)q)i, o= exp(Ly . o) D,
4 d*K i *j =i =1 = =i

I'scaa™2 | d™X W%A B E'=explL,.) 2", E '=expl, «)E*, (12

22K _ . where\ is for a real parameter and, , (L, ,) is the Lie

+ W&MA*'&“BJ). (7)  derivative along the vector field N.k=\%d;

(N.7=\?%71,0;). The set of laws above may be related to

Upon dimensional reduction and proper field truncationsSOMe Kaler transformation such as EQ.0), the chiral and

| ecater @0OVE Will give rise to a sensiblghost-freg scalar ~ antichiral functions being given as

kinetic term in D=1+2 space-time dimension&ee Ref. —_—n —_

[10]). P ® 7a(P) = GH(P,E*) ky( @)+ Y,(P,E¥),
The possible target spaces associated with the attion

Eq. (5) do belong to a restricted class oh4limensional

Kahler manifolds, their Hermitian metric tensor appearing in

a four-block structure as

pa(E)=giH* (E,0*)7,(E)— Yi(E,®*),

PE(D*)=FH* (B,0* )kt (O* )+ YE(E, D),

0 0 0 g PE(EX)=dTH(®EN) T3 (X))~ Yo(®.E¥). (13
0 0 dij By differentiating the first and last equations in Eq$3)
9= 0 g7 O O [ (8  with respect to=* and®!, respectively, one gets
g9; 0 0 0 Hiikh=—Ya7,
with Hi =Yy, (14)
_ H _PH* _ PPH* which, in turn, allows one to write the identity
T = A T =P A TP = o
Kngi‘F ’TEIYai: 0. (15)
_ *H
9= yEw il (9) From the algebr&11), and from Eq.(13), we have

HiKltaKib]j_"HT_T?ajTglj?_:fabc( 77c+.0:)a (16)

2[4 d?0d%6= %[ d*xDD*D.D,,. which, by means of Eq(15), can be rewritten as
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Klamb)j+ TaPb)j= fab (et PS)- (17
From holomorphicity considerations, one may set
klaMo)j=fan’ MctiCap,

T2 Pb);=fab Pe —iCap, (18

which, in terms of the original variables, writes as

|Cov=zf d4xd20d2'5[ H(®,E*)+H*(d*,E)

eL_l ay* * =
+2Re —— VY5 (0% )

A

wherec,,= —Cp, are real constants. In the restricted case ofwith L=L,, .

a semisimple gauge group we may remove the,,’s by

As mentioned in the Introduction, it will be our aim here-

simply imposingc,,=0 (in other cases they represent an after to extend the construction leading Itg, in Eq. (27)

obstruction to the gauginfl5]). With this restriction, one
writes the variation on the Killing potential as

8Ya=sNP(kpYapi+ 7y Yay) = — NP °Ye,  (19)

where one has used Eqgd.1), (13), and (18). Now, from
Egs.(14) and(19), we obtain the complex potentil, :

ciwi PH
Ya=2f 4 kgTe 2pgEa1d (20
in which g°? is the inverse Killing metric.

To proceed to the covariantization of the acti@y with

respect to gauged isometries, i.e., the local version of the set
of field transformations(12), one introduces a couple

(A,T') of real chiral and antichiral superfield parameters, re
spectively[11]. The local isometry transformations are de-

fined as
d'=expLy. )P, E’'=explr.,)E. (21)

The gauge sector is built up from the prepotentiala real
superfield transforming such as

exp(Ly:.,)=expL,.)expLy.)exp(—Ly.,). (22

We modify then the actiont5) by replacing the antichiral
superfields E,E*) with the redefined quantities=,=*)
given below:

Ei=expLy.)E, E*i=expLy.«)E*. (23

Infinitesimally, one has the following isometry transforma-

tion laws for the superfields:
SO =A%, SO*=A3ET
SEXI=ATE (24)

SE'=A?7),

above to the more general task of analyzing the gauging of
N=2 supersymmetrier model in theN=1 superspace of
Atiyah and Ward. With this purpose in mind, one is enforced
here to consider the more restricted class of hypérktén

o models in order to introduce a second set of supersymme-
try field transformations, following in much the same way
what was envisaged already in the last decade by Bagger and
Witten [24]. The Kanlerian target space of our model can
also be taken as a hyper-Kar manifold as long as its met-
ric tensorgz; in Eq. (8) is Hermitian with respect to a
quaternionic structuréM7 337 33N The tensorgl X7

are covariantly constant and generate the2@lgebra:

J(ZX)JJE%/)K: _ 5xy5§+ nyZJ(ZZ)IC.

The complex structures are parametrized here as

It turns out, moreover, that the correct covariantization of -

Eq. (5) still demands the introduction of a complex-

conjugated pair of antichiral superfields, {*) transforming
as

Su=\p,(E),

Sv* =\%pi(E*). (25

isl 0 0 0
0 55;; 0 0
W=l o o —isb o | @8
I
0o 0 0 i
i
0 0
0 0
W= : (29
i
30
and
0 0 0 jji
0 o i3l o
J3I= . : (30)
o -y o0 o

—iJ;— 0 0 0

It is the very existence of such a quaternionic structure that
enables one to introduce a nonlinearly realized supersymme-

The isometry-covariant action functional is then taken to belry in the theory. In fact, we shall see in the next section that

I“’V:Zj d*x o676 H (@, 5% )+ H* (0% B) ~T-7*],
(26)

the action(27) can be conveniently supplemented with new
interaction terms which will render it invariant undir=2
supersymmetries, while preserving its covariance under the
gauged isometrie€24).
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lll. THE N=2 SUPERSYMMETRIC EXTENSION K o) =—p+)
a

aij

i Kle=-P{) 5 @D
In this section we analyze thd=2 supersymmetric ex- R ©

tension of our gauged model in the Atiyah-Ward super- mof ' =—PL L, e =Py, (39

space. By following a reasoning similar to that[a6], one

defines the second supersymmetry in terms of two sets ofith

complex functions of the target coordinates, the potentials 4 . () Pk

Q'=0/(®,E*) and Y'=Y(E,®*) (i=1,...n), the o = =2HRY*S o= - 2HTKY S

field transformation laws being given by

(=)
. ~ . . ~ . ﬁj): _ *oyxk . — = _ —~0Ok—
SDI=iD?(e), SD*I=iD2(e*), o = T2HQTL o= 2HRALE (39
SEI=iD2(¢Y"), SE*'=iD(Y*), (31  From Egs.(13) above and from the formulas expressing the
chiral and antichiral function&37) and(38), we derive some
where ¢ and € are real constant chiral and antichiral scalaruseful relations involving the Killing potentialé,(®,E*):
superfields, respectively, i.e.,

Doe=d,e=0, 5[;,5:(?#{:0, (32) ng)ﬂjvfi:_ZYaj:\Pgi)ZZYa,J?Y*j,i,

and, moreover,
- (v —ovr o p(H) . ov* -
D2e=D?{=0. (33) Poj Y a=2Y =P =—2Y 0%,

The on-shell closure of the algebra of transformations in Egs.

(31) imposes the following constraints on the potentials: P;?Q*j’i: —ZY;;:P;}= 2Y: ]Yj'?—’
ini:k *j1n+Qi']?_Y*j1n?:01 Y

-) .
S=-2Y, 00 (40

(
a,i

Y0 G+ Y04 =0, Py *i,=2Y, =P
a, | ’

_ _ . _ _ i
QLY ==0y, YL 70 =65, To obtain P{") and P{"), one observes that the complex
QT H=0 Yyl =0 functions

rj[k m=Y, rjifkt n] T Y
. , Ua=P, ) =P —2iY,+2iY} (42)
D?Q'=0, D?Y'=0, (34)

do satisfy the differential equations

with the lower indices standing for derivatives with respect

to the target coordinates. Moreover, by requiring the invari- (ai+inijo’! i )Ua=0, (42
ance of the actiott5) under Eqs(31), we arrive at the addi- ,
tional conditions upon the functiorf3' andY": (a;+iQ’§’aﬁUa=0, (43
Hii Q' 7 Hiz€' 7=0, H?ﬁ(ian_+ HE:Y',7=0, the complex conjugated? , obeying the complexified ana-
' . , . logues thereof. Actually, Eqg42) and (43) are specifying
Hin o' Je T Hii e 7=0, HLY' i+ Hi Y 7=0, the U,’s (U%’s) as holomorphic functiongantiholomorphic
_ _ _ _ functiong relatively to a noncanonical complex structure
Hi O f+Hi ' =0, Hi?‘j—Y',kar H?*TQYI'F 0, [15]. From the definition given in Eq41), one can write
39 U+U*=4(—iY+iY*) (44)

together with their complex-conjugated counterparts. At this
point, by means of a careful inspection of E(®4) and(35), an
one observes that the functiofds andY' are encompassing

in their structure all the important features of the hyper-

Kahlerian geometry{15,16. Indeed, this property can be Now, from the holomorphicity and the gauge transformation
made even more apparent if we introduce the identificationgf v _

U—U*=2(P7)=PH), (45)

J%:le’i! JT;:YJH_u ‘]TT: Q*Tlf [} ‘]|] :Y*jyi [} 6Ya: _)\bfabCYC’ (46)

(36) one arrives at

in the complex structure®9) and (30).

Furthermore, from the assumption of triholomorphicity of
the Killing vectors with respect to the quaternionic structure,gng
one can define the potential®{=P{")(®,E) and
PO)=p()(@* E*) such thatt{ )= (P{V)* and OPL ==\ oL, (48)

SPH ==\ fopPL 47
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where the gauge group was assumed to be semisimple, _
which implies the absence of obstructions in Eg&)—(48) ICOV=2f d*xd?6d?6
above. On the other hand, we have

H(®,BE*)+H*(®*,E)

1 ~
SPLI=\P(kPLT) i+ 7 PLT) ), (49 25T

e£_1 avx *x =
+2R z VaY* (@* 5)

1
4., 42 a\p\ /o :
which, by comparison with Eq47) and use of the first equa- - EJ d*Xd“0{gapWA W, — 4iS7F (D)

tions of Egs.(37) and(38), gives
1 — —_
EL@N ) - 1 [ dx T g

PL) =1 5 (kikl o'+ rrhw ). (50)
e e b —4iTG,(2)+GL(E)T}, (56)
Through complex conjugation, one also has ith
wi
_ L L ()
p. ):faDC(k:Ik;lw%T:IT;Jw]? _ (51 T=eVTe Vv, (57)

We now turn to the construction of tHé=2 supersym- and where we have made implicit use of the splittings in the
metric gauge sector in thl=1 superspace of Atiyah and functionsP{" andP{™) in Egs.(50) and (51):
Ward. In[25], Gates succeeded in writting down a set of
nonlinear supersymmetry transformations for a certain Pg+>=Fa(<I>)+Ga( ), P;’):F’;(@*HG;(E*).
N=2 gauge supermultiplet ifl=1 Minkowski superspace (58
(see also Ref[26]). We adopt a similar approach here: our
Kahlerian gauge supermultiplet consists of a chiral scalal
superfieldS and an antichiral scalar superfield together
with the vector superfield/ of the previous section. All the
three superfields are real and take values in the adjoint rep-
resentation of the isometry gauge grodpWe propose the
nonlinear supersymmetry transformations on gauge super-
fields as below:

I

Finally, it is straightforward to check the invariance of Eq.
(56) under Egs(52) and the(gauge-covariaftsupersymme-
try transformations for the matter superfields:

sDI=iD2[ Qi(D,2 )],

sb*1=iD2[ Q¥ (D%, e E)],

8S=iWD ¢, SE'=ID[ LY (e 2F @* E)],
ST=iWD e, SEX'=IDHLY* (e 25, E¥)], (59
e VoelV=ee VSdY (T, (59 M which
where the real scalar superfield parameterg)(are the ones L£=\V3 i, L=Vvar i—. (60)

[l =i
appearing in the supersymmetry transformati¢8tg for the 200 20E
matter sector; the gauge superfield strengths are defined to Pr?deed, one may impose the Wess-Zumino gauge condition,

i.e., V3=0, and to verify the invariance df.,, under the
nonlinear supersymmetry transformations at each order in
the prepotentiaV. It should be observed once more that
because of the presence of some gauge-algebraic obstruc-
tions [15,27), the supersymmetric gauging expressed in Eq.
(56) will only hold for semisimple gauge grougs in which

W,=iD%(eVD e "),
W.=iD2(e VD e"), (53

they are covariant under gauge transformations of the type

e“Vége‘\’:i(e“VAe‘V—F). (54) case one can always determine the potent2®, (50), and
(51).
One has also to consider gauge transformation laws for the
scalar gauge superfields: IV. CONCLUDING REMARKS
8,S=i[A,S], &,T=i[l',T]. (55) We have explicitly constructed a classif 2 supersym-

metric nonlinearc models coupled to a super-Yang-Mills
At this stage, we are ready to present the fully gaugedjauge sector in thel=1 superspace of Atiyah and Ward. In
N=2 supersymmetric nonlinear model in terms ofN=1 order to perform this gauge coupling, one makes use of a
superfields of the Atiyah-Ward superspace. As stated previgeneral formalism introduced by Huwk al. in [15], gauging
ously, this task is accomplished by suplementing the actiothe isometries of the associatéuyper-Kanler) target mani-
(27) with new interaction pieces such as to render the seconfbld. We observe then that, also in the Atiyah-Ward super-
supersymmetry, i.e., Eq§31) and(52), a further invariance space, it is possible to obtain the specific potentials needed
of the model[15]. Our main result is for the referred gauging of the hyper-Karian o model,
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namely, the Killing potential20) (which is complex here  mensions, following in much the same way what has been
and the so-called momentum ma(®) and(51). proposed in the recent literatuf28].

The gauge-invariant supersymmetetanodel obtained in
the previous section may have some interesting applications
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