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I. INTRODUCTION

In the recent years much attention has been paid to the
construction of new classical field models in the Atiyah-
Ward space-time of~212!–signature metric@1#. As demon-
strated in Refs.@2,3#, this structure emerges in connection
with a consistentN52 superstring theory, whose underlying
superconformal algebra requires a complex manifold as the
relevant space-time background.

From the viewpoint of mathematics, the Atiyah-Ward
space-time is also quite attractive when regarded as a four-
dimensional arena in which one could introduce self-dual
Yang-Mills connections@4,5#. In fact, these objects are
known to play a significant role as a field-theoretical tool in
the Donaldson’s program on algebraic geometry@6# and, as
conjectured by Ward@7#, may be also of importance in the
classification of lower-dimensional integrable models.

In view of these facts, it seems also interesting to build up
and analyze supersymmetric Yang-Mills theories in the
Atiyah-Ward space-time. Indeed, such models were first con-
sidered by Gateset al. in Refs.@9#, where a superspace for-
malism adapted to the 212 signature was introduced: the
so-calledN51 superspace of Atiyah-Ward. Other related as-
pects in this domain were further investigated in Ref.@10#.
Moreover, in Ref.@11#, one was able to present a supersym-
metric nonlinears model also in the Atiyah-Ward super-
space and to couple its associated scalar superfields to a
super-Yang-Mills gauge sector through the gauging of isom-
etries of the target manifold@12–20#. Clearly, the class of
theories focused here should be necessarily understood in the
sense of the dimensional reduction framework used by Ward
in @7#. In that scheme, one may eventually obtain new ex-
amples of integrable field models in two dimensions~see
also Ref.@8#!.

This is the purpose of the present work: to give a detailed
account on the construction and gauging of supersymmetric
s models in the manner of Atiyah and Ward. Specifically,
we will be concerned here with hyper-Ka¨hlerians models
possessingN52 supersymmetries, one of them being non-
linerarly realized and, subsequently, with the issue of per-

forming their gauging by means of the approach developed
in Ref. @15#.

Our paper is organized as follows. In Sec. II we describe
in a self-contained fashion all the necessary steps needed to
build up the gaugedN51 supersymmetrics model in
D5212 dimensions~a problem already addressed in Ref.
@11#! and state the essential notions on hyper-Ka¨hler geom-
etry which are crucial for theN52 extension of the follow-
ing section; Sec. III is then devoted to the study ofN52
supersymmetry in theN51 superspace of Atiyah and Ward
and to the gauging of the hyper-Ka¨hlerian s model in the
context of a certain Ka¨hlerian vector supermultiplet. In Sec.
IV we interpret our results and present our conclusions.

II. THE HYPER-KA¨ HLERIAN s MODEL IN
SUPERSPACE

We begin the present investigation by focusing on the
construction of gaugedN51 supersymmetrics models in
the Atiyah-Ward space-time. The notation and conventions
for a superspace with base space-time possessing a 212
signature are the same as in@10#. To build up the action
functional for a class of Ka¨hlerians models we will follow
here the well-known method of Zumino@21# ~see Refs.
@22,23# for an extensive discussion on Ka¨hler geometry!. We
introduce a set of complex chiral and antichiral superfields,
F i andJ i ( i51, . . . ,n!, with their component field expan-
sions written as1

F i5Ai1 iuc i1 iu2Fi1 i ũs̃mu]mA
i

1 1
2u2ũs̃m]mc i2 1

4u2ũ2hAi , ~1!

J i5Bi1 i ũ x̃ i1 i ũ2Gi1 iusmũ]mB
i

1 1
2 ũ2usm]mx̃ i2 1

4u2ũ2hBi , ~2!

whereAi and Bi are complex scalar fields,c i and x̃ i are
Majorana-Weyl spinors andFi andGi are complex scalar
auxiliary fields. One has to observe that, differently to the
Minkowskian situation, the scalar superfields at hand do not
change their chirality properties under the complex conjuga-
tion operation:
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D̃ ȧF i5D̃ ȧF* i50,

DaJ i5DaJ* i50, ~3!

with

Da5]a2 i ũ ȧ]aȧ ,

D̃ ȧ5 ]̃ ȧ2 iua]̃ȧa , ~4!

and

$Da ,D̃ ȧ%522is aȧ
m ]m , $Da ,Db%5$D̃ ȧ ,D̃ ḃ%50,

@Da ,]m#5@D̃ ȧ ,]m#50.

Now, one writes down a rather specific supersymmetric ac-
tion to govern the dynamics of the scalar superfields. We
take2

I52E d4xd2ud2ũK~F i ,J i ;F* i ,J* i !, ~5!

where the Ka¨hler potentialK decomposes into two conju-
gated pieces as below:

K~F i ,J i ;F* i ,J* i !5H~F i ,J* i !1H* ~F* i ,J i !. ~6!

The pure scalar sector stemming from the projection of Eq.
~5! into component fields is given by

I scalar52E d4xS ]2K

]Ai]B* j
]mA

i]mB* j

1
]2K

]A* i]Bj ]mA*
i]mBj D . ~7!

Upon dimensional reduction and proper field truncations,
I scalar above will give rise to a sensible~ghost-free! scalar
kinetic term in D5112 space-time dimensions~see Ref.
@10#!.

The possible target spaces associated with the actionI in
Eq. ~5! do belong to a restricted class of 4n-dimensional
Kähler manifolds, their Hermitian metric tensor appearing in
a four-block structure as

gIJ5S 0 0 0 gi j̄̂

0 0 gî j̄

0 g ī ĵ 0 0

gī̂ j 0 0 0
D , ~8!

with

gi j̄̂ 5
]2H

]F i]J* j
, gî j̄ 5

]2H*

]J i]F* j
, g ī ĵ5

]2H*

]F* i]J j ,

gī̂ j5
]2H

]J* i]F j , ~9!

and

I,J51, . . . ,4n and i , j51, . . . ,n.

It is clear now that the particular form ofgIJ will entail a
number of consequences for the geometry of our Ka¨hlerian
target manifold. The most general type of Ka¨hler transforma-
tion one can perform upon the potentialK while keeping the
action ~5! invariant and the metric~8! unchanged is

K→K85K1h~F!1h* ~F* !1r~J!1r* ~J* !, ~10!

with (h,h* ) and (r,r* ) standing for arbitrary chiral and
antichiral functions, respectively. Hence, every isometry
transformation of the target manifold will be a symmetry of
Eq. ~5! provided its action onK writes into a form compat-
ible with Eq. ~10!. The Killing vectors
@ka

i (F),ta
i (J),ka*

i(F* ),ta*
i(J* )# are the generators of the

isometry groupG and satisfy the usual Lie algebraic rela-
tions:

ka
i kb,i

j 2kb
i ka,i

j 5 f ab
ckc

j , ka*
ikb,i*

j2kb*
ika,i*

j5 f ab
ckc*

j ,

ta
i tb,i

j 2tb
i ta,i

j 5 f ab
ctc

j , ta*
itb,i*

j2tb*
ita,i*

j5 f ab
ctc*

j ,
~11!

where f ab
c are the structure constants. A global isometry

transforms the target coordinates as

F8 i5exp~Ll•k!F i , F8* i5exp~Ll•k* !F* i ,

J8 i5exp~Ll•t!J
i , J8* i5exp~Ll•t* !J* i , ~12!

wherel is for a real parameter andLl.k (Ll.t) is the Lie
derivative along the vector field l.k[laka

i ] i
(l.t[lata

i ] î ). The set of laws above may be related to
some Kähler transformation such as Eq.~10!, the chiral and
antichiral functions being given as

ha~F!5] iH~F,J* !ka
i ~F!1Ya~F,J* !,

ra~J!5] îH* ~J,F* !ta
i ~J!2Ya* ~J,F* !,

ha* ~F* !5] ī H* ~J,F* !ka*
i~F* !1Ya* ~J,F* !,

ra* ~J* !5] î̄ H~F,J* !ta*
i~J* !2Ya~F,J* !. ~13!

By differentiating the first and last equations in Eqs.~13!
with respect toJ* j andF j , respectively, one gets

Hi j̄̂ ka
i 52Ya j̄̂ ,

H ī̂ jta*
i5Yaj , ~14!

which, in turn, allows one to write the identity

ka
i Ybi1tb*

iYaī̂50. ~15!

From the algebra~11!, and from Eq.~13!, we have

Hik [a
j kb] j

i 1H ī̂ t [a*
jtb] j̄̂*̄

i5 f ab
c~hc1rc* !, ~16!

which, by means of Eq.~15!, can be rewritten as2*d4xd2ud2ũ[ 1
16*d

4xDaD̃ ȧD̃ ȧDa .
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k [a
j hb] j1t [a*

jrb] j* 5 f ab
c~hc1rc* !. ~17!

From holomorphicity considerations, one may set

k [a
j hb] j5 f ab

chc1 icab ,

t [a*
jrb] j* 5 f ab

crc*2 icab , ~18!

wherecab52cba are real constants. In the restricted case of
a semisimple gauge groupG, we may remove thecab’s by
simply imposingcab50 ~in other cases they represent an
obstruction to the gauging@15#!. With this restriction, one
writes the variation on the Killing potential as

dYa5
1
2lb~k [b

i Ya] i1t [b*
iYa] i !52lbf ab

cYc , ~19!

where one has used Eqs.~11!, ~13!, and ~18!. Now, from
Eqs.~14! and ~19!, we obtain the complex potentialYa :

Ya52 f ab
ckd

i tc*
j ]2H

]F i]J* j
gbd, ~20!

in which gbd is the inverse Killing metric.
To proceed to the covariantization of the action~5! with

respect to gauged isometries, i.e., the local version of the set
of field transformations~12!, one introduces a couple
(L,G) of real chiral and antichiral superfield parameters, re-
spectively@11#. The local isometry transformations are de-
fined as

F85exp~LL•k!F, J85exp~LG•t!J. ~21!

The gauge sector is built up from the prepotentialV, a real
superfield transforming such as

exp~LV8•t!5exp~LL•t!exp~LV•t!exp~2LG•t!. ~22!

We modify then the action~5! by replacing the antichiral
superfields (J,J* ) with the redefined quantities (J̃,J̃* )
given below:

J̃i[exp~LV•t!J
i , J̃* i[exp~LV•t* !J* i . ~23!

Infinitesimally, one has the following isometry transforma-
tion laws for the superfields:

dF i5Laka
i , dF* i5Laka*

i ,

dJ̃i5Lata
i , dJ̃* i5Lata*

i . ~24!

It turns out, moreover, that the correct covariantization of
Eq. ~5! still demands the introduction of a complex-
conjugated pair of antichiral superfields (y,y* ) transforming
as

dy5lara~J!,

dy*5lara* ~J* !. ~25!

The isometry-covariant action functional is then taken to be

I cov52E d4xd2ud2ũ@H~F,J̃* !1H* ~F* ,J̃!2 ỹ2 ỹ* #,

~26!

which, in terms of the original variables, writes as

I cov52E d4xd2ud2ũ HH~F,J* !1H* ~F* ,J!

12ReFeL21

L
VaYa* ~F* ,J!G J , ~27!

with L[LV.t .
As mentioned in the Introduction, it will be our aim here-

after to extend the construction leading toI cov in Eq. ~27!
above to the more general task of analyzing the gauging of
N52 supersymmetrics model in theN51 superspace of
Atiyah and Ward. With this purpose in mind, one is enforced
here to consider the more restricted class of hyper-Ka¨hlerian
s models in order to introduce a second set of supersymme-
try field transformations, following in much the same way
what was envisaged already in the last decade by Bagger and
Witten @24#. The Kählerian target space of ours model can
also be taken as a hyper-Ka¨hler manifold as long as its met-
ric tensor gIJ in Eq. ~8! is Hermitian with respect to a
quaternionic structure$JI

(1)J ,JI
(2)J ,JI

(3)J%. The tensorsJI
(x)J

are covariantly constant and generate the SU~2! algebra:

JI
~x!JJJ

~y!K52dxydI
K1exyzJI

~z!K.

The complex structures are parametrized here as

JI
~1!J5S id i

j 0 0 0

0 id î
ĵ 0 0

0 0 2 id ī
j̄ 0

0 0 0 2 id
ī̂

j̄̂

D , ~28!

JI
~2!J5S 0 0 0 Ji

j̄̂

0 0 Jî
j̄ 0

0 J
ī

ĵ 0 0

J
ī̂

j
0 0 0

D , ~29!

and

JI
~3!J5S 0 0 0 iJ i

j̄̂

0 0 iJ î
j̄ 0

0 2 iJ ī
ĵ 0 0

2 iJ
ī̂

j
0 0 0

D . ~30!

It is the very existence of such a quaternionic structure that
enables one to introduce a nonlinearly realized supersymme-
try in the theory. In fact, we shall see in the next section that
the action~27! can be conveniently supplemented with new
interaction terms which will render it invariant underN52
supersymmetries, while preserving its covariance under the
gauged isometries~24!.
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III. THE N52 SUPERSYMMETRIC EXTENSION

In this section we analyze theN52 supersymmetric ex-
tension of our gaugeds model in the Atiyah-Ward super-
space. By following a reasoning similar to that of@15#, one
defines the second supersymmetry in terms of two sets of
complex functions of the target coordinates, the potentials
V i[V i(F,J* ) and Y i[Y i(J,F* ) ( i51, . . . ,n), the
field transformation laws being given by

dF i5 iD̃ 2~eV i !, dF* i5 iD̃ 2~eV* i !,

dJ i5 iD 2~zY i !, dJ* i5 iD 2~zY* i !, ~31!

wherez and e are real constant chiral and antichiral scalar
superfields, respectively, i.e.,

Dae5]me50, D̃ ȧz5]mz50, ~32!

and, moreover,

D̃2e5D2z50. ~33!

The on-shell closure of the algebra of transformations in Eqs.
~31! imposes the following constraints on the potentials:

V i , î k̂̄ Y* j ,n1V i , j̄̂ Y* j ,n k̂̄50,

Y i , j̄ k̄V* j ,n̂1Y i , j̄ V* j ,n̂ k̄50,

V i , j̄̂ Y* j ,n52d n
i , Y i , j̄ V* j ,n̂52d n̂

î ,

V i , j [ k̂̄V
j , n̂̄]50, Y i , ĵ [ k̄Y

j , n̄ ]50,

D̃2V i50, D2Y i50, ~34!

with the lower indices standing for derivatives with respect
to the target coordinates. Moreover, by requiring the invari-
ance of the action~5! under Eqs.~31!, we arrive at the addi-
tional conditions upon the functionsV i andY i :

Hi j̄̂ V i , n̂̄1Hi n̂̄V i , j̄̂ 50, Hî j̄
* Y i , n̄1Hî n̄

* Y i , j̄ 50,

Hin̂̄ V
i , j̄̂ k̂̄ 1Hi j̄̂ k̂̄ V i , n̂̄50, Hı̂n̄

*Y i , j̄ k̄1Hî j̄ k̄
* Y i , n̄50,

Hi j̄̂ V i , n̂̄ k1Hi j̄̂ k̄V
i , n̂̄50, Hî j̄

* Y i , n̄ k̂1Hî j̄ k̂
* Y i , n̄50,

~35!

together with their complex-conjugated counterparts. At this
point, by means of a careful inspection of Eqs.~34! and~35!,
one observes that the functionsV i andY i are encompassing
in their structure all the important features of the hyper-
Kählerian geometry@15,16#. Indeed, this property can be
made even more apparent if we introduce the identifications

J
ī̂

j
5V j , ı̄̂, J ī

ĵ5Y j , ī , Jî
j̄ 5V* j̄ , î , Ji

j̄̄̂ 5Y* j , i ,
~36!

in the complex structures~29! and ~30!.
Furthermore, from the assumption of triholomorphicity of

the Killing vectors with respect to the quaternionic structure,
one can define the potentialsPa

(1)[Pa
(1)(F,J) and

Pa
(2)[Pa

(2)(F* ,J* ) such thatPa
(2)5(Pa

(1))* and

ka
i v i j

~1 !52Pa
~1 ! , j , ka*

iv ı̄ j̄
~2 !

52Pa
~2 ! , j̄ , ~37!

ta
î v î ĵ

~1 !52Pa
~1 ! , ĵ , ta* îv î ĵ

~0!
52Pa

~2 ! , j̄̂ , ~38!

with

v i j
~1 !522Hj k̂̄Y* k, i , v ī j̄

~2 !
522H j̄

* k̂Yk, î ,

v î ĵ
~1 !

522H
ĵ k̄
*V* k, î , v

î j̄̂

~2 !

522H j̄̂ kV
k, ī̂ . ~39!

From Eqs.~13! above and from the formulas expressing the
chiral and antichiral functions~37! and~38!, we derive some
useful relations involving the Killing potentialsYa(F,J* ):

Pa, j
~1 !V j , ī̂ 522Ya, ı̄̂
Pa,i

~1 !52Ya, j̄̂ Y* j , i ,

Pa, ĵ
~1 !

Y j , ı̄52Ya, î
* 
Pa, î

~1 !
522Y

a, j̄̂
*̄ V* j , î ,

Pa, ĵ
~2 !

V* j , î522Ya, î
* 
P

a, ī̂

~2 !
52Ya, ĵ

* Y j , ī̂ ,

P
a, j̄̂

~2 !
Y* j , i52Ya,i
P

a, ī̂

~2 !
522Ya, jV

j , ī̂ . ~40!

To obtain Pa
(1) and Pa

(2) , one observes that the complex
functions

Ua5Pa
~2 !2Pa

~1 !22iYa12iYa* ~41!

do satisfy the differential equations

~] i1 iY ,i*
j] j̄̂ !Ua50, ~42!

~] î1 iV
, î
* j] j̄ !Ua50, ~43!

the complex conjugatedUa* , obeying the complexified ana-
logues thereof. Actually, Eqs.~42! and ~43! are specifying
theUa’s (Ua* ’s! as holomorphic functions~antiholomorphic
functions! relatively to a noncanonical complex structure
@15#. From the definition given in Eq.~41!, one can write

U1U*54~2 iY1 iY* ! ~44!

and

U2U*52~P~2 !2P~1 !!. ~45!

Now, from the holomorphicity and the gauge transformation
of Ya ,

dYa52lbf ab
cYc , ~46!

one arrives at

dPa
~1 !52lbf ab

cPc
~1 ! ~47!

and

dPa
~2 !52lbf ab

cPc
~2 ! , ~48!
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where the gauge group was assumed to be semisimple,
which implies the absence of obstructions in Eqs.~46!–~48!
above. On the other hand, we have

dPa
~1 !5lb~kb

i Pa
~1 ! , i1tb

i Pa
~1 ! , î !, ~49!

which, by comparison with Eq.~47! and use of the first equa-
tions of Eqs.~37! and ~38!, gives

Pa
~1 !5 f a

bc~kc
i kb

j v j i
~1 !1tc

i tb
j v ĵ î

~1 !
!. ~50!

Through complex conjugation, one also has

Pa
~2 !5 f a

bc~kc*
ikb*

jv j̄ ī
~2 !

1tc*
itb*

jv
j̄̂ ī̂

~2 !
!. ~51!

We now turn to the construction of theN52 supersym-
metric gauge sector in theN51 superspace of Atiyah and
Ward. In @25#, Gates succeeded in writting down a set of
nonlinear supersymmetry transformations for a certain
N52 gauge supermultiplet inN51 Minkowski superspace
~see also Ref.@26#!. We adopt a similar approach here: our
Kählerian gauge supermultiplet consists of a chiral scalar
superfieldS and an antichiral scalar superfieldT, together
with the vector superfieldV of the previous section. All the
three superfields are real and take values in the adjoint rep-
resentation of the isometry gauge groupG. We propose the
nonlinear supersymmetry transformations on gauge super-
fields as below:

dS5 iWaDaz,

dT5 iW̃ȧD̃ ȧe,

e2 iVdeiV5ee2 iVSeiV2zT, ~52!

where the real scalar superfield parameters (e,z) are the ones
appearing in the supersymmetry transformations~31! for the
matter sector; the gauge superfield strengths are defined to be

Wa[ iD̃ 2~eiVDae
2 iV!,

W̃ȧ[ iD 2~e2 iVD̃ ȧe
iV!, ~53!

they are covariant under gauge transformations of the type

e2 iVdge
iV5 i ~e2 iVLeiV2G!. ~54!

One has also to consider gauge transformation laws for the
scalar gauge superfields:

dgS5 i @L,S#, dgT5 i @G,T#. ~55!

At this stage, we are ready to present the fully gauged
N52 supersymmetric nonlinears model in terms ofN51
superfields of the Atiyah-Ward superspace. As stated previ-
ously, this task is accomplished by suplementing the action
~27! with new interaction pieces such as to render the second
supersymmetry, i.e., Eqs.~31! and ~52!, a further invariance
of the model@15#. Our main result is

I cov52E d4xd2ud2ũHH~F,J* !1H* ~F* ,J!

12ReFeL̂21

L̂
VaYa* ~F* ,J!G2

1

2
SaT̃aJ

2
1

16E d4xd2u$gabW
aaWa

b24iSa@Fa~F!

1Fa* ~F* !#%2
1

16E d4xd2ũ$gabW̃
aȧW̃ȧ

b

24iTa@Ga~J!1Ga* ~J* !#%, ~56!

with

T̃[eiVTe2 iV, ~57!

and where we have made implicit use of the splittings in the
functionsPa

(1) andPa
(2) in Eqs.~50! and ~51!:

Pa
~1 !5Fa~F!1Ga~J!, Pa

~2 !5Fa* ~F* !1Ga* ~J* !.
~58!

Finally, it is straightforward to check the invariance of Eq.
~56! under Eqs.~52! and the~gauge-covariant! supersymme-
try transformations for the matter superfields:

dF i5 iD̃ 2@eV i~F,e2L̂*J* !#,

dF* i5 iD̃ 2@eV* i~F* ,e2L̂J!#,

dJ i5 iD 2@zY i~e22L*F* ,J!#,

dJ* i5 iD 2@zY* i~e22LF,J* !#, ~59!

in which

L5Vaka
i ]

]F i , L̂5Vata
i ]

]J i . ~60!

Indeed, one may impose the Wess-Zumino gauge condition,
i.e., V350, and to verify the invariance ofI cov under the
nonlinear supersymmetry transformations at each order in
the prepotentialV. It should be observed once more that
because of the presence of some gauge-algebraic obstruc-
tions @15,27#, the supersymmetric gauging expressed in Eq.
~56! will only hold for semisimple gauge groupsG, in which
case one can always determine the potentials~20!, ~50!, and
~51!.

IV. CONCLUDING REMARKS

We have explicitly constructed a class ofN52 supersym-
metric nonlinears models coupled to a super-Yang-Mills
gauge sector in theN51 superspace of Atiyah and Ward. In
order to perform this gauge coupling, one makes use of a
general formalism introduced by Hullet al. in @15#, gauging
the isometries of the associated~hyper-Kähler! target mani-
fold. We observe then that, also in the Atiyah-Ward super-
space, it is possible to obtain the specific potentials needed
for the referred gauging of the hyper-Ka¨hlerian s model,
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namely, the Killing potential~20! ~which is complex here!
and the so-called momentum maps~50! and ~51!.

The gauge-invariant supersymmetrics model obtained in
the previous section may have some interesting applications
in connection with the study of gauge dynamics of super-
symmetric gauge theories in lower dimensions. In fact, by
suppressing one time coordinate in the action~56!, one may
in principle arrive at new supersymmetric field models in
three Minkowskian dimensions. The latter type of theories
could then be regarded as an alternative scenario for check-
ing the consequences of the duality hypothesis of four di-

mensions, following in much the same way what has been
proposed in the recent literature@28#.
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