
Scalar wave falloff in asymptotically anti–de Sitter backgrounds

J. S. F. Chan
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

R. B. Mann
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

and Department of Physics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
~Received 13 December 1996!

Conformally invariant scalar waves in black hole spacetimes which are asymptotically anti–de Sitter space-
times are investigated. We consider both the (211)-dimensional black hole and (311)-dimensional
Schwarzschild–anti-de Sitter spacetime as backgrounds. Analytical and numerical methods show that the
waves decay exponentially in the (211)-dimensional black hole background. However, the falloff pattern of
the conformal scalar waves in the Schwarzschild–anti-de Sitter background is generally neither exponential
nor an inverse power rate, although the approximate falloff of the maximal peak is weakly exponential. We
discuss the implications of these results for mass inflation.@S0556-2821~97!02312-6#

PACS number~s!: 04.30.Nk, 04.20.Ha, 04.25.Dm, 04.70.2s

I. INTRODUCTION

It is well known that the maximally extended Reissner-
Nordström spacetime can be imagined as a collection of dif-
ferent asymptotically flat universes connected by different
charged black holes@1#. Except for the Schwarzschild solu-
tion, all the special solutions of the more general Kerr-
Newman class of spacetimes can have two horizons, the in-
ner and outer horizons. Nevertheless, gravitational theorists
find that these dual-horizon black holes are unphysical be-
cause causality can be violated inside the hole@2#. Moreover,
any radiation~either electromagnetic or gravitational in na-
ture! that goes into this kind of black hole will be indefinitely
blueshifted at the inner~or Cauchy! horizon @1#. This effect
has caused some to expect that this null hypersurface acts
like a barricade to other universes in maximally extended
spacetime.

This infinite blueshift phenomenon at the Cauchy horizon
was first discussed by Penrose in the late 1960s@3#. At that
time, people believed that any small energy perturbation on
these dual-horizon black holes would destroy the Cauchy
horizon because the perturbation is indefinitely magnified
there, causing an infinite spacetime curvature at the horizon.
Thus the null hypersurface would become a spacelike curva-
ture singularity and the gateway to other universes is sealed.
Both numerical and analytic approaches@4,5# suggest that
this null hypersurface is perturbatively unstable. However,
although singularities are found at the Cauchy horizon, they
are not spacetime curvature singularities at all. By taking the
diverging stress-energy tensor into account, Hiscock showed
that the perturbation only turns the horizon into a so-called
whimper singularity: All curvature scalars are finite but a
freely falling observer crossing the horizon measures an in-
finite energy density@6#. This kind of singularity is too mild
to seal off the passage to other universes, and so resolution of
the issue would necessitate a study that did not rely on per-
turbation theory.

Poisson and Israel made a breakthrough in this problem

by showing that the Cauchy horizon can turn into a scalar
spacetime curvature singularity@7#. Unlike Hiscock, who
considered a Reissner-Nordstro¨m black hole irradiated by a
flux of incoming radiation, Poisson and Israel imposed both
incoming and outgoing fluxes of radiation on a Reissner-
Nordström background. The outgoing flux, even if negligibly
small in quantity, makes the inner mass function of the black
hole inflate without bound at the Cauchy horizon. More pre-
cisely, the inner mass of the black hole diverges at a rate of
exp(kv)/vp near the Cauchy horizon. The factor 1/vp comes
from the decay rate of the scattered radiation tail@7–9#,
wherep.0 andv→` at the Cauchy horizon. Regardless of
the values ofp and the surface gravityk.0, the mass pa-
rameter always grows, although the exponential rate is at-
tenuated by the decaying effect of the radiation tail. This
phenomenon is calledmass inflationand is expected to seal
the inner horizon because the diverging mass parameter in-
duces a scalar curvature singularity at the horizon. This result
implies that it is inappropriate to maximally extend any dual-
horizon black holes beyond the Cauchy horizon because
spacetime is unstable against energy perturbations there. It is
generally believed that such perturbations~in the form of
gravitational radiation! always exist in more realistic black
holes which do not have perfect spherical or axial symmetry.
These are scattered around the black hole, forming incoming
and outgoing fluxes, but they will eventually decay away as
a tail of late time radiation@9#. In this way, mass inflation is
expected to prevent violation of causality.

In addition to the Reissner-Nordstro¨m black hole, the
mass inflation phenomenon has been found to take place in
other black hole configurations@10–16#. These configura-
tions are in 111, 211, and 311 dimensions as well as in
asymptotically nonflat spacetimes. All of these calculations
assumed the inverse power-law decay for late time radiation
as an ansatz to obtain the inflating mass function near the
Cauchy horizon. Since the mass parameter is attenuated by
the decaying effect of the radiation tail, it is important to
understand the behavior of the radiative tail in a spacetime
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other than Reissner-Nordstro¨m class. Mellor and Moss have
shown that the radiation from perturbations in a de Sitter
background exponentially decreases@17#. Strictly speaking
this result has nothing to do with late time falloff because the
global geometry extends beyond the cosmological horizon.
However, it indicates that the radiative falloff behavior is
sensitive to the presence of the cosmological constant. More
recent work by Chinget al. @18# demonstrated that under
certain circumstances the tail can be something other than
the simple inverse power law.

In this paper we will study radiative falloff in spacetimes
that are not asymptotically flat. We find that the inverse
power law @9# is not universally true and that in some as-
ymptotically anti–de Sitter spacetimes the late time tail de-
cays exponentially. The asymptotically anti–de Sitter back-
grounds we will study are the (211)-dimensional black hole
@19# and Schwarzschild–anti-de Sitter spacetime.

The outline of our paper is as follows. In Sec. II we re-
view the structure of the (D11)-dimensional scalar wave
equation in spherically symmetric spacetimes that are not
necessarily asymptotically flat and discuss our numerical ap-
proach towards solving it. In Sec. III we verify that our nu-
merical approach correctly reproduces the power-law falloff
in asymptotically flat spacetimes, and we cross-check this
analytically. In the next two sections we study the falloff
behavior in the (211)-dimensional@or three-dimensional
~3D!# black hole background and in (311)-dimensional
Schwarzschild–anti-de Sitter spacetime. Concluding remarks
and an appendix round out our work.

II. WAVE EQUATION IN D11 DIMENSIONS

We shall study scalar waves in different dimensions, since
wave equations for higher-spin fields are of a qualitatively
similar structure @20#. The ~conformally coupled! scalar
wave equation inD11 dimensions is

¹2C5jRC, ~1!

where j is an arbitrary constant. Ifj5(D21)/(4D), this
equation is conformally invariant. We simplify the problem
by considering only static, spherically symmetric
(D11)-dimensional spacetimes with metric

ds252N~r !dt21
dr2

N~r !
1r 2dVD21

2 , ~2!

whereN(r ) is the lapse function anddVD21
2 is the metric of

a (D21)-dimensional unit sphere. We assume

C5r ~12D !/2c~ t,r !Yl
D . ~3!

The functionsYl
D are theD-dimensional spherical harmonics

which satisfy the equation

L̂2@Yl
D#52 l ~ l1D22!Yl

D . ~4!

The product2 l ( l1D22) is the eigenvalue of the operator
L̂2 which is the angular derivative operator. It is straightfor-
ward to show that Eq.~1! gives

2] ttc~ t,r !1N~r !] r@N~r !] rc~ t,r !#2N~r !Ve~r !c~ t,r !

50. ~5!

The functionVe(r ) is defined as

Ve~r ![jR1
D21

2r

d

dr
N~r !1

~D21!~D23!

4r 2
@N~r !21#

1
~2l1D23!~2l1D21!

4r 2
. ~6!

One can rewrite the wave equation~5! as

2] ttc~ t,r !1N~r !L@c~ t,r !#50, ~7!

with the help of a spatial differential operator

L[] r@N~r !] r #2Ve~r !. ~8!

Alternatively, if we introduce

x[E dr

N~r !
, ~9!

then Eq.~5! can be written as

] ttc„t,r ~x!…2]xxc„t,r ~x!…1V„r ~x!…c„t,r ~x!…50
~10!

or as

]uvc~u,v !52 1
4 N„r ~u,v !…Ve„r ~u,v !…c~u,v ! ~11!

using null coordinatesu5t2x and v5t1x. The function
V(r ) @defined asV(r )[N(r )Ve(r )# plays the role of a po-
tential barrier which is induced from the background space-
time geometry. Although the potential when written in terms
of the tortoise coordinatex can be very complicated, Eq.~10!
has the familiar form of a potential scattering problem.

Equation~10! can be integrated numerically in a straight-
forward fashion by using the finite difference method. First
of all the D’Alembert operator] tt2]xx can be discretized as

c~ t2Dt,x!22c~ t,x!1c~ t1Dt,x!

Dt2

2
c~ t,x2Dx!22c~ t,x!1c~ t,x1Dx!

Dx2

1O~Dt2!1O~Dx2! ~12!

using Taylor’s theorem. In order to formulate a well-posed
Cauchy problem we need to include the initial conditions,
which for simplicity we choose to be

c~ t50,x!50 and ] tc~ t50,x!5u~x!. ~13!

Because the fieldc is initially zero, its subsequent evolution
is solely the result of the initial impulse of the field] tc.
Discretizing the second condition in Eqs.~13! yields

55 7547SCALAR WAVE FALLOFF IN ASYMPTOTICALLY . . .



c~Dt,x!2c~2Dt,x!

2Dt
5u~x!1O~Dt2!, ~14!

where we employ a Gaussian distribution with finite support
for u(x). We further define

c~mDt,nDx![cm,n , ~15!

V~nDx![Vn , ~16!

u~nDx![un , ~17!

where the mesh size has to satisfy the conditionDx.Dt so
that the numerical rate of propagation of data is greater than
its analytical counterpart. The discretization of the Cauchy
problem above then implies

c21,n52Dtun , ~18!

c0,n50, ~19!

cm11,n5F222
Dt2

Dx2
2Dt2VnGcm,n2cm21,n

1
Dt2

Dx2
@cm,n211cm,n11#. ~20!

As a result, we can follow the evolution of the fieldc start-
ing from the initial data given at timet50.

In the case where the black hole geometry is asymptoti-
cally flat, the tortoise coordinatex goes from negative infin-
ity to positive infinity. Therefore our Cauchy problem is
similar to the infinite string problem in which the initial data
propagate towards left and right indefinitely. The initial data
no longer enjoy this privilege when the background is an
asymptotically anti–de Sitter background because the tor-
toise coordinate goes from minus infinity to zero only. In
other words, the right-propagating data cannot travel in this
direction forever. Analogous to the semi-infinite vibrating
string problem, boundary conditions at spatial infinity~i.e.,

FIG. 1. The decay of a scalar wave in a Schwarzschild back-
ground. Prior tot5200 the decay is accompanied by a ‘‘ringing’’
of the quasinormal modes, after which the falloff rate is that of an
inverse power law.

FIG. 2. Potential barrier for the Schwarzschild background.

FIG. 3. Exponential decrease on the left side of the barrier in
V(x).

FIG. 4. Inverse power decrease on the right side of the barrier of
V(x).

7548 55J. S. F. CHAN AND R. B. MANN



x50) are needed in the asymptotically anti–de Sitter back-
ground in order to formulate the problem appropriately. Two
types of boundary conditions that are widely used in anti–de
Sitter backgrounds are the Dirichlet and Neumann conditions
@21#. In our case, the former reads

c~ t,x50!50 and ]xc~ t,x50!51, ~21!

while the latter is simply

c~ t,x50!51 and ]xc~ t,x50!50. ~22!

We shall consider employing both of these boundary condi-
tions at spatial infinity for our numerical computations when-
ever the background geometry is an asymptotically anti–de
Sitter background.

III. ASYMPTOTICALLY FLAT BACKGROUNDS

In this section we will review the behavior of radiative
falloff in asymptotically flat background spacetimes@9#. We
will present the results of the numerical calculation first.

Figure 1 shows a sample inverse power decay of a scalar
wave in the Schwarzschild background spacetime of mass
M . We solve the wave equation~10! numerically using the
scheme discussed in the previous section. The compact ini-
tial Gaussian impulse is centered at a distancer510M ~or
x512.76M ) and for simplicity we choose thel51 spherical
harmonic. Figure 1 shows how the magnitude of the scalar
field c at a distancer520M ~i.e., x524.40M ) evolves. Us-
ing linear regression, we find that the slope of the straight
line on the graph is25.026, in agreement with the analytic
prediction of an inverse power-law falloff with exponent
2l13 @9#.

Figures 2–4 show the same potential barrierV(x) that is
responsible for this falloff behavior. Figure 3 shows an ex-
ponential decrease of the left side of the potential function;
this is a result of the fact that the event horizon is located at
x52`. On the other hand, the power-law decrease on the
right side ofV(x) shown in Fig. 4 is a direct consequence of

the use of an asymptotically flat background. If we compare
Figs. 2–4 with Figs. 5–7, which represent the potential func-
tion in Schwarzschild–de Sitter~SdS! spacetime, we find
that the right side ofV(x) has different decaying behavior
even though the overall appearance ofV(x) on the linear
graph is very similar. It is this difference that distinguishes
the falloff behavior in the two backgrounds.

Now let us consider a scalar wave in an asymptotically
flat (D11)-dimensional background. For the remainder of
this section we will restrict our attention to the case where
the number of spatial dimensionsD is odd. The motivation
for this may be traced back to Huygen’s principle, which
implies that in even spatial dimensions the scalar wave obey-
ing the equation¹2C50 always develops a tail, regardless
of whether or not the asymptotically flat background is
sourceless. Consequently identification of the tail part of the
wave that is due to solely to backscattering becomes quite
problematic whenD is even.

Inspired by the work of Chinget al. @18,22#, we consider

FIG. 5. Potential barrier for the Schwarzschild–de Sitter back-
ground.

FIG. 6. Exponential decreasing nature on the left side ofV(x) in
the SdS background.

FIG. 7. Exponential decrease of the right side ofV(x) in the
SdS background.
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a spherically symmetric static metric of the form~2! with
lapse function

N~r !512m
~ lnur u!b

r a . ~23!

The constantsa andb are integers, whereb>0 but a.0.
The other constantm is a real number. When we have
a51, b50, andD53, this becomes a Schwarzschild back-
ground of massm/2. Once we have the lapse function, we
can compute the potential function

Ve~r !5
~2l1D23!~2l1D21!

4r 2
1m

4j~D212a!~D222a!2~D21!~D2322a!

4

~ lnur u!b

r a12

1mb
2j~2D2322a!2D11

2

~ lnur u!b21

r a12 1mb~b21!j
~ lnur u!b22

r a12 ~24!

from Eq. ~6!.
We first find the static solutioncS(r ) of wave equation

~7!, by obtaining the solution of the equationL@cS(r )#50.
It is straightforward to show thatcS(r ) has the form

cS~r !5r2g(
j50

`
aj~r !

r ja
1r g11(

j50

`
cj~r !

r ja
, ~25!

whereg[ l1(D23)/2. Notice thatg is an integer when the
spatial dimensionD is odd. Except whenD51 this integer
is always positive. Hence it is the first sum of the solution
that is physically relevant since it vanishes for larger , and
we choose this as the static solution. For the remainder of
this section, we assume thatD>3 so that this choice of
cS(r ) is valid. The coefficientsa0(r ) andc0(r ) are arbitrary
constants but the other coefficients are all polynomial in
lnuru. The generating equations foraj (r ) andcj (r ) are given
in the Appendix.

We follow the approach in Refs.@9,23# and let

c I5(
i50

`

Bi~r !@g~2 i !~u!1~21! i f ~2 i !~v !# ~26!

be the form of the initial wave, i.e., the wave emitted by a
star at the onset of gravitational collapse. In other words, this
is the time whent!r . The functionsg(u) and f (v) are as
yet unknown. The termg(2 i )(u) representsi integrations of
the functiong(u) with respect tou; similarly for f (2 i )(v).
Using Eq.~26!, Eq. ~11! becomes

05
1

2
N~r !

d

dr
B0~r !@g~1!~u!2 f ~1!~v !#

2
1

4
N~r !(

i50

` HL@Bi~r !#22
d

dr
Bi11~r !J

3@g~2 i !~u!1~21! i f ~2 i !~v !#. ~27!

This equation has a set of solutions

B0~r !51, ~28!

Bi11~r !5
1

2
N~r !

d

dr
Bi~r !2

1

2E Ve~r !Bi~r !dr,

i50,1,2,. . . , ~29!

where we have setB0(r )5 const51 without loss of gener-
ality. The pair of equations above allows us to generate
Bi(r ) hierarchically in a straightforward manner.

We can split eachBi(r ) into two parts, denoted by
Bi
P(r ) and Bi

T(r ). Bi
P(r ) is defined as them-independent

portion ofBi(r ), while Bi
T(r ) is the rest, which ism depen-

dent. Physically, the partBi
P(r ) represents the wave on the

light cone because it is the part that would be generated if the
background were flat (m50). Price referred to this part as
the primary wave which depends only on the mode of the
spherical harmonics. The other partBi

T(r ) is called the tail of
the wave because it is created by the presence of the space-
time curvature and is off the light cone due to scattering.
Given Eqs.~28! and~29!, one can show that the primary part
of Bi(r ) is simply

Bi
P~r !5

G~g111 i !

2i i !G~g112 i !r i
. ~30!

When D is odd, g is an integer and the sequence
$Bi

P(r )% i50 truncates. However, ifD is even, the sequence
does not terminate and the primary part of the initial wave
c I has infinitely many terms. Indeed, when this is the case, it
is inappropriate to callBi

P(r ) the primary part because there
are tails present. The approach breaks down because the pri-
mary and tail parts of the wave become indistinguishable.
This is the reason we restrict ourselves to oddD in this
section as mentioned earlier.

Let us now consider the tail part ofBi(r ). Unlike the
primary part,Bi

T(r ) has no simple solution. Fortunately one
can always generateBi(r ) recursively. Note thatBi

T(r ) is of
orderO„(lnuru)b/ri1a

….
Sinceg is an integer in odd spatial dimensions, it is con-

venient to define the functionsG(u) andF(v) as

G~u!5g~2g!~u! and F~v !5 f ~2g!~v !, ~31!

such that the initial wave can be expressed as
c I5(Bi(r )TI

g2 i(u,v), where

TI
g2 i~u,v ![G~g2 i !~u!1~21! iF ~g2 i !~v !. ~32!
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When the background is flat (m50), only the firstg11
terms ofBi

P(r ) survive. We expect that any outgoing radia-
tion will propagate to spatial infinity without any scattering
in a flat background. Therefore we must have

F ~g!~v !5F ~g21!~v !5•••5F ~1!~v !5F ~0!~v !50 ~33!

becauseF(v) represents the scattered infalling radiation and
theBi

P(r ) are nonzero only for 0< i<g. In other words, we
insist thatF(v)50.

For concreteness, we suppose the scalar wave starts leav-
ing the star at retarded timeu5U0; that is to say, the scalar
field is zero beforeu5U0. Continuity then implies

G~g!~U0!5G~g21!~U0!5•••5G~1!~U0!5G~0!~U0!50,
~34!

G~21!~u!5E
U0

u

G~0!~z !dz,

G~22!~u!5E
U0

u

G~21!~z !dz, . . . . ~35!

We also assume that there is essentially no emission from the
star afteru5U1.U0 ~due to gravitational red shift!. When
the star possesses no initial static moment at the onset of
collapse, this cutoff condition is translated into

G~g!~u!5G~g21!~u!5•••5G~1!~u!5G~0!~u!50,

;u>U1.U0 , ~36!

because only the termsG(u) to G(g)(u) which represent the
primary wave correspond to the emission from the star. This
condition implies

G~21!~u!5E
U0

u

G~0!~z !dz5E
U0

U1
G~0!~z !dz5const,

;u>U1 . ~37!

Therefore, if there is no static moment beforeu5U0, the
scalar wave after timeu5U1 is

cu>U1
5 (

i5g11

`

Bi~r !TI
g2 i~u,v !, ~38!

whereTI
21(u,v) is only a constant andBi(r )5Bi

T(r ) is of
orderO„(lnuru)b/ri1a

…. So the first term of this solution which
is time independent is of orderO„(lnuru)b/rg1a11

…. Physi-
cally, this says the tail of the perturbation persists after time
u5U1. The primary part of the wave has been ‘‘washed
out’’ by the gravitational redshift beforeu5U1.

The situation is more complicated if the star carries a
static moment at the onset of the collapse because the static
wavecS(r ) can also be divided into primary and tail parts.
In this case, we superimposecS(r ) of Eq. ~25! andc I(r ) of
Eq. ~26! together to form a new initial scalar wave. We also
suppose that only the tail of the perturbation persists after the
retarded timeu5U1 @9#. For the superimposed initial wave
this cutoff condition requires

G~0!~u!52
2gg!

~2g!!
, ;u>U1>U0 , ~39!

which yields

G~g!~u!5G~g21!~u!5•••5G~1!~u!50. ~40!

The restriction onG(u) above ensures that the primary part
of Eq. ~26! can be canceled by them-independent part of Eq.
~25! properly after timeU1, leaving the combinedc I to be
m dependent only afterU1. As a result, the wave with initial
static moment will become

cu>U1
5
1

r g(
j51

`
aj~r !

r ja
1(

i5g

`

Bi
T~r !TI

g2 i~u,v !. ~41!

One can show that the first sum in the equation above is of
order O„(lnuru)b/rg1a

… because the coefficient function
a1(r ) is a polynomial in lnuru with degreeb. In the second
sum, the termTI

0(u,v) is a constant which equals to
G(u), andBg

T(r ) is of orderO„(lnuru)b/rg1a
…. Therefore, in-

stead of having a time-independent part of order
O„(lnuru)b/rg1a11

…, the wave with initial static moment has
an orderO((lnuru)b/rg1a) only.

Now we turn our attention to the scalar wave at late time.
By late time, we meant@r . For the late time wavecL , we
introduce another ansatz

cL5(
i50

`

Ci~r !TL
i ~u,v !,

TL
i ~u,v ![I ~ i !~u!1~21! iH ~ i !~v !. ~42!

By substitutingc5cL , Eq. ~11! becomes

1

4
N~r !L@C0~r !#TL

0~u,v !

1
1

4
N~r !(

i50

` HL@Ci11~r !#22
d

dr
Ci~r !J

3TL
i11~u,v !50. ~43!

This equation has another set of solutions

L@C0~r !#50, ~44!

L@Ci11~r !#52
d

dr
Ci~r !, i50,1,2, . . . . ~45!

Unlike the case for the initial wavec I @for which the func-
tions Bi(r ) can be calculated recursively using straightfor-
ward differentiation and integration#, recursive generation of
the functionsCi(r ) involves inverting the differential opera-
tor L. The zero order equation has a solution

C0~r !5r g11(
j50

`
cj~r !

r ja
. ~46!

The coefficient functionscj (r ) are those in Eq.~25!. They
can be calculated by using the generating equations in the
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Appendix. The other inhomogeneous differential equation
~45! has a solution of the form

Ci~r !5r g111 i(
j50

` cj
i ~r !

r ja
, ~47!

where i50,1,2, . . . . When i50, it is understood that
cj
0(r )5cj (r ). The coefficientscj

i (r ) are also given in the
Appendix. Since each coefficientc0

i (r ) is a constant instead
of a polynomial in lnuru, we can estimate the order of the late
time wavecL as

cL5(
i50

`

O~r g111 i !TL
i~u,v !. ~48!

Finally we match the late time solution to the initial solu-
tion at some transient period whereu, v, and r are of the
same order. As the background is asymptotically flat, the
tortoise coordinatex must have an order similar to that of
r in this transient region. That is to say, the orders ofr and
t are the same. The initial wavecu>U1

in this period be-
comes

cu>U1

5OS ~ lnur u!b

r g1a11Dwithout an initial static moment,

cu>U1

5OS ~ lnur u!b

r g1a D with an initial static moment.

In order to have consistent orders in the transient period, we
must have

TL
0~ t,t !;OS ~ lnutu!b

t2g121aD ~49!

if the star has no initial static moment, while the order of
TL

0 must be

TL
0~ t,t !5OS ~ lnutu!b

t2g111aD ~50!

if the star has a static moment at the onset of collapse. In
other words, Eqs.~49! and ~50! give the falloff behavior of
the wave at late time. The inverse power falloff behavior
modified by a logarithmic term was first noted by Ching
et al. @22#. For a Schwarzschild background, we setD53,
a51, andb50 and haveg5 l , yielding the familiar power-
law decay rate@9,23#.

IV. 3D BLACK HOLE BACKGROUND

The (211)-dimensional black hole spacetime obtained
by Banados, Teitelboim, and Zanelli@19# is a spacetime
which satisfies the vacuum Einstein equations with a nega-
tive cosmological constant (L,0). Its metric is

ds252N~r !dt21
dr2

N~r !
1r 2S 2

J

2r 2
dt1df D 2, ~51!

N~r !5uLur 22M1
J2

4r 2
, ~52!

and is actually anti–de Sitter spacetime with identifications.
The constantM.0 is the quasilocal mass of the black hole
and J is the angular momentum of the hole@24#. For our
purposes we shall regard the above metric as a spacetime
which is an asymptotically anti–de Sitter spacetime.

WhenJ50, the wave equation~1! gives Eq.~10! with

Ve~r !5
3uLu
4

~128j!1
M14l 2

4r 2
. ~53!

In this case, the tortoise coordinatex is given by

x[E dr

N~r !
5

1

2AuLuM
lnUAuLur2AM

AuLur1AMU . ~54!

As r goes fromAM /uLu to infinity, the tortoise coordinate
has a range (2`,0). Thus we can writer in terms ofx as

r5AM

uLu
11exp~2AuLuMx!

12exp~2AuLuMx!
. ~55!

For conformal wave in 211 dimensions, the parameterj
equals 1/8 and the potential barrierV becomes

V~x!5V0

exp~2lx!

@11exp~2lx!#2
, ~56!

where, for convenience, we have defined

V0[uLu~M14l 2!.0 and l[AuLuM.0. ~57!

The procedure for finding a solution to the conformal sca-
lar wave equation is as follows. We first write down the
representation of the solutionc in terms of Green’s func-
tions. The rest of the problem then reduces to that of looking
for the correct Green’s function. We will Fourier transform
from the time domain to the frequency domain and obtain
the Green’s function in frequency space. Once we have the
Green’s function in frequency domain, an inverse Fourier
transformation will yield the solutionc(t,x). A case when
JÞ0 will be studied as well.

We first assume that there exists a Green’s function

G~x,j;t2t!5G~j,x;t2t!, ~58!

which is zero whent,t. We define an operatorD as

D5] tt2]xx1V~x!, ~59!

such that the Green’s function with respect to this operator
has the property

DG~x,j;t2t!5@] tt2]xx1V~x!#G~x,j;t2t!

5d~ t2t!d~x2j!. ~60!

The inner product betweenDc(t,x) andG(x,j;t2t) gives

7552 55J. S. F. CHAN AND R. B. MANN



c~ t,x!5E
2`

0

@G~x,j;t !] tc~0,j!1c~0,j!] tG~x,j;t !#dj

1E
0

`

@G~x,j;t2t!]jc~t,j!

2c~t,j!]jG~x,j;t2t!#j52`
j50 dt. ~61!

As a result, we have changed the question from looking for
c(t,x) to searching for an appropriate Green’s function.

We now carry out a Fourier transformation and define

G̃~x,j;v!5E
2`

`

G~x,j;t !exp~ ivt !dt. ~62!

Therefore Eq.~60! becomes

D̃G̃~x,j;v!5@2v22]xx1V~x!#G̃~x,j;v!5d~x2j!
~63!

if the Green’s functionG(x,j;t) satisfies the conditions

lim
t→`

G~x,j;t !5 lim
t→`

] tG~x,j;t !50. ~64!

On physical grounds these assumptions are reasonable be-
cause any localized quantity is expected to be dispersed
throughout the space by means of wave propagation. Math-
ematically, these assumptions are consistent with the Fourier
transformability of the functionG(x,j;t) which must be ab-
solutely integrable overR in order forG̃(x,j;v) to be well
defined. The Green’s function in frequency space can be rep-
resented as

G̃~x,j;v!55
f ~j;v!g~x;v!

W~v;g, f !
if j,x,

f ~x;v!g~j;v!

W~v;g, f !
if x,j,

~65!

where the functionW(v;g, f ) is the Wronskian of two lin-
early independent functionsf (x;v) andg(x;v), that is,

W~v;g, f !5g~x;v!]xf ~x;v!2 f ~x;v!]xg~x;v!. ~66!

The functionsf (x;v) andg(x;v) are two independent solu-
tions of the equations

D̃ f ~x;v!5D̃g~x;v!50, ~67!

so thatW(v;g, f ) is independent ofx.
Let c̃(x;v) be the Fourier transformation of the solution

c(t,x). We impose boundary conditions on the functions
f (x;v) andg(x;v) so that

f ~x;v!}c̃~x;v! and ]xf ~x;v!}]xc̃~x;v! ~68!

at the pointx→2`. At the other end (x50) we insist that

g~x;v!}c̃~x;v! and ]xg~x;v!}]xc̃~x;v!. ~69!

In Eq. ~61!, after we have used the inverse Fourier transfor-
mation and interchanged the integrals with respect todv and
dt, the representation ofc(t,x) simply becomes

c~ t,x!5E
2`

0

@G~x,j;t !] tc~0,j!1c~0,j!] tG~x,j;t !#dj.

~70!

A. Exact solution for static 3D black hole potential

We will obtain the exact solution for the scalar wavec
corresponding to the potential barrier~56! in a static 3D
black hole background. This entails finding the solution of
the differential equationD̃h(x;v)50. This equation has two
solutions@25#: namely,

h6~x;v!5exp~6 ivx!F„2n,11n;16m;z~x!…, ~71!

z~x!5
exp~2lx!

11exp~2lx!
, ~72!

m5 i
v

l
, ~73!

n52
1

2
1 i

l

AM
, ~74!

where F is the hypergeometric function. Becausex goes
from minus infinity to zero,z has a range of (0,1/2) which
yields absolute convergence to the hypergeometric function
@26#. At the boundaryx→2` ~the event horizon of the 3D
black hole! we employ the condition

f ~x;v!5exp~2 ivx!, x→2`, ~75!

as usual@18#. Since this spacetime is an asymptotically
anti–de Sitter spacetime instead of a flat spacetime, the
boundary condition at spatial infinity is less trivial. Choosing
the Dirichlet conditions@21#

g~x50;v!50 and ]xg~x;v!ux5051, ~76!

the two functionsf (x;v) andg(x;v) read

f ~x;v!5h2~x;v!, ~77!

g~x;v!5h1~x;v!2Ah2~x;v!, ~78!

where the coefficientA is given by

A[
h1~0;v!

h2~0;v!

5222m
G~11m!

G~12m!

G~1/22@m1n#/2!

G~11@m1n#/2!

G~12@m2n#/2!

G~1/21@m2n#/2!
.

~79!

The solutiong is typically multiplied by a normalization
factor, which we have set to unity since it is always canceled
out once the Wronskian is taken into account. It is not diffi-
cult to show that the Wronskian ofg and f is
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W~v;g, f !5W~v;h1 ,h2!522iv. ~80!

Now we put everything together and obtain

G̃~x,j,x;v!5
i

2v
h2~j;v!@h1~x;v!2Ah2~x;v!#.

~81!

The remainder of the problem is to bring the Green’s func-
tion from the frequency domain back to the time domain.

The inverse Fourier transformation is given by the equa-
tion

G~x,j;t !5
1

2pE2`

`

G̃~x,j;v!exp~2 ivt !dv. ~82!

We evaluate this integral by analytically extendingv to
complex values and using Cauchy’s residue theorem. The
contour of integration is chosen to be a large, closed semi-
circle on the lower halfv plane, with the center atv50. We
make an indentation consisting of a small semicircle cen-
tered at the origin because this point which is a pole from the
Wronskian lies on the integration contour. By Jordan’s
lemma, the contribution from the arc of the large semicircle
goes to zero as the radius of the arc tends to infinity. The
Green’s function then becomes

G~x,j;t !5 i( Res$G̃~x,j;v!exp~2 ivt !%, ~83!

where Res$k(z)% denotes the residue of the functionk(z) at
a pole. In our case, the poles of the Green’s function
G̃(x,j;v) within the contour come from theG functions of
the coefficientA. That is to say, the poles correspond to

2k1511m, ~84!

2k25
1

2
2

m1n

2
, ~85!

2k3512
m2n

2
, ~86!

wherek1, k2, andk3 equal 0, 1, 2, 3, . . . . Notice that there
are infinitely many poles on the lower halfv plane. Because
there is no branch cut in eitherh1 or h2 , we conclude that
G(x,j;t) decays to zero exponentially. The dominant expo-
nential decaying rate is determined by the pole closest to the
real axis on the lower halfv plane. According to the three
equations above, there are two such poles, namely,

v56
l

AM
l2 i

3

2
l. ~87!

As a result, the exponentially decaying Green’s function
G(x,j;t) implies thatc(t,x) also decays in this manner at a
rate exp(23lt/2).

Had we chosen the Neumann condition instead of the Di-
richlet condition forg(x,v) @21#, that is,

g~x50;v!51 and ]xg~x;v!ux5050, ~88!

the functiong(x,v) would simply become

g~x;v!5h1~x;v!2Bh2~x;v!, ~89!

where the coefficient constantB is defined as

B[
]xh1~0;v!

]xh2~0;v!

5222m
G~11m!

G~12m!

G~2@m1n#/2!

G~1/21@m1n#/2!

G~1/22@m2n#/2!

G~@m2n#/2!
.

~90!

The change fromA to B causes the singular terms inG̃ to
becomeG(11m), G(2@m1n#/2), andG(1/22@m1n#/2),
which also have infinitely many poles on the lower halfv
plane. A quick inspection shows thatc(t,x) also dies out to
zero at an exponential rate of exp(2lt/2) because the poles
which are closest to the real axis are

v56
l

AM
l2 i

1

2
l. ~91!

The next few graphs are the numerical results using the
potential~56!. We used the same initial condition as in the
numerical computation for the Schwarzschild case. Since the
background is an asymptotically anti–de Sitter background,
we integrate Eq.~10! numerically with the Dirichlet bound-
ary condition atr5` ~i.e., x50). Figures 8 and 9 illustrate
the falloff behavior of the wave using different exponential
potential functions. In both graphs, the initial Gaussian im-
pulse is located at twice the black hole radius (2Rb) and the
observation is made at 4Rb . The straight line asymptote of
the ringing behavior on the semilogarithmic graph corre-
sponds to exponential falloff, numerically confirming that
the wave exponentially decays in this asymptotically nonflat
background at the rate of exp(23lt/2).

Figures 10 and 11 illustrate the numerical results using
the Neumann boundary condition atx50. It is clear from the
two graphs that the scalar wave also exponentially decays
when the Neumann condition is used. One can see that the

FIG. 8. Exponential falloff for a conformal scalar wave using
Dirichlet boundary condition.
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falloff rate is 3 times slower than that in the Dirichlet cases
because the dominant poles in this case are 3 times closer to
the realv axis than those in the Dirichlet cases.

B. Spinning 3D black hole background

WhenJÞ0, i.e., when the black hole rotates, we also find
a late time exponential decay rate, as we shall now demon-
strate.

If we assume that

C~ t,r ,f!5
c~ t,r !

Ar
, ~92!

that is to say, that there is no ‘‘spherical harmonic’’ compo-
nent to the wave, the conformal scalar wave equation
¹2C5RC/8 will reduce to Eq.~10!. The tortoise coordinate
x is defined as before but the potential barrier becomes

Ve„x~r !…52
3uLu
4

1
1

2r
] rN~r !2

N~r !

4r 2
. ~93!

In this spinning case, the black hole has two horizons
R6 which are given by the equation

R6
2 5

1

2uLu @M6AM22uLuJ2#. ~94!

The lapse functionN(r ) can then be written in terms of
R1 andR2 as

N~r !5
uLu
r 2

~r 22R1
2 !~r 22R2

2 !. ~95!

As a result, the tortoise coordinate reads

x~r !5
1

2uLu~R1
2 2R2

2 !
FR1lnS r2R1

r1R1
D2R2lnS r2R2

r1R2
D G ,
~96!

which has an inverse of the form

R1

r ~x!
5

Y

12s2(
n50

`

an~s!Y2n, ~97!

s5
R2

R1
,1, ~98!

Y5
12exp~2lx!

11exp~2lx!
,1, ~99!

l5uLuR1~12s2!.0. ~100!

The coefficientsan(s), which read

a0~s!51, a1~s!52s2
32s2

3~12s2!2
, ~101!

a2~s!5s4
25217s213s4

15~12s2!4
,

a3~s!52s6
100821039s21368s4245s6

315~12s2!6
, . . . ,

~102!

FIG. 9. Another semilogarithmic graph as in Fig. 8 but with
different parameters.

FIG. 10. Exponential falloff using the Neumann condition.

FIG. 11. The same as in Fig. 10 but with different parameters.
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are of orderO(s2n). If s is small enough, we can employ
the approximation

1

r ~x!
'

Y

R1
. ~103!

If we substitute this approximation into the potential barrier
V(x), we will obtain

V~x!'L2
~R1

2 2R2
2 !~R1

2 24R2
2 !

R1
2

exp~2lx!

@11exp~2lx!#2

112L2~2R1
2 23R2

2 !
R2
2

R1
2

exp~4lx!

@11exp~2lx!#4

180L2
R2
4

R1
2

exp~6lx!

@11exp~2lx!#6
. ~104!

It is obvious that the first term in the potential function above
has a form identical to the potential function in the nonspin-
ning 3D black hole case. Sincel.0 but x,0, the second
term in the potential is always weaker than the first one. As
a result we may iteratively solve the wave equation, treating
the first term as the lowest order potential, the second term as
the first correction to this approximation, and so on.

For clarity, we define

V0~x![L2
~R1

2 2R2
2 !~R1

2 24R2
2 !

R1
2

exp~2lx!

@11exp~2lx!#2
,

~105!

V1~x![12L2~2R1
2 23R2

2 !
R2
2

R1
2

exp~4lx!

@11exp~2lx!#4
,

~106!

D̃[2v22]xx1V0~x!1V1~x!, ~107!

D̃0[2v22]xx1V0~x!. ~108!

Therefore the equationD̃ f (x;v)50 has a representation

f ~x;v!5 f 0~x;v!1E
2`

x U1~x!U2~j!2U2~x!U1~j!

W~v;U2 ,U1!

3V1~j! f ~j;v!dj ~109!

at x52`. The functionsU1(x) and U2(x) satisfy the
equation D̃0U1(x)5D̃0U2(x)50. The other function
f 0(x;v) satisfies the same equation asU1(x) andU2(x)
and also satisfies the Dirichlet boundary conditions at
x→2`. In other words,f 0(x;v) is the solution~77! in our
case with different values ofl, m, andn andU6 areh6 .
Similarly the solution aroundx50 is

g~x;v!5g0~x;v!2E
x

0U1~x!U2~j!2U2~x!U1~j!

W~v;U2 ,U1!

3V1~j!g~j;v!dj, ~110!

where g0(x;v) is just Eq. ~78!. We first compute the
WronskianW(v;g, f ) for f (x;v) andg(x;v) above. Since

this Wronskian isx independent, the simplest way to com-
pute it is to evaluate the quantity at the pointx50. It is not
difficult to show that

W~v;g, f !5W~v;g0 , f 0!1W~v;g0 , f !~x!ux52`
x50

5W~v;g0 , f 0!2W~v;g, f 0!~x!ux52`
x50 .

~111!

Since g(x;v) and f (x;v) satisfy a differential equation
which differs from that satisfied byg0(x;v) and f 0(x;v),
the WronskiansW(v;g0 , f ) andW(v;g, f 0) are functions of
x in general. Therefore the correctionV1(x) in the potential
barrier induces an extra (x-independent! term in the Wronsk-
ianW(v;g, f ).

The first Born approximations forf (x;v) and g(x;v)
read

f ~x;v!' f 1~x;v!5 f 0~x;v!2
i

2vE2`

x

@h1~x!h2~j!

2h2~x!h1~j!#V1~j! f 0~j!dj, ~112!

g~x;v!'g1~x;v!5g0~x;v!1
i

2vEx
0

@h1~x!h2~j!

2h2~x!h1~j!#V1~j!g0~j!dj. ~113!

As a result, the WronskianW(v;g, f ) can be approximated
by

W~v;g, f !'W~v;g0 , f 0!1W~v;g0 , f 1!~x!u2`
0

5W~v;g0 , f 0!1E
2`

0

g0~x;v! f 0~x;v!V1~x!dx.

~114!

Since there are poles in the lower halfv plane in the Green’s
function G̃ but there are no branch cuts in eitherf 1 or g1,
this implies that there is an exponentially decaying quasinor-
mal ringing effect in the wave tail in this rotating 3D black
hole configuration.

Figure 12 is the graph of the potential functions of this
spinning case with zero angular harmonic. One can show
that when the ratiouLuJ2/M2.16/25,Ve becomes negative
for some r.R1 . This behavior is illustrated in Fig. 12,
whereV(x) becomes negative whenuxu is sufficiently large.
In Fig. 13, we can see that the potential functions in both
cases vanish at an exponential rate towards the event hori-
zon. As usual, we put a Gaussian impulse at a distance twice
that of the outer horizon,R1 , and the numerical response of
the scalar waves over time at a distance 4R1 is shown in Fig.
14. This figure shows an exponential decay of the wave al-
though its appearance differs from the previous graphs be-
cause there are no angular harmonics~i.e., l50). Indeed, if
we setl50 in the static 3D black hole case, we find that the
falloff also looks like that in Fig. 14 because the pole that is
closest to the realv axis for the Green’s function in the
frequency domain has no real part@Eqs.~87! and ~91!#.
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V. SCHWARZSCHILD –ANTI-de SITTER BACKGROUND

Since the 3D black hole spacetime is an asymptotically
anti–de Sitter spacetime, one might expect that the late time
falloff behavior of any scalar wave in a Schwarzschild–
anti-de Sitter~SAdS! background has similar behavior. In
fact, the situation is quite different from the 3D case, in part
because of the different dimensionality and in part because it
is not possible to solve the wave equation~10! exactly in this
background. Although the potential functionVe(r ) in this
case reads

Ve~r !5
2uLu
3

~126j!1
l ~ l11!

r 2
1
2M

r 3
, ~115!

which is quite similar to Eq.~53! in the 3D case, we cannot
write r as a function ofx in a closed form. That is to say,
given the lapse function

N~r !5
uLu
3
r 2112

2M

r
5

uLu
3
r 2112

Rb~31uLuRb
2!

3r
,

~116!

whereL,0 and the black hole radiusRb satisfies the equa-
tion N(Rb)50, the tortoise coordinate

x5
Rb

2~11uLuRb
2!
lnU ~r2Rb!

2

r 21Rbr1Rb
213/uLuU

1
A3~21uLuRb

2!

AuLu~11uLuRb
2!A41uLuRb

2

FIG. 12. Potential functionV(x) of two spinning 3D black hole
backgrounds with~i! uLuJ2/M251023 and ~ii ! uLuJ2/M250.8.

FIG. 13. Decaying exponential behavior ofuV(x)u near the
black hole event horizon.

FIG. 14. Exponential decay of conformal scalar waves in spin-
ning 3D black hole geometry.

FIG. 15. Potential functionsV(x) for the SAdS background.
The six potentials are generated with the parameters~a!
L521024, l52, ~b! L521024, l51, ~c! L521024, l50, ~A!
L521022, l52, ~B! L521022, l51, and ~C! L521022,
l50.
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3FarctanS AuLu~2r1Rb!

A3A41uLuRb
2D 2

p

2 G ~117!

has no closed form inverse, and so we are unable to write
down an explicit expression for the potentialV(x).

For the remainder of this section we setj51/6 ~i.e., we
consider a conformal scalar field propagating on an SAdS
background!.

The most important difference between the 3D black hole
background and SAdS background is the shape of the poten-
tial functionV(x). In both cases the potential functions are
decreasing in an exponential manner toward the horizon. In
the 3D case~either spinning or static! this function attains a
maximum at a distancer5` (x50). When the background
is SAdS, this is no longer true because spatial infinity~which
is still given byx50) is not the place at whichV(x) has an
absolute maximum~for xPR2). As with the Schwarzschild

black hole ~Fig. 2!, the potential functionV(x) attains a
maximum not far away from the event horizon. In the SAdS
case, the shape of the potential functionV(x) is given in Fig.
15. Unlike the Schwarzschild case, the tortoise coordinate
x for the SAdS background is bounded above. Eventually all
the outgoing waves that leave the black hole region will
return towards it due to the boundary condition atx50. The
returning wave will then reflect off of the potential barrier
back toward spatial infinity. This is completely different be-
havior from the 3D case, in which the incoming wave from
spatial infinityx50 continues its journey to the black hole
unhindered.

We can see from Fig. 15 that whenuLu is small@barriers
~a!–~c!#, the barrier maximum moves to the left, lengthening
the traveling time from this maximum to spatial infinity.
When l vanishes@cases~c! and ~C!#, V(0)50 because
V(0)5 l ( l11)uLu/3 in general. Therefore barriers~a! and
~b! haveV(0)Þ0 although this feature is not apparent on the
graph due to the small size ofuLu. The barrier height is
considerably higher than the magnitude ofV(x) at x50, and
this feature becomes more pronounced for largel . This
causes the scalar wave to bounce back and forth in the region
outside the barrier. However, part of the scalar wave can
surmount the barrier~thereby going into the black hole! be-
cause the barrier height is still finite. However, it takes a long
time for a significant portion of the wave to enter the black
hole.

We solve the wave equation in this SAdS background
numerically. The results of the numerical integration of Eq.
~10! using Eqs.~115! and ~116! are given in the next few
graphs. Figures 16 and 17 show the falloff behavior of a
conformal scalar wave withl50 initially located at a dis-
tancer52Rb . The computation for Fig. 16 uses the Dirich-
let condition atx50 but Neumann boundary condition is
employed for Fig. 17. Since the cosmological constantuLu
was chosen to be relatively small in both cases, namely,
uLu51024, we can see on both graphs that there is clearly an
inverse power-decay behavior. According to the graph, this
power-decay rate is roughlyt23 which agrees with the one in

FIG. 16. Scalar wave ofl50 decays away in the SAdS back-
ground using the Dirichlet condition atx50.

FIG. 17. Scalar wave falloff pattern ofl50 using the Neumann
condition spatial infinity.

FIG. 18. Log-log graph of the decay behavior in the SAdS back-
ground usingl51 and the Dirichlet condition.
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the Schwarzschild case. However, this inverse power decay
does not last very long after the return of the outgoing wave
from spatial infinity. Both diagrams show this returning
wavefront.

For small uLu and nonzerol , the falloff behavior re-
sembles the case ofl50. Initially there is a ringing effect
~due to the quasinormal modes! followed by inverse power-
decay behavior as shown in Figs. 18 and 19.

Since the finite height of the potential maximum allows
the scalar wave to surmount the barrier and leave the trapped
region which is the exterior outside the barrier maximum, we
expect that the peak value of the second returning wave is
smaller than that of the first wave. However, it is unclear
from simple inspection of Figs. 16 to 19 whether or not this
is the case. Figures 20–23 are the numerical results we ob-
tained using the potential functions~A! and ~C! in Fig. 15.
We compute the largeuLu case with both Dirichlet~Figs. 20
and 22! and Neumann~Figs. 21 and 23! boundary condi-
tions. For this case there are more returning waves in a rea-

sonable amount of CPU time. From these graphs, we can see
that the scalar wave does indeed decrease but over a much
larger time scale. Figures 20 and 21 indicate that the peak
height has an approximate exponential falloff forl50. For
l.0, the peak height has a more complicated behavior illus-
trated in Figs. 22 and 23. Over long time scales the maxi-
mum peak height has a very mild approximate exponential
falloff.

VI. CONCLUSION

The results of this work indicate clearly that the asymp-
totics of a given spacetime have a considerable influence on
the late time falloff behavior of a scalar wave. The early
work of Price showing that waves in a Schwarzschild back-
ground decay away according to an inverse power rate was
recently extended by Chinget al.who found that the inverse

FIG. 19. Similar graph to Fig. 18 but using the Neumann con-
dition.

FIG. 20. Semilogarithmic graph of the decay behavior in the
SAdS background usingl50 and the Dirichlet condition.

FIG. 21. Conformal scalar wave decay behavior usingl50 and
the Neumann condition.

FIG. 22. Semilogarithmic graph of the decay behavior using
nonzerol and the Dirichlet condition.
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power law can also be modified by a logarithmic term in
some black hole configurations. We have been concerned in
this paper with the falloff behavior of conformal scalar
waves in a background geometry which is an asymptotically
anti–de Sitter geometry. We found that the waves in un-
charged static and spinning 3D black hole backgrounds die
out at an exponential rate. This conclusion is supported by
both analytical and numerical computations. For conformal
scalar waves in a Schwarzschild–anti-de Sitter background
our numerical analysis demonstrates that the falloff pattern
over short time scales obeys~after some ringing! a power-
law falloff. However, over longer time scales the outgoing
wave returns from spatial infinity. The falloff of the peak
amplitude in this case is neither inverse power nor exponen-
tial. However, there is a very weak exponential decrease in
the maximal peak amplitude. This decay pattern is so com-
plicated that further investigation will be needed to more
precisely determine its dependence ont.

Previous investigations of mass inflation in a charged
spinless 3D black hole@13# and an uncharged spinning 3D
black hole@16# assumed a power-law falloff rate for the sca-
lar wave. Under such assumptions these investigations dem-
onstrated that mass inflation occurred in the corresponding

geometries. We have shown here that the assumption of
power-law falloff in the uncharged static and spinning 3D
black hole background is not valid and must be replaced by
an exponential falloff.

For a rotating 3D black hole we have shown that a
f-independent scalar field also has late time exponential de-
cay. In this particular setup, one can recalculate the mass
inflation rate using the correct late time falloff rate. It is not
difficult to show that the new inflation rate readsm(v)
}exp@(k2a)v#, wherek is the surface gravity at the Cauchy
horizon of the black hole. The parametera comes from the
exponential falloff rate for the scalar wave which reads
exp(2at/2). For example, whenL520.1, M50.01, and
J50.001, the surface gravity at the Cauchy horizon is
1.999 but the parametera is only 0.08 according to Fig. 14.
Table I shows some other values ofa andk in the rotating
3D black hole backgrounds. ForuLuJ2/M2,0.64 we find
that the surface gravityk is always greater than the exponen-
tial falloff rate a. Therefore the attenuation from the falloff
effect does not halt mass inflation and the basic conclusions
in @16# remain unchanged. Rather the mass inflation rate is
slowed down relative to spacetimes with power-law falloff.
However, foruLuJ2/M2.0.64 we findthata.k and mass
inflation is attenuated. This case is currently under investiga-
tion.

In the nonspinning case in~211! dimensions, we find that
a is independent of the angular harmonic parameterl . Recall
that in Eqs.~87! and~91!, l determines the frequency of the
quasinormal ringing. The decay rate is governed byl which
is a function of black hole parameters, namely,L andM .
This leads to a qualitative distinction between the mass in-
flation mechanism in the ~static! (211)- and
(311)-dimensional spacetimes. In a Schwarzschild back-
ground, the falloff rate is 1/t2l13 @9# which implies larger the
momentl , faster the falloff. This yields a mass inflation rate
;exp(kv)/v2(2l13) @7#; the exponential growth always sur-
passes the falloff effect for arbitrarily largel . For a 3D black
hole with an inner horizon we showed that the falloff rate is
exponential which is much stronger than the inverse power
falloff. However, this exponential decay is independent of
the momentl — unlike the Schwarzschild case, increasing
the moment does not yield a stronger attenuation of the mass
function.

ACKNOWLEDGMENTS

This work was supported in part by the Natural Sciences
and Engineering Research Council of Canada.

APPENDIX: SOLUTIONS IN ASYMPTOTICALLY FLAT
„D11…-DIMENSIONAL BACKGROUND

Given the lapse function~23! in (D11)-dimensional
spacetime, the time-independent solution ofL@c(r )#50 is
given by Eq.~25!. The coefficientsaj (r ) and cj (r ) can be
generated by the next two equations:

FIG. 23. This semilogarithmic graph is the Neumann analogue
of Fig. 22.

TABLE I. Exponential falloff ratea which is found by graphi-
cal method is always less than the surface gravityk in rotating 3D
black holes.

uLu M J uLuJ2/M2 a/2 k

0.1 0.5 0.001 431027 0.3171 707.107

0.1 0.1 0.001 1025 0.1413 63.2452

1.0 1.0 0.01 1024 1.417 199.987

0.1 0.01 0.001 1023 0.04422 1.99875

0.5 0.01 0.001 531023 0.09852 1.99374

0.1 0.005 0.01 0.4 0.02034 0.0515936

0.2 0.005 0.01 0.8 0.01541 0.0268999
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aj11~r !5m~ lnur u!baj~r !2
m@j~D222a!~D212a!1 l ~ l1D222a!#

2g11
W„11~ j11!a,~ lnur u!baj~r !…

1
m@j~D222a!~D212a!1~ l1a!~ l1D22!#

2g11
W„2g121~ j11!a,~ lnur u!baj~r !…

2
mb@j~2D2322a!1 l #

2g11
W„11~ j11!a,~ lnur u!b21aj~r !…1

mb@j~2D2322a!2 l2D12#

2g11

3W„2g121~ j11!a,~ lnur u!b21aj~r !…2
mb~b21!j

2g11
W„11~ j11!a,~ lnur u!b22aj~r !…

1
mb~b21!j

2g11
W„2g121~ j11!a,~ lnur u!b22aj~r !…, ~A1!

cj11~r !5m~ lnur u!bcj~r !1
m@j~D222a!~D212a!1~ l1a!~ l1D22!#

2g11
W„11~ j11!a,~ lnur u!bcj~r !…

2
m@j~D222a!~D212a!1 l ~ l1D222a!#

2g11
W„22g1~ j11!a,~ lnur u!bcj~r !…

1
mb@j~2D2322a!2 l2D12#

2g11
W„11~ j11!a,~ lnur u!b21cj~r !…2

mb@j~2D2322a!1 l #

2g11

3W„22g1~ j11!a,~ lnur u!b21cj~r !…1
mb~b21!j

2g11
W„11~ j11!a,~ lnur u!b22cj~r !…

2
mb~b21!j

2g11
W„22g1~ j11!a,~ lnur u!b22cj~r !…. ~A2!

The functionW used above is defined as

W„n, f ~r !…[
r n

r E f ~r !

r n
dr,

wheren is a real number andf (r ) is an integrable function. We evaluate the integral inW in such a way that the integration
constant is always set to zero. This function has a property that iff (r ) is a constant andnÞ1, thenW„n, f (r )… gives a constant.
Whenn is unity but f (r ) is still a constant,W„n, f (r )… is proportional to lnur/Ru, whereR is some constant of dimension of
length. In the case whenf (r ) is no longer constant but a polynomial of lnur/Ru, the functionW gives another polynomial of
lnur/Ru. The index j in the two equations runs from zero to infinity and the starting coefficientsa0(r ) and c0(r ) are two
arbitrary constants. It is obvious that when the background is flat, i.e.,m50, all theaj (r ) andcj (r ) vanish excepta0 and
c0. If mÞ0, these coefficients are polynomials in lnur/Ru.

For the equationL@Ci11(r )#52dCi(r )/dr with L@C0(r )#50, the solution ofCi(r ) is given by

Ci~r !5r g111 i(
j50

` cj
i ~r !

r ja
.

Each coefficientcj
i (r ) can be calculated by the next two equations:

c0
i ~r !5c0

i 5
2i~2g11!! ~g1 i !!

g! ~ i !! ~2g111 i !!
c0,

cj11
i11~r !5m~ lnur u!bcj

i11~r !1
2

2g11
@gW„2 i1~ j11!a,cj11

i ~r !…1~g11!W„22g212 i1~ j11!a,cj11
i ~r !…#

1
m@j~D222a!~D212a!1~ l1a!~ l1D22!#

2g11
W„2 i1~ j11!a,~ lnur u!bcj

i11~r !…

2
m@j~D222a!~D212a!1 l ~ l1D222a!#

2g11
W„22g212 i1~ j11!a,~ lnur u!bcj

i11~r !…
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1
mb@j~2D2322a!2 l2D12#

2g11
W„2 i1~ j11!a,~ lnur u!b21cj

i11~r !…2
mb@j~2D2322a!1 l #

2g11

3W„22g212 i1~ j11!a,~ lnur u!b21cj
i11~r !…1

mb~b21!j

2g11
W„2 i1~ j11!a,~ lnur u!b22cj

i11~r !…

2
mb~b21!j

2g11
W„22g212 i1~ j11!a,~ lnur u!b22cj

i11~r !….
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