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Scalar wave falloff in asymptotically anti-de Sitter backgrounds
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Conformally invariant scalar waves in black hole spacetimes which are asymptotically anti—de Sitter space-
times are investigated. We consider both thet+(@d-dimensional black hole and ¢31)-dimensional
Schwarzschild—anti-de Sitter spacetime as backgrounds. Analytical and numerical methods show that the
waves decay exponentially in the {21)-dimensional black hole background. However, the falloff pattern of
the conformal scalar waves in the Schwarzschild—anti-de Sitter background is generally neither exponential
nor an inverse power rate, although the approximate falloff of the maximal peak is weakly exponential. We
discuss the implications of these results for mass inflafi§0556-282(197)02312-6

PACS numbe(s): 04.30.Nk, 04.20.Ha, 04.25.Dm, 04.7&

[. INTRODUCTION by showing that the Cauchy horizon can turn into a scalar
spacetime curvature singularify]. Unlike Hiscock, who
It is well known that the maximally extended Reissner-considered a Reissner-Nordstrdolack hole irradiated by a
Nordstran spacetime can be imagined as a collection of dif-flux of incoming radiation, Poisson and Israel imposed both
ferent asymptotically flat universes connected by differenincoming and outgoing fluxes of radiation on a Reissner-
charged black holefl]. Except for the Schwarzschild solu- Nordstran background. The outgoing flux, even if negligibly
tion, all the special solutions of the more general Kerr-small in quantity, makes the inner mass function of the black
Newman class of spacetimes can have two horizons, the ifiole inflate without bound at the Cauchy horizon. More pre-
ner and outer horizons. Nevertheless, gravitational theoristgisely, the inner mass of the black hole diverges at a rate of
find that these dual-horizon black holes are unphysical beexp(kv)/vP near the Cauchy horizon. The factov1/comes
cause causality can be violated inside the fi2leMoreover, from the decay rate of the scattered radiation [&#9],
any radiation(either electromagnetic or gravitational in na- wherep>0 andv—o at the Cauchy horizon. Regardless of
ture) that goes into this kind of black hole will be indefinitely the values ofp and the surface gravity>0, the mass pa-
blueshifted at the innefor Cauchy horizon[1]. This effect rameter always grows, although the exponential rate is at-
has caused some to expect that this null hypersurface actgnuated by the decaying effect of the radiation tail. This
like a barricade to other universes in maximally extendedohenomenon is callethass inflatiorand is expected to seal
spacetime. the inner horizon because the diverging mass parameter in-
This infinite blueshift phenomenon at the Cauchy horizonduces a scalar curvature singularity at the horizon. This result
was first discussed by Penrose in the late 1980sAt that  implies that it is inappropriate to maximally extend any dual-
time, people believed that any small energy perturbation omorizon black holes beyond the Cauchy horizon because
these dual-horizon black holes would destroy the Cauchgpacetime is unstable against energy perturbations there. It is
horizon because the perturbation is indefinitely magnifiedyenerally believed that such perturbatiofs the form of
there, causing an infinite spacetime curvature at the horizorgravitational radiationalways exist in more realistic black
Thus the null hypersurface would become a spacelike curvdioles which do not have perfect spherical or axial symmetry.
ture singularity and the gateway to other universes is sealed.hese are scattered around the black hole, forming incoming
Both numerical and analytic approachigs5] suggest that and outgoing fluxes, but they will eventually decay away as
this null hypersurface is perturbatively unstable. Howevera tail of late time radiatiof9]. In this way, mass inflation is
although singularities are found at the Cauchy horizon, thegxpected to prevent violation of causality.
are not spacetime curvature singularities at all. By taking the In addition to the Reissner-Nordstmoblack hole, the
diverging stress-energy tensor into account, Hiscock showenhass inflation phenomenon has been found to take place in
that the perturbation only turns the horizon into a so-calledbther black hole configurationsl0—16. These configura-
whimper singularity All curvature scalars are finite but a tions are in %1, 2+1, and 3+1 dimensions as well as in
freely falling observer crossing the horizon measures an inasymptotically nonflat spacetimes. All of these calculations
finite energy density6]. This kind of singularity is too mild assumed the inverse power-law decay for late time radiation
to seal off the passage to other universes, and so resolution aé an ansatz to obtain the inflating mass function near the
the issue would necessitate a study that did not rely on pelcauchy horizon. Since the mass parameter is attenuated by
turbation theory. the decaying effect of the radiation tail, it is important to
Poisson and Israel made a breakthrough in this probleranderstand the behavior of the radiative tail in a spacetime
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other than Reissner-Nordsinoclass. Mellor and Moss have B

shown that the radiation from perturbations in a de Sitter =0. ®)
background exponentially decreaddd]. Strictly speaking .
this result has nothing to do with late time falloff because theThe functionV
global geometry extends beyond the cosmological horizon.

o(r) is defined as

However, it indicates that the radiative falloff behavior is ~1d (D—1)(D-3)

sensitive to the presence of the cosmological constant. Morev (r)=¢éR+ —— —N(r)+ ———>——[N(r)—1]
recent work by Chinget al. [18] demonstrated that under 2r dr ar

certain circumstances the tail can be something other than (21+D—-3)(21+D—1)

the simple inverse power law. + ar? . (6)

In this paper we will study radiative falloff in spacetimes
that are not asymptotically flat. We find that the inverse
power law[9] is not universally true and that in some as-
ymptotically anti—de Sitter spacetimes the late time tail de- — G (1,1 +N(r) L[ (t,r)]=0, )
cays exponentially. The asymptotically anti—de Sitter back-
grounds we will study are the (21)-dimensional black hole  jith the help of a spatial differential operator
[19] and Schwarzschild—anti-de Sitter spacetime.

The outline of our paper is as follows. In Sec. Il we re-
view the structure of the§ +1)-dimensional scalar wave L=3,[N(r)d,]—Ve(r). (8)
equation in spherically symmetric spacetimes that are not
necessarily asymptotically flat and discuss our numerical apAlternatively, if we introduce
proach towards solving it. In Sec. Il we verify that our nu-
merical approach correctly reproduces the power-law falloff

One can rewrite the wave equati@®) as

in asymptotically flat spacetimes, and we cross-check this dr
analytically. In the next two sections we study the falloff X= f N(r)’ ©)
behavior in the (2-1)-dimensional[or three-dimensional
(3D)] black hole background and in ¢31)-dimensional then Eq.(5) can be written as
Schwarzschild—anti-de Sitter spacetime. Concluding remarks
and an appendix round out our work. A tp(t,1 (X)) = Ayy b (8,1 (X)) +V(r (X)) g(t,r(x))=0
(10
Il. WAVE EQUATION IN D+1 DIMENSIONS
or as
We shall study scalar waves in different dimensions, since
wave equations for higher-spin fields are of a qualitatively Ay (U,v)=— 3 N(r(u,0))Ve(r(u,v))(u,v) (12
similar structure[20]. The (conformally coupledl scalar
wave equation irD +1 dimensions is using null coordinatesi=t—x and v=t+x. The function
) V(r) [defined asvV(r)=N(r)V(r)] plays the role of a po-
VA =¢RY, (1) tential barrier which is induced from the background space-

time geometry. Although the potential when written in terms
of the tortoise coordinate can be very complicated, EGLO)
has the familiar form of a potential scattering problem.
Equation(10) can be integrated numerically in a straight-
forward fashion by using the finite difference method. First

where ¢ is an arbitrary constant. If=(D—1)/(4D), this
equation is conformally invariant. We simplify the problem
by considering only static, spherically symmetric
(D +1)-dimensional spacetimes with metric

dr2 of all the D’Alembert operatod;;— dy, can be discretized as
ds?=—N(r)dt>+ +r2d03_,, 2
N(r) P(t—At,X) — 24(t,X) + p(t+ At,X)
2
whereN(r) is the lapse function and(l%,l is the metric of At
a (D—1)-dimensional unit sphere. We assume P(t,x—AX) = 24(t,X) + p(t,x+ AX)
- 2
W =r (D)2t r)YP, k) Ax
b N . . +O(At?)+O(Ax?) (12)
The functionsY,” are theD-dimensional spherical harmonics
which satisfy the equation using Taylor's theorem. In order to formulate a well-posed
oD 5 Cauchy problem we need to include the initial conditions,
LAYP]=—1(1+D-2)Y}. (4)  which for simplicity we choose to be
The product—I1(l+D—2) is the eigenvalue of the operator Y(t=0x)=0 and d,y(t=0x)=u(x). (13
L2 which is the angular derivative operator. It is straightfor- S _ _
ward to show that Eq(1) gives Because the field is initially zero, its subsequent evolution

is solely the result of the initial impulse of the fielg.
— (1, 1) EN(r) O, [N(r)d, b(t,r) = N(r)Va(r) (t,r) Discretizing the second condition in Eq4.3) yields
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Schwarzschild data: M =1, I =1, Ro = 10M, R =20M Schwarzschild data: M =1,1=1
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FIG. 1. The decay of a scalar wave in a Schwarzschild back- F|G. 3. Exponential decrease on the left side of the barrier in
ground. Prior tot=200 the decay is accompanied by a “ringing” V(X).
of the quasinormal modes, after which the falloff rate is that of an

inverse power law. 2

NG
¢m+1,n: Z_ZF_At Vi ‘ﬁm,n_wm—l,n
t2
+ m[wm,n—l+¢m,n+l]- (20)

P(AL,X)— h(—At,X)
2At

=u(x)+O(At?), (14

where we employ a Gaussian distribution with finite support

for u(x). We further define . )
(x) As a result, we can follow the evolution of the fiejdstart-

H(MAL,NAX)=thn o, (15  ing from the initial data given at time=0.
In the case where the black hole geometry is asymptoti-
V(nAX)=V,, (16)  cally flat, the tortoise coordinate goes from negative infin-
ity to positive infinity. Therefore our Cauchy problem is
u(nAx)=u,, (170  similar to the infinite string problem in which the initial data

propagate towards left and right indefinitely. The initial data
where the mesh size has to satisfy the conditlon>At so  no longer enjoy this privilege when the background is an
that the numerical rate of propagation of data is greater thagsymptotically anti—de Sitter background because the tor-
its analytical counterpart. The discretization of the Cauchyoise coordinate goes from minus infinity to zero only. In
problem above then implies other words, the right-propagating data cannot travel in this

direction forever. Analogous to the semi-infinite vibrating

Y-10=—Atuy, (18) string problem, boundary conditions at spatial infinfhe.,
hon=0, (19

Schwarzschild data: M=1,1=1

Schwarzschild data: M=1,1=1

>

60 70 80

FIG. 4. Inverse power decrease on the right side of the barrier of
FIG. 2. Potential barrier for the Schwarzschild background.  V(x).
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SdS data: A = 0.0001, Ry, = 2 (M = 0.999867), | = 1, R, = 86.09821R,
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FIG. 5. Potential barrier for the Schwarzschild—de Sitter back-  FIG. 6. Exponential decreasing nature on the left sidé(od) in
ground. the SdS background.

x=0) are needed in the asymptotically anti—de Sitter back:[he use of an asymptotically flat background. If we compare

round in order to formulate the problem appropriatel TwoFigS' 2—4 with Figs. 5-7, which represent the potential func-
g P pprop Y. tion in Schwarzschild—de SittefSdS spacetime, we find

types of boundary conditions that are widely used in anti—d : : . . _
Sitter backgrounds are the Dirichlet and Neumann Conditionl'?shat the right side oi/(x) has different decaying behavior

even though the overall appearance\dx) on the linear
[21]. In-our case, the former reads graph is very similar. It is this difference that distinguishes
P(t,x=0)=0 and d,(t,x=0)=1, (21)  the falloff behavior in the two backgrounds.
Now let us consider a scalar wave in an asymptotically

while the latter is simply flat (D +1)-dimensional background. For the remainder of
this section we will restrict our attention to the case where
Pp(t,x=0)=1 and dc(t,x=0)=0. (22)  the number of spatial dimensiofis is odd. The motivation

. . for this may be traced back to Huygen’s principle, which
We shall consider employing both of these boundary condiyjies that in even spatial dimensions the scalar wave obey-

tions at spatial infinity for our numerical computations when-ing the equatioV2¥ =0 always develops a tail, regardless
ever the background geometry is an asymptotically anti~d@¢" \yhether or not the asymptotically flat background is

Sitter background. sourceless. Consequently identification of the tail part of the
wave that is due to solely to backscattering becomes quite
1. ASYMPTOTICALLY FLAT BACKGROUNDS problematic wherD is even.

In this section we will review the behavior of radiative ~ "SPired by the work of Chingt al.[18,23, we consider

falloff in asymptotically flat background spacetimé&q. We
will present the results of the numerical calculation first. " SdS data: .= 0.0001, Ry, =2 (M = 0.999867), | = 1, R, = 86.09821R,,
Figure 1 shows a sample inverse power decay of a scala ' ' ' ' ' '
wave in the Schwarzschild background spacetime of mass 107
M. We solve the wave equatidd0) numerically using the
scheme discussed in the previous section. The compact ini
tial Gaussian impulse is centered at a distaneglOM (or 10
x=12.76M) and for simplicity we choose the=1 spherical 10|
harmonic. Figure 1 shows how the magnitude of the scalar31o_5 i
field ¢ at a distance& =20M (i.e., x=24.4QM) evolves. Us- >
ing linear regression, we find that the slope of the straight 10°F
line on the graph is-5.026, in agreement with the analytic
prediction of an inverse power-law falloff with exponent

21+3[9]. i 3
Figures 2—4 show the same potential barki¢k) that is 100k

responsible for this falloff behavior. Figure 3 shows an ex- ool L , , , , ,

ponential decrease of the left side of the potential function; 0 200 400 600 800 1000 1200

X

this is a result of the fact that the event horizon is located at
Xx=—2. On the other hand, the power-law decrease on the FIG. 7. Exponential decrease of the right side\g) in the
right side ofV(x) shown in Fig. 4 is a direct consequence of SdS background.
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a spherically symmetric static metric of the forf®) with  The constantgx and 8 are integers, wher8=0 but «>0.
lapse function The other constanm is a real number. When we have
(nlf)? a=1, 8=0, andD =3, this becomes a Schwarzschild back-
nir

23) ground of massn/2. Once we have the lapse function, we
re

N(r)=1-m ; .
can compute the potential function

(21+D-3)(21+D-1) _44D-1-a)(D-2-a)—(D-1)(D-3-2a) (In|r|)?
m

Ve(r): 4r2 4 ra+2

2£(2D—3—2a)—D+1 (In|r|)8~1 In|r|)#—2
€203 2 Dr L () mpip- e ) (24

from Eq. (6). i=0,1,2,..., (29

We first find the static solutiogss(r) of wave equation
(7), by obtaining the solution of the equatidif /s(r)]=0.  where we have sé(r)= const=1 without loss of gener-

It is straightforward to show thatg(r) has the form ality. The pair of equations above allows us to generate
B;(r) hierarchically in a straightforward manner.

We can split eachB;(r) into two parts, denoted by
BP(r) and B[(r). BP(r) is defined as them-independent
portion of B;(r), while BiT(r) is the rest, which isn depen-
wherey=1+(D—3)/2. Notice thaty is an integer when the  dent. Physically, the paB(r) represents the wave on the
spatial dimensiorD is odd. Except whed =1 this integer  |ight cone because it is the part that would be generated if the
is always positive. Hence it is the first sum of the solutionpackground were flatng=0). Price referred to this part as
that is physically relevant since it vanishes for largeand  the primary wave which depends only on the mode of the
we choose this as the static solution. For the remainder ofpherical harmonics. The other pBEt(r) is called the tail of
this section, we assume thBt=3 so that this choice of the wave because it is created by the presence of the space-
¢(r) is valid. The coefficientsio(r) andco(r) are arbitrary - time curvature and is off the light cone due to scattering.

constants but the other coefficients are all polynomial ingjyen Egs.(28) and(29), one can show that the primary part
Inlr|. The generating equations fay(r) andc;(r) are given  of g (r) is simply
in the Appendix.

We follow the approach in Ref§9,23] and let T(y+1+i)

B ()= ST (e i

c;(r)
Ta

T (29

_ j
Ps(r)=r 7120 7a_+r7+1j20

» (30
¢.=i§0Bi<r>[g<*”(u>+<—1>if<*”<v>] (26)

When D is odd, vy is an integer and the sequence
P . .
be the form of the initial wave, i.e., the wave emitted by a{Bi (1)}i—o truncates. However, iD is even, the sequence
T .does not terminate and the primary part of the initial wave
star at the onset of gravitational collapse. In other words, this NP . .
is the time whert<r. The functionsg(u) and f(v) are as | ,'has mﬂmFer many t%rms. Indegd, when this is the case, it
yet unknown. The terng(~")(u) represents integrations of IS lnapproprlate to cal; (r) the primary part because there .
the functiong(u) with respect tou: similarly for £ () are tails present. The approach breaks down because the pri-
Using Eq.(26), Eq. (11) becomes ' ' mary and tail parts of the wave become indistinguishable.
g Ea. » =0 This is the reason we restrict ourselves to dddin this
1 d section as mentioned earlier.
0=§N(r)d—BO(r)[g(l)(u)—f“)(v)] Let us now consider the tail part @;(r). Unlike the
r primary part,BiT(r) has no simple solution. Fortunately one

1 * d can always generatg(r) recursively. Note thaBiT(r) is of
— SN(r) >, { L[Bi(r)]—2==B;,(r) orderO((In|r|)P/ri+).
4 i=o0 dr . . . . . . . o
Sincey is an integer in odd spatial dimensions, it is con-
X[ () + (= 1) D(v)]. (27)  Venient to define the functiorS(u) andF(v) as
This equation has a set of solutions G(w=g""(u) and F(v)=f""(v), (39
Bo(r)=1, (28 such that the initial wave can be expressed as

) =2B(r)T,” (u,v), where

1 d 1
Bi+1(r):§N(r)aBi(r)_§f Ve(r)Bi(r)dr! T|y7i(u,v)EG(y7i)(U)+(_1)iF(y7i)(U). (32)
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When the background is flatm(=0), only the firsty+1 o 27!

terms of BY(r) survive. We expect that any outgoing radia- GO(u)=- @0 Yu=U;=U,, (39)

tion will propagate to spatial infinity without any scattering

in a flat background. Therefore we must have which yields
F(v)(v)zp(rl)(v)z...=|:(1)(U)=|:(0)(v)=0 (33 G(V)(U)ZG(“/’D(u):---=G(1)(u)=O. (40)

becausé-(v) represents the scattered infalling radiation andThe restriction orG(u) above ensures that the primary part
the B (r) are nonzero only for &i<'y. In other words, we  of Eq. (26) can be canceled by the-independent part of Eq.
insist thatF(v)=0. (25) properly after timeU, leaving the combined), to be
For concreteness, we suppose the scalar wave starts leaw-dependent only aftdd ;. As a result, the wave with initial
ing the star at retarded time= Uy; that is to say, the scalar static moment will become
field is zero beforai=U,. Continuity then implies . .
B 1 a;(r) - .
GM(Ug=G" YUy =--=G6M(Uy=G"(U, =0, zpuzul:r—y' —]a—-f—z B/(NT," "(uyv). (4]
(39 =T =y

" One can show that the first sum in the equation above is of
G<—1>(u):f GO d¢, order O((In|r)’/r***) because the coefficient function
Uo ay(r) is a polynomial in Ifr| with degreeg. In the second
sum, the tr—.;rmT,O(u,v) is a constant which equals to
e | acD G(u), andB!(r) is of orderO((In|r|)?/r**<). Therefore, in-
G fUOG Dz, ... 39 stead of ﬁaving a time-independent part of order
O((Infr])PIrr*e*1), the wave with initial static moment has
We also assume that there is essentially no emission from thgn orderO((In|r|)?/r***) only.

star afteru=U;>U, (due to gravitational red shjftWhen Now we turn our attention to the scalar wave at late time.
the star possesses no initial static moment at the onset @y late time, we meam>r. For the late time wave, , we
collapse, this cutoff condition is translated into introduce another ansatz
Gu=G""Vw=-.-=6V(u)=6w)=0, * _
gL=2, Ci(NTL(uv),
vu=U,>U,, (36) =0
. [ = —1)iH®
because only the tern@(u) to G(”(u) which represent the TL(u0) ="MW+ (= 1D'HY(v). (42)

rimary wave correspond to the emission from the star. Thi N
gonditi)(gn implies P %y substitutingyy= ¢, Eq. (11) becomes

v Y1 N L[ Co()]T?
G(_l)(u):ju G<0>(§)d§:JU GO(£)d¢=const, 2 N(DLLCo(D]TL(u,)
0 0

1 = d
Yu=U,. (37) 2N 2, | LICia(N] =25 Cilr)
Therefore, if there is no static moment befareU,, the XTiLﬂ(u,U):O_ (43)

scalar wave after time=U, is
This equation has another set of solutions

iﬁuzul:i:%l Bi(r)T,” '(uv), (38) L[Cy(r)]=0, (44)
whereT,~*(u,v) is only a constant an8;(r)=B/(r) is of _ 4 L
orderO((Inr|)#/r'* ). So the first term of this solution which LCisa(n] 2dr G(r, 1=012... . (49

is time independent is of orde®((In|r[)’/r****Y). Physi- . o _

cally, this says the tail of the perturbation persists after timéJnlike the case for the initial wave [for which the func-

u=U,. The primary part of the wave has been “washedtions Bi(r) can be calculated recursively using straightfor-

out” by the gravitational redshift before=Uj,. ward d|ff_erent|at|on and mtggrat@nrecursn_/e generation of
The situation is more complicated if the star carries athe functionsC;(r) involves inverting the differential opera-

static moment at the onset of the collapse because the stafR’ £. The zero order equation has a solution

wave ¢5(r) can also be divided into primary and tail parts.

In this case, we superimpoge(r) of Eq. (25) and ¢, (r) of

Eq. (26) together to form a new initial scalar wave. We also

suppose that only the tail of the perturbation persists after the

retarded timeu=U, [9]. For the superimposed initial wave The coefficient functiong;(r) are those in Eq(25. They

this cutoff condition requires can be calculated by using the generating equations in the

co<r)=r’“§ iji)- (46)

o I
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2

Appendix. The other inhomogeneous differential equation ) r2 ) J
(45) has a solution of the form ds?=—N(r)dt*+ N(T) +rf — 5 pdttde] (51)
el 72
Ci(=r"""3 —5, 47 N()=[AJr2=M+ 2, (52)
where i=0,1,2.... When i=0, it is understood that and is actually anti—de Sitter spacetime with identifications.

c?(r)zcj(r). The Coefficientg:}(r) are also given in the The constanM>0 is the quasilocal mass of the black hole

Appendix. Since each coefficienl(r) is a constant instead andJ is the angular momentum of the hdig4]. For our

of a polynomial in Ifir|, we can estimate the order of the late PUrPoses we shall regard the above metric as a spacetime
time wavey, as which is an asymptotically anti—de Sitter spacetime.

WhenJ=0, the wave equatiofil) gives Eq.(10) with

lﬂl-:igo O(r7+l+i)TLi(U,v). (48) Ve(r)=¥(1—8§)+ M%‘ZHZ (53)

Finally we match the late time solution to the initial solu- In this case, the tortoise coordinatas given by
tion at some transient period wheug v, andr are of the
same order. As the background is asymptotically flat, the f dr 1 \/|A|r—\/ﬁ‘
X=

tortoise coordinatex must have an order similar to that of N(r) :2 M In A :
. ) . . . N VIA|r+VM
r in this transient region. That is to say, the orders @nd [A] [A] ‘

t are the same. The initial wavg,-y, in this period be-  Asr goes from\/M/[A] to infinity, the tortoise coordinate
comes has a range-{,0). Thus we can write in terms ofx as

Yu=u, r: [M 1+ exp2\[A[Mx)
((|n|r|)ﬂ |Al1—exp2\[A[Mx)

m) without an initial static moment, ) i ,
r For conformal wave in 21 dimensions, the parametér
equals 1/8 and the potential barriérbecomes

(54)

(59

Yz, exXp(2\X)

VOO =Vorg a2 12 (56)

(In[rpfy :
=0 e with an initial static moment.

where, for convenience, we have defined

In order to have consistent orders in the transient period, we

= 2 _
must have Vo=|A|(M+41%)>0 and A=\|A|[M>0. (57)

8 The procedure for finding a solution to the conformal sca-
T,%t t)~0< (Inlt)) ) (49) lar wave equation is as follows. We first write down the
LAn t2rteta representation of the solutios in terms of Green’s func-
tions. The rest of the problem then reduces to that of looking
if the star has no initial static moment, while the order offor the correct Green’s function. We will Fourier transform
T.° must be from the time domain to the frequency domain and obtain
the Green'’s function in frequency space. Once we have the
0 (In|t])”? Green’s function in frequency domain, an inverse Fourier
TU(LY)=0| zy717a (50 transformation will yield the solutions(t,x). A case when
J+#0 will be studied as well.

if the star has a static moment at the onset of collapse. In We first assume that there exists a Green’s function
other words, Eqs(49) and(50) give the falloff behavior of . _ .
the wave at late time. The inverse power falloff behavior G &= =G(Ext=1), (58)
modified by a logarithmic term was first noted by Ching yhich is zero wheri< 7. We define an operatd as
et al. [22]. For a Schwarzschild background, we &3,
a=1, andB=0 and havey=1, yielding the familiar power- D = di1— dyxT V(X), (59
law decay rat¢9,23].
such that the Green’s function with respect to this operator

has the property
IV. 3D BLACK HOLE BACKGROUND

The (2+1)-dimensional black hole spacetime obtained DG(x,&t=7)=[du=dxxt V(X)]G(X, &t =17)
by Banados, Teitelboim, and Zane[li9] is a spacetime =8(t—1)8(Xx—§). (60)
which satisfies the vacuum Einstein equations with a nega-
tive cosmological constantA(<0). Its metric is The inner product betwedd ¢(t,x) andG(x,&;t— 1) gives
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0 In Eq. (61), after we have used the inverse Fourier transfor-
P(t,x)= f_x[G(X,ﬁ;t)(?tlﬂ(O-fH #(0,6)3G(x,&:t)]d¢ mation and interchanged the integrals with respedidcand
dr, the representation af(t,x) simply becomes

* et s #t0= [ TGENIH0£)+H0£7G(x E]0E

—(7,€)9,G(x,&t— 11820 ..dr. (62) (70

As a result, we have changed the question from looking for A Exact solution for static 3D black hole potential
Y(t,x) to searching for an appropriate Green’s function.

We now carry out a Fourier transformation and define We will obtain the exact solution for the scalar waye

corresponding to the potential barri€s6) in a static 3D
_ o black hole background. This entails finding the solution of
G(x,§w)= fﬁwG(x,g;t)exp(lwt)dt. (62 the differential equatio® h(x;»)=0. This equation has two
solutions[25]: namely,

Therefore Eq(60) becomes h. (x;0)=exp(xiwX)F(—v,1+ ;1= u;z(X)), (72)
DG(X,&0)=[~ 02— dyut V(X) G(X,& 0) = 8(x— &) exp(21X)
(63 Z(x)= 1T exg2hx)’ (72
if the Green’s functiornG(x, &;t) satisfies the conditions
LW
lim G(x, &t) = lim 4,G(x, 1) =0. (64) rEIN (73
t—oo t—o
On physical grounds these assumptions are reasonable be- y=— E+i I_ (74)
cause any localized quantity is expected to be dispersed 2 m

throughout the space by means of wave propagation. Math- ) . .

ematically, these assumptions are consistent with the Fourig¥here F is the hypergeometric function. Becausegoes
transformability of the functio(x, £;t) which must be ab- from minus infinity to zeroz has a range of (0,1/2) which
solutely integrable ovet in order forG(x, ;) to be well yields absolute convergence to the hypergeometric function

defined. The Green’s function in frequency space can be re 26]. At the boundary— —o (thg event horizon of the 3D
resented as lack hole we employ the condition

f(X;w)=exp—iwXx), X——oo, 75
f(Ewgoco) (o) =ep=ien B (79
_ W(w;g,f) ' as usual[18]. Since this spacetime is an asymptotically
G(x,&w)= (65) anti—de Sitter spacetime instead of a flat spacetime, the
f(X;0)9(& o) i boundary condition at spatial infinity is less trivial. Choosing
W(w;g,f) it x<¢, the Dirichlet conditiong21]
where the functionV(w;g,f) is the Wronskian of two lin- 9(x=0;0)=0 and dg(X;0)lx=0=1, (76

early independent function{x; ) andg(x; w), that is, the two functionsf (x: @) andg(x: ) read

W(;9,f)=0(x; ) dxf (X; 0) = f(X; @) ,9(X; 0). (66) f(x:w)=h_(x:®), (77)
The functionsf (X; w) andg(x; ) are two independent solu-

tions of the equations 906 @) =h, () ~Ah-(x;0), (78

- - where the coefficien is given by
Df(X;w)=Dg(X;w)=0, (67)
h,(0;w)
so thatW(w;g,f) is independent oX. Azm
Let ¥(x; ») be the Fourier transformation of the solution
#(t,x). We impose boundary conditions on the functions :2_2#F(1+M) P(A2—[p+v])2) T(A-[p—v]2)
f(x;w) andg(x;w) so that Frl—w) I'A+[p+v]2) T2+ [u—v]/2)"

(79

f(Xx;w)xcP(x;0)  and  a,f(X;w)xdh(X; ) (68)
The solutiong is typically multiplied by a normalization
at the pointx— —. At the other endX=0) we insist that  factor, which we have set to unity since it is always canceled
out once the Wronskian is taken into account. It is not diffi-
g w)xP(X;w) and 4,g(X;w)xdh(X;w). (69  cult to show that the Wronskian ef andf is
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W(w;g,f)=W(w;h, ,h_)=—2iw. (80

BTZ data (D): & = 0.5, Z, = 3, R, = 2Ry, Ry = 4Ry,
10 T . : : .

Now we put everything together and obtain

Regression Slope = —0.75039 / In{10)

B(xE<xi0)=5-h_(Ew)[h, (x0) ~Ah_(xw)].
(81)

| ¥ {x=-0.5) |

The remainder of the problem is to bring the Green’s func-

tion from the frequency domain back to the time domain.
The inverse Fourier transformation is given by the equa- 5|

tion

G(x,g;t)=%f:é(x,§;w)exp(—iwt)dw. (82

o 5 10 15 20 25 30 8
We evaluate this integral by analytically extendiag to !

complex values and using Cauchy’s residue theorem. The
contour of integration is chosen to be a large, closed semil-Dir
circle on the lower halfv plane, with the center at=0. We
make an indentation consisting of a small semicircle cen; ; ;
tered at the origin because this point which is a pole from thethe functiong(x,) would simply become
Wronskian lies on the integration contour. By Jordan’s g(X;w)=h_(X;w)—Bh_(X;w), (89)
lemma, the contribution from the arc of the large semicircle

goes to zero as the radius of the arc tends to infinity. Thevhere the coefficient constaBtis defined as

Green'’s function then becomes

FIG. 8. Exponential falloff for a conformal scalar wave using
ichlet boundary condition.

Bzaxh+(0;w)
Gx.&E0)=1S RedG(x,&w)exp—iot), (83 dxh-(0se)
—z-%””‘” F(=[p+v]2) T'(12-[pn—v]/2)
where Regk(z)} denotes the residue of the functi&(z) at B F(l—pw) T'(12+[pn+v]/2) T((u—v]2)

a pole. In our case, the poles of the Green’s function (90)
G(x,¢;w) within the contour come from thE functions of

the coefficientA. That is to say, the poles correspond to  The change fronA to B causes the singular terms @ to
becomel'(1+ ), I'(—=[p+v]/2), andI'(1/2—[ u+ v]/2),

—ki=1+p, (84) which also have infinitely many poles on the lower half
1 N plane. A quick inspection shows théf{t,x) also dies out to
—Ky== — K V, (85) zero at an exponential rate of exp(t/2) because the poles
2 2 which are closest to the real axis are
m—V | 1
—kz=1———, 86 =i
3 5 (86) w N)\ IS\ (91)
whereky, ky, andkz equal 0, 1, 2, 3, ... . Notice that there  The next few graphs are the numerical results using the

are infinitely many poles on the lower hasf plane. Because potential (56). We used the same initial condition as in the
there is no branch cut in eithér, or h_, we conclude that numerical computation for the Schwarzschild case. Since the
G(x,&:t) decays to zero exponentially. The dominant expo-background is an asymptotically anti—de Sitter background,
nential decaying rate is determined by the pole closest to th@e integrate Eq(10) numerically with the Dirichlet bound-
real axis on the lower halb plane. According to the three ary condition atr == (i.e., x=0). Figures 8 and 9 illustrate
equations above, there are two such poles, namely, the falloff behavior of the wave using different exponential
potential functions. In both graphs, the initial Gaussian im-
_ +I—)\—i §)\ 87 pulse is located at twice the black hole radiu®k(p and the
©== M 27 observation is made atR},. The straight line asymptote of
the ringing behavior on the semilogarithmic graph corre-
As a result, the exponentially decaying Green’s functionsponds to exponential falloff, numerically confirming that
G(x,&;t) implies thaty(t,x) also decays in this manner at a the wave exponentially decays in this asymptotically nonflat

rate expE3at/2). background at the rate of expB8At/2).
Had we chosen the Neumann condition instead of the Di- Figures 10 and 11 illustrate the numerical results using
richlet condition forg(x,w) [21], that is, the Neumann boundary conditiomat 0. It is clear from the

two graphs that the scalar wave also exponentially decays
g(x=0;0)=1 and 4,g(X;w)|x=0=0, (88) when the Neumann condition is used. One can see that the
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BTZ data (D): A=0.1, Z, = 10, R, = 2R, Ry = 4Ry,

o BTZ data (N): A= 0.1, Z, = 10, R, = 2Rp, Ry = 4R,
10 10 T . . T
Regression Slope = -0.150342/ In(10) | 2 Regression Slope = —0.0502119/ In(10)
i
b
Tih
i
10° 107° [Trfse.
i

= = (e
3 9 i
9 9 [Titec
2 e (Titse
> > i

10l 1 107 fiee

i1
fhs,
i
10-15 L Il i s 1 1 L L n 10-‘5 | | | " L
0 20 40 60 80 100 120 140 160 180 200 0 100 200 300 400 500 600
t t

FIG. 9. Another semilogarithmic graph as in Fig. 8 but with  FIG. 11. The same as in Fig. 10 but with different parameters.
different parameters.

In this spinning case, the black hole has two horizons
falloff rate is 3 times slower than that in the Dirichlet casesR.. which are given by the equation
because the dominant poles in this case are 3 times closer to
the realw axis than those in the Dirichlet cases. 7_

RA 2|A|[M YMZ=]A[3). (94

B. Spinning 3D black hole background The lapse functiorN(r) can then be written in terms of

WhenJ#0, i.e., when the black hole rotates, we also findR, andR_ as
a late time exponential decay rate, as we shall now demon-

strate. _|A| 2_p2y(r2_p2
If we assume that N(r)= rz (F=RO(F-R%). (99
p(t,r) As a result, the tortoise coordinate reads
V(t,r,¢)= (92)
Jr 1 o iR (TR
_ , , , XO=3re—re R, R R )
that is to say, that there is no “spherical harmonic” compo- (96)
nent to the wave, the conformal scalar wave equation
V¥ =RW¥/8 will reduce to Eq(10). The tortoise coordinate which has an inverse of the form
x is defined as before but the potential barrier becomes
LS E an(a)Y?", (97)
y __3Al, Lo N0 o r(x) 1—o2&p Y
()=~ + 5N~z (93
R_
o=—<1, (99
o _BTZdsta (N1:1=05,2, =3, Ry ~2Ry Ro = 4Ry R.
1—exp(2AXx)
Regression Slope = -0.2523/ In(10) Y= m< (99
10° b ] A=|A|R;(1-06?)>0. (100
%—‘ The coefficientsa, (o), which read
% ) 3-¢?
ool | ag(0)=1, a(o)=-oc 3(1=02)2" (101
_ ,25-170°+30*
)= g gy
T % R 1008~ 103%7+ 3680 — 450°
a3(0')— g 3131_0_2)6 g ey

FIG. 10. Exponential falloff using the Neumann condition. (102
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are of orderO(¢?"). If o is small enough, we can employ
the approximation

1 Y

R 209

If we substitute this approximation into the potential barrier
V(x), we will obtain

(RZ—R%)(RZ—4R?%)  exp(2AX)
V)~A?® RZ [1+exp2ax) ]2
2 exp(4\X)

+12A%(2R2 -3R?)— —————
* R [1+exp2ax)]*

RY  exp(6AX)

+80A% = .
R2 [1+exp2Ax)]®

(104

55
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this Wronskian isx independent, the simplest way to com-
pute it is to evaluate the quantity at the poit 0. It is not
difficult to show that

x=0

X=—00

W(w;g,f)=W(w;do,fo) + W(w;go,f)(X)]

=W(w;9o,fo) —W(w;g, ) (x)[32°

X=—o0"

(11D

Since g(x;w) and f(x;w) satisfy a differential equation
which differs from that satisfied bgy(X; w) and fy(X; w),
the Wronskian8V(w;gg,f) andW(w;g,f,) are functions of
x in general. Therefore the correcti®fy(x) in the potential
barrier induces an extra{independentterm in the Wronsk-
ian W(w;qg,f).

The first Born approximations fof(x;w) and g(x;w)
read

It is obvious that the first term in the potential function above
has a form identical to the potential function in the nonspin-
ning 3D black hole case. Since>0 butx<0, the second
term in the potential is always weaker than the first one. As
a result we may iteratively solve the wave equation, treating
the first term as the lowest order potential, the second term as
the first correction to this approximation, and so on.

For clarity, we define

f060)~11060) = To00) ~ 5| (1,00 ()

—h_(x)h,(§)1V1(§fo(§)d¢, (112

i 0
g(X;w)=g1(X;w) =go(X;w) + ZI—wL [hi(X)h_(§)

Vo2 R TRO(RE—ARY)  expi2nx) ~h_ (0N, (&) IV4(£)go(£)dE. (113
o(X)= RZ [1+exp2n) 2
(105  As a result, the WronskiaW/(w;g,f) can be approximated
by
Vi (X)=12A%(2R% —3R? %—eXp(MX)
1= I2ANERE IR R [T exp2an I W(w;9, /)~ W(@; 0o, Fo)+ W(w;do,F1)(X)|C..
(106 ,
=W(w;go,f ;w)fo(X; )V dax.
B = — w?— dy + Vg(x) + V(). (107) (@;90 0)+f_xgo(x w)fo(X;@)Vi(x)dx
- (114
Do=— 0%— dyy+ Vo(X). (108

Since there are poles in the lower haliplane in the Green’s

function G but there are no branch cuts in eittfgror g,

this implies that there is an exponentially decaying quasinor-
mal ringing effect in the wave tail in this rotating 3D black
hole configuration.

Figure 12 is the graph of the potential functions of this
spinning case with zero angular harmonic. One can show
that when the ratigA |J2/M?>16/25,V, becomes negative
for somer>R, . This behavior is illustrated in Fig. 12,

Therefore the equatiod f(x;w)=0 has a representation

x U (x)U_(&)—-U_(x)U,(&)
W(w;U_,U,)

f(x;w)=fo(x;w)+J

—o0

XV1(&)f(& w)dé (109

at x=—o. The functionsU, (x) and U_(x) satisfy the
equation DyU_(x)=DoU_(x)=0. The other function | : €a
fo(X: @) sat?sfiés the s%me equation s (x) and U_(x) whereV(x) becomes negative wheg| is sufficiently large.

and also satisfies the Dirichlet boundary conditions aff Fig- 13, we can see that the potential functions in both
x— —s. In other wordsfo(x:®) is the solution(77) in our cases vanish at an exponential rate towards the event hori-

case with different values of, x, and» andU.. areh. . zon. As usual, we put a Gaussian impulse at a distance twice
Similarly the solution arounat=0 is - - that of the outer honzorR+ , and f[he numerical response of
the scalar waves over time at a distan€® 4s shown in Fig.
oU,(X)U_(&)—U_(x)U_(&) 14. This figure shows an exponential decay of the wave al-
W((z);U7 1U+)

g(X;@)=go(X;w)—

X

XV1(8)9(§;0)dE,

where go(X;w) is just Eq. (78). We first compute the
WronskianW(w;g,f) for f(x; ) andg(x;w) above. Since

though its appearance differs from the previous graphs be-
cause there are no angular harmorios., | =0). Indeed, if

we setl =0 in the static 3D black hole case, we find that the
falloff also looks like that in Fig. 14 because the pole that is
closest to the reab axis for the Green’s function in the
frequency domain has no real péEgs.(87) and(91)].

(110
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3 x 10 . : . . . : . . . 1o ' . Spinlning SD?H data: Ry = 2R, Rp = 4R,
25
102t
2 -
107 b iy A =-0.2, M =0.005, J = 0.01
15+ 3
- o
g )]
WL =100+
(i) A=-0.1,M=0.01, J = 0.001
o5} 10°
(i) A=-0.1,M=0.01, J = 0.001
ok . J
(i) 2 ==0.2, M =0.005, J = 0.01 ol
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t

FIG. 12. Potential functioV(x) of two spinning 3D black hole

FIG. 14. Exponential decay of conformal scalar waves in spin-
backgrounds with(i) |A|J?/M2=10"2 and (i) |A|J?%/M?=0.8.

ning 3D black hole geometry.

V. SCHWARZSCHILD —ANTI-de SITTER BACKGROUND |A| , 2M |A| , Rp(3+ |A|Rt2,)
Since the 3D black hole spacetime is an asymptotically N(r)—?r 1= ——?r 1= 3r '

anti—de Sitter spacetime, one might expect that the late time (116

falloff behavior of any scalar wave in a Schwarzschild—

anti-de Sitter(SAdS background has similar behavior. In ) o

fact, the situation is quite different from the 3D case, in part¥hereA <0 and the black hole radiug, satisfies the equa-

because of the different dimensionality and in part because #On N(Rp) =0, the tortoise coordinate

is not possible to solve the wave equat{df) exactly in this

background. Although the potential functidry(r) in this

case reads
e Rp n (r—Ryp)? ‘
2(1+|A[RY) |2+ Ryr +R2+3/A||
V() 2|A| 1-6 )+I(I+1)+2M 115
rN=—-:_1- —,
VIAI(1+|A|RE) V4+[AIRS
which is quite similar to Eq(53) in the 3D case, we cannot
write r as a function ofx in a closed form. That is to say, Schwarzschild-Anti-de Sitter data: Ry, = 2
given the lapse function ‘ ' '
0.25[
@ ®
10° —
0.2
10°
o _o1sf
1T A =—02M=0005,J=001 z
- 107 1 0.1 (b) ®)
§ \
10—20 ’
i) A =-0.1,M=0.01,J =0.001 0.05-
oL © © k
~30 -800 -250 -200 -15;0 —1(‘)0 -5;0 0
10 X
10—:5200 g s = e e . FIG. 15. Potential function®/(x) for the SAdS background.
h B x B The six potentials are generated with the parametés

A=-10%1=2,() A=—10%1=1,(c) A=—10"41=0, (A)
FIG. 13. Decaying exponential behavior p#(x)| near the A=-10"2 I=2, (B) A=-102, =1, and (C) A=-102,
black hole event horizon. |=0.
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SAdS data: 4 =-0.0001, Ry, =2 (M =1.00013),1=0

delx = 0.04, delt = 0.03636, Ry, = 2Ry, Rg = 5Ry,

10 "k

| 9 (x=—267.16) |
!

10’ 10° 10°
t

FIG. 16. Scalar wave df=0 decays away in the SAdS back-
ground using the Dirichlet condition at=0.

VAJ2r+Ry)| m
X arctar(\/gT\/TM _E (117)

has no closed form inverse, and so we are unable to writ

down an explicit expression for the potenti&(x).
For the remainder of this section we set 1/6 (i.e., we

consider a conformal scalar field propagating on an SAd

backgroungl

CHAN AND R. B. MANN

SAdS data: A=-0.0001, R, =2 (M =1.00013), I=1

delx = 0.04, delt = 0.03636, R, = 2Ry, Ry = 5Ry,

1 (x=-267.16) |

. .
10’ 10? 10°
t

FIG. 18. Log-log graph of the decay behavior in the SAdS back-
ground usind =1 and the Dirichlet condition.

black hole (Fig. 2), the potential functionV(x) attains a
maximum not far away from the event horizon. In the SAdS
case, the shape of the potential functigfx) is given in Fig.

15. Unlike the Schwarzschild case, the tortoise coordinate
x for the SAdS background is bounded above. Eventually all
the outgoing waves that leave the black hole region will
return towards it due to the boundary conditiorxat0. The
returning wave will then reflect off of the potential barrier

$ack toward spatial infinity. This is completely different be-

havior from the 3D case, in which the incoming wave from

The most important difference between the 3D black hol&;ia) infinity x=0 continues its journey to the black hole

background and SAdS background is the shape of the poten
tial function V(x). In both cases the potential functions are
decreasing in an exponential manner toward the horizon. Ir(wa)

the 3D casdeither spinning or stat)cthis function attains a
maximum at a distance=« (x=0). When the background
is SAdS, this is no longer true because spatial infifuthich
is still given byx=0) is not the place at whick(x) has an
absolute maximuntfor xe R™). As with the Schwarzschild

SAdS data: A=-0.0001, Ry, =2 (M =1.00013),1=0

deh = 0.04, delt = 0.03636, Ry = 2Ry, R = 5Ry,

1 4 (x=—267.16) |
=
L

10°
t

FIG. 17. Scalar wave falloff pattern &0 using the Neumann
condition spatial infinity.

unhindered.

We can see from Fig. 15 that whén| is small[barriers
—(c)], the barrier maximum moves to the left, lengthening
the traveling time from this maximum to spatial infinity.
When | vanishes[cases(c) and (C)], V(0)=0 because
V(0)=I(1+1)|A|/3 in general. Therefore barriefs) and

(b) haveV(0)+# 0 although this feature is not apparent on the
graph due to the small size ¢f\|. The barrier height is
considerably higher than the magnitudeugik) atx=0, and
this feature becomes more pronounced for latgeThis
causes the scalar wave to bounce back and forth in the region
outside the barrier. However, part of the scalar wave can
surmount the barriefthereby going into the black hglde-
cause the barrier height is still finite. However, it takes a long
time for a significant portion of the wave to enter the black
hole.

We solve the wave equation in this SAdS background
numerically. The results of the numerical integration of Eq.
(10) using Eqgs.(115 and (116) are given in the next few
graphs. Figures 16 and 17 show the falloff behavior of a
conformal scalar wave with=0 initially located at a dis-
tancer =2R,. The computation for Fig. 16 uses the Dirich-
let condition atx=0 but Neumann boundary condition is
employed for Fig. 17. Since the cosmological constant
was chosen to be relatively small in both cases, namely,
|A|=10*, we can see on both graphs that there is clearly an
inverse power-decay behavior. According to the graph, this
power-decay rate is roughty  which agrees with the one in
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SAdS data: A =-0.0001, R, =2 (M =1.00013), 1=1 SAdS data: A=-0.01, R, =2(M=1.01333),1=0

delx = 0.04, delt = 0.03636, R, = 2Ry, R = 5Ry,
delx = 0.04, delt = 0.03636, R, = 2R, Ry = 5R},

-
o

14(x=—267.16) |
|y (x=—18.84) |

107

) ) L ) ! :
10' 10 100 0 200 400 G(t)O 800 1000 1200

FIG. 19. Similar graph to Fig. 18 but using the Neumann con-  FIG. 21. Conformal scalar wave decay behavior usin@ and
dition. the Neumann condition.

the Schwarzschild case. However, this inverse power deca
does not last very long after the return of the outgoing wav
from spatial infinity. Both diagrams show this returning
wavefront.

For small |A| and nonzerol, the falloff behavior re-
sembles the case 0. Initially there is a ringing effect
(due to the quasinormal modesllowed by inverse power-

onable amount of CPU time. From these graphs, we can see
that the scalar wave does indeed decrease but over a much
larger time scale. Figures 20 and 21 indicate that the peak
height has an approximate exponential falloff fer0. For

>0, the peak height has a more complicated behavior illus-
trated in Figs. 22 and 23. Over long time scales the maxi-

decay behavior as shown in Figs. 18 and 19 mum peak height has a very mild approximate exponential

Since the finite height of the potential maximum allows falloff.
the scalar wave to surmount the barrier and leave the trapped
region which is the exterior outside the barrier maximum, we
expect that the peak value of the second returning wave is
smaller than that of the first wave. However, it is unclear

from simple inspection of Figs. 16 to 19 whether or not this  The results of this work indicate clearly that the asymp-
is the case. Figures 20—23 are the numerical results we olytics of a given spacetime have a considerable influence on
tained using the potential functiort8) and (C) in Fig. 15.  the |ate time falloff behavior of a scalar wave. The early
We compute the large\| case with both DirichleFigs. 20 work of Price showing that waves in a Schwarzschild back-
and 23 and Neumann(Figs. 21 and 2Bboundary condi- ground decay away according to an inverse power rate was
tions. For this case there are more returning waves in a regecently extended by Chinet al. who found that the inverse

VI. CONCLUSION

SAdS data: 1 =-0.01, Ry, =2 (M=1.01333),1=0 SAdS data: A=-0.01, Ry,=2(M=1.013),i=2

10

delx = 0.04, dett = 0.03636, Ry, = 2Rp, R = SRy, delx = 0.04, delt = 0.03636, R, = 2R, R = 5Ry,

I

0 1000 1200

-1 i -1

1 e, A

19 (x=-18.84) |
D ———
PER———

11 (x=—18.84) |

b

0 200 400 600 800 1000 1200
t

FIG. 20. Semilogarithmic graph of the decay behavior in the FIG. 22. Semilogarithmic graph of the decay behavior using
SAdS background usinig=0 and the Dirichlet condition. nonzerol and the Dirichlet condition.
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o SAGS data: = -0.01, Ry =2 (M= 1.00019), I=2 geometries. We have shown here that the assumption of
' ' ' ’ ' power-law falloff in the uncharged static and spinning 3D
delx = 0.04, deit = 0.03636, R, = 2Ry, Rg = 5Ry, black hole background is not valid and must be replaced by

an exponential falloff.

For a rotating 3D black hole we have shown that a
107" | ¢-independent scalar field also has late time exponential de-
cay. In this particular setup, one can recalculate the mass
inflation rate using the correct late time falloff rate. It is not
difficult to show that the new inflation rate reads(v)

Il &

[0

| ‘ T ‘ it ‘ : xexf] (k—a)v], wherek is the surface gravity at the Cauchy
10’2 ‘ ‘ I ik horizon of the black hole. The parametercomes from the

i exponential falloff rate for the scalar wave which reads

il exp(—at/2). For example, whem\=-0.1, M=0.01, and

l } J=0.001, the surface gravity at the Cauchy horizon is
10_3 | ‘ | 1.999 but the parameter is only 0.08 according to Fig. 14.

[¢] 200 400 6?0 800 1000

1200 Table | shows some other values @fand « in the rotating

3D black hole backgrounds. FoA|J2/M?<0.64 we find
that the surface gravity is always greater than the exponen-
Sial falloff rate a. Therefore the attenuation from the falloff
effect does not halt mass inflation and the basic conclusions
in [16] remain unchanged. Rather the mass inflation rate is

| Y (x=—18.84) |

FIG. 23. This semilogarithmic graph is the Neumann analogu
of Fig. 22.

power law can also be modified by a logarithmic term in

some black hole configurations. We have been concerned flowed do¥vn [r\elazt/ivezto spacetimfe_s dvxﬂth power-lzw falloff.
this paper with the falloff behavior of conformal scalar 'OWEVer. or|A|J/M*>0.64 we findthat >« and mass

waves in a background geometry which is an asymptoticall;}'f'ﬂation is attenuated. This case is currently under investiga-
anti—de Sitter geometry. We found that the waves in un-'o™

charged static and spinning 3D black hole backgrounds die _In_ the nonspinning case i2+1) dimen_sions, we find that
out at an exponential rate. This conclusion is supported bg¥ IS independent of the angular harmonic paramet&ecall

both analytical and numerical computations. For conformatat in Eqs.(87) and(91), | determines the frequency of the
scalar waves in a Schwarzschild—anti-de Sitter backgroungu@sinormal ringing. The decay rate is governedbyhich
our numerical analysis demonstrates that the falloff patterfs @ function of black hole parameters, namelyandM.
over short time scales obeyafter some ringinga power- Th|§ leads to a qualltat!ve d|st|nct|on. between the mass in-
law falloff. However, over longer time scales the outgoingflation ~ mechanism in the (statig (2+1)- and
wave returns from spatial infinity. The falloff of the peak (3+11)-dimensional spacetllinges. In a Schwarzschild back-
amplitude in this case is neither inverse power nor exponer@round, the falloff rate is ' * [9] which implies larger the
tial. However, there is a very weak exponential decrease inomentl, faster the falloff. This y|el_ds a mass inflation rate
the maximal peak amplitude. This decay pattern is so com=€Xp(w)/v*@*? [7]; the exponential growth always sur-
plicated that further investigation will be needed to morePasses the falloff effect for arbitrarily largeFor a 3D black
precisely determine its dependenceton hole with an inner honzon we showed that the_ falloff rate is
Previous investigations of mass inflation in a charged®xponential which is much stronger than the inverse power
spinless 3D black holg13] and an uncharged spinning 3D falloff. However, this exponential decay is independent of
black hole[16] assumed a power-law falloff rate for the sca- the moment — unlike the Schwarzschild case, increasing
lar wave. Under such assumptions these investigations derff® moment does not yield a stronger attenuation of the mass
onstrated that mass inflation occurred in the correspondinfynction.

TABLE |. Exponential falloff ratea which is found by graphi-
cal method is always less than the surface grawxiip rotating 3D
black holes.
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0.1 0.1 0.001 10° 0.1413 63.2452
1.0 1.0 0.01 104 1.417 199.987

APPENDIX: SOLUTIONS IN ASYMPTOTICALLY FLAT

0.1 0.01 0.001 10° 0.04422 1.99875 (D+1)-DIMENSIONAL BACKGROUND

0.5 0.01 0.001 %103 0.09852 1.99374

Given the lapse functior(23) in (D+ 1)-dimensional
spacetime, the time-independent solution@f(r)]=0 is

0.2 0.005  0.01 0.8 0.01541  0.0268999 given by Eq.(25). The coefficientsa;(r) andc;(r) can be
generated by the next two equations:

0.1 0.005 0.01 0.4 0.02034  0.0515936
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m&D—-2-a)(D—1—a)+l(1+D—2—a)]

aj.1(r)=m(In[r|)Pa;(r)— 2yt 1

W(L+(j+ D) e, (In[r[)?ay(r))
MéD—-2-a)(D-1-a)+(I+a)(I+D—2)]
+
2y+1

mBL£(2D—3—2a)+1]
B 2y+1

W(2y+2+(j+1)a,(In|r[)Pa;(r))

mBLE(2D—3—2a)—|-D+2]
2y+1

W(L+(j+1)a,(In|r])#~a;(r))+

XWQRy+2+(j+1a,(Inr])# ta;(r))— %

WL+ (j+1)a,(In[r])#~2a;(r))
N mB(B—1)&

2771 W(2y+2+(j+1)a,(In[r[)A~2a;(r)), (A1)

m&D—2—a)(D—1—a)+(1+a)(I+D—2)]

Cj+1(r)=m(In|r|)Ac;(r)+ 2y+1

W1+ (j+1)a,(In|r[)Pc;(r))

m&D—2-a)(D-1—a)+I(I+D—2—a)]
Bl 2y+1

W(=2y+(j+Da,(In[r])Pec;(r))

, MALE(2D—3-2a)—1-D+2] mB[£(2D —3—2a)+1]

WL+ (j+1)a,(Inr))#~1c;(r))—

2y+1 )
XW(=2y+(j+1)a,(In|r[)P~1c;(r))+ %W(HU + 1), (Infr|)#~2¢;(r))
-1
_%W(—Zﬁ(iﬂ)a,(lnlrl)ﬁ2cj(r)). a2)

The functionW used above is defined as

f(r)
7 dr,

W(n,f(r))= rTf

wheren is a real number anél(r) is an integrable function. We evaluate the integral\irin such a way that the integration
constant is always set to zero. This function has a property thét)ifis a constant and# 1, thenwW(n,f(r)) gives a constant.
Whenn is unity butf(r) is still a constantW(n,f(r)) is proportional to lfr/R|, whereR is some constant of dimension of
length. In the case whef(r) is no longer constant but a polynomial offR|, the functionW gives another polynomial of
In|r/R|. The indexj in the two equations runs from zero to infinity and the starting coefficiapts) and cy(r) are two
arbitrary constants. It is obvious that when the background is flatme.0, all thea;(r) andc;(r) vanish except, and
Co- If m#0, these coefficients are polynomials ifriR|.
For the equationC[C; . 1(r)]=2dC;(r)/dr with L[Cy(r)]=0, the solution ofC;(r) is given by

o

Ci(r):r7+l+i2 C_JEL_).
j=o T

Each coefficient:}(r) can be calculated by the next two equations:

i o 2(2y+ DI (y+i)!
Co(1)=Co= iy (2y+ 1)1

¢ i(ry=m(In[r))Pc " (r) + [YW(=i+(j+1) e, 1 (N)+(y+ DW(=2y—1—i+(j+1)a,Cj,1(r))]

2y+1

MéD—-2-a)(D-1-a)+(I+a)(I+D—2)]
+
2y+1

W(=i+(j+1)a,(In|r)fc; " (r))

MéD—-2—a)(D-1-a)+I(I+D—-2-a)]
B 2y+1

W(—2y—1-i+(j+1)a,(nr])’c"X(r))
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mBLE(2D—3—2a)—1-D+2]
+
2y+1

XW(=2y=1=i+(j+Da,(n|r)# e (r)+

mB(B—1)¢

W(=i+(j+1)a,(In|r|)?~2c;*X(r))
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mpL&(2D—3—2a)+1]
B 2y+1

mB(B—1)¢§

2y W(=i+(j+1)a,(In|r)#~2c; ()

— —————W(=2y—1—i+(j+ D) a,(In|r[)F~ % X ().

2y+1
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