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We study the evolution of massless scalar waves propagating on spherically symmetric spacetimes with a
nonzero cosmological constant. Considering test fields on both Schwarzschild–de Sitter and Reissner–
Nordström–de Sitter backgrounds, we demonstrate the existence ofexponentiallydecaying tails at late times.
Interestingly, thel 50 mode asymptotes to a nonzero value, contrasting the asymptotically flat situation. We
also compare these results, forl 50, with a numerical integration of the Einstein-scalar field equations, finding
good agreement between the two. Finally, the significance of these results to the study of the Cauchy horizon
stability in black-hole–de Sitter spacetimes is discussed.@S0556-2821~97!06812-4#

PACS number~s!: 04.30.Nk, 04.25.Dm, 04.70.Bw

I. INTRODUCTION

Perturbative studies of relativistic, spherical collapse have
elucidated dynamical features of gravitational collapse im-
portant to our understanding of black-hole formation, and the
subsequent relaxation to a stationary state~see@1#, for ex-
ample!. Indeed, quasinormal ringing could provide direct
evidence of the existence of black holes if observed by the
Laser Interferometric Gravitational Wave Observatory
~LIGO! @2#. At late times, quasinormal oscillations are
swamped by the radiative tail of the gravitational collapse
@3#. This tail radiation is of interest in its own right since it
originates from the nontrivial propagation of the field pertur-
bations on the background spacetime, zero rest-mass fields
do not necessarily propagate along the light cone in a curved
spacetime.

The first authoritative study of nearly spherical collapse,
exhibiting radiative tails, was performed by Price@3#. Study-
ing the behavior of a massless scalar field propagating on a
fixed Schwarzschild background, he showed that the field
dies off with the now familiar power-law tailt2(2l 1P11), at
late times, wherel is the multipole order of the field, and
P51 if the field is initially static andP52 otherwise. Fur-
thermore, Price showed that the perturbations of any zero
rest-mass, integer-spin field are governed by a wave equation
with the same qualitative form as that governing the scalar
field. This suggests that the results for the scalar field should
apply equally well to the radiatable multipoles of both the
electromagnetic and gravitational fields. Similar results for a
massless scalar field propagating on a Reissner-Nordstro¨m
background have been obtained by Bicˇák @4#. No such ana-
lytic result has yet been obtained for the case of a black hole
with angular momentum, though Krivan, Laguna, and Papa-
dopoulos@5# have recently performed numerical work which
suggests the power-law tail holds independently of the angu-
lar momentum of the black hole.

While test-field calculations are extremely compelling, it
is natural to ask to what extent linear analyses are represen-
tative of dynamical gravitational collapse. If either quasinor-

mal ringing, or radiative tails, should be absent in nonlinear
collapse one might view results of linear analyses with skep-
ticism. Advances in numerical relativity make it possible to
address this issue in the spherically symmetric context. Go´-
mez and Winicour@6# studied the nonlinear evolution of a
self-gravitating, spherically symmetric, massless scalar field
concluding that the scalar monopole moment decayed expo-
nentially rather than with the power law predicted by the
linear analyses. More recently, Gundlach, Price, and Pullin
@7,8# reexamined this problem. They were able to show that
the frequencies of quasinormal oscillations, and decay rates
of the power-law tails, found in the numerical solutions, are
in good agreement with the predictions of perturbation
theory~though one must go to sufficiently late times in order
to see tail effects, this would, in part, explain the null result
of Gómez and Winicour!.

The presence, and slow decay, of wave tails at late times
is a key ingredient leading to the instability of Cauchy hori-
zons inside charged and rotating black holes. For black holes
in asymptotically flat spacetime, the inverse power-law de-
cay of perturbing fields at the event horizon has been used to
provide initial data in linear@9,10# and nonlinear@11–14#
studies of the black-hole interior. In particular, the form of
the wave tail is largely responsible for the weakness of the
mass-inflation singularity inside charged black holes@12#,
and is believed to have similar consequences inside rotating
holes@13#.

In contrast with the asymptotically flat case, perturbative
@15,16# and nonlinear@18# studies indicate that the inner
Cauchy horizon of charged and rotating black holes im-
mersed in asymptotically de Sitter space can be stable. That
stability persists for a finite volume of the parameter space
suggests that these spacetimes violate the letter~if not the
spirit! of the cosmic censorship hypothesis@19#. The nature
of the radiative tail of perturbations at late times plays a
major role in these analyses. Plausible arguments suggest
that an exponential decay of the tails replaces the power-law
behavior observed in asymptotically flat spacetimes@16,17#;
however, no detailed analysis of the evolution of wave tails
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in asymptotically de Sitter–black-hole spacetimes exists. The
present work reports on such a study for nonrotating black
holes. Our primary motivation has been to obtain correct
boundary conditions on the radiation at the event horizon for
use in a numerical study of the internal structure of charged
black holes in de Sitter space.

The paper is organized as follows: In Sec. II we consider
the propagation of massless, minimally coupled scalar fields
on the Schwarzschild–de Sitter and Reissner–Nordstro¨m–de
Sitter black-hole backgrounds. We derive the equation gov-
erning the scalar test field, and numerically integrate it. Two
independent numerical codes were used throughout the linear
analysis; a null evolution scheme following that of Gun-
dlach, Price, and Pullin@7#, and a Cauchy evolution scheme
similar to that described by Krivan, Laguna, and Papadopou-
los @5#. We found complete agreement between them. Our
results show that, except for thel 50 mode, the field falls
off exponentially at the cosmological and black-hole event
horizons, and at future timelike infinity. The rate of decay
depends upon the surface gravityk1 of the cosmological
horizon @see Eq.~2.4!#, and the multipole order of the field.
In particular, ast→`, we find that

f;e2l k1t, l .0, ~1.1!

wheret is defined by Eq.~2.1!. Whenl 50, the field, rather
than decaying, approaches a constant value at late times. A
suggestion of this behavior can be found in the analysis of
Chambers and Moss@17# and, as argued there, is similar to
the case of scattering inside a charged black hole@10#. A
theoretical justification of this result is presented in the Ap-
pendix. In particular, the analysis demonstrates how the con-

stant part of the field scales withL and illustrates the inde-
pendence of this scaling upon the initial data.

In Sec. III, we study the nonlinear evolution of a spheri-
cally symmetric, self-gravitating scalar field by numerically
integrating the coupled Einstein-scalar field equations. Con-
fining attention to spherical symmetry implies we gain infor-
mation solely about thel50 mode of the field. We find, in
accord with our linear analysis, that the field approaches a
constant value at the cosmological event horizon, the black-
hole event horizon, and future timelike infinity, demonstrat-
ing that the results of our linear analysis are indicative of the
full theory. In addition to this, we inspect the behavior of the
field’s stress energy, showing that

f ,r;e22ku, ~1.2!

with k.k1 to within about 12%. In Sec. IV we make some
final comments about the implications of our results for
Cauchy horizon stability in black-hole–de Sitter spacetimes
and the related issue of cosmic censorship.

II. A LINEAR ANALYSIS

In this section, we consider a massless, minimally
coupled, scalar field propagating on a fixed Reissner–
Nordström–de Sitter background. Since our considerations
are limited to the black-hole exterior, it is clear that the
Schwarzschild–de Sitter case can always be obtained by set-
ting the chargeq50 ~when this fails, we explicitly include
the corresponding formulas!.

A. The equations

The generalization of the Reissner-Nordstro¨m metric to
include a cosmological constant was first given by Carter
@20# as

ds252 f ~r !dt21 f ~r !21dr21r 2~du21sin2udf2!,
~2.1!

where

FIG. 1. A conformal diagram showing the Reissner–
Nordström–de Sitter black-hole spacetime. Shown are the cosmo-
logical horizon atr5r 1, the black-hole event horizon atr5r 2, the
inner ~Cauchy! horizon at r5r 3, and the singularity~wavy line!
located atr50. Past and future null infinity are indicated byJ2

andJ1, respectively.

FIG. 2. A conformal diagram representing the
Schwarzschild–de Sitter black-hole spacetime. Shown are the cos-
mological horizon atr5r 1, the black-hole event horizon atr5r 2,
and the singularity~wavy line! located atr50. Also shown are the
locations of past and future null infinityJ2 andJ1, respectively.
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f ~r !512
2M

r
1
q2

r 2
2

r 2

a2 , a25
3

L
.0. ~2.2!

In Eq. ~2.2!, M denotes the mass of the black hole,q its
charge, andL is the cosmological constant. IfqÞ0 there are
three horizons located at the roots off (r )50; an inner
~Cauchy! horizon at r5r 3, a black-hole event horizon at

r5r 2, and a cosmological horizon located atr5r 1 such that
r 1.r 2.r 3 ~see Fig. 1!. The fourth rootr 4 is negative and
thus nonphysical.@Whenq50 there are only two horizons
~see Fig. 2!, the black-hole event horizonr 2 and the cosmo-
logical event horizonr 1 while the third rootr 3 is negative.#
It is convenient to introduce a ‘‘tortoise’’ radial coordinate,
r *5*dr/ f (r ), which takes the explicit form

r *5H 2
1

2k1
lnU rr 1 21U1 1

2k2
lnU rr 2 21U2 1

2k3
lnU rr 3 21U1 1

2k4
lnU rr 4 21U, qÞ0,

2
1

2k1
lnU rr 1 21U1 1

2k2
lnU rr 2 21U1 1

2k3
lnU rr 3 21U, q50,

~2.3!

where the arbitrary constant of integration has been set to
zero. We define

k i5
1

2Ud f~r !

dr U
r5r i

, ~2.4!

wherer i are the roots off (r )50. When the root corresponds
to a physical horizon in the spacetime,k i is the surface grav-
ity of that horizon@21#. Finally, we introduce a pair of null
coordinates on the spacetimes, the advanced time
v5t1r * , and the retarded timeu5t2r * , in terms of
which the interval~2.1! reduces to

ds252 f ~r !dudv1r 2~du21sin2udf2!. ~2.5!

The definition we have adopted means that the future cosmo-
logical horizon r5r 1 is located atv5`, and the future
black-hole event horizonr5r 2 is at u5`. In terms of the
null coordinates (u,v), the scalar wave equation,hf50,
becomes

C ,uv52
1

4
Vl ~r !C, ~2.6!

where we have decomposed the fieldf into its constituent
multipole pieces, i.e.,f5(C(u,v)Yl m(u,f)r

21. The ef-
fective potential

Vl~r !5 f ~r !S l ~ l 11!

r 2
1
2M

r 3
2
2q2

r 4
2

2

a2D ~2.7!

is highly localized nearr *50, falling off exponentially in
r * at both r5r 1 and r5r 2. The form of the potential for
l 50,1,2 is shown in Fig. 3.

B. The results

It is straightforward to integrate Eq.~2.6! on a null grid
using the methods described by Gundlach, Price, and Pullin
@7#. Further details can be found in their article.

Since tail effects are independent of the initial data used,1

we represent a generic initial perturbation by a Gaussian
pulse onu50

1We have confirmed this in our case by using three different initial
field configurations:~i! a Gaussian pulse onu50 with constant
field onv50, ~ii ! a Gaussian pulse onv50 with constant field on
u50, and ~iii ! a pulse on u50 for which the average
*0

`C(0,v)dv vanishes.

FIG. 3. The ‘‘effective’’ potential when q50.5, M51,
L51024, andl 50 ~solid!, l 51 ~dashed!, andl 52 ~dotted!. We
have multiplied byur2r 2u/l ! in order to accentuate the nature of
the potential whenl 50, the usual potential barrier is followed by
a potential well, a feature not evident whenl .0. The potential
tends to zero exponentially quickly asr *→6`.
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C~u50,v !5A exp$2~v2v1!
2/s2%. ~2.8!

@The amplitudeA is irrelevant since Eq.~2.6! is linear. The
data used to produce the figures had centerv1550.0, and
width s53.0.# The field is constant on v50,
C(v50)5C(u50,v50). We have set the mass of the hole
M equal to unity throughout; this corresponds to the freedom
to rescale the coordinates by an overall length scale. Inves-
tigations have shown that the results are qualitatively similar
for all L.0, so we fixL51024 from here on. We discuss
the behavior of the field,f5C/r , in three regions:~a! time-
like infinity, approached on surfaces of constantr . ~b! The
cosmological horizon, in practice, approximated by the null
surfacev5v max, the largest value ofv on our grid.~c! The
black-hole event horizon, again, approximated by the null
surfaceu5u max, the largest value ofu on our grid.

Gundlach, Price, and Pullin@7# argued that the nature of
the tails in asymptotically flat spacetimes is primarily due to
the power-law form of the effective potential asr *→`. In
asymptotically de Sitter spacetimes the effective potential is
exponentially suppressed asr *→6`, therefore, it should
not be surprising that the tails fall off exponentially with
time. An unexpected feature of the evolution is that the
l 50 mode does not decay to zero, rather a generic pertur-
bation leads to a residual constant field at late times.~Of
course, there is no stress energy associated with a constant
field.! This was alluded to in a paper by Chambers and Moss
@17# where it was argued that the situation in
Schwarzschild–de Sitter spacetime is somewhat analogous
to scattering inside a charged black hole@10#, and hence a
constant mode can be transmitted to both the black-hole and
cosmological event horizons. Indeed, at late times we find

fu l50.f01f1~r !e22k1t. ~2.9!

Figure 4 demonstrates this effect. After a period of quasinor-
mal ringing, whose explicit features we are not currently
interested in, the field rapidly approaches the same constant
value at the cosmological event horizon, the black-hole event
horizon, and future timelike infinity. One might suspect that
the existence of a nonzero field at late times is an artifact of
the initial data, or that settingq50 might produce different
results. Therefore, Fig. 5 shows results for a
Schwarzschild–de Sitter black hole whenl 50. Once again,
the field settles down to a constant value which is indepen-
dent of the radial position. Monitoring the behavior off ,t
during the evolution~this is a matter of formality in the
Cauchy code, as it uses momentapt5f ,t for the evolution!
has allowed us to conclude that the numerical value of the
exponent in Eq.~2.9! is indeedk1 to within 10%. In general,
the final field valuef0 is a function of the black-hole param-
eters (M ,q,L). Employing arguments similar to those used
by Gundlach, Price, and Pullin@7#, to study power-law tails
in asymptotically flat black-hole spacetimes, one can show
that the constant part of the field scales asf0;L ~see the
Appendix!. We have numerically investigated the depen-
dence off0 on the cosmological constantL and, as shown
in Fig. 6 for the case whenq50 andM51, our results
indicate thatf0;L0.9994.

A calculation, identical to that of Gu¨rsel et al. @10# for
wave propagation in the interior of a Reissner-Nordstro¨m

black hole, reveals that the zero frequency reflection and
transmission coefficients for thel 50 mode, in the exterior
of Schwarzschild–de Sitter and Reissner–Nordstro¨m–de Sit-
ter black holes, are given by

R5
~r 1

22r 2
2!2

~r 1
21r 2

2!2
, T5

4r 1
2r 2

2

~r 1
21r 2

2!2
. ~2.10!

One should contrast the nonzero value of the transmission
coefficientT, in this case, with the results for scattering in
the exterior of asymptotically flat black-hole spacetimes@3#.
In that case the transmission coefficients are of orderv l 11

for small v and, consequently, the constant modes are
trapped@1#.

FIG. 4. The magnitude of the fieldufu versus time forq50.5,
l 50,M51, andL51024. The field is shown on the cosmological
event horizonr 1 ~short dashed!, the black-hole event horizonr 2
~dotted!, and two surfaces of constant radius~solid and long
dashed!. Initially the quasinormal ringing dominates, while at late
times the field settles down to the same constant value on all four
surfaces.

FIG. 5. A plot of ufu versus time whenq50.0, l 50, M51,
andL51024. The field is exhibited on the same surfaces as the
q50.5 cases. Once again, the asymptotically constant field is evi-
dent.
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For l .0 the picture is different, as seen in Figs. 7 and 8.
The early time behavior of the field is still dominated by
complicated quasinormal ringing, but at late times a definite
exponential falloff is manifest. In particular, the late time
wave tails are well approximated byfu l ; exp(2l k1t). In
a series of separate evolutions we found that for sufficiently
small values ofL, a regime of power-law decay followed the
quasinormal ringing, though at late times the exponential de-
cay described above always dominates.

III. NONLINEAR ANALYSIS

Given the somewhat unusual behavior of thel 50 mode
elucidated by the test-field analysis, it seems necessary to
examine the nonlinear evolution of a self-gravitating mass-

less, scalar field in the presence of a cosmological constant.
This situation is described by the coupled Einstein-scalar
field equations

Gab58pTab2gabL, ~3.1!

where

Tab5f ,af ,b2~1/2!gab~f ,gf ,g!, ~3.2!

is the stress energy of the scalar field which satisfies
hf50. Restricting attention to spherical symmetry~thus we
only gain information about thel 50 mode!, the line ele-
ment can be written as

ds252g ḡdu222gdudr1r 2~du21sin2udf2!, ~3.3!

whereg5g(u,r ), ḡ5 ḡ (u,r ), and u is the retarded time.
The coordinates have been normalized so thatu is the proper
time at the origin, thusg(u,0)5 ḡ (u,0)51. It is customary
@23# to introduce two new fieldsh̄ (u,r ) andh(u,r ) defined
by

f5 h̄5
1

r E0
r

hdr. ~3.4!

In terms of these variables the field equations~3.1! become

~ lng! ,r54pr21~h2 h̄ !2, ~3.5!

~r ḡ ! ,r5g~12Lr 2!, ~3.6!

~r h̄ ! ,r5h, ~3.7!

and the wave equation is

FIG. 6. The asymptotic value of the fielduf0u versusL for
evolutions withq50.0, l 50, andM51. The dashed line repre-
sents the least square fit to lnuf0u5b1alnuLu with a51.02,
b54.65. The linear correlation coefficientc lin of lnuf0u versus
lnL is given byc lin50.999.

FIG. 7. A plot of ufu versus time forq50.5, l 51,M51, and
L51024. The field along is shown on the cosmological event ho-
rizon r 1 ~short dashed!, the black-hole event horizonr 2 ~dotted!,
and two surfaces of constant radius~solid and long dashed!. The
field falls off as exp(2kt) at late times, withk.k1 to within about
2%. Note that the ordinate scale is logarithmic.

FIG. 8. A plot of ufu versus time forq50.5, l 52,M51, and
L51024. The field is shown on the cosmological event horizon
r 1 ~short dashed!, the black-hole event horizonr 2 ~dotted!, and two
surfaces of constant radius~solid and long dashed!. At early times
quasinormal ringing completely dominates, but eventually the field
falls off as exp(22kt). The value ofk.k1 is again accurate to
approximately 2%. Note that the ordinate scale is logarithmic.
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h,u2
ḡ

2
h,r5

~h2 h̄ !

2r
@g~12Lr 2!2 ḡ #. ~3.8!

A well-established numerical algorithm exists to integrate
these equations@8,24,25#. We refer the reader to these ar-
ticles for details.

Initial data for the nonlinear equations is supplied on an
initial null cone centered on the origin. We considered a
Gaussian pulse onu50, with an amplitudef0(r /r 0)

2, width
s, and centered onr5r 0. The code was tested against the
exact solution in@26#. We also reproduced power-law tails in
complete agreement with@8#, whenL50.

Figure 9 showsh̄ ~or equivalentlyf) at the cosmological
event horizon, the black-hole event horizon, and along an
r5const surface. The agreement with the linear analysis is
remarkable. We again see an initial period of quasinormal
ringing which decays, leaving behind a constant field at late
times.

Furthermore, using Eqs.~3.4! and ~3.7! we can write
rf ,r5( h̄2h) and examine the stress energy of the field at
late times. Figure 10 suggests that (h̄2h); exp@22k1u# at
late times, as suggested by the the test-field analysis.

IV. CONCLUDING REMARKS

This study of wave-tail evolution in black-hole–de Sitter
spacetimes has revealed consistent but interesting results.
The radiative tails associated with a massless, minimally
coupled scalar field propagating on the fixed backgrounds of
a Schwarzschild–de Sitter and Reissner–Nordstro¨m–de Sit-
ter black hole decay exponentially at the cosmological hori-
zon, the black-hole event horizon, and at future timelike in-
finity. This result is not too surprising when one considers
the conclusions of Chinget al. @22#, who have demonstrated
that the usual inverse power-law tails , as seen in asymptoti-
cally flat black-hole spacetimes, are not a generic feature of
wave propagation in curved spacetime. An unusual feature of

the analysis is the behavior of thel 50 mode. We have seen
that, rather than decaying, thel 50 mode approaches a con-
stant value at late times. Motivated by this result, we consid-
ered the nonlinear problem of a scalar field coupled to grav-
ity and numerically integrated the Einstein-scalar field
equations. These results show excellent agreement with the
linear analysis. In addition, an analytic investigation of scat-
tering in the exterior of black-hole–de Sitter spacetimes has
allowed us to predict that the constant mode scales as
f0;L, independently of the initial data, and agreeing com-
pletely with the results of our numerical study. In particular,
we have been able to show that the zero frequency reflection
and transmission coefficients for thel 50 mode are nonzero
and, unlike the situation in asymptotically flat black-hole
spacetimes, the constant modes can be propagated through-
out the exterior.

Though the introduction of a nonzero cosmological con-
stant into the Einstein equations may be argued to be some-
what unrealistic, it is the issue of Cauchy horizon stability in
black-hole–de Sitter spacetimes@15,16# and the related issue
of cosmic censorship@19#, that motivates this investigation.
The power-law tails found by Price@3# have been used as
initial data in arguments pertaining to the instability of the
inner ~Cauchy! horizon of both the Reissner-Nordstro¨m and
Kerr black-hole spacetimes and the associated phenomenon
of mass inflation. Linear perturbation studies suggest that the
Cauchy horizon inside black holes embedded in de Sitter
space may be stable, fluxes of linear perturbations remain
bounded at the Cauchy horizon. This in itself does not guar-
antee stability though. A fully nonlinear analysis of the
black-hole interior is needed, for which the late-time wave
tails at the event horizon serve as initial data. With the re-
sults of this paper in hand, we can now embark on a numeri-
cal study of the Cauchy horizon in Reissner–Nordstro¨m–de
Sitter, along the lines of Brady and Smith@14#.
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APPENDIX: LATE-TIME BEHAVIOR
OF THE l 50 MODE

Price@3# has shown that a scalar fieldf in the exterior of
an asymptotically flat black hole decays to zero at late times,
provided the initial data has compact support. Here, we con-
sider scattering of thel 50 mode between the cosmological
and black-hole event horizons in Schwarzschild–de Sitter
spacetime.~The results extend easily to include charge.!
While the qualitative features of this analysis should hold for
all values ofL, we make the assumption that the cosmologi-
cal constant is sufficiently small that we can approximate the
radius of the cosmological horizon byr 1.A3/L. Following
Gundlach, Price, and Pullin@7#, we break the evolution up
into two parts: ~i! the evolution of an initial burst
C(u,0)5G(u), for which G(u)Þ0 only when 0,u,u1,
andC(0,v)[0, and~ii ! the subsequent evolution of the field
for u>u1. This situation is indicated in Fig. 11.

Whenl 50, the general solution to Eq.~2.6! can be writ-
ten as a series depending on two arbitrary functionsF(v)
andG(u); thus,

C5A@G~u!1F~v !#1 (
p50

`

Bp~r !@G~2p21!~u!

1~21!~p11!F ~2p21!~v !#, ~A1!

where negative superindices refer to integration with respect
to the argument of the function. The coefficientA is set equal
to unity, without loss of generality, while theBp(r ) satisfy
the recurrence relation

Bp118 5SMr 3 2
L

3 D ~rBp82Bp!1 fBp9/2. ~A2!

Here a prime indicates differentiation with respect tor , and
B0 is given by

B05
M

2r 2
1

Lr

3
. ~A3!

The first part of the evolution, scattering of the initial
pulseG(u) in the region 0,u,u1, implies that the field on
u5u1 is given by

C~u1 ,v !5 (
p50

`

Bp~r !G~2p21!~u1!, ~A4!

sinceG(u1)50. It is straightforward to show that the coef-
ficientsBp(r ) do not vanish asr *→`, corresponding to the
cosmological horizon and, in this limit, the field is nonzero
for generic initial data. In asymptotically flat space this limit
is equivalent tor→`, and all of theBp(r ) vanish; this is the
central difference between our analysis and that of Price@3#.
Moreover, for sufficiently smallL the value ofC on the
cosmological horizon is given by

C~u1 ,`!.AL/3E
0

u1
G~u!du1O~L!. ~A5!

We can now examine the evolution of the field in the
regionu>u1 using Eq.~A4! as initial data; it is at this point
that our argument deviates from that of Gundlach, Price, and
Pullin @7#. For sufficiently small values ofL, andl 50, we
can solve Eq.~2.6! near to the cosmological horizon by ne-
glecting the mass of the black hole; the solution is simply

C.~Lr /3!@g~u!1 f ~v !#1@]ug~u!2]v f ~v !#, ~A6!

whereg(u) and f (v) are arbitrary functions. We can deter-
mine f (v) by matching it to the initial data in Eq.~A4!, thus,
near the cosmological horizon, and by virtue of the relation
r *5(v2u)/2, we have

f ~v !5 f 01 (
n51

f ne
2nk1v, ~A7!

where f 053C(u1 ,`)/(Lr 1). The precise form ofg(u) de-
pends on the nature of the potentialeverywhere, however,
since it develops from the field configuration given in Eq.
~A4! it seems reasonable to assume that it can be written as

g~u!5g01 (
n51

gne
2nk1u, ~A8!

FIG. 11. The region of spacetime important for scattering be-
tween the black-hole event horizon~EH!, and the cosmological
event horizon~CEH! of a black hole in de Sitter space. We consider
an initial burst of radiation onv50 which is confined between the
two null linesu50 andu5u1. The analysis in the Appendix con-
siders the evolution of the field in the diamond-shaped region de-
termined by 0<u,` and 0<v,`. We find that thel 50 mode
of the scalar field settles down to a constant, nonzero value at the
EH, the CEH, and timelike infinity.
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whenu→`. In this way, we conclude that a generic pertur-
bation will lead to a constant value for the fieldf5C/r at
late times, providedf 0Þg0. When l 50, this is the only
static solution which is regular at both horizons. Finally, we
note that the final value of the fieldf0 in Eq. ~2.9! scales as

f0;L ~A9!

for small values ofL. This is confirmed by the numerical
results in Sec. IIB.
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