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We study the evolution of massless scalar waves propagating on spherically symmetric spacetimes with a
nonzero cosmological constant. Considering test fields on both Schwarzschild—de Sitter and Reissner—
Nordstran—de Sitter backgrounds, we demonstrate the existenegpafnentiallydecaying tails at late times.
Interestingly, the”’=0 mode asymptotes to a nonzero value, contrasting the asymptotically flat situation. We
also compare these results, f6+=0, with a numerical integration of the Einstein-scalar field equations, finding
good agreement between the two. Finally, the significance of these results to the study of the Cauchy horizon
stability in black-hole—de Sitter spacetimes is discusp88556-282(197)06812-4

PACS numbes): 04.30.Nk, 04.25.Dm, 04.70.Bw

I. INTRODUCTION mal ringing, or radiative tails, should be absent in nonlinear
collapse one might view results of linear analyses with skep-

Perturbative studies of relativistic, spherical collapse haveicism. Advances in numerical relativity make it possible to
elucidated dynamical features of gravitational collapse im-address this issue in the spherically symmetric context. Go
portant to our understanding of black-hole formation, and thenez and Winicouf6] studied the nonlinear evolution of a
subsequent relaxation to a stationary si@ee[1], for ex-  self-gravitating, spherically symmetric, massless scalar field
ample. Indeed, quasinormal ringing could provide direct concluding that the scalar monopole moment decayed expo-
evidence of the existence of black holes if observed by thaentially rather than with the power law predicted by the
Laser Interferometric Gravitational Wave Observatorylinear analyses. More recently, Gundlach, Price, and Pullin
(LIGO) [2]. At late times, quasinormal oscillations are [7,8] reexamined this problem. They were able to show that
swamped by the radiative tail of the gravitational collapsethe frequencies of quasinormal oscillations, and decay rates
[3]. This tail radiation is of interest in its own right since it of the power-law tails, found in the numerical solutions, are
originates from the nontrivial propagation of the field pertur-in good agreement with the predictions of perturbation
bations on the background spacetime, zero rest-mass fieldlseory(though one must go to sufficiently late times in order
do not necessarily propagate along the light cone in a curvetb see tail effects, this would, in part, explain the null result
spacetime. of Gomez and Winicour.

The first authoritative study of nearly spherical collapse, The presence, and slow decay, of wave tails at late times
exhibiting radiative tails, was performed by Pri@&. Study- is a key ingredient leading to the instability of Cauchy hori-
ing the behavior of a massless scalar field propagating on zons inside charged and rotating black holes. For black holes
fixed Schwarzschild background, he showed that the fieldn asymptotically flat spacetime, the inverse power-law de-
dies off with the now familiar power-law tati"?**P™1) at  cay of perturbing fields at the event horizon has been used to
late times, where” is the multipole order of the field, and provide initial data in lineaf9,10] and nonlineaf11-14
P=1 if the field is initially static and®=2 otherwise. Fur- studies of the black-hole interior. In particular, the form of
thermore, Price showed that the perturbations of any zerthe wave tail is largely responsible for the weakness of the
rest-mass, integer-spin field are governed by a wave equatianass-inflation singularity inside charged black hofég],
with the same qualitative form as that governing the scalaand is believed to have similar consequences inside rotating
field. This suggests that the results for the scalar field shoultoles[13].
apply equally well to the radiatable multipoles of both the In contrast with the asymptotically flat case, perturbative
electromagnetic and gravitational fields. Similar results for 415,16 and nonlinear{18] studies indicate that the inner
massless scalar field propagating on a Reissner-NomdstroCauchy horizon of charged and rotating black holes im-
background have been obtained by #i¢4]. No such ana- mersed in asymptotically de Sitter space can be stable. That
lytic result has yet been obtained for the case of a black holstability persists for a finite volume of the parameter space
with angular momentum, though Krivan, Laguna, and Papasuggests that these spacetimes violate the Iéfterot the
dopoulog 5] have recently performed numerical work which spirit) of the cosmic censorship hypothefi®]. The nature
suggests the power-law tail holds independently of the angusf the radiative tail of perturbations at late times plays a
lar momentum of the black hole. major role in these analyses. Plausible arguments suggest

While test-field calculations are extremely compelling, itthat an exponential decay of the tails replaces the power-law
is natural to ask to what extent linear analyses are represehehavior observed in asymptotically flat spacetirffe&17;
tative of dynamical gravitational collapse. If either quasinor-however, no detailed analysis of the evolution of wave tails
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FIG. 2. A conformal diagram representing the
Schwarzschild—de Sitter black-hole spacetime. Shown are the cos-
mological horizon at =r, the black-hole event horizon at=r,,
and the singularitywavy line) located ar =0. Also shown are the
locations of past and future null infinity~ and 7", respectively.

stant part of the field scales with and illustrates the inde-
pendence of this scaling upon the initial data.

In Sec. lll, we study the nonlinear evolution of a spheri-
FIG. 1. A conformal diagram showing the Reissner— cally symmetric, self-gravitating scalar field by numerically
Nordstran—de Sitter black-hole spacetime. Shown are the cosmointegrating the coupled Einstein-scalar field equations. Con-
logical horizon ar =r, the black-hole event horizon at=r,, the  fining attention to spherical symmetry implies we gain infor-

inner (Cauchy horizon atr =r3, and the singularitywavy line)  mation solely about the=0 mode of the field. We find, in
located atr=0. Past and future null infinity are indicated by accord with our linear analysis, that the field approaches a
andJ", respectively. constant value at the cosmological event horizon, the black-
hole event horizon, and future timelike infinity, demonstrat-
in asymptotically de Sitter—black-hole spacetimes exists. Thing that the results of our linear analysis are indicative of the
present work reports on such a study for nonrotating blacKull theory. In addition to this, we inspect the behavior of the
holes. Our primary motivation has been to obtain correcfield’s stress energy, showing that
boundary conditions on the radiation at the event horizon for
use in a numerical study of the internal structure of charged
black holes in de Sitter space. ¢ ~e 2K, 1.2
The paper is organized as follows: In Sec. Il we consider
the propagation of massless, minimally coupled scalar fields .., , -
on the Scviarzschi—de Sitr and Relssner-Norsae 11115 0 WD abott 12%.In Sec 11 e nake some
Sitter black-hole backgrounds. We derive the equation gov- ; o P . :
. : . . : Cauchy horizon stability in black-hole—de Sitter spacetimes
erning the scalar test field, and numerically integrate it. Two : : .
. ) . “and the related issue of cosmic censorship.
independent numerical codes were used throughout the linear
analysis; a null evolution scheme following that of Gun-
dlach, Price, and Pullif7], and a Cauchy evolution scheme Il. A LINEAR ANALYSIS
similar to that described by Krivan, Laguna, and Papadopou- ) ) . o
los [5]. We found complete agreement between them. Our In this section, we consider a massless, minimally
results show that, except for thé=0 mode, the field falls coupled, scalar field propagating on a fixed Reissner—
off exponentially at the cosmological and black-hole eventNordstran—de Sitter background. Since our considerations
horizons, and at future timelike infinity. The rate of decay@re limited to the black-hole exterior, it is clear that the
depends upon the surface gravity of the cosmological Sphwarzschﬂd—de Sitter case can always be.o.btallned by set-
horizon[see Eq(2.4], and the multipole order of the field. ting the chargey=0 (when this fails, we explicitly include
In particular, ag— o, we find that the corresponding formulas

A. The equations
p~e ¥t />0, (1.9 o , : .
The generalization of the Reissner-Nordstrenetric to

) ] ‘ ] include a cosmological constant was first given by Carter
wheret is defined by Eq(2.1). When/'=0, the field, rather 0] as

than decaying, approaches a constant value at late times. A

suggestion of this behavior can be found in the analysis of ) U S PR )
Chambers and Mog4.7] and, as argued there, is similar to ds?=—f(n)dt?+f(r) " *dr’+r?(d6*+sirfod¢?),
the case of scattering inside a charged black ha. A

theoretical justification of this result is presented in the Ap-

pendix. In particular, the analysis demonstrates how the corwhere

(2.1
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2 2

f(r)=1 Mg ! 2.3 0 2.2
(r)— _T+r7—a7, a—X> . ()

r=r,, and a cosmological horizon locatedratr, such that
r{>r,>ry (see Fig. L The fourth rootr, is negative and
thus nonphysicallWhen g=0 there are only two horizons
In Eqg. (2.2, M denotes the mass of the black hotejts  (see Fig. 2, the black-hole event horizarp, and the cosmo-
charge, and\ is the cosmological constant.df# 0 there are logical event horizom; while the third rootr 5 is negative}
three horizons located at the roots tfr)=0; an inner It is convenient to introduce a “tortoise” radial coordinate,
(Cauchy horizon atr=r5, a black-hole event horizon at r,=[dr/f(r), which takes the explicit form

! | 1+ ! I 1 ! I 1+ ! I 1 #0
2i; 1 2r; 1, 2r3 15 Zig g 0T )
A ! I ' 1 ! I 1 ! I ' 1 =0 3
2_K1 n E + 2_K2 n E + 2_K3 n E , q ,
|
where the arbitrary constant of integration has been set to ds?’=—f(r)dudv +r3(d6>+sirfodp?). (2.5
zero. We define
The definition we have adopted means that the future cosmo-
logical horizonr=r, is located atv=«, and the future
1/df(r) black-hole event horizon=r, is atu=<«. In terms of the
Ki=57qr ' (24 null coordinates @,v), the scalar wave equatiof) =0,

becomes

wherer; are the roots of (r) =0. When the root corresponds

to a physical horizon in the spacetime,is the surface grav- 1

ity of that horizon[21]. Finally, we introduce a pair of null W w=—7VANY, (2.9

coordinates on the spacetimes, the advanced time

v=t+r,, and the retarded time=t—r,, in terms of

which the interval(2.1) reduces to where we have decomposed the figldinto its constituent
multipole pieces, i.e.p=3V(u,v)Y, m(0,¢)r 1. The ef-
fective potential

0.18 —— .
0.16 |- ST -
ota b 1 ~ A(/+1) 2M 292 2
' Vin=t|—z—+—=z-~7 -,z @7
012 | .
§ orr T is highly localized near, =0, falling off exponentially in
® ol | i r, at bothr=r, andr=r,. The form of the potential for
- S /'=0,1,2 is shown in Fig. 3.
006 [/ i
0.04 - T B. The results
002 i/ T It is straightforward to integrate E@2.6) on a null grid
0 e using the methods described by Gundlach, Price, and Pullin
[7]. Further details can be found in their article.
-0.02 & 1'0 i '1(')0 Since talil effects are independent of the initial data Used,
r we represent a generic initial perturbation by a Gaussian
pulse onu=0

FIG. 3. The “effective” potential whenq=0.5, M=1,
A=10"%, and/ =0 (solid), /=1 (dashed] and/'=2 (dotted. We IWe have confirmed this in our case by using three different initial
have multiplied by|r —r,|//! in order to accentuate the nature of field configurations:(i) a Gaussian pulse on=0 with constant
the potential whem’=0, the usual potential barrier is followed by field onv=0, (i) a Gaussian pulse an=0 with constant field on
a potential well, a feature not evident whef>0. The potential u=0, and (i) a pulse onu=0 for which the average
tends to zero exponentially quickly ag— = . [3¥(0p)dv vanishes.
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Y(u=0p)=A exg{—(v—vq)%0?}. (2.9 T - - - - - -

[The amplitudeA is irrelevant since Eq(2.6) is linear. The
data used to produce the figures had center 50.0, and
width 0=3.0] The field is constant onv=0,
Y (v=0)=¥(u=0p=0). We have set the mass of the hole
M equal to unity throughout; this corresponds to the freedom
to rescale the coordinates by an overall length scale. Inves- =
tigations have shown that the results are qualitatively similar x102k
for all A>0, so we fixA=10* from here on. We discuss
the behavior of the fieldp=V¥/r, in three regions(a) time-
like infinity, approached on surfaces of constantb) The
cosmological horizon, in practice, approximated by the null
surfacev =v ., the largest value of on our grid.(c) The
black-hole event horizon, again, approximated by the null 1x10°*
surfaceu=u ., the largest value ofi on our grid.

Gundlach, Price, and Pullify] argued that the nature of
the tails in asymptotically flat spacetimes is primarily due to FIG. 4. The magnitude of the fields| versus time forg=0.5,
the power-law form of the effective potential as— . In /=0,M =.1, andA =10"“. The field is shown on the cosmploglcal
asymptotically de Sitter spacetimes the effective potential i§vent horizonr, (short dashed the black-hole event horizon,
exponentially suppressed ag— *, therefore, it should (dott€d, and two surfaces of constant raditsolid and long
not be surprising that the tails fall off exponentially with Qasheai Inl_tlally the quasinormal ringing dominates, while at late
time. An unexpected feature of the evolution is that thetlmes the field settles down to the same constant value on all four
/=0 mode does not decay to zero, rather a generic perturs-urfaces'
bation leads to a residual constant field at late tin{€. lack hol Is that th f flecti d
course, there is no stress energy associated with a const tﬁ?c ok, reveals that Ine zero frequency retiection an

: : : ransmission coefficients for thé=0 mode, in the exterior
Fle;(]d ) Ivar\gasi? ”lﬁ:g toalrr;]l? e%ap?rr] :ty C,{E:mbs?trj’azgﬂ Mions of Schwarzschild—de _Sitter and Reissner—Norastrde Sit-
Schwarzschild—de Sitter spacetime is somewhat analogodgr black holes, are given by

to scattering inside a charged black hpl®], and hence a 2 22 s

constant mode can be transmitted to both the black-hole and _ (ri—r3) 4rir; (2.10

cosmological event horizons. Indeed, at late times we find

0 100 200 300 400 500 600 700 800
t

ST L
(ri+r3) (ri+rs)?

— —2Kqt . .
Bli—o=do+ $a(r)e” = 1. (2.9 One should contrast the nonzero value of the transmission

) ) ) _coefficientT, in this case, with the results for scattering in
Figure 4 demonstrates this effect. After a period of quasinorine exterior of asymptotically flat black-hole spacetirfigk

mal ringing, whose explicit features we are not currently|, that case the transmission coefficients are of ordet
interested in, the field rapidly approaches the same constagf; small o and, consequently, the constant modes are
value at the cosmological event horizon, the black-hole everﬁapped[l].
horizon, and future timelike infinity. One might suspect that

the existence of a nonzero field at late times is an artifact of

the initial data, or that setting=0 might produce different

results. Therefore, Fig. 5 shows results for a
Schwarzschild—de Sitter black hole wher 0. Once again, b -
the field settles down to a constant value which is indepen- i
dent of the radial position. Monitoring the behavior of; it
during the evolution(this is a matter of formality in the
Cauchy code, as it uses momempia= ¢ , for the evolution

has allowed us to conclude that the numerical value of the
exponent in Eq(2.9) is indeedk; to within 10%. In general, 1x10°
the final field valuep, is a function of the black-hole param- :
eters M,q,A). Employing arguments similar to those used i
by Gundlach, Price, and PullifY], to study power-law tails i
in asymptotically flat black-hole spacetimes, one can show :
that the constant part of the field scalesdas- A (see the

ol

. . - ) 1 10.4 1 1 1 1 1 1 1
Appendiy. We have numerically investigated the depen- 0 100 200 300 400 500 600 700 800
dence of¢, on the cosmological constait and, as shown
in Fig. 6 for the %%gg4wheu=0 andM=1, our results FIG. 5. A plot of |¢| versus time whem=0.0, /=0, M=1,
indicate thatgy~A™"" and A=10"“. The field is exhibited on the same surfaces as the

A calculation, identical to that of Geel et al. [10] for  ¢=0.5 cases. Once again, the asymptotically constant field is evi-
wave propagation in the interior of a Reissner-Nordstro dent.
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FIG. 6. The asymptotic value of the field,| versusA for
evolutions withq=0.0, /=0, andM=1. The dashed line repre-
sents the least square fit to|dg/=b+aln|A| with a=1.02,
b=4.65. The linear correlation coefficient;,, of In|¢y versus
InA is given byc;,,=0.999.

For />0 the picture is different, as seen in Figs. 7 and 8
The early time behavior of the field is still dominated by
complicated quasinormal ringing, but at late times a definit
exponential falloff is manifest. In particular, the late time
wave tails are well approximated kj|,~ exp(—/"k4t). In

a series of separate evolutions we found that for sufficiently

small values of\, a regime of power-law decay followed the

guasinormal ringing, though at late times the exponential de\;v

cay described above always dominates.

Ill. NONLINEAR ANALYSIS

Given the somewhat unusual behavior of #he 0 mode
elucidated by the test-field analysis, it seems necessary
examine the nonlinear evolution of a self-gravitating mass

1x102

1x107*

ol

1x107°
1x10°8

1x1071°

200

1x10712

0 400 600 800 1000 1200 1400
t

FIG. 7. A plot of| ¢| versus time fog=0.5,/=1,M=1, and
A=10%. The field along is shown on the cosmological event ho-
rizon r4 (short dashexl the black-hole event horizon, (dotted,
and two surfaces of constant radi(slid and long dashedThe
field falls off as exp{-kt) at late times, wittk= k, to within about
2%. Note that the ordinate scale is logarithmic.
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FIG. 8. A plot of|¢| versus time fog=0.5,/=2,M=1, and
A=10*. The field is shown on the cosmological event horizon
r, (short dashex the black-hole event horizan, (dotted, and two
surfaces of constant radigsolid and long dashedAt early times
quasinormal ringing completely dominates, but eventually the field
falls off as exp(2kt). The value ofk=«, is again accurate to
approximately 2%. Note that the ordinate scale is logarithmic.
ess, scalar field in the presence of a cosmological constant.

his situation is described by the coupled Einstein-scalar
field equations

GaﬁZBWTaB_gaﬁA’ (31)

here

Taﬁ': ¢,a¢,[3_ (1/2)9%8((!)0/4),7),

is the stress energy of the scalar field which satisfies
%! ¢=0. Restricting attention to spherical symmetityus we
only gain information about the’=0 mode, the line ele-

ment can be written as

3.2

ds?=—ggdu?—2gdudr+r(d6®+sined4?), (3.3

whereg=g(u,r), g=g(u,r), andu is the retarded time.
The coordinates have been normalized so thiatthe proper

time at the origin, thu:g(u,O)zgu,O)=1. It is customary
[23] to introduce two new field$ (u,r) andh(u,r) defined

by
1(r
=—f hdr.
rJo

¢ (3.9

In terms of these variables the field equati¢Bsl) become

(Ing) ;=4mr ~Y(h—h)?, (3.5
(rg),=g(1—Ar?), (3.6
(rh),=h, 3.7)

and the wave equation is
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FIG. 9. A plot of |¢| versus time forA=10"*. The field is FIG. 10. The derivative of the fields ,| versus time along three

shown along three surfaces: the cosmological event horizon Surfaces: the cosmological event horizop (short dashed the
(short dashexi the black-hole event horizan (long dashelj anda  black-hole event horizon, (long dasheyl and a suzface of constant
surface of constant radiusolid). After a period of quasinormal radius(solid). The nonlinear evolution had =10"". At late times

ringing the field settles down to the same constant value at all threexponential decay with the approximate form ex@ku) is evident,
surfaces. we have determined the value lof «, within about 12%.

_ the analysis is the behavior of the=0 mode. We have seen
ho— gh _(h— h) 1-Ar?)—g] 3.9 that, rather than decaying, the=0 mode approaches a con-
U9 oy ] gl. ' stant value at late times. Motivated by this result, we consid-
ered the nonlinear problem of a scalar field coupled to grav-
A well-established numerical algorithm exists to integrateity and numerically integrated the Einstein-scalar field

these equationf8,24,25. We refer the reader to these ar- €guations. These results show excellent agreement with the
ticles for details. linear analysis. In addition, an analytic investigation of scat-

Initial data for the nonlinear equations is supplied on antering in the exterior of black-hole—de Sitter spacetimes has
initial null cone centered on the origin. We considered aallowed. us to predict that .th.ef constant mode §cales as
Gaussian pulse om=0, with an amplitudep,(r/r )2, width o~ A, |r_1dependently of the initial data, and agreeing com-
and centered on=r.. The code was tested against the pletely with the results of our numerical study. In particular,
7 o 0 gaInst €, e have been able to show that the zero frequency reflection
exact solution ir| 26]. W? also reproduced power-law tails in and transmission coefficients for tile=0 mode are nonzero
complete agreement wif8], whenA =0. and, unlike the situation in asymptotically flat black-hole
Figure 9 showsh (or equivalently¢) at the cosmological spacetimes, the constant modes can be propagated through-
event horizon, the black-hole event horizon, and along amut the exterior.
r =const surface. The agreement with the linear analysis is Though the introduction of a nonzero cosmological con-
remarkable. We again see an initial period of quasinormastant into the Einstein equations may be argued to be some-
ringing which decays, leaving behind a constant field at latevhat unrealistic, it is the issue of Cauchy horizon stability in
times. black-hole—de Sitter spacetimigis, 16 and the related issue
Furthermore, using Eqs3.4) and (3.7 we can write of cosmic censorshipl9], that motivates this investigation.
r¢ ,=(h—h) and examine the stress energy of the field at’he power-law tails found by Pricg3] have been used as
late times. Figure 10 suggests thE{ h)~ exq —2k.u] at initial data in arguments pertaining to the instability of the

: & . inner (Cauchy horizon of both the Reissner-Nordstncand
late imes, as suggested by the the test-field analysis. Kerr black-hole spacetimes and the associated phenomenon

of mass inflation. Linear perturbation studies suggest that the

IV. CONCLUDING REMARKS Cauchy horizon inside black holes embedded in de Sitter

space may be stable, fluxes of linear perturbations remain
gounded at the Cauchy horizon. This in itself does not guar-
ntee stability though. A fully nonlinear analysis of the
lack-hole interior is needed, for which the late-time wave

a Schwarzschild—de Sitter and Reissner—Nordstide Sit-  tails at thg event honzon serve as initial data. With the re-
sults of this paper in hand, we can how embark on a numeri-

ter black hole decay exponentially at the cosmological hori X . . -

zon, the black-hole event horizon, and at future timelike in-C"flI Study of the C_auchy horizon in Reissner—Nordsécale
finity. This result is not too surprising when one considers>ter. along the lines of Brady and Smith4].
the conclusions of Chingt al.[22], who have demonstrated
that the usual inverse power-law tails , as seen in asymptoti-

cally flat black-hole spacetimes, are not a generic feature of P.R.B. is grateful to Bruce Allen and Kip Thorne for help-
wave propagation in curved spacetime. An unusual feature dfil discussions. C.M.C. wishes to thank the Caltech Relativ-

This study of wave-tail evolution in black-hole—de Sitter
spacetimes has revealed consistent but interesting resul
The radiative tails associated with a massless, minimall
coupled scalar field propagating on the fixed backgrounds
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[

V=A[G(u)+F(v)]+ Eo Bo(N[G P~ (u)
=

+(— PRI, (A1)

where negative superindices refer to integration with respect
to the argument of the function. The coefficiénts set equal

to unity, without loss of generality, while thB,(r) satisfy

the recurrence relation

! M A ! n
pr1= PEAY (er—Bp)+pr/2. (A2)
Here a prime indicates differentiation with respect tand
B, is given by
B M Ar A3
T (A3)

FIG. 11. The region of spacetime important for scattering be-
tween the black-hole event horizqiEH), and the cosmological The first part of the evolution, scattering of the initial
event horizor{CEH) of a black hole in de Sitter space. We consider pulseG(u) in the region G<u<u,, implies that the field on
an initial burst of radiation om =0 which is confined between the = u, is given by
two null linesu=0 andu=u,. The analysis in the Appendix con-
siders the evolution of the field in the diamond-shaped region de-
termined by Gsu<o and O<v<w. We find that the’=0 mode W(uy,v)=, Bo(r)G P~ Y(uy), (A4)
of the scalar field settles down to a constant, nonzero value at the p=0
EH, the CEH, and timelike infinity.

o)

sinceG(u;)=0. It is straightforward to show that the coef-
ficientsBp(r) do not vanish as, —, corresponding to the
ity Group for hospitality during the completion of this work cosmologlcal horizon and, in this limit, the field is nonzero
and the Relativity group at Montana State University forfor generic initial data. In asymptotically flat space this limit
their constant support over the last year. C.M.C. thanks Thes equivalent ta — o, and all of theB o(r) vanish; this is the
Royal Commission For The Exhibition Of 1851 whose fi- central difference between our analy3|s and that of ABte

nancial support is gratefully acknowledged. P.R.B. was supmoreover, for sufficiently smallA the value of¥ on the
ported by the PMA at Caltech and the NSF Grant No. AST'Cosmo|og|Ca| horizon is g|ven by

9417371. W.K. was supported by the Deutscher

Akademischer Austauschdierf8AAD). P.L. was supported — (U1

by the Binary Black Hole Grand Challenge Alliance, NSF W(uy,)=vAR3 0 G(u)du+O(A). (AS)
PHY/ASC 9318152(ARPA supplementedand by NSF

Grant Nos. PHY 96-01413 and 93-572@9Y1). We can now examine the evolution of the field in the

regionu=u, using Eq.(A4) as initial data; it is at this point
that our argument deviates from that of Gundlach, Price, and
APPENDIX: LATE-TIME BEHAVIOR Pullin [7]. For sufficiently small values ok, and/'=0, we
OF THE /=0 MODE can solve Eq(2.6) near to the cosmological horizon by ne-

Price[3] has shown that a scalar fieltlin the exterior of glecting the mass of the black hole; the solution is simply

an asymptotically flat black hole decays to zero at late times, W=(Ar/3 T+ (o) 1+[a —of A6
provided the initial data has compact support. Here, we con- ( LG+ F()]+[2ug(W) = f()], (AB)
sider scattering of the’=0 mode between the cosmological whereg(u) andf(v) are arbitrary functions. We can deter-
and black-hole event horizons in Schwarzschild—de Sittemine f(v) by matching it to the initial data in EGA4), thus,

spacetime.(The results extend easily to include chajge. near the cosmological horizon, and by virtue of the relation
While the qualitative features of this analysis should hold fory , = (y —u)/2, we have

all values ofA, we make the assumption that the cosmologi-
cal constant is sufficiently small that we can approximate the
radius of the cosmological horizon yy=\/3/A. Following
Gundlach, Price, and Pullif7], we break the evolution up
into two parts: (i) the evolution of an initial burst wherefy=3¥(uy,%)/(Ar;). The precise form ofj(u) de-

¥ (u,0)=G(u), for which G(u)#0 only when G<u<uy, pends on the nature of the potentalerywhere however,
and¥(0,p)=0, and(ii) the subsequent evolution of the field since it develops from the field configuration given in Eq.

f(v)=fo+ >, foe ™2, (A7)
n=1

for u=u;. This situation is indicated in Fig. 11. (A4) it seems reasonable to assume that it can be written as
When/ =0, the general solution to ER.6) can be writ-
ten as a series depending on two arbitrary functiBiis) g(u)=go+ Z g,e ", (A8)

andG(u); thus,
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whenu—-oo. In this way, we conclude that a generic pertur-

bation will lead to a constant value for the fiedt="V/r at
late times, provided y#g,. When /=0, this is the only

7545

do~A (A9)

static solution which is regular at both horizons. Finally, wefor small values ofA. This is confirmed by the numerical

note that the final value of the field, in Eq. (2.9) scales as

results in Sec. IIB.
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