
Problem of unitarity and quantum corrections in semiclassical quantum gravity

Sang Pyo Kim
Department of Physics, Kunsan National University, Kunsan 573-701, Korea

~Received 14 November 1996!

Using both the Born-Oppenheimer idea and the de Broglie–Bohm interpretation of a wave function we
represent in a different way the semiclassical quantum gravity from the Wheeler-DeWitt equation in an
oscillating regime which can preserve completely the unitary quantum evolution of a matter field at the
expense of a nonlinear gravitational field equation, but has the same asymptotic limit as the others. We apply
the de Broglie–Bohm interpretation to the nonlinear gravitational field equation to develop a perturbation
method to find the quantum corrections of a matter field to the gravity. The semiclassical Einstein equation
with the quantum corrections is found for a minimal quantum FRW cosmological model.
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I. INTRODUCTION

The problem of unitarity and back reaction of a matter
field in a curved spacetime has been an important and critical
issue of gravity such as black holes and the very early Uni-
verse. Although the complete solution of this problem should
be found within the context of the right and consistent quan-
tum gravity, there has been quite recently an attempt to
tackle this problem from the canonical quantum gravity
based on the Wheeler-DeWitt~WDW! equation@1#. In the
canonical quantum gravity approach to the gravity plus mat-
ter system, the gravitational wave functions of the WDW
equation are peaked along~semi!classical trajectories of the
~semi!classical Einstein equation, and the matter field, which
obeys a time-dependent functional Schro¨dinger equation,
evolves quantum mechanically along each trajectory. These
two equations constitute the so-called semiclassical quantum
gravity. We shall distinguish this approach from the conven-
tional field theoretic approach in the curved spacetime@2#.
Recently, the semiclassical quantum gravity has been applied
to a two-dimensional black hole model@3#.

One can derive the semiclassical quantum gravity in many
different ways, for instance, depending on whether or not
one includes the back reaction of the matter field to the semi-
classical Einstein equation in the lowest order of the power
series expansion in terms of the inverse Planck mass. When
one searches for a WKB-type wave function for the entire
WDW equation and expands its total action in the inverse
power series of the Planck mass, one obtains the vacuum
~classical! Einstein equation and the time-dependent func-
tional Schro¨dinger equation for the matter field on it@4#. On
the other hand, when one adopts the Born-Oppenheimer idea
by treating the gravitational field as a massive particle degree
of freedom and the matter field as a light particle degree of
freedom, one can separate two different mass scales and de-
rive the semiclassical Einstein equation with the quantum
expectation value of the energy-momentum tensor operator
as a source of matter and the time-dependent Schro¨dinger
equation for the matter field@5,6#. In previous papers@7#, by
separating and expanding the WDW equation in the inverse
power series of the Planck mass, we were able to derive the
semiclassical quantum gravity and to find the quantum states

of the matter field in the asymptotic limit of large Planck
mass. Quite recently, Bertoniet al. @8# have shown that the
semiclassical quantum gravity represented in three different
ways which are in fact equivalent to one another in the
asymptotic limitO(\/mP).

In the asymptotic limit of large Planck mass, the semiclas-
sical quantum gravity is unitary in the sense of conservation
of probability of the matter wave functions@7#. In a different
representation, there are, however, unitarity-violating terms
in the time-dependent Schro¨dinger equation for the matter
field beyond the asymptotic limit@9#. These unitarity-
violating terms come from the slowly varying amplitude of
the gravitational wave function in the expansion of the
WDW equation in the inverse power series of the Planck
mass. The origin of these unitarity-violating terms may not,
however, follow inherently from the WDW equation. Bertoni
et al. @8# have further shown that the semiclassical quantum
gravity can indeed preserve the unitarity of quantum fields
provided that one can define the cosmological time defined
through the Hamilton-Jacobi equation of gravitational field
including the back reaction of matter field. A remark on the
different representations of almost the same semiclassical
quantum gravity is that the semiclassical quantum gravity in
Ref. @7# is based on the complicated matrix equation of the
WDW equation which incorporates actually the scattering of
Cauchy data at the second or third quantized level and also
considers linear combinations of the wave functions@10#, in
contrast with one wave function in Refs.@5,8#. So, it would
be worthy to show the unitarity of quantum fields from the
WDW equation using the equivalent matrix equation@6,7#.

In this paper we observe that the WDW equation is not
uniquely separated into the gravitational field equation and
the time-dependent Schro¨dinger equation according to the
different mass scales following only the Born-Oppenheimer
idea @7#, and that, especially when we apply de Broglie–
Bohm interpretation@11# at the same time to the wave func-
tion of the gravitational field equation, this arbitrariness in
the separation of the WDW equation in an oscillating regime
can also allow the semiclassical quantum gravity which con-
sists of a nonlinear gravitational field equation and a time-
dependent Schro¨dinger equation that indeed doespreserve
the norm of the quantum states of matter field during the
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quantum evolution. As in Ref.@8#, we assume no asymptotic
limit to derive the semiclassical quantum gravity. However,
in the asymptotic limit, it reduces identically to the semiclas-
sical quantum gravity in previous papers@5,7#. Thus, the
question of unitarity of the quantum evolution of matter
fields may not be settled within the canonical quantum grav-
ity, and should be answered by more fundamental theory.
Furthermore, we shall use this semiclassical quantum gravity
to find the higher order quantum corrections of the matter
field to the gravity. Finally, we shall apply the semiclassical
quantum gravity to the quantum Friedmann-Robertson-
Walker ~FRW! cosmological model coupled to a minimal
scalar field.

The organization of the paper is as follows. In Sec. II we
derive the nonlinear gravitational field equation and the time-
dependent Schro¨dinger equation, and show that they pre-
serve the unitarity of the quantum evolution of matter field.
In Sec. III we develop a perturbation method for the semi-
classical Einstein equation with the quantum potential and
the higher order quantum corrections of matter field. In Sec.
IV we apply the semiclassical quantum gravity to the quan-
tum FRW cosmological model to find the effective energy
density.

II. NONLINEAR GRAVITATIONAL FIELD EQUATION
AND UNITARITY

We shall follow the Born-Oppenheimer idea to separate
the WDW equation into the nonlinear gravitational field
equation and the time-dependent Schro¨dinger equation. The
canonical quantum gravity for a gravity coupled to a matter
field, typically represented by a scalar field, is described by
the WDW equation

F2
\2

2mP
¹22mPV~ha!1ĤS i\ d

df
,f,haD GC~ha ,f!50,

~1!

whereha represents the gravitational field andf the matter
field. Here¹2 is the Laplace-Beltrami operator in superspace
with the signature (2,1, . . . ,1). Take the Born-
Oppenheimer-type wave function for the WDW equation

uC~ha ,f!&5c~ha!uF~f,ha!&, ~2!

wherec depends only on the gravitational field andF both
on the matter field and on the gravitational field as an explicit
parameter. The Born-Oppenheimer idea assumes that the
quantum states of matter field belong to a Hilbert space that
varies continuously on the superspace of the gravitational
field. The validity of the form of wave function~2! should be
checked by the unitarity of the quantum state of matter field
in the semiclassical quantum gravity.

Before we delve into representing in a different way the
semiclassical quantum gravity that preserves the unitarity of
the quantum matter field, we point out a major similarity and
a minor difference among the approaches to the semiclassical
quantum gravity in Refs.@6,7# and@8#. The similarity is that,
as explained in the Introduction, most of the approaches
@5–8# take into account the expectation value of energy-
momentum tensor as its matter source in the semiclassical
Einstein equation. This is the quintessence of the Born-

Oppenheimer idea originally applied to a molecular system,
but in Ref.@4# the back reaction was excluded at the lowest
order by expanding the total action in the inverse power
series of the Planck mass.

The difference comes from the interpretation of the WDW
equation~1! whether as the zero-energy Schro¨dinger equa-
tion for a coupled system@5,8# or as a functional wave equa-
tion describing the evolution~scattering! of Cauchy data
from an initial spacelike hypersurface, usually assumed to be
the early stage of the Universe, to a later spacelike hypersur-
face @10#. In a toy model without a matter field, the WDW
equation may apparently look like the Schro¨dinger equation
with zero energy, but with additional inhomogeneous gravi-
tational degrees of freedom or matter field degrees of free-
dom, Eq.~1! has the Minkowski signature (2,1, . . . ,1).
The exact wave functions for the quantum FRW cosmologi-
cal model minimally coupled to a scalar field with a general
potential, which is to be considered in Sec. IV, are extremely
difficult to find due to the nonseparability of quantum states
of the scalar field from the gravitational field and have not
been found yet. In a systematic way we can make use of the
initial value problem for Eq.~1! formulated in a matrix form
to describe the evolution~scattering! of Cauchy data from
one spacelike hypersurface to another, including the evolu-
tion of any quantum state. The matrix gravitational field
equations in Ref.@6# indeed incorporated the Cauchy data.
The semiclassical quantum gravity in previous papers@7#
was based on this exact matrix formulation for the canonical
quantum gravity, and took into account not only single wave
function but also a linear combination of wave functions.

Following Refs.@6,7#, we may expand any quantum state
with respect to a suitably chosen orthonormal basis relevant
to the matter field:

uF~f,ha!&5(
k
ck~ha!uFk~f,ha!&. ~3!

Substitute Eqs.~2! and~3! into the WDW equation~1! to get
the matrix equation@7#

cn~ha!S 2
\2

2mP
¹22mPV~ha!1Hnn~ha! Dc~ha!

1F2
\2

mP
¹c~ha!•S ¹cn~ha!2 i(

k
Ank~ha!ck~ha! D

1c~ha!S (
kÞn

Hnk~ha!ck~ha!

2
\2

2mP
(
k

Vnk~ha!ck~ha! D G50, ~4!

where

Hnk~ha!:5^FnuĤuFk&,

Ank~ha!:5 i ^Fnu¹uFk&,

Vnk~ha!:5¹2dnk22iAnk•¹1^Fnu¹2uFk&. ~5!
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This is an intermediate step for the derivation of the semi-
classical quantum gravity.

We now derive the semiclassical quantum gravity in a
different way from the previous papers@7#, so that it can
preserve the unitarity of quantum states completely. A com-
plex solution of the gravitational field equation in an oscil-
lating regime can always be rewritten in the form

c~ha!5~c*c!1/2expS i\ S~ha! D . ~6!

Substituting the complex solution~6! into the matrix equa-
tion ~4! and assumingcnÞ0, we obtain the two coupled
equations

F2
\2

2mP
¹22mPV~ha!1Hnn~ha!

2
\2

mP

¹~c*c!1/2

~c*c!1/2
•S ¹cn~ha!

cn~ha!

2 i(
k
Ank~ha!

ck~ha!

cn~ha!
D Gc~ha!50 ~7!

and

i
\

mP
¹S~ha!•¹cn~ha!1

\

mP
¹S~ha!•(

k
Ank~ha!ck~ha!

2 (
kÞn

Hnk~ha!ck~ha!1
\2

2mP
(
k

Vnk~ha!ck~ha!50.

~8!

Equation ~7! may be interpreted as the nonlinear gravita-
tional field equation with the quantum back reaction of the
matter field. In terms of the cosmological time

d

dt
:5

1

mP
¹S~ha!•¹, ~9!

Eq. ~8! can be rewritten as

i\
d

dt
cn~ha!5 (

kÞn
Hnk~ha!ck~ha!

2
\

mP
¹S~ha!•(

k
Ank~ha!ck~ha!

2
\2

2mP
(
k

Vnk~ha!ck~ha!. ~10!

Equation~10! may now be interpreted as the time-dependent
functional Schro¨dinger equation for the matter field on the
spacetime determined by Eq.~7!. It should be noted that
there can be some arbitrariness in separating the WDW equa-
tion. Instead ofHnn in Eq. ~7!, one may use a quantum back
reaction Knn(ha). Then, the nonlinear gravitational field
equation~7! is replaced withKnn . We rewrite the matter
field equation by a vector notation

i\
d

dt
c„ha~t!…5M „ha~t!…c„~ha!~t!…, ~11!

whereM is the Hermitian matrix

M „ha~t!…5M0„ha~t!…1M1„ha~t!…, ~12!

consisted of

M0„ha~t!…5 (
kÞn

Hnk„ha~t!…

2
\

mP
¹S„ha~t!…•(

k
Ank„ha~t!…

2
\2

2mP
(
k

Vnk„ha~t!…,

M1„ha~t!…5Knn„ha~t!…2Hnn„ha~t!…. ~13!

The unitarity of the quantum matter field is always fully
respected:

c†~t!•c~t!51. ~14!

A minor difference of this paper from other related works
@4,5,9# is that we followed closely Ref.@10#, which inter-
preted the WDW equation as the quantum scattering of the
Cauchy data including the quantum states of matter fields.
The difference from previous works@7# lies on the fact that
we made use of the arbitrariness in order to separate the
nonlinear gravitational field equation~7! from the WDW
equation and the time-dependent Schro¨dinger equation~10!
that preserves the unitarity of the quantum evolution of mat-
ter field. The unitarity of quantum field in the oscillating
regime has been first proved by Bertoniet al. @8# using the
semiclassical quantum gravity in Ref.@5#.

III. QUANTUM CORRECTIONS

We apply the de Broglie–Bohm interpretation of wave
functions to the nonlinear gravitational field equation~7!.
The main idea of the de Broglie–Bohm interpretation is that
a time-dependent Schro¨dinger equation is mathematically
equivalent to a pair of equations, the time-dependent
Hamilton-Jacobi equation with an additional quantum poten-
tial and the equation for the conservation of probability@11#.
The concept of trajectories with the quantum potential pro-
vides us with all the same physical predictions as those with
the standard quantum mechanics. Thus, the de Broglie–
Bohm interpretation is another way of interpreting quantum
mechanics, not a kind of approximation methods such as the
WKB method, even though the de Broglie–Bohm interpre-
tation has the WKB as an asymptotic limit, when the quan-
tum potential is negligible.

According to the de Broglie–Bohm interpretation, we
separate the real and the imaginary parts of the nonlinear
gravitational field equation. Thus, by substituting
f[(c*c)1/2 and equating the real and the imaginary parts of
Eq. ~7!, we obtain
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1

2mP
~¹S!22mPV1Hnn2

\2

2mP

¹2F

F
2

\2

mP
Re~Qnn!50,

~15!

1

2
¹2S1

¹F

F
•¹S1Im~Qnn!50, ~16!

where

Qnn5
¹F

F
•S ¹cn

cn
2 i(

k
Ank

ck
cn

D . ~17!

If there is no parametric coupling of gravity with matter, the
term

Vquant:52
\2

2mP

¹2F

F
~18!

is the quantum potential, and Eq.~16! is the equation for the
probability conservation@11#. The last terms in Eqs.~15! and
~16! are the quantum back reaction of matter field to the
gravity.

In the asymptotic limitO(\/mP), the matter field equa-
tion becomes

i\
d

dt
cn

~0!~ha!5 (
kÞn

Hnk~ha!ck
~0!~ha!2

\

mP
¹S~0!~ha!

3(
k
Ank~ha!ck

~0!~ha!, ~19!

and the gravitational field equation reduces to the Hamilton-
Jacobi equation of the zeroth order

1

mP
~¹S~0!!22mPV1Hnn50. ~20!

As an orthonormal basis, we choose the exact quantum states
of the time-dependent functional Schro¨dinger equation

i\
d

dtUF~0!~f,t!L 5ĤS i\ d

df
,f,ha~t! D UF~0!~f,t!L .

~21!

This orthonormal basis simplifies considerably the algebra;
especially, the matter field equation becomes

i\
d

dt
cn

~0!~ha!52
\

mP
¹S~0!~ha!•Ann~ha!cn

~0!~ha!.

~22!

The solution is

cn
~0!5expS i E ~Ann!adhaD . ~23!

To find the gravitational field wave function and the quan-
tum states of matter field, we use a perturbation method that
expands the coefficient functions and the gravitational action
as

cn~ha!5 (
p50

` S \

mP
D pcn~p!~ha!,

ck~ha!5 (
p51

` S \

mP
D pck~p!~ha! ~kÞn!, ~24!

and

S~ha!5 (
p50

` S \

mP
D pS~p!~ha!,

F~ha!5 (
p50

` S \

mP
D pf ~p!~ha!. ~25!

The dominant contribution to the quantum state comes from
cn . The other termsck ,(kÞn) are of the order of
O(\/mP). The prefactorf of the gravitational wave function
is determined by

¹ f ~0!

f ~0! •¹S
~0!52 1

2¹2S~0!, ~26!

whose solution is

f ~0!5
1

~¹S~0!
•¹S~0!!1/4

. ~27!

The first order coefficient functions of the quantum state are

i
d

dt
ck

~1!~ha!52 1
2Vkn~ha!cn

~0!~ha!, ~28!

where

Vkn~ha!cn
~0!~ha!5@2Ank•Ann2Ann•Akn2~A•A!nn#

3cn
~0!~ha!. ~29!

We determineS(1) from

1

mP
¹S~1!

•¹S~0!5
\

2

¹2f ~0!

f ~0! . ~30!

The procedure can be repeated to yield the higher order
quantum corrections of the matter field to the semiclassical
Einstein equation and the exact quantum state.

IV. QUANTUM FRW COSMOLOGICAL MODEL

We now apply the semiclassical quantum gravity devel-
oped in this paper to the frequently employed quantum FRW
cosmological model. The higher order quantum corrections
in Sec. III to the asymptotic semiclassical quantum gravity
have not yet been found explicitly even for the FRW model,
although higher order quantum corrections were found in the
semiclassical quantum gravity whose lowest order equation
is the vacuum Einstein equation and which does violate the
unitarity at the first order@9#. Moreover, since the quantum
field preserves the unitarity throughout the evolution, the ap-
plication to the FRW model is expected to be particularly
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useful in searching for the quantum effects of matter field to
the gravity.

A. Minimal scalar field

The simplest but nontrivial FRW quantum cosmological
model is with a minimal scalar field~inflaton!. The WDW
equation is

F 2p\2

3mPa

]2

]a2
2
3mP

8p
V~a!1ĤS i\ d

df
,f,aD GC~a,f!50,

~31!

wherea is the size of the Universe, and

V~a!5ka2La3 ~32!

is the gravitational potential consisting of the three-curvature
and the cosmological constant, andf denotes the massive
scalar field. The extended supermetric is

ds252ada21a3df2, ~33!

and the rescalinga5(3/4p)1/3ã recovers the WDW equa-
tion of the form in Eq.~1!. Remembering the superspace
signature (2), the cosmological time is related to the gravi-
tational action by

]

]t
52

4p

3mPa

]S~a!

]a

]

]a
. ~34!

Then, we find that

ȧ~t!52
4p

3mPa
S8, ~35!

where here and hereafter overdots and primes will denote
derivative with respect tot anda, respectively. We rewrite
the nonlinear gravitational field equation as

F 2p\2

3mPa

]2

]a2
2
3mP

8p
V~a!1Hnn

2
4p\2

3mPa

F8

F S cn8cn 1 i
3mP

4p

a

S8(k Bnk

ck
cn

D Gc~a!50. ~36!

In terms of the cosmological time, the time-dependent func-
tional Schro¨dinger equation is rewritten as

i\
]

]t
cn~t!5 (

kÞn
Hnk~t!ck~t!2\(

k
Bnk~t!ck~t!

2
2p\2

3mPa
(
k

Vnk~t!ck~t!, ~37!

where

Hnk~t!5^FnuĤuFk&,

Bnk~t!5 i K FnU ]

]t UFkL ,
Vnk~t!52

1

ȧ2
F S ]2

]t2
2
ä

ȧ

]

]t D dnk22iBnk

]

]t

1K FnU ]2

]t2
2
ä

ȧ

]

]t UFkL G . ~38!

In the above equations we made use of the relations~34! and
~35!. Following the de Broglie–Bohm interpretation, we sub-
stitute the wave functionc5Fe( i /\)S and separate the real
and the imaginary parts of the gravitational field equation to
obtain

2p

3mPa
S821

3mP

8p
V~a!5Hnn2

4p\2

3mPaȧ

F8

F
Re~Rnn!

1
2p\2

3mPa

F9

F
, ~39!

and

F8

F
S81

1

2
S95

\

ȧ

F8

F
Im~Rnn!, ~40!

where

Rnn5
ċn
cn

2 i(
k
Bnk

ck
cn
, ~41!

andQnn5(F8/F)Rnn . We solve Eq.~40!, and let

Unn :5
F8

F
52

1

2

~aȧ!•

aȧ21~4p\/3mP!Im~Rnn!
, ~42!

where we again used Eqs.~34! and ~35!. Using again Eqs.
~35! and ~42!, we rewrite Eq.~39! as

S ȧ
a
D 21 1

a3
V~a!5

8p

3mPa
3FHnn2

4p\2

3mPaȧ
UnnRe~Rnn!

1
2p\2

3mPa
S Unn

2 1
1

ȧ
U̇nnD G . ~43!

We can interpret Eq.~43! as the semiclassical Einstein equa-
tion with the quantum back reaction of the matter field and
the higher order quantum corrections from the fluctuations of
matter field and geometry itself. In this sense,

Tnn :5Hnn2
4p\2

3mPaȧ
UnnRe~Rnn!1

2p\2

3mPa
S Unn

2 1
1

ȧ
U̇nnD

~44!
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is the effective energy density from the quantum fluctuation
of matter fields. Equation~37! is the time-dependent func-
tional Schro¨dinger equation for the matter field on the space-
time determined by Eq.~43!.

B. Massive scalar field

We work out explicitly the specific case of a massive
scalar field. The Hamiltonian of the massive scalar field is

ĤS i\ d

df
,f,aD52

\2

2a3
]2

]f2 1
a3m2

2
f2. ~45!

In Ref. @12# a Fock space representation of quantum states
satisfying the time-dependent functional Schro¨dinger equa-
tion was constructed in terms of the annihilation and creation
operators

b̂~t!5fc* ~t!p̂f2a3~t!ḟc* ~t!f̂, b̂†~t!5„b̂~t!…†,
~46!

wherefc is a complex solution of the classical field equation

f̈c~t!13
ȧ~t!

a~t!
ḟc~t!1m2fc~t!50. ~47!

The effective gauge potential is found in an operator form:

B5a~t!b̂†~t!b̂~t!1b~t!b̂2~t!1b* ~t!b̂†2~t!, ~48!

where

a~t!5\a3~t!@ḟ* ~t!ḟ~t!1m2f* ~t!f~t!#,

b~t!52
\a3

2
@ḟ2~t!1m2f2~t!#. ~49!

Since cn is of the order 1 butck(kÞn) of the order
O(\/mP), we obtain the coefficient function

cn
~0!~t !5expS i E Bnn~t!dt D . ~50!

The lowest contributions toRnn andUnn are found

Rnn
~0!50,

Unn
~0!52

1

2

~aȧ!•

aȧ2
. ~51!

Thus, the semiclassical Einstein equation at this order be-
comes

S ȧ
a
D 21 1

a3
V~a!5

8p

3mPa
3FHnn1

2p\2

3mPa
S Unn

~0!21
1

ȧ
U̇nn

~0!D G ,
~52!

where

Hnn5\a3~t!~n1 1
2 !@ḟ* ~t!ḟ~t!1m2f* ~t!f~t!#

~53!

is the quantum expectation value of the Hamiltonian opera-
tor. It should be remarked that at the lowest order the quan-
tum effects enter the semiclassical Einstein equation only
through the quantum potential and there is no contribution
from the effective gauge potential. The contribution from the
quantum potential is still of the orderO(\/mP), so we re-
cover the asymptotic semiclassical Einstein equation in pre-
vious papers@7#.

The first order correction can be found from the equations

Vnncn
~0!5

1

ȧ2
F (
mÞn

BnmBmnGcn~0! , ~54!

and

Vnkcn
~0!52

1

ȧ2
F2BnkBnn2~B2!nk2 i S Ḃnk1

ä

ȧ
BnkD Gcn~0! .

~55!

Integrating the first order matter field equation

i
]

]t
ck

~1!52
2p\

3a
Vkncn

~0! , ~56!

we get

Rnn
~1!5

ċn
~0!1~\/mP!ċn

~1!

cn
~0!1~\/mP!cn

~1! 2(
k
Bnk

ck
~0!1~\/mP!ck

~1!

cn
~0!1~\/mP!cn

~1! .

~57!

By substituting Eq.~57! into Eq. ~43!, we obtain the semi-
classical Einstein equation up to the first order in\/mP .

V. CONCLUSION

The unitarity of quantum field in a curved spacetime is an
important issue in quantum gravity. In this paper, by apply-
ing both the Born-Oppenheimer idea and the de Broglie–
Bohm interpretation, we derived in a different way the semi-
classical quantum gravity which consists of the nonlinear
gravitational equation and the time-dependent functional
Schrödinger equation thatdoes preserve the unitarity of
quantum field without assuming any limit. In particular, we
applied the de Broglie–Bohm interpretation to the nonlinear
gravitational equation, whose real part is nothing but the
Hamilton-Jacobi equation with the quantum potential and the
contributions from the effective gauge potential of matter
fields. In an oscillating regime of gravity, we were able to
develop a perturbation method for the semiclassical Einstein
equation, which includes the quantum corrections of the mat-
ter field. Finally, we applied the perturbation method to the
quantum FRW cosmological model with a minimal scalar
field ~inflaton! and obtained the semiclassical Einstein equa-
tion ~43!. The right-hand side of the equation, the effective
energy density, is the sum of the expectation value of the
Hamiltonian operator, the higher order quantum corrections
from the matter field, and the quantum potential coupled to
the effective gauge potential. Since the quantum corrections
have the order ofO(\/mP), the semiclassical Einstein equa-
tion reduces to the same asymptotic semiclassical Einstein
equation obtained already in Ref.@7#.
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This paper does not, however, resolve completely the
problem of unitarity of quantum field in quantum gravity and
leaves it to a more fundamental theory. As pointed out ear-
lier, bearing the de Broglie–Bohm interpretation in mind, we
made use of the freedom in the separation of the Wheeler-
DeWitt equation into the gravitational field equation and the
time-dependent Schro¨dinger equation, and derived explicitly
the semiclassical quantum gravity that does indeedpreserve
the unitarity of quantum evolution of matter field at the ex-
pense of the nonlinearity of the gravitational field equation.
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