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Problem of unitarity and quantum corrections in semiclassical quantum gravity

Sang Pyo Kim
Department of Physics, Kunsan National University, Kunsan 573-701, Korea
(Received 14 November 1996

Using both the Born-Oppenheimer idea and the de Broglie—Bohm interpretation of a wave function we
represent in a different way the semiclassical quantum gravity from the Wheeler-DeWitt equation in an
oscillating regime which can preserve completely the unitary quantum evolution of a matter field at the
expense of a nonlinear gravitational field equation, but has the same asymptotic limit as the others. We apply
the de Broglie—Bohm interpretation to the nonlinear gravitational field equation to develop a perturbation
method to find the quantum corrections of a matter field to the gravity. The semiclassical Einstein equation
with the quantum corrections is found for a minimal quantum FRW cosmological model.
[S0556-282197)05112-§

PACS numbd(s): 98.80.Hw, 04.60.Kz, 04.62v

[. INTRODUCTION of the matter field in the asymptotic limit of large Planck
mass. Quite recently, Bertoet al. [8] have shown that the
The problem of unitarity and back reaction of a mattersemiclassical quantum gravity represented in three different
field in a curved spacetime has been an important and criticalays which are in fact equivalent to one another in the
issue of gravity such as black holes and the very early Uniasymptotic limitO(%/mp).
verse. Although the complete solution of this problem should In the asymptotic limit of large Planck mass, the semiclas-
be found within the context of the right and consistent quansical quantum gravity is unitary in the sense of conservation
tum gravity, there has been quite recently an attempt tof probability of the matter wave functiog]. In a different
tackle this problem from the canonical quantum gravityrepresentation, there are, however, unitarity-violating terms
based on the Wheeler-DeWittvDW) equation[1]. In the in the time-dependent Schdimger equation for the matter
canonical quantum gravity approach to the gravity plus matfield beyond the asymptotic limi{9]. These unitarity-
ter system, the gravitational wave functions of the WDWoVviolating terms come from the slowly varying amplitude of
equation are peaked alorigemjclassical trajectories of the the gravitational wave function in the expansion of the
(semiclassical Einstein equation, and the matter field, whichiVDW equation in the inverse power series of the Planck
obeys a time-dependent functional Satinger equation, mass. The origin of these unitarity-violating terms may not,
evolves quantum mechanically along each trajectory. Theskowever, follow inherently from the WDW equation. Bertoni
two equations constitute the so-called semiclassical quantuet al.[8] have further shown that the semiclassical quantum
gravity. We shall distinguish this approach from the conven-gravity can indeed preserve the unitarity of quantum fields
tional field theoretic approach in the curved spacetj@le  provided that one can define the cosmological time defined
Recently, the semiclassical quantum gravity has been appligtirough the Hamilton-Jacobi equation of gravitational field
to a two-dimensional black hole modd]. including the back reaction of matter field. A remark on the
One can derive the semiclassical quantum gravity in manylifferent representations of almost the same semiclassical
different ways, for instance, depending on whether or notjuantum gravity is that the semiclassical quantum gravity in
one includes the back reaction of the matter field to the semiRef. [7] is based on the complicated matrix equation of the
classical Einstein equation in the lowest order of the poweMWDW equation which incorporates actually the scattering of
series expansion in terms of the inverse Planck mass. WheBauchy data at the second or third quantized level and also
one searches for a WKB-type wave function for the entireconsiders linear combinations of the wave functigbg, in
WDW equation and expands its total action in the inversecontrast with one wave function in Ref&,8]. So, it would
power series of the Planck mass, one obtains the vacuutme worthy to show the unitarity of quantum fields from the
(classical Einstein equation and the time-dependent func-WDW equation using the equivalent matrix equatjén].
tional Schralinger equation for the matter field on[#]. On In this paper we observe that the WDW equation is not
the other hand, when one adopts the Born-Oppenheimer idamiquely separated into the gravitational field equation and
by treating the gravitational field as a massive particle degrethe time-dependent Schiimger equation according to the
of freedom and the matter field as a light particle degree oflifferent mass scales following only the Born-Oppenheimer
freedom, one can separate two different mass scales and ddea [7], and that, especially when we apply de Broglie—
rive the semiclassical Einstein equation with the quantunBohm interpretatiof11] at the same time to the wave func-
expectation value of the energy-momentum tensor operatdion of the gravitational field equation, this arbitrariness in
as a source of matter and the time-dependent ‘Satger  the separation of the WDW equation in an oscillating regime
equation for the matter fielb,6]. In previous paperg/], by  can also allow the semiclassical quantum gravity which con-
separating and expanding the WDW equation in the inverssists of a nonlinear gravitational field equation and a time-
power series of the Planck mass, we were able to derive thdependent Schdinger equation that indeed dopseserve
semiclassical quantum gravity and to find the quantum statethe norm of the quantum states of matter field during the
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guantum evolution. As in Ref8], we assume no asymptotic Oppenheimer idea originally applied to a molecular system,
limit to derive the semiclassical quantum gravity. However,but in Ref.[4] the back reaction was excluded at the lowest
in the asymptotic limit, it reduces identically to the semiclas-order by expanding the total action in the inverse power
sical quantum gravity in previous pap€fs,7]. Thus, the series of the Planck mass.

qguestion of unitarity of the quantum evolution of matter The difference comes from the interpretation of the WDW
fields may not be settled within the canonical quantum gravequation(1) whether as the zero-energy Sollimger equa-

ity, and should be answered by more fundamental theorytion for a coupled systefib,8] or as a functional wave equa-
Furthermore, we shall use this semiclassical quantum gravittion describing the evolutioriscattering of Cauchy data

to find the higher order quantum corrections of the mattefrom an initial spacelike hypersurface, usually assumed to be
field to the gravity. Finally, we shall apply the semiclassicalthe early stage of the Universe, to a later spacelike hypersur-
quantum gravity to the quantum Friedmann-Robertsonface[10]. In a toy model without a matter field, the WDW
Walker (FRW) cosmological model coupled to a minimal equation may apparently look like the Scliimger equation

scalar field. with zero energy, but with additional inhomogeneous gravi-
The organization of the paper is as follows. In Sec. Il wetational degrees of freedom or matter field degrees of free-
derive the nonlinear gravitational field equation and the timedom, Eq.(1) has the Minkowski signature—(,+, ... ,+).

dependent Schdinger equation, and show that they pre- The exact wave functions for the quantum FRW cosmologi-
serve the unitarity of the quantum evolution of matter field.cal model minimally coupled to a scalar field with a general
In Sec. Il we develop a perturbation method for the semi-potential, which is to be considered in Sec. IV, are extremely
classical Einstein equation with the quantum potential andlifficult to find due to the nonseparability of quantum states
the higher order quantum corrections of matter field. In Secof the scalar field from the gravitational field and have not
IV we apply the semiclassical quantum gravity to the quanbeen found yet. In a systematic way we can make use of the
tum FRW cosmological model to find the effective energyinitial value problem for Eq(1) formulated in a matrix form

density. to describe the evolutiofscattering of Cauchy data from
one spacelike hypersurface to another, including the evolu-
Il. NONLINEAR GRAVITATIONAL FIELD EQUATION tion of any quantum state. The matrix gravitational field
AND UNITARITY equations in Ref[6] indeed incorporated the Cauchy data.

. ) The semiclassical quantum gravity in previous pagéis
We shall follow the Born-Oppenheimer idea to separatgyas based on this exact matrix formulation for the canonical
the WDW equation into the nonlinear gravitational field guantum gravity, and took into account not only single wave
equation and the time-dependent Scfinger equation. The  fynction but also a linear combination of wave functions.
canonical quantum gravity for a gravity coupled to a matter Following Refs[6,7], we may expand any quantum state
field, typically represented by a scalar field, is described byyith respect to a suitably chosen orthonormal basis relevant

the WDW equation to the matter field:
12 i
“am. Y meVha) +H £ a—¢'¢'ha”“'<“a'¢):°' [®(g.h2) =3 c(ha)|Di(b.ha)). )
1

whereh, represents the gravitational field agdthe matter ~ Substitute Eqsi2) and(3) into the WDW equatior(1) to get
field. HereV? is the Laplace-Beltrami operator in superspacethe matrix equatiori7]

with the signature {,+,...,+). Take the Born- )
Oppenheimer-type wave function for the WDW equation h
i a | Calha)| = 5 VP meV(hy) + Hnn<ha>) w(hy)
|W(ha,¢))=h(ha)|P(p,ha)), 2
. . %2
where ¢ depends only on the gravitational field addboth + = v vena—=iS A (hoc(h
on the matter field and on the gravitational field as an explicit mp ¥(ha) n(ha) Ek n{Na)Ci(ha)

parameter. The Born-Oppenheimer idea assumes that the

guantum states of matter field belong to a Hilbert space that

varies continuously on the superspace of the gravitational +w(ha)(k§n Huk(ha)C(ha)

field. The validity of the form of wave functiof2) should be 52

checked by the unitarity of the quantum state of matter field _ ™ _

in the semiclassical quantum gravity. 2mp§k: an(ha)ck(ha)) } -0 @
Before we delve into representing in a different way the

semiclassical quantum gravity that preserves the unitarity ofyhere

the quantum matter field, we point out a major similarity and

a minor difference among the approaches to the semiclassical

guantum gravity in Ref46,7] and[8]. The similarity is that,

as explained in the Introduction, most of the approaches ]

[5—8] take into account the expectation value of energy- Ank(ha): = (D[ V|Dy),

momentum tensor as its matter source in the semiclassical

Einstein equation. This is the quintessence of the Born- Q(h):=V28,— 2iAn- V(P | V2 D). (5)

Ha(ha): =(D,[H| D),
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This is an intermediate step for the derivation of the semi- S

classical quantum gravity. if<—c(ha(7))=M(ha(7))c((ha) (7)), (11)
We now derive the semiclassical quantum gravity in a

different way from the previous papefg], so that it can whereM is the Hermitian matrix

preserve the unitarity of quantum states completely. A com-

plex solution of the gravitational field equation in an oscil-

lating regime can always be rewritten in the form M(ha(7)=Mo(ha(7))+M1(ha(7)), (12)

i consisted of
Y(ha)= (4" ) l’Zexp(gS(ha)) : ©®)
MO(ha(T)): an(ha(T))

Substituting the complex solutiof®) into the matrix equa- k#n
tion (4) and assuming,#0, we obtain the two coupled %
equations — m—VS(ha(T))'z An(ha(7))
P k
h o mavih h h?
“omy eV T () oy Ladhal()
2 V() [Veq(ha)
B m_p (* (ﬂ)llz . ch(hy) M1(ha(7))=Knn(ha(7)) = Han(ha( 7). (13

c(hy) The unitarity of the quantum matter field is always fully
lz Anha) 1 5 =) | (hy)=0 (") respected:
n(ha) p
and cf(7)-c(7)=1. (14)
" 4 A minor difference of this paper from other related works
im—VS(ha)-Vc (h a)+ VS(ha) E An(hyc(hy) [4,5,9 is that we followed closely Refl.10], which inter-
P

preted the WDW equation as the quantum scattering of the
72 Cauchy data including the quantum states of matter fields.
- 2 Hu(ha)e(ha) + 5 Z Q,(hy)c(hy)=0. The difference from previous workg] lies on the fact that
we made use of the arbitrariness in order to separate the
(8) nonlinear gravitational field equatiq(’?) from the WDW
equation and the time-dependent Schinger equatiorn(10)
Equation (7) may be interpreted as the nonlinear gravita-that preserves the unitarity of the quantum evolution of mat-
tional field equation with the quantum back reaction of theter field. The unitarity of quantum field in the oscillating

matter field. In terms of the cosmological time regime has been first proved by Bertatial. [8] using the
semiclassical quantum gravity in R¢g].

S 1
E::m_pvs(ha) ok ©) Ill. QUANTUM CORRECTIONS
We apply the de Broglie—Bohm interpretation of wave
functions to the nonlinear gravitational field equatitf).
The main idea of the de Broglie—Bohm interpretation is that
ﬁé_cn(ha)zz Ho(ha)ce(hy) a time-dependent Schiimger equation is mathematically
k#n equivalent to a pair of equations, the time-dependent
5 Hamilton-Jacobi equation with an additional quantum poten-
——VS(hy) - > Andha)c(hy) tial and the equation for the conservation of probablity].
Mp K The concept of trajectories with the quantum potential pro-

Eq. (8) can be rewritten as

52 vides us with all the same physical predictions as those with
_ 2 Q. (hy)ce(hy). (10) the sta_lndard quantum mechanics. Thus, the_ de Broglie—
2mp Bohm interpretation is another way of interpreting quantum

mechanics, not a kind of approximation methods such as the
Equation(10) may now be interpreted as the time-dependentWKB method, even though the de Broglie—Bohm interpre-
functional Schrdinger equation for the matter field on the tation has the WKB as an asymptotic limit, when the quan-
spacetime determined by E@7). It should be noted that tum potential is negligible.
there can be some arbitrariness in separating the WDW equa- According to the de Broglie—Bohm interpretation, we
tion. Instead oH,,, in Eq. (7), one may use a quantum back separate the real and the imaginary parts of the nonlinear
reaction K,,,(hy). Then, the nonlinear gravitational field gravitational field equation. Thus, by substituting
equation(7) is replaced withK ,,. We rewrite the matter f=(4* )*?and equating the real and the imaginary parts of
field equation by a vector notation Eq. (7), we obtain
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1 h? VF K% i
Z_mP(VS) —mpV‘FHnn—z—rnPT—m—PRdan)zo, Cn(ha):pzo (_> C(p)(h )
(15
1 VF o [ 3
= R p
EVZS+?'VS+|m(an):O, (16) Ck(ha) pgl (mp) (h ) (kg&n)u (24)
where and
VF [Vc S AL
- | gp
Qun="p ( i Ang ) (17 S(ha)= 25 (mp) SP(ha),
If there is no parametric coupling of gravity with matter, the _ . ﬁ P )
term F(ha>—p20 f®(hy). (25)
. h? V2F The dominant contribution to the quantum state comes from
unant'__zm F (18) C,. The other termsc,,(k#n) are of the order of
P

O(A/mp). The prefactorf of the gravitational wave function
is the quantum potential, and Eq.6) is the equation for the is determined by
probability conservatiofil1]. The last terms in Eq$15) and

(16) are the quantum back reaction of matter field to the . VSO= — 1y2g0), (26)
gravity. £
In the asymptotic limitO(%/mp), the matter field equa-
tion becomes whose solution is
) h 0)_ 1
gz ()= 2, Hnd el (he) = VS Pha) LR L @
0 The first order coefficient functions of the quantum state are
X 2 An(ha)c(ha), (19
S
i (1) —_1 (0)
i—c, . (hy)=—3Q.(hycy’(hy), (28
and the gravitational field equation reduces to the Hamilton- srk 8 2rknt Tl e
Jacobi equation of the zeroth order
where
1
m—(VS(O))Z—mpV+ Hnn:O- (20) ‘Q'kn(ha)c (ha) [2Ank Ann Ann Akn (A'A)nn]
P
xclO(hy). (29
As an orthonormal basis, we choose the exact quantum states
of the time-dependent functional Scdinger equation We determineS™Y) from
) N h V2§
it —I| 0 =H| - — (0 —vasd), 0)_
ih <@ (¢,7‘)> H(h 5¢,¢,ha(7-) ® (¢,T)>. mpvs Vs o (30

21)
_ S . The procedure can be repeated to yield the higher order
This orthonormal basis simplifies considerably the algebraguantum corrections of the matter field to the semiclassical

especially, the matter field equation becomes Einstein equation and the exact quantum state.
6 fi
i% 5_Tcg0>(ha): - m—PVS(O)(ha)-Ann(ha)CEm(ha)- IV. QUANTUM FRW COSMOLOGICAL MODEL
(22) Wg now apply the semiclassical quantum gravity devel-
oped in this paper to the frequently employed quantum FRW
The solution is cosmological model. The higher order quantum corrections

in Sec. lll to the asymptotic semiclassical quantum gravity

c§1°)=ex;{ if (A ha)- 23 have not yet been found explicitly even for the FRW model,

although higher order quantum corrections were found in the
semiclassical quantum gravity whose lowest order equation
To find the gravitational field wave function and the quan-is the vacuum Einstein equation and which does violate the

tum states of matter field, we use a perturbation method thatnitarity at the first ordef9]. Moreover, since the quantum

expands the coefficient functions and the gravitational actiofield preserves the unitarity throughout the evolution, the ap-
as plication to the FRW model is expected to be particularly
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useful in searching for the quantum effects of matter field to Ho(7) :<q)n||:||¢k>

the gravity.
J
37 q)k> ,

A. Minimal scalar field Bni(7) =i < ®,
The simplest but nontrivial FRW quantum cosmological

model is with a minimal scalar fiel@inflaton). The WDW 1 2 a9 P
equation is Q(7)= 52 ;a—T 5nk—2iBnk&—T
27h? & 3mp ol L2 v o , -
amea a2 g V@ TH 7 g0 0] V(2,920 P A Y 38
(31) Nar2  gar| K|
wherea is the size of the Universe, and In the above equations we made use of the relat{8Asand
(35). Following the de Broglie—Bohm interpretation, we sub-
V(a)=ka—Aa (32  stitute the wave function/= Fel™S and separate the real
and the imaginary parts of the gravitational field equation to
obtain
is the gravitational potential consisting of the three-curvature
and the cosmological constant, agddenotes the massive 3 52 B
scalar field. The extended supermetric is + EV(a)z 7 —ReR,;)
3mpa 8 mpa-a F nn
ds’=—ada’+a’d¢?, (33 omh? B 0
J’_ —_—
3mpa F’ (39)
and the rescaling= (3/47)%a recovers the WDW equa-
tion of the form in Eq.(1). Remembering the superspace gnd
signature (), the cosmological time is related to the gravi-
tational action by = 1 4 E’
—S'+-5=- —Im(R,m) (40
F 2 a
d 47 9S(a) 9
—=- —. (34
ar 3mpa Jda oda where
Then, we find that . ch 5 Cy "
nn_C_n_I - nkc_na ( )
. an
a(r)=-— s, (35
3mpa andQ,=(F'/F)R,,. We solve Eq(40), and let
where here and hereafter overdots and primes will denote U F’ 1 (aa)’ 42
derivative with respect te and a, respectively. We rewrite nn-TF 2 aé2+(47-rh/3mp)lm(Rnn) '

the nonlinear gravitational field equation as

where we again used Eg&4) and (35). Using again Egs.
2mwh? 9% 3mp (35) and (42), we rewrite Eq.(39) as

3mpa g2 8 (&)FHan ,
4mhit F'lcp 3 SRV o P A Re(R,.)
T 3mp a = 3 V(&)= 5 ——3| Fnn— ~Unn nn
= a a 3mpa
~3mea Flo. T an 52 Brig ) $(a)=0. (36) p 3mpaa
2mh?( 1.
In terms of the cosmological time, the time-dependent func- +3m a Unnt gunn . (43

tional Schralinger equation is rewritten as
We can interpret Eq43) as the semiclassical Einstein equa-

o _ 2 E tion with the quantum back reaction of the matter field and
'ﬁa_TCn(T)_kin Ha(7)C(7) — 1 . Bni(7)Ck(7) the higher order quantum corrections from the fluctuations of
matter field and geometry itself. In this sense,
27Tﬁ2
moas Qo e, (37) Amh?

27h? , 1.
Tani=Hpn— UnnRaRnn)"' 3mp Unn ~Unn
paa a

where (44)
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is the effective energy density from the quantum fluctuationis the quantum expectation value of the Hamiltonian opera-
of matter fields. Equationi37) is the time-dependent func- tor. It should be remarked that at the lowest order the quan-
tional Schralinger equation for the matter field on the space-tum effects enter the semiclassical Einstein equation only

time determined by Eq43). through the quantum potential and there is no contribution
from the effective gauge potential. The contribution from the
B. Massive scalar field guantum potential is still of the ord€d(%/mp), so we re-

cover the asymptotic semiclassical Einstein equation in pre-
vious paper$7].
The first order correction can be found from the equations

We work out explicitly the specific case of a massive
scalar field. The Hamiltonian of the massive scalar field is

A(i )
H g%,(ﬁ,a

. K2 52 a?’mz2
STl agrt T2

(49)

1
Q, ncﬁ,o) = ; CEIO) ) (54

> BunBmn
m#n

In Ref. [12] a Fock space representation of quantum states
satisfying the time-dependent functional Satinger equa- and
tion was constructed in terms of the annihilation and creation

operators 1 (. a
P anc(nO): - ; ZBnann_ (Bz)nk_| Bnit ank) C(nO) :
b(r)=d5(Nmy—a’ (D¢ (D¢, bl(n=b(n)", (55)
(46)
Integrating the first order matter field equation
wheredg,. is a complex solution of the classical field equation
_ 0 1 27h )
. a(r) . ) 197k =~ 33 QynCr ™ (56)
¢c(7)+3m¢c(7)+m ¢c(7)=0. (47)
we get
The effective gauge potential is found in an operator form: ) _
o X i . Ch+ (hImp)cy! c)+ (filmp)cyt
B=a()b'(1)b()+ B(7)b*(1)+B*(n)b™(7), (49 MO fime) e 2 KO 4 (7i/me)c D
where 7
3 : ) 5 By substituting Eq{(57) into Eqg. (43), we obtain the semi-
a(t)=ha*(1)[¢* (1) () +m=¢* (1) (7)], classical Einstein equation up to the first ordeiime .
ha® ., 2,2 V. CONCLUSION
(7)== [ () +m’¢?(7)]. (49) -

The unitarity of quantum field in a curved spacetime is an

Since ¢, is of the order 1 butc(k#n) of the order important issue in quantum gravity. In this paper, by apply-

O(%/mp), we obtain the coefficient function ing both the Born-Oppenheimer idea and the de Broglie—

Bohm interpretation, we derived in a different way the semi-

classical quantum gravity which consists of the nonlinear

: (50) gravitational equation and the time-dependent functional
Schralinger equation thatoes preserve the unitarity of

cV(7) =exp( i f Bon(7)d7

The lowest contributions t&,, andU,,, are found guantum field without assuming any limit. In particular, we
applied the de Broglie—Bohm interpretation to the nonlinear

R =0, gravitational equation, whose real part is nothing but the
Hamilton-Jacobi equation with the quantum potential and the

0 contributions from the effective gauge potential of matter

o 1(aq) : m . :

Uﬁm =5 5 (51) fields. In an oscillating regime of gravity, we were able to
aa develop a perturbation method for the semiclassical Einstein

. . ) ) ) ) equation, which includes the quantum corrections of the mat-
Thus, the semiclassical Einstein equation at this order beg, field. Finally, we applied the perturbation method to the
comes quantum FRW cosmological model with a minimal scalar
field (inflaton) and obtained the semiclassical Einstein equa-
tion (43). The right-hand side of the equation, the effective
energy density, is the sum of the expectation value of the
(52 Hamiltonian operator, the higher order quantum corrections
from the matter field, and the quantum potential coupled to
where the effective gauge potential. Since the quantum corrections
have the order oD(%/mp), the semiclassical Einstein equa-
Hpn=%a%(7)(n+ 3)[ ¢* (1) (1) + mPd* (1) (1) ] tion reduces to the same asymptotic semiclassical Einstein
(53  equation obtained already in R¢T)].

2

1 8 | 2mh?|
+ gV(a):

3mpa’| Hon 3mpal

a

1.
0)2 0
oge+ 2om) |
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This paper does not, however, resolve completely the

problem of unitarity of quantum field in quantum gravity and
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