
Mixmaster universe: A chaotic Farey tale

Neil J. Cornish
DAMTP, University of Cambridge, Silver Street, Cambridge CB3 9EW, England

Janna J. Levin
Center for Particle Astrophysics, UC Berkeley, 301 Le Conte Hall, Berkeley, California 94720-7304

~Received 21 August 1996!

When gravitational fields are at their strongest, the evolution of spacetime is thought to be highly erratic.
Over the past decade debate has raged over whether this evolution can be classified as chaotic. The debate has
centered on the homogeneous but anisotropic mixmaster universe. A definite resolution has been lacking as the
techniques used to study the mixmaster dynamics yield observer-dependent answers. Here we resolve the
conflict by using observer-independent fractal methods. We prove the mixmaster universe is chaotic by ex-
posing the fractal strange repellor that characterizes the dynamics. The repellor is laid bare in both the
six-dimensional minisuperspace of the full Einstein equations and in a two-dimensional discretization of the
dynamics. The chaos is encoded in a special set of numbers that form the irrational Farey tree. We quantify the
chaos by calculating the strange repellor’s Lyapunov dimension, topological entropy, and multifractal dimen-
sions. As all of these quantities are coordinate or gauge independent, there is no longer any ambiguity—the
mixmaster universe is indeed chaotic.@S0556-2821~97!02710-0#

PACS number~s!: 98.80.Hw, 05.45.1b, 95.10.Eg, 98.80.Cq

I. INTRODUCTION

When space is most strongly deformed, Einstein’s nonlin-
ear theory of gravity may be fundamentally chaotic. The sin-
gular cores of collapsing stars and the big bang are suspected
to tend toward chaos@1,2#. Beyond conjecture,1 attempts to
conclusively identify chaos near singularities stirred debate
@5,6#. The debate has centered on the mixmaster universe, an
archetypal singularity. In the mixmaster model, the three
spatial dimensions oscillate anisotropically out of the big
bang and finally toward a big crunch@7#.

Relativistic chaos has the unique difficulty of demanding
observer-independent signatures. Many of the standard cha-
otic indicators such as the Lyapunov exponents and associ-
ated entropies are observer dependent. The Lyapunov expo-
nent quantifies how quickly predictability is lost as a system
evolves. The metric entropy quantifies the creation of infor-
mation as time moves forward. They are both tied to the rate
at which a given observer’s clock ticks. The relativism of
space and time rejects the notion of a preferred time direc-
tion. In a curved space, the Lyapunov exponent and metric
entropy become relative as well. Observer-independent tools
are needed to handle chaos in relativity.

The challenge of relativistic chaos is well demonstrated in
the debate over the chaoticity of the mixmaster universe.
Barrow studied the chaotic properties of a discrete approxi-
mation to the full dynamics known as the Gauss map@8,9#.
Barrow found the Lyapunov exponent, metric entropy, and
topological entropy of the map. The dispute began when nu-

merical experiments run in different coordinate systems
found that the Lyapunov exponents vanished@10–14#. Fur-
thermore, the Gauss map itself corresponds to a specific time
slicing. The ambiguity of time was manifest.

To conclude that the mixmaster approach to a singularity
is indeed chaotic, an observer-independent signature must be
uncovered. As has been promoted elsewhere@15–17#, frac-
tals in phase space are observer-independent chaotic signa-
tures. Their existence and properties do not depend on the
tick of a clock or the world line of an observer. As well,
fractals have an aesthetic appeal. The chaos is consequent of
a lack of symmetries. The loss of symmetry in the dynamics
is appeased by the emergent symmetry of the self-affine frac-
tal @18# in phase space.

We exploit the observer independence of the fractal to
show unambiguously that the mixmaster universe is chaotic.
This result was announced in Ref.@17#.

Fractals in the minisuperspace phase space of the full dy-
namics are uncovered. Probing the full dynamics is always
numerically intensive. To open a window on the numerical
results we also study the Farey map, a discrete approxima-
tion to the dynamics related to the Gauss map. We focus on
the map analytically but the real power of our conclusions is
in the full dynamics where no approximation is made. Just as
with a geographical map, the Farey map is used as a guide to
navigate through the full dynamical problem. We use the
map to locate the skeleton of the chaos and then verify its
existence with the numerics.

The bare bones of the chaos is revealed in an invariant
subset of self-similar universes known collectively as a
strange repellor.2 The strange repellor@20# is a fractal, non-

1Direct two- and three-dimensional numerical simulations of in-
homogeneous cosmologies and gravitational collapse have so far
failed to conclusively support or refute this conjecture@3#. It is
possible that numerical discretization may suppress chaos as it
causes a coarse graining of phase space similar to that found in
quantum mechanics@4#.

2Page appears to describe a strange repellor in the minisuperspace
phase space of a scalar field cosmology@19#. Remarkably, this pa-
per was written in the same year strange repellors were first being
described in chaos theory@20#.
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attracting, invariant set~Sec. III!. More familiar are fractal,
attracting, invariant sets or strange attractors. Though the
repellor is a tiny subset of all possible universes, it isolates
the essential features of the system@21#. A typical universe
will accumulate chaotic transient eras as it brushes past the
strange repellor in phase space.

The repellor is multifractal as shown in Sec. III A. The
Farey map divides the fractal into two complementary sets.
A particularly elegant quality of the Farey map is the con-
nection between these complementary sets and number
theory. As elaborated in Sec. III B, the multifractal can be
completely understood in terms of continued fraction expan-
sions and Farey trees.

In addition to the usual multifractal dimensions, we stress
the importance of the Lyapunov dimension~Sec. IV A!. This
dimension is built out of a coordinate-invariant combination
of the Lyapunov exponent~Sec. IV C! and the metric en-
tropy. Both the Lyapunov exponent and the metric entropy
can then be reinstated as valid tools even in curved space.
We introduce a method for handling the repellor as a Hamil-
tonian exit system, to facilitate calculation of the Lyapunov
dimension~Sec. IV B!.

Maps have been put to good use before. We devote Sec.
V to a detailed comparison of the Gauss map and the Farey
map. There are two main differences we draw out. One dis-
tinction is in the character of the maps themselves. They are
not topologically equivalent and therefore have different to-
pological features such as topological entropy. The other no-
table difference is the technique for handling the maps. Pre-
vious methods treat the set of all universes. We concentrate
on the repellor subset. The previous techniques and ours are
complementary.

Having isolated the repellor in the map, we use this in-
sight as an x ray to expose the chaotic skeleton in the full,
unapproximated dynamics~Sec. VII!.

II. MIXMASTER DYNAMICS

The richness of Einstein’s theory is revealed in the spec-
trum of solutions to the dynamical equations. To solve these
equations universe by universe, symmetries of the Hamil-
tonian are sought. However, strong gravity is nonlinearly
entangled and we cannot expect the universe to typically
offer up symmetries of the motion. Einstein’s equations are
more likely than not to be fundamentally nonintegrable, and
so chaotic.

The singularity structure of the equations can indicate if
the system is integrable. It has been shown that the mixmas-
ter equations fail the Painleve´ test @22#. This suggests, but
does not prove, that the system is nonintegrable.

The fractals we find in the minisuperspace phase space
show conclusively the emergence of chaos. To begin, we use
dynamical systems theory on sets of universes and consider
the minisuperspace of all possible mixmaster cosmologies.
The minisuperspace Hamiltonian is

H5~ lna!8~ lnb!81~ lna!8~ lnc!81~ lnb!8~ lnc!8

1 1
4 @a41b41c422~b2c21a2c21b2a2!#, ~2.1!

wherea,b,c are the scale factors for the three spatial axes.
For a full description of the geometry see Refs.@7,23#. The

Hamiltonian constraint equation requiresH50. The equa-
tions of motion governing the behavior of the three spatial
axes are

~ lna!95 1
2 @~b22c2!22a4# et cyc. ~a,b,c!.

~2.2!

A prime denotesd/dt wheret is related to the cosmic time
t throughdt5(abc)dt. The universe comes out of the big
bang with two axes oscillating between expansion and col-
lapse while the third grows monotonically. The overall vol-
ume of the universe expands to a maximum and then col-
lapses. On approach to the big crunch, two spatial
dimensions will oscillate in expansion and collapse while the
third will decrease monotonically. Eventually a bounce oc-
curs at which point the axes permute and interchange roles.

The scale and expansion factors can be reparametrized in
terms of the four variables (u,v,v,V) @9#. As was done in
Ref. @9#, the initial conditions can be fixed on the surface of
sectiona051, (lna)08>0, without loss of generality,

lna050 , ~ lna!085
3~11u0!v0

~11u01u0
2!
,

lnb05
3V0

~11v01u0v0!
, ~ lnb!085

23v0u0
~11u01u0

2!
,

lnc05
3~v01u0v0!V0

~11v01u0v0!
, ~ lnc!085

3~u01u0
2!v0

~11u01u0
2!
.

~2.3!

The relative sizes and velocities of the axes, respectively, are
accounted for byv and u. The overall scale factors
V5@ ln(abc)#/3 andv5V8 grow monotonically away from
the big bang to the maximum of expansion and then shrink
monotonically toward the big crunch.

The evolution of a given universe can be viewed as a
particle scattering off a potential in minisuperspace. The
right-hand sides of Eqs.~2.2! play the role of a potential.
When this potential is negligible, the evolution mimics a
simple Kasner model. The Kasner metric is

ds252dt21t2padx21t2pbdy21t2pcdz2. ~2.4!

The Kasner indices can be parametrized as

pa~u!5
11u

~11u1u2!
,

pb~u!5
2u

~11u1u2!
,

pc~u!5
u1u2

~11u1u2!
, ~2.5!

and satisfy ( i51
3 pi515( i51

3 pi
2 . Moreover, pa(1/u)

5pc(u), pb(1/u)5pb(u), and pc(1/u)5pa(u). As is cus-
tomary, we takeu to lie in the range@1,̀ # to ensure a
definite ordering of the Kasner exponents:

pb,pa,pc . ~2.6!
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In terms of conformal time,

~ lna!8.pa ⇒ a}exp~pat!. ~2.7!

When the potential gains importance, the trajectory is scat-
tered and enters another Kasner phase. To study the effect of
scattering it is a good approximation to consider only the
change on the Kasner indices of Eq.~2.5!. The full dynami-
cal problem can therefore be reduced to a map which evolves
the parameteru forward in discrete intervals of time. Belin-
skii, Khalatnikov, and Lifshitz~BKL ! reduced the dynamics
to the one-dimensional Gauss map. The Gauss map evolves
u from bounce to bounce as the trajectory strikes the poten-
tial. We focus instead on a two-dimensional map, the Farey
map, which includes not only bounces but also oscillations
@24,25#. The Farey map has the additional nice property of
being invertible and so preserves the time reversibility of
Einstein’s equations@26#.

III. FAREY MAP AND THE STRANGE REPELLOR

With the discrete time map we are able to isolate the
repellor. The repellor is the chaotic subset of self-similar
universes. It is the Hamiltonian analogue of the better known
strange attractor. In dissipative systems, the volume of phase
space shrinks and trajectories are drawn onto an attracting set
as energy is lost. Since the universe is a self-contained
Hamiltonian system, there can be no dissipation and so no
attractors. Still, the notion of an invariant set can be an inci-
sive characterization of the system.

Nonattracting invariant sets are referred to as repellors
since all trajectories which constitute the set are unstable in
at least one eigendirection, and in that sense repel any near
neighbors. The phase space volume is conserved as it
squeezes in one direction while it expands in the other as it
careens off the repellor. The transient chaos experienced by a
typical, aperiodic universe reflects the passage of that trajec-
tory near the core periodic orbits.

Lifshitz and Khalatnikov@1# were the first to introduce
theu parametrization and derive the evolution rules

u→u21 if u.1,

u→1/u if u,1. ~3.1!

As it stands, this prescription is discontinuous atu51. A
continuous map can derived by considering either of the two
double transformations

u85u21 and u951/u8

or

u851/u and u95u821. ~3.2!

This leads to the two entirely equivalent continuous maps

un115H un21, u>2,

1

un21
, 1<u,2,

~3.3!

and

un115H un21, u>1,

1

un
21, 0<u,1.

~3.4!

Both choices have shown up in the literature over the years,
but these days the first choice is prefered as the transitional
step whereu,1 is hidden in the double transformation. By
hiding this step, a definite Kasner ordering can be main-
tained. It is worth mentioning that the two maps useexactly
the same uvariable, even though the first can formally be
recovered from the second by making the substitution
u5ũ21.

By combining theu map with its inverse in terms ofv,
one arrives at the two-dimensional Farey map. We call the
map a Farey map due to its connection to the Farey trees of
number theory as discussed in Sec. III A. The Farey map
evolves the two parameters forward by discrete intervals in
time, F(un ,vn)5(un11 ,vn11), according to the rule

F~u,v !5H u21, v11 , u>2 ~oscillations!,

1

u21
,

1

v
11, u,2~bounces!.

~3.5!

The map describes the evolution of a universe through a
series of Kasner epochs. Ifu>2, then two axes oscillate in
expansion and collapse while the third coasts. The axes will
oscillate until u,2, at which point a bounce occurs, the
three axes interchange roles, andu is bounced about the
number line. In some studies, what we call oscillations are
called epochs and what we call bounces are called eras.

Running in parallel with the Farey map is the volume map
V(V,v) described by

Vn115VnF11
11un1un

2

un~11vn1unvn!
G , ~3.6!

vn115vnF12
2un

11un1un
2G . ~3.7!

Like the Farey map, the volume map is a good approxima-
tion to the exact evolution away from the maximum of ex-
pansion wherev flips sign. During the collapse phase
t→2`, v.0 andV,0. A nice feature of the combined
Farey-volume map,M (u,v,V,v), is the way it splits the
dynamics into oscillatory and monotonic pieces.

Clearly, the monotonic behavior of theV map excludes
the possibility of periodic trajectories for theM map. Since
all chaotic behavior relies on the existence of unstable peri-
odic trajectories, this would seem to rule out chaos in the
mixmaster dynamics. Indeed, similar reasoning has been
used to claim that the full mixmaster equations cannot be
chaotic @27#. The flaw in this reasoning was to neglect the
noncompact nature of the mixmaster phase space. For ex-
ample, the noncompact motion along a spiral of fixed radius
appears as circular motion in an appropriate comoving frame
of reference. Although a spiral trajectory never returns to its
starting point, the motion is periodic in a projected subset of
phase space. Similarly, the mixmaster dynamics allows un-
stable periodic trajectories in terms of the (u,v) coordinates.
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A projected strange repellor is all we require for chaos to
occur. Consequently, we can drop the overall scaling of the
V map and concentrate on the Farey map. Similarly, when
we turn our attention to the full dynamics we will look for
periodic behavior in scale-invariant quantities such as
(lnb)/(lnc). In this way we effectively project out the regular
evolution of the system.

An important subset of universes are formed by the orbits
periodic in (u,v). The existence of a repelling, denumerably
infinite, everywhere dense set of periodic orbits was first
recognized by Bogoyavlenski and Novikov@28#. Physically,
the periodic orbits correspond to discretely self-similar uni-
verses. After one orbital period, the proportionality of the
scale and expansion factors recurs, while the volume of the
universe has contracted overall. The collection of periodic
orbits in (u,v) form a multifractal strange repellor.

To isolate the strange repellor we search for achaotic,
nonattracting, invariant set. In this section we justify each
term in this definition.

Invariant set.The set of points which are invariant in time
are located by the condition

Fk~ ūi ,v̄ i !5~ ūi ,v̄ i ! ~3.8!

for k51, . . . ,̀ . These fixed points lie on periodic orbits of
periodp<k. For Hamiltonian systems it is sufficient to con-
sider the future invariant set as time reversal invariance can
be used to find the complete strange repellor. For the Farey
map the future invariant set is defined by the condition

Fk~ ūi !5ūi ~v arbitrary!. ~3.9!

Consider for illustration the period-1 orbit. The invariant
point satisfiesF(ū1)5ū1. The map can be split into an os-
cillation mapO and a bounce mapB:

O~un!5un21, un>2, ~3.10!

B~un!5
1

un21
, un,2. ~3.11!

The equation F(ū1)5ū1 yields two possibilities:
O(ū1)5ū1 or B(ū1)5ū1. Only the bounce fixed point,
which generates the equation

ū15
1

ū121
, ~3.12!

has a solution. The solution is the golden mean

ū15
11A5
2

. ~3.13!

The occurrence of the golden mean is no accident. As we
discuss in the next section, it is the first leaf on the irrational
Farey tree.

Another particularly simple set of fixed points can be lo-
cated. These are the maximal value ofu along a periodk
orbit. The maximal value ofu corresponds to the largest
number of oscillations before a bounce. The equation
Ok21B(ū)5ū generates

ūk~ ūk2k!51 , ~3.14!

whose solution is

ūk5
k1Ak214

2
. ~3.15!

These are the silver means~and can be found among the
kth order leaves in the Farey tree!. As elaborated in the next
section,all of the fixed points comprise a countably infinite
set of irrationals with periodic continued fraction expansions
described by Farey trees. In this sense, we know all the fixed
points.

Nonattracting.We can verify that all of the periodic orbits
are unstable and so are not attracting but rather repelling.
The repellor is the intersection in phase space of the unstable
and stable manifolds. Since it is unstable in one direction, a
near neighbor to a periodic orbit will deviate off the invariant
set. Conservation of the Hamiltonian requires the other
eigendirection to be attracting.

In the two-dimensional~2D! phase space defined by
(u,v), we show here that the unstable manifold is composed
of fixed points alongu. This is the future invariant set given
by Eq. ~3.9!. Since time reversal corresponds to
(u,v)→(v,u), the stable manifold is made up of the fixed
points alongv. The stable and unstable manifolds intersect at
each point along a periodic orbit. The collection of such
points forms the strange repellor. Since they are invariant,
any point which is on both the unstable and stable manifolds
will be mapped to points which by necessity inhabit the in-
tersection of stable and unstable manifolds.

To demonstrate explicitly that the periodic orbits are un-
stable in theu direction but attracting inv consider an initial
trajectory in the vicinity of a periodp orbit. We look at the
evolution in theu direction first. The aperiodic universe be-
gins with u05ū01d0 whereū0 is the fixed point along the
periodic universe. A period later, the deviation from the pe-
riodic orbit has grown todp defined by@29#

Fp~u0!5u01dp5Fp~ ū01d0!. ~3.16!

Expanding the right-hand side we can relate the evolved de-
viation to the initial deviation

dp5cpd0 , ~3.17!

where the stability coefficient is

cp[
dFp~un!

dun
U
un5ū0

5F8~ ū0!F8~ ū1!•••F8~ ūp21!.

~3.18!

The elements in the final product are evaluated at the points
along the unperturbed orbit. The periodic orbits are stable if
the magnitude ofdp shrinks and unstable if the magnitude
grows. In terms of the stability coefficient the periodic orbits
are stable ifucpu,1 and unstable ifucpu.1. Taking the de-
rivative of the map

uF~u,v !8u5H 1, 1 ~u>2!,

1

~u21!2
,

1

v2
~u,2!.

~3.19!
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Along any periodic orbit, at least one point must fall between
1 and 2. Letūmin be the smallest value ofū along the orbit.
It then follows from Eq.~3.18! that

ucpu>~ ūmin21!22.1. ~3.20!

Therefore all orbits on the repellor are unstable in theu
eigendirection. Any universe which begins near an exact pe-
riodic orbit eventually deviates away from it. Since a typical
universe is confined to bounce around the number line for-
ever, it will eventually scathe past a periodic orbit before
being repelled off only to stumble onto the repellor again.
Thus, a typical universe will scatter around intermittently
hitting chaotic episodes as it jumps on and off the repellor.

Repeating the stability analysis inv, we find
uck

vu51/v2,1. Near neighbors tend to follow periodic orbits
in the v direction. The repellor alongu is an attractor along
v.

Chaotic.We have so far established that the periodic or-
bits comprise a nonattracting, invariant set. We can demon-
strate that this set is chaotic by showing it has a positive
topological entropy. The topological entropy, in analogy
with the thermodynamic entropy, measures the number of
accessible states on the repellor. The number of states on the
repellor is equivalent to the number of fixed points, and so

HT5 lim
k→`

1

k
lnN~k!, ~3.21!

whereN(k) is the number of fixed points at orderk. For a
nonchaotic set, the number of fixed points is either finite or
grows as a finite power ofk, and soHT50.

The fixed points at orderk are found by solving Eq.~3.9!:
Fk(ūi)5ūi . To count the number of fixed points we can
count the number of such possible equations. For a given
period p<k, Fk can be broken intoOm oscillations and
Bk2m bounces. SinceO andB do not commute, the order in
which they occur leads to different possible solutions for the
ūi . The number of ways to combinem O’s andk2m B’s is

S kmD 5
m!

m! ~k2m!!
. ~3.22!

For example, afterk54 iterations of the map andm52
oscillations andk2m52 bounces there are 6 possible per-
mutations:

OOBB~ ūi !5ūi ,

BBOO~ ūi !5ūi ,

BOOB~ ūi !5ūi ,

OBBO~ ūi !5ūi ,

OBOB~ ūi !5ūi ,

BOBO~ ūi !5ūi . ~3.23!

However, the first four are all cyclic permutations of
OOBB. Cyclic permutations must lie along the same orbit.
Therefore, the solutions to the first 4 equations yield the

points along the same period-four orbit. Similarly, the last
two are cyclic permutations of each other. They represent the
recurrence of the two points along the period-2 orbit.

The total number of points belonging to the future invari-
ant set with periodp<k is given by summing over all pos-
sible combinations of oscillations and bounces:

N~k!5 (
m50

k21 S k

k2mD 52k21. ~3.24!

There are thus 2k21 words of lengthk that can be built out
of a two-letter alphabet. The topological entropy is then

HT
u5 ln2. ~3.25!

This entropy is independent of phase space coordinates. The
topological entropy for the full 2D mapF(u,v) will be twice
this quantity as the strange repellor is formed by the inter-
section of 2k21 horizontal and vertical lines. Thus, there are
(2k21)2 roots of Eq.~3.8! at orderk andHT52ln2. The
resultHT

u5 ln2 was first found by Rugh@10# using symbolic
dynamics to describe typical, aperiodic orbits inu.

The topological entropy will be the same for all maps
which are topologically conjugate, that is, which can be re-
lated by a continuous, invertible, but not necessarily differ-
entiable, transformation of coordinates. In particular, this
tells us that the mapF(u) can be obtained from the shift
map, horseshoe map, or generalized baker’s map@29#. We
mention that the closely related Gauss map has a much
higher topological entropyHT5p2/(6ln2). As discussed in
Sec. V, the two maps are not topologically conjugate. We do
not expect then for their entropies to be the same.

The bare bones of the chaotic scattering have been ex-
posed in the repellor. Taking this skeleton, we can now show
that the repellor is in fact strange, that is, fractal.

A. The repellor is a multifractal

We can create an illustrative picture of the fractal set of
self-similar universes. Distributing the fixed pointsu along
the number line, the collection of periodic points forms a
fractal in phase space. A fractal is a nowhere differentiable,
self-affine structure. It cannot be undone by a coordinate
transformation. The emergence of a fractal distribution of
invariant points is an observer-independent declaration of
chaos.

For multifractals there is information in the way points
are distributed. There is an underlying fractal structure with
an architecture of distributed points built on top. The fractal
in phase space is simply constructed by locating all of the
points along periodp<k orbits numerically and plotting
them in a histogram as is done in Fig. 1. The histogram was
generated by solving for all roots of Eq.~3.9! up to and
including k516. The histogram reveals how points are dis-
tributed in the future invariant set, otherwise known as the
unstable manifold of the strange repellor. The self-similarity
of the distribution is clear.

The distribution of points can be understood in terms of
the period of the orbit. Ask increases, the lowest period
orbit, namely, thep51 orbit, is visited the maximal number
of times, that is,k times. On the other hand, the maximum
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value ofu at orderk lies on ap5k orbit, and so is visited
only once.

Points on the repellor are clustered in the interval
1,u,2. The combinatorics of building words out of a two-
letter alphabet (O,B) of oscillations and bounces favors the
smallu tower. Consider the integer interval@n,n11#. A root
in this interval corresponds to the sequence, or word,
O(n21)B occurring somewhere along the orbit. The complete
orbit is a sentence ofOiB words, e.g.,(O2B)(B)(O5B)
(OB), repeated in a cyclic fashion. Since the number of
n-letter words that can be formed from a two-letter alphabet
is 2n, it follows that the fraction of roots in each interval is

rn522n. ~3.26!

Note that the distribution is correctly normalized since

(
n51

`

rn51. ~3.27!

The exponential falloff in the density of points on the repel-
lor is clearly evident in Fig. 1.

The parametrization of the axes in terms ofu in Eq. ~2.5!
shows that the smallu orbits typical of the repellor are those
with axes of similar scale and speed. These universes have
axes which frequently switch from expansion to collapse. It
follows that the strange repellor corresponds to the most iso-
tropic mixmaster trajectories possible.

In the full 2D phase space of the Farey map,F(u,v), the
unstable manifold appears as a forest of vertical lines, while
the stable manifold appears as a forest of horizontal lines. A
portion of the future invariant set, the unstable manifold of
the repellor, is displayed in Fig. 2. The collection of lines
appears to form a multifractal cantor set. To confirm this, we
calculate the fractal dimension of the set.

The fractal dimension can be thought of as a critical ex-
ponent. The dimension is a measure of the length of the
collection of points. To find its box-counting dimension,
cover the set withN(e) boxes of sizee. As the size of the
boxes is taken infinitesimally small, the number of boxes
needed to cover the set grows. For fractals, the number of
boxes needed grows faster than the scale shrinks. The struc-

ture becomes more and more complex as smaller and smaller
scales come into focus. The critical exponent can be defined
as the number which keeps

lim
e→0

eD0N~e! ~3.28!

finite. Any exponent greater thanD0 would result in zero
length, and an exponent smaller would result in infinite
length. In this senseD0 is a critical exponent.

This dimension can be generalized to include not just the
scaling property of the fractal but also the distribution of
points on top of the underlying foundation. This leads to a
continuous spectrum of critical exponents or dimensions.
The spectrum of dimensions is more commonly expressed as

Dq5
1

q21
lim
e→0

ln( i51
N~e!~pi !

q

lne
, ~3.29!

whereN(e) are the number of hypercubes of side lengthe
needed to cover the fractal andpi is the weight assigned to
the i th hypercube. Thepi ’s satisfy( i51

N(e)pi51. The standard
capacity dimensionD0 is recovered whenq50, the informa-
tion dimension whenq51, the correlation dimension when
q52, etc. For homogeneous fractals all the various dimen-
sions yield the same result. The multifractal dimensionsDq
are invariant under diffeomorphisms for allq, and D1 is
additionally invariant under coordinate transformations that
are noninvertible at a finite number of points@30#.

The quantitative importance of the fractal dimension is
expressed in terms of the final state sensitivityf (d) @31#.
This quantity describes how the unavoidable uncertainty in
specifying initial conditions gets amplified in chaotic sys-
tems, leading to a large final state uncertainty. By identifying
a number of possible outcomes for a dynamical system, the
space of initial conditions can be divided into regions corre-
sponding to their outcome. If the system is chaotic, the
boundaries between these outcome basins will be fractal.
Points belonging to the basin boundary are none other than
the chaotic future invariant set. The functionf (d) is the frac-

FIG. 1. A histogram of the future invariant set in the interval
1,u,4.

FIG. 2. The future invariant set in the interval 1,u,2,
1,v,2.
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tion of phase space volume which has an uncertain outcome
due to the initial conditions being uncertain within a hyper-
sphere of radiusd. It can be shown@31# that

f ~d!;da, a5D2D0 , ~3.30!

whereD is the phase space dimension andD0 is the capacity
dimension of the basin boundary. For nonchaotic systems
a51 and there is no amplification of initial uncertainties,
while for chaotic systems 0,a,1 and marked final state
sensitivity can occur.

It can be argued that the capacity dimension must equal
the phase space dimension for the mixmaster repellor. The
periodic orbits are given by the periodic irrationals as ex-
plained in Sec. III B. The periodic irrationals are dense on
the number line. Formally this means there is always another
periodic irrationale away from a neighbor for alle.0.
Since the periodic orbits are dense, there will always be an
infinite number of fixed points in any box. It is sufficient to
cover the set then withN(e);1/e2 boxes. Therefore, the
basic box-counting dimension isD05D52 @32#, though it
converges slowly. In the infinite time limit this can be inter-
preted as an ultimate loss in predictability sincef (d)51.
The mixmaster is very mixed.

While the box-counting dimension saturates at the phase
space dimension, the more heavily weighted dimensions of
Eq. ~3.29! do not. Taking the information dimension of the
fractal in Fig. 2, we find

D1
u51.8760.01. ~3.31!

Figure 3 shows the fit3 used to determineD1
u . The quality of

the fit gives us confidence that the strange repellor is truly
fractal.

By forming the intersection of the Farey map’s stable and
unstable manifolds, i.e., by solving Eq.~3.8! for all fixed
points (ū,v̄), we uncover the strange repellor. A portion of
the strange repellor is shown in Fig. 4 using all roots up to

k512. While it is possible to find the information dimension
of the strange repellor directly from Fig. 4, the effort can be
spared. Since the Farey map is Hamiltonian, we know the
stable and unstable manifolds of the strange repellor share
the same fractal dimensions. That is,D1

u5D1
v51.8760.01.

Now, the repellor is formed from the intersection of the
stable and unstable manifolds, and so its information dimen-
sion is simply

D15D1
u1D1

v2D51.7460.02. ~3.32!

SinceD0ÞD1, we have confirmed the multifractal nature of
the strange repellor. The dimension of Eq.~3.32! is calcu-
lated with all fixed points occurring at orderk516. As k
increases this number will continue to grow slowly as the
rarified regions of the fractal continue to be populated. Thus,
Eq. ~3.32! actually represents a lower bound. However, we
expect the ultimate value should only differ in the second
decimal place.

B. Farey trees

The fractal of Fig. 4 reveals two complementary sets. The
sequence of gaps corresponds to the rational numbers. In a
complementary fashion, the strange repellor is made up from
the periodic irrationals. Both sets are of Lebesgue measure
zero. This division of the number line can be understood in
terms of the properties of the continued fraction expansions
~CFE’s!. We can write any number, rational or irrational, in
terms of a CFE. While the connection to CFE’s was known
and explored by Belinskii, Khalatnikov, and Lifshitz, they
explicitly ignored the periodic irrationals@2#. We focus on
the periodic irrationals as they constitute the strange repellor.

Consider some initial conditionu0 not necessarily on a
periodic orbit. We can decompose any number into its inte-
ger part and some left over:

u05m01x0 , ~3.33!

3The fit is actually for the fractal formed by taking a horizontal
cross section through Fig. 2. The final answer is obtained by adding
1 to this number.

FIG. 3. Finding the information dimension of the future invari-
ant set.

FIG. 4. The strange repeller in the region 1,u,2, 1,v,2.
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wherem05@u0# denotes the integer part ofu0 and x0, the
fractional excess. According to the map, the next value of
u following a bounce is u151/x0. Now decompose
1/x05m11x1, so thatm1>1. Solving this forx0 we find
x051/(m11x1). At the next bounceu251/x1 so that
x151/(m21x2). In this way we generate the CFE foru0:

u05m01
1

m11
1

m21
1

•••

, ~3.34!

wheremi>1 ; i . The integersmi21 represent the number
of oscillations between bounces. In shorthand form the CFE
can be written asu05@m0 ,m1 ,m2 ,m3 ,m4 , . . . #.

The map naturally distinguishes numbers on the basis of
their CFE. A rational number can be written as the ratio of
integersx05p/q. Consequently, the CFE is finite. The fact
that its finite means at some iterationun115` and rationals
are tossed out of the map. At the opposite extreme, the peri-
odic orbits on the repellor have infinite CFE’s which repeat.
For example, an orbit of the form$Oi21BOj21B%, where the
curly brackets denote a repeated pattern, has the expansion

u05 i1
1

j1
1

i1
1

j1
1

i1•••

. ~3.35!

In shorthand form this readsu05@$ i , j %#. Lagrange showed
that the necessary and sufficient condition for an irrational
number to have a periodic CFE is for it to be the root of a
quadratic equation with integer coefficients. It is easy to
prove that the Farey map gives such equations for the peri-
odic orbits at every order ink.

The map generates a Farey tree@33#. Consider the initial
condition ū051. With the first iteration of the mapu is
thrown to infinity. After two iterations, a universe with the
initial condition ū052 will be thrown to infinity. At the
kth application of the map, after the universe has evolved
forward ink jumps, another group of universes whose initial
conditions were rational numbers are discarded. The pattern
of discarded terms is a Farey tree@34#. Farey trees also arise
in the quasiperiodic route to chaos described by the circle
map @33#.

In the interval@1,2# the Farey tree can be written as

~3.36!

The bracketed terms each comprise a level of the Farey tree.
For all k>2, there are 2k22 leaves at orderk. Every rational
number in the interval@1,2# occurs exactly once somewhere
on the Farey tree. Each leaf on the Farey tree has a continued
fraction expansion that satisfies

(
i51

mi5k. ~3.37!

Now, we see that eachmi corresponds to ami-letter word
O(mi21)B. Each rational number corresponds to a sentence of
these words. For example, at levelk55 we have the Farey
number 10/75@1,2,3#, which gives rise to the sentence
BOBOOB. At the same order we also have
6/55@1,5#5BOOOOB, 9/55@1,1,4#5BBOOOB, etc. In
other words, a universe which began withū0510/7 will fol-
low the pattern ofBOBOOBand then gets tossed to infinity.
The universe then evolves with two axes fixed and the third
expanding as}t. Such a universe has the form of a Rindler
wedge3R2 @35#.

At the opposite extreme from the rationals which escape
the map are the periodic subset of irrationals. This explains
the occurrence of the golden mean as the period-1 orbit with
no oscillations. Its CFE is

11A5
2

511
1

11
1

11•••

5@$1%#. ~3.38!

Numbers with a periodic CFE are a set of measure zero
among the irrationals, though they are dense on the number
line.

An irrational Farey tree for the repellor can be constructed
using the rational Farey tree as a seed. Consider the construc-
tion in the interval@1,2#. For each leaf on the rational Farey
tree given by@1,m1 ,m2 , . . . ,mk#, add a leaf to the irrational
tree given by@1,$m1 ,m2 , . . . ,mk%#. There are 2 times as
many leaves on the irrational Farey tree than there are on the
rational Farey tree. This follows since all rationals have two
continued fraction expansions. The two CFE’s differ in how
they end. In general

@m0 , . . . ,mj11#5@m0 , . . . ,mj ,1#. ~3.39!

Consider 10/75@1,2,3#. We see that 10/7 also equals
@1,2,2,1#. Thus, 10/7'1.429 has two corresponding leaves
on the irrational Farey tree, (A1521)/2'1.436 and
(A8515)/10'1.422. Consequently each rational generates
two nearby irrationals.

A number theory result tells us that

Ua62
p

q U, 1

2q2
<

1

2k2
, ~3.40!

wherea6 stands for the two irrational numbers that lie on
each side of their rational seed. Ask→` the leaves on the
rational and irrational Farey trees get closer and closer to-
gether. Another result from number theory tells us that
a1.p/q and a2,p/q ~hence the names!. The 1/q2 gaps
around the rational Farey numbers seen in Figs. 1 and 2 are
a consequence of this number theory result.

The asymptotic distribution of roots goes as follows. At
level k there are 2k22 leaves on the rational Farey tree in the
interval @1,2#. Each leaf produces 2 leaves on the irrational
Farey tree. Thus, there are 2k21 roots in the interval@1,2# at
level k. This matches our earlier results that there are;2k

roots at orderk, half of which lie in the interval@1,2#.
Our brief excursion into number theory has produced a

neat picture: The rational Farey tree gives us all the numbers
that get mapped tou5`, while the irrational Farey tree
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gives us all the periodic orbits. The leftovers are all the irra-
tionals, save the rational and irrational Farey trees, both of
which have measure zero. Thus, all typical trajectories are
aperiodic, unbounded, and of infinite length. These are the
trajectories typically studied in the literature. Our study is
complementary.

C. Lyapunov exponents

In flat space, the extreme sensitivity of the dynamics can
be quantified by Lyapunov exponents and the related metric
entropy. The Lyapunov exponents determine how quickly in
time trajectories diverge. The metric entropy measures the
rate at which information is created. Since the exponent and
the entropy are rates, they connect directly with the rate at
which time pushes forward. Clearly, the observer depen-
dence of the rate at which clocks tick make these tools sus-
pect.

Although Lyapunov exponents are observer dependent
and therefore ambiguous in general relativity, we see in Sec.
IV A that they are related to an observer-independent quan-
tity, namely, the Lyapunov dimension. Since there is still
utility in them, we take the time to compute some Lyapunov
exponents.

Since we know all the periodic orbits of the Farey map
analytically, we are in a position to calculate the Lyapunov
exponents for trajectories belonging to the Farey repellor.
We calculate the Lyapunov exponents for the golden and
silver mean orbits. Then we use the irrational Farey tree to
write an analytic expression for the Lyapunov exponent for
any periodic orbit on the repellor.

In close analogy to the manner in which the stability co-
efficient was found, the Lyapunov exponent for a given orbit
is defined by

l5 lim
T→`

1

T (
n50

T21

lnuF8~un!u, ~3.41!

where theun are the points along the orbit under scrutiny.
The Lyapunov exponents alongv are the negative of those
alongu as we now show. The points along a periodic orbit
are the same whether time runs forward or backward. Time
reversal corresponds to inverting the map. Note that
(F21)8(u)51/F8(u) and therefore lnuF218(u)u52lnuF8(u)u.
Since F21(u,v)5F(v,u), it follows that lnuF8(v)u5
2lnuF8(u)u. This identity in Eq.~3.41! shows that

lv52lu, ~3.42!

as must be the case to conserve the phase space volume in
the Hamiltonian system.

In illustration consider the golden mean period 1-orbit.
All the ūn5ū1 and

F8~un!52~ ū121!2252~ ū1!
2. ~3.43!

From Eq.~3.41! it follows that

l15 lim
T→`

1

T
~T21!lnū1

2 , ~3.44!

which reduces to

l152ln
11A5
2

.0.9624. ~3.45!

Similarly, for the silver means~3.15! we can find the expo-
nent. We know the maximum value ofu along the silver
orbit is given byumax5(Ak2141k)/2, and so the sum of
the ln’s in Eq.~3.41! becomes the ln of the product,

F8~ ū0!F8~ ū1!•••F8~ ūk21!52~ ūmax!
22. ~3.46!

After k applications of the map,Fk(ū)5ū, so that afterT
application, a given value ofūn has repeated@T/k#5T/k
times. ThusT must be a multiple ofk. The sum in Eq.~3.41!
can be written

(
n50

T21

lnuF8~un!u5FT21

k G2lnūmax, ~3.47!

which gives

lk5
2

k
ln
k1Ak214

2
. ~3.48!

We have found the Lyapunov exponents for the two extreme
cases of the period 1-orbit and the longest period-k orbit. We
now use the irrational Farey tree to write down the general
expression for Lyapunov exponents:

l52S (
i51

mi D 21

(
cyc

ln~@$m1 ;m2 , . . . %#!, ~3.49!

where the second sum is taken over all terms in the cycle
$m1 ,m2 , . . . % and(mi5k is the period of the orbit. Since
mi.1, each term in the sum of logarithms is greater than
zero. The Farey tree has given a nice compact form with
which to express all the Lyapunov exponents. From Eq.
~3.49! it is easy to recover the results for the golden and
silver means:

lk5
2

k
ln@$k%#5

2

k
ln
k1Ak214

2
. ~3.50!

We can also calculate the average Lyapunov exponent for
the periodic orbits:

lp5 lim
l→`

(m1
(m2

. . .(ml
r ll

(m1
(m2

. . .(ml
r l

. ~3.51!

Here l is the number of bounces along an orbit andr l is the
probability density. Upon summation over themi , the cylic
sum in Eq.~3.49! givesl identical contributions. Moreover, a
long periodic orbit is composed of roughly equal numbers of
oscillations and bounces so thatl.k/2. These consider-
ations allow us to replace the terml5(2/k)(cycln(ū) in Eq.
~3.51! by ln(ū). Since we know the probability that eachmi
equals a given integern goes as 22n, it follows that

lp5 lim
l→`

(m1
(m2

•••(ml
r l ln~@$m1;m2,...,ml%#!

(m1
(m2

•••(ml
r l

,

~3.52!
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where the densityr l is given by

r l5 )
i51,...,l

rmi
522~m11m21•••1ml !. ~3.53!

The excellent convergence properties of the sums in Eq.
~3.52! ensure that a finite truncation is able to provide a good
estimate. Usingl56 and summingm1 up to 30 and the
m2•••m6 up to 10 we findlp50.793. We can check this
result by numerically evolving a large number of periodic
orbits. UsingMAPLE to find all 21521532 767 periodic or-
bits at orderk515 and then evolving these orbits numeri-
cally, we find an average Lyapunov exponent of
lp50.79260.002. This is in excellent agreement with the
finite truncation of the exact sum.

In contrast to the periodic orbits, typical aperiodic orbits
have vanishing Lyapunov exponents. The average Lyapunov
exponent for a typical aperiodic orbit can be approximated
by

^l&5
2

uav
lnuav. ~3.54!

From Fig. 5 we see thatuav→` as the number of iterations
of the map grows large. Thus, as first noted by Berger@13#,
the average Lyapunov exponent for aperiodic trajectories
tends to zero asn→`. This behavior is characteristic of a
chaotic scattering systems. Trajectories on the strange repel-
lor have positive Lyapunov exponents while typical scattered
orbits have Lyapunov exponents that tend to zero. The chaos
in these systems is called transient as the brief chaotic en-
counter with the strange repellor is followed by regular
asymptotic motion. Of course, all of these statements should
be made with extreme care in general relativity as Lyapunov
exponents are not gauge invariant.

IV. LYAPUNOV DIMENSION, TRANSIT TIMES,
AND AVERAGE EXPONENTS

A. Lyapunov dimension

We have extolled the virtues of fractals in phase space as
coordinate-independent signals of chaos. In this section we
relate the fractal dimension of the invariant set to important
dynamical quantities such as Lyapunov exponents and metric
entropies. The Lyapunov dimensionDL combines these
coordinate-dependent quantities into an invariant combina-
tion.

Remarkably, it has been shown thatDL equals the infor-
mation dimensionD1 for typical chaotic invariant sets. The
relationD15DL has been rigourously established for certain
dynamical systems@36# and has been numerically confirmed
for many typical systems@37#. Specifically, it has been con-
jectured that@38,39#

D15DL5D2
~l11l2•••1lD!21/̂ t&

lD11
. ~4.1!

Here ^t& is the lifetime of typical chaotic transients,D is
largest integer such thatl11l2•••1lD.0, and the
Lyapunov exponents are ordered so thatl i>l i11. The
equality of the information and Lyapunov dimension is be-

lieved to hold for most continuous dynamical systems, al-
though a rigorous proof has only been given for discrete
maps.

A heuristic derivation of this result can be found in the
text of Ref. @29#. We sketch that reasoning here for the 2D
Farey map. The repellor marks the intersection of the stable
and the unstable manifolds. While it is repelling~unstable! in
the direction ofu, it is attracting~stable! in the direction of
v. We can define a natural measure on the stable manifold,
unstable manifold, and on the set itself. Ordinarily, an initial
condition will produce an orbit which leaves the repellor
never to return. Consequently, the number of trajectories
near the repellor decays with time. The measure on a set is
loosely related to the number of points which hang around
the set. Consider some numberN(0) of random values for
u scattered about the number line. These orbits are evolved
by the map and eventually expelled. After a large number of
iterations the only trajectories that remain belong to the in-
variant set, or are at least very close to a trajectories belong-
ing to the invariant set. Thus, the measure of the repelling set
can be defined as

m~ t !;N~n!/N~0!;exp~2n/^t&!. ~4.2!

The time scalê t& characterizes the decay time of typical
trajectories leaving the repellor. In other words,^t& is the
lifetime of typical chaotic transients. The measure can also
be connected to the notion of the length of the set and con-
sequently to the fractal dimension through

e22D1
u
;m, ~4.3!

wheree;exp(2^l&n) and the Lyapunov exponent is defined
by

^l&5 lim
n→`

1

N~n! (i51

N~n!

l i . ~4.4!

The information dimension of the unstable manifold,D1
u ,

makes an appearance in Eq.~4.3! since the measure accounts
for the distribution of points as well as their location along
the number line. Taking the natural logarithm of Eq.~4.3!
yields

FIG. 5. The average value ofu as a function of the number of
iterationsn. The average employs 106 randomly chosen trajectories
initiated in the intervalu5@1,2#.
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D1
u522

1

^l&^t&
. ~4.5!

Thus, we can relate the information dimension of the un-
stable manifold~the periodic irrationals inu) to the positive
Lyapunov exponent and decay time of the Farey exit map.
The dimension of the repellor is the sum of the dimensions
of the stable and the unstable manifolds. For the conservative
and hence invertible Farey exit map, the dimensions of the
two manifolds are equal. Thus, the information dimension of
the strange repellor is simplyD152D1

u2D. Consequently,
the Lyapunov dimension is

DL52S 12
1

^t&^l& D52
h~m!

^l&
, ~4.6!

whereh(m) is the the metric entropy:

h~m!5^l&2
1

^t&
. ~4.7!

We see thatDL is given by the ratio of the metric entropy to
the average Lyapunov exponent. Although neither Lyapunov
exponents nor metric entropies are coordinate invariant, their
ratio is. If a system is chaotic, that is, ifD1Þ0, a coordinate
system can always be found in whichh and ^l& are both
finite and nonzero. From a dynamical systems perspective,
such coordinate systems are preferable as they allow us to
reinstate both Lyapunov exponents and metric entropies as
useful chaotic measures.

In order to implementDL , we derive^t& and^l& for the
mixmaster model in the following sections.

B. Hamiltonian exit systems

In our case, the system does not create an efficient repel-
lor. Typical universes after being scattered off one periodic
universe will eventually happen across another. The battle to
toss trajectories off as they continually wash back ashore is
constant. Because points which are discarded from the repel-
ling set eventually return, the timêt& needed to discard
typical trajectories from the repellor is infinitely long.

In principle, there is nothing wrong with a repellor that is
revisited by previously scattered trajectories. In practice, it is
easier to handle systems where scattered trajectories are dis-
carded once and for all. We introduce a method for turning
our thwarted repellor into a cleaner Hamiltonian exit system
in this section.

The mixmaster dynamics presents some unique chal-
lenges as a dynamical system. It has some characteristics of
a chaotic billiard@40#, but this picture is upset by the non-
compact nature of its phase space. The mixmaster also shares
characteristics of a chaotic scattering system, but this picture
is upset by the lack of absolute outcomes. Only a very spe-
cial set of initial conditions leads to universes which termi-
nate after a finite number of bounces.

There are other dynamical systems that combine features
of chaotic billiards and chaotic scattering. These are known
as Hamiltonian exit systems@41#. A standard example is a
chaotic pool table. Trajectories can bounce chaotically
around the table before falling into a particular pocket. When

the system is chaotic, the pocket a ball finishes up in depends
sensitively on initial conditions. Each pocket has a basin of
attraction in phase space, and the borders between the basins
of attraction can be fractal. As discussed in Sec. III A, the
fractal dimension of the basin boundaries provides a direct
measure of the sensitive dependence on initial conditions.

In many ways, adding exits to a chaotic billiard is the best
way to study the dynamics of the original closed system. By
opening exits we can expose the underlying chaotic invariant
set that encodes the chaotic behavior. The process would be
familiar to an archeologist looking for bones. By running
water through a sieve, dirt is washed away to expose the
bones. Similarly, opening holes in a chaotic billiard allows
most trajectories to escape, leaving behind the skeleton of
unstable periodic orbits. As in archeology, some care has to
be taken with the choice of sieve as bad choices can lead to
the loss of bones along with the dirt.

For the mixmaster system, the placement of the pockets
follows naturally. There are already three infinitesimally thin
pockets. The three trajectories which lead out to these three
pockets correspond to the Rindler universes with Kasner ex-
ponents $pa5pb50, pc51%, $pa5pc50, pb51%, or
$pb5pc50, pa51%. All we have to do is widen the pockets
a little and the strange repellor will lie exposed. Since the
three pockets correspond to large values ofu, we know from
our study of the Farey map that typical trajectories spend
most of their time near a pocket. In addition, trajectories on
the strange repellor are concentrated at smallu values, and
are thus far from the natural pockets. Only a small percent-
age of the strange repellor will be lost when we widen the
pockets.

A nice visual representation of the mixmaster billiard is
provided by the effective potential picture. The minisuper-
space potential is given by

V5~a41b41c422a2b222b2c222c2a2!/~abc!.
~4.8!

The potential is best viewed by making the change of coor-
dinates (a,b,c)→(V,b1 ,b2):

V5
1

3
ln~abc!, ~4.9!

b15
1

3
lnS bca2 D , ~4.10!

b25
1

A3
lnS bcD , ~4.11!

so that

V5e28b112e4b1~cosh~4A3b2!21!

24e22b1cosh~2A3b2!. ~4.12!

Equipotentials ofV are shown in Fig. 6. The natural pockets
occur at the accumulation pointsu150, u252p/3, and
u354p/3. The angleu is measured from theb1 axis. Mix-
master trajectories can be thought of as a ball moving with
unit velocity as it bounces between the triangular walls. The
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walls are also moving, but at half the velocity of the ball.
Equipotentials ofV correspond to the position of the wall at
different stages during the mixmaster collapse.

Typical trajectories oscillate around in one of the corners
for a long time before bouncing out to a new corner where
they oscillate around for a long time and so onad infinitum.
These are the typical, aperiodic mixmaster trajectories. Thus,
the mixmaster dynamics leads to three accumulation points
at the corners of the triangle. This behavior was first noted
by Misner@7#, and was later studied numerically by Creigh-
ton and Hobill@42#.

In addition to the aperiodic trajectories, there are two spe-
cial classes of mixmaster trajectories. One class corresponds
to the rational numbers. After a finite number of oscillations
and bounces they take the perfect bounce and head straight
out one of the infinitesimally thin pockets. The other class of
special trajectories forms the strange repellor and corre-
sponds to the periodic irrationals. These trajectories regularly
bounce from corner to corner and spend little time oscillating
in each corner. Consequently, trajectories on the strange re-
pellor are unlikely to exit the system when we widen the
pockets.

By widening the natural pockets, we create exits. For ex-
ample, the first pocket becomes the angular region
@2Du,Du#. As the collapse proceeds,V→2`, and we can
relateDu to the map parameteru via

Du52arctanSA3Fu11

u21G D2
2p

3

5
A3
u S 12

1

2u
1

1

4u3
2••• D . ~4.13!

We see that choosing an exit value foru sets the angular
width of the pockets. In the limituexit→` we recover the
original mixmaster pockets with zero angular width. In Fig. 7
we display equipotentials of the minisuperspace potential

with pockets corresponding to the exit valueuexit516. While
the pockets appear quite wide, we see from Eq.~3.26! that
they have little effect on the strange repellor. Few bones will
be lost from the chaotic skeleton. Foruexit516 less than
0.003% of the strange repellor will be lost out the corner
pockets. The wider we make the pockets the faster the
strange repellor is exposed. For numerical studies of the full
dynamics we choseuexit58, giving exits'1.7 times wider
than those shown in Fig. 7, but still small enough to ensure
that less than 1% of the chaotic skeleton is lost.

With the exits in place the mixmaster behaves like a clas-
sic chaotic scattering system. If we startN0 randomly chosen
trajectories, there will be

N~n!5N0expS 2
n

^t& D ~4.14!

remaining aftern iterations of the Farey map. A similar ex-
ponential decay can be seen for the full dynamics if we use
theT time coordinate. Naturally, the rate of decay is coordi-
nate dependent in general relativity. However,^t& is related
to the Lyapunov dimension which is coordinate independent.

To build the pockets we modify the map to

un115H `, un>uexit ~exit!,

un21, 2<un,uexit ~oscillation!,

1

un21
, 1,un,2 ~bounce!.

~4.15!

We refer to this map as the Farey exit map.
In Fig. 8, we show a histogram of the fixed points of the

exit map~4.15! by finding all roots up to orderk516 with
uexit58. As promised, the strange repellor for the Farey exit
map is little changed from the repellor of the full map shown
in Fig. 1. The main difference is that the gaps around the
rationals are now completely devoid of roots and are not just

FIG. 6. Equipotentials of the minisuperspace potential. FIG. 7. The minisuperspace potential with exits set by
uexit516.
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sparsely populated regions. As a result, the capacity dimen-
sion of the fractal in Fig. 8 will not saturate at the phase
space dimension. However, since the dense regions of the
repellor have not been affected by the introduction of exits,
we expect the information dimension to be little changed
from that of the full map. We findD1

u51.8760.01, in agree-
ment with the information dimension of the future invariant
set shown in Fig. 2.

C. Measures andŠl‹

When dealing with maps, the transient lifetime and
Lyapunov exponents for the aperiodic trajectories can be cal-
culated from a knowledge of the periodic trajectories. In this
way, the strange repellor provides a complete description of
the dynamics even though the periodic trajectories are a set
of measure zero.

Recall that the fixed pointsujk at orderk are found by
solving the 2k21 equationsFk(ujk)5ujk . Writing the sta-
bility coefficient ofujk ascjk , it can be shown@39# that

m~S!5 lim
k→`

(
ui jPS

1

cjk
, ~4.16!

where the measure covers the regionS. If S covers the entire
invariant set, we find

m5 lim
k→`

(
j

1

cjk
5 lim

k→`

expS 2
k

^t& D . ~4.17!

If ^t&Þ`, the measure decays as trajectories are lost from
the system. The non-negative Lyapunov exponent is given
by @39#

^l&5 lim
k→`

( j~ lncjk!/cjk
( j1/cjk

. ~4.18!

To clarify, ^l& is the average Lyapunov exponent for a typi-
cal aperiodic trajectory. This is to be contrasted with the
average Lyapunov exponentlp of the rare, periodic orbits
described in Sec. III C.

Applying these relations to the Farey map without exits
we find

mk5(
j

1

cjk
.12e20.5k20.268, ~4.19!

so that^t&5`. As emphasized earlier, the Farey map with-
out exits sees typical orbits return to the scattering region so
m51.

Before we calculateDL , we take a brief aside to demon-
strate the effectiveness of the measure~4.16! by reproducing
the topological entropy calculated analytically in Eq.~3.21!.
Since the measure does not decay, we can use theq-order
entropy spectrum@43#

Hq5
1

12q
lim
k→`

1

k
ln(

j
~cjk!

2q ~4.20!

as an independent calculation of the topological entropy. The
topological entropy is recovered in the limitq→0, so that
HT5H0. Using all roots up tok516 and takingq50.01 we
find H0.0150.693. ln2, in good agreement our analytic cal-
culation ofHT . The fast convergence ofH0.01 as a function
of k is shown in Fig. 9. In theory, by taking the limitq→1
we should recover the metric entropyh(m)5H1. In practice,
the expression forH1 converges very slowly withk and we
are unable to confirm thath5H150.

Turning to the Farey exit map with an exit atuexit58 we
find from Eqs. ~4.17! and ~4.18! that ^t&512.660.1 and
^l&50.72460.005. The convergence ask→` of Eqs.~4.17!
and ~4.18! is shown graphically in Figs. 10 and 11, respec-
tively. Notice that the fits only start to converge once
k.uexit11. This makes sense as the the largest root at order
k is umax.k21. The map is ‘‘unaware’’ it has exits until
orbits start to escape. These results for^t& and^l& combine
to tell us thatDL51.7860.02 andh50.64560.005.

As an independent check we can use a direct Monte Carlo
evaluation based on evolving a random collection of initial
conditions. The Monte Carlo method allows us to estimate
the properties of typical trajectories by measuring the prop-
erties of a large random sample and then inferring from this
the properties of the collective.

By evolving N(0)5105 randomly chosen initial points,
we find from Eqs.~4.2! and ~4.4! that ^t&512.260.1 and
^l&50.7460.01. The convergence of^t& and^l& as a func-
tion of the number of iterationsn is shown in Figs. 12 and
13. In each case the initial conditions in the first run were
taken from the intervalu5@1,2#, and those in the second run
from the larger intervalu5@1,8#. In this way, the asymptotic
value was approached from above and below, leading to a
more accurate estimate of the limit. After aboutn560 itera-
tions statistical errors start to become large since the number
of points remaining in the interval becomes small. This is
apparent in Figs. 12 and 13. Using the Monte Carlo values
for ^t& and ^l& we find DL51.7860.03 and
h50.6660.01. The two methods agree.

In order to compareDL to the information dimension of
the strange repellor we need to numerically generate the re-
pellor and find its fractal dimensions. Recall that in Fig. 8 we
generated the unstable manifold of the Farey exit map by
solving for all roots up to orderk516. With an exit at
uexit58 we findD1

u51.8760.01. Consequently, the informa-
tion dimension of the strange repellor isD151.7460.02,

FIG. 8. A histogram of points belonging to the Farey exit map’s
future invariant set (uexit58).
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which agrees with the result without exits@Eq. ~4.32!#. As
mentioned previously, the dimension found fork516 is a
lower bound for the true dimension. While there is reason-
able agreement betweenD1 and DL at order k516, we
would like to test the relation at higher orders ink. However,
this is difficult since the number of roots increases exponen-
tially with k.

Alternatively, we can expose the future invariant set by
the Monte Carlo method. By starting offN(0)553106

points in the intervalu5@1,2# and iterating themn560
times, we are left withN.33104 points. These remaining
points must closely shadow the future invariant set. A histo-
gram of the set generated in this way is shown in Fig. 14.
The gap structure is identical to that seen in Fig. 8 using all
roots at orderk516, but the bins are more evenly filled. As
a result, the information dimension takes the slightly higher
valueD1

u51.8960.01. This method gives an information di-
mension of the strange repellor closer toD151.7860.02.
Since the Monte Carlo method only finds orbits that shadow
the repellor, and not the true periodic orbits, we expect the
fractal dimension found in this way will be an upper bound.

As expected, the results for^t& and ^l& depend on how
wide we make the pocket. In the limituexit→` we know
^t&→` and ^l&→0. It would be interesting to see if the
product^t&^l& remains finite asuexit becomes large. Unfor-

tunately, the numerical values converge very slowly as the
pockets become thinner, and so we were unable to test
whetherDL remains fixed asuexit→`.

To conclude this section, we find from two separate meth-
ods that

DL51.7860.03. ~4.21!

Calculating the information dimension in two different ways
gives the range

D15~1.74→1.78!60.02. ~4.22!

Systematic errors and slow convergence of the dimension
can account for the discrepancy in the two values forD1.
The Lyapunov dimension is in reasonable agreement with
two different calculations of the information dimension. The
Lyapunov dimension thus fares well as a coordinate-
invariant combination of the otherwise ambiguous Lyapunov
exponent and metric entropy.

FIG. 9. Numerical convergence of the topological entropy,
H0.01.HT , as a function ofk using Eq.~3.20!. The solid line indi-
cates ln2.

FIG. 10. Finding the decay timêt& for the Farey exit map
using Eq.~3.17!. The straight line fit yields a decay constant of
^t&512.660.1 .

FIG. 11. Finding the Lyapunov exponent^l& for the Farey exit
map using Eq.~3.18!. The straight line fit yields a Lyapunov expo-
nent of ^l&50.72460.005.

FIG. 12. Finding^l& for the Farey exit map using the Monte
Carlo method.
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V. COMPARING TO THE GAUSS MAP

Barrow used the Gauss map developed by BKL to derive
dynamical systems properties such as metric and topological
entropies. In this section we compare Barrow’s results for the
Gauss map to our results for the Farey map.

There are two critical features which distinguish the treat-
ment of the maps. First, the Farey and Gauss maps are topo-
logically inequivalent. Second, the techniques used to study
the maps are different. We begin by isolating the strange
repellor before using the repellor to reconstruct the properties
of typical aperiodic trajectories. In contrast, Barrow worked
directly with the aperiodic trajectories of the Gauss map and
did not consider the repellor.

The Gauss map can be obtained from the Farey map by
chopping out the oscillations. This was first done by BKL
when they realized that the sensitive dependence on initial
conditions was due to the bounces and not the oscillations.
The Gauss map emerges from the Fareyu map as follows: If
un>2, then oscillations will take place untilun,2. The
bounce sequence that follows can then be expressed as

uN115
1

uN2@uN#
, ~5.1!

whereN is the number of bounces. Eq.~5.1! is just the Gauss
mapG(u). The Gauss map is not invertible since it is de-
rived fromF(u) and not the fullF(u,v).

The Farey and Gauss maps correspond to different dis-
cretizations of the full dynamics. The discrete ticks of the
Farey clock correspond to periodic behavior in terms of the
continuous time variableT5 lnln(1/t). This is not true for the
Gauss map. The time between bounces for the Gauss map
can vary dramatically relative toT time. In compactifying
the discrete time coordinate,tF5n, of the Farey map to ar-
rive at the discrete time coordinate,tG5N, of the Gauss
map, holes have had to be cut. There is no smooth coordinate
transformation connecting the time variablestF andtG . As a
result, theF andG maps are topologically inequivalent and
have different topological entropies.

A. Repellor

Although topologically inequivalent, there are deep simi-
larities between the two mapsF andG. For one, they have
identical fixed points. Still, some features of the repellor are
altered.

Consider orbits with a Gauss periodPG51, so that the
fixed points are obtained from

ū15
1

ū12@ ū1#
. ~5.2!

The solutions are

ū15
m11Am1

214

2
, ~5.3!

where, again,

m15@ ū1#. ~5.4!

Notice, that theseū1 correspond to the silver means of Eq.
~3.15!. Hence, the periodPG51 orbit of the Gauss map
generates all of the single bounce orbits of the Farey map,
but with the longer periodPF5m1. Notice also that there are
already an infinite number of fixed points for the Gauss map
at orderN51.

We can calculate the Lyapunov exponents for the
PG51 orbits:

lG~ ū!5 lim
N→`

1

N
ln~ ū!2N ~5.5!

52ln
m11Am1

214

2
. ~5.6!

And so the silver mean exponents for the two maps are re-
lated by

lG~ ū!5m1l
F~ ū!. ~5.7!

The exponent forG is larger than that forF.
Continuing in the same vein, consider the periodPG52

fixed points. The condition

G2~ ū!5ū ~5.8!

FIG. 13. Finding^t& for the Farey exit map using the Monte
Carlo method. The decay time is found from the slope of the line of
best fit.

FIG. 14. A histogram of points shadowing the Farey exit map’s
future invariant set found by Monte Carlo methods (uexit58).
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generates the doubly infinite set of roots

ū55
m11Am1

214m1 /m2

2
,

2

Am1
214m1 /m22m1

.

~5.9!

Notice that all thePG51 orbits are included in this solution
whenm15m2. By considering the Gauss map we have been
able to solve for all of the two-bounce fixed points of the
Farey map at orderk5m11m2. These periodic orbits have
two bounce epochs separated by anm121 oscillation era
and anm221 oscillation era. The Lyapunov exponents for
the period-2 orbits are given by

lG~ ū!5 lnS m0

Am1
214m1 /m2

11D . ~5.10!

These are related to the Lyapunov exponents for a corre-
sponding periodic orbit of the Farey map by

lG~ ū!5Sm11m2

2 DlF~ ū!. ~5.11!

In terms of the CFE, the period of the Gauss map is the
length of the generator for the periodic irrational. For ex-
ample, the periodic irrational@1,$m1 ,m2 , . . . ,mN%# has
PG5N andPF5( i51

N mi . From this we can deduce the gen-
eral result

lG

lF5
PF

PG
5

( i51
N mi

N
. ~5.12!

Interestingly enough, while the Lyapunov exponents and the
period of the two maps differ, their product is invariant:

lGPG5lFPF. ~5.13!

Since typical periodic orbits of the Farey map have equal
numbers of bounces and oscillations, it follows that the av-
erage Lyapunov exponents for the periodic orbits satisfy

lp
G52lp

F.1.59. ~5.14!

A direct calculation oflp
G confirms this expectation.

B. Comparing entropies

In terms of continued fractions it is a simple matter to
write down all the periodic orbits of the Gauss map. The
period-1 orbits are given byū5@$m1%#, the period-2 orbits
by ū5@$m1 ,m2%#, etc. From this it follow that the number of
orbits with periodPG5K scales asN(K)5`K. Because the
number of roots at each order is infinite, a regularization
procedure has to be introduced before quantities such as
HT andh(m) can be calculated.

After employing a suitable regulator@8#, the measure
~4.16! can be expressed in terms of an integral over
x51/u:

m~S!5E
S
r~x!dx, ~5.15!

where

r~x!5
1

~11x!ln2
. ~5.16!

TakingS to cover the entire regionx5@0,1# (u5@1,̀ #), we
havem51 and^t&5`. From the Gauss map in terms of the
x coordinate,G(x)5x212@x21#, we find G8(x)52x22

and

^l&5E
0

1

lnuG8~x!ur~x!dx5E
0

1 22lnx

~11x!ln2
dx5

p2

6ln2
.

~5.17!

This expression is smaller by a factor of ln2 from the usual
expression. The discrepancy can be traced to Barrow’s use of
log2 rather than natural logarithms. Similarly, the topological
entropy of the Gauss map is given by

HT
G5

p2

6ln2
, ~5.18!

where again our expression differs from Barrow’s oft-quoted
result by a factor of ln2. As promised, the topological en-
tropy of the Gauss map greatly exceeds that of the Farey
map. Moreover, the metric entropy of the Gauss map,
hG5^l&2^t&215p2/(6ln2), is finite while the metric en-
tropy of the Farey map vanishes.

C. Fractal dimension of the Gauss repellor

Although the Gauss map and the Farey map share com-
mon fixed points, they differ in how the fixed points are
distributed as a function of period. It is impossible to pro-
duce a histogram in analogy to that of Fig. 1 since the Gauss
map generates an infinite number of fixed points at every
order. We can, however, argue that it is very likely that the
fractal generated by the Gauss map is uniform and not mul-
tifractal. In other words, all theDq’s are likely the same.
Indeed, we can argue that the fractal dimensions saturate the
phase space dimension,Dq5D51, for all q, the reason be-
ing that the periodic irrationals are dense on the number line.
We have already argued in Sec. III A that this ensures
D052 for the Farey map.

Let us consider this argument more closely. AsPG be-
comes large, the number of terms in the CFE cycle becomes
large also. The longer the CFE cycle, the more uniform the
coverage of the number line. For orbits of periodP, the gaps
between roots are always less than 1/f P

2 , where

f P5
1

A5
@g~P11!1~21!Pg2~P11!#. ~5.19!

Hereg5(A511)/2 is the golden mean. For example, by the
time P510, f 10589 and the largest possible gap is bounded
by .0.0001. In comparison, the Farey map at orderk510
has a finite number of roots and gaps as large as.0.2. More-
over, the gaps close exponentially fast withP for the Gauss
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map, while they close slower than 1/k for the Farey map.
While the rate of closure makes no difference toD0, the
multifractal dimensions with higherq’s take into account the
density of points. The Gauss map lays down a very even
covering of the number line, and so we expectD05D1, etc.

If the conjecture thatD15DL holds true, then we should
find DL51. This is in fact what we find. For the 1D map,

DL512
1

^l&^t&
. ~5.20!

The Gauss map is characterized bŷt&5` and
^l&5p2/(6ln2). Inserting these values into Eq.~5.20! we
find DL51, in accordance with our argument thatD151.

As with the topological entropies, we find the fractal di-
mensions of the two maps are inequivalent. This does not
invalidate the statement that fractal dimensions are
coordinate-invariant signals of chaos. The two maps cannot
be connected by a smooth coordinate transformation. They
are, as we have already argued, topologically inequivalent.
The discrete Farey time is topologically the same as the
T5 lnln(1/t) of the full dynamics. The discrete Gauss time,
on the other hand, changes the topology of time by chopping
out the oscillations.

VI. SYMBOLIC DYNAMICS

Before embarking on a numerical study of the continuum
dynamics, we can gain additional analytic insight into the
mixmaster universe by studying symbolic representations of
the unstable periodic orbits. A chaotic system is character-
ized by the complexity of the representation required to de-
scribe its periodic orbits. The complexity is quantified by
measuring the Re´nyi entropy spectrum@44# of the coding
sequence. The most commonly measured Re´nyi entropies are
the Shannon information entropy and the Hartley topological
entropy.

There are several features that recommend symbolic or
information dynamics as a method of studying chaos in gen-
eral relativity: The description is coordinate independent, ap-
proximate maps are not required, and only the global behav-
ior of trajectories need be known. The global structure of
trajectories can be found by approximate methods so no
computers are required.

In the case of the mixmaster we need to know how tra-
jectories move around the anisotropy plane (b1 ,b2). Here
we are in luck as the work has been done for us by Bogoyav-
lenskii and Novikov@28#. From their work we see that a
simple symbolic coding can be defined by recording cross-
ings through three half-infinite lines in the anisotropy plane.
The lines are

~I! b250 , b1,0,

~II ! b25A3b1 , b1.0,

~III ! b252A3b1 , b1.0. ~6.1!

Whenever a trajectory crosses line~I! in a clockwise sense,
the symbolX is recorded. An anticlockwise crossing of line
~I! is recored with the symbolX̃. Similarly, crossings of lines
~II ! and ~III ! are recorded usingY andZ.

The symbolic lengthl of an orbit is defined to be the
number of symbols required to describe the orbit. The short-
est orbits are of the formXX̃. These describe a trajectory
bouncing from one corner to another and then back again.
There are six orbits of this type:XX̃, X̃X, YỸ, ỸY, Z̃Z,
ZZ̃. In terms of the Farey coding, these orbits are of the form
BOBO or BOOOBO, etc. The next shortest orbits are the
two complete cyclesXYZ and X̃ỸZ̃. These correspond to
Farey codings of the formBBB or BOOBB, etc. All longer
orbits can be constructed by sewing together various combi-
nations of order-2 and order-3 orbits.

Simple rules govern the sewing together of orbits. New
primary orbits can be sewn onto the active sites of order-
( l23) or -(l22) symbolic sequences to form the order-l
coding sequences. By an active site we mean the segment of
the coding string of lengthl23 or l22 that was added at the
previous iteration. In other words, our coding tree only
grows out from the tips of its branches. If the active site is of
the form . . .XYZ, then new primary orbits can be added
between theX and theY, or theY and theZ, or after the
Z. Thus, a period-3 orbit provides three sites for adding a
new orbit. Similarly, if the active site is of the form ...XX̃,
then new primary orbits can be inserted between theX and
the X̃, or after theX̃, so a period-2 orbit only provides two
sites for sewing on new orbits. Combining this information
with our knowledge about how many new orbits may be
added at each site, we are able to write down a recurrence
relation that describes the growth in the number of orbits.
Defining P( l ) to be the number of active period-2 orbits at
orderl andQ( l ) to be the number of active period-3 orbits at
order l , then the total number of orbits at orderl is
N( l )5P( l )1Q( l ). The proliferation in the number of orbits
follows from the coupled recurrence relations

P~ l !54P~ l22!16Q~ l22!,

Q~ l !54P~ l23!16Q~ l23!. ~6.2!

The initial conditions for the recurrence relations are found
by directly counting the number of orbits at orderl51,2,3:

P~1!50 , P~2!56 , P~3!50,

Q~1!50 , Q~2!50 , Q~3!52,

N~1!50 , N~2!56 , N~3!52. ~6.3!

The solution to Eqs.~6.2! is given by

N~ l !5c1a1
l 1c2a2

l 1c3a3
l , ~6.4!

where theai are the three roots of the cubic equation

a324a2650, ~6.5!

and theci can be fixed using Eqs.~6.3!. The Hartley entropy
of the symbolic coding is then

HH5 lim
l→`

1

l
lnN~ l !5 ln~a1!, ~6.6!

wherea1 is the largest root of Eq.~6.5!. Thus,
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HH5 lnS 121~8113A537!2/3

3~8113A537!1/3 D '0.926. ~6.7!

The Hartley entropy of our symbolic coding differs from the
topological entropy of the Farey or Gauss maps since their
symbolic codings record different information about the or-
bits and assign different lengths to the orbits. There are many
different ways we can assign a symbolic coding to the mix-
master orbits, and most have different symbolic entropies.
However, since the rules governing a coding can be given in
a coordinate-invariant way, the symbolic entropy of each
coding is a coordinate-invariant quantity. As explained be-
low, the dynamics is chaotic if the entropy of any~valid!
coding is positive.

The symbolic coding we chose tended to throw out some
information as oscillations that occur in the corner channels
were not recorded. To record all the information needed to
uniquely characterize a mixmaster orbit would require the
introduction of three additional half-infinite lines extending
into the corner channels. The six symbols associated with
crossings of these lines, in addition to the six symbols used
here, provide a complete alphabet for the mixmaster dynam-
ics.

While our coding is not unique, it is onto; that is, a physi-
cal orbit belonging to the mixmaster’s strange repellor has
only onesymbolic coding in terms of$X,Y,Z,X̃,Ỹ,Z̃%. The
converse is not true since many physical orbits share the
same symbolic coding. Using the full 12-letter alphabet it is
possible to arrive at a unique symbolic coding that is one to
one. It would be nice to find the one-to-one coding as the
Hartley entropy of this coding would provide a unique upper
bound to the Hartley entropy of any coding of the mixmas-
ter’s strange repellor. In practice a one-to-one coding can be
very hard to find so we often coarse-grain the available in-
formation and look for codings that are merely onto. These
then provide lower bounds to the true Hartley entropy of the
invariant set. Thus, we have shown that the continuum mix-
master dynamics is chaotic since the Hartley entropy of the
repellor exceeds 0.926.

VII. NUMERICAL RESULTS FOR THE FULL DYNAMICS

To be certain the Farey map provides an accurate descrip-
tion, we now expose the strange repellor in the minisuper-
space of the full continuum dynamics.

Continuous dynamical systems are much harder to solve
than discrete dynamical systems. We cannot hope to find the
periodic orbits analytically. Instead, we apply the same kind
of Monte Carlo approach used to check the analytic results
for the Farey map. Our ambition will be limited here to find-
ing the fractal manifest in minisuperspace phase space and
the fractal dimension.

Exposing the chaotic invariant set in a dissipative system
is simple. By randomly choosing a collection of initial con-
ditions and evolving them according to the dynamical equa-
tions, the trajectories will soon settle onto the various attrac-
tors in phase space. The decrease in available phase space
volume forces all trajectories onto the chaotic attractors. For
a Hamiltonian system this is not the case. Phase space vol-
ume is conserved and the chaotic invariant set remains hid-

den amongst the slurry of aperiodic trajectories. Nonetheless,
the chaotic invariant set can be uncovered by a variety of
methods. For compact Hamiltonian systems the proper inte-
rior maxima ~PIM! procedure@45# efficiently reveals the
strange repellor while for noncompact Hamiltonian systems,
including Hamiltonian exit systems@41#, fractal basin
boundaries are the prefered method.

A. PIM procedure

The proper interior maxima procedure is able to isolate
the strange repellor in most Hamiltonian systems. In particu-
lar, it could be applied to the mixmaster system with or with-
out exits. Although we did not apply the PIM procedure to
the mixmaster, we mention it here as an alternative to intro-
ducing exits.

The basic idea behind the PIM procedure is ingeniously
simple. As discussed earlier, the stable and unstable mani-
folds of the strange repellor are interchanged under time re-
versal. As time moves forward trajectories near the repellor
are repelled along the unstable manifold and attracted along
the stable manifold. Evolving the system into the past re-
verses the attracting and repelling directions. The PIM pro-
cedure exploits this property in the following way:~a!
Evolve a collection of trajectories near the strange repellor
into the future and into the past by an equal amount of time.
~b! Isolate subsets of the evolved bundles that remain nearby
in both the past and the future and discard the remainder.~c!
Zero in on the surviving trajectories and form a new, smaller
bundle of trajectories around them and repeat the procedure.
After a few iterations the surviving trajectories will closely
shadow the invariant set as noninvariant trajectories have
been discarded.

The PIM procedure is shown schematically in Fig. 15. To
simplify the picture, the initial bundle of trajectories is
shown centered on a point belonging to the strange repellor
~black dot!. The labels~a! and~b! correspond to the steps in
the PIM procedure. The great feature of the PIM procedure is
the way it uses the instability of the repellor’s orbits to its
advantage. Consider the original set of trajectories in the
circle of radiusR about the invariant point. Evolving into the
future and into the past by an amountDt leads to ellipses
with axes of lengthRexp(2^l&Dt) andRexp(1^l&Dt). These
ellipses share a Dt invariant set of radius
r.Rexp(2^l&Dt). Thus, after a few iterations, the repellor
lies exposed. In effect, the PIM procedure turns the strange
repellor into a strange attractor.

Using a variant of the PIM procedure entire trajectories
belonging to the strange repellor can be reconstructed. While
it would be valuable to apply these techniques to the mix-
master system, the numerical implementation of the proce-
dure is difficult. A much simpler method of exposing the
strange repellor is to introduce exits, and then chart the frac-
tal coastline of the outcome basins.

B. Fractal basin boundaries

Rather than hunting for the chaotic skeleton among the
aperiodic trajectories, the Hamiltonian exit method creates a
sieve through which the slurry of aperiodic trajectories es-
cape, leaving the strange repellor in clear view. Like the PIM
procedure, the introduction of exits exploits the instability of

7506 55NEIL J. CORNISH AND JANNA J. LEVIN



the chaotic trajectories. The faster trajectories are expelled
by the repellor, the faster the invariant set is exposed.

The repellor is manifest at the boundary in phase space
which separates initial conditions on the basis of their out-
comes. These basin boundaries often become fractal in cha-
otic scattering. The fractal basin boundary is composed of
trajectories which spend substantial time on the repellor.

For the full mixmaster dynamics we employ the lessons
of the Farey map. Indeed, it is a simple matter to directly
implement exactly the same exit conditions we used for the
map. By considering the ratios (lna)8/(lnb)8 et cyc.
(a,b,c), we can test to see if a mixmaster universe is coast-
ing in a Kasner phase. If it is, we can then use Eq.~2.5! to
read off the value ofu. When u.uexit we terminate the
evolution and assign an outcome based on which axis is
collapsing most quickly. By color coding the initial condi-
tions near the maximum of expansion according to their out-
come near the big crunch singularity, we produce plots of the
outcome basins.

Using a fourth order Runge-Kutta integrator with adaptive
step size, we evolved 3003300 grids of initial conditions
and recorded their outcomes. The Hamiltonian constraint,
Eq. ~2.1! was monitored at all times, and the error tolerances
were adaptively corrected to ensure the constraint was satis-
fied to within 1 part in 105 along each trajectory.4 In order to
make contact with the Farey map, the initial conditions were
chosen by fixingv051/3 and taking (u0 ,v0) from a
3003300 grid. The value ofV0 was then found by solving
the Hamiltonian constraint. Inserting these values of
(u0 ,v0 ,V0 ,v0) into Eq. ~2.3! yielded the initial conditions
for the numerical integration of the equations of motion.

A portion of the basin boundaries in the (u,v) plane is
displayed in Fig. 16. Depending on which axis is collapsing
most quickly when the trajectory escapes, the initial grid
point is colored black fora, grey forb, and white forc. The
exit was set atuexit58 in order to make comparison with the
Farey exit map results. The basins form an intricately woven
tapestry of roughly vertical threads. The basin boundaries
appear to form a cantor set of vertical lines. By zooming in
on a small portion of Fig. 16, we see from Fig. 17 that the
dense weave persists on finer and finer scales.

Points belonging to the fractal basin boundaries comprise
a future invariant set. Trajectories belonging to this set never
‘‘decide’’ on a particular outcome, and so never escape
through an exit. These are the trajectories that form the un-
stable manifold of the strange repellor. It is instructive to
compare the future invariant set seen in Figs. 16 and 17 with
the Farey map’s future invariant set shown in Fig. 2. The
pattern of gaps and dense regions is strikingly similar. The
warpage of the vertical stripes in Figs. 16 and 17 can be
accounted for by our choice of starting point. Because our
initial conditions start the universe near the maximum of its
expansion, we are looking at the future invariant set in a
region where the approximations used to derive the Farey
map are very poor. Nonetheless, as the trajectories evolve
toward the big crunch the continuum dynamics settles onto a
pattern well described by the Farey map. Since the fine struc-
ture of the weave is laid down after many bounces and os-
cillations, the fractal structure produced by the full equations
should be much the same as that produced by the Farey map.

In order to test this proposition we numerically evaluate
the fractal dimension of Fig. 17. To do this we employ the
uncertainty exponent method described in Sec. III A. Ran-
domly choosing 1000 points in the region covered by Fig.
17, we record how many have certain outcomes as a function
of initial uncertaintyd. A plot of lnf(d) as a function of
lnd is shown in Fig. 18. According to Eq.~3.30!, the gradient
of this graph yields the uncertainty exponent
a50.1460.01 and a capacity dimension of
D0
u51.8660.01.
The method described above delivers the capacity dimen-

sion of a sample of the repellor. The capacity dimension of a
sample often is not equal to the capacity dimension of the
full repellor. Rather, the capacity dimension of the sample
equals the information dimension of the full repellor@46#.
The reason is the following. The random sampling of the
Monte Carlo approach favors the densest regions of the frac-

4We check the normalized constraintH̃5H/@a41b41c4

12(b2c21a2c21b2a2)#.

FIG. 15. Finding the invariant set using the PIM procedure.

FIG. 16. Basin boundaries in the (u,v) plane for the full dy-
namics.
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tal. The method naturally weights therefore the densest re-
gions. Since the weighted dimension is in fact the informa-
tion dimension, it follows thatD0

u of the sample actually
equalsD1

u . We have therefore really found the information
dimension of the mixmaster’s future invariant set:

D1
u51.8660.01. ~7.1!

The information dimension of the repellor from these nu-
merical experiments is then given by

D152D1
u2D51.7260.02. ~7.2!

Within numerical uncertainty, this number agrees with what
we found for the Farey map@Eqs. ~3.32! and ~4.22!#. The
small discrepancy is probably due to the approximations
used in deriving the map or systematic numerical errors.

It is worth noting that the fractal basin boundaries can be
uncovered in any 2D slice through the 6D phase space. For
example, in Fig. 19 we display the outcome basins in the
anisotropy plane (b1 ,b2). The initial conditions were cho-
sen by settingV521, ȧ510, ḃ510, and selecting
(b1 ,b2) from a 6003600 grid. The remaining coordinate
ġ was fixed by the Hamiltonian constraint. Again we see an
interesting mixture of regular and fractal boundaries, this
time forming a symmetrical patchwork about a central axis
of symmetry. The symmetry of the basins reflects the sym-
metry of the MSS potential shown in Figs. 6 and 7.

By choosing different slices or different coordinate sys-
tems, many different views of the future invariant set can be
uncovered. However, these are purely cosmetic changes. No
matter what coordinates we choose there will always be frac-
tal basin boundaries, and these boundaries will always have
the same fractal dimension. No matter how you look at it, the
mixmaster universe is chaotic.

VIII. SUMMARY OF RESULTS AND DISCUSSION

The power of the fractal in relativity is its observer inde-
pendence. We isolate two related fractals. The strange repel-
lor of the Farey map is shown to be a multifractal and ana-
lyzed in detail. The fractal repellor is then excavated
numerically in the phase space of the full, unapproximated
dynamics:

Map HT ^l& lp D0 D1 DL

Farey 2ln2 0 0.793 2.0 1.74–1.78 1.78

Gauss p2

6ln2
p2

6ln2
1.59 1.0 1.0 1.0

The full force of the conclusions comes with a compari-
son of the dimensions found in entirely different manners.
We have collected our results for the discrete time maps in

FIG. 17. A portion of Fig. 16 magnified 50 times.

FIG. 18. Calculating the uncertainty exponent for Fig. 17.

FIG. 19. The outcome basins in the anisotropy plane.
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the chart above. For comparison with the chart, the informa-
tion dimension of the fractal basin boundary in the full dy-
namics isD151.7260.02. Not only is a fractal a coordinate-
invariant declaration of chaos, we have further found that the
three information dimensions agree within errors: the infor-
mation dimension of the repellor from the discrete Farey
map, the Lyapunov dimension of the Farey map, and the
information dimension of the fractal basin boundaries. As
has long been suspected, the collective of mixmaster uni-
verses is certainly chaotic.

In a sense, chaos in the mixmaster universe makes it im-
possible to create one in the first place. The mixmaster is
anisotropic but homogeneous. The extreme sensitivity to ini-
tial conditions induces an instability to inhomogeneities.
Two different regions of spacetime with even slightly differ-
ent initial conditions quickly evolve away from each other

@47#. The universe then becomes inhomogeneous as well as
anisotropic, rendering the big crunch similar to a generic
inhomogeneous collapse to a black hole. The churning dy-
namics on approach to a singularity may therefore be tem-
porally and spatially chaotic, whether it be in a dying star or
a dying cosmos.
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