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Mixmaster universe: A chaotic Farey tale
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When gravitational fields are at their strongest, the evolution of spacetime is thought to be highly erratic.
Over the past decade debate has raged over whether this evolution can be classified as chaotic. The debate has
centered on the homogeneous but anisotropic mixmaster universe. A definite resolution has been lacking as the
techniques used to study the mixmaster dynamics yield observer-dependent answers. Here we resolve the
conflict by using observer-independent fractal methods. We prove the mixmaster universe is chaotic by ex-
posing the fractal strange repellor that characterizes the dynamics. The repellor is laid bare in both the
six-dimensional minisuperspace of the full Einstein equations and in a two-dimensional discretization of the
dynamics. The chaos is encoded in a special set of numbers that form the irrational Farey tree. We quantify the
chaos by calculating the strange repellor’'s Lyapunov dimension, topological entropy, and multifractal dimen-
sions. As all of these quantities are coordinate or gauge independent, there is no longer any ambiguity—the
mixmaster universe is indeed chaofi§0556-282(97)02710-0

PACS numbe(s): 98.80.Hw, 05.45t+b, 95.10.Eg, 98.80.Cq

I. INTRODUCTION merical experiments run in different coordinate systems
found that the Lyapunov exponents vanish&8-14. Fur-
When space is most strongly deformed, Einstein’s nonlinthermore, the Gauss map itself corresponds to a specific time
ear theory of gravity may be fundamentally chaotic. The sinslicing. The ambiguity of time was manifest.
gular cores of collapsing stars and the big bang are suspected To conclude that the mixmaster approach to a singularity
to tend toward chaofl,2]. Beyond conjecturé,attempts to is indeed chaotic, an observer-independent signature must be
conclusively identify chaos near singularities stirred debateincovered. As has been promoted elsewh#&Be-17, frac-
[5,6]. The debate has centered on the mixmaster universe, dals in phase space are observer-independent chaotic signa-
archetypal singularity. In the mixmaster model, the threetures. Their existence and properties do not depend on the
spatial dimensions oscillate anisotropically out of the bigtick of a clock or the world line of an observer. As well,
bang and finally toward a big crungf]. fractals have an aesthetic appeal. The chaos is consequent of
Relativistic chaos has the unique difficulty of demandinga lack of symmetries. The loss of symmetry in the dynamics
observer-independent signatures. Many of the standard chis appeased by the emergent symmetry of the self-affine frac-
otic indicators such as the Lyapunov exponents and assodial [18] in phase space.
ated entropies are observer dependent. The Lyapunov expo- We exploit the observer independence of the fractal to
nent quantifies how quickly predictability is lost as a systemshow unambiguously that the mixmaster universe is chaotic.
evolves. The metric entropy quantifies the creation of infor-This result was announced in RgL7].
mation as time moves forward. They are both tied to the rate Fractals in the minisuperspace phase space of the full dy-
at which a given observer’s clock ticks. The relativism of namics are uncovered. Probing the full dynamics is always
space and time rejects the notion of a preferred time direcaumerically intensive. To open a window on the numerical
tion. In a curved space, the Lyapunov exponent and metricesults we also study the Farey map, a discrete approxima-
entropy become relative as well. Observer-independent toolson to the dynamics related to the Gauss map. We focus on
are needed to handle chaos in relativity. the map analytically but the real power of our conclusions is
The challenge of relativistic chaos is well demonstrated inin the full dynamics where no approximation is made. Just as
the debate over the chaoticity of the mixmaster universewith a geographical map, the Farey map is used as a guide to
Barrow studied the chaotic properties of a discrete approxinavigate through the full dynamical problem. We use the
mation to the full dynamics known as the Gauss &9 map to locate the skeleton of the chaos and then verify its
Barrow found the Lyapunov exponent, metric entropy, andexistence with the numerics.
topological entropy of the map. The dispute began when nu- The bare bones of the chaos is revealed in an invariant
subset of self-similar universes known collectively as a
strange repellof.The strange repelldi20] is a fractal, non-
Direct two- and three-dimensional numerical simulations of in-
homogeneous cosmologies and gravitational collapse have so far
failed to conclusively support or refute this conjectyf. It is 2page appears to describe a strange repellor in the minisuperspace
possible that numerical discretization may suppress chaos as [ithase space of a scalar field cosmold§9]. Remarkably, this pa-
causes a coarse graining of phase space similar to that found jper was written in the same year strange repellors were first being
guantum mechanidst]. described in chaos theofg0].
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attracting, invariant sefSec. Ill). More familiar are fractal, Hamiltonian constraint equation requires=0. The equa-

attracting, invariant sets or strange attractors. Though thetions of motion governing the behavior of the three spatial

repellor is a tiny subset of all possible universes, it isolatesaxes are

the essential features of the systEi]. A typical universe

will accumulate chaotic transient eras as it brushes past the  (In@)"=3[(b’—c?*?~a*] et cyc. (ab,c).

strange repellor in phase space. (2.2)
The repellor is multifractal as shown in Sec. lll A. The . . I

Farey map divides the fractal into two complementary setsA prime denotesl/dr where is related to the cosmic time

A particularly elegant quality of the Farey map is the con-. lvoughdt=(abcdr. The universe comes out of the big
nection between these complementary sets and numb ng with two axes oscillating between expansion and col-

theory. As elaborated in Sec. Ill B, the multifractal can be apse while the third grows monotonically. The overall vol-

completely understood in terms of continued fraction expanil;mgegf tf(\)enurgve:(s)gcixpf(l)ndtshéo & ma(;?lrjr:]ucrﬁ aggothgna?g{
sions and Farey trees. pses. pp g , p

" . . . dimensions will oscillate in expansion and collapse while the
In addition to the usual multifractal dimensions, we stres p p

e mporiance of e Lyapunov dmers@ec. IV A, This 1 1 decresse monatnicaly, Evetualy  bounce oc.
dimension is built out of a coordinate-invariant combination P P 9 :

of the Lyapunov exponentSec. IV Q and the metric en- The scale and expansion factors can be reparametrized in

tropy. Both the Lyapunov exponent and the metric entrop)}ermS of the.f(.)l.” vanat_)l_esu(v,w,Q) [.9]' As was done in
can then be reinstated as valid tools even in curved spacgef'_[g]’ the initial gondmo_ns can be fixed on th_e surface of
We introduce a method for handling the repellor as a Hamil-S€¢tionao=1, (Ina)o=0, without loss of generality,

tonian exit system, to facilitate calculation of the Lyapunov

dimension(Sec. IV B). Ina,=0, (|na)6:3(1+—u°)a;°,

Maps have been put to good use before. We devote Sec. (1+up+up)
V to a detailed comparison of the Gauss map and the Farey
map. There are two main differences we draw out. One dis- INba= 3% (Inb)},= —3wolg
tinction is in the character of the maps themselves. They are 0" (1+vo+uguo)’ O (1+up+uf)’
not topologically equivalent and therefore have different to-
pological features such as topological entropy. The other no- 3(vo+ Uguo) Qo 3(up+ ué)wo

table difference is the technique for handling the maps. Pre-  Inco
vious methods treat the set of all universes. We concentrate
on the repellor subset. The previous technigques and ours are

complementary. _ __ The relative sizes and velocities of the axes, respectively, are
~ Having isolated the repellor in the map, we use this in-zccounted for byv and u. The overall scale factors
sight as an x ray to expose the chaotic skeleton in the full) —[n(abg]/3 andw=Q"' grow monotonically away from

(|nC)6:(—2—-

" (1+vg+tugug) 1+Ug+ug

2.3

unapproximated dynamidsec. VI). the big bang to the maximum of expansion and then shrink
monotonically toward the big crunch.
Il. MIXMASTER DYNAMICS The evolution of a given universe can be viewed as a

particle scattering off a potential in minisuperspace. The

The richness of Einstein’s theory is revealed in the Specfight-hand sides of Eqg2.2) play the role of a potential
trum of solutions to the dynamical equations. To solve thes%hen this potential is négligible the evolution mimics. a
equations universe by universe, symmetries of the Hamil-Simple Kasner model. The Kasne’r metric is
tonian are sought. However, strong gravity is nonlinearly '
entangled and we cannot expect the universe to typically d2= — dt2+ t2Padx2+ t2Pody?+ t2Ped 2. (2.4)
offer up symmetries of the motion. Einstein’s equations are
more likely than not to be fundamentally nonintegrable, andThe Kasner indices can be parametrized as
so chaotic.

The singularity structure of the equations can indicate if 1+u
the system is integrable. It has been shown that the mixmas- Pa(u)= 1+urud)’
ter equations fail the Painlévest[22]. This suggests, but
does not prove, that the system is nonintegrable. —u

The fractals we find in the minisuperspace phase space pp(U)= ———=

show conclusively the emergence of chaos. To begin, we use (1+u+us)
dynamical systems theory on sets of universes and consider Ut U2
the minisuperspace of all possible mixmaster cosmologies. Po(U)= ———, (2.5
The minisuperspace Hamiltonian is (1+u+u9)
H=(Ina)’(Inb)’ + (Ina)’(Inc)’ + (Inb)’(Inc)’ and satisfy =3 p;=1=33,p?. Moreover, p,(1/u)

4 a4 o 2o oo =Ppc(U), Po(1Mu)=py(u), and pe(1/u)=p,(u). As is cus-
+ z[a*+b*+c*—2(b°c“+a“c*+b%a’)], (2.1) tomary, we takeu to lie in the range[1] to ensure a
definite ordering of the Kasner exponents:
wherea,b,c are the scale factors for the three spatial axes.
For a full description of the geometry see Rdf523]. The Pr<Pa<Pc- (2.6
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In terms of conformal time, uy—1, u=1,
(Ina)' =p, = axexp(pa7). @7 B B (34
n

When the potential gains importance, the trajectory is scat-
tered and enters another Kasner phase. To study the effect Bbth choices have shown up in the literature over the years,
scattering it is a good approximation to consider only thebut these days the first choice is prefered as the transitional
change on the Kasner indices of Eg.5). The full dynami-  step whereu<1 is hidden in the double transformation. By
cal problem can therefore be reduced to a map which evolvdsiding this step, a definite Kasner ordering can be main-
the parameteu forward in discrete intervals of time. Belin- tained. It is worth mentioning that the two maps es@ctly
skii, Khalatnikov, and LifshitZBKL ) reduced the dynamics the same wariable, even though the first can formally be
to the one-dimensional Gauss map. The Gauss map evolvescovered from the second by making the substitution
u from bounce to bounce as the trajectory strikes the poteru=u—1.
tial. We focus instead on a two-dimensional map, the Farey By combining theu map with its inverse in terms af,
map, which includes not only bounces but also oscillationne arrives at the two-dimensional Farey map. We call the
[24,25. The Farey map has the additional nice property ofmap a Farey map due to its connection to the Farey trees of
being invertible and so preserves the time reversibility ofnumber theory as discussed in Sec. Ill A. The Farey map
Einstein’s equationf26]. evolves the two parameters forward by discrete intervals in
time, F(u,,v,)=(Un+1,Un+1), according to the rule

Il. FAREY MAP AND THE STRANGE REPELLOR o
u—1, v+1, u=2(oscillationg,

With the discrete time map we are able to isolate the
repellor. The repellor is the chaotic subset of self-similar F(u.v)=\ 1 1
universes. It is the Hamiltonian analogue of the better known =1 ;+ 1, u<2(bounces.
strange attractor. In dissipative systems, the volume of phase

space shrinks and trajectories are drawn onto an attracting Sehe map describes the evolution of a universe through a
as energy is lost. Since the universe is a self-containederies of Kasner epochs. U=2, then two axes oscillate in
Hamiltonian system, there can be no dissipation and so ngxpansion and collapse while the third coasts. The axes will
attractors. Still, the notion of an invariant set can be an inCipgcillate until u<2, at which point a bounce occurs, the
sive characterization of the system. three axes interchange roles, andis bounced about the

~ Nonattracting invariant sets are referred to as repellorgumper line. In some studies, what we call oscillations are

at least one eigendirection, and in that sense repel any near Running in parallel with the Farey map is the volume map
neighbors. The phase space volume is conserved as \it(), ) described by

squeezes in one direction while it expands in the other as it

(3.5

careens off the repellor. The transient chaos experienced by a 1+u,+ uﬁ
typical, aperiodic universe reflects the passage of that trajec- Qny1=Qy 1+ : (3.6)
T . Up(1+v,t+ugon)
tory near the core periodic orbits.
Lifshitz and Khalatnikov[1] were the first to introduce ou
the u parametrization and derive the evolution rules Wpi1=wn 1— —”2 ) (3.7
1+u,+up

u—u—1 if u>1,
Like the Farey map, the volume map is a good approxima-
u—1u if u<i. (3.1 tion to the exact evolution away from the maximum of ex-
pansion wherew flips sign. During the collapse phase
As it stands, this prescription is discontinuousuatl. A 77— —%, ©>0 and(Q<0. A nice feature of the combined
continuous map can derived by considering either of the twd-arey-volume mapM (u,v,{,®), is the way it splits the

double transformations dynamics into oscillatory and monotonic pieces.
Clearly, the monotonic behavior of thé map excludes
u'=u—1 andu’=10’ the possibility of periodic trajectories for thd map. Since
all chaotic behavior relies on the existence of unstable peri-
or odic trajectories, this would seem to rule out chaos in the

mixmaster dynamics. Indeed, similar reasoning has been
used to claim that the full mixmaster equations cannot be
chaotic[27]. The flaw in this reasoning was to neglect the
noncompact nature of the mixmaster phase space. For ex-
ample, the noncompact motion along a spiral of fixed radius
appears as circular motion in an appropriate comoving frame
Unt1= 1 1=u<?2 3.3 of reference. Although a spiral trajectory never returns to its
up—1’ - ' starting point, the motion is periodic in a projected subset of

phase space. Similarly, the mixmaster dynamics allows un-
and stable periodic trajectories in terms of the§) coordinates.

u'=1u andu’=u’—-1. (3.2
This leads to the two entirely equivalent continuous maps

u,—1, u=2,
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A projected strange repellor is all we require for chaos towhose solution is

occur. Consequently, we can drop the overall scaling of the

V map and concentrate on the Farey map. Similarly, when _ k+Jk¥+4
we turn our attention to the full dynamics we will look for =%
periodic behavior in scale-invariant quantities such as

(Inb)/(Inc). In this way we effectively project out the regular These are the silver meartand can be found among the
evolution of the system. kth order leaves in the Farey tieds elaborated in the next
An important subset of universes are formed by the orbitsection,all of the fixed points comprise a countably infinite
periodic in (u,v). The existence of a repelling, denumerably set of irrationals with periodic continued fraction expansions
infinite, everywhere dense set of periodic orbits was firstyescribed by Farey trees. In this sense, we know all the fixed
recognized by Bogoyavlenski and Novikp28]. Physically, points.
the periodic orbits correspond to discretely self-similar uni- Nonattracting We can verify that all of the periodic orbits
verses. After one orbital period, the proportionality of theare unstable and so are not attracting but rather repelling.
scale and expansion factors recurs, while the volume of thghe repellor is the intersection in phase space of the unstable
universe has contracted overall. The collection of periodicand stable manifolds. Since it is unstable in one direction, a
orbits in (u,v) form a multifractal strange repellor. near neighbor to a periodic orbit will deviate off the invariant

To isolate the strange repellor we search foch@otic, set. Conservation of the Hamiltonian requires the other
nonattracting, invariant setin this section we justify each ejgendirection to be attracting.

(3.19

term in this definition. In the two-dimensional(2D) phase space defined by
Invariant set.The set of points which are invariant in time (u,v), we show here that the unstable manifold is composed
are located by the condition of fixed points alongu. This is the future invariant set given
—_— —— by Eg. (3.9. Since time reversal corresponds to
F (a0 = (0r,07) @g Y Ed 39 P

(u,v)—(v,u), the stable manifold is made up of the fixed
for k=1,... . These fixed points lie on periodic orbits of points along . The stable and unstable manifolds intersect at

periodp<k. For Hamiltonian systems it is sufficient to con- ach point along a periodic orbit. The collection of such

sider the future invariant set as time reversal invariance caR0ints forms the strange repellor. Since they are invariant,
be used to find the complete strange repellor. For the Fare§y point which is on both the unstable and stable manifolds

map the future invariant set is defined by the conditon ~ Will be mapped to points which by necessity inhabit the in-
tersection of stable and unstable manifolds.

F(up=u; (v arbitrary). (3.9 To demonstrate explicitly that the periodic orbits are un-
stable in theu direction but attracting im consider an initial
Consider for illustration the period-1 orbit. The invariant trajectory in the vicinity of a periogh orbit. We look at the
point satisfies=(u;) =u;. The map can be split into an o0s- evolution in theu direction first. The aperiodic universe be-
cillation mapO and a bounce maB: gins with ug=uo+ &, Whereu, is the fixed point along the
periodic universe. A period later, the deviation from the pe-
O(up)=un=1, =2, (3.10 riodic orbit has grown tay, defined by[29]

1 JE—
B(Un):ma u,<2. (3.11 FP(ug) =ug+ 6,=FP(ug+ &p). (3.1
n

. — — . N Expanding the right-hand side we can relate the evolved de-
The equation F(u;)=u; vyields two possibilities:

A b B S ¥ ’ g viation to the initial deviation
O(uy)=uy or B(uj)=u;. Only the bounce fixed point,

which generates the equation 8p="Cpdy, (3.17
U= ! T (3.12  Where the stability coefficient is
u;—
. L dFP(u,) - _
has a solution. The solution is the golden mean Cp=—7 =F'(ug)F'(uy)- - -F'(Up_y).
dun un:TO
_ 1+.\5 (3.18

u;= 2 (313)

. . The elements in the final product are evaluated at the points
The occurrence of the golden mean is no accident. As walong the unperturbed orbit. The periodic orbits are stable if
discuss in the next section, it is the first leaf on the irrationakhe magnitude o, shrinks and unstable if the magnitude
Farey tree. grows. In terms of the stability coefficient the periodic orbits

Another particularly simple set of fixed points can be lo- gre stable iﬂcp|<1 and unstable ifcp|>1. Taking the de-
cated. These are the maximal valuewflong a periock rivative of the map

orbit. The maximal value ofi corresponds to the largest
number of oscillations before a bounce. The equation 1, 1 (u=2),

K—1R(TY =11
O*"*B(u)=u generates |E(u,0)'|= 1 1 (3.19

u(u—k)=1, (3.14 e
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Along any periodic orbit, at least one point must fall betweenpoints along the same period-four orbit. Similarly, the last
1 and 2. Letu,,, be the smallest value af along the orbit. two are cyclic permutations of each other. They represent the

It then follows from Eq.(3.18 that recurrence of the two points along the period-2 orbit.
_ _y The total number of points belonging to the future invari-
|Cpl=(Umin—1) " “>1. (320 ant set with periogh<k is given by summing over all pos-

. . sible combinations of oscillations and bounces:
Therefore all orbits on the repellor are unstable in the

eigendirection. Any universe which begins near an exact pe- k-1
riodic orbit eventually deviates away from it. Since a typical N(K)= >, ( ) —ok_1. (3.24
universe is confined to bounce around the number line for- m=0 \K—m

ever, it will eventually scathe past a periodic orbit before
being repelled off only to stumble onto the repellor again.There are thus'2-1 words of lengtrk that can be built out
Thus, a typical universe will scatter around intermittently of a two-letter alphabet. The topological entropy is then
hitting chaotic episodes as it jumps on and off the repellor.

Repeating the stability analysis iw, we find Hr=In2. (3.29
|cy|=1/b2<1. Near neighbors tend to follow periodic orbits o _
in the v direction. The repellor along is an attractor along This entropy is independent of phase space coordinates. The
. topological entropy for the full 2D map(u,v) will be twice

Chaotic.We have so far established that the periodic or-this quantity as the strange repellor is formed by the inter-
bits Comprise a nonattracting, invariant set. We can demorﬁection of 2_1 horizontal and vertical lines. Thus, there are
strate that this set is chaotic by showing it has a positivd2“—1)* roots of Eq.(3.8) at orderk and Hy=2In2. The
topological entropy. The topological entropy, in analogyresultHy=In2 was first found by Rugh10] using symbolic
with the thermodynamic entropy, measures the number oflynamics to describe typical, aperiodic orbitstin
accessible states on the repellor. The number of states on the The topological entropy will be the same for all maps
repellor is equivalent to the number of fixed points, and so which are topologically conjugate, that is, which can be re-
lated by a continuous, invertible, but not necessarily differ-
entiable, transformation of coordinates. In particular, this
tells us that the ma-(u) can be obtained from the shift
map, horseshoe map, or generalized baker's f28h We
whereN(k) is the number of fixed points at order For a ~ mention that the closely related Gauss map has a much
nonchaotic set, the number of fixed points is either finite ofigher topological entropyd,=?/(6In2). As discussed in
grows as a finite power df, and soH;=0. Sec. V, the two maps are not topologically conjugate. We do

The fixed points at ordek are found by solving Eq3.9: ~ Not éxpect then for their entropies to be the same.
Fk(u)=1;. To count the number of fixed points we can The bare bones of the chaotic scattering have been ex-

count the number of such possible equations. For a giveR0Sed in the repellor. Taking this skeleton, we can now show
period p<k, FX can be broken intdO™ oscillations and that the repellor is in fact strange, that is, fractal.

BX~™ bounces. Sinc® andB do not commute, the order in

which they occur leads to different possible solutions for the A. The repellor is a multifractal

u; . The number of ways to combime O's andk—m B's is

Hy=lim %InN(k), (3.20)

Kk— o0

We can create an illustrative picture of the fractal set of

K mi self-similar universes. Distributing the fixed poinisalong
( ):—'_ (3.22  the number line, the collection of periodic points forms a
m/  ml(k—m)! fractal in phase space. A fractal is a nowhere differentiable,

self-affine structure. It cannot be undone by a coordinate
transformation. The emergence of a fractal distribution of
invariant points is an observer-independent declaration of

For example, aftek=4 iterations of the map anth=2
oscillations anck—m=2 bounces there are 6 possible per-

mutations: chaos.
OOBBU)=U; For multifractals there is information in the way points
! v are distributed. There is an underlying fractal structure with
BBOO(U) =1, an architecture of distributed points built on top. The fractal
! v in phase space is simply constructed by locating all of the
BOOR(U) =1, points along periodp<k orbits numerically and plotting
them in a histogram as is done in Fig. 1. The histogram was
OBBOU)=U;, generated by solving for all roots of E¢3.9) up to and
including k=16. The histogram reveals how points are dis-
OBOBU)=U;, tributed in the future invariant set, otherwise known as the
unstable manifold of the strange repellor. The self-similarity
BOBO(U;)=U;. (3.23  of the distribution is clear.

The distribution of points can be understood in terms of
However, the first four are all cyclic permutations of the period of the orbit. Ak increases, the lowest period
OOBB. Cyclic permutations must lie along the same orbit.orbit, namely, thgp=1 orbit, is visited the maximal number
Therefore, the solutions to the first 4 equations yield theof times, that isk times. On the other hand, the maximum
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FIG. 1. A histogram of the future invariant set in the interval u
1<u<4.

FIG. 2. The future invariant set in the interval<u<2,

. : L 1<p<?2.
value ofu at orderk lies on ap=Kk orbit, and so is visited v

only once.

Points on the repellor are clustered in the interval
1<u<2. The combinatorics of building words out of a two-
letter alphabet@,B) of oscillations and bounces favors the
smallu tower. Consider the integer interjal,n+ 1]. A root lim €PoN( ) (3.29
in this interval corresponds to the sequence, or word, €0
0("~1B occurring somewhere along the orbit. The complete
orbit is a sentence ofD'B words, e.g.0’B)(B)(O°B) finite. Any exponent greater thad, would result in zero
(OB), repeated in a cyclic fashion. Since the number ofiength, and an exponent smaller would result in infinite
n-letter words that can be formed from a two-letter alphabetength. In this sens®, is a critical exponent.
is 2", it follows that the fraction of roots in each interval is ~ This dimension can be generalized to include not just the

i scaling property of the fractal but also the distribution of

pn=2". (326 points on top of the underlying foundation. This leads to a

continuous spectrum of critical exponents or dimensions.
The spectrum of dimensions is more commonly expressed as

ture becomes more and more complex as smaller and smaller
scales come into focus. The critical exponent can be defined
as the number which keeps

Note that the distribution is correctly normalized since

S p=1. (3.27) N . IN= S ()
=t ag-1_, Ine

: (3.29

The exponential falloff in the density of points on the repel-
lor is clearly evident in Fig. 1. whereN(e) are the number of hypercubes of side length

The parametrization of the axes in termsuoih Eq. (2.5) needed to cover the fractal amg is the weight assigned to
shows that the small orbits typical of the repellor are those theith hypercube. The;’s satisfy{{p;=1. The standard
with axes of similar scale and speed. These universes hawapacity dimensiol is recovered wheq=0, the informa-
axes which frequently switch from expansion to collapse. Ition dimension whem=1, the correlation dimension when
follows that the strange repellor corresponds to the most isog=2, etc. For homogeneous fractals all the various dimen-
tropic mixmaster trajectories possible. sions yield the same result. The multifractal dimensibps

In the full 2D phase space of the Farey migu,v), the  are invariant under diffeomorphisms for al and D, is
unstable manifold appears as a forest of vertical lines, whil@dditionally invariant under coordinate transformations that
the stable manifold appears as a forest of horizontal lines. Are noninvertible at a finite number of poif&0].
portion of the future invariant set, the unstable manifold of The quantitative importance of the fractal dimension is
the repellor, is displayed in Fig. 2. The collection of lines expressed in terms of the final state sensitiViify) [31].
appears to form a multifractal cantor set. To confirm this, weThis quantity describes how the unavoidable uncertainty in
calculate the fractal dimension of the set. specifying initial conditions gets amplified in chaotic sys-

The fractal dimension can be thought of as a critical extems, leading to a large final state uncertainty. By identifying
ponent. The dimension is a measure of the length of th@ number of possible outcomes for a dynamical system, the
collection of points. To find its box-counting dimension, space of initial conditions can be divided into regions corre-
cover the set witiN(€) boxes of sizee. As the size of the sponding to their outcome. If the system is chaotic, the
boxes is taken infinitesimally small, the number of boxesboundaries between these outcome basins will be fractal.
needed to cover the set grows. For fractals, the number d?oints belonging to the basin boundary are none other than
boxes needed grows faster than the scale shrinks. The struitte chaotic future invariant set. The functib{®) is the frac-
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tion of phase space volume which has an uncertain outcome 20T T T T
due to the initial conditions being uncertain within a hyper- i
sphere of radiu®. It can be showrn31] that

}I.IEII IIIIIII AN REEE WA BN KR BB

i
¢

f(8)~4% a=D-Dy, (3.30 RN R NGNS SO N @ EA
[ R B EAGE AN IR HE E9E EE R
T

whereD is the phase space dimension dglis the capacity
dimension of the basin boundary. For nonchaotic systems
a=1 and there is no amplification of initial uncertainties,
while for chaotic systems Qa<1 and marked final state
sensitivity can occur. 1ar
It can be argued that the capacity dimension must equal -
the phase space dimension for the mixmaster repellor. The | Dl G AR
periodic orbits are given by the periodic irrationals as ex- 120
plained in Sec. Ill B. The periodic irrationals are dense on I
the number line. Formally this means there is always another L
periodic irrationale away from a neighbor for alk>0. T 1'2‘ : '1'4‘ : ‘1'6 — '1'8 %0
Since the periodic orbits are dense, there will always be an ) ’ ) ’ )
infinite number of fixed points in any box. It is sufficient to
cover the set then wittN(e)~ 1/ boxes. Therefore, the u
basic box-counting dimension By=D =2 [32], though it
converges slowly. In the infinite time limit this can be inter-
preted as an ultimate loss in predictability sini@)=1.
The mixmaster is very mixed.

FIG. 4. The strange repeller in the regiort <2, 1<v<2.

k=12. While it is possible to find the information dimension

While the box-counting dimension saturates at the phas@f the strange repellor directly from Fig. 4, the effort can be

space dimension, the more heavily weighted dimensions ofPared. Since the Farey map is Hamiltonian, we know the
Eq. (3.29 do not. Taking the information dimension of the stable and unstable manifolds of the strange repellor share

fractal in Fig. 2, we find the same fractal dimensions. That B{=D}=1.87+0.01.
Now, the repellor is formed from the intersection of the
D}=1.87+0.01. (3.31) stable and unstable manifolds, and so its information dimen-

sion is simply
Figure 3 shows the fitused to determin®! . The quality of
%?aectf;tl gives us confidence that the strange repellor is truly D,=D!+D’—D=1.74+0.02. (3.32
By forming the intersection of the Farey map’s stable and
unstable manifolds, i.e., by solving E¢3.8) for all fixed SinceDy# D4, we have confirmed the multifractal nature of
points (U,v), we uncover the strange repellor. A portion of the strange repellor. The dimension of E§.32) is calcu-
the strange repellor is shown in Fig. 4 using all roots up tdated with all fixed points occurring at ordér=16. As k
increases this number will continue to grow slowly as the
rarified regions of the fractal continue to be populated. Thus,
3The fit is actually for the fractal formed by taking a horizontal EQ. (3.32 actually represents a lower bound. However, we
cross section through Fig. 2. The final answer is obtained by addingXpect the ultimate value should only differ in the second
1 to this number. decimal place.

N(e
T pilog Pi1 1 B. Farey trees

The fractal of Fig. 4 reveals two complementary sets. The
sequence of gaps corresponds to the rational numbers. In a
complementary fashion, the strange repellor is made up from
the periodic irrationals. Both sets are of Lebesgue measure
zero. This division of the number line can be understood in
terms of the properties of the continued fraction expansions
(CFE’S. We can write any number, rational or irrational, in
terms of a CFE. While the connection to CFE’s was known
and explored by Belinskii, Khalatnikov, and Lifshitz, they
explicitly ignored the periodic irrational?]. We focus on
the periodic irrationals as they constitute the strange repellor.

Consider some initial condition not necessarily on a
log e periodic orbit. We can decompose any number into its inte-

ger part and some left over:
FIG. 3. Finding the information dimension of the future invari-
ant set. Ug= Mg+ Xq, (3.33

-2
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wheremy=[uy] denotes the integer part of, and xy, the  Now, we see that eacim; corresponds to an;-letter word
fractional excess. According to the map, the next value oD(M~1B. Each rational number corresponds to a sentence of
u following a bounce isu;=1/X,. Now decompose these words. For example, at ledet5 we have the Farey
1/Xg=m;+X4, so thatm;=1. Solving this forx, we find  number 10/%[1,2,3], which gives rise to the sentence
Xo=1/(m;+x,). At the next bounceu,=1/x; so that BOBOOB At the same order we also have

x1=1/(m,+X,). In this way we generate the CFE fog: 6/5=[1,5]=BOOOO0ORB 9/5=[1,1,4=BBOOOB etc. In
other words, a universe which began witg= 10/7 will fol-
U= Mt 1 (3.3 low the pattern oBOBOOBand then gets tossed to infinity.
oo 1 ' ' The universe then evolves with two axes fixed and the third
my+ ———~ expanding as<t. Such a universe has the form of a Rindler
my+ — wedgex R? [35].

At the opposite extreme from the rationals which escape
wherem;=1 Vi. The integersm,— 1 represent the number the map are the periodic subset of irrationals. This explains
| " |

of oscillations between bounces. In shorthand form the CFEhe occurrence of the golden mean as the period-1 orbit with

can be written asig=[mgy,m;,m,,mg,m,, . ..]. no oscillations. Its CFE is

The map naturally distinguishes numbers on the basis of 1+5
their CFE. A rational number can be written as the ratio of =1+ =[{1}]. (3.39
integersx,=p/q. Consequently, the CFE is finite. The fact 2 14 1
that its finite means at some iteratiap, ;= and rationals 1+

are tossed out of the map. At the opposite extreme, the peri- . o
odic orbits on the repellor have infinite CFE’s which repeat.Numbers with a periodic CFE are a set of measure zero
For example, an orbit of the forff©O' ~*BO! ~'B}, where the ~among the irrationals, though they are dense on the number

curly brackets denote a repeated pattern, has the expansiofie.
An irrational Farey tree for the repellor can be constructed

1 using the rational Farey tree as a seed. Consider the construc-
1 : (339 tion in the interval 1,2]. For each leaf on the rational Farey
1 tree given by 1,m;,m,, ... m], add a leaf to the irrational
O — tree given by[1{m;,m,,... m}]. There are 2 times as
i+ 1 many leaves on the irrational Farey tree than there are on the
i+ rational Farey tree. This follows since all rationals have two

continued fraction expansions. The two CFE’s differ in how
In shorthand form this reads,=[{i,j}]. Lagrange showed they end. In general

that the necessary and sufficient condition for an irrational
number to have a periodic CFE is for it to be the root of a [mg, ... ,m+1]=[mg,...,m1]. (3.39
guadratic equation with integer coefficients. It is easy to
prove that the Farey map gives such equations for the periconsider 10/#[1,2,3]. We see that 10/7 also equals
odic orbits at every order iR. [1,2,2,1. Thus, 10/%1.429 has two corresponding leaves
The map generates a Farey tf&8]. Consider the initial on the irrational Farey tree, J15-1)/2~1.436 and
condition ug=1. With the first iteration of the mapi is  (\/85+5)/10~1.422. Consequently each rational generates
thrown to infinity. After two iterations, a universe with the two nearby irrationals.
initial condition uy=2 will be thrown to infinity. At the A number theory result tells us that
kth application of the map, after the universe has evolved
forward ink jumps, another group of universes whose initial
conditions were rational numbers are discarded. The pattern
of discarded terms is a Farey tr&4]. Farey trees also arise
in the quasiperiodic route to chaos described by the circlavhere o, stands for the two irrational numbers that lie on
map[33]. each side of their rational seed. ks~ the leaves on the
In the interval[ 1,2] the Farey tree can be written as rational and irrational Farey trees get closer and closer to-
gether. Another result from number theory tells us that
a,>plq and a_<p/q (hence the namgsThe 142 gaps

U0:i+
j+

o —

p| 1 1

1 2 4
(-1—), (I)’ (g), (5, g), (§, Z, §, Z), (3.39 around the rational Farey numbers seen in Figs. 1 and 2 are
NSNS SENL N &5_4_/ a consequence of this number theory result.

k=0 k=l k=2 k=3 k=4 The asymptotic distribution of roots goes as follows. At

The bracketed terms each comprise a level of the Farey tregsvel k there are 82 leaves on the rational Farey tree in the
For allk=2, there are 2 leaves at ordek. Every rational  interval[1,2]. Each leaf produces 2 leaves on the irrational
number in the intervalll,2] occurs exactly once somewhere Farey tree. Thus, there aré 2 roots in the interval 1,2] at
on the Farey tree. Each leaf on the Farey tree has a continugslel k. This matches our earlier results that there a2

fraction expansion that satisfies roots at ordek, half of which lie in the interva[1,2].
Our brief excursion into number theory has produced a
_ neat picture: The rational Farey tree gives us all the numbers
> m=k. (3.37 . JIVES
i=1 that get mapped tai=o0, while the irrational Farey tree
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gives us all the periodic orbits. The leftovers are all the irra- +\5

tionals, save the rational and irrational Farey trees, both of N1=2In 5 =(0.9624. (3.45

which have measure zero. Thus, all typical trajectories are

aperiodic, unbounded, and of infinite length. These are thgjmijarly, for the silver meang3.15 we can find the expo-

trajectories typically studied in the literature. Our study iShent. We know the maximum value of along the silver

complementary. orbit is given byu.= (VKkZ+4+Kk)/2, and so the sum of
the In's in Eq.(3.41) becomes the In of the product,

C. Lyapunov exponents

In flat space, the extreme sensitivity of the dynamics can F'(Ug)F'(up) -+ F'(U-) = — (Uma) 2. (349
be quantified by Lyapunov exponents and the related metrig\]cter k applications of the magEX(U) =1, so that afterT
entropy. The Lyapunov exponents determine how quickly inapplication a given value Of, ’has repéate@T/k]:T/k
time trajectories diverge. The metric entropy measures th?mes ThuéT must be a multi lré ok. The sum in Eq(3.41)
rate at which information is created. Since the exponent and ' . P ' qls.

. . an be written

the entropy are rates, they connect directly with the rate at
which time pushes forward. Clearly, the observer depen- T-1
dence of the rate at which clocks tick make these tools sus- > In|F(uy)| :{
pect. n=0

Although Lyapunov exponents are observer dependent . )
and therefore ambiguous in general relativity, we see in Sedvhich gives
IV A that they are related to an observer-independent quan- o
tity, namely, the Lyapunov dimension. Since there is still )\k:E n w (3.48
utility in them, we take the time to compute some Lyapunov k 2
exponents.

T-1]
K 2INU a0 (3.47

We have found the Lyapunov exponents for the two extreme

Since we know all the periodic orbits of the Farey map ; X L
analytically, we are in a position to calculate the Lyapunov¢@Ses of the period 1-orbit and the longest pekatbit. We
now use the irrational Farey tree to write down the general

exponents for trajectories belonging to the Farey repellor. :
We calculate the Lyapunov exponents for the golden angxpression for Lyapunov exponents:
silver mean orbits. Then we use the irrational Farey tree to 1
write an analytic expression for the Lyapunov exponent for )\=2< > mi) > In([{my;m,, .. 3D, (3.49
any periodic orbit on the repellor. i=1 cye

In close analogy to the manner in which the stability co-

efficient was found, the Lyapunov exponent for a given orbitvhere the second sum is taken over all terms in the cycle

is defined by m;,m,, ...} and=m;=k is the period of the orbit. Since
m;>1, each term in the sum of logarithms is greater than
11 zero. The Farey tree has given a nice compact form with
A=lim = 20 In|F’(up)|, (3.4  which to express all the Lyapunov exponents. From Eq.
T—o n=

(3.49 it is easy to recover the results for the golden and

. . . silver means:
where theu, are the points along the orbit under scrutiny.

The Lyapunov exponents alongare the negative of those 2 2 k+kZ+4

alongu as we now show. The points along a periodic orbit )\k=EIn[{k}]=Eln — (3.50
are the same whether time runs forward or backward. Time
reversal corresponds to inverting the map. Note that
(FH’"(u)=1/F'(u) and therefore I~ (u)|=—In|F’(u)|.
Since F Y(u,v)=F(v,u), it follows that InF'(v)|=

We can also calculate the average Lyapunov exponent for
the periodic orbits:

—In|F’(u)|. This identity in Eq.(3.41) shows that S Zm e Sm N
Np=lim <<= : 35
AV=—2\Y, (3.42 P e ZmZm, - ZmP b
as must be the case to conserve the phase space volumeHgre| is the number of bounces along an orbit gnds the
the Hamiltonian system. _ ~ probability density. Upon summation over thg, the cylic
In illustration consider the golden mean period 1-orbit.sym in Eq.(3.49 givesl identical contributions. Moreover, a
All the u,=u, and long periodic orbit is composed of roughly equal numbers of
, — _ — oscillations and bounces so thbetk/2. These consider-
F'(Up)=—(u;—1)"%=—(up)? (3.43

ations allow us to replace the tenn= (2/k)20ycln(Win Eq.
From Eq.(3.41) it follows that (3.51 by In(u). Since we know the probability that eaoh

equals a given integar goes as 2", it follows that
1 _,
A= lim T (T=21)lnut, (3.49 C Zp e Zmedn([{mgmy, ... mi}])
T—o )\p: lim y
| o0 Em12m2"'2m|Pl
which reduces to (3.52
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where the density, is given by 250

Uay

p= 11 pg=27mrmrem. (353
i=1,...)

150

The excellent convergence properties of the sums in Eq.

(3.52 ensure that a finite truncation is able to provide a good 100

estimate. Usind=6 and summingm; up to 30 and the

m,---mg up to 10 we find\,=0.793. We can check this 50

result by numerically evolving a large number of periodic

orbits. UsingMAPLE to find all 2!°—1=232 767 periodic or- olL — — ~ — =
bits at orderk=15 and then evolving these orbits numeri- n

cally, we find an average Lyapunov exponent of
Ap=0.792+0.002. This is in excellent agreement with the
finite truncation of the exact sum.

In contrast to the periodic orbits, typical aperiodic orbits
have vanishing Lyapunov exponents. The average Lyapunoy

exponent for a typical aperiodic orbit can be approximated'eved to h‘.)ld for most continuous dynam[cal SyStemS’ al-
by though a rigorous proof has only been given for discrete

maps.
2 A heuristic derivation of this result can be found in the
(N)=—1Inuy,. (3.59 text of Ref.[29]. We sketch that reasoning here for the 2D
Uav Farey map. The repellor marks the intersection of the stable
and the unstable manifolds. While it is repellia@qstable in
the direction ofu, it is attracting(stable in the direction of
y- We can define a natural measure on the stable manifold,
unstable manifold, and on the set itself. Ordinarily, an initial
ondition will produce an orbit which leaves the repellor
ever to return. Consequently, the number of trajectories
ear the repellor decays with time. The measure on a set is
oosely related to the number of points which hang around
the set. Consider some numhke(0) of random values for
scattered about the number line. These orbits are evolved
y the map and eventually expelled. After a large number of
iterations the only trajectories that remain belong to the in-
variant set, or are at least very close to a trajectories belong-
ing to the invariant set. Thus, the measure of the repelling set
can be defined as

FIG. 5. The average value of as a function of the number of
iterationsn. The average employs 4@ndomly chosen trajectories
initiated in the intervau=[1,2].

From Fig. 5 we see that,,—~ as the number of iterations
of the map grows large. Thus, as first noted by Befdél,
the average Lyapunov exponent for aperiodic trajectorie
tends to zero as—o0. This behavior is characteristic of a
chaotic scattering systems. Trajectories on the strange repéi
lor have positive Lyapunov exponents while typical scattered'
orbits have Lyapunov exponents that tend to zero. The cha
in these systems is called transient as the brief chaotic e
counter with the strange repellor is followed by regular
asymptotic motion. Of course, all of these statements shoul
be made with extreme care in general relativity as Lyapuno
exponents are not gauge invariant.

IV. LYAPUNOV DIMENSION, TRANSIT TIMES,
AND AVERAGE EXPONENTS

A. Lyapunov dimension ©()~N(n)/N(0)~exp —n/{T)). (4.2

We have extolled the virtues of fractals in phase space
coordinate-independent signals of chaos. In this section

relate the fractal dimension of the invariant set to important. - t tvpical chaofi , Th |
dynamical quantities such as Lyapunov exponents and metr B‘etlme of typical chaotic transients. The measure can also
e connected to the notion of the length of the set and con-

entropies. The Lyapunov dimensioD, combines these X .
coordinate-dependent quantities into an invariant combina§equently to the fractal dimension through
tion.
Remarkably, it has been shown tha¢ equals the infor- e Pivp, (4.3
mation dimensiorD for typical chaotic invariant sets. The
relationD, =D, has been rigourously established for certainwheree~exp(—(\)n) and the Lyapunov exponent is defined
dynamical systemg36] and has been numerically confirmed by
for many typical systemg37]. Specifically, it has been con-

Vsihe time scale(7) characterizes the decay time of typical
E}rajectories leaving the repellor. In other words) is the

jectured tha{38,39 1 hg)
N=1lim —=2, A;. (4.9
()\1+)\2' '°+)\A)_1/<T> < > Nsco N(n)i:]_ !
Aa+1

The information dimension of the unstable manifold],
Here (1) is the lifetime of typical chaotic transientd, is  makes an appearance in E4.3) since the measure accounts
largest integer such thah;+\,---+A,>0, and the for the distribution of points as well as their location along
Lyapunov exponents are ordered so that\;,;. The the number line. Taking the natural logarithm of E4.3)
equality of the information and Lyapunov dimension is be-yields
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1 the system is chaotic, the pocket a ball finishes up in depends
Di=2- NCS (45  sensitively on initial conditions. Each pocket has a basin of

attraction in phase space, and the borders between the basins
Thus, we can relate the information dimension of the unOf attraction can be fractal. As discussed in Sec. Il A, the

stable manifoldthe periodic irrationals ini) to the positive fractal dimension of the basin boundaries provides a direct

Lyapunov exponent and decay time of the Farey exit mapTeasure of the sensi?ive dgpendence on in_iti_al C(_)nditions.
The dimension of the repellor is the sum of the dimensions " Many ways, adding exits to a chaotic billiard is the best
of the stable and the unstable manifolds. For the conservati¥@ to study the dynamics of the original closed system. By
and hence invertible Farey exit map, the dimensions of th@P€Ning exits we can expose the underlying chaotic invariant
two manifolds are equal. Thus, the information dimension ofS€t that encodes the chaotic behavior. The process would be

the strange repellor is simplp,=2D}—D. Consequently, familiarhto arr: archeolog(ijs_t Ipokinghfo(; bones. By runningh
the Lyapunov dimension is water through a sieve, dirt is washed away to expose the

bones. Similarly, opening holes in a chaotic billiard allows
1 h( ) most trajectories to escape, leaving behind the skeleton of
D,_=2( 1- —) =2——, (4.6 unstable periodic orbits. As in archeology, some care has to
(n™) ) be taken with the choice of sieve as bad choices can lead to
whereh( ) is the the metric entropy: the loss of bones along with the dirt.
' For the mixmaster system, the placement of the pockets
1 follows naturally. There are already three infinitesimally thin
h(w)=(\)— —. 4.7 pockets. The three trajectories which lead out to these three
(m) pockets correspond to the Rindler universes with Kasner ex-
ponents {p,=pp=0, p.=1}, {Pa=p.=0, pp=1}, or
Po=P:=0, pa=1}. All we have to do is widen the pockets
little and the strange repellor will lie exposed. Since the
three pockets correspond to large values ofve know from
our study of the Farey map that typical trajectories spend

We see thaD, is given by the ratio of the metric entropy to
the average Lyapunov exponent. Although neither Lyapuno
exponents nor metric entropies are coordinate invariant, the
ratio is. If a system is chaotic, that is,if; # 0, a coordinate
system can always be found in whithand (\) are both

reinstate both Lyapunov exponents and metric entropies
useful chaotic measures.

In order to implemenD , we derive(7) and(\) for the
mixmaster model in the following sections.

pockets.

A nice visual representation of the mixmaster billiard is
provided by the effective potential picture. The minisuper-
space potential is given by
B. Hamiltonian exit systems

o V= 4+4+4_222_222_222 .
In our case, the system does not create an efficient repel- (@+bi+e a’b b%c c’a’)/(abo 4.9

lor. Typical universes after being scattered off one periodic
universe will eventually happen across another. The battle t¢he potential is best viewed by making the change of coor-
toss trajectories off as they continually wash back ashore iginates @,b,c)—(Q,8. ,5-):
constant. Because points which are discarded from the repel-
ling set eventually return, the timér) needed to discard 1
typical trajectories from the repellor is infinitely long. Q= zlIn(abo), (4.9

In principle, there is nothing wrong with a repellor that is
revisited by previously scattered trajectories. In practice, it is

) , ) . 1 (bc

easier to handle systems where scattered trajectories are dis- Br==In| =/, (4.10
carded once and for all. We introduce a method for turning 3 \a
our thwarted repellor into a cleaner Hamiltonian exit system
in this section. 1 (b

The mixmaster dynamics presents some unique chal- B*:ﬁln cl (411
lenges as a dynamical system. It has some characteristics of
a chaotic billiard[40], but this picture is upset by the non- ¢q that
compact nature of its phase space. The mixmaster also shares
characteristics of a chaotic scattering system, but this picture V=g 88+ +2e%+(cosi43B_)—1)
is upset by the lack of absolute outcomes. Only a very spe-
cial set of initial conditions leads to universes which termi- —4e‘2'3+cosk(2\/§,8,). (4.12

nate after a finite number of bounces.

There are other dynamical systems that combine featurdsquipotentials oV are shown in Fig. 6. The natural pockets
of chaotic billiards and chaotic scattering. These are knowrmccur at the accumulation point¢,=0, 6,=2/3, and
as Hamiltonian exit system{€1]. A standard example is a 6;=4/3. The angled is measured from thg, axis. Mix-
chaotic pool table. Trajectories can bounce chaoticallynaster trajectories can be thought of as a ball moving with
around the table before falling into a particular pocket. Wherunit velocity as it bounces between the triangular walls. The
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FIG. 6. Equipotentials of the minisuperspace potential. FIG. 7. The minisuperspace potential with exits set by
uexit:16-

walls are also moving, but at half the velocity of the ball.
Equipotentials oV correspond to the position of the wall at With pockets corresponding to the exit valug;=16. While
different stages during the mixmaster collapse. the pockets appear quite wide, we see from 826 that

Typical trajectories oscillate around in one of the cornerghey have little effect on the strange repellor. Few bones will
for a long time before bouncing out to a new corner wherebe lost from the chaotic skeleton. Fag,;=16 less than
they oscillate around for a long time and so ah infinitum 0.003% of the strange repellor will be lost out the corner
These are the typical, aperiodic mixmaster trajectories. Thuglockets. The wider we make the pockets the faster the
the mixmaster dynamics leads to three accumulation pointstrange repellor is exposed. For numerical studies of the full
at the corners of the triangle. This behavior was first notedlynamics we chosae,i;=8, giving exits~1.7 times wider
by Misner[7], and was later studied numerically by Creigh- than those shown in Fig. 7, but still small enough to ensure
ton and Hobill[42]. that less than 1% of the chaotic skeleton is lost.

In addition to the aperiodic trajectories, there are two spe- With the exits in place the mixmaster behaves like a clas-
cial classes of mixmaster trajectories. One class correspon@ chaotic scattering system. If we sthig randomly chosen
to the rational numbers. After a finite number of oscillationstrajectories, there will be
and bounces they take the perfect bounce and head straight
out one of the infinitesimally thin pockets. The other class of N(n)= Noex;< _n
special trajectories forms the strange repellor and corre- (7)
sponds to the periodic irrationals. These trajectories regularly . i o
bounce from corner to corner and spend little time oscillating©M&ining aftem iterations of the Farey map. A similar ex-
in each corner. Consequently, trajectories on the strange r@onential decay can be seen for the full dynamics if we use
pellor are unlikely to exit the system when we widen thethe T time coordinate. Naturally, the rate of decay is coordi-
pockets. nate dependent in general relativity. However) is related

By widening the natural pockets, we create exits. For exlo the Lyfapunov dimension which is coordinate independent.
ample, the first pocket becomes the angular region 10 build the pockets we modify the map to
[—A6,A0]. As the collapse proceedQ,— — o, and we can
relateA 6 to the map parameter via

(4.19

%, Un=> Uegyit (eXit) )
Uu,—1, 2=u,<ug; (oscillation),

u+1 2 Un+1= 1 (4.15
A 6=_2arctan /3| T T 1<u,<2  (bounce.
:E< _ i+ i_ N ) 4.13 We refer to this map as the Farey exit map.
u 2u  4u® ' In Fig. 8, we show a histogram of the fixed points of the

exit map(4.195 by finding all roots up to ordek=16 with
We see that choosing an exit value forsets the angular ue;= 8. As promised, the strange repellor for the Farey exit
width of the pockets. In the limiti.;— we recover the map is little changed from the repellor of the full map shown
original mixmaster pockets with zero angular width. In Fig. 7in Fig. 1. The main difference is that the gaps around the
we display equipotentials of the minisuperspace potentiatationals are now completely devoid of roots and are not just
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1

23 0.0025 ,(Lk: E C_k = 1 - e_oq(_ozﬁs, (419
[
0.002 1 so that(7)=«. As emphasized earlier, the Farey map with-
out exits sees typical orbits return to the scattering region so
n=1.

Before we calculat®, , we take a brief aside to demon-
strate the effectiveness of the measird.6 by reproducing
the topological entropy calculated analytically in Eg§.21).
Since the measure does not decay, we can use-thaer
entropy spectruni43]

0.0015 1

0.001

0.0005

1 i 1I _q 5
Hq—1 q klmw K n Ej, (Cjk) (4.20
FIG. 8. A histogram of points belonging to the Farey exit map’s

future invariant seti,,=8). as an independent calculation of the topological entropy. The

topological entropy is recovered in the lingt—0, so that

sparsely populated regions. As a result, the capacity dimerFsz:O' Bsc;ngggllrozc’ts up td(<j= 16 and tatklngq=0.?lt_we |
sion of the fractal in Fig. 8 will not saturate at the phase INd Mo.01= 9 nz, In good agreement our analytic cai-

space dimension. However, since the dense regions of th%tflst_'on r?fHT'_ Tr;_e fagst Icor;]vergenbce d’f(f?-m aﬁ al_functlgn
repellor have not been affected by the introduction of exits? IhS Slo?wn In Igﬁ -In t. eory, by ta_lng the 'mlt_f

we expect the information dimension to be little changedWeS ou r(_acovert e metric entropfju) =H,. !n practice,
from that of the full map. We fin®}=1.87+0.01, in agree- the expression foH, converges very slowly witlk and we

ment with the information dimension of the future invariant &€ Unable to confirm that=H,=0. .
set shown in Fig. 2. Turning to the Farey exit map with an exit &t,;;=8 we

find from Egs.(4.17 and (4.18 that (7)=12.6+0.1 and

(N)=0.724+0.005. The convergence ks>~ of Eqgs.(4.17)

and (4.18 is shown graphically in Figs. 10 and 11, respec-
When dealing with maps, the transient lifetime andtively. Notice that the fits only start to converge once

Lyapunov exponents for the aperiodic trajectories can be cak> u,,;+ 1. This makes sense as the the largest root at order

culated from a knowledge of the periodic trajectories. In thisk is u,,=~k—1. The map is “unaware” it has exits until

way, the strange repellor provides a complete description ofrbits start to escape. These results(fer and({\) combine

the dynamics even though the periodic trajectories are a seb tell us thatD, =1.78+0.02 andh=0.645+ 0.005.

of measure zero. As an independent check we can use a direct Monte Carlo
Recall that the fixed points;, at orderk are found by evaluation based on evolving a random collection of initial

solving the #—1 equations=*(u;,) =uj,. Writing the sta-  conditions. The Monte Carlo method allows us to estimate

C. Measures and(A)

bility coefficient of uj, ascjy, it can be showr39] that the properties of typical trajectories by measuring the prop-
1 erties of a large random sample and then inferring from this
— the properties of the collective.
= — 4.1 ) A .
(S km u?;’s Cik ' (4.19 By evolving N(0)=10° randomly chosen initial points,

we find from Egs.(4.2) and (4.4) that(7)=12.2+0.1 and
where the measure covers the reg®nf S covers the entire  (A\)=0.74+0.01. The convergence ¢f) and(\) as a func-

invariant set, we find tion of the number of iterations is shown in Figs. 12 and
1 K 13. In each case the initial conditions in the first run were
o i taken from the intervali=[1,2], and those in the second run
= | —=1 - —. 4.1 ) il : .
® km 2,: Cik km ex% <T>> (4.17 from the larger intervali=[1,8]. In this way, the asymptotic

value was approached from above and below, leading to a
If (7)#%, the measure decays as trajectories are lost frormore accurate estimate of the limit. After abowt 60 itera-
the system. The non-negative Lyapunov exponent is givetions statistical errors start to become large since the number
by [39] of points remaining in the interval becomes small. This is
apparent in Figs. 12 and 13. Using the Monte Carlo values
2j(Incj)/cji 413 o (7 and () we find D =178:0.03 and
2illey ' h=0.66=0.01. The two methods agree.
In order to comparé®, to the information dimension of
To clarify, (\) is the average Lyapunov exponent for a typi- the strange repellor we need to numerically generate the re-
cal aperiodic trajectory. This is to be contrasted with thepellor and find its fractal dimensions. Recall that in Fig. 8 we
average Lyapunov exponeht, of the rare, periodic orbits generated the unstable manifold of the Farey exit map by
described in Sec. Il C. solving for all roots up to ordek=16. With an exit at
Applying these relations to the Farey map without exitsUe,;=8 we findD{=1.87+0.01. Consequently, the informa-
we find tion dimension of the strange repellor 3,=1.74+0.02,

(N)=lim

k—o0
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Hyo k<> 10
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FIG. 9. Numerical convergence of the topological entropy,
Hoo=Hr+, as a function ok using Eq.(3.20. The solid line indi- FIG. 11. Finding the Lyapunov exponefit) for the Farey exit
cates In2. map using Eq(3.18. The straight line fit yields a Lyapunov expo-
nent of(\)=0.724+0.005.
which agrees with the result without exitEqg. (4.32]. As
mentioned previously, the dimension found fo=16 is &  tunately, the numerical values converge very slowly as the
able agreement betweeD; and D, at orderk=16, we  \hetherD, remains fixed asiq;— .

WOUId I|ke to test the I’elation at h|gher Ordergd.rHOWeVer, To Conc'ude th|S Section, we f|nd from two Separate meth_
this is difficult since the number of roots increases exponenpds that
tially with k.
Alternatively, we can expose the future invariant set by
the Monte Carlo method. By starting offl(0)=5x10° D =1.78+0.03. (4.21

points in the intervalu=[1,2] and iterating thern=60

times, we are left withN=3x 10° points. Thgse remaining Calculating the information dimension in two different ways
points must closely shadow the future invariant set. A histo-

gram of the set generated in this way is shown in Fig. 149'VES the range
The gap structure is identical to that seen in Fig. 8 using all

roots at ordek= 16, but the bins are more evenly filled. As D;=(1.74-1.78=*=0.02. (4.22
a result, the information dimension takes the slightly higher

valueD}=1.89+0.01. This method gives an information di-
mension of the strange repellor closer g =1.78+0.02. . .
Since the Monte Carlo method only finds orbits that shado an account for Fhe dllscre'palncy in the two values Dot :
the repellor, and not the true periodic orbits, we expect the he ITyapunov d|me_nS|on IS I 'reasona}ble "?‘greemem with
fractal dimension found in this way will be an upper bound. WO different calculations of the information dimension. The

As expected, the results f¢r) and(\) depend on how Lyapunov dimension thus fares well as a coordinate-
wide we make'the pocket. In the limity —o we know invariant combination of the otherwise ambiguous Lyapunov
. exit

(1)— and (\)—0. It would be interesting to see if the exponent and metric entropy.
product{ 7)(\) remains finite asl,; becomes large. Unfor-

Systematic errors and slow convergence of the dimension
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FIG. 10. Finding the decay timér) for the Farey exit map
using Eq.(3.17. The straight line fit yields a decay constant of  FIG. 12. Finding{\) for the Farey exit map using the Monte
(1y=12.6+0.1 . Carlo method.
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whereN is the number of bounces. E®.1) is just the Gauss
map G(u). The Gauss map is not invertible since it is de-
rived from F(u) and not the fullF(u,v).

The Farey and Gauss maps correspond to different dis-
cretizations of the full dynamics. The discrete ticks of the
Farey clock correspond to periodic behavior in terms of the
continuous time variabl&=InIn(14). This is not true for the
Gauss map. The time between bounces for the Gauss map
can vary dramatically relative td time. In compactifying
the discrete time coordinate; =n, of the Farey map to ar-
rive at the discrete time coordinatez=N, of the Gauss
map, holes have had to be cut. There is no smooth coordinate
transformation connecting the time variabtesaandtg . As a
result, theF andG maps are topologically inequivalent and
have different topological entropies.

InN/No |

20 40 60 80 100

n

FIG. 13. Finding(7) for the Farey exit map using the Monte
Carlo method. The decay time is found from the slope of the line of A. Repellor

best fit. Although topologically inequivalent, there are deep simi-

V. COMPARING TO THE GAUSS MAP !aritigs be.tween t_he two' maps and G. For one, they have
identical fixed points. Still, some features of the repellor are
Barrow used the Gauss map developed by BKL to derivealtered.
dynamical systems properties such as metric and topological Consider orbits with a Gauss peri®t;=1, so that the
entropies. In this section we compare Barrow’s results for thdixed points are obtained from
Gauss map to our results for the Farey map.

There are two critical features which distinguish the treat- U= 1 5.2
ment of the maps. First, the Farey and Gauss maps are topo- YU —[u.l '
logically inequivalent. Second, the techniques used to study
the maps are different. We begin by isolating the strangd he solutions are
repellor before using the repellor to reconstruct the properties .
of typical aperiodic trajectories. In contrast, Barrow worked o= my+ymi+4 5.3

1_ .

directly with the aperiodic trajectories of the Gauss map and
did not consider the repellor.

The Gauss map can be obtained from the Farey map byhere, again,
chopping out the oscillations. This was first done by BKL _
when they realized that the sensitive dependence on initial my=[uy]. (5.4
conditions was due to the bounces and not the oscillation%
The Gauss map emerges from the Faxayap as follows: If
u,=2, then oscillations will take place until,<2. The
bounce sequence that follows can then be expressed as

otice, that thesei; correspond to the silver means of Eq.
(3.15. Hence, the periodPg=1 orbit of the Gauss map
generates all of the single bounce orbits of the Farey map,
but with the longer perio®-=m,. Notice also that there are

1 already an infinite number of fixed points for the Gauss map

Uni1= (6.))  atorderN=1.

Un—[un] We can calculate the Lyapunov exponents for the
Ps=1 orbits:
0.003 o 1
pi ACé(u)= lim Nln(u_)2N (5.5

N—c

m, +/m?+4
=2In 1#1 (5.6

0.002

0001 And so the silver mean exponents for the two maps are re-

lated by
AE(u)=m\F(u). (5.7
” 2 The exponent foG is larger than that foF.
u Continuing in the same vein, consider the perfog=2

fixed points. The condition
FIG. 14. A histogram of points shadowing the Farey exit map’s o
future invariant set found by Monte Carlo methods{=8). G?%(u)=u (5.8
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generates the doubly infinite set of roots
M(S):JSP(X)dX- (5.1
m, + \/m71+4m1/m2
o 2 ’ where
5 (5.9 L
JmZ+4m; /my;—my p(x)= (1+x)In2° (516

Notice that all thePg=1 orbits are included in this solution TakingSto cover the entire region=[0,1] (u=[1=]), we
whenm;=ms,. By considering the Gauss map we have beerhaveu =1 and(7)=c. From the Gauss map in terms of the
able to solve for all of the two-bounce fixed points of theX coordinate,G(x)=x""—[x"*], we find G'(x)=—x"?
Farey map at ordek=m;+m,. These periodic orbits have and
two bounce epochs separated by rap—1 oscillation era

_ 2
and anm,—1 oscillation era. The Lyapunov exponents for ()= flln|G'(X)|p(X)dx= fl 2Inx dx= T '
the period-2 orbits are given by 0 0 (1+x)In2 6In2
(5.17
AG(U_)=In<2L+ 1) . (5.10  This expression is smaller by a factor of In2 from the usual
Vmi+4m;/m; expression. The discrepancy can be traced to Barrow’s use of

log, rather than natural logarithms. Similarly, the topological
These are related to the Lyapunov exponents for a correantropy of the Gauss map is given by

sponding periodic orbit of the Farey map by

77_2

G_
>\G(u_)=(—ml+m2 HT =2’ (5.18

3 A (u). (5.1

where again our expression differs from Barrow’s oft-quoted
In terms of the CFE, the period of the Gauss map is theesult by a factor of In2. As promised, the topological en-
length of the generator for the periodic irrational. For ex-tropy of the Gauss map greatly exceeds that of the Farey

ample, the periodic irrationa[1{m;,m,,... ,my}] has map. Moreover, the metric entropy of the Gauss map,
Ps=N andPr==N ,m;. From this we can deduce the gen- h®=(\)—(7) " 1=x?/(6In2), is finite while the metric en-
eral result tropy of the Farey map vanishes.

)\G_ Pe _ EiNzlmi (5.12 C. Fractal dimension of the Gauss repellor

AT Pg N - ' Although the Gauss map and the Farey map share com-

] . mon fixed points, they differ in how the fixed points are
Interestingly enough, while the Lyapunov exponents and th@jstributed as a function of period. It is impossible to pro-
period of the two maps differ, their product is invariant:  gyce a histogram in analogy to that of Fig. 1 since the Gauss

G o F map generates an infinite number of fixed points at every
A"PG=N"PE. (5.13 order. We can, however, argue that it is very likely that the
) ) o ) fractal generated by the Gauss map is uniform and not mul-
Since typical periodic orbits of the Farey map have equalifractal. In other words, all thd,'s are likely the same.
numbers of bounces and oscillations, it follows that the aviygeed, we can argue that the fractal dimensions saturate the
erage Lyapunov exponents for the periodic orbits satisfy phase space dimensiod,=D=1, for all g, the reason be-

ing that the periodic irrationals are dense on the number line.

7‘?:2)‘521'59' (5.149 e have already argued in Sec. Il A that this ensures
) . G ) ] ) Dy=2 for the Farey map.
A direct calculation ofA J confirms this expectation. Let us consider this argument more closely. Rg be-
comes large, the number of terms in the CFE cycle becomes
B. Comparing entropies large also. The longer the CFE cycle, the more uniform the

coverage of the number line. For orbits of per®dthe gaps

In terms of continued fractions it is a simple matter to >
between roots are always less thahsl/where

write down all the periodic orbits of the Gauss map. The

period-1 orbits are given by=[{m;}], the period-2 orbits 1

by u=[{m;,m}], etc. From this it follow thit the number of fo=—=[y P4 (=1)Py P+, (5.19

orbits with periodP;=K scales adN(K)==". Because the 5

number of roots at each order is infinite, a regularization

procedure has to be introduced before quantities such aderey=(\/5+1)/2 is the golden mean. For example, by the

Ht andh(w) can be calculated. time P=10, f,,=89 and the largest possible gap is bounded
After employing a suitable regulatd8], the measure by =0.0001. In comparison, the Farey map at orkerl0

(4.16 can be expressed in terms of an integral overhas a finite number of roots and gaps as large@2. More-

x=1/u: over, the gaps close exponentially fast wiRhfor the Gauss
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map, while they close slower thanklfor the Farey map. The symbolic length of an orbit is defined to be the
While the rate of closure makes no differenceg, the  number of symbols required to describe the orbit. The short-
multifractal dimensions with highey's take into account the est orbits are of the fornXX. These describe a trajectory
density of points. The Gauss map lays down a very evemouncing from one corer to another and then back again.
covering of 'ghe number line, and so we expBgi=D, etc.  There are six orbits of this typeXX, XX, YY, YY, ZZ,
_ If the conjecture thab, =D, holds true, then we should 77 |, terms of the Farey coding, these orbits are of the form
find D_=1. This is in fact what we find. For the 1D map, goBQo or BOOOBQ etc. The next shortest orbits are the
1 two complete cyclesXY Z and XYZ. These correspond to
D =1— W (5.20 Farey codings of the forrBBB or BOOBB etc. All longer

orbits can be constructed by sewing together various combi-
nations of order-2 and order-3 orbits.

The Gauss map is characterized byr)=c and Simple rules govern the sewing together of orbits. New
(\)=m°/(6In2). Inserting these values into EG.20 we  primary orbits can be sewn onto the active sites of order-
find D_ =1, in accordance with our argument thiaf=1. (1-3) or -(I—2) symbolic sequences to form the order-

As with the topological entropies, we find the fractal di- coding sequences. By an active site we mean the segment of
mensions of the two maps are inequivalent. This does Nahe coding string of length—3 or| — 2 that was added at the
invalidate the statement that fractal dimensions argyrevious iteration. In other words, our coding tree only
coordinate-invariant signals of chaos. The two maps cannQjrows out from the tips of its branches. If the active site is of
be connected by a smooth coordinate transformation. Theye form .. .XYZ then new primary orbits can be added
are, as we have already argued, topologically inequivalenetyeen thex and theY, or theY and theZ, or after the
The discrete Farey time is topologically the same as the Thys a period-3 orbit provides three sites for adding a
T=InIn(1/t) of the full dynamics. The discrete Gauss time, new orbit. Similarly, if the active site is of the formXX
on the other hand, changes the topology of time by ChOppin‘t')nen new primary o’rbits can be inserted between)(hma

h illations. = = . . .
out the oscillations the X, or after theX, so a period-2 orbit only provides two
sites for sewing on new orbits. Combining this information
VI. SYMBOLIC DYNAMICS with our knowledge about how many new orbits may be
Before embarking on a numerical study of the continuum@®dded at each site, we are able to write down a recurrence
relation that describes the growth in the number of orbits.

dynamics, we can gain additional analytic insight into the '™ ! X )
mixmaster universe by studying symbolic representations oP€fining P(1) to be the number of active period-2 orbits at

the unstable periodic orbits. A chaotic system is character?'derl andQ(l) to be the number of active period-3 orbits at
ized by the complexity of the representation required to def'der |, then the total number of orbits at ordéris
scribe its periodic orbits. The complexity is quantified by N(1)=P(l)+Q(l). The proliferation in the number of orbits
measuring the Reji entropy spectruni44] of the coding follows from the coupled recurrence relations

sequence. The most commonly measurédyiRentropies are _ _ _
the Shannon information entropy and the Hartley topological P()=4P(1-2)+6Q(1-2),
entropy. Q(H=4P(1-3)+6Q(I—3). (6.2

There are several features that recommend symbolic or
information dynamics as a method of studying chaos in genThe initial conditions for the recurrence relations are found

eral relativity: The description is coordinate independent, appy directly counting the number of orbits at order1,2,3:
proximate maps are not required, and only the global behav-

ior of trajectories need be known. The global structure of P(1)=0, P(2)=6, P(3)=0,
trajectories can be found by approximate methods so no
computers are required. Q(1)=0, Q(2)=0, Q(3)=2,
In the case of the mixmaster we need to know how tra-
jectories move around the anisotropy plar, (3_). Here N(1)=0, N(2)=6, N(3)=2. (6.3

we are in luck as the work has been done for us by Bogoyav- . N
lenskii and Novikov[28]. From their work we see that a The solution to Eqs(6.2) is given by
simple symbolic coding can be defined by recording cross-
ings through three half-infinite lines in the anisotropy plane.

The lines are where thea; are the three roots of the cubic equation

N(I)=c1a'1+ cza'2+ c3a'3, (6.4

(1  p-=0, B.<0, a®-4a—-6=0, (6.5

) p-=\36., B:>0, and thec; can be fixed using Eq$6.3). The Hartley entropy
my pg_=- \/§ﬁ+ , B+>0. (6.2 of the symbolic coding is then

Whenever a trajectory crosses lifi¢ in a clockwise sense,
the symbolX is recorded. An anticlockwise crossing of line
(1) is recored with the symbo{. Similarly, crossings of lines
(I and(lll) are recorded usiny andZ. wherea; is the largest root of E(6.5). Thus,

HH=IimIEInN(I)=In(a1), (6.6)
[

— 00
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12+ (81+ 3,/537)%3 den amongst the slurry of aperiodic trajectories. Nonetheless,
H= 7 ~0.926. (6.7)  the chaotic invariant set can be uncovered by a variety of
3(81+3537) methods. For compact Hamiltonian systems the proper inte-

rior maxima (PIM) procedure[45] efficiently reveals the
The Hartley entropy of our symbolic coding differs from the strange repellor while for noncompact Hamiltonian systems,
topological entropy of the Farey or Gauss maps since theiincluding Hamiltonian exit systemg41], fractal basin
symbolic codings record different information about the or-boundaries are the prefered method.
bits and assign different lengths to the orbits. There are many
different ways we can assign a symbolic coding to the mix- A. PIM procedure
master orbits, and most have different symbolic entropies. . . ) . )
However, since the rules governing a coding can be given in The proper interior maxima procedure is able to isolate

a coordinate-invariant way, the symbolic entropy of eachhe strange repellor in most Hamiltonian systems. In particu-

coding is a coordinate-invariant quantity. As explained pedar, it could be applied to the mixmaster system with or with-

low, the dynamics is chaotic if the entropy of afyalid) ~ OUt exits. Although we did not apply the PIM procedure to
coding is positive. the mixmaster, we mention it here as an alternative to intro-

The symbolic coding we chose tended to throw out som&Ucing exits. - , o ,
information as oscillations that occur in the comer channels "€ basic idea behind the PIM procedure is ingeniously
were not recorded. To record all the information needed t$IMPIe- As discussed earlier, the stable and unstable mani-
uniquely characterize a mixmaster orbit would require the©!ds Of the strange repellor are interchanged under time re-
introduction of three additional half-infinite lines extending Versal- As time moves forward trajectories near the repellor
into the corner channels. The six symbols associated Witg:e repelled along the unstable manifold and attracted along
crossings of these lines, in addition to the six symbols use{€ Stable manifold. Evolving the system into the past re-

here, provide a complete alphabet for the mixmaster dynamZ€'S€S the attracting and repelling directions. The PIM pro-

ics. cedure exploits this property in the following waya)
While our coding is not unique, it is onto; that is, a physi- Evolve a collection of trajectories near the strange repellor
cal orbit belonging to the mixmaster's strange repellor hadto the future and into the past by an equal amount of time.
only onesymbolic coding in terms ofX,Y,Z VY, '2} The (b) Isolate subsets of the evolved bundles that remain nearby
converse is not true since many physical orbits share th! both the past and the future and discard the remairder.

same symbolic coding. Using the full 12-letter alphabet it iSEero in on the surviving trajectories and form a new, smaller

possible to arrive at a unique symbolic coding that is one tObundle of trajectories around them and repeat the procedure.
one. It would be nice to find the one-to-one coding as theAfter a few iterations the surviving trajectories will closely
Harfley entropy of this coding would provide a unique uppershadovy the invariant set as noninvariant trajectories have
bound to the Hartley entropy of any coding of the mixmas_be?l'r;e(zjIlgfl\jrdfgéedure is shown schematically in Fig. 15. To
ter's strange repellor. In practice a one-to-one coding can be. . pro S yinrg. 1.
very hard to find so we often coarse-grain the available in_5|mpllfy the picture, th? initial bL_dee of trajectories is
formation and look for codings that are merely onto. TheseShOWn centered on a point belonging to the strange repgllor
then provide lower bounds to the true Hartley entropy of the(bIaCk do}. The labels(@ and (b) correspond to the steps in .
invariant set. Thus, we have shown that the continuum mix:[he PIM procedure. The great feature of the PIM pro.cedur.e IS
' ' he way it uses the instability of the repellor's orbits to its

master dynamics is chaotic since the Hartley entropy of th%dvantage. Consider the original set of trajectories in the
repellor exceeds 0.926.

circle of radiusR about the invariant point. Evolving into the
future and into the past by an amoukit leads to ellipses
VIl. NUMERICAL RESULTS FOR THE FULL DYNAMICS with axes of lengtiRexp(—(\)At) andRexp(+(\)At). These

. . .ellipses share a At invariant set of radius
_To be certain the Farey map provides an accurate Qescnp—z Rexp(—=(\)At). Thus, after a few iterations, the repellor
tion, we now expose the strange r'epellor in the minisuperyjgg exposed. In effect, the PIM procedure turns the strange
space of the full continuum dynamics. repellor into a strange attractor.

Continuous dynamical systems are much harder to solve Using a variant of the PIM procedure entire trajectories

thaf‘ d_lscretg dynamlpal systems. We cannot hope to f'nd. t elonging to the strange repellor can be reconstructed. While
periodic orbits analytically. Instead, we apply the same kin

: t would be valuable to apply these techniques to the mix-
of Monte Carlo approach used to check the analytic resu”ﬁwaster system, the numerical implementation of the proce-
for the Farey map. Our ambition will be limited here to find- '

ing the fractal fest in min h rgiure is difficult. A much simpler method of exposing the
Ing the Iractal maniiest in miniSuperspace phase space a range repellor is to introduce exits, and then chart the frac-

the fractql dlmensmn.. . . . o tal coastline of the outcome basins.
Exposing the chaotic invariant set in a dissipative system

is simple. By randomly choosing a collection of initial con-
ditions and evolving them according to the dynamical equa-
tions, the trajectories will soon settle onto the various attrac- Rather than hunting for the chaotic skeleton among the
tors in phase space. The decrease in available phase spaeeriodic trajectories, the Hamiltonian exit method creates a
volume forces all trajectories onto the chaotic attractors. Fosieve through which the slurry of aperiodic trajectories es-
a Hamiltonian system this is not the case. Phase space vatape, leaving the strange repellor in clear view. Like the PIM
ume is conserved and the chaotic invariant set remains higprocedure, the introduction of exits exploits the instability of

B. Fractal basin boundaries
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A
FIG. 15. Finding the invariant set using the PIM procedure.

the chaotic trajectories. The faster trajectories are expellec
by the repellor, the faster the invariant set is exposed.

The repellor is manifest at the boundary in phase space
which separates initial conditions on the basis of their out-

comes. These basin boundaries often become fractal in che u
otic scattering. The fractal basin boundary is composed of
trajectories which spend substantial time on the repellor. FIG. 16. Basin boundaries in thei,p) plane for the full dy-

For the full mixmaster dynamics we employ the lessongamics.
of the Farey map. Indeed, it is a simple matter to directly

implement exactly the same exit conditions we used for the Points belonging to the fractal basin boundaries comprise
map. By considering the ratios @)i/(Inb)’ et cyc. a future invariant set. Trajectories belonging to this set never
(a,b,c), we can test to see if a mixmaster universe is coast“decide” on a particular outcome, and so never escape
ing in a Kasner phase. If it is, we can then use &35) to through an exit. These are the trajectories that form the un-
read off the value ofu. When u>u.; we terminate the stable manifold of the strange repellor. It is instructive to
evolution and assign an outcome based on which axis isompare the future invariant set seen in Figs. 16 and 17 with
collapsing most quickly. By color coding the initial condi- the Farey map’s future invariant set shown in Fig. 2. The
tions near the maximum of expansion according to their outpattern of gaps and dense regions is strikingly similar. The
come near the big crunch singularity, we produce plots of thgvarpage of the vertical stripes in Figs. 16 and 17 can be
outcome basins. accounted for by our choice of starting point. Because our
Using a fourth order Runge-Kutta integrator with adaptiveinitial conditions start the universe near the maximum of its
step size, we evolved 360300 grids of initial conditions expansion, we are looking at the future invariant set in a
and recorded their outcomes. The Hamiltonian constraintregion where the approximations used to derive the Farey
Eq. (2.1) was monitored at all times, and the error tolerancesnap are very poor. Nonetheless, as the trajectories evolve
were adaptively corrected to ensure the constraint was satigeward the big crunch the continuum dynamics settles onto a
fied to within 1 part in 18 along each trajector{/In order to pattern well described by the Farey map. Since the fine struc-
make contact with the Farey map, the initial conditions wereture of the weave is laid down after many bounces and os-
chosen by fixing wg=1/3 and taking {q,vy) from a cillations, the fractal structure produced by the full equations
300X 300 grid. The value of), was then found by solving should be much the same as that produced by the Farey map.
the Hamiltonian constraint. Inserting these values of In order to test this proposition we numerically evaluate
(Ug,v0,Q0,wp) into Eq. (2.3 yielded the initial conditions the fractal dimension of Fig. 17. To do this we employ the
for the numerical integration of the equations of motion.  uncertainty exponent method described in Sec. Il A. Ran-
A portion of the basin boundaries in the,() plane is domly choosing 1000 points in the region covered by Fig.
displayed in Fig. 16. Depending on which axis is collapsingl7, we record how many have certain outcomes as a function
most quickly when the trajectory escapes, the initial gridof initial uncertainty 5. A plot of Inf(5) as a function of
point is colored black foa, grey forb, and white forc. The  Indis shown in Fig. 18. According to E¢3.30), the gradient
exit was set atl.,;;= 8 in order to make comparison with the of this graph vyields the uncertainty exponent
Farey exit map results. The basins form an intricately woverwk=0.14+0.01 and a capacity dimension of
tapestry of roughly vertical threads. The basin boundarie® j=1.86+0.01.
appear to form a cantor set of vertical lines. By zooming in  The method described above delivers the capacity dimen-
on a small portion of Fig. 16, we see from Fig. 17 that thesion of a sample of the repellor. The capacity dimension of a
dense weave persists on finer and finer scales. sample often is not equal to the capacity dimension of the
full repellor. Rather, the capacity dimension of the sample
_ equals the information dimension of the full repellei6].
“We check the normalized constrainH=H/[a*+b*+c*  The reason is the following. The random sampling of the
+2(b%c?+a%c?+b?%a?)]. Monte Carlo approach favors the densest regions of the frac-
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= T T T v FIG. 18. Calculating the uncertainty exponent for Fig. 17.

VIIl. SUMMARY OF RESULTS AND DISCUSSION
U

The power of the fractal in relativity is its observer inde-
FIG. 17. A portion of Fig. 16 magnified 50 times. pendence. We isolate two related fractals. The strange repel-
lor of the Farey map is shown to be a multifractal and ana-
tal. The method naturally weights therefore the densest rdyzed in detail. The fractal repellor is then excavated
gions. Since the weighted dimension is in fact the informahumerically in the phase space of the full, unapproximated
tion dimension, it follows thaD} of the sample actually dynamics:
equalsD}. We have therefore really found the information

dimension of the mixmaster’s future invariant set: ap Hr (\) Ap Do D, Dp
DY=1.86+0.01. (7.) Farey 2I22 O2 0.793 2.0 1.74-1.78 1.78
Gauss _T m 1.59 1.0 1.0 1.0
6ln2 6In2

The information dimension of the repellor from these nu-

. ) ) . The full force of the conclusions comes with a compari-
merical experiments is then given by

son of the dimensions found in entirely different manners.
We have collected our results for the discrete time maps in

D,=2DY-D=1.72+0.02. (7.2

Within numerical uncertainty, this number agrees with what
we found for the Farey mafEqgs. (3.32 and (4.22]. The
small discrepancy is probably due to the approximations
used in deriving the map or systematic numerical errors.

It is worth noting that the fractal basin boundaries can be
uncovered in any 2D slice through the 6D phase space. Fol
example, in Fig. 19 we display the outcome basins in the
anisotropy planeg. ,8_). The initial conditions were cho-
sen by settingQ=-1, =10, 8=10, and selecting
(B4 ,B_) from a 600<600 grid. The remaining coordinate
v was fixed by the Hamiltonian constraint. Again we see an
interesting mixture of regular and fractal boundaries, this
time forming a symmetrical patchwork about a central axis
of symmetry. The symmetry of the basins reflects the sym-
metry of the MSS potential shown in Figs. 6 and 7.

By choosing different slices or different coordinate sys-
tems, many different views of the future invariant set can be
uncovered. However, these are purely cosmetic changes. N«
matter what coordinates we choose there will always be frac-
tal basin boundaries, and these boundaries will always have By
the same fractal dimension. No matter how you look at it, the
mixmaster universe is chaotic. FIG. 19. The outcome basins in the anisotropy plane.

B
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the chart above. For comparison with the chart, the informaf47]. The universe then becomes inhomogeneous as well as
tion dimension of the fractal basin boundary in the full dy- anisotropic, rendering the big crunch similar to a generic
namics isD;=1.72+0.02. Not only is a fractal a coordinate- inhomogeneous collapse to a black hole. The churning dy-
invariant declaration of chaos, we have further found that th¢xamics on approach to a singularity may therefore be tem-
three information dimensions agree within errors: the infor-porally and spatially chaotic, whether it be in a dying star or
mation dimension of the repellor from the discrete Fareya dying cosmos.

map, the Lyapunov dimension of the Farey map, and the

information dimension of the fractal basin boundaries. As

has Ion_g been_ suspecte_d, the collective of mixmaster uni- ACKNOWLEDGMENTS

verses is certainly chaotic.
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