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Primordial gravitational waves from open inflation
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We calculate the spectrum of gravitational waves generated during inflation in 6henl() inflationary
models. In such models an initial epoch of old inflation solves the horizon and flatness problems, and during
this first epoch of inflation the quantum state of the graviton field rapidly approaches the Bunch-Davies
vacuum. Then the old inflation ends by the nucleation of a single bubble, inside of which there is a shortened
epoch of slow-roll inflation givind),<1 today. In this paper we reexpress the Bunch-Davies vacuum for the
graviton field in terms of the hyperbolic modes inside the bubble and propagate these modes forward in time
into the present era. We derive the expression for the contribution from these gravity waves to the cosmic
microwave background anisotropy including the effect of a finite-energy difference across the bubble wall.
[S0556-282197)03612-§

PACS numbds): 98.80.Cq, 04.30.Db

[. INTRODUCTION erating gravitational waves during inflation is quite
analogous to the process of generating scalar fluctuations
It has been well known for quite some time that gravita-during inflation. There is, however, an important difference.
tional waves are generated during inflation and give an obThe amplitude of the gravitational waves does not depend on
servable, and sometimes substantial, contribution to the coshe slope of the potential; rather only the overall height of the
mic microwave background anisotropg—7]. For flat (g potential, or equivalently the expansion r&teduring infla-
=1) inflation the spectrum of gravitational waves generatedion, is relevant. As a first approximation for calculating the
and their observational consequences have been studied quiimvitational wavesH may be regarded as fixed during the
extensively. However, for oper{);<1) inflationary models relevant epoch of inflation.
in which our entire observable universe lies inside a single For open inflation identifying the correct initial conditions
bubble[8-11], there has been no complete calculation of thefor the linearized graviton field is not as straightforward as
gravitational waves generated. In this paper we present sudbr the flat case, because the underlying spacetime geometry
a calculation. is more complicated. The simplest case involves one matter
Gravitational waves from inflation result from the stretch- field, the inflatong, with minimal coupling to gravity. More
ing of quantum vacuum fluctuations of the linearized gravi-complicated models such as found 2] have similar prop-
ton field to superhorizon scales. Following a given mode oferties for the gravity wave calculations done here, so the
fixed comoving wave numbdy;, one finds that at early times simple one field model is used in the following description.
its physical wavelength =a(t) (2#)/k is much smaller than (For a more detailed discussion of single-bubble inflation see
the Hubble lengtt,=H 1 (i.e., the mode is well within the [10].)
horizon. This implies that for determining a physically rea-  In open inflation, there is an initial epoch of old inflation
sonablevacuum statdor the mode at early times, one may during which ¢ is stuck in a false vacuum witlp= ¢y, .
ignore the expansion of the universe and match onto th®uring this epoch, the spacetime geometry approaches that
usual flat Minkowski space vacuum for the graviton field. of pure de Sitter space, characterized by an expansion rate
Once the correct quantum vacuum state has been determingl, , WhereHﬁz (87G/3)V[ ¢p4,]. During this initial epoch
at early times, to continue these modes to later times besf old inflation the graviton field is driven to the vacuum
comes a mathematically well-defined exercise in classicadtate. This determines the initial conditions using the same
field theory, which involves propagating thmositive fre-  considerations as for the flat case described above. Then old
guency modes—those associated with annihilation operatoiaflation ends through the nucleation of a bubble, which ex-
of the vacuum—forward in time, through the end of infla- pands roughly at the speed of light. The preferred time slic-
tion, and into the present epoch. As a mode crosses the hing inside the light cone of the bubble center corresponds to
rizon, its amplitude becomes frozen in. The process of gena spatially open universe. Inside the bubble the inflaton field
first slowly rolls down a rather flat part of the potential,
giving a shortened epoch of slow-roll inflation inside the
*Current address: Institute for Theoretical Physics, State Univerbubble. Later inside the bubble, the inflaton field rolls more
sity of New York, Stony Brook, NY 11794-3840. Electronic ad- quickly and the usual reheating occurs, converting the
dress: bucher@insti.physics.sunysb.edu vacuum energy of the inflaton field into radiation and matter.
TElectronic address: jdc@cosmos2.phy.tufts.edu The coordinate chart with the line element
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FIG. 1. (a) shows a spacetime diagram for bubble nucleation.
The double-dashed vertical line to the left indicatesr a0 coor- ) .
dinate singularity. Time flows upward and the horizontal axis rep- F'G- 2. A conformal diagram for all of maximally extended de
resents a radial coordinate. On the surfaces represented by dashedfer space is shown her#/ is the antipodal point oM. The
curves the inflaton field is constant. The lower portion of the dia-nypPerbolic coordinates that exploit the symmetry of the(30
gram (with t<0) represents the nucleation of a critical bubble, a Subgroup of the full de Sitter group $&1) that leaves invariant
classically forbidden Euclidean process. ForO the bubble ex- M (andM as wel) divides spacetime into the five indicated coor-
pands classically, at a speed approaching that of light. The classicéinate patches.
expanding bubble evolution is $81) symmetric. In(b) the hyper- . . )
bolic coordinates that maximally exploit the &1) symmetry of ~ diagram for all of maximally extended de Sitter space. In
the expanding bubble solution are sketched. Spacetime is divide%dd_Itlon to the regions already mentioned, therg also exist
into three hyperbolic coordinate patches. The light cones separatifggions 1V and V, which are the past and future light cones
these regions represent unphysical coordinate singularities of @f M, the antipodal point of the apex of region I. For a

character similar to that of the Schwarzschild horizon. discussion of the global structure of the de Sitter vacuum see
[13,14.
ds?= —dt?+ az(t)[d§2+5inh2[§]d9(22)], (1.2 The subject ofscalar perturbations in open inflation has

been studied extensively in recent years. Lyth and Stewart
describes an expanding Friedman-Robertson-Walker uni-15] and Ratra and Peeblg$6] calculated the scalar pertur-
verse with spatially uniform negative spatial curvature. Hy-bations in open inflation assuming conformal boundary con-
perbolic open coordinatégather than thdlat coordinates, to  ditions for the vacuum of the inflaton field &s>0 in region
be described lat¢rare the natural coordinate choice in the l. Bucher, Goldhaber, and TuroklO] presented the first
presence of the bubble wall, which is why the interior of acomputation of the scalar perturbations in open inflation us-
bubble is an open univerd®,9]. For de Sitter space and ing the Bunch-Davies vacuum for the inflaton field outside
these hyperbolic coordinates(t) = sintjt] and the bubble during the prior epoch of old inflation as initial
conditions and propagating the scalar modes through the
ds’=—dth+sintP[ tp][d&2+sintP[£]dQ%,)], (1.2 bubble wall into the open universe. Yamamoto, Sasaki, and
Tanaka obtained essentially the same results using Euclidean
where (Gt <+=). The hyperbolic coordinate chart has an methods[17,18. Many recent calculations of scalar field
unphysical coordinate singularity &&=0, and to determine perturbations, for examplgl2,19,20,18,2]l take into ac-
initial conditions it is necessary to consider a larger region otcount additional effects such as finite bubble size, varying
spacetime than that covered by the open coordinates with tHeubble wall profile, fluctuations in the bubble wall, etc.
line element(1.1). The subject of gravitational waves generated during open
The bubble nucleation process underlying open inflatiorinflation was previously investigated by Allen and Caldwell
is sketched in Fig. 1, with the dashed lines indicating thein an unpublished manuscrifi22]. Within their approxima-
surfaces on which the inflaton field is constant. Roughlytions they found an infrared divergence in the multipole mo-
speaking, the forward light cone of the materialization centements of the cosmic microwave background anisotropy
M, which we shall call region | and which is covered by the (CMB). In their computation, in order to simplify the calcu-
coordinate chart just described, may be considered thktion, at early times a flat spacetime geoméirs., that of
bubble interior. Regions Il and 1l cover the spacetime priorMinkowski spacg is assumed, and to improve the infrared
to bubble nucleation and the part of spacetime into which théehavior of the graviton field during this early epoch, the
bubble expands, at a speed approaching the speed of lightgraviton field is given a small mass,, which at the end of
For future reference, in Fig. 2, we present the conformathe calculation is taken to approach zero. Later on, inside
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region | on a hyperboloid of constant time with respect to thehyperbolic coordinatizations. These issues have been inves-
region | coordinates, the spacetime geometry is taken ttigated for hyperbolic coordinates in flat Minkowski space
change discontinuously to that of de Sitter space. Subsé25].

quently, inflation inside the bubble ends, so that the scale In this paper we drop the approximation of vanishing en-
factor a( 77) becomes governed by a radiation-matter equaergy difference across the bubble wall, which is never ex-

tion of state, and the evolution of the graviton field is com-actly the case in the presence of a bubble. This requires
puted to take into account this change. including finite critical bubble size as well. Taking these ef-

In Sec. IV of this paper we derive the Bunch-Davies feécts into account removes the infrared divergence of the

vacuum for the graviton field in de Sitter space in terms ofC'\I"B, multfipole rr:oments. g’he calgulg[iogfsr(azsembles the cal-
the hyperbolic region | coordinates, assuming de Sitter spac‘t‘é\u _T_‘Eons or §cel_ar Pef”t‘# ations in e[ff il 2. Seci "

everywhere and a vanishing graviton mass. The Bunch- € organization of thiS paper IS as 10llows. Sections
. . o : and Il give the multipole expansion for the pure tensor per-
Davies vacuum for the graviton field in de Sitter space, ex; . i . . i )
. turbations in hyperbolic space. Section Il gives the evolution

pressed in terms of the spatlally flat coordinate sllcmg,. ISequa’cion for the graviton field, which is solved by separation
used to express the Bunch-Davies vacuum for the gravito

A : . ) ! Bf variables. In Sec. Il we study the properties of tensor
field in de Sitter space in terms of the hyperbolic coordinates, ;. onics in three-dimensional hyperbolic space, first writ-

'I_'he Ie_ltter are the na}tural coord_ina_tes f(_)r §tudying perturbagan down explicitly by Tomitd26]. As mentioned above, in

tIOI’]S. in an open universe. While in prlnC|pI_e it should be gec. v we identify the Bunch-Davies vacuum for the gravi-

possible to compute directly the transformation between thegn field in region | in terms of the hyperbolic modes. In Sec.

flat and the hyperbolic modes, in practice this transformationy we compute the effect of nonvanishing bubble size and of

has proven algebraically intractable. Instead, we characterizgonvanishing energy density difference across the bubble

linear combinations of modes gbsitivefrequency with re-  wall. This result is used in Sec. VI to give the tensor mode

spect to the flat coordinatdsvhich is the same apositive  contribution to the CMB anisotropy for an open universe,

frequency with respect to the Bunch-Davies vacuum and finally Sec. VII concludes. There are two appendixes

terms of analytic properties in the complex plane. In this waycontaining technical details. We sét=G=1 throughout,

linear combinations of hyperbolic modes of purggsitive andH=1 until Sec. V.

frequency with respect to the Bunch-Davies vacuum may be

constructed without explicitly expressing these combinations |I. GRAVITATIONAL WAVES IN AN OPEN UNIVERSE

in terms of the flat modes. The basic approach is somewhat

analogous to the Euclidean methods used by Sadaki for X X , !

scalar mode§14], except that here, rather than using a Eu_mBetrlc. The metric can b(_a written as a background metric

clidean principle as the starting point, we determine thedu,» Plus & small perturbation:

vacuum in terms of the flat modes, using the complex plane B o

as a mathematical tool. 9ur=9urthu,
Our result for the Bunch-Davies vacuum for the graviton P S

field essentially coincides with that found by Allen and Cald-"Where we seho=0, hoi=0, hy’ =0, andh;;""=0. These con-

well. There are some minor differences: whereas we obtain §itions require thescalar andvector perturbations to vanish -

mixed state directly, Allen and Caldwell obtain a pure state@nd fix the gauge as l"zell- T?e L_mperturbzed spatial metric

which in the limitm,—0 mocks our mixed state. This does 7ij (With line elementds®=d¢ +sinf[£]d0) is used to

not alter the divergence of the CMB multipole moments. ~ raise and lower roman indices, and the vertical line indicates
One caveat in computing the CMB moments relates tghe covariant derivative induced by; .

gauge fixing. In the Sachs-Wolfe formula for the CMB an-  For the background corresponding to the natural coordi-

isotropy the gravi'[y waves contribute on|y in the integra| nates in the interior of the bubble center’'s ||ght cone, the

along the line of sight—there is no contribution from the background metric is given in Eq1.2). Hyperbolic confor-

tensormodes from the last scattering surface. Since linearmal time

ized gauge transformations asealar andvector, one would

think that thetensorpart is gauge invariarttHowever, gauge n=In[tantity/2]]

transformations can move the last scattering surface, a

thus change theéntrinsic contribution in the Sachs-Wolfe

formula. If gravity wave modes mix with pure gauge modes,

cancellations may occuf23]. Linearized gravity wave ds?=a?[ ][ -d7n*+ d§2+sinl”?[§]d0(22)], 2.3

modes typically are taken to satisfy the synchronous gauge

conditionf"hwzo, wheret” points along the time direction where —oo< 7<0.

of the preferred coordinate system. In de Sitter space these The condition that the first-order perturbation of the Ricci

conditions do not coincide for the flat and for the region ltensor vanishe§R§}V)=O gives the equation of motidi24]

Gravitational waves are fluctuations about a background

(2.9

(2.2

r\%i” be used primarily in the following, in which the line
element is

9*#V ,V4h,,,+2RE) hef=0. (2.4)

auBv
We definescalar, vector andtensorhere such that a vector that . .
can be expressed as the spatial gradient of a scalar is regarded ay%‘t's may be rewritten as
scalar, a tensor that may be expressed as spatial derivatives acting 2 2 ~
on avectoris regarded as sector, etc. [D5,— Vi +2K]h;i(€,0,4,1)=0, (2.9
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where IC is the spatial curvature, witlC=—1 for a hyper-
bolic universe, and we have us&$) =K(vik¥ji — vikvi)-
Using the ansatz

T, 7;4,P,j,m)=n(O[TPIME, 60,8010 Th(7:0), (2.6

we obtain

[VZs)+(£2+3)]THIM(E,0,¢;0) =0, (2.7

a2+2—a,a +(P+1) [ Th(7:0)=0 2.7b
o O n(7:£)=0. (2.70

The normalizatiom(¢) will be fixed later.
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which is identical to the equation for the spatial hyperbolic
radial functions with orbital angular momentulns 1. [See
for example Ref[10], Eq. (5.21).] It follows that

To(7;0)={i¢ sin{ 7]+costinl}e™"¢7,  (2.11)
where( is allowed to take both signs.

For the flat tensor modes, which will be needed in order to
find the Bunch-Davies vacuum, the time evolution equation
becomes

2
T — o T{+ 0?T;=0, (2.12
f

Using properties of the hyperbolic tensor harmonics that ) _ ) .
solve Eq.(2.7a, the gravitational waves in region | can be Where we replace- V< and K with «“ and 0, respectively.

expanded &s

ﬁrs(ﬂ,§10,¢)

-3 :dzn@)TﬁJm(f,e,¢>;mh<n;oép,j,m(mH.c.

=2

jmP

:dzTﬁ'im@,e,sb,n;g)ép,j,m(mH.c. (2.8

Here the operators (£,P,j,m), &/(¢,P,j,m) satisfy the ca-
nonical commutation relations

[él(g,P,j,m),él(g’,P’,j’,m’)]
=[&/(¢,P,j,m),af (¢’ ,P’,j",m")]=0
and
[&(L,P,j,m),a](¢",P",j",m")]=8({— ) ppr i+ Sy

where(, {'>0.

The spatial tensor harmonics and{) are discussed in
the following section. Here the time dependence for the hy-

With the substitutionT=%3?H, Eq. (2.12 becomes the
Bessel equation of order=3 whose solutionsH{},)(w 7)
andHY{,,)(w7¢) are proportional to the spherical Bessel func-
tions h{")(w7;) andh{)(wz;) multiplied by 5>. Conse-
quently,

Ti(nr;0)=[1+iwye”', (2.13

wherew is allowed to take both signs.

IIl. HYPERBOLIC TENSOR HARMONICS

We now turn to computing and normalizing the hyper-
bolic tensor harmonics, which satisfy the equation

hij %+ (£2+3)h;=0. (3.2
The offset in ¢?+3) is chosen for later convenience. The

pure tensor character of these modes requires that they sat-
isfy the conditions of tracelessness

(3.2

perbolic tensor modes and the flat tensor modes is found. For

open de Sitter spacea(»)= —1/sinffn]. Thus for hyper-
bolic tensor modes Ed2.70) becomes

Th—2 cot )T} +({%+1)T,=0, (2.9

replacing—V(ZS) and K with (£?+3) and—1, respectively.
Transforming to the dependent variafile=sintf[ 7]-F, one
may recast Eq(2.9) into the form

F”+2 cot n]F' +({%+1)F— Sl—nﬁzm F=0, (2.10

and transversality

3.3
Here the roman letterd ,(=1,2,3) indicate spatial indices.
Since EQ.(3.1)—(3.3) are invariant under rotations and
spatial inversion abouw=0, multipole solutions may be clas-
sified according to their angular momentum quantum num-
bersJ?, J;, and their parityr. Parity is eitherelectric with
w=(-)! or magneticwith 7=(—)"1, denoted byP=E
andP=M, respectively. Fixing, m, andP, we write down
the most general symmetric tensor field with these quantum
numbers. This restricts the angular dependence to a few

2t should be pointed out that in addition to the continuous moded€MS but does not specify the radial dependence. Imposing

with 0</< there might also exist some discretepercurvature

Egs. (3.1)—(3.3) and solving for theé dependence gives a

modes, as have been found for the minimally coupled scalar field igolution for eachi>0 and §,m,P) for j=2 unique up to an

de Sitter space of masa when Mm?/H?)<2. See Refs[14] and

overall normalization[ There are no monopolg € 0) or di-

[27] for a discussion. The one supercurvature mode which would b@ole (j=1) mOdeS].The solution to these conditions has
expected to appear here by direct analogy has zero contribution taeen found by Tomit§26].

the CMB because of its lack of time dependence.

The tensor field with electric parity has the form
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TEIM(£,0,0;0)=F (&) (€)Y m(0,¢) 551 (e*@eP)=(e’we’+sirfdef®e®). The basis functions
are ee=d¢, e’=d6, ande?=de. Note that this is not a
+Gj(&¢) 55p(e ®eb)YJm(0 ®) vielbein (normalized basis.
We use

+H;(&0)(e? ®ef+ef®ea)v~5vjm(a,<p) ,
Ve=D;+2cotf §]D,

(£ D) VVEY m(0,¢), (3.4

1 1
+ === D5+cof ]Dy+ —5— D% (3.5
where @,b=1,2) indicate angular indices ar\ indicates sinfr( ] sirt* ¢
an S? (rather than arH®) covariant derivative. As a result, and

D=0, D ,ef= —cof #]e?,

D.e’=—coti £]€’, D &f= +sini{ &]costi ¢]sir?[ 6]e?,

D ;€= — cotH £]e®, D e’=+sin #]cog ]e?,

D ef= +sinH £]cosh £]e’, D e?=—cof #]e’— coth £]€f,

D ,e’= —cotH £]€’. (3.6)

We now impose the constraints of transversality and tracelessness. For transversality, taking the diveffj&ricgives

| 9F 2 cothf £] j(j+1) j(j+1)cotH ]
V-Tim= 07—§+2 cotf £]F (&) — SnifE] G(g)_sinhz[g] H(§)+W |(§)}Y,’m(9)e§
+ (6) aH+2 th £1H j+1)—1]l +¢%— (3.7
Both terms must individually vanish. Likewise, requiring the trace to vanish gives the condition
. 2G(¢) j(+DI(E)
T=FO Gorre ™ sinrel 3.8
Thus transversality and tracelessness give
b (g SPLENTR(ED) e
1:.(&0)= SintrL €] 2((9Hj(§;§)+2 tH E1H(&; )—F ; (3.9

1
Gj(&0)=51i( +1)1(&0) —sintP[E]F(&:0)}.

The Laplacian in Eq(3.5) acting on the various components%’f'im in Eq. (3.4) gives

9°F JF [j(j+1)
VAF(&)Yjm(Q) (e ]= —§z+200tf[§] 7% (WMcotﬁ[ﬂ)F(é) Yim(Q) (€0 €)

+{2 cosB[£]F (&)Y jm(Q)}(e"®e"+S|n20 e’ ®e’)

(ef@el+ e"®e‘f)

+{2 cotf £]F(§)}

Y :|
(3.1@
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V2{G(€)Yim(Q) (e’ e+ si?he? COﬂ?[ﬂe Yim(Q)|(f@€f
GOV im(Q) (e tsiMieree”)} = iz GO Yim(Q)| (€8 e)
2
+ %—2 cott{g] ﬁg 2G— él(ri}"F[lg)] G|Yim(Q)(e’®e+sifg ef0e)
2
— S;(SE] (g)[(e§®e9+e"®ef) Yg +(ef®e"’+e"’®e§) Mim (3.11)
IY;
VZ[H(g){(e%eMe@@ef) " H
4j(j+1)cot
e LRI
) .
+ %—2H—4 cotr?[g]H—;i(ri;[g)] H(ef®e9+e9®e§) Him +(e§®e‘P+e‘P®e§) Mim
oo o O im &ZY Y jm o on o[ Yim IYjm
+4H(é)coth £]| (e°®¢e%) a—02+(e ®e?) " +sing cosi—— EY: +(e@ef+ef®e’) aaa@—cote 70 )|
(3.12
and
V2 1(&)1 (e’0e’ —2—2Y +(e‘P®e‘P)(—Z—aZY + siné cosﬁY— +(e9®e¢’+e"’®e‘9)< i —cotf YJm)
do 00 00d¢ Je
—21(£€)j(j+1)cott[ £] 21(8€)j(i+1) .
= SN E] Yim(Q) (€€ + W Yim(Q)(e’®e’+sifg e? @ e?)
2[j(j+1)—1]cotH &]1(§) Y
sinhz[g] [(ef(g’ e+ 0®e§) * w}
&ZI 61(¢) j(i+1) PYim
Y —2cotfé] — (95 smh2[§] —21(é)coth?[£] - SN (&) (eg®e‘9) +(e‘°®e"’)( (90
+ (e e+ e‘P®e”)((92ij—cot0 &ij) (3.13
d0d¢ do || ’
|
To solve forF(&;{), we take the ¢®€*) component of {72¢j(§;§) ¢J(§ 0
the Laplacian acting on Eq3.4), and after applying the PP cotf §] ———

substitutions in Eq(3.9), the coefficient ofef® et term in
Eq. (3.1 becomes

. oF (&
;ij ) coth £] %
+[(£2+3)+6 cottf[ £]— ifr:hz[;] Fil&o=

(3.19

With the change of variable,bj(g;g)=sinhz[§]Fj(§;§), one
recovers the differential equation for ttsgalar hyperbolic
radial functiongsee, for exampld,10] Eq. (5.21)]:

j(+1)
+[(2+ 1)_Smhz[§] $j(£,0)=0. (3.19

Consequently,

_ i+1
Fi(&0)=N;(y)sini~2[£] d(costi )7L cog £&],
(3.1

where the normalizatiol;({) is determined in the follow-
ing and we have imposed regularity at the origin.
For future reference, foy=2
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N,(¢) ) e*'¢¢ in the asymptotic expansion of the tensor harmonics
Fa(&:0)= SN {3¢° cotH{ ]cod £€] for large & (For ¢é-0, Fj, H;, G;, 1;—0. In comparing

the asymptotic behaviors df, G, H, andl, it is more
+(3+ -3¢ coth?[ £])siN ¢&]} (3.1 meaningful to consider the rescaled quantities
Fi(&D=F(&0), Gi(&D=G(&)/siné], H(&0)
and, from Eq.(3.9), =H;(&Q)/sinté], and 1;(£¢)=1;(&)/sinif(&], compo-
nents with respect to a normalized “vielbein” basis. From
G2(&;0)=Ny({)sinH £] Eq. (3.9, F~sinh¥¢g, H~sinh¥¢g, and G, |
otH €] ~sinh £]. For &\, G and | dominate, exactly as one
XH (1-2¢°-3 cothz[g])]sir[{g] would expect. That is, at large distances a spherical gravita-
tional wave should locally resemble a plane gravitational
—§5—2§3—§ ¢ cothP[ £] wave propagating in the radial direction.
[ 2 + 2 To compute the coefficient of th&function in Eq.(3.20),
we impose a boundary condition &t &, (for specificity
say Dirichlet boundary conditiopsand take the limit
X({%~2+3 COﬂ’?[ﬂ)}COi@]}, Emax—®. For &1, the integral in Eq(3.20 is dominated
by theG andl components. These may be approximated by
_ their large¢ asymptotic forms, starting with E¢3.16) and
Ha(£0) substituting sinfE]—(e9/2) = (w/2). This gives

1 2
=N2(D) G Hg ((P+4- 6coth’*[§])]c0i£§]

d j+1 - .
Fj(g’g)%4N'(§)W_3(d_vv) [W+|§+W—I§]

ié coth £] (3.18

(2co tf?[ff]—iz—Z)}SirHS] : . .
=4AN;()e ¥[(iy);e" ' +c.cl. (3.21)

12(£;8)=Na(Z)sinH £]
ot £] Here (x); is shorthand forx(x—1)---(x—j). Using Eq.
><H (—5—272+3 cotr?[g])}cos{gg] (3.9), we obtain

_55—453—35 £ cothP[ £]
+[ ; aN(0)e .
12 4 Hj(& )~ J(JT{(IZ)(IO et'“+c.cl,
X (—CcothP[ £]+ %+ 2) sir[gg]}.
(&0~ 2Ny (@)e”? {(ig+ D)0t
Similarly, for the magnetic parity, the tensor field must >"7" j(j+1)(j—1)(j+2)
take the form +ec) (3.22
TBIM(£,0,0;0)
=U(£0)(PRe+eERe)LzY m( 6, Nj(pe s o
(EO(Eeetece)laYn(0.¢) GI&ED~ gy gy (+ DO e cc).

FV(ED(FRP+ o) LiVEYim(fe). (319

The magnetic parity modes do not contribute to the CMBConsequently, fof&1),
anisotropy because their component along #ie¢) direc-
tion vanishes; therefore, we do not give their explicit form.
Normalization of the hyperbolic tensor harmonicEo . 2Nj(§)e§ ] ]
normalize the tensor harmonics, we impose the condition ~ T(X¢,E,j,m)=~ Ja+-D(G-1(+2) (1))

= ] ) X(10);e" VY5 Y jm(6,4)
fO dgf dQ\/g(3)Tij(X;§,P,j,m)*TII(X;g,,P,,j,,m,) : :
+ 85531 (j+1)Ym(0,6)H (@€ | +c.c.
:6(§_§,)5P'P/5j’j, - (32@ abZJ(J ) ]m( ¢)}( )
(3.23
whereP indicates mode parity ank=(¢,6,¢).
Because the tensor harmonics are eigenfunctions of a self-
adjoint operator, the inner product is proportional tosa Inserting this asymptotic expression into £g§.20 and fac-
function. ThusN;({) is determined by the coefficients of toring outdj; oy gives
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§ma>( ..
Jo dé sinhz[g]J dOT;(x;{,E,j,mTI(x4,E,j,m*

ZPHDIAEP+17) - (LP+]2)]

PPG+DA( -1 +2)?

~|N<z)|2

gmax

2

1
JdQ‘V V5V imt 5 8551 (1 + 1Y,
(3.24

For the angular integration, note that
f dQ(V5VEYm)* VEVEY,
- [ 4073 TaTE Y (7Y,
= f dQ(VEVEVAY ) * (VOY )

—fdQ(Vg

=LG+DING+D) -1,

1 * =
VSR ij) (VOYjm)

(3.2

given that g?°[Vz,V5]Vef=g% RV f=R:"(V3f)
=3RV3f. Since the unit two-sphere is isotropiBz; =3
637pR. Also, for the two-spher&k=2. Thus the integral on
the last line of Eq.(3.24 is equal to[j(j+1)][3j(j+1)
—1], and Eq.(3.29 reduces to

ALG+DINA2)j(j+1)—1]
PP+ -1 +2)?

INj(OI? 2(P+1)

X[L2(P+1%) - (P+)%)] 2 g"“ax (3.26

from which it follows that

Ni(D)= - ViG+D)(—-1)(j+2)
o LI+ V(1D (P+ D)

(3.27

The 7~V
phase ofN;({) has been chosen to be real.
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he(r B r2 &fJ 3
i) =gy |5 Yl
_ r? ah;
|j(r;w) m 2 + h—f (3.29
1 ,
gj(riw)=3 [i(j+ij(r)—r].
In particular, forj=2
3w? - o3|
fo(r;w)= e cojor]+|—z—+ —|sifwr],
— 30?2 _ 5.2 o
gz(r;w)=( )cos{wr]+( — w3+ —|sifor],
(3.30
_ .2 w4 _ .3
hz(l’;w)=< 572 +€)cos{wr]+ ?"FF sin wr],
— w2 — 05?2 @l
i(r;w)= or cog wr]+ T_F+_2 siMwr].

In order to calculate the normalization, one needs the
asymptotic behavior for large

I
fj(r;w)%nj(g)F[(lw)'“e““’%c.c.],

_ 1 ) )
hj(r;w)~nj(§) j(]Tl) E [(iw)’+2e+"‘”+c.c.],

(3.3)

(o)~ T D T2

Xr[(iw) T3etier+c.c],

_ 1 . )
gj(r;w)~nj(§) m r[(iw)”3e+""r+c.c.].

Again i; andg; dominate, and following the same steps as
for the hyperbolic modes we get

ViG+D(+2)(i-1)

\/;wHS

Normalization of the time-dependent mode functiolie

j(w):

(3.32

2 comes from passing to the continuum and the

Flat tensor harmonicsThe general form of the flat modes may define the antisymmetric bilinear form
is needed to identify the Bunch-Davies vacuum in the next
section. These may be regarded as the Igrganall¢ limit
of the hyperbolic modes, a limit in which the effects of spa-
tial curvature disappear. We use lower case letters to denote

the flat analogues of hyperbolic quantities. In particular, ~Where ¢/, V are solutions to Eq(2.4). This product is
analogous to the Klein-Gordon product for scalar field

modes. Equation (2.4) insures that the current
Una(2)(iV,)VAB(2) is conserved and thus thét,V) is in-
variant under deformations of the surfateln order that the
modes for a spacetim®l orthonormalized with respect to
Eq. (3.33 are associated with operators that satisfy the cus-

UW)=— Ldzﬂuaﬁ(z)(iﬁ’#)wﬂ(z), (3.33

j+1
f(r,o)=n;(w)ri~ 2(1ddr) cojwr]. (3.28

Similarly, Eq.(3.9) is modified to
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tomary canonical commutation relations, it is necessary te@egion | hyperbolic time serves as a convenient choice of
chooses, in Eg. (3.33 so thatX is a Cauchy surface for Cauchy surface, and also the case whdrés all of maxi-

M. The product , ) is the same for all Cauchy surfaces for mally extended de Sitter space, in which case the surface
the spacetim@. A Cauchy surface is a spacelike hypersur-defined byr=0 in the region Il hyperbolic coordinates serves
face which each nonspacelike curve intersects once and onés a convenient Cauchy surface.

once [28]. In this paper we shall consider both the case For the hyperbolic modes defined in E.6) in region |
whereM s just region I, in which case a surface of constantone calculates

<7—(§1P1] 'm),/z—(gl'P/’j/’ml)*>: - fzdsxas(ﬂ)[TBa(X,ﬂ;é’,P,j ,m)(iSB)T”B(x,n;g’,P’,j’,m’)*]

=n%()2L(P+1)8(E—¢') 8p pr 6 j S » (3.39

whereD5=(1/a)D ,= —sinl{ n]D,,. Note that Eq(3.34 is  nates, which are the natural coordinates for the open universe
independent ofy. This may be seen by applyirg, to Eq.  inside the bubble. In this section the initial Bunch-Davies

(3.34 and using Eq(2.9). For the mixed tensor representa- vacuum is expressed in terms of these open hyperbolic
tion chosen above, the covariant derivatibg may be re- modes. In the open universe inflationary scenario, the

placed with the ordinary derivativé; . Therefore, Bunch-Davies vacuum is a preferred quantum state for de
Sitter space in the sense that it is a weak attractor: any initial
1 quantum state for perturbations from de Sitter space, subject

n(f)= 2§(§2+1)' (3.39 only to the requirement that the initial energy density be

finite, approaches the Bunch-Davies vacuum to arbitrary ac-

As the initial conditions are determined by the bubblecuracy after a sufficient amount of inflationary expansion.
which extends outside of region |, a proper Cauchy surfac&@he convergence is weak rather than strong because the ini-
for initial conditions for an open universe extends outside oftial perturbations are not erased but rather pushed to larger
region | as well. It was shown ifil4] that for some cases, and larger scales, so that for an observer able to probe only a
inner products taken on a Cauchy surface in region Il agreefixed physical volume, the perturbations seem to disappear.
with those on fixed time surfaces in region | and V, even The Bunch-Davies vacuum is physically characterized us-
though the latter do not make up a Cauchy surface for théng the flat coordinates for de Sitter space. In these coordi-
whole spacetime. The norms agreed for scalar fields witmates, at sufficiently early times, a mode of fixed comoving
sufficiently fast falloff at infinity, a condition satisfied by wave number evolves as if it were a mode in Minkowski
subcurvature modes of the Laplacigmodes with eigenvalue space. For the flat coordinates the line element is
[?+1=1). There are some differences in extending this
comparison between norms taken in | and VV and norms taken
in Il for gravity waves. When the gravity waves are contin- ds’=—dtf+e?[dr{+rfdQ%) ], 4.1
ued across the light cone, into region Il, time and space are
interchanged and the gauge choice becomgs=0 instead
of h,,=0. Asu is a spacelike coordinate, this is not the where —co<t;<+o, or in terms of flat conformal timey;
usual gauge for metric perturbations. It may be thought of as= — e~
analogous to axial gaugevhere A;=0) rather than Cou-
lomb gauge(where Ag=0) in electrodynamics. Secondly,
the inner product in region Il involves a Wronskian (e 1 ) 5 22
analytic continuation 0f¢, and is more complicated due to d32:7 [—dpr+dri+ridQQ)]. (4.2
the tensor structure i&h As shown in Appendix B, this inner f
product on a Cauchy surface in region Il coincides with the

ir)ner product in feg.iO’.‘S. LV, for' mode§ Which 'have suffi- Early on, when the mode is subhorizon, so that there are
ciently fast falloff at infinity. The fields with sufficiently fast many oscillations within an expansion time, one identifies

falloff for gravity waves are again subcurvature modes, Withthe mode with positive frequency asymptotic behavior with

2 . .
?gg <Oo'h Asfthe rf}alloff f?r the gravity Wallve m(r)]des 'S 85 an annihilation operator of the Bunch-Davies vacuum. These
"’.‘S:]_?s tf atl or the scalars in re%llons . (ot r?_o a5 are the modes that behave @s* 1/ 5 for »;— — where
sinh™ [ £] for large ), it was reasonable to expect this. 7 is flat conformal time.

To relate the flat and hyperbolic coordinates one can em-
bed de Sitter space i@+1)-dimensional Minkowski space
as described in Appendix A. Using siwkl=—21/sint ],

The preceding section gave the mode expansion for theosljt,]=—cotH »], and cotft,]=cosl 7], one gets that the
linearized gravitational waves in region | hyperbolic coordi- relation between the coordinate systems is

IV. IDENTIFYING THE GRAVITATIONAL WAVE
BUNCH-DAVIES VACUUM
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3 sini{ £]
M= costié]+cosh 7]

(4.3
B sint{ 7]
~ cosH n]+cosh £]

The flat coordinates do not cover all of de Sitter space but
only half of maximally extended de Sitter space, as indicated
in the conformal diagram in Fig. 3. Nevertheless the flat
coordinates cover enough of de Sitter space to contain an
initial value surface for all of de Sitter space. The null sur-
face indicated by the dashed diagonal line, the boundary of
the region covered by the flat coordinates, is such a sufface.
To identify the hyperbolic modes qgfositive frequency

with respect to the Bunch-Davies vacuum, it is convenient to
use the null coordinates in the flat chart

Uii

Ug=m¢tre, (4.4)
' FIG. 3. The region covered by the flat coordinates is shown in a
V=7l conformal diagram for all of maximally extended de Sitter space,
identical to that in Fig. 2. Although the flat coordinates cover only
half of maximally extended de Sitter space, the diagonal line, which
is the boundary of the region covered by the flat coordinates, rep-
_ resents an initial value surface for all of de Sitter space.
U=7n+¢,
(4.9
V=1p—& <u<+1. Outside this strip one encounters a branch cut,
taken here to lie near the real axis startingiat 1, passing
where V<0 and|U|<—V. Using the above relations be- through +, coming back from—«, and finally ending at
tween(z,€ and (»;,r;) one can see that the two sets of null u;=—1, as indicated in Fig. 4. Thug(1+u)/(1—us)]'¢
coordinates are related according to has two possible continuations to the entire real line—one
through the upper half plane above the branch cut and an-
other through the lower half plane below the branch cut.
One can identify the positive frequency Bunch-Davies
modes by requiring they have vanishing overlap with the flat

Converselyus=tanh(/2) andv=tanh{//2). Thus we see negative frequency modes®¥f, (»w>0). Thus one requires
that the region | hyperbolic coordinates cover only the region

—1<v;<0, |uf|<—vs in terms of the flat coordinates. e 14 u.\id
The positive frequency modes with respect to open hyper- j du eiwuf( f) =0 (4.9

One haw <0 and|us|<—uv;. We also define the region |
hyperbolic null coordinates

+ Us

U=In -y,

1+Uf}

V=In
' 1_Uf

(4.6

bolic null coordinates in region | are —o 1—ug
_ +ug| ¢ _ +u,]7i¢
e*I{U: 1 Us —iev_ 1 Ut (47)
1_uf ’ l_Uf u-plane

However, a full mode function for the Bunch-Davies vacuum
must be specified in both regions | and V. A region | mode
function must be continued into region V in order to calcu-
late its inner product on the full space and the choice of
analytic continuation distinguishes between positive and
negative frequency Bunch-Davies modes. The identification
of the positive frequency modes for the Bunch-Davies
vacuum is determined by the analytic properties of the fac-
tors ine ¢V and e ¢V appearing in the hyperbolic mode

functions above. The other factors in the hyperbolic mode
functions contain only isolated singularities and no branch ) )
cuts, and thus will be seen to be irrelevant in making this F'C- 4. The pointau;=—1 andu¢=+1 are branch points. To

identification. The bubble interior lies within the stripl ~ 'MPOSE single valuedness, we take a branch cut to stauf-at
+1, extend tau; =+, come back fromu;=—, and finally end

at ug= —1. The analytic continuation through the upper half plane
onto the remainder of the real line corresponds to the Bunch-Davies
3Technically, because this surface is null it is not a Cauchy surpositive frequency modes. Similarly, the continuation through the
face, but initial data on this surface can be continued everywhere ifower half plane corresponds to the Bunch-Davies negative fre-
de Sitter space. guency modes.
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—i¢

for all ©>0. This is satisfied by the analytic continuation 1+ ug . 1+74 i Y
through the upper half-plane above the branch cut, as de- (l—u =((—1) 15 ) =(—1)""e'?,
forming the contour toward-ic makes this integral vanish. f f (4.11
As a result, positive frequency Bunch-Davies modes corre- 1+v) ¢ 14T\ ¢ -
spond to analytic continuation through the upper half plane 1o, =<(—1)1 1—'Jf> =(—1) "'V,

into region V. This identification generalizes to gravitational
wave hyperbolic m n her mor mpli m . . ;
ave hyperbolic modes and other more complicated Od%\s a result, positive hyperbolic frequency modes'¢V,

functions of the form SV . . .

e in region | become negative hyperbolic frequency
i v\ ¢ modes in region V with an attentuation facter "¢, and
) ' (4.9 negative frequency region | hyperbolic modes become posi-
f tive frequency hyperbolic modes in region V with an ampli-
whereR(u;,v;) andS(u; ,v;) are rational functions. fication factore™. The result of all this is that the positive

We shall use two sets of flat coordinates; {v;) and fri%queir\1/cy modes in region | are the modes proportional to
(U;,77), as indicated in Fig. 5, related by a spatial reflection€ " *, € for all values off plus the continuation into region
symmetry of de Sitter space that maps region | into region \VV using the upper half plane. The negative frequency modes

1+Uf
R(ug,vy) 1—u

1-v

1+
+S(Uf ,Uf)(

It may be shown that are the same collection of modes with the opposite analytic
continuation into region V.
- -1 _ -1 We may normalize the modes by combining the fixed
uf:U_f* Uf:u_f- (410 time surfaces of regions | and V. As shown[ ] for scalar

subcurvature modes, and in the appendix for gravity waves,
either directly by using closed coordinates or by the analytidor the subcurvature modes under consideration here, the in-
methods in Appendix A. ner product is equivalent to that taken on a Cauchy surface

This transformation relates the flat coordinates,(+) for all of de Sitter space. LeT()(£,P,j,m) denote the
covering the upper left triangular wedge of de Sitter space tonodes with positive hyperbolic frequency in region |, as de-
the coordinatest;,v¢) covering the upper right triangular fined in Eq.(2.6), normalized using only the region | fixed
wedge, as indicated in Fig. 5. As discussed earlier, for positime surface, and leT{)(£,P,j,m) be the analogously de-
tive frequency mode functions the analytic continuation isfined modes in region V. It follows that in region | one has
with positive imaginary part£1)=¢€'", and so the mode expansion

e+ w{l2

(TS0, D) (grar— g7y Th(7:0)bi(£,P.j,m)

A ) 2007+ 1)

e w{l2 . -
+W/§Th(7l:—§)bv(§,P,l,m) +H-C-} (4.12
and similarly in region V
e+ w{l2

[TEIM(E,6,6,7;0)]

= d{ o .
%;n fom Wmﬂ(v@bv(ép,l,m)

e—ﬂ'{IZ R
T ey Th(m = Obi(¢,P.,m)

+H.c. (4.13

where the annihilation operatorsfn(g,P,j,m) and
by(¢,P,j,m) annihilate the Bunch-Davies vacuum for the
graviton field and satisfy the usual commutation relations

[Da(Z,P,j,m),bg(¢",P’,j’,m")]=0,

[bACZ,P.j,m),bi(¢" P ,j",m")]=0,  (4.14
R . FIG. 5. Both panels are conformal diagrams for maximally ex-
[bA(L,P,j ,m),bg(g’,P’ L m’)] tended de Sitter space. The shaded triangl@jirshows the region

covered by the flat null coordinates;(,v¢), while in (b) the region
=06p80({—{") Opp' Gjj 1 Omm covered by null coordinatesif,v;), is shown.
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where @A,B=1,V). In the Bunch-Davies vacuum we observe dence, and this is the only place the dependence on the wall
a doubling in the number of modes. This reflects the exisappears, one can carry over the results for scalar fields. In the
tence of correlations between regions | and V—or, alternacase at hand, we have a massless field before and after tun-
tively, between the inside and the outside of the bubble. neling and a finite energy difference across the wall. The
Another way of understanding this result for the vacuumspecific relevant results are froft8,29,23 and are briefly
is to note that the scalar mode functions and mixed tensasketched below.
(with one raised and one lowered indéb'é) mode functions As will be shown below, any bubble witH-#H{ has a
considered here have the same time dependence. As tfigite radius and extends outside the light caimegion )
choice of vacuum depends only on the time dependence gfovered by thé7,£,6,¢4) coordinate system. By considering a
the mode functions, the time dependence in the Buncheurve of constant field value outside the light cone in Fig.
Davies vacuum also has the same form for both chées. 1(a), one sees that the matching across the wall thus has to be
the scalars there is a discrete vacuum middié and here one done in region Il and its Euclidean continuation. The con-
also is normalizable, by the same arguments. tinuation into region Il from region | i€7— —ie ™Y, é—71
+iw/2, and so the metric in region Il becomes
V. GRAVITY WAVES AND A BUBBLE
WITH FINITE ENERGY DIFFERENCE ds?=a’(u)[du’~dr*+cosif 7dQf%)]. (5.0

In this section we take into account the effects of theFor an open universa(u):l/(H COSF[U]). The ana]ytic
nonvanishing size of the critical bubble and of the nonvancontinuation of the basis functions is given in somewhat
ishing difference in energy density across the bubble wall. Ifmore detail in Appendix B and is straightforward. With the
the presence of a bubble, one starts with a Bunch-Daviegyclidean continuation appropriate for tunneling, one also,
vacuum with H=Hg as an initial condition outside the pefore nucleation, rotates the space to Euclidean time
bubble and then continues these modes across the bubbje,;_.
wall into the open universe, where we idealize the expansion The wall has the same description in the Euclidean and
rate to be a constant with=Hy. Of course, in realistic | orentzian regions of spacetime, since it only depends on

single-bubble inflationary models inside the bubble is nei-  and notr, . For a thin wall, theu dependent scale factor is
ther constant, nor does it correspond to the true vacuum gg]

the subscripfT suggests. However, in order to capture the

qualitative consequences of changiHgacross the bubble 1

wall without getting involved in the messy details of specific He coshu] for u<ug,

models, we consider the idealization of an infinitely thin wall a(u)= (5.2
with constantd =H inside for calculating the gravitational 1 for U>u

waves. Whereas earlier in the paper welddb unity, from Ht coshiu+ &] R

here on factors oH will be displayed explicitly. Given that
the gravity waves and the scalars have the same time depewhere

1 1
Ht cosfiu+ 8] H[costu—ug]coshug-+sinH u— ug]cosRug] — (H/Hp)2]

(5.3

The metrics are explicity matched at the same value oEq. (2.11). As the exterior of the bubble has=H, the
a(u), the bubble radius false vacuum mode functiors™?T, (7¢) extend to region
Il as

1 1
R= He coshiug] - Ht coshiug+48]°

(5.4) A/u)=Hg costiule'®“(tanfu]—i{) (5.5

) ) ] _up to a factor ofi. These are matched across the wall onto
The mode functions in this background have only theirmodes of thetrue vacuum(as there is some slow roll after
u dependence changing across the wall. Requiring continuitynneling this is not exactly the true vacuum but is close

in the unchangedr6,¢) dependence forces the exterior enough for our purposgsThe corresponding mode functions
mode functions to match onto interior modes with the samenterior to the bubble, withu>ug, H=H+, are

value of 2. To match the mode functions across this wall,
we start with the initialu dependence corresponding to the g ;4 §)=H- costiu+ s1e/ ¢+ dtanHu+ 81—
analytic continuation of the timé¢z) dependence found in d )=Hr n ! (tant} ! g)('5_6)

Matching these and their first derivatives at the wall at
43.D.C. thanks K. Schleich for discussions about this. a(ug)=R gives
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ALu)=aBu+8)+BB_(u+d), (5.7) , st

R = )
Co(HE—HP) +¢1S{(HE+HP) +¢,S]

(5.10
where
whereS; is the surface tensiofrelated to the integral of the
change in the background field through the wadind
) Co,C1,C are positive constants. Since bdthy andHy are
2i¢ ' (5.9 finite and the surface tension does not vanRhs finite.
' One actually has to go to another coordinate system in
8 _Z Qif(2ug+ 5) order to show that there is a “time” where there is only false
¢ 2i¢ : vacuum and no bubblg0Q] for initial conditions. The con-
sequence here is that the mode functions must be orthonor-
and malized once they are continued across the bubble wall, as
they do not correspond to a normalized initial mode func-
tions in this other “time.” Thus the mode functions given in
Eq. (5.7) are not yet properly orthonormalized. At the nucle-
z=tanf ug] —tanf ug+ 8]= y1—(HeR)*~ V1—(H{R)% ation time (conventionally taken as the=0 slice in region
(5.9 II), the whole system is rotated to a Lorentzian signature.
Note that these become trivial in the lim#-0, that is, The mpde functions can then be orthonormalized in reg!on
when the energy differencéd— H-)—0. From the defini- II, or since .these are subcurvature modgs, one can continue
tion of z, it appears possible that=0 is possible even if them to regions | and V and orthonormalize them there. The

He#Hr, via taking R=0. However, within thenew thin latter was done in detail ifi18,29 and the former was done
wall approximation of[10], Rec\JHZ—HZ with a nonzero in detail in [21]. Substituting the tensor rather than scalar
constant of proportionality, and in the usual thin wall ap-spatial functions into these results, in region Il the wave
proximation[31] one has that the radius obeys function is(again up to overall factors af

_2i§—z

a{(—

d¢
+1)sinhm ¢

r — * Ejm H . T
hs(§!0!¢iﬂ)_jzm fO \/45(52 [T J (T+|7T/210!¢1771§)] S

) {by(£Ej,m{[C(+ D) ag+S(+ 0B ABAU+[C(+{) B+ S(+ e B [(u)}
+by(LEJ,m{[C(—Da ;+S(—DBIB_ (W +[C(— DB +S(—Da B} (5.1

As a result, the positive frequency part of the wave function inside region | for subcurvature modes is

hi(&,6,¢,7)= > fw d—g[TEi”‘@ 0.6, 701 [6.(5 E.j,m)
s m Jo \27(%+1) e s

+7ll2 e 72

X {C(+§)a5+s(+§)ﬁ—g}WTh(7];+§)+{C(+§)B{+S(+§)a—g}W§Th(7];_g)
~ e**rr§/2
+by(Z,E,j,m{C(—a_+S(—{) B, Wmﬂ(n;—é)

+mll2

+{C(_§)ﬁ—g+s(_§)a§}WTM”]H’D , (5.12

CO=\—5—— \/=|1+\/1-
22 (é) D§—|D2|2 2 D2

1
Du(0)=5 [la*+]B4*+11=Da(~ =1+ 77, .
—Z 2i 613 \/1 44/2
Dz<£)_a§ﬂ§_4_§2 e | B E ( t 22+4§2
and (5.19
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D2 anisotropy is given by the integral in the Sachs-Wolfe for-
/ . / D mula[32]
|D2| —|D2|2 D1

5Tew(9) 1 70 PN

— =3 f d PPN, (€= 10— 7,7)

e

-D, \/1 ( 472
= —l1-\/—].
|D,| 2 22+ 47°

The identityD,*>—|D,|?=D, was used in the above and can =_ f dn — hgg(g no—mm). (6.1
be checked by substituting into the definitions.

For scalars, an analogue of the vacuum supercurvature
mode in the presence of a bubble, witk —i, remains nor- The metrlch is defined with the conformal factor scaled out,
malizable when matched across the Wa8]. This is true for henceh,,,=h,,,/a%(7) in our notation. Here we have cho-
the case here as well, but as this modeyimdependent, it Sen the path to be parametrized by conformal time, where
does not contribute to the CMB anisotropy below. Conse-7o is the observing time ang, is the last scattering time for

quently, we do not consider it further here. the photon. The surface term vanishes for the tensor contri-
bution and hence is omitted. The radial-radial component of
V1. IMPLICATIONS EOR THE CMB ANISOTROPY the mode function has spatial dependence proportional to

Fi(&:0), as seen in EQ3.4).
Gravitational waves provide a time-dependent back- The Bunch-Davies positive frequency part of the tempera-
ground for the photons in the CMBB2] (for a review see ture contrast operator is, using E&.12 from the last sec-
[33]). The contribution of gravitational waves to the CMB tion,

ow(Q) 1 .
W E Y]m( J‘ g \/ane ](g o~ 775)[ |(§,E,J,m)[{C(-i—{)ag-i-S(-l—{)B;}

ot 2 o= T2
XW Th(m+ O +{C(+ DB AS(+Da_ g} GRS Th(7;— §)}

R —m{l2 .
+by(L,E,j,m{C(—a_+S(—{)B:t (T i—g )12 Tn(m,—2)

+ /2 .
HC(=B-+S(—Dayt (e—e T Th(7;+0)

(6.2

where the dots indicate a derivative with respect to conforThe statistical average of the ensemble of classical gravity
mal time. The Bunch-Davies negative frequency componentvaves is found by taking the corresponding quantum aver-
is age, so that the two-point correlation is

(G_V\)/(Q) CI:<|aIm|2>

TCMB

(+)(Q)

TCMB

(6.3

f §(§ +1) d7]1 ;:OdﬂzFl(§=7]o_771;§)

It is customary to expand the CMB anisotropy in terms of

multipoles according to XFi(£= 70~ nz;o(cotrm]Re['Th( MO To(n2i0)*]

OT () )_ 1 . o .
T E AmYim(Q). (6.4 +W R a8 Tn(n1;:)Th(72:0)]; (6.5
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for all 1. In showing this, it is useful to note tha€(Z)|>  including the smalk expansion of the exponentials. Thus,
+]S(¢)|?=1 and the definitions in Eq(5.13. Also since  after factoring out theH2 sint?[ 7] dependence, the term in
Dy=3[1+|e/?+|B,?] and|a|*~|B,*=1, curly brackets in Eq(6.5) behaves as

1 —Z242+0(1)

<+1. (6.6) (6.12)

7l wi(1+2H4L%)

Consequently as one probes larger wave numbéitsrough  for £ small. In the Sachs-Wolfe integral above, we also have
largerd multipoles the influence of the bubble dynamics the factor of ¢! in the measure. Sinchl i~¢ 2 one has
quickly becomes negligible in a uniform manner. The depenfusing Eq. (3.17) in conjunction with Eq (3.27] F;
dence on (), appears inn, 7., and in {. For  ~const. This implies that the integrand approaches a con-
an open universe, tanhf2)=+1—-Q, and sinh{y/2) stant as{—0, rendering the integral infrared convergent.
=1+ Zjagt scatteringSiNN(7/2) [34]. As ) approaches one, As (Hg—Ht) becomes small, botjg_, andz approach
70, e decrease as does their difference. In addition, the mozero for fixed{, and the second term in curly brackets ap-
mentum ¢ is measured in terms of the curvature scaleproaches zero. For vanishirey as is found in the vacuum,
{HoV1—-Qo=k. As a result, for large), large values of Eq. (6.11) approaches coftr{], making the integrand appear
dominate the integral in terms of physical momentum ando diverge as- ¢~ 2. We do not have an intuitive understand-
F\ (&) andT,(7;{) are evaluated for smafl », where they ing of this limiting behavior. Vanishing is never the case in
approach their flat space counterparts. the presence of the bubble since it implies exactly zero en-
The integrand in Eq(6.5 for the CMB multipole mo- ergy difference across the bubble wall.
ments is well behaved for smajl This can be demonstrated In order to calculate the,,,, one needs the time depen-
with the explicit form of F,(£;¢) in Eq. (3.17). (Recall that dence of the wave functions from the inflationary period,
for gravity waves thd =0, 1 moments vanish because thethrough radiation domination and into the current epoch of
graviton is a spin-two particleOne then notes thd; for ~ matter domination. Matching conditions have been found by
higher j is obtained by taking derivatives, which will not [22] and are calculated analogously to the flat7] and
alter the leading power of (although the coefficients may closed[35] universe cases. Time dependence has also been
changé. As (—0, the time-dependence factor in the basisconsidered in[36] but seemingly for a different initial

functions becomes vacuum.
9, Tr(7,0)1=3,[(i¢ sint 7]+ costi 7])e™¢7] VII. DISCUSSION
—Hsy sin 7](1-i{n)+0(£%. (6.7 We have determined the initial condition for the graviton
. ) field in an open universe originating from a bubble inflation
The first term in the curly brackets has the form model and calculated the contribution from gravitational
) ) waves to the CMB anisotropy. The total observed CMB an-
cotl{ m{IRE Tn(71; ) Tr(72:4)* ] isotropy for a given multipole is obtained by combining the
1 gravity wave contribution calculated here with the scalar
= (_) H2 sint?[ 7][1+0(£?)] (6.8 field contributions for the particular model. The effects of the
m{ bubble wall for the tensors, just as for the scalars, seems

confined mostly to very large scales, corresponding to small
since R¢1—i{(m—n,)]=1. For the second term in the curly ;. |t appears that the effects of curvature provide a larger
brackets, for small; effect for the tensors than the effects of the Walr].
Noted addedAfter this work was completed we learned
that Allen and Caldwell[38] and Sasakiet al. [39] have

D, sind m{] ReLa;—(Th(71:8) Th(m2:0)] reached similar conclusions with respect to the influence of
A 5 nonvanishing bubble size. Including the resultq&%] and
_ 1+Z— 1+0(¢9) the unpublished version of this papgB7] integrated the
472 { Sachs-Wolfe formula to get numerical predictions for the
: . C.
XRe aB_ Tn(71:8)Th(172:0)]. (6.9
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One hasv{<0 and|us|<|v;|. We also define the region |

APPENDIX A: RELATION BETWEEN FLAT hyperbolic null coordinates
AND HYPERBOLIC COORDINATES

. . . U=n+¢,
For the flat coordinates the line element (setting mte (A8)

H=1)
V= n— g!
ds’=—dt?+e?[dri+r2d0%, ], (A1)
where V<0 and |U|<|V|. Using the above relations be-
where —oe<t;<+0o, or in terms of flat conformal timey;  tween(%,& and (y;,r;) one can show that the two sets of

=—e null coordinates are related according to
1 1+u 1+
ds?=— [~dp{ +dr{+rfd0%)]. (A2) U=ln|=——| v=in ] (A9)
YA 1— Us 1_Uf

To relate the flat and hyperbolic coordinates one can em: _ _
bed de Sitter space i#+1)-dimensional Minkowski space EZ?‘;E;S?V’UQ&,&T(%? d%negg;_ci/nehr(\gi?. tThheusreWE)ﬁee
(see Ref[10], Sec. V or Ref[28]). The Minkowski coordi- yP y 9lar,

nates are \,u,x,y,z)=(w,u,r) and de Sitter space is de- loil <L, Jugl<vg| in terms of the flat coordinates. .
fined by T T In order to see the continuation into region V, consider

the transformationu— —u in the embedding Minkowski
space. This can be accomplished by takiggg —ty—i. In
terms of conformal time in region V, this is

T %+u2-w?=1. (A3)

The embedding of the open hyperbolic coordinates is )
ny=In[tani —t,/2+i7/2)]
w=sinHt,]cosh £], =In(—1)+In[tankt,/2—i7/2)]=In(— 1) — 7,.
u=cosht], (Ad) (A10)
r=sinHt,]sini £].
Thus we have
Generally,r>0, and as &t,<e and 0<¢<w, so that one _
sees that region | hyperbolic coordinates cover the range 0 U=npy+ry=In(—-1)-V,

<ws=ow, 1<u. The flat coordinates are embedded4s 1)-
dimensional Minkowski space according to

(A11)

V=n,—ry=In(-1)-U,

t=Infwrul, m=c==s =055 (AY  \hereU,V are the hyperbolic open coordinates in region V.

The definition of If—1) requires a choice of analytic con-
These COVe“W, u—>0, a |arger region than the hyperbolic tinuation, Wh|Ch haS been |dent|f|ed in termSqu, Vg, SO

open coordinates. As siftfl=—1/sinf5], coslit,]=  converting to these coordinates, one has

—coth 7], and cotfit,]=cosh #], the relation between the

coordinate systems is us=tanh(U/2)=tanh( —V/2— xi=w/2)
sin{ ] = —coth(V/2)= -7 ; &,

(A12)

re= ,

cosh &]+ cosh 7]
(A6) vi=tanhV/2)=tanh — U/2—+i 7l2)
sint 7]

- cosh »]+cosh&]”

7t = —cothU/2)=-1 ;¢

The flat coordinates do not cover all of de Sitter space buas given in the text. This transformation relates the flat co-

only half of maximally extended de Sitter space, as indicateardinates (¢ ,v¢) covering the upper left triangular wedge of

in the conformal diagram in Fig. 3 in the text. de Sitter space to the coordinates {v';) covering the upper
The null coordinates in the flat chart are right triangular wedge, as indicated in Fig. 5.
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APPENDIX B: INNER PRODUCT IN REGION II du dQ COSﬁ[T]
. . e . fﬁ—ungm)
For this appendix,H=1. To continue into region II, coshu]
e’——ie Y, é—r+iw/2, and the metric becomes -
X(id U (1,3:¢',j',m'). (B2)

ds’=a?(u)[du?~dr?+cosH[ 7]dQF, 1, (B1)

where a(u)=1/cosliu]. The Wronskian, with respect to
—iV, on the symmetric perturbations of the metric, gives forThe Bunch-Davies vacuum mode expandisee Eq.(4.12)]

an inner product in region I,

» dg ) et T2 ) _
PE”J D) [TE’m(fﬁ,(ﬁ,ﬂ;{)]EWTh(%Dbl(LP,J,m)
e—ﬂ'(/Z .
T ey Th(n —Obu(E,P.j,m)

+H.c., (B3)

becomes, in region Il,

s +7T§/2 (g) 771{/2 (g)
gmf dé{mﬂ[ln( TR T o ) 4., m) b,(¢,P,J, m)+mﬂ[|n( ie”");—¢]
| T8 r+i —.0,6:4,], m) by(¢,P,d,m)t +H.c.
=§m :dg{u?\(u,r,a,¢;§,j,m)B,(g,P,J,m)JruE(u,r,9,¢;—g,j,m)BV(g,P,J,m)+H.c.}. (B4)

Note that the complex conjugate is only taken in thdependence in region Il and both terms have the sadependence
corresponding to positive frequency. The integral over the suifaiceregion Il is an integral over the analytic continuation
of time u and over(d,¢). The analytic continuation of,( ) multiplies the whole expression and is independent. o for
calculating the Wronskian, first consider only thelependence and the integral ow$. The integral oveu will be done
subsequently. We have

TEJm(T 0,¢;0)=Fj(7+i7/2,{)(e’®€)Yjn(0,¢0)+Gj(7+im2;{) 53 b(ea®e )Yim(0,0)

+Hj(r+i m2;0)(ERe+e® ea)Vngm( 0,0)+1;(7+i m2;0) (A ® eb)V5§ngm( 0,0). (B5)

Thus,
ng Hi(r+i 72,0 VY m,
T2=cosh [ 7]H;(r+im/2;{)V3Y,p,
Ta=costr 2L 7l (r+i /2 ) VAVEY jt+ 826 (741 7/2,0) Y. (B6)
As we haveV2Yj,=—j(j+1)Y;, and from earlier

f dQ(V;VgYJ-m)*VEVEYJ,m,z—f dQ(V"év;VgY,-m)*(VEY,-,m,)
——f dQ(VEVEVAY ) * (VPY, )

fals

=[U+DI(+1) =118} 6mmr » (B7)

*
V2+ R{Y ) (V Yiim)

we obtain immediately that
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f dQTQETTE\*:{Fjﬁ,F; —2j(j+1)cosh [ 7]H; 3 H} +cosh [ 7][1;d 1 (i + D) (j+1)—1)+2G;7,GF —j(j+1)
X(Gjd A% +1;0,G)1} i S

5 5 (B8)

_ 3 T c* st =2 T g* 1 =4 2,12 T *
—{— FidFi—2j(j+1)cosh [ r]H;d,H] + 5 cosh *[7]I(I"=2)1;9 1] | &jj+ Smny -
The sign in front ofH; is due to the negative signature ofThere is a factor of 2 in front of botH; andG; . For H; there
is both a termT;, as well as a ternT,;, and forG; there is a contribution from bot&, andG3. The minus sign in front
of the last term is due to the negative sign relatifigand J2.

After some algebra, one finds that

acgr 2021+ P)cost[7] o
f dOTeTX =i G210 G dmor (B9)
After some work one can show that
- ., i sinff 7{] i
FioFf=Ni(0)? ooy S A4+ (22, (B10)
Putting this all together and substituting ﬂdg(g)z, we get
AT B* 2i¢ sinq (]
f dQTgd, T —W jjr5mmr . (B11)
The integral ovenu remains, with mode functions
. n(y)em? _ ;u cosiuln(g)
Th[ln(—le ); <] m=(l§—tanf[u])e§ W, (B12)
so the last integral, including the rest of the measure, becomes
J' cosH[ 7] coshu](i{—tanju])n({) coshul(—i¢' —tanHu])n(¢") ei@ig,)u_ZW cosH[ 7] S & (613
cosHu] J2 sinf 7] V2 sinf 7' 4¢ sin{ (] '
As a result, we have
- Ldu cosh [ u]cosK[ 71U B(u,3;¢,] ,m)(igf)u é*(u,E;§',j ",m")=8(5—1")6jjr Smm (B14)

which agrees with Eq(3.34).
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