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We calculate the spectrum of gravitational waves generated during inflation in open (V0,1) inflationary
models. In such models an initial epoch of old inflation solves the horizon and flatness problems, and during
this first epoch of inflation the quantum state of the graviton field rapidly approaches the Bunch-Davies
vacuum. Then the old inflation ends by the nucleation of a single bubble, inside of which there is a shortened
epoch of slow-roll inflation givingV0,1 today. In this paper we reexpress the Bunch-Davies vacuum for the
graviton field in terms of the hyperbolic modes inside the bubble and propagate these modes forward in time
into the present era. We derive the expression for the contribution from these gravity waves to the cosmic
microwave background anisotropy including the effect of a finite-energy difference across the bubble wall.
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I. INTRODUCTION

It has been well known for quite some time that gravita-
tional waves are generated during inflation and give an ob-
servable, and sometimes substantial, contribution to the cos-
mic microwave background anisotropy@1–7#. For flat (V0
51) inflation the spectrum of gravitational waves generated
and their observational consequences have been studied quite
extensively. However, for open (V0,1) inflationary models
in which our entire observable universe lies inside a single
bubble@8–11#, there has been no complete calculation of the
gravitational waves generated. In this paper we present such
a calculation.

Gravitational waves from inflation result from the stretch-
ing of quantum vacuum fluctuations of the linearized gravi-
ton field to superhorizon scales. Following a given mode of
fixed comoving wave numberk, one finds that at early times
its physical wavelengthl5a(t)(2p)/k is much smaller than
the Hubble lengthl H5H21 ~i.e., the mode is well within the
horizon!. This implies that for determining a physically rea-
sonablevacuum statefor the mode at early times, one may
ignore the expansion of the universe and match onto the
usual flat Minkowski space vacuum for the graviton field.
Once the correct quantum vacuum state has been determined
at early times, to continue these modes to later times be-
comes a mathematically well-defined exercise in classical
field theory, which involves propagating thepositive fre-
quency modes—those associated with annihilation operators
of the vacuum—forward in time, through the end of infla-
tion, and into the present epoch. As a mode crosses the ho-
rizon, its amplitude becomes frozen in. The process of gen-

erating gravitational waves during inflation is quite
analogous to the process of generating scalar fluctuations
during inflation. There is, however, an important difference.
The amplitude of the gravitational waves does not depend on
the slope of the potential; rather only the overall height of the
potential, or equivalently the expansion rateH during infla-
tion, is relevant. As a first approximation for calculating the
gravitational waves,H may be regarded as fixed during the
relevant epoch of inflation.

For open inflation identifying the correct initial conditions
for the linearized graviton field is not as straightforward as
for the flat case, because the underlying spacetime geometry
is more complicated. The simplest case involves one matter
field, the inflatonf, with minimal coupling to gravity. More
complicated models such as found in@12# have similar prop-
erties for the gravity wave calculations done here, so the
simple one field model is used in the following description.
~For a more detailed discussion of single-bubble inflation see
@10#.!

In open inflation, there is an initial epoch of old inflation
during whichf is stuck in a false vacuum withf5f fv .
During this epoch, the spacetime geometry approaches that
of pure de Sitter space, characterized by an expansion rate
H fv , whereH fv

2 5(8pG/3)V@f fv#. During this initial epoch
of old inflation the graviton field is driven to the vacuum
state. This determines the initial conditions using the same
considerations as for the flat case described above. Then old
inflation ends through the nucleation of a bubble, which ex-
pands roughly at the speed of light. The preferred time slic-
ing inside the light cone of the bubble center corresponds to
a spatially open universe. Inside the bubble the inflaton field
first slowly rolls down a rather flat part of the potential,
giving a shortened epoch of slow-roll inflation inside the
bubble. Later inside the bubble, the inflaton field rolls more
quickly and the usual reheating occurs, converting the
vacuum energy of the inflaton field into radiation and matter.

The coordinate chart with the line element

*Current address: Institute for Theoretical Physics, State Univer-
sity of New York, Stony Brook, NY 11794-3840. Electronic ad-
dress: bucher@insti.physics.sunysb.edu
†Electronic address: jdc@cosmos2.phy.tufts.edu

PHYSICAL REVIEW D 15 JUNE 1997VOLUME 55, NUMBER 12

550556-2821/97/55~12!/7461~19!/$10.00 7461 © 1997 The American Physical Society



ds252dt21a2~ t !@dj21sinh2@j#dV~2!
2 #, ~1.1!

describes an expanding Friedman-Robertson-Walker uni-
verse with spatially uniform negative spatial curvature. Hy-
perbolic open coordinates~rather than theflat coordinates, to
be described later! are the natural coordinate choice in the
presence of the bubble wall, which is why the interior of a
bubble is an open universe@8,9#. For de Sitter space and
these hyperbolic coordinates,a(t)5sinh@t# and

ds252dth
21sinh2@ th#@dj21sinh2@j#dV~2!

2 #, ~1.2!

where (0<th,1`). The hyperbolic coordinate chart has an
unphysical coordinate singularity att50, and to determine
initial conditions it is necessary to consider a larger region of
spacetime than that covered by the open coordinates with the
line element~1.1!.

The bubble nucleation process underlying open inflation
is sketched in Fig. 1, with the dashed lines indicating the
surfaces on which the inflaton field is constant. Roughly
speaking, the forward light cone of the materialization center
M , which we shall call region I and which is covered by the
coordinate chart just described, may be considered the
bubble interior. Regions II and III cover the spacetime prior
to bubble nucleation and the part of spacetime into which the
bubble expands, at a speed approaching the speed of light.

For future reference, in Fig. 2, we present the conformal

diagram for all of maximally extended de Sitter space. In
addition to the regions already mentioned, there also exist
regions IV and V, which are the past and future light cones
of M̄ , the antipodal point of the apex of region I. For a
discussion of the global structure of the de Sitter vacuum see
@13,14#.

The subject ofscalar perturbations in open inflation has
been studied extensively in recent years. Lyth and Stewart
@15# and Ratra and Peebles@16# calculated the scalar pertur-
bations in open inflation assuming conformal boundary con-
ditions for the vacuum of the inflaton field ast→0 in region
I. Bucher, Goldhaber, and Turok@10# presented the first
computation of the scalar perturbations in open inflation us-
ing the Bunch-Davies vacuum for the inflaton field outside
the bubble during the prior epoch of old inflation as initial
conditions and propagating the scalar modes through the
bubble wall into the open universe. Yamamoto, Sasaki, and
Tanaka obtained essentially the same results using Euclidean
methods@17,18#. Many recent calculations of scalar field
perturbations, for example@12,19,20,18,21#, take into ac-
count additional effects such as finite bubble size, varying
bubble wall profile, fluctuations in the bubble wall, etc.

The subject of gravitational waves generated during open
inflation was previously investigated by Allen and Caldwell
in an unpublished manuscript@22#. Within their approxima-
tions they found an infrared divergence in the multipole mo-
ments of the cosmic microwave background anisotropy
~CMB!. In their computation, in order to simplify the calcu-
lation, at early times a flat spacetime geometry~i.e., that of
Minkowski space! is assumed, and to improve the infrared
behavior of the graviton field during this early epoch, the
graviton field is given a small massmg , which at the end of
the calculation is taken to approach zero. Later on, inside

FIG. 1. ~a! shows a spacetime diagram for bubble nucleation.
The double-dashed vertical line to the left indicates anr50 coor-
dinate singularity. Time flows upward and the horizontal axis rep-
resents a radial coordinate. On the surfaces represented by dashed
curves the inflaton field is constant. The lower portion of the dia-
gram ~with t,0! represents the nucleation of a critical bubble, a
classically forbidden Euclidean process. Fort.0 the bubble ex-
pands classically, at a speed approaching that of light. The classical
expanding bubble evolution is SO~3,1! symmetric. In~b! the hyper-
bolic coordinates that maximally exploit the SO~3,1! symmetry of
the expanding bubble solution are sketched. Spacetime is divided
into three hyperbolic coordinate patches. The light cones separating
these regions represent unphysical coordinate singularities of a
character similar to that of the Schwarzschild horizon.

FIG. 2. A conformal diagram for all of maximally extended de
Sitter space is shown here.M̄ is the antipodal point ofM . The
hyperbolic coordinates that exploit the symmetry of the SO~3,1!
subgroup of the full de Sitter group SO~4,1! that leaves invariant
M ~and M̄ as well! divides spacetime into the five indicated coor-
dinate patches.
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region I on a hyperboloid of constant time with respect to the
region I coordinates, the spacetime geometry is taken to
change discontinuously to that of de Sitter space. Subse-
quently, inflation inside the bubble ends, so that the scale
factor a(h) becomes governed by a radiation-matter equa-
tion of state, and the evolution of the graviton field is com-
puted to take into account this change.

In Sec. IV of this paper we derive the Bunch-Davies
vacuum for the graviton field in de Sitter space in terms of
the hyperbolic region I coordinates, assuming de Sitter space
everywhere and a vanishing graviton mass. The Bunch-
Davies vacuum for the graviton field in de Sitter space, ex-
pressed in terms of the spatially flat coordinate slicing, is
used to express the Bunch-Davies vacuum for the graviton
field in de Sitter space in terms of the hyperbolic coordinates.
The latter are the natural coordinates for studying perturba-
tions in an open universe. While in principle it should be
possible to compute directly the transformation between the
flat and the hyperbolic modes, in practice this transformation
has proven algebraically intractable. Instead, we characterize
linear combinations of modes ofpositivefrequency with re-
spect to the flat coordinates~which is the same aspositive
frequency with respect to the Bunch-Davies vacuum! in
terms of analytic properties in the complex plane. In this way
linear combinations of hyperbolic modes of purelypositive
frequency with respect to the Bunch-Davies vacuum may be
constructed without explicitly expressing these combinations
in terms of the flat modes. The basic approach is somewhat
analogous to the Euclidean methods used by Sasakiet al. for
scalar modes@14#, except that here, rather than using a Eu-
clidean principle as the starting point, we determine the
vacuum in terms of the flat modes, using the complex plane
as a mathematical tool.

Our result for the Bunch-Davies vacuum for the graviton
field essentially coincides with that found by Allen and Cald-
well. There are some minor differences: whereas we obtain a
mixed state directly, Allen and Caldwell obtain a pure state,
which in the limitmg→0 mocks our mixed state. This does
not alter the divergence of the CMB multipole moments.

One caveat in computing the CMB moments relates to
gauge fixing. In the Sachs-Wolfe formula for the CMB an-
isotropy the gravity waves contribute only in the integral
along the line of sight—there is no contribution from the
tensormodes from the last scattering surface. Since linear-
ized gauge transformations arescalarandvector, one would
think that thetensorpart is gauge invariant.1 However, gauge
transformations can move the last scattering surface, and
thus change theintrinsic contribution in the Sachs-Wolfe
formula. If gravity wave modes mix with pure gauge modes,
cancellations may occur@23#. Linearized gravity wave
modes typically are taken to satisfy the synchronous gauge
condition t̂mhmn50, wheret̂m points along the time direction
of the preferred coordinate system. In de Sitter space these
conditions do not coincide for the flat and for the region I

hyperbolic coordinatizations. These issues have been inves-
tigated for hyperbolic coordinates in flat Minkowski space
@25#.

In this paper we drop the approximation of vanishing en-
ergy difference across the bubble wall, which is never ex-
actly the case in the presence of a bubble. This requires
including finite critical bubble size as well. Taking these ef-
fects into account removes the infrared divergence of the
CMB multipole moments. The calculation resembles the cal-
culations for scalar perturbations in Refs.@18,21#.

The organization of this paper is as follows. Sections II
and III give the multipole expansion for the pure tensor per-
turbations in hyperbolic space. Section II gives the evolution
equation for the graviton field, which is solved by separation
of variables. In Sec. III we study the properties of tensor
harmonics in three-dimensional hyperbolic space, first writ-
ten down explicitly by Tomita@26#. As mentioned above, in
Sec. IV we identify the Bunch-Davies vacuum for the gravi-
ton field in region I in terms of the hyperbolic modes. In Sec.
V we compute the effect of nonvanishing bubble size and of
nonvanishing energy density difference across the bubble
wall. This result is used in Sec. VI to give the tensor mode
contribution to the CMB anisotropy for an open universe,
and finally Sec. VII concludes. There are two appendixes
containing technical details. We set\5G51 throughout,
andH51 until Sec. V.

II. GRAVITATIONAL WAVES IN AN OPEN UNIVERSE

Gravitational waves are fluctuations about a background
metric. The metric can be written as a background metric
gmn
B plus a small perturbation:

gmn5gmn
B 1ĥmn , ~2.1!

where we setĥ0050, ĥ0i50, ĥi
i50, andĥi j

u j50. These con-
ditions require thescalar andvectorperturbations to vanish
and fix the gauge as well. The unperturbed spatial metric
g i j ~with line elementds̄25dj21sinh2@j#dV(2)

2 ! is used to
raise and lower roman indices, and the vertical line indicates
the covariant derivative induced byg i j .

For the background corresponding to the natural coordi-
nates in the interior of the bubble center’s light cone, the
background metric is given in Eq.~1.2!. Hyperbolic confor-
mal time

h5 ln@ tanh@ th/2## ~2.2!

will be used primarily in the following, in which the line
element is

ds25a2@h#@2dh21dj21sinh2@j#dV~2!
2 #, ~2.3!

where2`,h,0.
The condition that the first-order perturbation of the Ricci

tensor vanishesdRmn
(1)50 gives the equation of motion@24#

gab¹a¹bĥmn12Rambn
~B! ĥab50. ~2.4!

This may be rewritten as

@Dh
22¹~3!

2 12K#ĥi j ~j,u,f,h!50, ~2.5!

1We definescalar, vector, andtensorhere such that a vector that
can be expressed as the spatial gradient of a scalar is regarded as a
scalar, a tensor that may be expressed as spatial derivatives acting
on avector is regarded as avector, etc.
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whereK is the spatial curvature, withK521 for a hyper-
bolic universe, and we have usedRi jkl

(B)5K(g ikg j l2g jkg i l ).
Using the ansatz

T i j~x,h;z,P, j ,m!5n~z!@TP, jm~j,u,f;z!# i
jTh~h;z!, ~2.6!

we obtain

@¹~3!
2 1~z213!#T i j

P, jm~j,u,f;z!50, ~2.7a!

F]h
21

2a8

a
]h1~z211!GTh~h;z!50. ~2.7b!

The normalizationn(z) will be fixed later.
Using properties of the hyperbolic tensor harmonics that

solve Eq.~2.7a!, the gravitational waves in region I can be
expanded as2

ĥrs~h,j,u,f!

5(
jmP

E
0

`

dzn~z!T i j
P, jm~j,u,f;z!Th~h;z!âP, j ,m~z!1H.c.

5(
jmP

E
0

`

dz T i jP, jm~j,u,f,h;z!âP, j ,m~z!1H.c. ~2.8!

Here the operatorsâI(z,P, j ,m), âI
†(z,P, j ,m) satisfy the ca-

nonical commutation relations

@ âI~z,P, j ,m!,âI~z8,P8, j 8,m8!#

5@ âI
†~z,P, j ,m!,âI

†~z8,P8, j 8,m8!#50

and

@ âI~z,P, j ,m!,âI
†~z8,P8, j 8,m8!#5d~z2z!dPP8d j j 8dmm8 ,

wherez, z8.0.
The spatial tensor harmonics andn(z) are discussed in

the following section. Here the time dependence for the hy-
perbolic tensor modes and the flat tensor modes is found. For
open de Sitter space,a(h)521/sinh@h#. Thus for hyper-
bolic tensor modes Eq.~2.7b! becomes

Th922 coth@h#Th81~z211!Th50, ~2.9!

replacing2¹ (3)
2 andK with (z213) and21, respectively.

Transforming to the dependent variableT5sinh2@h#•F, one
may recast Eq.~2.9! into the form

F912 coth@h#F81~z211!F2
2

sinh2@j#
F50, ~2.10!

which is identical to the equation for the spatial hyperbolic
radial functions with orbital angular momentuml51. @See
for example Ref.@10#, Eq. ~5.21!.# It follows that

Th~h;z!5$ i z sinh@h#1cosh@h#%e2 i zh, ~2.11!

wherez is allowed to take both signs.
For the flat tensor modes, which will be needed in order to

find the Bunch-Davies vacuum, the time evolution equation
becomes

Tf92
2

h f
Tf81v2Tf50, ~2.12!

where we replace2¹2 andK with v2 and 0, respectively.
With the substitutionT5h f

3/2H, Eq. ~2.12! becomes the
Bessel equation of ordern53

2 whose solutionsH3/2
(1)(vh f)

andH3/2
(2)(vh f) are proportional to the spherical Bessel func-

tions h1
(1)(vh f) andh1

(2)(vh f) multiplied byh f
1/2. Conse-

quently,

Tf~h f ;v!5@11 ivh f #e
2 ivh f , ~2.13!

wherev is allowed to take both signs.

III. HYPERBOLIC TENSOR HARMONICS

We now turn to computing and normalizing the hyper-
bolic tensor harmonics, which satisfy the equation

hi j
uk

uk1~z213!hi j50. ~3.1!

The offset in (z213) is chosen for later convenience. The
pure tensor character of these modes requires that they sat-
isfy the conditions of tracelessness

hi
i50, ~3.2!

and transversality

hi j
u j50. ~3.3!

Here the roman letters (i , j51,2,3) indicate spatial indices.
Since Eq.~3.1!–~3.3! are invariant under rotations and

spatial inversion aboutj50, multipole solutions may be clas-
sified according to their angular momentum quantum num-
bersJ2, J3 , and their parityp. Parity is eitherelectricwith
p5(2) j or magneticwith p5(2) j11, denoted byP5E
andP5M , respectively. Fixingj , m, andP, we write down
the most general symmetric tensor field with these quantum
numbers. This restricts the angular dependence to a few
terms but does not specify the radial dependence. Imposing
Eqs. ~3.1!–~3.3! and solving for thej dependence gives a
solution for eachz.0 and (j ,m,P) for j>2 unique up to an
overall normalization.@There are no monopole (j50) or di-
pole (j51) modes.# The solution to these conditions has
been found by Tomita@26#.

The tensor field with electric parity has the form

2It should be pointed out that in addition to the continuous modes
with 0<z,` there might also exist some discretesupercurvature
modes, as have been found for the minimally coupled scalar field in
de Sitter space of massm when (m2/H2),2. See Refs.@14# and
@27# for a discussion. The one supercurvature mode which would be
expected to appear here by direct analogy has zero contribution to
the CMB because of its lack of time dependence.
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T̃E, jm~j,u,w;z!5F j~j;z!~ej
^ej!Yjm~u,w!

1Gj~j;z!d ã b̃~e
ã

^eb̃!Yjm~u,w!

1Hj~j;z!~eã^ej1ej
^eã!¹̃ ãYjm~u,w!

1I j~j;z!~eã^eb̃!¹̃ ã¹̃ b̃Yjm~u,w!, ~3.4!

where (ã,b̃51,2) indicate angular indices and¹̃ indicates
an S2 ~rather than anH3! covariant derivative. As a result,

d ã b̃ (eã^eb̃)5(eu
^eu1sin2u ew

^ew). The basis functions
are ej5dj, eu5du, and ew5dw. Note that this is not a
vielbein ~normalized! basis.

We use

¹25Dj
212 coth@j#Dj

1
1

sinh2@j#FDu
21cot@u#Du1

1

sin2 u
Dw
2 G ~3.5!

and

Dje
j50, Due

w52cot@u#ew,

Dje
u52coth@j#eu, Dwe

j51sinh@j#cosh@j#sin2@u#ef,

Dje
w52coth@j#ew, Dwe

u51sin@u#cos@u#ew,

Due
j51sinh@j#cosh@j#eu, Dwe

w52cot@u#eu2coth@j#ej,

Due
u52coth@j#ej. ~3.6!

We now impose the constraints of transversality and tracelessness. For transversality, taking the divergence ofT jm,E gives

¹•Tjm5F]F]j
12 coth@j#F~j!2

2 coth@j#

sinh2@j#
G~j!2

j ~ j11!

sinh2@j#
H~j!1

j ~ j11!coth@j#

sinh2@j#
I ~j!GYjm~V!ej

1F G~j!

sinh2@j#
1

]H

]j
12 coth@j#H~j!2

1

sinh2@j#
@ j ~ j11!21#I ~j!GFeu

]Yjm

]u
1ew

]Yjm

]w G50. ~3.7!

Both terms must individually vanish. Likewise, requiring the trace to vanish gives the condition

Ti
i5F~j!1

2G~j!

sinh2@j#
2
j ~ j11!I ~j!

sinh2@j#
50. ~3.8!

Thus transversality and tracelessness give

Hj~j;z!5
sinh2@j#

j ~ j11! F]F j~j;z!

]j
13 coth@j#F j~j;z!G ,

I j~j;z!5
sinh2@j#

~ j12!~ j21! F2S ]Hj~j;z!

]j
12 coth@j#Hj~j;z! D2F j~j;z!G , ~3.9!

Gj~j;z!5
1

2
$ j ~ j11!I j~j;z!2sinh2@j#F j~j;z!%.

The Laplacian in Eq.~3.5! acting on the various components ofT̃E, jm in Eq. ~3.4! gives

¹2@F~j!Yjm~V!~ej
^ej!#5F]2F]j2

12 coth@j#
]F

]j
2S j ~ j11!

sinh2@j#
14 coth2@j# DF~j!GYjm~V!~ej

^ej!

1$2 cosh2@j#F~j!Yjm~V!%~eu
^eu1sin2u ew

^ew!

1$2 coth@j#F~j!%F ~ej
^eu1eu

^ej!
]Yjm

]u
1~ej

^ew1ew
^ej!

]Yjm

]w G , ~3.10!
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¹2$G~j!Yjm~V!~eu
^eu1sin2uew

^ew!%5F4 coth2@j#

sinh2@j#
G~j!Yjm~V!G~ej

^ej!

1F]2G]j2
22 coth@j#

]G

]j
22G2

j ~ j11!

sinh2@j#
GGYjm~V!~eu

^eu1sin2u ew
^ew!

2
2 cosh@j#

sinh3@j#
G~j!F ~ej

^eu1eu
^ej!

]Yjm

]u
1~ej

^ew1ew
^ej!

]Yjm

]w G , ~3.11!

¹2FH~j!H ~ej
^eu1eu

^ej!
]Yjm

]u
1~ej

^ew1ew
^ej!

]Yjm

]w J G
5
4 j ~ j11!coth@j#

sinh2@j#
Yjm~V!H~j!~ej

^ej!

1F]2H]j2
22H24 coth2@j#H2

j ~ j11!

sinh2@j#
HGF ~ej

^eu1eu
^ej!

]Yjm

]u
1~ej

^ew1ew
^ej!

]Yjm

]w G
14H~j!coth@j#F ~eu

^eu!
]2Yjm

]u2
1~ew

^ew!S ]2Yjm

]w2 1sinu cosu
]Yjm

]u D1~eu
^ew1ew

^eu!S ]2Yjm

]u]w
2cotu

]Yjm

]w D G ,
~3.12!

and

¹2F I ~j!H ~eu
^eu!

]2Yjm

]u2
1~ew

^ew!S ]2Yjm

]w2 1sinu cosu
]Yjm

]u D1~eu
^ew1ew

^eu!S ]2Yjm

]u]w
2cotu

]Yjm

]w D J G
5

22I ~j! j ~ j11!coth2@j#

sinh2@j#
Yjm~V!~ej

^ej!1
2I ~j! j ~ j11!

sinh2@j#
Yjm~V!~eu

^eu1sin2u ew
^ew!

1
2@ j ~ j11!21#coth@j#I ~j!

sinh2@j# F ~ej
^eu1eu

^ej!
]Yjm

]u
1~ej

^ew1ew
^ej!

]Yjm

]w G
1F ]2I

]j2
22 coth@j#

]

]j
1

6I ~j!

sinh2@j#
22I ~j!coth2@j#2

j ~ j11!

sinh2@j#
I ~j!G F ~eu

^eu!
]2Yjm

]u2
1~ew

^ew!S ]2Yjm

]w2 1sinu cosu
]Yjm

]u D
1~eu

^ew1ew
^eu!S ]2Yjm

]u]w
2cotu

]Yjm

]w D G . ~3.13!

To solve forF j (j;z), we take the (e
j

^ej) component of
the Laplacian acting on Eq.~3.4!, and after applying the
substitutions in Eq.~3.9!, the coefficient ofej

^ej term in
Eq. ~3.1! becomes

]2F j~j;z!

]j2
16 coth@j#

]F j~j;z!

]j

1F ~z213!16 coth2@j#2
j ~ j11!

sinh2@j#GF j~j;z!50.

~3.14!

With the change of variablef j (j;z)5sinh2@j#Fj(j;z), one
recovers the differential equation for thescalar hyperbolic
radial functions@see, for example,@10# Eq. ~5.21!#:

]2f j~j;z!

]j2
12 coth@j#

]f j~j;z!

]j

1F ~z211!2
j ~ j11!

sinh2@j#Gf j~j;z!50. ~3.15!

Consequently,

F j~j;z!5Nj~z!sinhj22@j#
dj11

d~cosh@j#! j11 cos@zj#,

~3.16!

where the normalizationNj (z) is determined in the follow-
ing and we have imposed regularity at the origin.

For future reference, forj52,
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F2~j;z!5
N2~z!

sinh3@j#
$3z2 coth@j#cos@zj#

1~z31z23z coth2@j#!sin@zj#% ~3.17!

and, from Eq.~3.9!,

G2~j;z!5N2~z!sinh@j#

3F H z2 coth@j#

4
~122z223 coth2@j#!J sin@zj#

1H 2z522z32z

4
1

z coth2@j#

4

3~z22213 coth2@j#!J cos@zj#G ,
H2~j;z!

5N2~z!
1

sinh@j# F H z2

6
~z21426 coth2@j#!J cos@zj#

1H z coth@j#

2
~2 coth2@j#2z222!J sin@zj#G , ~3.18!

I 2~j;z!5N2~z!sinh@j#

3F H z2 coth@j#

12
~2522z213 coth2@j#!J cos@zj#

1H 2z524z323z

12
1

z coth2@j#

4

3~2coth2@j#1z212!J sin@zj#G .
Similarly, for the magnetic parity, the tensor field must

take the form

TB, jm~j,u,w;z!

5U~j;z!~eã^ej1ej
^eã!L ãYjm~u,w!

1V~j;z!~eã^eb̃1eb̃^eã!L ã¹̃ b̃Yjm~u,w!. ~3.19!

The magnetic parity modes do not contribute to the CMB
anisotropy because their component along the (ej

^ej) direc-
tion vanishes; therefore, we do not give their explicit form.

Normalization of the hyperbolic tensor harmonics. To
normalize the tensor harmonics, we impose the condition

E
0

`

djE dVAĝ~3!Ti j ~x;z,P, j ,m!*Ti j ~x;z8,P8, j 8,m8!

5d~z2z8!dP,P8d j , j 8dm,m8 ~3.20!

whereP indicates mode parity andx5~j,u,f!.
Because the tensor harmonics are eigenfunctions of a self-

adjoint operator, the inner product is proportional to ad
function. ThusNj (z) is determined by the coefficients of

e6 i zj in the asymptotic expansion of the tensor harmonics
for large j. ~For j→0, F j , Hj , Gj , I j→0.! In comparing
the asymptotic behaviors ofF, G, H, and I , it is more
meaningful to consider the rescaled quantities
F̂ j (j;z)5F j (j;z), Ĝj (j;z)5Gj (j;z)/sinh

2@j#, Ĥ j (j;z)
5Hj (j;z)/sinh@j#, and Î j (j;z)5I j (j;z)/sinh

2@j#, compo-
nents with respect to a normalized ‘‘vielbein’’ basis. From
Eq. ~3.9!, F̂;sinh23@j#, Ĥ;sinh22@j#, and Ĝ, Î
;sinh21@j#. For j@l, Ĝ and Î dominate, exactly as one
would expect. That is, at large distances a spherical gravita-
tional wave should locally resemble a plane gravitational
wave propagating in the radial direction.

To compute the coefficient of thed function in Eq.~3.20!,
we impose a boundary condition atj5jmax ~for specificity
say Dirichlet boundary conditions! and take the limit
jmax→`. For jmax@1, the integral in Eq.~3.20! is dominated
by theG and I components. These may be approximated by
their large-j asymptotic forms, starting with Eq.~3.16! and
substituting sinh@j#→(ej/2)5(w/2). This gives

F j~j;z!'4Nj~z!w23S d

dwD j11

@w1 i z1w2 i z#

54Nj~z!e23j@~ i z! je
1 i zj1c.c.#. ~3.21!

Here (x) j is shorthand forx(x21)•••(x2 j ). Using Eq.
~3.9!, we obtain

Hj~j;z!'
4Nj~z!e2j

j ~ j11!
$~ i z!~ i z! je

1 i zj1c.c.%,

I j~j;z!'
2Nj~z!e1j

j ~ j11!~ j21!~ j12!
$~ i z11!~ i z!~ i z! je

1 i zj

1c.c.%, ~3.22!

Gj~j;z!'
Nj~z!e1j

~ j21!~ j12!
$~ i z11!~ i z!~ i z! je

1 i zj1c.c.%.

Consequently, for~j@1!,

T~x;z,E, j ,m!'F 2Nj~z!ej

j ~ j11!~ j21!~ j12!
~ i z11!~ i z!

3~ i z! je
1 i zj$¹ ã¹ b̃Yjm~u,f!

1d ã b̃
1
2 j ~ j11!Yjm~u,f!%~eã^eb̃!G1c.c.

~3.23!

Inserting this asymptotic expression into Eq.~3.20! and fac-
toring outd j j 8dmm8 gives
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E
0

jmax
dj sinh2@j#E dVTi j ~x;z,E, j ,m!Ti j ~x;z,E, j ,m!*

'uNj~z!u2
4z2~z211!@z2~z2112!•••~z21 j 2!#

j 2~ j11!2~ j21!2~ j12!2

3
jmax
2 E dVU¹ ã¹ b̃Yjm1

1

2
d ã b̃ j ~ j11!YjmU2.

~3.24!

For the angular integration, note that

E dV~¹ ã¹ b̃Yjm!*¹ ã¹ b̃Yjm

52E dV~¹ ã¹ ã¹ b̃Yjm!* ~¹ b̃Yjm!

52E dV~¹ ã¹ b̃¹
ãYjm!* ~¹ b̃Yjm!

52E dVS ¹ b̃H ¹21
1

2
RJYjmD * ~¹ b̃Yjm!

5@ j ~ j11!#@ j ~ j11!21#, ~3.25!

given that gã c̃@¹ ã ,¹ b̃#¹ c̃ f5gã c̃R
ã b̃ c̃

d̃
¹df5R

b̃

d̃
(¹ d̃ f )

5 1
2R¹ b̃ f . Since the unit two-sphere is isotropic,Rã b̃5 1

2

d ã b̃R. Also, for the two-sphereR52. Thus the integral on
the last line of Eq.~3.24! is equal to@ j ( j11)#@ 1

2 j ( j11)
21], and Eq.~3.24! reduces to

uNj~z!u2
4@ j ~ j11!#@~1/2! j ~ j11!21#

j 2~ j11!2~ j21!2~ j12!2
z2~z211!

3@z2~z2112!•••~z21 j 2!#
jmax
2

, ~3.26!

from which it follows that

Nj~z!5
1

Ap

Aj ~ j11!~ j21!~ j12!

zA11z2Az2~z2112!•••~z21 j 2!
. ~3.27!

The p21/2 comes from passing to the continuum and the
phase ofNj (z) has been chosen to be real.

Flat tensor harmonics. The general form of the flat modes
is needed to identify the Bunch-Davies vacuum in the next
section. These may be regarded as the large-z, small-j limit
of the hyperbolic modes, a limit in which the effects of spa-
tial curvature disappear. We use lower case letters to denote
the flat analogues of hyperbolic quantities. In particular,

f ~r ,v!5n̄ j~v!r j22S 1r d

dr D
j11

cos@vr #. ~3.28!

Similarly, Eq. ~3.9! is modified to

hj~r ;v!5
r 2

j ~ j11! F] f j]r
1
3

r
f j G ,

i j~r ;v!5
r 2

~ j12!~ j21! F2 ]hj
]r

1
4

r
hj2 f j G , ~3.29!

gj~r ;v!5
1

2
@ j ~ j11!i j~r !2r 2f j #.

In particular, for j52

f 2~r ;v!5S 3v2

r 3 D cos@vr #1S 23v

r 4
1

v3

r 2 D sin@vr #,

g2~r ;v!5S 23v2

r D cos@vr #1S 2v5r 2

4
2v31

3v

r 2 D sin@vr #,
~3.30!

h2~r ;v!5S 2v2

2r 2
1

v4

6 D cos@vr #1S 2v3

3r
1

v

2r 3D sin@vr #,

i 2~r ;v!5S 2v2

2r D cos@vr #1S 2v5r 2

12
2

v3

6
1

v

2r 2D sin@vr #.

In order to calculate the normalization, one needs the
asymptotic behavior for larger :

f j~r ;v!'n̄ j~z!
1

2r 3
@~ iv! j11e1 ivr1c.c.#,

hj~r ;v!'n̄ j~z!
1

j ~ j11!

1

2r
@~ iv! j12e1 ivr1c.c.#,

~3.31!

i j~r ;v!'n̄ j~z!
1

j ~ j11!~ j21!~ j12!

3r @~ iv! j13e1 ivr1c.c.#,

gj~r ;v!'n̄ j~z!
1

2~ j21!~ j12!
r @~ iv! j13e1 ivr1c.c.#.

Again i j andgj dominate, and following the same steps as
for the hyperbolic modes we get

n̄ j~v!5
Aj ~ j11!~ j12!~ j21!

Apv j13
. ~3.32!

Normalization of the time-dependent mode functions. We
may define the antisymmetric bilinear form

^U,V&52E
S
dSmUab~S!~ iDJ m!V ab~S!, ~3.33!

where U, V are solutions to Eq.~2.4!. This product is
analogous to the Klein-Gordon product for scalar field
modes. Equation ~2.4! insures that the current
UAB(S)( i¹Jm)V AB(S) is conserved and thus that^U,V& is in-
variant under deformations of the surfaceS. In order that the
modes for a spacetimeM orthonormalized with respect to
Eq. ~3.33! are associated with operators that satisfy the cus-
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tomary canonical commutation relations, it is necessary to
chooseS in Eq. ~3.33! so thatS is a Cauchy surface for
M . The product̂ , & is the same for all Cauchy surfaces for
the spacetimeM . A Cauchy surface is a spacelike hypersur-
face which each nonspacelike curve intersects once and only
once @28#. In this paper we shall consider both the case
whereM is just region I, in which case a surface of constant

region I hyperbolic time serves as a convenient choice of
Cauchy surface, and also the case whereM is all of maxi-
mally extended de Sitter space, in which case the surface
defined byt50 in the region II hyperbolic coordinates serves
as a convenient Cauchy surface.

For the hyperbolic modes defined in Eq.~2.6! in region I
one calculates

^T~z,P, j ,m!,T~z8,P8, j 8,m8!* &52E
S
d3xa3~h!@T a

b ~x,h;z,P, j ,m!~ iDJ 0̃!T b
a ~x,h;z8,P8, j 8,m8!* #

5n2~z!2z~z211!d~z2z8!dP,P8d j , j 8dm,m8 , ~3.34!

whereD 0̃5(1/a)Dh52sinh@h#Dh . Note that Eq.~3.34! is
independent ofh. This may be seen by applyingDh to Eq.
~3.34! and using Eq.~2.9!. For the mixed tensor representa-
tion chosen above, the covariant derivativeD 0̃ may be re-
placed with the ordinary derivative] 0̃ . Therefore,

n~z!5
1

A2z~z211!
. ~3.35!

As the initial conditions are determined by the bubble
which extends outside of region I, a proper Cauchy surface
for initial conditions for an open universe extends outside of
region I as well. It was shown in@14# that for some cases,
inner products taken on a Cauchy surface in region II agreed
with those on fixed time surfaces in region I and V, even
though the latter do not make up a Cauchy surface for the
whole spacetime. The norms agreed for scalar fields with
sufficiently fast falloff at infinity, a condition satisfied by
subcurvature modes of the Laplacian~modes with eigenvalue
z211>1!. There are some differences in extending this
comparison between norms taken in I and V and norms taken
in II for gravity waves. When the gravity waves are contin-
ued across the light cone, into region II, time and space are
interchanged and the gauge choice becomeshum50 instead
of hhm50. As u is a spacelike coordinate, this is not the
usual gauge for metric perturbations. It may be thought of as
analogous to axial gauge~whereA350! rather than Cou-
lomb gauge~where A050! in electrodynamics. Secondly,
the inner product in region II involves a Wronskian in~the
analytic continuation of! j, and is more complicated due to
the tensor structure inj. As shown in Appendix B, this inner
product on a Cauchy surface in region II coincides with the
inner product in regions I, V, for modes which have suffi-
ciently fast falloff at infinity. The fields with sufficiently fast
falloff for gravity waves are again subcurvature modes, with
0<z2,`. As the falloff for the gravity wave modes is as
fast as that for the scalars in regions I, V~both go as
sinh21@j# for largej!, it was reasonable to expect this.

IV. IDENTIFYING THE GRAVITATIONAL WAVE
BUNCH-DAVIES VACUUM

The preceding section gave the mode expansion for the
linearized gravitational waves in region I hyperbolic coordi-

nates, which are the natural coordinates for the open universe
inside the bubble. In this section the initial Bunch-Davies
vacuum is expressed in terms of these open hyperbolic
modes. In the open universe inflationary scenario, the
Bunch-Davies vacuum is a preferred quantum state for de
Sitter space in the sense that it is a weak attractor: any initial
quantum state for perturbations from de Sitter space, subject
only to the requirement that the initial energy density be
finite, approaches the Bunch-Davies vacuum to arbitrary ac-
curacy after a sufficient amount of inflationary expansion.
The convergence is weak rather than strong because the ini-
tial perturbations are not erased but rather pushed to larger
and larger scales, so that for an observer able to probe only a
fixed physical volume, the perturbations seem to disappear.

The Bunch-Davies vacuum is physically characterized us-
ing the flat coordinates for de Sitter space. In these coordi-
nates, at sufficiently early times, a mode of fixed comoving
wave number evolves as if it were a mode in Minkowski
space. For the flat coordinates the line element is

ds252dtf
21e2t f@dr f

21r f
2dV~2!

2 #, ~4.1!

where2`,t f,1`, or in terms of flat conformal timeh f
52e2t f

ds25
1

h f
2 @2dh f

21dr f
21r f

2dV~2!
2 #. ~4.2!

Early on, when the mode is subhorizon, so that there are
many oscillations within an expansion time, one identifies
the mode with positive frequency asymptotic behavior with
an annihilation operator of the Bunch-Davies vacuum. These
are the modes that behave ase2 ikh f /h f for h f→2` where
h f is flat conformal time.

To relate the flat and hyperbolic coordinates one can em-
bed de Sitter space in~411!-dimensional Minkowski space
as described in Appendix A. Using sinh@th#521/sinh@h#,
cosh@th#52coth@h#, and coth@th#5cosh@h#, one gets that the
relation between the coordinate systems is
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r f5
sinh@j#

cosh@j#1cosh@h#
,

~4.3!

h f5
sinh@h#

cosh@h#1cosh@j#
.

The flat coordinates do not cover all of de Sitter space but
only half of maximally extended de Sitter space, as indicated
in the conformal diagram in Fig. 3. Nevertheless the flat
coordinates cover enough of de Sitter space to contain an
initial value surface for all of de Sitter space. The null sur-
face indicated by the dashed diagonal line, the boundary of
the region covered by the flat coordinates, is such a surface.3

To identify the hyperbolic modes ofpositive frequency
with respect to the Bunch-Davies vacuum, it is convenient to
use the null coordinates in the flat chart

uf5h f1r f ,
~4.4!

v f5h f2r f .

One hasv f,0 anduuf u,2v f . We also define the region I
hyperbolic null coordinates

U5h1j,
~4.5!

V5h2j,

whereV,0 and uUu,2V. Using the above relations be-
tween~h,j! and (h f ,r f) one can see that the two sets of null
coordinates are related according to

U5 lnF11uf
12uf

G , V5 lnF11v f
12v f

G . ~4.6!

Conversely,uf5tanh(U/2) andv f5tanh(V/2). Thus we see
that the region I hyperbolic coordinates cover only the region
21,v f,0, uuf u,2v f in terms of the flat coordinates.

The positive frequency modes with respect to open hyper-
bolic null coordinates in region I are

e2 i zU5F11uf
12uf

G2 i z

, e2 i zV5F11v f
12v f

G2 i z

. ~4.7!

However, a full mode function for the Bunch-Davies vacuum
must be specified in both regions I and V. A region I mode
function must be continued into region V in order to calcu-
late its inner product on the full space and the choice of
analytic continuation distinguishes between positive and
negative frequency Bunch-Davies modes. The identification
of the positive frequency modes for the Bunch-Davies
vacuum is determined by the analytic properties of the fac-
tors in e2 i zU and e2 i zV appearing in the hyperbolic mode
functions above. The other factors in the hyperbolic mode
functions contain only isolated singularities and no branch
cuts, and thus will be seen to be irrelevant in making this
identification. The bubble interior lies within the strip21

,uf,11. Outside this strip one encounters a branch cut,
taken here to lie near the real axis starting atuf51, passing
through1`, coming back from2`, and finally ending at
uf521, as indicated in Fig. 4. Thus@(11uf)/(12uf)#

i z

has two possible continuations to the entire real line—one
through the upper half plane above the branch cut and an-
other through the lower half plane below the branch cut.

One can identify the positive frequency Bunch-Davies
modes by requiring they have vanishing overlap with the flat
negative frequency modeseivuf , ~v.0!. Thus one requires

E
2`

1`

duf e
ivufS 11uf

12uf
D i z50 ~4.8!

3Technically, because this surface is null it is not a Cauchy sur-
face, but initial data on this surface can be continued everywhere in
de Sitter space.

FIG. 3. The region covered by the flat coordinates is shown in a
conformal diagram for all of maximally extended de Sitter space,
identical to that in Fig. 2. Although the flat coordinates cover only
half of maximally extended de Sitter space, the diagonal line, which
is the boundary of the region covered by the flat coordinates, rep-
resents an initial value surface for all of de Sitter space.

FIG. 4. The pointsuf521 anduf511 are branch points. To
impose single valuedness, we take a branch cut to start atuf5
11, extend touf51`, come back fromuf52`, and finally end
at uf521. The analytic continuation through the upper half plane
onto the remainder of the real line corresponds to the Bunch-Davies
positive frequency modes. Similarly, the continuation through the
lower half plane corresponds to the Bunch-Davies negative fre-
quency modes.

7470 55MARTIN BUCHER AND J. D. COHN



for all v.0. This is satisfied by the analytic continuation
through the upper half-plane above the branch cut, as de-
forming the contour toward1 i` makes this integral vanish.
As a result, positive frequency Bunch-Davies modes corre-
spond to analytic continuation through the upper half plane
into region V. This identification generalizes to gravitational
wave hyperbolic modes and other more complicated mode
functions of the form

R~uf ,v f !S 11uf
12uf

D i z1S~uf ,v f !S 11v f
12v f

D i z, ~4.9!

whereR(uf ,v f) andS(uf ,v f) are rational functions.
We shall use two sets of flat coordinates (uf ,v f) and

(ũf ,ṽ f), as indicated in Fig. 5, related by a spatial reflection
symmetry of de Sitter space that maps region I into region V.
It may be shown that

ũf5
21

v f
, ṽ f5

21

uf
, ~4.10!

either directly by using closed coordinates or by the analytic
methods in Appendix A.

This transformation relates the flat coordinates (uf ,v f)
covering the upper left triangular wedge of de Sitter space to
the coordinates (ũf ,ṽ f) covering the upper right triangular
wedge, as indicated in Fig. 5. As discussed earlier, for posi-
tive frequency mode functions the analytic continuation is
with positive imaginary part (21)5eip, and so

S 11uf
12uf

D 2 i z

5S ~21!21
11 ṽ f

12 ṽ f
D i z[~21!2 i zei zṼ,

~4.11!

S 11v f
12v f

D 2 i z

5S ~21!21
11 ũ f

12ũf
D i z[~21!2 i zei zŨ.

As a result, positive hyperbolic frequency modese2 i zU,
e2 i zV in region I become negative hyperbolic frequency
modes in region V with an attentuation factore2pz, and
negative frequency region I hyperbolic modes become posi-
tive frequency hyperbolic modes in region V with an ampli-
fication factorepz. The result of all this is that the positive
frequency modes in region I are the modes proportional to
eiU z, eiVz for all values ofz plus the continuation into region
V using the upper half plane. The negative frequency modes
are the same collection of modes with the opposite analytic
continuation into region V.

We may normalize the modes by combining the fixed
time surfaces of regions I and V. As shown in@14# for scalar
subcurvature modes, and in the appendix for gravity waves,
for the subcurvature modes under consideration here, the in-
ner product is equivalent to that taken on a Cauchy surface
for all of de Sitter space. LetT (I )(z,P, j ,m) denote the
modes with positive hyperbolic frequency in region I, as de-
fined in Eq.~2.6!, normalized using only the region I fixed
time surface, and letT (V)(z,P, j ,m) be the analogously de-
fined modes in region V. It follows that in region I one has
the mode expansion

(
P jm

E
0

` dz

A2z~z211!
H @TE jm~j,u,f,h;z!#s

rF e1pz/2

~e1pz2e2pz!1/2
Th~h;z!b̂I~z,P, j ,m!

1
e2pz/2

~e1pz2e2pz!1/2
Th~h;2z!b̂V~z,P, j ,m!G1H.c.J ~4.12!

and similarly in region V

(
P jm

E
0

` dz

A2z~z211!
H @TE jm~j,u,f,h;z!#s

rF e1pz/2

~e1pz2e2pz!1/2
Th~h;z!b̂V~z,P, j ,m!

1
e2pz/2

~e1pz2e2pz!1/2
Th~h;2z!b̂I~z,P, j ,m!G1H.c.J ~4.13!

where the annihilation operatorsb̂I(z,P, j ,m) and
b̂V(z,P, j ,m) annihilate the Bunch-Davies vacuum for the
graviton field and satisfy the usual commutation relations

@ b̂A~z,P, j ,m!,b̂B~z8,P8, j 8,m8!#50,

@ b̂A
†~z,P, j ,m!,b̂B

†~z8,P8, j 8,m8!#50, ~4.14!

@ b̂A~z,P, j ,m!,b̂B
†~z8,P8, j 8,m8!#

5dABd~z2z8!dPP8d j j 8dmm8 ,

FIG. 5. Both panels are conformal diagrams for maximally ex-
tended de Sitter space. The shaded triangle in~a! shows the region
covered by the flat null coordinates (uf ,v f), while in ~b! the region
covered by null coordinates (ũf ,ṽ f), is shown.
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where (A,B5I,V). In the Bunch-Davies vacuum we observe
a doubling in the number of modes. This reflects the exis-
tence of correlations between regions I and V—or, alterna-
tively, between the inside and the outside of the bubble.

Another way of understanding this result for the vacuum
is to note that the scalar mode functions and mixed tensor
~with one raised and one lowered index,T BA! mode functions
considered here have the same time dependence. As the
choice of vacuum depends only on the time dependence of
the mode functions, the time dependence in the Bunch-
Davies vacuum also has the same form for both cases.4 For
the scalars there is a discrete vacuum mode@14# and here one
also is normalizable, by the same arguments.

V. GRAVITY WAVES AND A BUBBLE
WITH FINITE ENERGY DIFFERENCE

In this section we take into account the effects of the
nonvanishing size of the critical bubble and of the nonvan-
ishing difference in energy density across the bubble wall. In
the presence of a bubble, one starts with a Bunch-Davies
vacuum with H5HF as an initial condition outside the
bubble and then continues these modes across the bubble
wall into the open universe, where we idealize the expansion
rate to be a constant withH5HT . Of course, in realistic
single-bubble inflationary modelsH inside the bubble is nei-
ther constant, nor does it correspond to the true vacuum as
the subscriptT suggests. However, in order to capture the
qualitative consequences of changingH across the bubble
wall without getting involved in the messy details of specific
models, we consider the idealization of an infinitely thin wall
with constantH5HT inside for calculating the gravitational
waves. Whereas earlier in the paper we setH to unity, from
here on factors ofH will be displayed explicitly. Given that
the gravity waves and the scalars have the same time depen-

dence, and this is the only place the dependence on the wall
appears, one can carry over the results for scalar fields. In the
case at hand, we have a massless field before and after tun-
neling and a finite energy difference across the wall. The
specific relevant results are from@18,29,21# and are briefly
sketched below.

As will be shown below, any bubble withHFÞHT has a
finite radius and extends outside the light cone~region I!
covered by the~h,j,u,f! coordinate system. By considering a
curve of constant field value outside the light cone in Fig.
1~a!, one sees that the matching across the wall thus has to be
done in region II and its Euclidean continuation. The con-
tinuation into region II from region I iseh→2 ie2u, j→t
1 ip/2, and so the metric in region II becomes

ds25a2~u!@du22dt21cosh2 tdV~2!
2 #. ~5.1!

For an open universea(u)51/(H cosh@u#). The analytic
continuation of the basis functions is given in somewhat
more detail in Appendix B and is straightforward. With the
Euclidean continuation appropriate for tunneling, one also,
before nucleation, rotates the space to Euclidean time
t→ i tE .

The wall has the same description in the Euclidean and
Lorentzian regions of spacetime, since it only depends onu
and nott, tE . For a thin wall, theu dependent scale factor is
@30#

a~u!5H 1

HF cosh@u#
for u,uR ,

1

HT cosh@u1d#
for u.uR ,

~5.2!

where

1

HT cosh@u1d#
5

1

HF@cosh@u2uR#coshuR1sinh@u2uR#Acosh2@uR#2~HT /HF!2#
. ~5.3!

The metrics are explicitly matched at the same value of
a(u), the bubble radius

R5
1

HF cosh@uR#
5

1

HT cosh@uR1d#
. ~5.4!

The mode functions in this background have only their
u dependence changing across the wall. Requiring continuity
in the unchanged~t,u,f! dependence forces the exterior
mode functions to match onto interior modes with the same
value of z2. To match the mode functions across this wall,
we start with the initialu dependence corresponding to the
analytic continuation of the time~h! dependence found in

Eq. ~2.11!. As the exterior of the bubble hasH5HF , the
false vacuum mode functionsepz/2Th(hz) extend to region
II as

Az~u!5HF cosh@u#ei zu~ tanh@u#2 i z! ~5.5!

up to a factor ofi . These are matched across the wall onto
modes of thetrue vacuum~as there is some slow roll after
tunneling this is not exactly the true vacuum but is close
enough for our purposes!. The corresponding mode functions
interior to the bubble, withu.uR , H5HT , are

Bz~u1d!5HT cosh@u1d#ei z~u1d!~ tanh@u1d#2 i z!.
~5.6!

Matching these and their first derivatives at the wall at
a(uR)5R gives4J.D.C. thanks K. Schleich for discussions about this.
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Az~u!5azBz~u1d!1bzB2z~u1d!, ~5.7!

where

az5
2i z2z

2i z
e2 i zd,

~5.8!

bz5
z

2i z
ei z~2uR1d!,

and

z5tanh@uR#2tanh@uR1d#5A12~HFR!22A12~HTR!2.
~5.9!

Note that these become trivial in the limitd→0, that is,
when the energy difference (HF2HT)→0. From the defini-
tion of z, it appears possible thatz50 is possible even if
HFÞHT , via takingR50. However, within thenew thin
wall approximation of@10#, R}AHF

22HT
2 with a nonzero

constant of proportionality, and in the usual thin wall ap-
proximation@31# one has that the radius obeys

R25
S1
2

c0~HF
22HT

2!1c1S1
2~HF

21HT
2!1c2S1

4 , ~5.10!

whereS1 is the surface tension~related to the integral of the
change in the background field through the wall! and
c0 ,c1 ,c2 are positive constants. Since bothHF andHT are
finite and the surface tension does not vanish,R is finite.

One actually has to go to another coordinate system in
order to show that there is a ‘‘time’’ where there is only false
vacuum and no bubble@30# for initial conditions. The con-
sequence here is that the mode functions must be orthonor-
malized once they are continued across the bubble wall, as
they do not correspond to a normalized initial mode func-
tions in this other ‘‘time.’’ Thus the mode functions given in
Eq. ~5.7! are not yet properly orthonormalized. At the nucle-
ation time~conventionally taken as thet50 slice in region
II !, the whole system is rotated to a Lorentzian signature.
The mode functions can then be orthonormalized in region
II, or since these are subcurvature modes, one can continue
them to regions I and V and orthonormalize them there. The
latter was done in detail in@18,29# and the former was done
in detail in @21#. Substituting the tensor rather than scalar
spatial functions into these results, in region II the wave
function is ~again up to overall factors ofi !

hs
r~j,u,f,h!5(

jm
E
0

` dz

A4z~z211!sinhpz
@TE jm~t1 ip/2,u,f,h;z!# S

t

3ˆb̂I~z,E, j ,m!$@C~1z!az1S~1z!b2z#Bz~u!1@C~1z!bz1S~1z!a2z#B2z~u!%

1b̂V~z,E, j ,m!$@C~2z!a2z1S~2z!bz#B2z~u!1@C~2z!b2z1S~2z!az#Bz~u!%‰. ~5.11!

As a result, the positive frequency part of the wave function inside region I for subcurvature modes is

hs
t~j,u,f,h!5(

jm
E
0

` dz

A2z~z211!
@TE jm~j,u,f,h;z!# s

r H b̂I~z,E, j ,m!

3F $C~1z!az1S~1z!b2z%
e1pz/2

~e1pz2e2pz!1/2
Th~h;1z!1$C~1z!bz1S~1z!a2z%

e2pz/2

~e1pz2e2pz!1/2
Th~h;2z!G

1b̂V~z,E, j ,m!F $C~2z!a2z1S~2z!bz%
e2pz/2

~e1pz2e2pz!1/2
Th~h;2z!

1$C~2z!b2z1S~2z!az%
e1pz/2

~e1pz2e2pz!1/2
Th~h;1z!G J , ~5.12!

where

D1~z!5
1

2
@ uazu21ubzu211#5D1~2z!511

z2

4z2
,
~5.13!

D2~z!5azbz5
2z

4z2
~2i z2z!e2i zuR,

and

C~z!5A D1

D1
22uD2u2

A1

2
S 11A12

uD2u2

D1
2 D

5A1

2
S 11A 4z2

z214z2
D ,

~5.14!
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S~z!5
2D2

uD2u
A D1

D1
22uD2u2

A1

2
S 12A12

uD2u2

D1
2 D

5
2D2

uD2u
A1

2
S 12A 4z2

z214z2
D .

The identityD1
22uD2u25D1 was used in the above and can

be checked by substituting into the definitions.
For scalars, an analogue of the vacuum supercurvature

mode in the presence of a bubble, withz52 i , remains nor-
malizable when matched across the wall@29#. This is true for
the case here as well, but as this mode ish independent, it
does not contribute to the CMB anisotropy below. Conse-
quently, we do not consider it further here.

VI. IMPLICATIONS FOR THE CMB ANISOTROPY

Gravitational waves provide a time-dependent back-
ground for the photons in the CMB@32# ~for a review see
@33#!. The contribution of gravitational waves to the CMB

anisotropy is given by the integral in the Sachs-Wolfe for-
mula @32#

dTGW~V!

T
5
1

2 E
he

h0
dh r̂ ar̂ bh̃ab,h~j5h02h,h!

5
1

2 E
he

h0
dh

]

]h
h̃ĵ ĵ~j5h02h,h!. ~6.1!

The metrich̃ is defined with the conformal factor scaled out,
henceh̃mn5hmn /a

2(h) in our notation. Here we have cho-
sen the path to be parametrized by conformal time, where
h0 is the observing time andhe is the last scattering time for
the photon. The surface term vanishes for the tensor contri-
bution and hence is omitted. The radial-radial component of
the mode function has spatial dependence proportional to
F j (j;z), as seen in Eq.~3.4!.

The Bunch-Davies positive frequency part of the tempera-
ture contrast operator is, using Eq.~5.12! from the last sec-
tion,

dTGW
~1 !~V!

TCMB
5
1

2 (
jm

Yjm~V!E
0

`

dz
1

A2z~z211!
E

he

h0
dhF j~j5h02h;z!H b̂I~z,E, j ,m!F $C~1z!az1S~1z!b2z%

3
e1pz/2

~e1pz2e2pz!1/2
Ṫh~h;1z!1$C~1z!bz1S~1z!a2z%

e2pj/2

~e1pz2e2pz!1/2
Ṫh~h;2z!G

1b̂V~z,E, j ,m!F $C~2z!a2z1S~2z!bz%
e2pz/2

~e1pz2e2pz!1/2
Ṫh~h;2z!

1$C~2z!b2z1S~2z!az%
e1pz/2

~e1pz2e2pz!1/2
Ṫh~h;1z!G J , ~6.2!

where the dots indicate a derivative with respect to confor-
mal time. The Bunch-Davies negative frequency component
is

dTGW
~2 !~V!

TCMB
5FdTGW

~1 !~V!

TCMB
G†. ~6.3!

It is customary to expand the CMB anisotropy in terms of
multipoles according to

dTGW~V!

TCMB
5(

lm
almYlm~V!. ~6.4!

The statistical average of the ensemble of classical gravity
waves is found by taking the corresponding quantum aver-
age, so that the two-point correlation is

cl5^ualmu2&

5
1

8 E
0

` dz

z~z211!
E

he

h0
dh1E

he

h0
dh2Fl~j5h02h1 ;z!

3Fl~j5h02h2 ;z!Hcoth@pz#Re@ Ṫh~h1 ;z!Ṫh~h2 ;z!* #

1
1

D1 sinh@pz#
Re@azb2zṪh~h1 ;z!Ṫh~h2 ;z!#J ~6.5!
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for all l . In showing this, it is useful to note thatuC(z)u2
1uS(z)u251 and the definitions in Eq.~5.13!. Also since
D15

1
2@11uazu21ubzu2# and uazu22ubzu251,

U 2azb2z

11uazu21ubzu2
U<11. ~6.6!

Consequently as one probes larger wave numbersz ~through
larger-l multipoles! the influence of the bubble dynamics
quickly becomes negligible in a uniform manner. The depen-
dence on V0 appears in h0 , he , and in z. For
an open universe, tanh(h0/2)5A12V0 and sinh(h0/2)
5A11zlast scatteringsinh(he/2) @34#. As V approaches one,
h0 ,he decrease as does their difference. In addition, the mo-
mentum z is measured in terms of the curvature scale
zH0A12V05k. As a result, for largeV, large values ofz
dominate the integral in terms of physical momentum and
Fl(j;z) andTh(h;z) are evaluated for smallj,h, where they
approach their flat space counterparts.

The integrand in Eq.~6.5! for the CMB multipole mo-
ments is well behaved for smallz. This can be demonstrated
with the explicit form ofF2(j;z) in Eq. ~3.17!. ~Recall that
for gravity waves thel50, 1 moments vanish because the
graviton is a spin-two particle.! One then notes thatF j for
higher j is obtained by taking derivatives, which will not
alter the leading power ofz ~although the coefficients may
change!. As z→0, the time-dependence factor in the basis
functions becomes

]hTh~h,z!]5]h@~ i z sinh@h#1cosh@h#!e2 i zh#

→HT sinh@h#~12 i zh!1O~z2!. ~6.7!

The first term in the curly brackets has the form

coth@pz#Re@ Ṫh~h1 ;z!Ṫh~h2 ;z!* #

5S 1

pz DHT
2 sinh2@h#@11O~z2!# ~6.8!

since Re@12iz(h12h2)#51. For the second term in the curly
brackets, for smallz,

1

D1 sinh@pz#
Re@azb2zṪh~h1 ;z!Ṫh~h2 ;z!#

5F11
z2

4z2G
21 11O~z2!

pz

3Re@azb2zṪh~h1 ;z!Ṫh~h2 ;z!#. ~6.9!

The argument in brackets on the right has the form

ReF2i z2z

2i z
e2 i z~2d12ur !

2z

2i z
@12 i z~h11h2!

1O~z2!#GHT
2 sinh2@h#

52
z2

4z2
@11O~z2!#HT

2 sinh2@h# ~6.10!

including the small-z expansion of the exponentials. Thus,
after factoring out theHT

2 sinh2@h# dependence, the term in
curly brackets in Eq.~6.5! behaves as

1

pz
1

2z2/4z21O~1!

pz~11z2/4z2!
;z ~6.11!

for z small. In the Sachs-Wolfe integral above, we also have
the factor ofz21 in the measure. SinceNj;z22 one has
@using Eq. ~3.17! in conjunction with Eq. ~3.27!# F j
;const. This implies that the integrand approaches a con-
stant asz→0, rendering the integral infrared convergent.

As (HF2HT) becomes small, bothb2z and z approach
zero for fixedz, and the second term in curly brackets ap-
proaches zero. For vanishingz, as is found in the vacuum,
Eq. ~6.11! approaches coth@pz#, making the integrand appear
to diverge as;z22. We do not have an intuitive understand-
ing of this limiting behavior. Vanishingz is never the case in
the presence of the bubble since it implies exactly zero en-
ergy difference across the bubble wall.

In order to calculate thealm , one needs the time depen-
dence of the wave functions from the inflationary period,
through radiation domination and into the current epoch of
matter domination. Matching conditions have been found by
@22# and are calculated analogously to the flat@1–7# and
closed@35# universe cases. Time dependence has also been
considered in@36# but seemingly for a different initial
vacuum.

VII. DISCUSSION

We have determined the initial condition for the graviton
field in an open universe originating from a bubble inflation
model and calculated the contribution from gravitational
waves to the CMB anisotropy. The total observed CMB an-
isotropy for a given multipole is obtained by combining the
gravity wave contribution calculated here with the scalar
field contributions for the particular model. The effects of the
bubble wall for the tensors, just as for the scalars, seems
confined mostly to very large scales, corresponding to small
z. It appears that the effects of curvature provide a larger
effect for the tensors than the effects of the wall@37#.

Noted added. After this work was completed we learned
that Allen and Caldwell@38# and Sasakiet al. @39# have
reached similar conclusions with respect to the influence of
nonvanishing bubble size. Including the results of@39# and
the unpublished version of this paper,@37# integrated the
Sachs-Wolfe formula to get numerical predictions for the
Cl .

ACKNOWLEDGMENTS

We would like to thank R. Brandenberger, P. Ferreira, L.
Ford, A. Guth, A. Liddle, A. Linde, B. Ratra, K. Schleich, N.
Turok, and A. Vilenkin for useful discussions, and especially
B. Allen and R. Caldwell for useful discussions and for shar-
ing their prior unpublished manuscript@22# with us. We
thank R. Caldwell for comments on the draft. J.D.C. is grate-
ful in particular to M. White for numerous discussions and
was supported by an ONR grant. J.D.C. also thanks the Uni-
versity of British Columbia, the Harvard-Smithsonian Center

55 7475PRIMORDIAL GRAVITATIONAL WAVES FROM OPEN . . .



for Astrophysics, and the Center for Particle Astrophysics,
the Physics Department, and LBNL at Berkeley for hospital-
ity in the course of this work. M.B. was supported by the
David and Lucille Packard Foundation and by National Sci-
ence Foundation Grant No. PHY 9309888.

APPENDIX A: RELATION BETWEEN FLAT
AND HYPERBOLIC COORDINATES

For the flat coordinates the line element is~setting
H51!

ds252dtf
21e2t f@dr f

21r f
2dV~2!

2 #, ~A1!

where2`,t f,1`, or in terms of flat conformal timeh f
52e2t f

ds25
1

h f
2 @2dh f

21dr f
21r f

2dV~2!
2 #. ~A2!

To relate the flat and hyperbolic coordinates one can em-
bed de Sitter space in~411!-dimensional Minkowski space
~see Ref.@10#, Sec. V or Ref.@28#!. The Minkowski coordi-
nates are (w̄,ū,x̄,ȳ,z̄)5(w̄,ū, r̄ ) and de Sitter space is de-
fined by

r̄ 21ū 22w̄251. ~A3!

The embedding of the open hyperbolic coordinates is

w̄5sinh@ th#cosh@j#,

ū5cosh@ th#,

r̄5sinh@ th#sinh@j#.

~A4!

Generally,r̄.0, and as 0,th,` and 0,j,`, so that one
sees that region I hyperbolic coordinates cover the range 0
<w̄<`, 1<ū. The flat coordinates are embedded in~411!-
dimensional Minkowski space according to

t f5 ln@w̄1ū#, h f5
21

w̄1ū
, r f5

r̄

w̄1ū
. ~A5!

These coverw̄, ū.0, a larger region than the hyperbolic
open coordinates. As sinh@th#521/sinh@h#, cosh@th#5
2coth@h#, and coth@th#5cosh@h#, the relation between the
coordinate systems is

r f5
sinh@j#

cosh@j#1cosh@h#
,

~A6!

h f5
sinh@h#

cosh@h#1cosh@j#
.

The flat coordinates do not cover all of de Sitter space but
only half of maximally extended de Sitter space, as indicated
in the conformal diagram in Fig. 3 in the text.

The null coordinates in the flat chart are

uf5h f1r f ,
~A7!

v f5h f2r f .

One hasv f,0 and uuf u,uv f u. We also define the region I
hyperbolic null coordinates

U5h1j,
~A8!

V5h2j,

where V,0 and uUu,uVu. Using the above relations be-
tween~h,j! and (h f ,r f) one can show that the two sets of
null coordinates are related according to

U5 lnF11uf
12uf

G , V5 lnF11v f
12v f

G . ~A9!

Conversely,uf5tanh(U/2) andv f5tanh(V/2). Thus we see
that the hyperbolic coordinates cover only the regionuuf u,
uv f u<1, uuf u<uv f u in terms of the flat coordinates.

In order to see the continuation into region V, consider
the transformationu→2u in the embedding Minkowski
space. This can be accomplished by takingth52tV2 ip. In
terms of conformal time in region V, this is

hV5 ln@ tanh~2th/21 ip/2!#

5 ln~21!1 ln@ tanh~ th/22 ip/2!#5 ln~21!2hh .

~A10!

Thus we have

Ũ5hV1r V5 ln~21!2V,
~A11!

Ṽ5hV2r V5 ln~21!2U,

whereŨ,Ṽ are the hyperbolic open coordinates in region V.
The definition of ln~21! requires a choice of analytic con-
tinuation, which has been identified in terms ofuf , v f , so
converting to these coordinates, one has

uf5tanh~U/2!5tanh~2Ṽ/226 ip/2!

52coth~Ṽ/2!52 ṽ f
21,

~A12!

v f5tanh~V/2!5tanh~2Ũ/226 ip/2!

52coth~Ũ/2!52ũ f
21

as given in the text. This transformation relates the flat co-
ordinates (uf ,v f) covering the upper left triangular wedge of
de Sitter space to the coordinates (ũf ,ṽ f) covering the upper
right triangular wedge, as indicated in Fig. 5.
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APPENDIX B: INNER PRODUCT IN REGION II

For this appendix,H51. To continue into region II,
eh→2 ie2u, j→t1 ip/2, and the metric becomes

ds25a2~u!@du22dt21cosh2@t#dV~2!
2 #, ~B1!

where a(u)51/cosh@u#. The Wronskian, with respect to
2 i¹t on the symmetric perturbations of the metric, gives for
an inner product

2E
S

du dV cosh2@t#

cosh2@u#
U A
B~t,S;z, j ,m!

3~ i ]Jt!U B
A* ~t,S;z8, j 8,m8!. ~B2!

The Bunch-Davies vacuum mode expansion@see Eq.~4.12!#
in region I,

(
P jm

E
0

` dz

A2z~z211!
@TE jm~j,u,f,h;z!#s

rF e1pz/2

~e1pz2e2pz!1/2
Th~h;z!b̂I~z,P, j ,m!

1
e2pz/2

~e1pz2e2pz!1/2
Th~h;2z!b̂V~z,P, j ,m!G1H.c., ~B3!

becomes, in region II,

(
PJm

E
0

`

dzH e1pz/2n~z!

~e1pz2e2pz!1/2
Th@ ln~2 ie2u!;z#TA

BS t1 i
p

2
,u,f;z, j ,mD b̂I~z,P,J,m!1

e2pz/2n~z!

~e1pz2e2pz!1/2
Th@ ln~2 ie2u!;2z#

3FTABS t1 i
p

2
,u,f;z, j ,mD G b̂V~z,P,J,m!J 1H.c.

5 (
PJm

E
0

`

dz$U A
B~u,t,u,f;z, j ,m!b̂I~z,P,J,m!1U A

B~u,t,u,f;2z, j ,m!b̂V~z,P,J,m!1H.c.%. ~B4!

Note that the complex conjugate is only taken in theu dependence in region II and both terms have the samet dependence
corresponding to positive frequency. The integral over the surfaceS in region II is an integral over the analytic continuation
of time u and over~u,f!. The analytic continuation ofTh(h) multiplies the whole expression and is independent oft. So for
calculating the Wronskian, first consider only thet dependence and the integral overu,f. The integral overu will be done
subsequently. We have

T̃E, jm~t,u,w;z!5F j~t1 ip/2;z!~et
^et!Yjm~u,w!1Gj~t1 ip/2;z!d ã b̃~e

ã
^eb̃!Yjm~u,w!

1Hj~t1 ip/2;z!~eã^et1et
^eã!¹̃ ãYjm~u,w!1I j~t1 ip/2;z!~eã^eb̃!¹̃ ã¹̃ b̃Yjm~u,w!. ~B5!

Thus,

Tt
t52F j~t1 ip/2;z!Yjm ,

Tã
t 52Hj~t1 ip/2;z!¹̃ ãYjm ,

Tt
ã5cosh22@t#Hj~t1 ip/2;z!¹̃ ãYjm ,

Tb
ã5cosh22@t#@ I j~t1 ip/2;z!¹̃ ã¹̃ b̃Yjm1d

b̃

ã
Gj~t1 ip/2;z!Yjm#. ~B6!

As we have¹2Yjm52 j ( j11)Yjm and from earlier

E dV~¹ ã¹ b̃Yjm!*¹ ã¹ b̃Yj 8m852E dV~¹ ã¹ ã¹ b̃Yjm!* ~¹ b̃Yj 8m8!

52E dV~¹ ã¹ b̃¹
ãYjm!* ~¹ b̃Yj 8m8!

52E dVS ¹ b̃H ¹21
1

2
RJYjmD * ~¹ b̃Yj 8m8!

5@ j ~ j11!#@ j ~ j11!21#d j j 8dmm8 , ~B7!

we obtain immediately that
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E dVTB
A]JtTA

B*5$F j ]JtF j822 j ~ j11!cosh22@t#Hj ]JtHj*1cosh24@t#@ I j ]JtI j* „j ~ j11!…„j ~ j11!21…12Gj ]JtGj*2 j ~ j11!

3~Gj ]JtI j*1I j ]JtGj* !#%d j j 8dmm8

5H 32 F j ]JtF j*22 j ~ j11!cosh22@t#Hj ]JtHj*1
1

2
cosh24@t#J2~J222!I j ]JtI j* J d j j 8dmm8 . ~B8!

The sign in front ofHj is due to the negative signature oft. There is a factor of 2 in front of bothHj andGj . ForHj there
is both a termT1a as well as a termTa1 , and forGj there is a contribution from bothG2 andG3 . The minus sign in front
of the last term is due to the negative sign relating¹2 andJ2.

After some algebra, one finds that

E dVTB
A]JtTA

B*5
2z2~11z2!cosh4@t#

j ~ j11!~ j12!~ j21!
F j]
J

tF j* d j j 8dmm8 . ~B9!

After some work one can show that

F j]
J

tF j*5Nj~z!2
i sinh@pz#

cosh6@t#
z3~11z2!~41z2!•••~ j 21z2!. ~B10!

Putting this all together and substituting forNj (z)
2, we get

E dVTB
A]JtTA

B*5
2i z sinh@pz#

p cosh2@t#
d j j 8dmm8 . ~B11!

The integral overu remains, with mode functions

Th@ ln~2 ie2u!;z#
n~z!epz/2

A~e1pz2e2pz!
5~ i z2tanh@u# !ei zu

cosh@u#n~z!

A~epz2e2pz!
, ~B12!

so the last integral, including the rest of the measure, becomes

E du
cosh2@t#

cosh2@u#

cosh@u#~ i z2tanh@u# !n~z!

A2 sinh@pz#

cosh@u#~2 i z82tanh@u# !n~z8!

A2 sinh@pz8#
ei ~z2z8!u5

2p cosh2@t#

4z sinh@pz#
d~j2j8!. ~B13!

As a result, we have

2E
S
du cosh22@u#cosh2@t#U A

B~u,S;z, j ,m!~ i ]Jt!U B
A* ~u,S;z8, j 8,m8!5d~z2z8!d j j 8dmm8 ~B14!

which agrees with Eq.~3.34!.
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