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We explore the role of non-Gaussian fluctuations in primordial black hole~PBH! formation and show that
the standard Gaussian assumption, used in all PBH formation papers to date, is not justified. Since large spikes
in power are usually associated with flat regions of the inflaton potential, quantum fluctuations become more
important in the field dynamics, leading to mode-mode coupling and non-Gaussian statistics. Moreover, PBH
production requires severals ~rare! fluctuations in order to prevent premature matter dominance of the uni-
verse, so we are necessarily concerned with distribution tails, where any intrinsic skewness will be especially
important. We quantify this argument by using the stochastic slow-roll equation and a relatively simple
analytic method to obtain the final distribution of fluctuations. We work out several examples with toy models
that produce PBH’s, and test the results with numerical simulations. Our examples show that the naive
Gaussian assumption can result in errors of many orders of magnitude. For models with spikes in power, our
calculations give sharp cutoffs in the probability of large positive fluctuations, meaning that Gaussian distri-
butions would vastly overproduce PBH’s. The standard results that link inflation-produced power spectra and
PBH number densities must then be reconsidered, since they rely quite heavily on the Gaussian assumption.
We point out that since the probability distributions depend strongly on the nature of the potential, it is
impossible to obtain results for general models. However, calculating the distribution of fluctuations for any
specific model seems to be relatively straightforward, at least in the single inflaton case.
@S0556-2821~97!03412-7#
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I. INTRODUCTION

Primordial black holes~PBH’s! represent a link between
quantum field theory and general relativity, both in their
birth in inflation and their decay via Hawking radiation@1#.
Beyond the exciting physics of their formation and evolu-
tion, PBH’s have the status of a dark matter~DM! candidate.
There is, in fact, renewed interest in this possibility, as
Jedamzik@2# has recently investigated whether PBH forma-
tion during the QCD epoch could explain the existence of the
;0.5M( massive compact halo objects~MACHO’s! indi-
cated by recent observations@3#. Through the requirement
that they not be overproduced, PBH’s are also important as
one of the few constraints on the inflationary Universe sce-
nario @4–6#. Since these objects are an important potential
link to the early universe, their formation should be exam-
ined in detail, especially if the standard Gaussian assumption
about their formation may be producing errors of many or-
ders in magnitude.

In order to determine the degree to which non-Gaussian
fluctuations are important, we use a stochastic inflation cal-
culation to investigate several PBH-producing toy models.
We solve for the probability distributions both analytically
and numerically, and show that the Gaussian assumption is
significantly flawed. Specifically, for models associated with
spikes in small-scale power, the Gaussian assumption over-
estimates PBH production by many orders of magnitude.
These results suggest that if some model of inflation is in
danger of being ruled out due to overproduction of PBH’s

~e.g., as considered by@5,6#!, then looking closely for non-
Gaussian behavior may serve to save the model, or at least
alter the ranges of viable parameters.

We start with a heuristic discussion. Our intuition about
non-Gaussian statistics for single inflaton models is fostered
by the simple relation between the inflation-produced power
spectrum and the field dynamics driving inflation. Using this
relation, we are able to make general statements about the
behavior of inflaton fluctuations in models which form
PBH’s, and see qualitatively why non-Gaussian statistics
might be important. In order to make this point, we briefly
review the standard inflation scenario, set our notation, and
use these results to illustrate why non-Gaussianity seems
likely in PBH formation.

The inflationary Universe scenario@7# provides the seeds
of structure formation by linking initial density perturbations
to quantum fluctuations in one or more scalar fields. See@8#
for a review. During inflation, the energy density of the Uni-
verse r becomes dominated by a scalar field potential
V(f) and the scale factorR expands superluminally
(R;tn, n.1). So length scales of fluctuations grow more
quickly than the horizon, eventually passing out of causal
contact, and only cross back inside the horizon after the in-
flation epoch has ended. In the chaotic scenario@9#, the spa-
tially homogeneous fieldf is initially displaced from the
minimum of its potential and rolls downward with its motion
governed by the Klein-Gordon and Einstein equations
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wheremPl is the Planck mass andH is the Hubble parameter.
In most instances,H'A8p/3mPl

2V(f)1/2 and the ‘‘slow-
roll’’ conditions

uV9u&24pV/mPl
2 ,

uV8u&A48pV/mPl

apply. The evolution off is then friction dominated,

ḟ.2
V8

3H
, ~3!

and the universe continues to inflate until either of the slow-
roll conditions breaks down at some valuef[fend.

As the physical size of fluctuations grows and they cross
outside the scale of the horizon during inflation, their ampli-
tude is set by quantum fluctuations inf. Since the energy
density r is dominated by V(f), we have
dr;V8df;V8H. After inflation endsR;tn, n,1 and
perturbations begin to cross back inside the horizon. The rms
magnitude ofdr/r when a scale reenters the horizondH is
simply related to its properties as it left the horizon. Using
the gauge-invariant variablej.dr/(r1p), we have1

dH~L !5S dr

r D
reenter

.S dr

r1pD
reenter

5S dr

r1pD
out

5
dr

ḟ2Uout
'

V3/2

V8mPl
3 U

out

, ~4!

whereL is the comoving scale of horizon crossing and the
right-hand side is evaluated when the fluctuation left the ho-
rizon atf5fout(L). When a fluctuation crosses outside the
horizon it has physical sizeH21(fout), so to find the comov-
ing size today, we must scale by the amount of expansion
since that time:L5@R0 /R(fout)#H

21(fout). We find the re-
lation betweenfout and the present-day length scaleL by
first determining the amount of expansion that occurred dur-
ing the rest of inflation@R(fend)/R(fout)# and then using
entropy conservation to determine the amount of expansion
that took place up to now@R0 /R(fend)#. We know
Ṙ/R5H(f)⇒dlnR5Hdf/ḟ during inflation, so the infla-
tionary expansion was quasiexponential:

L~fout!5S R0

Rend
D S Rend

R~fout!
DH21~fout!

5
R0

Rend
exp@N~fout!#H

21~fout! ~5!

where the number of ‘‘e folds’’ between exiting the horizon
and the end of inflationN(fout) is given by

N~fout!5E
fout

fendH~f!df

ḟ
'
8p

mPl
2 E

fout

fendV~f!df

V8~f!
. ~6!

For the expansion since the end of inflation, we will here
assume a ‘‘quick reheat’’ approximation and use
R0 /Rend'@3.17#(Tend/T0)'V(fend)

1/4/0.85 K, where the
numerical term arises due to the effective number of relativ-
istic species.

The crucial point from the above discussion is that every
region of the inflaton potential is mapped directly to some
scale of the fluctuation spectrum using Eqs.~4!–~6!. For
typical model parameters,L;1 Mpc corresponds to
N(f)'51 andL;1 pc corresponds toN(f)'37. We invert
such relations to determinef(pc),f(Mpc), etc.

Specific characteristics of the density spectrum over a
range of wavelengths then allow us to make general state-
ments about the behavior of the potential in some region of
f space. As we shall see in Sec. II, PBH production requires
a specially tuned fluctuation spectrum: the fluctuation ampli-
tude on small scales must be*103 times larger than that
measured on large scales by the Cosmic Background Ex-
plorer ~COBE! in order for appreciable PBH formation to
occur. It is this that makes non-Gaussianity important in
these models.

Hodgeset al. @10# have examined the question of non-
Gaussianity in some detail2 and showed that non-Gaussianity
is negligible in single-inflaton models with spectra meeting
the large-scale structure requirementdH;331025. How-
ever, models that produce PBH’s must have density
dH*0.01 over some range of small-scale wavelengths
@4,12#. In order to get a qualitative feel for why non-
Gaussian fluctuations may be important in these models,
consider a background perturbation expanded in terms of the
usual creation and annihilation operatorsak

† ,ak :

f~x,t !5fcl~ t !1df~x,t !,

df~x,t !5
1

~2p!3
E d3k@akdfke

ikx1H.c.#.

Inserting the perturbed field into the free-field Klein-Gordon
equation we obtain

df̈k2
k2

R2 dfk13Hdḟk1V9dfk50, ~7!

where we have expanded to first order indf and matched
small terms. Gaussian statistics are preserved to first order
since in the linear approximation all Fourier modes remain
separate.

As df becomes larger, however, the linear approximation
breaks down and terms of orderdf2 become important. Any
nonlinearity implies mode-mode coupling and introduces
non-Gaussianity. So the possibility of a non-Gaussian distri-
bution of fluctuations increases withdf. Moreover, PBH
production requires fluctuations of severals above
d rms[dH in order to keep their production relatively rare~see

1This approximate expression fordH is correct up to factors of
order unity which depend, e.g., on whether there is radiation or
matter domination when the scale reenters the horizon. For an exact
determination of the density fluctuation spectrum, one must solve
the Einstein equations, coupling scalar field fluctuations to metric
perturbations during inflation.

2For examinations of specific models using the stochastic inflation
approach see, e.g.,@11#.
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Sec. II for a discussion!. So we may expect non-Gaussian
statistics to play a role in PBH production in inflation.

A much stronger effect becomes apparent if we examine
the general nature of a potentialV(f) that produces PBH’s.
Since PBH production requires a large increase in power on
small scales, expression~4! requires thatḟ ~or similarly
V8) become extremely small over some region of the poten-
tial. In these cases, writing down a decomposition such as
Eq. ~7! makes no sense: every term is ‘‘small,’’ so matching
terms of equivalent size does not simplify the equation. In
other words, quantum fluctuations become important in the
dynamics off. We must keepdf linked to f, and in the
slow-roll approximation we have

d

dt
~f1df!52

V8~f1df!

3H~f1df!
.

The evolution becomes extremely nonlinear and non-
Gaussian effects become important.

In what follows, we investigate the question of non-
Gaussian statistics and PBH production in detail. In Sec. II
we present the basics of PBH creation and the implications
for the inflation-produced power spectrum. We review sto-
chastic inflation in Sec. III and present the method of deriv-
ing probability distributions that we will use in our ex-
amples. In Sec. IV, we present three examples of inflationary
scenarios which create PBH’s in significant numbers, and
solve for the distribution of fluctuations both analytically and
numerically. We reserve Sec. V for conclusions and specu-
lation.

II. PRIMORDIAL BLACK HOLES AND CONSTRAINTS
ON INFLATION

A. Formation

A PBH forms when a collapsing overdense region is large
enough to overcome the opposing force of pressure and falls
within its Schwarzschild radius@12#. We review the basics of
this process for a radiation-dominated universe, where the
sound speed is given bycs5c/A3, and the pressure is
p5cs

2r5r/3. Consider a spherically symmetric3 region with

density r̃ greater than the background densityr. The high-
density region is governed by the positive curvature
(K.0) Friedmann equation

H̃2~ t̃ !5
8p

3mPl
2 r̃ ~ t̃ !2

1

R̃2~ t̃ !
~8!

while the background space evolves as

H2~ t !5
8p

3mPl
2 rb~ t !. ~9!

Following the standard approach, choose initial coordinates
t5 t̃ 5t i such that the initial expansion rates in each region
are equalH̃5H5Hi . Using Eqs.~8! and~9! we see that the
initial size of the perturbationd i in terms of R̃(t i)[Ri is
given by

d i[
r̃ i2r i

r i
5

1

Hi
2Ri

2 . ~10!

Before the overdense region breaks away from the expan-
sion,R̃; t̃ 1/2 @14#, and we can estimate the timetc when the
perturbed region stops expanding@H̃(tc)50#,

tc.d i
21t i , ~11!

and the corresponding expansion factor at this time:

R̃~ tc!5Rc.d i
21/2Ri . ~12!

The perturbed region continues to contract only if it contains
enough matter to overcome the pressure,Rc*RJeans5
cstc;(1/A3)tc . With this condition met, a black hole will
inevitably form: we need not worry about vorticity or turbu-
lence interfering with the formation process since the region
will fall inside its Schwarzschild radius soon after turn
around (RS52GM.2GrcRc

3.Rc
3tc

22* 1
3Rc). The require-

ment for PBH formation is then

1

A3
tc&Rc&tc , ~13!

where the upper bound prevents the region of collapse from
being larger than the horizon scale, leading to the formation
of a separate universe@12#. Now, dividing Eq.~13! by tc , we
obtain a condition onRc /tc.Ri /t i.d i

1/2. This expression
scales like a constant with time, so it is convenient to evalu-
ate it at horizon crossing,R5t. We then have our final con-
dition for perturbations at horizon crossing:

1
3&d&1. ~14!

Thus, given an initial fluctuation withd satisfying Eq.~14! at
horizon crossing, we expect to form a PBH with massM
corresponding roughly to the horizon mass at that time~nu-
merical results agree@15#!.

B. Probing the power spectrum

Although quite elegant in solving the problems of the
standard big bang, inflation provides us only with a frame-
work of ideas and not with any exact predictions for univer-
sal evolution. Depending on the scalar potential, number of
fields, etc., inflation can produce a wide variety of fluctuation
spectra, e.g.,@10,16–18# and even the possibility of a low
V Universe @19#. Because of the freedom in inflationary
models, any means of constraining a particular scenario be-
comes extremely important. The Cosmic Background Ex-
plorer ~COBE! measurements and large-scale structure ob-
servations indicatedH;331025 on large scales (;103

Mpc!. These results probe only a small region of the inflation
potentialV(f) and serve mainly to fix the value of the in-

3Note that the spherical assumption is well justified@13# for
many-s ‘‘rare’’ fluctuations in aGaussianrandom field. This result
may actually be incorrect for non-Gaussian fluctuations and should
be explored further.
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flaton’s dimensionless coupling constant@e.g., for
V(f)5lf4, we needl;10214#. Overproduction of PBH’s
limits the value ofdH over many decades of ‘‘small’’ length
scales (1 Mpc–10210 pc! and avoidance of such overpro-
duction, coupled with the COBE data, provides a powerful
constraint on inflation@20,4#.

Limits on black hole production are usually quantified by
the parameterb, defined to be the initial mass fraction of
PBH’s

b[
rBH*

rTOT*
'E

1/3

1

P~d!dd, ~15!

where~* ! means we evaluate the ratio at the time of forma-
tion and the limits of integration are directly from Eq.~14!.
The probability distribution of density fluctuationsP(d) is
usually assumed to be Gaussian, with the power spectrum
giving uss[d rms5dH at any particular scale. For the rest of
this section we will assumeP(d) is of Gaussian form

P~d!5
1

A2ps
expS 2

d2

2s2D ~16!

and use the results as a gauge for any alternate distributions
we find.

There are two criteria for limiting the initial abundance of
PBH’s ~see, e.g.,@4#!. First, gravitational effects: the mass
density of PBH’s must not overclose the universe,
VPBH[(rPBH̄/r tot̄)u today,1. And second, Hawking radiation
from decaying PBH’s must not disrupt any well-constrained
physics~e.g., primordial nucleosynthesis!. Since PBH’s with
M&1015 g will have decayed before today, gravitational ef-
fects for this mass range are nonexistent. Similarly, larger
mass PBH’s have not had time to decay so Hawking radia-
tion does not come into play. Thus, the physics of constrain-
ing PBH’s is broken up into two mass regions:~1! gravita-
tional constraints M*1015 g; ~2! Hawking radiation
constraintsM&1015 g. We discuss each in turn briefly.

1. Limits from gravitation:VPBH<1

We are interested in constraining the parameterb, the
initial density fraction of PBH’s, using our limit on thecur-
rent fractionVPBH&1. We simply need to scale the density
ratio with time. We consider PBH formation in the radiation
dominated era, thusVPBH;R until matter-radiation equality,
after which the density fraction remains constant. IfR* is the
epoch of formation we have

b[VPBH* 5S R*Req
DVPBH&1025S t*s D 1/2, ~17!

where the inequality demandsVPBH&1 and the timet* cor-
responds toR(t* )5R* . Since the black holes formed are
roughly on the scale of the horizon at the time of collapse,
we can write~15! in terms of mass scale using the following
expression for horizon mass:

MH'105S tsDM( ~18!

which yields

b&10217F M

1015 gG
1/2

. ~19!

The constraint becomes weaker for larger masses since
higher mass PBH’s form later and the densityrPBH has a
shorter time to grow relative to the total density. We now use
Eqs.~15! and~16! to map theb values to limits ondH . Note
that sinceb is quite small, we depend very much on the tail
of our assumed Gaussian distribution. For a 1015 g PBH we
haveb&10217 and the limit becomesdH&0.04. Similarly,
for M;1M( , dH&0.06.

2. Limits from radiation

Hawking’s theory of spontaneous black hole evaporation
@1,21# predicts that black holes should emit particles at a
characteristic temperatureTH'1013(M /g)21 GeV, which
becomes more important with decreasing black hole mass.
The lifetime of decay ist'10227(M /g)3 s @22#, and is simi-
larly dependent on the black hole mass, with the evaporation
speeding up as the mass dwindles. PBH’s of different initial
masses evaporate at different times and their particle emis-
sion must not disrupt any well-understood physics associated
with the time of their decay. We summarize a few constraints
below. For more complete reviews see@20,4,23#.

M;101421015 g. Black holes in this mass range evapo-
rate after recombination and must not produce ag-ray den-
sity greater than the cosmic background@24#. The constraint
here is quite strong: PBH’s could have at most 1028 of the
critical density today. We then haveb&10225 which corre-
sponds todH&0.03. We emphasize that since PBH produc-
tion needsd;1/3, formation in this mass range corresponds
to a 10s effect assuming a Gaussian distribution of fluctua-
tions.

M;101121013 g. For these masses, evaporation occurs
before recombination but the emitted radiation does not at-
tain equilibrium due to the small value of the baryon to pho-
ton ratio. This effect will distort the background spectrum
unlessb&10218(M /1011g) @25#. For a typical mass, the re-
sult impliesdH&0.04, and a Gaussian 8s fluctuation is re-
quired for PBH formation.

M.1010 g. This mass range marks the possibility of af-
fecting big bang nucleosynthesis. For example, emitted pho-
tons from the evaporation must not photodissociateD. This
limit gives @26# b&10221(M /1010 g)1/2 and corresponds to
dH&0.03 forM;1010 g. PBH production again corresponds
to a 10s Gaussian fluctuation.

From the above discussions we see that PBH overproduc-
tion provides limits on the initial spectrum of perturbations
on mass scales small compared to the horizon mass
;1055 g. We want to translate the above limits as a function
of mass to limits as a function of comoving length scaleL.
For lengths that cross inside the horizon before matter-
radiation equality (L&13h21 Mpc! the time of horizon
crossing is

tH.33108~L/Mpc!2 s. ~20!

Together with Eq.~18! we have the relation
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MH;30S LpcD
2

M( ~21!

with 1M( corresponding toL;0.2 pc and 1015 g corre-
sponding toL;2310210 pc.

Since COBE fixesdH;331025 on large scales, PBH
constraints serve to limit the power spectrum from having a
spike in power at some small length scale, or from having an
excessively steep blue spectrum. SincedH must be*0.01 in
order for PBH formation to be important, we are concerned
with factors of;103 enhancement of the spectrum at small
scales. We point out again that such a power spectrum is
inherently associated with potentials that can make our
Gaussian assumption invalid. This non-Gaussian tendency
coupled with the fact that we are concerned with many-s
tails of the distribution~where even a small degree of skew-
ness could drastically alter the results! suggests that any
Gaussian analysis like the one above provides only a naive
guess for the number of PBH’s produced. We must under-
stand something about the true fluctuation statistics before
making any assumptions about the nature of the probability
distribution far from the mean.

III. STOCHASTIC INFLATION

The stochastic analysis of inflation@27# provides an ex-
cellent method for obtaining statistics of scalar field fluctua-
tions. In the stochastic approach, one divides the scalar field
driving inflation f into a long wavelength piecef l and a
short wavelength piecefs :

f~x,t !5f l~x,t !1fs~x,t !, ~22!

where

f l~x,t !5E d3ku@eR~ t !H2k#@akwk~ t !e
~2 ik•x!1H.c.#,

fs~x,t !5E d3ku@k2eR~ t !H#@akwk~ t !e
~2 ik•x!1H.c.#,

~23!

and e,1. The long wavelength piece contains only modes
outside of the horizon: it is coarse grained over the horizon
scale and will eventually be interpreted as the ‘‘classical’’
inflaton. The short wavelength piece includes only modes
inside the horizon, where quantum fluctuations are impor-
tant.

The goal is to determine how the subhorizon quantum
fluctuations affect the evolution of the coarse-grained field.
We now briefly sketch the derivation of the stochastic slow-
roll equation. ~For a more complete review see@28#, and
references therein.! First, insert the decomposition~22! into
the Klein-Gordon equation, and write the result in the form

ḟ l1
1

3H
V8~f l !5 f ~fs ;x,t !, ~24!

where

f ~fs ;x,t !5
21

3H
@f̈s13Hḟs2R22~ t !¹2fs#. ~25!

As in the standard case~3!, we have used the slow-roll ap-
proximation onf l and have neglected the spatial derivative
since this piece is homogeneous over the horizon scale. The
fs piece has its dynamics dominated by the spatial derivative
and any effects of the potential are negligible. The high fre-
quency modes are then approximated by those of a free
massless fieldwk

!(t) governed by the wave equation

S ]2

]t2
13H

]

]t
1k2e22HtDwk

!~ t !50, ~26!

where we make the quasi-de Sitter assumptionH'const and
R(t);exp(Ht). The solution to the free field equation is
known:

wk
!~ t !5

H

A2k
~h2 i /k!exp~2 ikh!,

h5E dt

R~ t !
'
e2Ht

H
, ~27!

so we have an explicit expression forfs by letting
wk(t)5wk

!(t) in Eq. ~23!. Inserting the expression forfs

into Eq. ~25! we have

f ~x,t !5
21

3H F ]2

]t2
13H

]

]t
1e22Ht¹2G E d3ku@k2eR~ t !H#

3@akwk
!~ t !e~2 ik•x!1H.c.#

5
i eR~ t !H2

A2~2pk!3/2
E d3kd@k2eR~ t !H#@ake

2 ik•x2H.c.#

~28!

and Eq.~24! is now complete. The fieldf l is smoothed over
the horizon scale and we are concerned with the dynamics at
a single spatial point. Letf l(x,t)→f l(t)→f(t) and inter-
pret this piece as a classical field which is acted on by the
stochastic forcef (x,t)→ f (t). The field f is affected not
only byV8, as in the standard slow-roll approach, but also by
the flow of initially small-scale quantum fluctuations across
the horizon. If we calculate the expectation value and two-
point function of f (t) and interpret them classically we ob-
tain

^ f ~ t !&50,

^ f ~ t ! f ~ t8!&5
H3

4p2 d~ t2t8!, ~29!

and Eq.~24! becomes a Langevin equation forf. Regroup-
ing terms and slightly changing notation, the final stochastic
slow-roll equation is

ḟ52
1

3H~f!
V8~f!1

H3/2

2p
g~ t !, ~30!

whereg(t) has the properties of Gaussian white noise:

^g~ t !&50,
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^g~ t !g~ t8!&5d~ t2t8!. ~31!

We have standard slow-roll evolution with an additional sto-
chastic term which represents the effect of quantum fluctua-
tions on the dynamics.

We will use the stochastic equation~30! to determine the
probability distribution of fluctuationsP(f,t) for models of
interest, and then measure the degree to which non-Gaussian
statistics are important. The Fokker-Planck equation associ-
ated withP(f,t) and ~30! is well known @29#:

] tP~f,t !5
1

3
]fF V8~f!

3H~f!
P~f,t !G

1
1

8p2 ]f@H3/2~f!]f„H
3/2~f!P~f,t !…#,

~32!

with the Stratonovich interpretation of the noise.
Several authors have employed the stochastic Langevin

equation and corresponding Fokker-Planck equation to ex-
plore the importance of non-Gaussian fluctuations for large-
scale structure@30,28,11#. We use a similar approach but on
the much smaller scales relevant for PBH formation. We also
choose to work with the more intuitive Langevin equation
~30! when determining our solutions rather than the more
complicated Fokker-Planck mathematics of Eq.~32!. Next
we present several examples which illustrate our method of
solution and provide a feel for how non-Gaussian statistics
arise from nonlinear inflaton dynamics.

A. de Sitter: The Gaussian case

For our template example we examine the case of con-
stant vacuum energy, where there is no possibility of mode-
mode coupling and the statistics should be exactly Gaussian.
To show this point clearly, start with Eq.~30!. We have
H(f)5H5 const andV8(f)50, so the evolution is simple
diffusion

ḟ5
H3/2

2p
g~ t !. ~33!

The normal statistical behavior becomes apparent after inte-
grating:

f~ t !5fo1
H3/2

2p E
to

t

g~ t8!dt8. ~34!

Since* t0
t g(t8)dt8 is Gaussian distributed as a noise source,

the resulting probability distribution forf must be Gaussian
as well. From Eq.~34! we have

^f~ t !2f0&50,

^uf~ t !2f0u2&5
H3

4p2E
t0

t E
t0

t

d~ t92t8!dt9dt85
H3

4p2 ~ t2t0!,

~35!

and the probability distribution

P~f,t !}expF2
@f~ t !2f0#

2

2s2 G ; ~36!

s2[^uf~ t !2f0u2&5
H3

4p
~ t2t0!.

Over a Hubble time (t2t05H21),s5H/2p: the standard
result from quantum field theory.

Non-Gaussian distributions arise when the evolution is
nonlinear, or when the inflation is not strictly de Sitter. One
gains insight into the statistics of more complicated ex-
amples by comparing them to the simple de Sitter case. Our
goal when finding distributions for our examples will be to
put the stochastic equation into the form of Eq.~33! so that
we may simply write down the answer using Eq.~36!. We
illustrate this technique in the examples that follow, and use
the notation

x[f/mPl ; t→t/mPl

in order to keep the variables dimensionless.

B. Nonlinear diffusion: Driftless f4

Mode-mode coupling arises when either theV8 ‘‘drift’’
term or the diffusion term in Eq.~30! is nonlinear inf. In
order to develop some intuition for how each of these effects
generates non-Gaussian statistics, consider first an example
with nonlinear diffusion when the drift component is ignored
(V8→0). For concreteness let

V5
l

4
mPl
4 x4 ~37!

with H5mPlA(2pl/3)x2. If we ignore the drift term in Eq.
~30! our stochastic equation is

ẋ5Cx3g~ t !, ~38!

whereC5l3/4@54p#21/4. The trick now is to change vari-
ables,x→Z(x), such thatZ(x) will satisfy the simple diffu-
sion equation~33!. We want

Ż5
dZ

dx
ẋ5

dZ

dx
@Cx3g~ t !#5@const#3g~ t !, ~39!

where we have used Eq.~38! in the second step. Clearly if
we let

Z5
1

2
x22 ~40!

then we are left with an equation of constant diffusion

Ż5Cg~ t !. ~41!

Now we write down the answer in correspondence with Eq.
~36!

P~Z,t !}expF2
~Z2Z0!

2

2C2t G . ~42!

Finally, changing back tox yields the probability distribution
of interest,
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P~x,t !5U]Z]xUP@Z~x!,t#}x23expF2
~x222x0

22!2

8C2t G .
~43!

The statistics here are clearly non-Gaussian, but is the
deviation significant? The answer depends on the value of
C2t which is, in an approximate sense, the effective width of
the distributionseff . Expression~43! is plotted in Fig. 1 for
C2t51 andx051 with arbitrary normalization. We see that
P(x) has a long tail of large fluctuations, and clearly is far
from Gaussian. For small values ofseff , the deviation ofx
from x0 will not be significant and the distribution will re-
cover a Gaussian shape. We will discuss this behavior in
detail following the next example.

C. Nonlinear diffusion: Full f4 theory

Now let us go one step further and include the diffusion
term for the potential~37!. We haveV85lmPl

3 x3 and the
stochastic equation~30! becomes

ẋ52C1x1C2x
3g~ t !, ~44!

whereC15Al/6p andC25l3/4@54p#21/4. The drift term in
this case is linear and does not lead to mode-mode coupling.
The probability distribution of fluctuations will then look
very much like that of the driftless case~43!, except that the
peak will shift to smallerx values as the field rolls down the
hill, and the spread in the distribution with time will no
longer be linear.

As before, we obtain the solution through a change in
variables:x(t)→Z(x,t). In this case we would like to first
remove the drift term by effectively going to a frame moving
with the mean ‘‘classical’’ velocity~thus, the explicit time

dependence inZ). By the classical velocity we mean the
solution to Eq.~44! when the quantum fluctuating term is left
out:

ẋ52C1x, ~45!

which is simply

xcl~ t !5x0exp~2C1t !. ~46!

We would like our new variable to be constant as long as
x(t) follows this classical path, so we let

Z~x,t !5xexp~C1t !5S x

xcl~ t !
D x0 . ~47!

We have chosenZ@x5xcl(t),t#5x0. NowZ has time deriva-
tive

Ż5 ẋexp~C1t !1C1xexp~C1t !, ~48!

and using Eq.~44! for ẋ we have a stochastic equation for
Z:

Ż5C2x
3exp~C1t !g~ t !5C2Z

3exp~22C1t !g~ t !. ~49!

Now our equation is much like Eq.~38! except for the extra
time-dependent factor. We can, however, scale this factor out
using a change in time variable:t→t(t). If we remember
thatg2(t);d(t) then we have

]Z

]t
5C2Z

3exp~22C1!F dtdtG21/2

g~t!. ~50!

In order to match Eq.~38! we needdt/dt5exp(24C1t), and
requiringt(t50)50 gives

t~ t !5
1

4C1
@12exp~24C1t !#5

1

4C1
$12@xcl~ t !/x0#

4%.

~51!

We now have4

Ż5C2Z
3g~t! ~52!

just as in Eq.~38!, and we simply use the solution~43! to
give us the probability distribution forZ:

P~Z,t!}Z23expF2
~Z222Z0

22!2

8C2
2t G . ~53!

We transform back tox and t and obtain the standard result
for f4 theory @28#

P~x,t !}x23expF2
@x222xcl~ t !

22#2

2~C2
2/C1!$@x0 /xcl~ t !#

421%G . ~54!

So, as expected, the distribution has the same non-Gaussian
form as did Eq.~43!. In truth, however, most practical cases

4From now on, the overdot will signify the derivative with respect
to the argument of the stochastic functiong.

FIG. 1. The unnormalized probability distribution~43! for the
driftless f4 example, wherex[f/mPl . We use the the value
x051 arbitrarily and pickC2t51, which is unnaturally large, in
order to demonstrate the intrinsic non-Gaussianity resulting from
nonlinear diffusion.
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~i.e., those concerning large scale structure! find this distri-
bution quite well approximated by a Gaussian due to its ex-
tremely small standard deviation,s}Al.

To put in some numbers, let us assume we are interested
in the statistics of fluctuations associated with large scales,
say the modes that cross outside of the horizon during the
epoch x0;4. We need to evaluate Eq.~54! at
xcl(t)5xend;0.4 in order to find the distribution of interest.
Since for this modell;10214, let us assume that the stan-
dard size of a fluctuation aboutxend in the final distribution is
quite small:x5xend1e ~where,e/x0 is assumed!1). In Eq.
~54! we have

x22.xend
2222e/xend

3 ~55!

and

P~e!}expS 2e2

2seff
D , ~56!

which is Gaussian as expected with an effective standard
deviation

seff
2 5

xend
6 C2

2

2C1
@~x0 /xend!

421#5
l

12
@~x0 /xend!

421#xend
6 .

~57!

Plugging in the numbers we haveseff;231027. So our
approximatione/xend!1 is clearly self-consistent, and the
Gaussian assumption is a very good one in this typical case.

The small value ofseff is responsible for the near Gauss-
ian statistics, but the more the mean size of fluctuations in-
creases (seff↑), the more Eq.~55! fails and the Gaussian
approximation~56! breaks down. In this way we can under-
stand why a flat potential region gives rise to non-
Gaussianity. Let us useC1 as a crude measure of the impor-
tance of the drift term (;V8) in the dynamics~44!. Notice
that as the drift term gets smaller (C1↓), the effective width
of the distribution~57! grows, and with it the likelihood of
non-Gaussian statistics. Notice also that as we consider fluc-
tuations farther and farther from the mean, approximation
~55! will get worse and worse. The number of standard de-
viations one must be from the mean in order for non-
Gaussian statistics to be important is very sensitive to the
value of l. However, we can at least see the qualitative
effect that large fluctuations have on highlighting any intrin-
sic non-Gaussianity.

D. Nonlinear drift

Finally we examine the case of nonlinear drift as a source
of non-Gaussian behavior. Consider the potential

V5lmPl
4 ~11ax3! ~58!

over a region whereuxu!(1/a)1/3. The potential is roughly
constant over this region (V'lmPl

4 ) so the only nonlinearity
comes fromV853lmPl

3 ax2.
The stochastic equation in dimensionless variables is then

ẋ'2C1x
21C2g~ t !, ~59!

whereC15aA3l/8p, and C25l3/4(32/27p)1/4. Since the
diffusion term is now constant, any non-Gaussian statistics
will arise due to thex2 drift term in Eq.~59!. As before, we
solve for the probability distribution by making a change in
variables,x(t)→Z(x,t). We want to remove the drift term
by changing to a frame moving with the classical velocity
and canceling out the drift in Eq.~59!. The classical solution
to the standard slow-roll equation of motion

ẋ52C1x
2 ~60!

is trivial

xcl~ t !5~C1t1x0
21!21, ~61!

wherex05xcl(t50). Let us pickx0521 for concreteness.
Our new variableZ(x,t) should be fixed as long asx(t)
travels along its classical path: (d/dt)Z(xcl ,t)50. We
achieve this goal by letting

Z~x,t !5~x212C1t !
21, ~62!

where we have pickedZ@xcl(t),t#5x0. Differentiating with
respect tot and using Eq.~59! we obtain a driftless stochas-
tic equation for our new variable

Ż5
Z2

x2
C2g~ t !. ~63!

At this point let us simplify the problem by approximating
Z and x with their mean classical values:x→xcl(t) and
Z→Z@xcl(t),t#5x0521. We have

Ż5~C1t11!2C2g~ t ! ~64!

which is beginning to look a lot like simple diffusion.
ClearlyZ(x,t) will be Gaussian distributed, buts(t) will be
more complicated than in Eq.~36! due to the explicitt de-
pendence in the diffusion coefficient. To find the correct
form of s(t) let us change time variablest→t such that the
time-dependent diffusion will be scaled away. Remembering
thatg2(t);d(t) we have

]Z

]t
5@C1t21#2C2Fdt

dt G
21/2

g~t!. ~65!

So we needdt/dt5(C1t21)4, or

t5
1

5C1
@11~C1t21!5#. ~66!

Then our final stochastic equation forZ(t) mirrors Eq.~33!:

]Z

]t
5C2g~t!, ~67!

and corresponds to the probability distribution~36!:

P~Z,t!}expS 2
~Z11!2

2s~t!2 D ; s~t!25C2
2t. ~68!

We obtain the distribution of interestP(x,t) by simply
changing back to the appropriate variablesZ→x, t→t. We
have
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P~x,t !}U]Z]xUexpS 2
@~x212C1t !

2111#2

2C2
2t~ t ! D . ~69!

Note that the non-Gaussian behavior is evident not only in
the nonlinearx dependence ofZ, but also in the nonlinear
time evolution oft(t). If we evaluate the distribution at a
particular time, say that corresponding toxcl522, we will
have a peak in probability near this value. From Eq.~61! we
need t5(2C1)

21, which corresponds tot'(5C1)
21 from

Eq. ~66!, so Eq.~69! becomes

P~x!}
1

x2
expF2

~@x2120.5#2111!2

2s2 G , ~70!

wheres2'C2
2/5C1.

We plot Eq. ~70! for s250.02 in Fig. 2. The non-
Gaussian behavior is clear. There is a long tail in this distri-
bution for small fluctuations and a sharp cutoff for large
fluctuations — in opposition to the previous example. The
nonlinear drift tends to encourage fluctuations to fall down
the hill ~sinceV9,0 the slope gets steeper for smaller values
of x) resulting in an underabundance of large fluctuations
compared to the Gaussian.

IV. TOY MODELS

In this section we present three example potentials which
meet the small-scale power requirement for PBH production
(dH*0.01) as discussed in Sec. II. For each example we
apply the methods developed in Sec. III to determine the
probability distribution of fluctuations and compare this dis-
tribution to the usual Gaussian assumption. Each example is
realistic in the sense that it forces the power on large scales
to be small (dH;331025) while giving us the sufficient

small-scale power needed. The additional constraint on the
inflaton potential is associated with the overproduction of
gravitons and limits the scale of inflationH/mPl&1025 dur-
ing the epoch associated with the horizon scale today
@f(104 Mpc)# @31#. The first two models below are actually
on the hairy edge of this constraint, but recall that we are not
trying to construct ‘‘true’’ models here, we are simply inter-
ested in the non-Gaussianity associated with PBH produc-
tion. Since the non-Gaussian statistics in these models de-
rives from theshapeof the potential, slightly altering the
scale of inflation will not drastically affect the result. The
gravitational wave constraint on our third toy model is a
different story and we will discuss the reason when we come
to it.

We emphasize that these toy potentials are meant only to
illustrate the importance of non-Gaussianity in PBH produc-
ing models. The correct distribution for any ‘‘realistic’’
model will depend on the nature of the potential. The idea is
that the following examples will be tools of pedagogy, en-
abling the reader to easily perform calculations of PBH
abundances without relying on an incorrect Gaussian as-
sumption. Before we begin, let us restate

x[f/mPl , t→t/mPl ,

and introduce some notation

V5lmPl
4 Ṽ, H5AlmPl /H̃.

The symbolsṼ and H̃ are dimensionless quantities of order
unity which will be useful in keeping track of small param-
eters.

A. Plateau potential

Consider the potential, shown in Fig. 3, which in some
region of interest (x;0) has a flat ‘‘plateau’’ feature5

Ṽ5H 11arctan~x!, x.0,

11~431033!x21, x,0.
~71!

We have designed this somewhat outrageous potential to
produce a spike in small-scale power using the methods out-
lined in Sec. I. It suffices to regard expression~71! as only a
region of potential, so we arbitrarily begin following the roll-
down of x at the value corresponding to the scaleL'10
pc, orxst'0.15. We choose to normalize our potential region
at this hand-picked starting point, and fixl with dH(10
pc)5331025, which is an arbitrary but reasonable choice.
Expression~4! then requiresl'6310210. When the field
first reaches the plateau region, it is moving too fast to obey
the slow-roll conditions, and we are forced to obtain the form
of dH by solving Eqs.~1! and ~2! numerically. We also use
the more exact behaviordH}H2/ ẋ. The plateau region is so
flat, however, that the friction of the expansion slows the
field down very quickly. The magnitude ofdH grows asx

5This potential with a single break is similar to the double-break
potential proposed by Ivanov, Naselsky, and Novikov@32# for mak-
ing PBH’s.

FIG. 2. The unnormalized probability distribution~70! for the
nonlinear drift example. We have useds250.02. Note that the
nonlinear drift has caused negative skewing, in contrast to Fig. 1,
due to the tendency for negative fluctuations to fall down the hill
more quickly than positive ones.
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slows down and continues to grow untilẋ reaches its lowest
value, corresponding to a peak in power, and also corre-
sponding to the beginning of a second slow-roll regime.
~Note that this potential provides two periods of inflation
with only one inflaton.! Numerically, we find that the peak in
power occurs whenx*521.2331022. The height of the
peak is then

dH~x* !;Al
Ṽ3/2

Ṽ8
~x* !;0.05. ~72!

We show the density perturbation spectrum at horizon cross-
ing associated with this region in Fig. 4, and see that the
peak in power corresponds to the creation of;1M( black
holes.

The modes which will eventually be responsible for PBH
production pass outside of the horizon at the epochx* .
Since we are only interested in calculating the non-Gaussian
behavior associated with these modes, we evolve the sto-
chastic equation fromx*→xend to determine the relevant
probability distribution. For this model, the end of inflation
occurs when the first slow-roll condition breaks down:
uṼ9/24pṼu'1, and corresponds toxend521.5531022.

The stochastic equation~29! in the new notation is

ẋ5
2AlṼ8

3H̃
1

l3/4H̃3/2

2p
g~ t !. ~73!

Note the relative sizes of the drift and diffusion terms in the
evolution ofx. In most cases, the higher power ofl in the
diffusion term means that quantum fluctuations play a very
minor role in the dynamics ofx, resulting in nearly Gaussian
statistics. But in this example, the drift term (Ṽ8) is very tiny

over the region of interest, and the two terms become of
more equal weight, increasing the likelihood of non-
Gaussian statistics.

Over the range of interestuxu;1022, so to a high degree
of accuracyṼ'1 and we have a case of constant diffusion.
On the other hand, the drift force is small and very nonlinear:
Ṽ858.431034x20. This situation is very much like the last
example presented in Sec. III and the method of solution will
be similar. Let us rescalex by x* to keep our variables of
order unity: x̃5x/ux* u. The path of the mean evolution is
then from x̃*521 to x̃end521.26. Usingl56310210 in
Eq. ~73! we have our stochastic equation forx̃

ẋ̃52~1.231027! x̃201~7.831026!g~ t !. ~74!

We see that the small value ofṼ8 gives the quantum diffu-
sion term a more equal weight in the dynamics. Let us do
one more bit of cleaning up by rescaling the time variable
t→t(1.231027) @see Eq.~50!# which gives

ẋ̃52 x̃201ag~ t8!,

a52.331022. ~75!

We now mirror the method of solution presented in Sec. III.
The first step is to go to a frame moving with the classical

velocity. The classical slow-roll equation isẋ̃5 x̃20 and us-
ing x̃05 x̃*521, the classical path is

x̃ cl~ t !52@1219t#21/19. ~76!

Our variableZ( x̃ ,t) will remain constant alongx5xcl :

FIG. 3. The plateau potential~71!: Ṽ(x.0)511arctan(x),

Ṽ(x,0)511431033x21, whereṼ is defined to be dimensionless

and of order unityṼ[V/(lmPl
4 ). This potential produces the fluc-

tuation spectrum shown in Fig. 4 and the distribution of fluctuations
shown in Fig. 5.

FIG. 4. The spectrum of density fluctuations at horizon crossing
dH associated with the plateau model~71! as a function of the
logarithm of the length scaleL in units of pc. The plateau region
seen in Fig. 3 produces the rapid rise in power, corresponding to
;1032 g PBH production.

7432 55JAMES S. BULLOCK AND JOEL R. PRIMACK



Z~ x̃ ,t !5@19t2 x̃219#21/19, ~77!

where we have chosenZ@xcl(t),t#52x051. The stochastic
equation forZ is then diffusion-only by design,

Ż52S Z
x̃
D 20ag~ t !, ~78!

and approximatingx̃→ x̃ cl(t), Z→2 x̃0 we have

Ż.~1219t !20/19ag~ t !. ~79!

Now, with one more change of variables we can scale away
the time dependence multiplyingg(t). Let

t5
1

59
@12~1219t !59/19#, ~80!

so that we are left with an equation exactly like Eq.~33!:

Ż5ag~t!. ~81!

The probability distributionP(Z,t) follows from Eq. ~36!,
and we change variables back again to obtain the distribution
of interest,

P~ x̃ ,t !}
1

x̃20
expF2~@19t2 x̃219#21/1921!2

2a2t~ t !
G . ~82!

We want to evaluate the distribution attend, the time corre-
sponding to x̃ cl521.26. From Eq. ~76! we find
19tend50.9876 and from Eq.~80! we havet(tend).1/59.
Plugging in these values along witha52.331022, we have
the final distribution of fluctuations

P~ x̃ !}
1

x̃20
exp@2K~@19tend2 x̃219#21/1921!2#, ~83!

where K55.63104. The distribution is plotted in Fig. 5
along with the results of a numerical simulation for this same
potential. For our simulation, we started with the stochastic
equation ~73! and made no approximations. We used the
Box-Müller method@33# to transform uniform deviates into
random Gaussian deviates to mimic the stochastic force. The
numerical results consist of 43104 individual runs of the
Langevin equation, and we have normalized the height of
our calculated distribution to fit this number. We see that the
calculated distribution~83! agrees well with the numerical
results.

The distribution of fluctuations is clearly non-Gaussian. In
Fig. 6 we have plotted our analytic distribution~83! along
with two Gaussians that one may wish to compare it to: one
with the same mean and standard deviation as our distribu-
tion and one with the same height and width at half maxi-
mum as the peak in our distribution. We see that the true
distribution is underproducing large fluctuations compared
with either of the Gaussians. Now, for PBH production under
the Gaussian assumption, we are concerned with fluctuations
on the tail of the distribution;6s. The calculated distribu-
tion differs so drastically from the Gaussian assumption at
this distance from the mean, that we can only compare them

on a log scale. Figure 7 shows distribution~83! along with
the two Gaussian comparisons in units of the standard devia-
tion from the mean. As the more conservative choice, we use
thes associated with the Gaussian fitted to the peak of Eq.

FIG. 5. The solid line is the calculated final distribution of fluc-
tuations~83! associated with PBH production from the plateau po-
tential ~71!, Fig. 3. The dashed line is a stochastic numerical simu-
lation of the the same model which consists of 43104 points. The
calculated distribution is normalized to the number of points and
bin size of the numerical result.

FIG. 6. A comparison of the calculated distribution of fluctua-
tions for the plateau potential~71! with two Gaussian counterparts.
The solid line is the analytic result~83!. The dashed line is a Gauss-
ian with the same mean and standard deviation as the calculated
distribution. The short-dashed~dotted! line is a Gaussian with the
same width at half maximum as the peak of the calculated distribu-
tion. Both Gaussians overpopulate large fluctuations.
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~83!. Observe that the Gaussian assumption would vastly
overproduce PBH’s, with an error of order;10150 at 6s.
This model was designed to give us a large number of PBH’s
using the Gaussian assumption, but upon examining the dis-
tribution more closely, we see that the actual production is
practically zero. We, as inflation designers, are forced to
make an even higher spike in small-scale power if we want
PBH production. Note also that as the spike becomes higher,
the drift term becomes smaller, and the distribution will tend
to skew even more towards small fluctuations.

B. Wiggle potential

Our second potential which produces significant small-
scale power is one with a wiggle in the path of the inflaton

Ṽ511@136.717#x320.05x ~84!

as shown in Fig. 8. We start our evolution at
x(L5104 Mpc)52.6, and since slow roll is obviously in-
valid over the dip, we integrate Eqs.~1! and~2! to obtain the
spectrum ofdH(L) shown in Fig. 9. Normalizing atx52.6 to
COBE givesl;5310214. We have adjusted the wiggle to
make the field slow down dramatically just after the top of
the bump (xtop521.041131022) which produces a large

spike in power corresponding to the;1028 g mass scale. We
find the slow point to bex*521.1044831022, which is
also the beginning of a second slow-roll epoch of inflation.

The height of the peak isdH;Al(Ṽ3/2/Ṽ8)(x* )'0.01, the
order of magnitude we need for PBH production.

After the field slows down atx* , inflation continues until
xend;20.1. This is the path of interest for estimating the
distribution of fluctuations. Let us again set our notation be-

FIG. 7. The same curves as in Fig. 6, but on a log scale to
emphasize the error in the Gaussian assumption. Again, the solid
line is the probability distribution~83! associated with the plateau
potential ~71!. The two dashed lines are possible Gaussians to
which we may wish to compare our distribution~which is not really
important!. The distributions are plotted in terms of the number of
standard deviations from the mean, where we have chosen the stan-
dard deviation of the peak of the distribution as the most conserva-
tive choice. A fluctuation of 62s would correspond to PBH pro-
duction under the Gaussian assumption, but the actual distribution
underproduces these fluctuations by;10150, resulting in almost no
PBH production.

FIG. 8. The wiggle potential~84!: Ṽ511@136.717#x32
0.05x. The bump in the path of the inflaton causes it to slow down,
producing a spike in power shown in Fig. 9.

FIG. 9. The spectrum of density fluctuations at horizon crossing
dH associated with the wiggle potential~84!. The high point in
power corresponds to the production of;1028 g PBH’s.
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fore writing down the Langevin equation. For the analytic
calculation we useṼ'1 over the range of interest6 and also
scalex by x̃5x/xtop, such thatx̃ top521 corresponds to the
top of the wiggle@Ṽ8( x̃521)50#. Using this notation, the
starting point isx̃*521.00033 and we want to follow the
evolution until x̃end;29. The potential in terms ofx̃ is

Ṽ'1, Ṽ850.05@ x̃221#

and the stochastic equation forx̃ follows:

ẋ̃52~1.231027!~ x̃221!1~7.531029!g~ t !. ~85!

As before, we clean things up with a new time scale
t→t(1.231027), which gives us

ẋ̃52~ x̃221!1ag~ t !, a52.231025. ~86!

We want to use the same trick and factor out the drift term
by changing to a variable which is constant along the classi-

cal path. We solveẋ̃52( x̃221) to obtain the classical so-
lution with the initial valuex̃ cl(t50)5 x̃*521.00033 and
obtain

x̃ cl~ t !5coth~ t24.35!. ~87!

Following the methods outlined in Sec. III, the new variable
Z( x̃ ,t) is

Z~ x̃ ,t !5coth@coth21~ x̃ !2t#, ~88!

where

Z@ x̃ cl~ t !,t#5 x̃* . ~89!

The stochastic equation forZ is then

Ż5a
Z221

x̃221
g~ t !. ~90!

If we use the approximationx̃→ x̃ cl(t), Z→ x̃* we have

Ż5a~ x̃
*
2 21!~coth2@ t24.35#21!21g~ t !

5sinh2@ t24.35#bg~ t !,

where b51.4731028. Now we want to change to a new
time coordinatet(t) which will leave us with a simple dif-
fusion equation. The requirement is

dt

dt
5sinh4@ t24.35# ~91!

or

t~ t !5C1
3

8
@ t24.35#2

1

4
sinh@2~ t24.35!#

1
1

32
sinh@4~ t24.35!#, ~92!

whereC55.63105 demands thatt(t50)50. So the vari-
ableZ( x̃ ,t) obeys simple diffusion by design

Ż5bg~t! ~93!

and has a Gaussian probability distribution with mean
Z̄5 x̃* ands25b2t. Now, as discussed earlier, we simply
perform the reverse transformZ→ x̃ , t→t to obtain the dis-
tribution of inflaton fluctuations:

P~ x̃ ,t !}S 1

x̃221
D expF2

$coth@arccoth21~ x̃ !2t#2 x̃* %2

2b2t~ t !
G .

~94!

We want to evaluate the above expression at the time
tend54.24, when the classical path reachesx̃end529. Equa-
tion ~91! gives ust(tend)'C and plugging in all of these
values we have the final probability distribution

P~ x̃ !}S 1

x̃221
D exp~2K$coth@arccoth21~ x̃ !24.24#

11.00033%2!, ~95!

with K54.13109. As in the previous example, we have
simulated this distribution numerically using no approxima-
tions, and we plot the two together in Fig. 10. We have
normalized Eq.~95! to the simulation height. We see again
that the derivation does quite well, and the distribution has a
deficit of large fluctuations relative to a Gaussian. The dis-
tribution is skewed negative again since the drift term;V8
andV9,0. Negative fluctuations tend to fall down the hill
more quickly than positive ones. There is no need to do
another explicit comparison to a Gaussian distribution since
if the distribution is clearly non-Gaussian to the eye, then the
high-s tail will be exponentially worse.

C. Cliff potential

For our last example we present a potential region which
flattens out to achieve large power in the form of a blue
spectrum, and then has a clifflike feature where the slope
abruptly becomes much steeper. Consider the region of po-
tential, shown in Fig. 11, given by

V5lmPl
4 H cos22@1.5x#, x.0.00004,

~2.7!24@x12.7#4, x,0.00004.
~96!

For x.0.00004 we use a form suggested by Hodges and
Blumenthal @10# which gives usdH;(L/L0)

2n, n.0.18.
The highest amplitude in power, corresponding to the flattest
region of the potential and PBH formation, occurs at
x*50.00004, after which the slope increases abruptly as a
‘‘ f4’’ form ends inflation. Since we are interested in fluc-
tuation statistics which depend only on the nature of the

6This approximation is very good atx* but is off by;10% at the
end of inflation. However, since the field spends most of its evolu-
tion time nearx* , this approximation should be fine.
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potential fromx*→xend, the ‘‘smallV8’’ argument does not
apply to encourage non-Gaussian statistics in this case. Us-
ing l;3310211 we obtain the power spectrum shown in
Fig. 12. The highest point in density isdH;0.04 and corre-
sponds to;1020 g PBH’s.

As we mentioned before, the region of interest for calcu-
lating the probability distribution has quartic form. Recall

that we have already calculated the distribution for the quar-
tic case in Sec. III@Eq. ~54!# so our job is nearly done. In
order to make things look more familiar, define
y[x12.7, l854l/(2.7)4;2.3310212, such that we have
the more standard form

V~y!5
l8

4
y4, ~97!

and we are interested in the path fromy'2.7 to yend'0.4.
Now, lettingl→l8 andx→y in Eq. ~54! we have the fluc-
tuation distribution we need:

P~y!}y23expF2
~y222yend

22!2

2s2 G ,
s25

l8

3
@~y* /yend!

421#. ~98!

From the discussion following Eq.~54!, we know that
P(y) is skewed positive, but we also know that the amount
of skewness depends on the value ofs2. In this case, non-
Gaussianity is negligible due to the extremely tiny value of
l8. In order to see the lack of skewness in a quantitative
way, let us borrow a measure proposed by Yi, Vishniac, and
Mineshige @11#. This simple estimate for skewness is the
ratio

R[
P~yend1Nseff!

P~yend2Nseff!
'exp@N3A3l8/4~y

*
4 2yend

4 !1/2#

'exp@N3~1025!#, ~99!

whereseff , the number of effective standard deviations from
the mean, was given in Eq.~57!, andN measures the size of
the fluctuation. We see clearly that the small value ofl8

FIG. 10. The solid line shows the calculated distribution of fluc-
tuations ~95! associated with the wiggle model~84!. The dashed
line shows the results of our numerical simulation of this model,
with 43104 points. The distribution~95! was normalized to the
simulation number and bin size, and is clearly non-Gaussian and
skewed negative.

FIG. 11. The cliff potential~96! which produces the blue spec-
trum shown in Fig. 12. The final distribution of fluctuations is
nearly Gaussian since the slope of the potential has a sharp increase
just after the spike in power.

FIG. 12. The spectrum of density fluctuations at horizon cross-
ing dH associated with the cliff potential~96!. The high point in
power corresponds to the production of;1020 g PBH’s.
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tends to forceR→1 and prevent skewness. But a large value
of N ~e.g., a large fluctuation! will compete with this effect
and give a skewing effect. For our potential~96! we have
chosen the largest value ofl→l8 possible to be consistent
with the gravitational wave constraintH̃;1025. However,
even with the large fluctuation we need for PBH formation
N;10, expression~99! implies that the skew is only 1%.
Suppose, for example, that we did ignore the gravity wave
constraint7 and push the value ofl8 up to;1029. The ratio
~99! would then give us a;20% effect atN510. Thus even
for potentials with ‘‘normal’’ shapes, non-Gaussianity may
be important due to the rare large fluctuations associated
with PBH production.

V. CONCLUSION

We have argued that the very conditions associated with
PBH formation,~1! large spikes in power, usually associated
with flat potential regions, and~2! rare, many-s fluctuations,
are exactly the same conditions which can produce signifi-
cant non-Gaussian fluctuations. Flat potential regions pro-
mote the importance of quantum fluctuations in the inflaton
dynamics and encourage the mode-mode coupling respon-
sible for non-Gaussian statistics. On top of this effect, many-
s fluctuations push us out to the tail of the probability dis-
tribution, where any intrinsic skewness will be amplified. We
have quantified this intuition with several toy models that
produce the small-scale power associated with PBH produc-
tion, and have used the stochastic slow-roll equation to ob-
tain the fluctuation distributions. Our examples clearly illus-
trate that the Gaussian assumption can lead to large errors in
the calculated number density of PBH’s, and that the nature
of the non-Gaussian distribution is extremely model depen-
dent.

Specifically, for models with spikes in small scale power,
the fluctuation distributions were skewed towards small fluc-
tuations, underproducing PBH’s by many orders of magni-
tude relative to the Gaussian assumption. The negative skew-
ing in these examples came from mode-mode coupling due
mainly to nonlinear drift, which encouraged negative fluc-
tuations to fall down the hill faster than positive ones
(V9,0).8 Because the fluctuation statistics depend on the
path of the inflatonafter it passes the flattest region of the
potential, we were even able to construct an example where
the Gaussian assumption holds, simply by forcing a dramatic
increase inV8 ~a ‘‘cliff’’ ! just after the peak in power. One
may regard such a cliff region as unnatural, but it does illus-
trate the model-dependent nature of distribution shapes.

These results have several important implications and we
discuss each briefly. First, the standard approach for limiting
the initial fraction of PBH’sb and limiting the spectrum of
initial density perturbations~see Sec. II! must be reconsid-
ered. Because of the model-dependent nature of the distribu-
tions, it is not possible, as in the standard practice@4#, to use
PBH overproduction to limit generic inflationary power

spectra. Correspondingly, it is not possible to determine the
number of PBH’s produced from the power spectrum alone.
We can use our toy models to exemplify what might happen
in various cases. For models with spikes in power, such as
our plateau and wiggle examples, fluctuation distributions
will probably skew towards small fluctuations and underpro-
duce large fluctuations relative to the Gaussian case. Many-
s fluctuations then will be much less likely, and PBH pro-
duction in these models will require an even higher spike in
power. Then magnitude limits on spikes in power to prevent
PBH overproduction will be less stringent than the limits
obtained using Gaussian statistics. We also point out that the
formation of any PBH’s at all without overproducing them
will require an even more drastic fine-tuning than in the
Gaussian case. The fine-tuning must be more precise because
the large fluctuation tails in these models are much steeper
than a Gaussian tail. So small changes in fluctuation size will
cause a larger change in the probability of having such fluc-
tuations.

Our results also affect the use of PBH overproduction to
rule out or limit the parameter space of specific inflationary
models. For example, authors employ PBH overproduction
to constrain the slope of blue perturbation spectra from in-
flation ~see @23#!. All such examinations use the Gaussian
assumption and limit models without regard to the shape of
the potential after the power reaches its maximum height.
But the amount of PBH production, and hence constraints on
dH and the slope of the spectrum, depend crucially on the
nature of the fluctuation distribution and hence on the shape
of the potential between the region of PBH formation and the
end of inflation. Our ‘‘cliff’’ potential toy model actually
recovers the Gaussian approximation, but only because the
slope of the potential increases dramatically just after the
region of high power associated with PBH production. How-
ever, with a more rounded potential shape after the peak
instead of a cliff, non-Gaussian fluctuations will be much
more likely. PBH overproduction is also important for con-
straining parameter space in hybrid inflationary models due
to associated spikes in small-scale power@5,6#. Again, our
toy models indicate that spikes in power are associated with
PBH underproduction relative to the Gaussian case. How-
ever, without further investigation of multiple-field PBH pro-
duction models, the validity of our intuition from single-field
examples remains unclear.9

Authors occasionally investigate the possibility of PBH
formation associated with a soft equation of state during a
p50 ‘‘dustlike’’ epoch @34,23#. Dust era PBH formation
would be important if the universe underwent an early
p50 stage~before the usual matter-dominated epoch!. Con-
ceivably, such a dust stage could occur due to some as yet
unknown physics~e.g., possibly due to coherent inflaton os-
cillation during reheating@35#!. For dust era PBH formation,
the major criterion for PBH collapse is that the initial pertur-
bations be nonrotating and spherically symmetric@34,23#,
and the probability for spherical geometry typically increases
with the amplitude of a fluctuation. Again the associated
power spectra must have excess power on small scales to

7Note that we can easily adjust our potential region to obtain the
appropriate small scale power with a new value ofl.
8A potential region which tends to ‘‘cup’’ the inflaton (V9.0)

after the flat region may produce positive skewing.

9An analytical examination of multiple field models may prove to
be too difficult, but numerical simulation is always possible.
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achieve substantial PBH production, and the fluctuation dis-
tributions will typically be non-Gaussian. But the tails of
probability distributions are not so important to the analysis
since rare large-amplitude fluctuations are not all that is im-
portant here, but also spherical ones. Thus the value ofb will
depend mainly on~the rms! dH , with only a weak depen-
dence on the shape of the distribution. Compared to PBH
formation during the radiation dominated era~where, as we
have shown, the distribution is very important and non-
Gaussianity can shiftb by many orders of magnitude!, the
effect of non-Gaussianity on dust era formation should be
much smaller.

Finally, we discuss our results in the context of PBH for-
mation associated with the QCD phase transition. Jedamzik
@2# points out that PBH formation due to a first-order QCD
phase transition would be roughly consistent with;0.5M(

MACHO’s, since this is roughly the total mass energy inside
the horizon during the QCD epoch. However, even if the
QCD transition is first order, the minimumdH for PBH for-
mation at this mass scale will be lessened by at most a factor
of order unity, for the following reason. During the epoch of
the first-order phase transition, the effective velocity of
sound drops to zero, and with it the Jeans mass. Thus density
perturbations which cross inside the horizon at the beginning
of the epoch can begin to grow. But the duration of the phase
transition is quite short. Fluctuation amplitudes on this scale

will be enhanced slightly relative to the standard case before
the universe again achieves a hard equation of state. If the
fluctuation amplitude at this time is as large asd;1/3 then
PBH formation can occur. So the minimum value of the
initial dH at horizon crossing is reduced, but only by a factor
of order unity ~see@36# for a more complete discussion of
perturbation growth during this epoch!. This slight increase
in the PBH mass function would be important if PBH pro-
duction were marginally possible over some range of mass
scales. PBH formation would then be enhanced for masses
around;0.5M( , which could perhaps explain why this
mass range of MACHO’s is observed. But in order to
achieve PBH formation at the QCD mass scale, we still must
have large-amplitude fluctuations at this wavelength, so our
arguments for non-Gaussianity still apply. Moreover, any
non-Gaussianity in the fluctuation distribution should be im-
portant, since PBH formation is again associated with rare
fluctuations and, therefore, quite dependent on the shape of
the distribution far from the mean.
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