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Non-Gaussian fluctuations and primordial black holes from inflation
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We explore the role of non-Gaussian fluctuations in primordial black (®fH) formation and show that
the standard Gaussian assumption, used in all PBH formation papers to date, is not justified. Since large spikes
in power are usually associated with flat regions of the inflaton potential, quantum fluctuations become more
important in the field dynamics, leading to mode-mode coupling and non-Gaussian statistics. Moreover, PBH
production requires several (rarg fluctuations in order to prevent premature matter dominance of the uni-
verse, so we are necessarily concerned with distribution tails, where any intrinsic skewness will be especially
important. We quantify this argument by using the stochastic slow-roll equation and a relatively simple
analytic method to obtain the final distribution of fluctuations. We work out several examples with toy models
that produce PBH'’s, and test the results with numerical simulations. Our examples show that the naive
Gaussian assumption can result in errors of many orders of magnitude. For models with spikes in power, our
calculations give sharp cutoffs in the probability of large positive fluctuations, meaning that Gaussian distri-
butions would vastly overproduce PBH'’s. The standard results that link inflation-produced power spectra and
PBH number densities must then be reconsidered, since they rely quite heavily on the Gaussian assumption.
We point out that since the probability distributions depend strongly on the nature of the potential, it is
impossible to obtain results for general models. However, calculating the distribution of fluctuations for any
specific model seems to be relatively straightforward, at least in the single inflaton case.
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I. INTRODUCTION (e.g., as considered H¥,6]), then looking closely for non-
Gaussian behavior may serve to save the model, or at least
Primordial black holesPBH'’s) represent a link between alter the ranges of viable parameters.
quantum field theory and general relativity, both in their ~We start with a heuristic discussion. Our intuition about
birth in inflation and their decay via Hawking radiatiph]. ~ non-Gaussian statistics for single inflaton models is fostered
Beyond the exciting physics of their formation and evolu-by the simple relation between the inflation-produced power
tion, PBH’s have the status of a dark maitBM) candidate. spectrum and the field dynamics driving inflation. Using this
There is, in fact, renewed interest in this possibility, asrelation, we are able to make general statements about the
JedamziK 2] has recently investigated whether PBH forma-behavior of inflaton fluctuations in models which form
tion during the QCD epoch could explain the existence of thd®BH’s, and see qualitatively why non-Gaussian statistics
~0.5M, massive compact halo object!ACHQ’s) indi-  might be important. In order to make this point, we briefly
cated by recent observatiofi3]. Through the requirement review the standard inflation scenario, set our notation, and
that they not be overproduced, PBH'’s are also important adse these results to illustrate why non-Gaussianity seems
one of the few constraints on the inflationary Universe scelikely in PBH formation.
nario [4—6]. Since these objects are an important potential The inflationary Universe scenari@] provides the seeds
link to the early universe, their formation should be exam-of structure formation by linking initial density perturbations
ined in detail, especially if the standard Gaussian assumptiol® quantum fluctuations in one or more scalar fields. [B¢e
about their formation may be producing errors of many or-for a review. During inflation, the energy density of the Uni-
ders in magnitude. verse p becomes dominated by a scalar field potential
In order to determine the degree to which non-Gaussial¥(¢) and the scale factoR expands superluminally
fluctuations are important, we use a stochastic inflation cal(R~t", n>1). So length scales of fluctuations grow more
culation to investigate several PBH-producing toy modelsquickly than the horizon, eventually passing out of causal
We solve for the probability distributions both analytically contact, and only cross back inside the horizon after the in-
and numerically, and show that the Gaussian assumption féation epoch has ended. In the chaotic sceng@]pthe spa-
significantly flawed. Specifically, for models associated withtially homogeneous fields is initially displaced from the
spikes in small-scale power, the Gaussian assumption oveminimum of its potential and rolls downward with its motion
estimates PBH production by many orders of magnitudegoverned by the Klein-Gordon and Einstein equations
These results suggest that if some model of inflation is in

danger of being ruled out due to overproduction of PBH'’s d+3H(P)p=—V'(¢), )
. . . 8w 8w .
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wheremyp, is the Planck mass and is the Hubble parameter.

dendH (p)dp 87 [ bendV(p)dep
In most instancesH~ /87/3m3V($)¥? and the “slow- N(bou) = f en— -~ f - Vd) (6)
roll” conditions PI- Pout
|V"| < 24mVIm? For the expansion since the end of inflation, we will here
PP assume a ‘“quick reheat” approximation and use
< 28 Ro/Rend=[3-17(Tend/ To) = V(¢end V40.85 K, where the
< 0/ Rend™ end 10 en
[V'[= Va8 Vimey numerical term arises due to the effective number of relativ-
apply. The evolution ofp is then friction dominated, Istic species. . . o
The crucial point from the above discussion is that every
. A region of the inflaton potential is mapped directly to some
d):_S_H’ () scale of the fluctuation spectrum using E@4)—(6). For

typical model parametersL~1 Mpc corresponds to
and the universe continues to inflate until either of the slowN(¢)~51 andL~1 pc corresponds tN(¢)~37. We invert
roll conditions breaks down at some valge= ¢opg. such relations to determing(pc),¢(Mpc), etc.

As the physical size of fluctuations grows and they cross Specific characteristics of the density spectrum over a
outside the scale of the horizon during inflation, their ampli-range of wavelengths then allow us to make general state-
tude is set by quantum fluctuations i Since the energy ments about the behavior of the potential in some region of
density p is dominated by V(¢), we have ¢ space. As we shall see in Sec. Il, PBH production requires
Sp~V'S8¢4p~V'H. After inflation endsR~t", n<1 and a specially tuned fluctuation spectrum: the fluctuation ampli-
perturbations begin to cross back inside the horizon. The rmiide on small scales must ke10® times larger than that
magnitude ofdp/p when a scale reenters the horizp is  measured on large scales by the Cosmic Background Ex-
simply related to its properties as it left the horizon. Usingplorer (COBE) in order for appreciable PBH formation to

the gauge-invariant variable= 5p/(p+p), we havé occur. It is this that makes non-Gaussianity important in
these models.

p Sp Sp Sp Hodgeset al. [10] have examined the question of non-
on(L)= ( = Tp) = Tp) =~ out Gaussianity in some detaind showed that non-Gaussianity
P reenter 1P reenter | P o P is negligible in single-inflaton models with spectra meeting
V312 the large-scale structure requiremefii~3x10"°. How-
v (4)  ever, models that produce PBH’'s must have density

out 6y=0.01 over some range of small-scale wavelengths
[4,12]. In order to get a qualitative feel for why non-
Gaussian fluctuations may be important in these models,
consider a background perturbation expanded in terms of the
€usual creation and annihilation operatays a,

wherelL is the comoving scale of horizon crossing and the
right-hand side is evaluated when the fluctuation left the ho-
rizon at¢= ¢o(L). When a fluctuation crosses outside the
horizon it has physical siZd ~ (¢, So to find the comov-
ing size today, we must scale by the amount of expansion dX, ) = dey(t) + SP(X,1),

since that timeL =[Ry/R($ou) JTH ™ *(bou) - We find the re-

lation betweeng,,; and the present-day length scaleby

first determining the amount of expansion that occurred dur- Sp(x,t)= T )3f d’k[axd e +H.c].

ing the rest of inflation R(#engd/R(dou) ] and then using

entropy conservation to determine the amount of expansiothserting the perturbed field into the free-field Klein-Gordon
that took place up to NOWRy/R(¢end]. We know  equation we obtain

R/R=H(¢)=dInR=Hd¢/¢ during inflation, so the infla- ’

tionary expansion was quasiexponential: Scb— @5¢k+3H5¢k+V"5¢k=0, @

R R
L(bou) = ( Od) ;nd t)) Y pouw) where we have expanded to first orderdg and matched
small terms. Gaussian statistics are preserved to first order
Ro _ since in the linear approximation all Fourier modes remain
- KndeXF[N( d’out)]H (¢out) ) separate.

As 5¢ becomes larger, however, the linear approximation
where the number of & folds” between exiting the horizon breaks down and terms of ordép? become important. Any
and the end of inflatiofN( ¢, is given by nonlinearity implies mode-mode coupling and introduces

non-Gaussianity. So the possibility of a non-Gaussian distri-
bution of fluctuations increases with¢. Moreover, PBH
This approximate expression fdi, is correct up to factors of production requires fluctuations of severalo above
order unity which depend, e.g., on whether there is radiation ofms= 8y in order to keep their production relatively rasee
matter domination when the scale reenters the horizon. For an exact
determination of the density fluctuation spectrum, one must solvé
the Einstein equations, coupling scalar field fluctuations to metric 2For examinations of specific models using the stochastic inflation
perturbations during inflation. approach see, e.d11].
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Sec. Il for a discussion So we may expect non-Gaussian Following the standard approach, choose initial coordinates
statistics to play a role in PBH production in inflation.  t="t'=t; such that the initial expansion rates in each region
A much stronger effect becomes apparent if we examing, equaFi =H=H; . Using Eqs(8) and(9) we see that the

the general nature of a potentM(¢) that produces PBH's. . .= . _ . ~ .
Since PBH production requires a large increase in power off!itidl size of the perturbatiord; in terms of R(t)=R; is

. . . . iven b
small scales, expressiof@) requires that¢ (or similarly g y
V') become extremely small over some region of the poten- -~ _ 1
; i - _ PiTPpi
tial. In these cases, writing down a decomposition such as S=———=1T7=>. (10
Eq. (7) makes no sense: every term is “small,” so matching Pi HR

terms of equivalent size does not simplify the equation. Ing

other words, quantum fluctuations become important in the. " "~ "~ i .
dynamics of¢. We must keeps¢ linked to ¢, and in the sion,R~ t ““[14], and we can estimate the timmewhen the

efore the overdense region breaks away from the expan-

slow-roll approximation we have perturbed region stops expandifig () = 0],
=51
g V(g0 te= & 11;, (11)
ﬁ(dﬁ 0¢)=- 3H(p+6p) " and the corresponding expansion factor at this time:
B — — o—1/2
The evolution becomes extremely nonlinear and non- R(te)=Rc=6 "R;. (12

Gaussian effects become important. . . - .
In what follows, we investigate the question of non- The perturbed region continues to contract only if it contains

Gaussian statistics and PBH production in detail. In Sec. Ipnough /\/n_1atter t_oh or\]/_ercomj_ _the pressa&,i T}Jef‘”sz i

we present the basics of PBH creation and the implicationSste™ (1/v3)tc. With this condition met, a black hole wi

for the inflation-produced power spectrum. We review sto-N€Vitably form: we need not worry about vorticity or turbu-
chastic inflation in Sec. Ill and present the method of deriv/€NCe interfering with the formation process since the region
ing probability distributions that we will use in our ex- will fall inside its Schwarzschild radius soon after turn

= ~ 3_p3i—2=1 .
amples. In Sec. IV, we present three examples of inflationarfoUNd Rs=2GM=2Gp.R;=R:t; “=3R.). The require-
scenarios which create PBH’s in significant numbers, andnent for PBH formation is then

solve for the distribution of fluctuations both analytically and 1
numerically. We reserve Sec. V for conclusions and specu- —t.=R.<t., (13)

lation. \/§

where the upper bound prevents the region of collapse from
being larger than the horizon scale, leading to the formation
of a separate univergé&2]. Now, dividing Eq.(13) by t., we

A. Formation obtain a condition orR;/t;=R;/t;=&"2. This expression
cales like a constant with time, so it is convenient to evalu-
te it at horizon crossindR=t. We then have our final con-
ition for perturbations at horizon crossing:

II. PRIMORDIAL BLACK HOLES AND CONSTRAINTS
ON INFLATION

A PBH forms when a collapsing overdense region is larg
enough to overcome the opposing force of pressure and fal
within its Schwarzschild radiyg 2]. We review the basics of
this process for a radiation-dominated universe, where the
sound speed is given bgs=c/\3, and the pressure is
p=cZp=p/3. Consider a spherically symmettiegion with  Thus, given an initial fluctuation wit# satisfying Eq(14) at
densityp greater than the background densityThe high-  horizon crossing, we expect to form a PBH with mads
density region is governed by the positive curvaturecorresponding roughly to the horizon mass at that time

l<s=<1. (14)

(K>0) Friedmann equation merical results agrefl5)).
~o ~ 8m ~ ~ 1 B. Probing the power spectrum
(t)=3—2p )_~2~ (8) ) . :
Mp Re(t) Although quite elegant in solving the problems of the
standard big bang, inflation provides us only with a frame-
while the background space evolves as work of ideas and not with any exact predictions for univer-

sal evolution. Depending on the scalar potential, number of
87 fields, etc., inflation can produce a wide variety of fluctuation
H2(t) = — pp(t). (9)  spectra, e.g.[10,16-1§ and even the possibility of a low
3mg, Q Universe[19]. Because of the freedom in inflationary
models, any means of constraining a particular scenario be-
comes extremely important. The Cosmic Background Ex-
3Note that the spherical assumption is well justifigtB] for ~ plorer (COBE) measurements and large-scale structure ob-
many- “rare” fluctuations in aGaussiarrandom field. This result ~Servations indicates,~3Xx107° on large scales 10
may actually be incorrect for non-Gaussian fluctuations and shoul#pc). These results probe only a small region of the inflation
be explored further. potential V(#) and serve mainly to fix the value of the in-
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flaton’s dimensionless coupling constanfe.g., for  which yields

V(¢)=\¢* we need\ ~10" 4. Overproduction of PBH’s

limits the value ofs,; over many decades of “small” length MR

scales (1 Mpc—10'° po) and avoidance of such overpro- B=10 Fsg . (19
duction, coupled with the COBE data, provides a powerful

constrgint on inflatiori20,4. . . The constraint becomes weaker for larger masses since
Limits on black hole production are usually quantified by higher mass PBH's form later and the densiys has a

the parameteys, defined to be the initial mass fraction of gpqrer time to grow relative to the total density. We now use

PBH's Egs.(15 and(16) to map thes values to limits ordy . Note

ok 1 that sinceB is quite small, we depend very much on the tail
B= *BH ~j P(8)ds, (15) of our assumed Gaussian distribution. For &>IpPBH we
ptor Ju3 have 8<10 1" and the limit becomes$,<0.04. Similarly,

for M~1My, 8,=<0.06.

where(*) means we evaluate the ratio at the time of forma-
tion and the limits of integration are directly from E@.4). 2. Limits from radiation
The pr ility distribution of density fl i o) i . .
usﬁaﬁyogggur;yeg ?(t) bb:t c()SaSss(ijaen,svt\%th utﬁteg(?vfz(r gpesctrurﬂ Hawklng_’s theory of spontaneous black hole evaporation
giving uso= §,,,&= 8y at any particular scale. For the rest of 21 prgdu_:ts that black holes zhould 7elm|t partlcle.s at a
this section we will assumB( ) is of Gaussian form characteristic te'mperatur%élol (M/g)_ GeV, which
becomes more important with decreasing black hole mass.
1 52 The lifetime of decay is~ 10 2/(M/g)? s[22], and is simi-
P(8)= ex;{ - (16) larly dependent on the black hole mass, with the evaporation
2mo 20 speeding up as the mass dwindles. PBH’s of different initial
masses evaporate at different times and their particle emis-
and use the results as a gauge for any alternate distributios$on must not disrupt any well-understood physics associated
we find. with the time of their decay. We summarize a few constraints
There are two criteria for limiting the initial abundance of below. For more complete reviews sg9,4,23.
PBH's (see, e.g.[4]). First, gravitational effects: the mass M ~10"—10" g. Black holes in this mass range evapo-
density of PBH's must not overclose the universe,rate after recombination and must not produce-ay den-
Q= (mw.ay<l- And second, Hawking radiation sity greater than the cosmic backgroyid]. The constraint
from decaying PBH'’s must not disrupt any well-constrainedh€re is quite strong: PBH’s could have atzsmos_fﬂ@f the
physics(e.g., primordial nucleosynthegissince PBH’s with ~ critical density today. We then hayg= 10" which corre-
M=<10'° g will have decayed before today, gravitational ef- SPOnds t05,=0.03. We emphasize that since PBH produc-
fects for this mass range are nonexistent. Similarly, largefon needsé~1/3, formation in this mass range corresponds
mass PBH'’s have not had time to decay so Hawking radial® @ 10r effect assuming a Gaussian distribution of fluctua-
tion does not come into play. Thus, the physics of constraint!ons.

ing PBH’s is broken up into two mass regior(4) gravita- M~10"'-10'° g. For these masses, evaporation occurs
tional constraints M=10'® g; (2) Hawking radiation bgfore r_e_co_mblnatlon but the emitted radiation does not at-
constraintsM < 10'® g. We discuss each in turn briefly. tain equilibrium due to the small value of the baryon to pho-
ton ratio. This effect will distort the background spectrum
1. Limits from gravitation: Qpgp<1 unlessp=10" '¥(M/10"'g) [25]. For a typical mass, the re-

. . - sult implies 63 =<0.04, and a Gaussians8fluctuation is re-
We are interested in constraining the parameierthe quired for PBH formation.

initial density fraction of PBH’s, using our limit on theur- M>10' g. This mass range marks the possibility of af-
rent fraction Qpg=1. We simply need to scale the density ¢ g big bang nucleosynthesis. For example, emitted pho-

ratio.with time. We consider PB.H formation m. the radigtion tons from the evaporation must not photodissociateThis
dominated era, thuf g~ R until matter-radiation equality, limit gives [26] B=<10"2YM/10'° g)¥2 and corresponds to

after which the density fraction remains constanR7fis the 84=0.03 forM ~ 10 g. PBH production again corresponds

epoch of formation we have to a 1@r Gaussian fluctuation.

w12 From the above discussions we see that PBH overproduc-

_) , (17) tion provides limits on the initial spectrum of perturbations
on mass scales small compared to the horizon mass
~10° g. We want to translate the above limits as a function

where the inequality demand¥pg <1 and the time* cor-  of mass to limits as a function of comoving length scale

responds toR(t*)=R*. Since the black holes formed are For lengths that cross inside the horizon before matter-

roughly on the scale of the horizon at the time of collapseradiation equality (<13h~! Mpc) the time of horizon

we can write(15) in terms of mass scale using the following crossing is

expression for horizon mass:

*

EQ* = (—
B PBH Req

Qpgy=107°

ty=3%X10°(L/Mpc)? s. (20)

MH~10’5( Mo (18

t
s Together with Eq(18) we have the relation
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L\2 As in the standard cag@), we have used the slow-roll ap-
MHN‘?’O(& Mo (2)  proximation ong, and have neglected the spatial derivative
since this piece is homogeneous over the horizon scale. The
with 1M, corresponding to.~0.2 pc and 18 g corre- s piece has its dynamics dominated by t.hg spatial dgrivative
sponding toL~2x10"1% pc. and any effects of the potential are negligible. The high fre-

Since COBE fixesd,~3x10 % on large scales, PBH duency modes are then approximated by those of a free
constraints serve to limit the power spectrum from having anassless field(t) governed by the wave equation
spike in power at some small length scale, or from having an 52 5
excessively steep blue spectrum. Sidgemust be=0.01 in 7 L K2a—2Ht|  *ry—
order for PBH formation to be important, we are concerned t? TH G ke ek(U=0, (26)
with factors of~10° enhancement of the spectrum at small
scales. We point out again that such a power spectrum ¥here we make the quasi-de Sitter assumptienconst and
inherently associated with potentials that can make ouR(t)~expHt). The solution to the free field equation is
Gaussian assumption invalid. This non-Gaussian tendendgnown:
coupled with the fact that we are concerned with many-

tails of the distributionwhere even a small degree of skew- s H . .

ness could drastically alter the resiltsuggests that any ‘Pk(t)_ﬁ(”_'/k)exq_'k”)’

Gaussian analysis like the one above provides only a naive

guess for the number of PBH’s produced. We must under- dt e Ht

stand something about the true fluctuation statistics before 7 j W%T (27)

making any assumptions about the nature of the probability

distribution far from the mean. so we have an explicit expression faps by letting

or(t)=ex(t) in Eq. (23). Inserting the expression fapg

Ill. STOCHASTIC INFLATION into Eq. (25) we have

The stochastic analysis of inflatid27] provides an ex- )
cellent method for obtaining statistics of scalar field fluctua- __ - J ﬂ —2Hty2
. . > (X t) —+3H—-+e 'V
tions. In the stochastic approach, one divides the scalar field 3H |t at
driving inflation ¢ into a long wavelength piece, and a
short wavelength pieceés:

J d3ko[k— eR(t)H]

X[apr(t)el " Y+ H.c]

)= , J(X,1), 22 _ iER(t)Hz —ik-x
(X, =X, D)+ ¢s(X,1) (22 = \/E(Tk)?’/z,[ d3k5[k—eR(t)H][ake k —H.c]
where
(28)
di(Xt)= f d*k6[ eR(t)H—K][axei(t)e " ¥ +H.c], and Eq.(24) is now complete. The fielgh, is smoothed over

the horizon scale and we are concerned with the dynamics at
a single spatial point. Le#,(x,t)— ¢,(t)— ¢(t) and inter-
¢S(x,t)=f d3ko[k— eR(t)H][axer(t)e " ¥+ H.c], pret this piece as a classical field which is acted on by the
23) stochastic forcef (x,t)—f(t). The field ¢ is affected not
only by V', as in the standard slow-roll approach, but also by
and e<1. The long wavelength piece contains only modesthe flow of initially small-scale quantum fluctuations across
outside of the horizon: it is coarse grained over the horizorthe horizon. If we calculate the expectation value and two-
scale and will eventually be interpreted as the “classical”point function off(t) and interpret them classically we ob-
inflaton. The short wavelength piece includes only modegain
inside the horizon, where quantum fluctuations are impor-
tant. (f(1))=0,

The goal is to determine how the subhorizon quantum
fluctuations affect the evolution of the coarse-grained field. N ,
We now briefly sketch the derivation of the stochastic slow- (fOf))= 7200t ), (29
roll equation.(For a more complete review s¢&8], and
references thereinFirst, insert the decompositiof22) into  and Eq.(24) becomes a Langevin equation fér Regroup-
the Klein-Gordon equation, and write the result in the form ing terms and slightly changing notation, the final stochastic

slow-roll equation is

1
¢|+ V () =TF(s:x,1), (24 _ 1 32
b= H(¢>)V (¢)+ﬁg(t), (30

whereg(t) has the properties of Gaussian white noise:

(9(1))=0,

3

where

-1
f(beixt)= g [dst BHE— R 2ADV2]. (29
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(g(g(t"))=o(t—t'). (31

We have standard slow-roll evolution with an additional sto-
chastic term which represents the effect of quantum fluctua- H3
tions on the dynamics. a?=(|p(t)— ¢o|?) = 7= (t=to).
We will use the stochastic equati¢80) to determine the m
probability distribution of fluctuation®(¢,t) for models of ~ Over a Hubble time t(—ty=H!),0c=H/2m: the standard
interest, and then measure the degree to which non-Gaussiggsult from quantum field theory.
statistics are important. The Fokker-Planck equation associ- Non-Gaussian distributions arise when the evolution is
ated withP(¢,t) and(30) is well known[29]: nonlinear, or when the inflation is not strictly de Sitter. One
gains insight into the statistics of more complicated ex-
V() Pl t amples by comparing them to the simple de Sitter case. Our
3H(¢) (¢.1) goal when finding distributions for our examples will be to
1 put the stochastic equation into the form of Eg3) so that
L 312 312 we may simply write down the answer using Eg86). We
T2 el (#)4(H(SIP(H.1)], illustrate this technique in the examples that follow, and use
the notation

12
[H(t)— o] }; (36)

P(g{),t)ocexy{ T o2

1
HP(¢,t)= §&¢,

(32
. . . . . X= ¢/mp|; t—>t/mp|
with the Stratonovich interpretation of the noise.
Several authors have employed the stochastic Langeviim order to keep the variables dimensionless.
equation and corresponding Fokker-Planck equation to ex-
plore the importance of non-Gaussian fluctuations for large- B. Nonlinear diffusion: Driftless ¢*
scale structur§30,28,13. We use a similar approach but on
the much smaller scales relevant for PBH formation. We als g . ; ) .
?erm or the diffusion term in Eq(30) is nonlinear in¢. In

choose to work with the more intuitive Langevin equation L
(30) when determining our solutions rather than the moreorder to develop some intuition for how each of these effects

complicated Fokker-Planck mathematics of E82). Next generates non-Gaussian statistics, consider first an example

we present several examples which illustrate our method cf/lth nonlinear diffusion when the drift component is ignored

!
solution and provide a feel for how non-Gaussian statisticsV —0)- FOr concreteness let
arise from nonlinear inflaton dynamics.

Mode-mode coupling arises when either ttié “drift”

V= %m?,'x“ (37)
A. de Sitter: The Gaussian case
For our template example we examine the case of con¥ith H:mPIV(ZW_M?’)XZ- If we ignore the drift term in Eq.
stant vacuum energy, where there is no possibility of mode(30) our stochastic equation is
mode coupling and the statistics should be exactly Gaussian. C 3
To show this point clearly, start with Eq30). We have x=Cx°g(1), (38)

H(¢)=H= const andv’(¢$) =0, so the evolution is simple where C=\%{54x] 14 The trick now is to change vari-

diffusion ables,x— Z(x), such thaZ(x) will satisfy the simple diffu-

. 3/2 sion equation(33). We want

¢=5, 90 33 . dz. dz

Z= X &[Cx3g(t)]=[consﬂ>< g(t), (39
The normal statistical behavior becomes apparent after inte-
grating: where we have used E38) in the second step. Clearly if
we let
H32 rt
P00+ 5| atar. (34 1
o' 2m Jy, Z=5x? (40)

. t . . . . .
Since[; g(t')dt’ is Gaussian distributed as a noise SOUrCehan, e are left with an equation of constant diffusion
the resulting probability distribution fop must be Gaussian

as well. From Eq(34) we have Z=Cqg(t). (42)
(h(t)— ) =0, Now we write down the answer in correspondence with Eq.
(36)
2 H3 T " ’ " 4! H3 (Z_ZO)Z
(| #() = ol >=mﬁoﬁoﬁ(t —t)dt'dt’ =7 —(t—to), P(Z,t)ocexp{—Tczt—}. (42)
(35

Finally, changing back t& yields the probability distribution
and the probability distribution of interest,
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3.5 dependence irZ). By the classical velocity we mean the
solution to Eq(44) when the quantum fluctuating term is left
3t J out:
x=—CX, (45)
25t -
which is simply
. I Xal(t) =XoeXP( — C1t). (46)
5
& 15 L ] We would like our new variable to be constant as long as
x(t) follows this classical path, so we let
T ' Z(x,t) = xexp(C1t) (X) @7
X,t)=xex =| ——1Xp.
! Xq(t)] 70
05 e . .
We have chose#[ x=x.(t),t]=xo. Now Z has time deriva-
tive
O 1 1 'l . .
0 ! 2 8 4 5 Z=xexp(Cyt) + Coxexp(Cyt), (48)

and using Eq(44) for x we have a stochastic equation for
FIG. 1. The unnormalized probability distributidd3) for the Z:
driftless ¢* example, wherex=¢/mp. We use the the value

Xo=1 arbitrarily and pickC?t=1, which is unnaturally large, in i=C2X3eqult)g(t)=CZZ3exr(—2Clt)g(t). (49
order to demonstrate the intrinsic non-Gaussianity resulting from
nonlinear diffusion. Now our equation is much like E¢38) except for the extra
time-dependent factor. We can, however, scale this factor out
97 (x 2—x52)2 using a change in time variablé: 7(t). If we remember
P(x,t)= ’&‘ P[Z(x),t]ocx‘%x;{ - th—} that g?(t)~ &(t) then we have
(43 97 —-1/2

9(7). (50

ﬁ—=sz3exq—2C1)[d—
The statistics here are clearly non-Gaussian, but is the T T

dezviati(_)n ;ignificant? The_ answer depends on .the v_alue 9f, order to match Eq(38) we needd r/dt=exp(—4C,t), and
C<t which is, in an approximate sense, the effective width Ofrequiring 7(t=0)=0 gives
the distributiono .. Expression43) is plotted in Fig. 1 for
C%t=1 andx,=1 with arbitrary normalization. We see that 1 1
P(x) has a long tail of large fluctuations, and clearly is far 7(t)= E[l—exp(—4C1t)]=E{1—[XC|(t)/xo]4}.
from Gaussian. For small values ofs, the deviation ofx ! ! (51)
from xy will not be significant and the distribution will re-
cover a Gaussian shape. We will discuss this behavior iWe now havé
detail following the next example. .
Z=C,Z2%(7) (52)
. e 4
C. Nonlinear diffusion: Full ™ theory just as in Eq.(38), and we simply use the solutiod3) to
Now let us go one step further and include the diffusiongive us the probability distribution faZ:

term for the potential37). We haveV’'=xm3x> and the

stochastic equatiof80) becomes

—2_5-2\2
(Z7°=2Z,7) } 53

P(z,r)ocz3exp[— 5
- 3 8Cs5T
x=—Cyx+ Cyx°g(t), (44)
We transform back tax andt and obtain the standard result
whereC,= A /67 andC,=\¥{547] V4 The drift term in  for ¢* theory[28]
this case is linear and does not lead to mode-mode coupling.
The probability distribution of fluctuations will then look
very much like that of the driftless ca$43), except that the
peak will shift to smallex values as the field rolls down the
hill, and the spread in the distribution with time will no So, as expected, the distribution has the same non-Gaussian
longer be linear. form as did Eq{(43). In truth, however, most practical cases
As before, we obtain the solution through a change in
variables:x(t) —Z(x,t). In this case we would like to first
remove the drift term by effectively going to a frame moving “From now on, the overdot will signify the derivative with respect
with the mean “classical” velocity(thus, the explicit time to the argument of the stochastic functign

XX
2(C5/C X0/ xg(1) ]~ 1}

. (59

P(x,t)xx‘3exr{
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(i.e., those concerning large scale structiied this distri- ~ where C;=a\/3\/8, and C,=\%432/27x)Y*. Since the
bution quite well approximated by a Gaussian due to its exdiffusion term is now constant, any non-Gaussian statistics
tremely small standard deviatiotr: \/\. will arise due to thex? drift term in Eq.(59). As before, we
To put in some numbers, let us assume we are interestesblve for the probability distribution by making a change in
in the statistics of fluctuations associated with large scalejariables,x(t)—Z(x,t). We want to remove the drift term
say the modes that cross outside of the horizon during thby changing to a frame moving with the classical velocity
epoch Xxo~4. We need to evaluate EQq(54) at and canceling out the drift in Eg59). The classical solution
X¢l(t) =Xeng~ 0.4 in order to find the distribution of interest. to the standard slow-roll equation of motion
Since for this modeh~10"4 let us assume that the stan- _
dard size of a fluctuation abowmt,4in the final distribution is x=—Cyx? (60)
quite small:x=Xg,qt+ € (Where,e/Xq is assumed<1). In Eq.

(54) we have is trivial
- —-1y-1
szzxgnzd_ze/xgnd (55) Xel(t) = (Cat+Xo7) 7, (612)
wherexo=X(t=0). Let us pickxg=—1 for concreteness.
and Our new variableZ(x,t) should be fixed as long as(t)
Ry travels along its classical path:d/dt)Z(x.,t)=0. We
P(e)xex (56) achieve this goal by letting
20—eff '

Z(x,t)=(x"*=Cyt) "%, (62)
which is Gaussian as expected with an effective standard ] . o .
deviation where we have picked[x(t),t]=X,. Differentiating with

respect ta and using Eq(59) we obtain a driftless stochas-

xS L3 A . tic equation for our new variable
e e, L(X0/Xend "~ 11= Tl (X0 Xend *~ 11Xena -
(57) Z=-7Ca0(1). (63)
X

i i —~ 77 - . . . . B
P'“gg'r.‘g In the number_s we havee 2X1_0 . So our At this point let us simplify the problem by approximating
approximatione/xo,q<1 is clearly self—con_sstgnt, a_nd the - and x with their mean classical valuesc—x,(t) and
Gaussian assumption is a very good one in this typical casez_)z[x (t),{]=xo=—1. We have

C ’ .

The small value otr is responsible for the near Gauss-
ian statistics, but the more the mean size of fluctuations in- Z=(Cyt+1)2C,9(1) (64)
creases ¢.;1), the more Eq.(55) fails and the Gaussian
approximation(56) breaks down. In this way we can under- which is beginning to look a lot like simple diffusion.
stand why a flat potential region gives rise to non-ClearlyZ(x,t) will be Gaussian distributed, but(t) will be
Gaussianity. Let us usg, as a crude measure of the impor- more complicated than in E436) due to the explicit de-
tance of the drift term V') in the dynamicq44). Notice  pendence in the diffusion coefficient. To find the correct
that as the drift term gets smalle€{|), the effective width  form of o(t) let us change time variablés- 7 such that the
of the distribution(57) grows, and with it the likelihood of time-dependent diffusion will be scaled away. Remembering
non-Gaussian statistics. Notice also that as we consider fluthat g%(t)~ 8(t) we have
tuations farther and farther from the mean, approximation
(55) will get worse and worse. The number of standard de-
viations one must be from the mean in order for non-
Gaussian statistics to be important is very sensitive to the 4
value of \. However, we can at least see the qualitativeSO We needi7/dt=(C,t—1)", or
effect that large fluctuations have on highlighting any intrin-

drl— 1/2
ﬂ 9(7). (69

9z )
—=[Cyt-1]%C,

sic non-Gaussianity. = %[1+ (Cit—1)%]. (66)
1
D. Nonlinear drift Then our final stochastic equation ¢ ) mirrors Eq.(33):
Finally we examine the case of nonlinear drift as a source oz
of non-Gaussian behavior. Consider the potential &_:CZQ(T): (67)
T
V=Amg(1+ax®) (58)

and corresponds to the probability distributi86):

over a region wheréx|<(1/a)*3. The potential is roughly
constant over this regiorv(w)\m‘,;) so the only nonlinearity P(Z,r)ocex% -
comes fromV’ =3xm3ax?,
The stochastic equation in dimensionless variables is thepve obtain the distribution of interes®(x,t) by simply
) changing back to the appropriate variables x, 7—t. We
x~—Cx?+C,g(t), (590  have

(Z+1)?

W) . o(r)?=Cir. (69
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small-scale power needed. The additional constraint on the
inflaton potential is associated with the overproduction of
gravitons and limits the scale of inflatidt/mp=<10"° dur-

i ing the epoch associated with the horizon scale today
[ #(10* Mpc)] [31]. The first two models below are actually
on the hairy edge of this constraint, but recall that we are not
. trying to construct “true” models here, we are simply inter-
ested in the non-Gaussianity associated with PBH produc-
tion. Since the non-Gaussian statistics in these models de-
y rives from theshapeof the potential, slightly altering the
scale of inflation will not drastically affect the result. The
gravitational wave constraint on our third toy model is a
different story and we will discuss the reason when we come
to it.

We emphasize that these toy potentials are meant only to
illustrate the importance of non-Gaussianity in PBH produc-
ing models. The correct distribution for any ‘“realistic”
model will depend on the nature of the potential. The idea is
0 that the following examples will be tools of pedagogy, en-

abling the reader to easily perform calculations of PBH
abundances without relying on an incorrect Gaussian as-

FIG. 2. The unnormalized probability distributidi@0) for the  sumption. Before we begin, let us restate
nonlinear drift example. We have used=0.02. Note that the

0.3

0.25

0.2

0.15

P(X)

0.1

0.05

nonlinear drift has caused negative skewing, in contrast to Fig. 1, x=¢lmp, t—t/mp,
due to the tendency for negative fluctuations to fall down the hill
more quickly than positive ones. and introduce some notation
P(x1) 72| [(x t=Cyt) 1+1]? 69 V=AmgV, H=Amg/H.
o | — —
T ox 2C357(1)

The symbolsV andH are dimensionless quantities of order
Note that the non-Gaussian behavior is evident not only irunity which will be useful in keeping track of small param-
the nonlinearx dependence oZ, but also in the nonlinear eters.

time evolution of 7(t). If we evaluate the distribution at a

particular time, say that correspondingxg=—2, we will A. Plateau potential

have a peak in probability near this value. From E{) we

needt=(2C,) 1, which corresponds ta~(5C;)~* from Consider the potential, shown in Fig. 3, which in some

Eq. (66), so Eq.(69) becomes region of interestX~0) has a flat “plateau” feature
_ _ 1+ arctarix), x>0,
1 ([x 1=0.5]"1+1)? _
P(x) e pexr{ - 552 , (70) v 1+(4x10%)x%, x<O0. (7
whereasz§/SCl. We have designed this somewhat outrageous potential to

2_ ; ; _ produce a spike in small-scale power using the methods out-
We plot Eq. (70 for ¢°=0.02 in Fig. 2. The non lined in Sec. I. It suffices to regard expressi@n) as only a

Gaussian behavior is clear. There is a long tail in this distri- "~ ) -9 . ;
bution for small fluctuations and a sharp cutoff for Iargereglon of potential, so we arbitrarily begin following the roll-
down of x at the value corresponding to the scale-10

fluctuations — in opposition to the previous example. The ~0.15. We ch i ial reai
nonlinear drift tends to encourage fluctuations to fall downP® OrXs~0.15. We choose to normalize our potential region

the hill (sinceV”<0 the slope gets steeper for smaller values2t i hand-picked starting point, and fix with 6,(10
( peg P c)=3%10"°, which is an arbitrary but reasonable choice.

of x) resulting in an underabundance of large fluctuationd . . 10 !
compared to the Gaussian. Expression(4) then requires\~6x10 ~. When the field

first reaches the plateau region, it is moving too fast to obey
the slow-roll conditions, and we are forced to obtain the form
of 8y by solving Egs.(1) and(2) numerically. We also use

In this section we present three example potentials whiclthe more exact behavial,=H?/x. The plateau region is so
meet the small-scale power requirement for PBH productiorilat, however, that the friction of the expansion slows the
(64=0.01) as discussed in Sec. Il. For each example wdield down very quickly. The magnitude ofy grows asx
apply the methods developed in Sec. Ill to determine the
probability distribution of fluctuations and compare this dis-
tribution to the usual Gaussian assumption. Each example is°This potential with a single break is similar to the double-break
realistic in the sense that it forces the power on large scalgsotential proposed by Ivanov, Naselsky, and Novikd2] for mak-
to be small §4,~3x10°) while giving us the sufficient ing PBH's.

IV. TOY MODELS
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FIG. 3. The pl ial71): V(x>0)=1+ . . . .
g (?) _31 4e 1%;:2? E}oter’??ﬂ d) f (z O)b i arctgng)l, FIG. 4. The spectrum of density fluctuations at horizon crossing
(x<0)=1+4X » WhereV is defined to be dimensionless Sy associated with the plateau modg@ll) as a function of the

and of order unityvV=\V/(Amg). This potential produces the fluc- |ogarithm of the length scalk in units of pc. The plateau region
tuation spectrum shown in Fig. 4 and the distribution of fluctuationsseen in Fig. 3 produces the rapid rise in power, corresponding to
shown in Fig. 5. ~10%2 g PBH production.

slows down and continues to grow untilreaches its lowest over the region of interest, and the two terms become of
value, corresponding to a peak in power, and also corremore equal weight, increasing the likelihood of non-
sponding to the beginning of a second slow-roll regime.Gaussian statistics.

(Note that this potential provides two periods of inflation ~ Over the range of interest|~ 102, so to a high degree
with only one inflator). Numerically, we find that the peak in  of accuracyV~1 and we have a case of constant diffusion.
power occurs wherx, =—1.23<10 2. The height of the On the other hand, the drift force is small and very nonlinear:

peak is then V' =8.4x 10>*%?°. This situation is very much like the last
Ve example presented in Sec. lll and the method of solution will

Su(Xy )~ VA=—(x, ) ~0.05. (72)  be similar. Let us rescale by x, to keep our variables of

\% order unity: Xx=x/|x,|. The path of the mean evolution is

We show the density perturbation spectrum at horizon crosden fromx, =—1 10 Xeng= —1.26. Usingh =6x 10 in
ing associated with this region in Fig. 4, and see that thd=d. (73 we have our stochastic equation for
peak in power corresponds to the creatiom~0fM black .
holes. X=—(1.2x10"7)x%+ (7.8 10 ®)g(t). (74)

The modes which will eventually be responsible for PBH
production pass outside of the horizon at the epagh We see that the small value & gives the quantum diffu-
Since we are only interested in calculating the non-Gaussiasion term a more equal weight in the dynamics. Let us do
behavior associated with these modes, we evolve the st@mne more bit of cleaning up by rescaling the time variable
chastic equation fromx, — Xenq t0 determine the relevant t—t(1.2x10 ') [see Eq(50)] which gives
probability distribution. For this model, the end of inflation

occurs when the first slow-roll condition breaks down: X=—X204 ag(t’),
|V"1247V|~1, and corresponds tq,= — 1.55x 10" 2.
The stochastic equatiof29) in the new notation is a=2.3x102. (75)
- \/XT// \ 345312 We now mirror the method of solution presented in Sec. IIl.
X= 30 + 2 g(t). (73 The first step is to go to a frame moving with the classical

velocity. The classical slow-roll equation &= x?° and us-
Note the relative sizes of the drift and diffusion terms in theing X=X, = — 1, the classical path is
evolution ofx. In most cases, the higher power »fin the
diffusion term means that quantum fluctuations play a very ')ch(t): —[1-19%]" Y (76)
minor role in the dynamics of, resulting in nearly Gaussian

statistics. But in this example, the drift terfd’() is very tiny  Our variableZ(,t) will remain constant along=x:
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Z(X,t)=[19%t—x 19119 (77 3000
where we have chosef] x(t),t]= —x,=1. The stochastic
equation forZ is then diffusion-only by design, 2500 1
' 7 20
Z=- = ag(t), (78) 2000 .
and approximatingc— X (t), Z— — X, we have £ 1500 | -
o
Z=(1—1%)2%q(t). (79
. . 1000 |+ R
Now, with one more change of variables we can scale awa
the time dependence multiplyirg(t). Let
1 500 y
11— 59/1
7= ggl1-(1-19) 9, (80)
O L
so that we are left with an equation exactly like E83): -1.8 -1.6 -1
Z=ag(7). (81)

FIG. 5. The solid line is the calculated final distribution of fluc-
The probability distributionP(Z,7) follows from Eq.(36), tuations(83) associated with PBH production from the plateau po-
and we change variables back again to obtain the distributiotential (71), Fig. 3. The dashed line is a stochastic numerical simu-

of interest, lation of the the same model which consists of #20* points. The
calculated distribution is normalized to the number of points and
_ 1 —([19t—Xx 197119 1)2 bin size of the numerical result.
P(x,t)x =— 82
( ) X20 2a27_(t) ( )

on a log scale. Figure 7 shows distributi®8) along with
We want to evaluate the distribution fat,4, the time corre- the two Gaussian comparisons in units of the standard devia-
sponding to Xy=-1.26. From Eq. (76) we find tion from the mean. As the more conservative choice, we use
1%,,~0.9876 and from Eq(80) we have r(ts,9=1/59. the o associated with the Gaussian fitted to the peak of Eq.
Plugging in these values along with=2.3x 10" 2, we have
the final distribution of fluctuations

8
~ 1 ~
P(X)o =5z ex = K([1%eng— X117 V-1)?], (83 21 i
X
where K=5.6x10*. The distribution is plotted in Fig. 5 6 1

along with the results of a numerical simulation for this same
potential. For our simulation, we started with the stochastic 5t
equation(73) and made no approximations. We used the
Box-Muller method[33] to transform uniform deviates into & 4 |
random Gaussian deviates to mimic the stochastic force. Tr®
numerical results consist of>410* individual runs of the 3
Langevin equation, and we have normalized the height o

our calculated distribution to fit this number. We see that the

calculated distributio83) agrees well with the numerical 2
results.
The distribution of fluctuations is clearly non-Gaussian. In Tr i
Fig. 6 we have plotted our analytic distributig83) along . .
with two Gaussians that one may wish to compare it to: one 0_1.8 1.6 0.8 0.6

with the same mean and standard deviation as our distribt
tion and one with the same height and width at half maxi-
mum as the peak in our distribution. We see that the true pig . A comparison of the calculated distribution of fluctua-
distribution is underproducing large fluctuations comparedions for the plateau potentié?1) with two Gaussian counterparts.
with either of the Gaussians. Now, for PBH production underrhe solid line is the analytic resu3). The dashed line is a Gauss-
the Gaussian assumption, we are concerned with fluctuationign with the same mean and standard deviation as the calculated
on the tail of the distribution~60¢. The calculated distribu- distribution. The short-dashedotted line is a Gaussian with the
tion differs so drastically from the Gaussian assumption asame width at half maximum as the peak of the calculated distribu-
this distance from the mean, that we can only compare thenion. Both Gaussians overpopulate large fluctuations.
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FIG. 7. The same curves as in Fig. 6, but on a log scale to G- 8. The wiggle potential(84): V=1+[136.717x°~
emphasize the error in the Gaussian assumption. Again, the solfg- 95%. The bump in the path of the inflaton causes it to slow down,
line is the probability distributior83) associated with the plateau Producing a spike in power shown in Fig. 9.
potential (71). The two dashed lines are possible Gaussians to

which we may wish to compare our dlStr|bUthNh|Ch is not rea”y Sp|ke in power Correspondlng to thelozs g mass scale. We
importan). The distributions are plotted in terms of the number of find the slow point to bex, = —1.10448< 10~2. which is
* . ’

standard deviations from the mean, where we have chosen the stagl-so the beginning of a second slow-roll epoch of inflation
dard deviation of the peak of the distribution as the most conserva- '

tive choice. A fluctuation of 6 o would correspond to PBH pro- 1he height of the peak isy~ VA (V¥IV")(x,)~0.01, the

duction under the Gaussian assumption, but the actual distributioRrder of magnitude we need for PBH production. _
underproduces these fluctuations byL0**’, resulting in almost no After the field slows down at, , inflation continues until

PBH production. Xena~ — 0.1. This is the path of interest for estimating the
distribution of fluctuations. Let us again set our notation be-
(83). Observe that the Gaussian assumption would vastly
overproduce PBH’s, with an error of order10**° at 6.
This model was designed to give us a large number of PBH’s 20 '°91g(oM/9)
using the Gaussian assumption, but upon examining the dis 102 r
tribution more closely, we see that the actual production is
practically zero. We, as inflation designers, are forced to
make an even higher spike in small-scale power if we want
PBH production. Note also that as the spike becomes higher
the drift term becomes smaller, and the distribution will tend 104 b
to skew even more towards small fluctuations.

40

100 b

- , & 10° -
B. Wiggle potential
Our second potential which produces significant small- "

scale power is one with a wiggle in the path of the inflaton 107

= 3 107 F

V=1+[136.717x>—0.05 (84

. . . 10-8 ) 1 1 1

as shown in Fig. 8. We start our evolution at -15 -10 -5 0 5 10
x(L=10* Mpc)=2.6, and since slow roll is obviously in- log4o(L/pc)

valid over the dip, we integrate Eq4) and(2) to obtain the

spectrum ofsy (L) shown in Fig. 9. Normalizing at=2.6 to

COBE gives\~5x 10" We have adjusted the wiggle to  FIG. 9. The spectrum of density fluctuations at horizon crossing
make the field slow down dramatically just after the top of 5, associated with the wiggle potentiéB4). The high point in
the bump &,= —1.0411x 10 2) which produces a large power corresponds to the production-efL0?® g PBH's.
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fore writing down the Langevin equation. For the analytic 3 1

calculation we us&~1 over the range of interdsand also 7(1)=C+ g[t—4.35 — zsinf{2(t—4.35 ]

scalex by X =X/Xygp, such thaix,,,= —1 corresponds to the L

top of the wiggle[ V' (x=—1)=0]. Using this notation, the + 5 4(t-4.35], (92)

starting point isx, = —1.00033 and we want to follow the

evolution until X ¢ng~ — 9. The potential in terms of is

V=1, V'=0.09%%-1]
and the stochastic equation farfollows:

X=—(1.2X10"7)(X2—1)+(7.5x 10 %)g(t). (85)

whereC=5.6x10° demands that(t=0)=0. So the vari-
ableZ(x,7) obeys simple diffusion by design

Z=bg(7) (93)

and has a Gaussian probability distribution with mean
Z= 32 and o®=b?7. Now, as discussed earlier, we simply
perform the reverse transforf— X, 7—t to obtain the dis-

As before, we clean things up with a new time scaleyihution of inflaton fluctuations:

t—1t(1.2x10™ "), which gives us

X=—(X2-1)+ag(t), a=2.2x105  (86)

We want to use the same trick and factor out the drift term

{cotH arccoth 1(X) —t]— X, }2
2b*7(t)

1 ) p[
= ex
x2—1

P(?,t)a(
(99)

by changing to a variable which is constant along the classiye want to evaluate the above expression at the time
cal path. We solvéx = —(x?-1) to obtain the classical so- ton= 4.24, when the classical path reaches,= — 9. Equa-

lution with the initial valueX y4(t=0)= X, = —1.00033 and
obtain

X(t)=coth(t—4.35). (87

Following the methods outlined in Sec. Ill, the new variable

Z(X,t) is
Z(X,t)=cotH coth %(x)—t], (89
where
Z[Xo(t),t]=X, (89)
The stochastic equation fa is then
'Zzazz_lg(t). (90)
x2—1

If we use the approximatior — X (t), Z— X, we have

Z=a(x2—1)(cotl[t—4.35— 1) *g(t)
=sint?[t—4.35bg(t),

where b=1.47x10 8. Now we want to change to a new

time coordinater(t) which will leave us with a simple dif-
fusion equation. The requirement is

dr _ sinH[t—4.35]

dt (91)

or

5This approximation is very good af, but is off by ~10% at the

tion (91) gives us7(teng=~C and plugging in all of these
values we have the final probability distribution

P(X)=

~21_ 1) exp( — K{cotH arccoth *(x) — 4.24]

+1.00033?) (95)

with K=4.1x10. As in the previous example, we have
simulated this distribution numerically using no approxima-
tions, and we plot the two together in Fig. 10. We have
normalized Eq(95) to the simulation height. We see again
that the derivation does quite well, and the distribution has a
deficit of large fluctuations relative to a Gaussian. The dis-
tribution is skewed negative again since the drift terri’

and V"< 0. Negative fluctuations tend to fall down the hill
more quickly than positive ones. There is no need to do
another explicit comparison to a Gaussian distribution since
if the distribution is clearly non-Gaussian to the eye, then the
high-o tail will be exponentially worse.

C. Cliff potential

For our last example we present a potential region which
flattens out to achieve large power in the form of a blue
spectrum, and then has a clifflike feature where the slope
abruptly becomes much steeper. Consider the region of po-
tential, shown in Fig. 11, given by

Xx>0.00004,
X<0.00004.

cos ?[1.5],
(2.7~ [x+2.7%,

For x>0.00004 we use a form suggested by Hodges and
Blumenthal [10] which gives uséy~(L/Lg) ", n=0.18.
The highest amplitude in power, corresponding to the flattest
region of the potential and PBH formation, occurs at
X, =0.00004, after which the slope increases abruptly as a

V= )\mP,

end of inflation. However, since the field spends most of its evolu-* ¢*” form ends inflation. Since we are interested in fluc-

tion time nearx, , this approximation should be fine.

tuation statistics which depend only on the nature of the
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FIG. 10. The solid line shows the calculated distribution of fluc-
tuations (95) associated with the wiggle modé84). The dashed
line shows the results of our numerical simulation of this model,
with 4x 10* points. The distribution95) was normalized to the
simulation number and bin size, and is clearly non-Gaussian an
skewed negative.

FIG. 12. The spectrum of density fluctuations at horizon cross-
ing &y associated with the cliff potentidB6). The high point in
power corresponds to the production-efLl0?® g PBH's.

ﬂwat we have already calculated the distribution for the quar-
tic case in Sec. II[Eg. (54)] so our job is nearly done. In
order to make things look more familiar, define
=x+2.7, ' =4N/(2.7)*~2.3x 1072 such that we have
e more standard form

potential fromx, — Xgng, the “smallV’'"” argument does not

apply to encourage non-Gaussian statistics in this case. U

ing A~3x10 ! we obtain the power spectrum shown in

Fig. 12. The highest point in density &,~0.04 and corre- N

sponds to~107° g PBH’s. V(y)=—vy* (97)
As we mentioned before, the region of interest for calcu- 4

lating the probability distribution has quartic form. Recall |\ o ore interested in the path frgm¥2.7 to Y, ~0.4.

Now, lettingA—\" andx—y in Eq. (54) we have the fluc-

2 tuation distribution we need:
1.8 _ _
P o -3 _ (y 2_yen2d)2
16 } (Y) y €ex 20_2 ’
1.4 | ,
2 A 4
ol o? = [V Yend '~ 11. (99
§ 1r From the discussion following Eq(54), we know that
P(y) is skewed positive, but we also know that the amount
08 1 of skewness depends on the valueosdt In this case, non-
0.6 F Gaussianity is negligible due to the extremely tiny value of
N'. In order to see the lack of skewness in a quantitative
04 way, let us borrow a measure proposed by Yi, Vishniac, and
Mineshige[11]. This simple estimate for skewness is the
02 F ratio
0
- . . . P No
2 15 1 3 0.5 0 05 R (Yenat Noer) —exgNO BN TGy —y )12
P(Yena= Noes)

~exg N3(107%)], (99
FIG. 11. The cliff potential96) which produces the blue spec-
trum shown in Fig. 12. The final distribution of fluctuations is Whereoes, the number of effective standard deviations from
nearly Gaussian since the slope of the potential has a sharp increadt® mean, was given in E¢7), andN measures the size of
just after the spike in power. the fluctuation. We see clearly that the small valuexof
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tends to forceR— 1 and prevent skewness. But a large valuespectra. Correspondingly, it is not possible to determine the
of N (e.g., a large fluctuatiorwill compete with this effect number of PBH’s produced from the power spectrum alone.
and give a skewing effect. For our potent{&6) we have We can use our toy models to exemplify what might happen
chosen the largest value af—\' possible to be consistent in various cases. For models with spikes in power, such as
with the gravitational wave constrait~10"5. However, our plateau and wiggle examples, fluctuation distributions
even with the large fluctuation we need for PBH formationwill probably skew towards small fluctuations and underpro-
N~10, expression(99) implies that the skew is only 1%. duce large fluctuations relative to the Gaussian case. Many-
Suppose, for example, that we did ignore the gravity waver fluctuations then will be much less likely, and PBH pro-
constraint and push the value of’ up to ~10"°. The ratio  duction in these models will require an even higher spike in
(99 would then give us a&20% effect alN=10. Thus even power. Then magnitude limits on spikes in power to prevent
for potentials with “normal” shapes, non-Gaussianity may PBH overproduction will be less stringent than the limits
be important due to the rare large fluctuations associatedbtained using Gaussian statistics. We also point out that the

with PBH production. formation of any PBH's at all without overproducing them
will require an even more drastic fine-tuning than in the
V. CONCLUSION Gaussian case. The fine-tuning must be more precise because

the large fluctuation tails in these models are much steeper
We have argued that the very conditions associated witthan a Gaussian tail. So small changes in fluctuation size will

PBH formation,(1) large spikes in power, usually associatedcause a larger change in the probability of having such fluc-

with flat potential regions, an() rare, manye fluctuations, tuations.

are exactly the same conditions which can produce signifi- Our results also affect the use of PBH overproduction to

cant non-Gaussian fluctuations. Flat potential regions prorule out or limit the parameter space of specific inflationary

mote the importance of quantum fluctuations in the inflatormodels. For example, authors employ PBH overproduction
dynamics and encourage the mode-mode coupling respoms constrain the slope of blue perturbation spectra from in-
sible for non-Gaussian statistics. On top of this effect, manyflation (see[23]). All such examinations use the Gaussian

o fluctuations push us out to the tail of the probability dis-assumption and limit models without regard to the shape of

tribution, where any intrinsic skewness will be amplified. Wethe potential after the power reaches its maximum height.

have quantified this intuition with several toy models thatBut the amount of PBH production, and hence constraints on
produce the small-scale power associated with PBH producs,; and the slope of the spectrum, depend crucially on the
tion, and have used the stochastic slow-roll equation to obnature of the fluctuation distribution and hence on the shape
tain the fluctuation distributions. Our examples clearly illus-of the potential between the region of PBH formation and the
trate that the Gaussian assumption can lead to large errors @md of inflation. Our “cliff” potential toy model actually
the calculated number density of PBH’s, and that the natureecovers the Gaussian approximation, but only because the
of the non-Gaussian distribution is extremely model depenslope of the potential increases dramatically just after the
dent. region of high power associated with PBH production. How-
Specifically, for models with spikes in small scale power,ever, with a more rounded potential shape after the peak
the fluctuation distributions were skewed towards small flucinstead of a cliff, non-Gaussian fluctuations will be much
tuations, underproducing PBH’s by many orders of magni-more likely. PBH overproduction is also important for con-
tude relative to the Gaussian assumption. The negative skewtraining parameter space in hybrid inflationary models due
ing in these examples came from mode-mode coupling duto associated spikes in small-scale poWw&i6]. Again, our
mainly to nonlinear drift, which encouraged negative fluc-toy models indicate that spikes in power are associated with
tuations to fall down the hill faster than positive onesPBH underproduction relative to the Gaussian case. How-

(V"<0) 8 Because the fluctuation statistics depend on thever, without further investigation of multiple-field PBH pro-

path of the inflatorafter it passes the flattest region of the duction models, the validity of our intuition from single-field

potential, we were even able to construct an example wherexamples remains uncler.

the Gaussian assumption holds, simply by forcing a dramatic Authors occasionally investigate the possibility of PBH

increase inV’ (a “cliff’ ) just after the peak in power. One formation associated with a soft equation of state during a

may regard such a cliff region as unnatural, but it does illusp=0 “dustlike” epoch [34,23. Dust era PBH formation

trate the model-dependent nature of distribution shapes. would be important if the universe underwent an early
These results have several important implications and we=0 stage(before the usual matter-dominated epoc®on-
discuss each briefly. First, the standard approach for limitingeivably, such a dust stage could occur due to some as yet
the initial fraction of PBH'sgB and limiting the spectrum of unknown physicge.g., possibly due to coherent inflaton os-
initial density perturbationgsee Sec. )l must be reconsid- cillation during reheating35]). For dust era PBH formation,
ered. Because of the model-dependent nature of the distribtlhe major criterion for PBH collapse is that the initial pertur-
tions, it is not possible, as in the standard praditeto use  bations be nonrotating and spherically symmeifid,23,

PBH overproduction to limit generic inflationary power and the probability for spherical geometry typically increases
with the amplitude of a fluctuation. Again the associated
power spectra must have excess power on small scales to

"Note that we can easily adjust our potential region to obtain the
appropriate small scale power with a new valuexof

8A potential region which tends to “cup” the inflator\v(>0) An analytical examination of multiple field models may prove to
after the flat region may produce positive skewing. be too difficult, but numerical simulation is always possible.
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achieve substantial PBH production, and the fluctuation diswill be enhanced slightly relative to the standard case before
tributions will typically be non-Gaussian. But the tails of the universe again achieves a hard equation of state. If the
probability distributions are not so important to the analysisfluctuation amplitude at this time is as large &s 1/3 then
since rare large-amplitude fluctuations are not all that is imPBH formation can occur. So the minimum value of the
portant here, but also spherical ones. Thus the valy@wil initial Sy at horizon crossing is reduced, but only by a factor
depend mainly or(the rmsg &y, with only a weak depen- of order unity (see[36] for a more complete discussion of
dence on the shape of the distribution. Compared to PBHberturbation growth during this epochrhis slight increase
formation during the radiation dominated drahere, as we in the PBH mass function would be important if PBH pro-
have shown, the distribution is very important and non-duction were marginally possible over some range of mass
Gaussianity can shif8 by many orders of magnituglethe  scales. PBH formation would then be enhanced for masses
effect of non-Gaussianity on dust era formation should bearound ~0.5M, which could perhaps explain why this
much smaller. mass range of MACHO’s is observed. But in order to
Finally, we discuss our results in the context of PBH for- achieve PBH formation at the QCD mass scale, we still must
mation associated with the QCD phase transition. Jedamzikave large-amplitude fluctuations at this wavelength, so our
[2] points out that PBH formation due to a first-order QCD arguments for non-Gaussianity still apply. Moreover, any
phase transition would be roughly consistent witld.5M o non-Gaussianity in the fluctuation distribution should be im-
MACHQO's, since this is roughly the total mass energy insideportant, since PBH formation is again associated with rare
the horizon during the QCD epoch. However, even if thefluctuations and, therefore, quite dependent on the shape of
QCD transition is first order, the minimudy, for PBH for-  the distribution far from the mean.
mation at this mass scale will be lessened by at most a factor
of order unity, for the following reason. During the epoch of
the first-order phase transition, the effective velocity of
sound drops to zero, and with it the Jeans mass. Thus density We thank George Blumenthal for useful discussions and
perturbations which cross inside the horizon at the beginnind\lex Vilenkin for a helpful comment. J.S.B. acknowledges
of the epoch can begin to grow. But the duration of the phassupport from GAANN at UCSC, and J.R.P. was supported
transition is quite short. Fluctuation amplitudes on this scaldy NSF and NASA grants at UCSC.
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