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We show that, during false vacuum inflation, a primordial magnetic field can be created sufficiently strong
to seed the galactic dynamo and generate the observed galactic magnetic fields. Considering the inflaton-
dominated regime, our field is produced by the Higgs-field gradients, resulting from a grand unified phase
transition. The evolution of the field is followed from its creation through to the epoch of structure formation,
subject to the relevant constraints. We find that it is possible to create a magnetic field of sufficient magnitude,
provided the phase transition occurs during the final fivee-foldings of the inflationary period.
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I. INTRODUCTION

One of the most exciting astrophysical consequences of
phase transitions in the early universe is the possible creation
of primordial magnetic fields.

The existence of a primordial magnetic field could have
significant effect on various astrophysical processes. Indeed,
large scale magnetic fields are important in intercluster gas
or rich clusters of galaxies, in quasistellar objects~QSO’s!,
and in active galactic nuclei. The existence of a primordial
field could influence the galaxy formation process and play a
very important role in the resulting galactic spins@1#. A pri-
mordial field would also have an important effect on the
fragmentation process of large scale structure and of the pro-
togalaxies~by modifying the Jeans mass! and on the forma-
tion of populationIII stars@2#. But the most important con-
sequence of the existence of a primordial magnetic field is
that it can seed the observed galactic magnetic field.

The galactic field is also very important to the astrophys-
ics of the galaxy. It influences the dynamics of the galaxy,
the star formation process~by transferring angular momen-
tum away from protostellar clouds@3,4# and by affecting the
initial mass function of the star formation process@5#!, the
dynamics of compact stars~white dwarfs, neutron stars, and
black holes!, and the confining of cosmic rays, to name but
some.

It is widely accepted that the galactic magnetic fields are
generated through a dynamo mechanism usually referred to
as the galactic dynamo, for which, though, there is no con-
sistent mathematical model as yet@15#. The basic idea of the
dynamo mechanism is that a weak seed field could be am-
plified by the turbulent motion of ionized gas, which follows
the differential rotation of the galaxy@3,6#. The growth of
the field is exponential and, thus, its strength can be in-
creased several orders of magnitude in only a few
e-foldings of amplification.

The currently observed magnetic field of the Milky Way
and of nearby galaxies is of the order of amGauss. If the

e-folding time is no more than the galactic rotation period
;108 yr, then, considering the galactic age;1010 yr, the
seed field needed to produce a field of the observed value is
about;10219 G @3,5# on a comoving scale of a protogalaxy.

Although, it has been argued by many authors that the
seed field could be produced from stars via stellar winds or
supernovae and other explosions@3#, there is evidence that
suggests that the seed field is more likely to be truly primor-
dial. For example, the observed field of the Milky Way does
not change sign withz (z being the galactic altitude! as it
would if it was produced by the stars of the galactic disk@3#.

Various attempts have been made to produce a primordial
field in the early universe. A thorough investigation of the
issue was attempted by Turner and Widrow@7#, who incor-
porated inflation and created the field by explicitly breaking
the conformal invariance of electromagnetism. This was
done in a number of ways, such as coupling the photon to
gravity throughRA2 andRF2 terms (R being the curvature,
A being the photon field, andF being the electromagnetic
field strength!, or with a scalar fieldf, such as the axion,
through a term of the formfF2. It was, thus, shown that
satisfactory results could be obtained only at the expense of
gauge invariance. Garretsonet al. @8# have generalized the
effort of @7# by coupling the photon to an arbitrary pseudo
Goldstone boson, rather than the QCD axion. They have
showed, however, that, in all cases considered it was impos-
sible to generate a primordial magnetic field of any astro-
physical importance. Breaking the electromagnetic confor-
mal invariance during inflation was a mechanism used also
by a number of other authors, such as Ratra@9# and Dolgov
@10#. Ratrahasbeen successful in generating an adequately
intense magnetic field. The field was generated by coupling
the field strength with a scalar fieldF ~the dilaton! through a
term of the formeFF2. Dolgov, however, did not introduce
any extra coupling but considered photon production by ex-
ternal gravity by the quantum conformal anomaly. He pro-
duced a field of enough strength, but only in the case of a
large number~over 30! of light charged bosons.

Another, more successful direction was using a phase
transition for the creation of a primordial field. An early
effort was made by Hogan@2#, who considered the possibil-
ity of turbulence arising during the QCD transition. His treat-
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ment, though, was based on a number of assumptions con-
cerning equipartition of energy, which are of questionable
validity. Much later, Vachaspati@11# proposed a mechanism
to produce a marginally sufficient magnetic field during the
electroweak transition. This has also been addressed, a bit
more successfully, by Enqvist and Olesen@12#. The later
have also considered a phase transition to a new, ferromag-
netic ground state of the vacuum, which could also produce
an adequately strong magnetic field@13#. Finally, the litera-
ture contains a number of other, more exotic mechanisms
~such as, for example, the creation of a primordial magnetic
field by the turbulent motion of infalling matter into wakes in
the wiggly string scenario@14#!. In most of the cases, though,
the achieved field appeared to be too weak to seed the galac-
tic dynamo.

In this paper we examine the production of a primordial
magnetic field during false vacuum inflation. In false vacuum
inflation a phase transition can occur during the inflationary
period. As shown by Vachaspati@11#, the existence of a ho-
rizon could result in the production of a magnetic field at the
phase transition. Although our model incorporates the ben-
efits of inflation, it does not require the breaking of the gauge
or even the conformal invariance of electromagnetism. Nei-
ther does it involve the addition of any extra couplings be-
tween fields through the inclusion of peculiar, ‘‘by hand’’
terms in the Lagrangian. Our magnetic field is produced by
the dynamic features of the grand unified theory~GUT!
Higgs field, independently of specific GUT models. No ad-
ditional fields are introduced in the problem and the results
cover the most general case. By considering a GUT phase
transition we find that, for some parameter space, the mag-
netic field produced is of enough strength to seed a galactic
dynamo mechanism at the epoch of structure and galaxy for-
mation.

Our results take into account any constraints imposed on
the field during its evolution until the epoch of structure and
galaxy formation. Before examining the behavior of the
magnetic field, we give a detailed description of the model
and of the mechanism, through which the original primordial
magnetic field is created.

II. CREATION OF THE PRIMORDIAL MAGNETIC FIELD

Vachaspati@11# suggested that the existence of a horizon
would result in the creation of a primordial magnetic field at
a phase transition in the early Universe.

Consider a non-Abelian groupG. The field strength of the
gauge fields is

Hmn
a 5]mXn

a2]nXm
a2gof bc

a Xm
bXn

c , ~1!

where f bc
a are the structure constants ofG and go is the

gauge coupling. If the symmetry of the gauge groupG is
broken, leaving a residual symmetry corresponding to a sub-
groupH of G, then the gauge fields of the residual symmetry
are given by

Yb[uabXa, ~2!

whereuab is a unitary matrix specifying the directions of the
generators of the unbroken symmetry. Vachaspati argued
that if the symmetry was spontaneously broken then the

vacuum expectation value~VEV! of the Higgs field ca

would have been uncorrelated on superhorizon scales,1 and
hence, could not be ‘‘aligned’’ throughout all space with a
gauge transformation. Therefore, the gradients of the Higgs
field would, in general, be nonzero. Because of the coupling
through the covariant derivative,

Dm^c&5~]m2 igtbYm
b !^c&, ~3!

whereta are the generators of the residual symmetry andg
is the gauge coupling, the corresponding field strengthGmn

b

is nonzero. This can be seen explicitly by using the gauge-
invariant generalization of ’t Hooft@16#:

Gmn
b 5uab@Hmn

a 2g21m22f cd
a DmccDncd#

5]mYn
b2]nYm

b2g21m22uabf cd
a ]mcc]ncd, ~4!

wherem is the scale of the symmetry breaking. So, even if
the gauge fieldYm

b can be gauged away, the field strength is
still nonzero:

Gmn
b 52

1

gm2u
abf cd

a ]mcc]ncd. ~5!

Vachaspati applied the above in the case of the elec-
troweak phase transition, takingGmn to be the field strength
of electromagnetism.

In this paper we will follow a similar reasoning but for a
GUT phase transition.G is now the GUT symmetry group
and the residual symmetry is the electroweak. In order to get
to electromagnetism we need to consider also the final elec-
troweak phase transition. In analogy with the above, the elec-
tromagnetic gauge potential is given by

Am5vbYm
b[sinuWn

aWm
a1cosuWBm

Y , ~6!

wherevb is a unit vector specifying the direction of the un-
broken symmetry U(1)em generator,na are the SU~2! gen-
erators of the electroweak group SU(2)3U(1)Y , Wm

a are the
SU~2! gauge fields,Bm

Y is the U(1)Y gauge field, anduW is
the Weinberg angle. From~6! it is easy to see that

vb[~sinuWn
a,cosuW!, ~7!

Ym
b[~Wm

a ,Bm
Y!, ~8!

with b51, . . . ,4 anda51, . . . ,3.
The contribution to the electromagnetic field strength

Fmn from the GUT transition is, therefore,

Fmn[vbGmn
b , ~9!

wherevbGmn
b is

vbGmn
b [sinuWn

aGmn
a 1cosuWGmn

Y , ~10!

with b51, . . . ,4,a51, . . . ,3, andGmn
Y [Gmn

4 .
The magnetic field produced by the GUT phase transition

is, therefore,

1More precisely, on scales larger than the correlation length.
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Bm[
1

2
«mnlF

nl. ~11!

Thus, for an order of magnitude estimate, Eqs.~5!, ~9!,
and ~11! suggest

uBmu;uFmnu;uGmnu;
1

gm2 ~]m^c&!2, ~12!

sinceva, uab, and f cd
a are of unit magnitude. As far as the

Higgs-field gradients are concerned, on dimensional
grounds, we have

]m^c&;
m

j
, ~13!

wherej is the correlation length of the Higgs-field configu-
ration ~see also Appendix!.

Also, at the GUT scale, 4pg22.40⇒g21;1. Therefore,
a dimensional estimate for the magnetic field is

B[uBmu;j22. ~14!

III. FALSE VACUUM INFLATION

In this section we review false vacuum inflation, a popular
model of inflation corresponding to extensive literature@17–
24#.

In this model the inflaton fieldf rolls down its potential
towards the minimum, which does not correspond to the true
vacuum, but is instead a false vacuum state. There are two
distinct and quite different kinds of false vacuum inflation,
depending on whether the energy density is dominated by the
false vacuum energy density or by the potential energy den-
sity of the inflaton field. Full details are given by Copeland
et al. in @24#. Unlike them, we concentrate on the inflaton-
dominated case, as in@18–23#. In this case, the phase tran-
sition does not lead to the end of inflation as it does in the
vacuum-dominated case.

A. The model

In this model the energy density is dominated by a poten-
tial with two scalar fields; the inflaton fieldf and the Higgs
field c. The latter is responsible for the phase transition. We
should emphasize here that the Higgs field considered does
not correspond to a specific GUT model and can have several
components without this affecting the following analysis
@24#.

We take the form of the potential to be

V~f,c!5
1

4
l~c22m2!21

1

2
m2f21

1

2
l8f2c2. ~15!

The phase transition takes place atf5f0, where

f0
2[

l

l8
m2. ~16!

This gives the effective scale of the symmetry breaking:

meff
2 [m2S 12

f2

f0
2D . ~17!

Without loss of generality, we assume thatf is initially
positive and rolls down the potential in such a way that
ḟ,0. If there is sufficient inflation before the phase transi-
tion andl@l8, the Higgs field will have rolled to the mini-
mum of its potentialc50 before the inflaton falls to its
critical valuef0. So, whenf.f0,

V~f,0!5
1

4
lm41

1

2
m2f2. ~18!

In the slow-roll approximation the dynamics of inflation
are governed by the equations

H2.
8p

3mPl
2 V, ~19!

3Hḟ.2V8, ~20!

where the prime and the overdot denote derivatives with re-
spect tof and time, respectively,H[ȧ/a is the Hubble
parameter,a is the scale factor of the Universe, andmPl is
the Planck mass (mPl51.2231019 GeV!.

Thus,

H.2
8p

mPl
2

V

V8
ḟ. ~21!

From Eq. ~21! the number ofe-foldings of expansion,
which occur between the valuesf1 andf2 of the inflaton
field, is given by

N~f1 ,f2![ ln
a2
a1

.2
8p

mPl
2 E

f1

f2 V

V8
df. ~22!

B. The inflaton-dominated regime

This is the case we are going to be interested in, sincethe
back reaction of the Higgs fieldc to the inflaton fieldf is
negligibleand sothe phase transition does not cause the end
of inflation @24#. If the opposite is true and inflation ends at
the phase transition, then the effects of the transition are not
too different from the usual, thermal phase transitions stud-
ied in the literature.

In the inflaton-dominated case the energy density of the
inflaton field in Eq. ~18! is much larger than the false
vacuum energy density. Therefore,

V~f!.
1

2
m2f2, ~23!

which is identical with chaotic inflation. Inflation ends at
f;f« , where

f«[
mPl

A4p
. ~24!

To ensure inflaton domination until the end of inflation
then
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1

2
m2f«

2@
1

4
lm4⇒ 2p

mPl
2

lm4

m2 !1. ~25!

This is the condition for inflaton domination. At this point it
should be mentioned thatif the inflaton domination condition
is strongly valid, the dynamics of inflation are not seriously
affected by the phase transition, provided thatc falls rapidly
to its VEV. Thus, Eqs.~19!–~21! can be used throughout the
duration of inflation.

Thus, for the number ofe-foldings between the phase
transition and the end of inflation, in the inflaton-dominated
case, we obtain

N[N~f0,0!5
2p

mPl
2 f0

2 , ~26!

where we have usedf0@f« .
Finally, for the roll down of the inflaton field, using Eqs.

~19!, ~20!, and~23!, we obtain

ḟ52
mPl m

A12p
. ~27!

IV. THE CORRELATION LENGTH

A. Evolution of the correlation length

Through the use of the uncertainty principle, we can esti-
mate the range of any interaction. Therefore, the physical
correlation length for the Higgs fieldc is

j[
1

umHu
, ~28!

wheremH5mH(t) is the mass of the Higgs particle:

mH
2 5

]2V~f,c!

]c2 53lc21l8f22lm2. ~29!

Before the phase transitionc50 and thus,mH
2 5lumeff

2 u.
Therefore, the physical correlation length is

j~f!5
1

Al m

f0

Af22f0
2
. ~30!

However, this is not valid as we approach the phase tran-
sition, f→f0. As j̇51, the correlation length grows lin-
early with time as shown in Fig. 1.

Define

t[t2t0 , ~31!

wheret0 is the time the transition occurs.
If at t[tH ,

d

dt S 1

umHu D U
H

51. ~32!

Then, fromtH until the transitiont50, dj/dt51 and,
therefore, the correlation lengthj0 at the time of the transi-
tion is

j05jH2tH , ~33!

wherejH is the correlation length attH , and, in the linear
regime,

j~t!5j01t. ~34!

The linear growth ofj continues until it hits the declining
slope of umHu21 ~Fig. 1!. From then on, the correlation
length is given again by Eq.~28!.

FIG. 1. Evolution of the correlation lengthj
of the Higgs-field configuration near the phase
transition. The linear growth ofj starts attH .
j0 is the correlation length at the time of the tran-
sition,jF

(1) is the correlation length at the time the
Higgs-field configuration freezes, when this oc-
curs during linear growth, andjF

(2) is the correla-
tion length at freezing when this occurs after the
end of the linear regime.
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The phase transition we are considering is not triggered
by temperature fall, but by the roll down of the inflaton field.
In that senseit is not a thermal phase transition. Also, since
it occurs during inflation, the Universe is in a supercooled
state with temperatureT'0 and sothere are no Ginzburg
phenomena. However, the configuration of the Higgs field
c does not freeze at the moment of the phase transition be-
cause of long-wave quantum fluctuations that dominate the
Higgs-field evolution immediately after the transition.

The long-wave fluctuations ofc are determined by the
behavior of the Higgs-field mass~29!. Immediately after the
phase transition, the Higgs field is stillc.0 @20#. Then,
sincef,f0, it follows from Eq.~29! thatmH

2 ,0, and quan-
tum fluctuations grow until the evolution ofc becomes po-
tential dominated and the field starts falling to its new
minima. At this stage the fluctuations of the Higgs field be-
come impotent and the field configuration topology freezes.
The fall of c is very rapid@20#. After c5meff /A3, the mass
of the field becomes positive again, Eq.~29!. When the field
reaches its minimumc5meff , then,mH

2 52lmeff .
The magnetic field is formed at the freezing of the Higgs-

field configuration. This occurs whenumH
2 u.H2 @18,19#.2

The correlation lengthjF at the time of freezingtF , is either
given by Eq.~28! or by Eq. ~34!, depending on whether or
not we are still in the linear regime.

B. Computation of j0 and jF

We assume thatfH is very close tof0 or, equivalently,
that the timetH , when the growth ofj reaches the speed of
light, is very close to the timet50 of the phase transition.
Therefore,

L[
fH
2 2f0

2

f0
2 !1. ~35!

This will be verified when we introduce specific values
for the parameters.

Using Eqs.~27! and ~30!, we find

d

dt S 1

umHu DUH5
mPlm

A12p
1

Al8

f0

@fH
2 2f0

2#3/2
. ~36!

Using Eq.~32!, we obtain

fH
2 2f0

25FmPlmf0

A12pl8
G 2/3. ~37!

From Eq.~27! we have

fH5f02
mPlm

A12p
tH . ~38!

Thus, solving fortH , we obtain

tH52A3p~12pl8mPlmf0!
21/3 ~39!

and thus,

jH5
1

Al8
FmPlmf0

A12pl8
G21/3

52A3p~12pl8mPlmf0!
21/3.

~40!

Using Eq.~33! and the above equation~40!, we obtain

j053A3p~12pl8mPlmf0!
21/3. ~41!

Let us compute, now, the correlation length at the time
when the field configuration freezes, i.e., whenumH

2 u.H2.
From Eqs.~19!, ~23!, and~29!, we obtain

f0
22fF

2.
4p

3

m2f0
2

l8mPl
2 , ~42!

wherefF is the magnitude of the inflaton at the time of
freezingtF , for which we find

tF.A3p
~f0

22fF
2 !

mPlmf0
.A16p3

3

mf0

l8mPl
3 , ~43!

where we have used Eq.~27! and the assumption~35!.
Using Eqs.~22!, ~23!, and ~42!, we find that the number

of e-foldings of inflation between the phase transition and
the freezing of the field configuration is given by

DNF.
8p2

3

m2f0
2

l8mPl
4 . ~44!

Only during this time are the quantum fluctuations of the
Higgs field important~for more details on quantum fluctua-
tions, see also Appendix!.

If DNF<1, then the transition proceeds rapidly@19#.
If we are still in the regime of linear growth of the corre-

lation length, the value of it at the time of freezing is simply
given by Eq.~34!,

jF
~1!5j01tF . ~45!

If, however, the linear growth ofj has ended beforetF ,
then it is given by Eq.~28!:

jF
~2!.A 3

8p

mPl

mf0
, ~46!

where we have used thatmH
2 .l8(f0

22fF
2) and Eq.~42!.

Therefore, the initial correlation length of the Higgs-field
configuration is given by

jF5min~jF
~1! ,jF

~2!!. ~47!

V. EVOLUTION OF THE MAGNETIC FIELD

A. During inflation

From Eqs.~47! and ~14!, we estimate the initial value of
the magnetic field produced just after the phase transition to
be

2Nagasawa and Yokoyama@22# suggest that the freezing of the
field occurs a bit later. However, with the set of parameters used
~see Sec. VIII A!, the corresponding difference in the correlation
length is less than an order of magnitude.
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B0;jF
22 . ~48!

Of course, after the GUT phase transition we still have
electroweak unification. Therefore, Eq.~48! represents, in
fact, an ‘‘electroweak’’ magnetic field. However, since the
residual, electromagnetic symmetry generator is just a pro-
jection of the electroweak generators~through the Weinberg
angle!, the residual ‘‘electromagnetic’’ magnetic field will be
of the same order of magnitude as the one given by Eq.~48!.
Therefore, from now on, we will ignore the electroweak tran-
sition and treat the above magnetic field as ‘‘electromag-
netic.’’

During inflation the magnetic field isnot frozen into the
supercooled plasma@7# but still it scales asa22, since it
remains coupled to the Higgs fieldc and, thus, Eq.~14! is
still valid. The configuration of the Higgs-field remains co-
movingly frozen during inflation because the initially corre-
lated volumes expand exponentially, faster than causal cor-
relations. This is not the case after inflation ends. The scale
factor, then, grows slower than the causal correlations and
the comoving picture of the Higgs-field configuration starts
changing as the field becomes correlated over larger and
larger comoving volumes. However, after the end of infla-
tion, the magnetic field gets frozen into the reheated plasma3

and decouples from the Higgs field.

B. The rms magnetic field

In order to estimate the magnetic field on scales larger
than the typical dimensions of the correlated volumes, we
have to introduce a statistical method to do so.

A thorough treatment by Enqvist and Olesen@12# sug-
gests that, in all cases that the Higgs-field gradients are a
diminishing function ofn ~number of correlated domains!,
the root-mean-square value of the field would behave as

Brms[A^B2&5
1

An
BCD, ~49!

whereBCD is the field inside a correlated domain andn is the
number of correlation length scales, over which the field is
averaged. In their treatment Enqvist and Olesen choose the
Higgs-field gradients as the stochastic variables and also as-
sume that their distribution is Gaussian and isotropic. Choos-
ing the magnetic field itself as the stochastic variable, En-
qvist and Olesen reached the same result@Eq. ~49!#.

At this point it should be mentioned that in the above
treatment the rms value of the field has been computed as a
line average, that is an average over all the possible curves in
space between the points that fix the length scale, over which
the field is averaged. The above result may be sensitive to
the averaging procedure. One argument in favor of line av-
eraging is that the current galactic magnetic field has been
measured using the Faraday rotation of light spectra, which
is also a line~line of sight! computation. If we assume that
the ratio of the seed field for the galactic dynamo and the
currently observed galactic field is independent of the aver-
aging procedure then this would suggest that line averaging

is required for the computation of the primordial field. How-
ever, the nonlinearity of the dynamo process as well as the
rather poor knowledge we have for galaxy formation make
such an assumption nontrivial. In any case, apart from the
above, there seem to be no other argument in favor of a
particular averaging procedure. Therefore, using line averag-
ing could be the safest choice. Here it is important to point
out thatline averaging just gives an estimate of the rms field
and does not correspond to any physical process.

Suppose that we are interested in calculating the rms field
at a timet over a physical length scaleL5L(t). Then,

n~ t !5
L

j
, ~50!

wherej is the correlation length. This scale is equal to the
correlation lengthj0 at the time of the phase transition.

In this paper we are mainly interested in the value of the
magnetic field atteq, the time of equal matter and radiation
densities, when structure formation begins. The scale of in-
terest is the typical intergalactic distance, sinceteq is preced-
ing the gravitational collapse of the galaxies~see also Sec.
VII B !. At teq, the corresponding scale is found to be

Leq;S teqtp D
2/3

Lp;10 pc, ~51!

where tp;1018 sec is the present time andLp;1 Mpc is
taken as the typical intergalactic scale at present.

From Eq.~50! the number of correlated domains atteq is,

n[neq5
Leq
jeq

, ~52!

wherejeq is the correlation length atteq.
Therefore, the rms value of the magnetic field over the

scale of a protogalaxy is

Brms
eq ;

1

An
BCD
eq , ~53!

whereBCD
eq is the value of the field inside a correlated domain

at teq.

C. Growth of the correlated domains

It is clear that, in order to calculate the rms field over the
galactic scale atteq, we need to estimate the correlation
length jeq, i.e., the size of the correlated domains at that
time. Therefore, we have to follow carefully the evolution of
the correlated domains throughout the whole radiation era.4

During inflation, as explained already,j scales as the
scale factora. However, after the end of inflation, it grows
faster. This is because, when two initially uncorrelated
neighboring domains come into causal contact, the magnetic

3See also Sec. VII E.

4The correlated domains should not be pictured as attached
bubbles of coherent magnetic field, but as regions around any given
point in space in which the orientation of the field is influenced by
its orientation at this point.
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field around the interface is expected to untangle and
smooth, in order to avoid the creation of energetically unfa-
vored magnetic domain walls. In time the field inside both
domains ‘‘aligns’’ itself and becomes coherent over the total
volume. The velocityv, with which such a reorientation oc-
curs, is determined by the plasma, which carries the field and
has to reorientate its motion for that purpose.5

Thus, the evolution of the correlation length is given by

dj

dt
5Hj1v, ~54!

wherev is the peculiar, bulk velocity, determined, in prin-
ciple, by the state of the plasma.

From Eq.~54! it is apparent that the correlated domains
could grow faster than the Hubble expansion. Therefore,the
magnetic field configuration is not necessarily comovingly
frozenand the domains could expand much faster than the
Universe, resulting in large correlations of the field and high
coherency.

In order to describe the evolution of the correlated do-
mains one has to determine the peculiar velocityv. This
primarily depends on the opacity of the plasma.

If the plasma is opaque on the scale of a correlated do-
main, then radiation cannot penetrate this scale and is
blocked inside the plasma volume. Consequently, the plasma
is subject to the total magnetic pressure of the magnetic field
gradient energy. Therefore, this energy dissipates through
coherent magnetohydrodynamic oscillations, i.e., Alfve´n
waves. In this case, the peculiar velocity of the magnetic
field reorientation is the well-known Alfve´n velocity @2#6:

vA[
BCD

Ar
, ~55!

whereBCD is the magnitude of the magnetic field inside a
correlated domain andr is the total energy density of the
Universe, since, beforeteq, matter and radiation are strongly
coupled.7

If the plasma is not opaque over the scalej of a correlated
domain, then radiation can penetrate this scale and carry
away momentum, extracted from the plasma through Thom-
son scattering of the photons. This subtraction of momentum
is equivalent to an effective drag force,F;rsTvTne @2#.
Balancing this force with the magnetic force determines the
‘‘Thomson’’ velocity over the scalej:

vT[
vA
2

jnesT
, ~56!

wherevA is the Alfvén velocity, ne is the electron number
density, andsT is the Thomson cross section.

Hence, for a nonopaque plasma the peculiar velocity of
the plasma reorientation is given by@2#

v5min~vA ,vT!. ~57!

In order to explore the behavior of the opaqueness of the
plasma, we need to compare the mean free path of the pho-
ton l T;(nesT)

21 to the scalej of the correlated domains.
For realistic models, the correlated domains remain opaque
at least until the epochtanh;0.1 sec of electron-positron an-
nihilation (T;1 MeV!. The reason for this can be easily
understood by calculatingl T before and after pair annihila-
tion.

For T.1 MeV, instead of the usual Thomson cross sec-
tion sT , we have the Klein-Nishina cross section@25#

sKN.
3

8
sTSme

T D F ln2Tme
1
1

2G.2.7SGeVT D lnF T

GeVG GeV22,

~58!

where me.0.5 GeV is the electron mass and
sT.6.65310225 cm2.1707.8 GeV22. The electron num-
ber density is given by@26#

ne.
3

4

z~3!

p2 geT
3, ~59!

wherez(3).1.20206 andge54 are the internal degrees of
freedom of electrons and positrons.

From Eqs.~58! and ~59!, we find

l T;
0.1 GeV

T2
for T.1 MeV, ~60!

which at annihilation gives,l T(tanh);105 GeV21.
After annihilation the electron number density is given by

@26#

ne.6310210ng.1.44310210T3, ~61!

whereng is the photon number density given by

ng.
z~3!

p2 ggT
3, ~62!

wheregg52 are internal degrees of freedom of the photon.
With the usual value forsT , we obtain

l T;
106 GeV2

T3
for T,1 MeV. ~63!

At annihilation the above gives,l T(tanh);1015 GeV21.
Hence, the mean free path of the photon at the time of

pair annihilation is enlarged by a factor of 1010. As a result,
l T is very likely to become larger thanj after tanh. If this is
so, the Thomson dragging effect has to be taken into account
and the peculiar velocity of the plasma reorientation is given
by Eq. ~57!.

In order to calculate the peculiar velocity it is necessary to
compute the Alfve´n velocity, which requires the knowledge
of the magnetic field valueBCD inside a correlated domain.

5Note that the plasma does not have to be carried from one do-
main to another or get somehow mixed. Also, conservation of flux
is not violated with the field’s rearrangements, sincethe field al-
ways remains frozen into the plasma, which is carried along.
6Unless explicitly specified, natural units are being used

(\5c51). In natural units,G5mPl
22

7This coupling implies that any reorientation of the momentum of
matter has to drag radiation along with it. This increases the inertia
of the plasma, that balances the magnetic pressure.
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To estimate this we assume that the magnetic flux, on scales
larger than the sizes of the correlated domains, is conserved,
as implied by the frozen-in condition.

Consider a closed curveC in space, of length scale
L.j, encircling an areaA. Conservation of flux suggests
that the flux-averaged mean magnetic field insideA scales as
a22. This implies that for the field inside a correlated domain
we have8 BCD(L/j)

21}a22. SinceC follows the Universe
expansionL}a, with a}t1/2. Thus, for the radiation era, we
obtain

BCDt
1/2j5K⇒BCD5

K

t1/2j
, ~64!

whereK is a constant to be evaluated at any convenient time.
Since, the correlation length grows at least as fast as the
Universe expands, the magnetic field inside a correlated do-
main dilutes at least as rapidly asa22 for the radiation era.

Substituting the above into Eq.~55!, we find

vA;10
K

mPl

t1/2

j
. ~65!

Solving the evolution equation~54! with a}t1/2 in the
case thatv5vA , gives

j~ t !25S tt i D j i
214vA~ t ! j~ t !tS 12At i

t D , ~66!

wherej i is the correlation length of the field at the timet i .
The first term of Eq.~66! is because of the Hubble expan-
sion, whereas the second term is because of the peculiar
velocity.

In the case ofv5vT , for t.tanh, using Eqs.~61! and~62!
and the usual value ofsT , Eq. ~56! gives,

vT5D
t5/2

j3
, ~67!

where

D;10257K2 GeV23/2. ~68!

Using Eq.~67!, the evolution equation~54! gives

j~ t !45S tt i D
2

j i
41

8

3
vT~ t ! j3tF12S t it D

3/2G . ~69!

The evolution of the correlation length of the magnetic
field configuration is described initially by the Alfve´n expan-
sion equation~66! until the moment whenj; l T . From then
on, the growth ofj continues according either to Eq.~66! or
to Eq. ~69!, depending on the relative magnitudes of the

velocitiesvA andvT . Using the above, we can calculate the
scalejeq of the correlated domains atteq and, thus, calculate
the rms magnetic field from Eq.~53!.

D. Diffusion

An important issue, which should be considered, is the
diffusion length of the freezing of the field. Indeed, the as-
sumption that the field is frozen into the plasma corresponds
to neglecting the diffusion term of the magnetohydrodynami-
cal induction equation@27#

]B

]t
5¹3~v3B!1s21¹2B, ~70!

wherev is the plasma velocity ands is the conductivity. In
the limit of infinite conductivity the diffusion term of Eq.
~70! vanishes and the field is frozen into the plasma on all
scales. However, ifs is finite then spatial variations of the
magnetic field of length scalel will decay in a diffusion time
t.s l 2 @27#. Thus, the field at a given timet can be consid-
ered frozen into the plasma only over the diffusion scale

l d;A t

s
. ~71!

If l d.j, the magnetic field configuration is expected, in
less than a Hubble time, to become smooth on scales smaller
than l d(t). Thus, in this case, it is more realistic to consider
a field configuration with coherence lengthl d and magnitude
of the coherent magnetic fieldBCD, whereBCD5BCD/nd is
the flux-averaged initial magnetic field overnd[ l d /j i num-
ber of domains.

An estimate of the plasma conductivity is necessary to
determine the diffusion length. The current density in the
plasma is given byJ5nev, wheren is the number density of
the charged particles. The velocityv acquired by the par-
ticles because of the electric fieldE can be estimated as
v.eEtc /m, wherem is the particle mass andtc5 l m f p /v is
the time scale of collisions. Since the mean free path of the
particles is given by,l m f p.1/nsc , the current density is
J.e2E/mvsc , wheresc is the collision cross section of the
plasma particles. Comparing with Ohm’s law gives, for the
conductivity @27,28#,

s.
e2

mvsc
. ~72!

The collision cross section is given by the Coulomb for-
mula @28#

sc.
e4

T2
lnL, ~73!

where lnL.ln(e23AT3/n) is the Coulomb logarithm. Thus,
the behavior of the conductivity depends crucially on the
temperature.

For low temperatures,T,me.1 MeV ~i.e., after tanh),
the velocity of the electrons isv;AT/me. Thus, from Eqs.
~72! and ~73!, the conductivity is given by

8Note that the flux averaging of the field on scales larger than the
correlation length,corresponds to a physical process, that of the
field untangling, and is so in order to preserve flux conservation on
scales that the magnetic field is frozen into the plasma. This should
not be confused with the line-averaging procedure which we use to
estimate the rms field, and doesnot correspond to a physical pro-
cess.
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s;
1

e2
AT3

me

1

lnL
. ~74!

For high temperaturesT@me , Eq. ~59! suggests that
lnL;1. Also, the mass of the plasma particles is dominated
by thermal corrections, i.e.,m;T, andv;1. Consequently,
in this case, Eqs.~72! and ~73! give, for the conductivity,

s;
T

e2
. ~75!

Using the above results we can estimate the diffusion
length. Indeed, from Eqs.~71!, ~74!, and~75!, we obtain

l d;H 108 GeV1/2T23/2, T>1 MeV,

108 GeV3/4T27/4, T,1 MeV.
~76!

An important point to stress is that the diffusion length is
also increasing with time.If l d.j, then the size of the cor-
related domains is actually determined by the diffusion
length and it is the growth of the latter that drives the evo-
lution of the magnetic field configuration.

At this point we could briefly discuss the behavior of any
electric field, produced by the phase transition. As can be
seen by Eqs.~5! and ~12!, the electric fieldEm[Fm0 is de-
termined by the time derivative of the Higgs field VEV.
Thus, strong currents are expected to arise at the time of the
transition, when the VEV of the Higgs field falls rapidly
from zero tom. These are the currents that accompany the
creation of the magnetic field@29#. However, after the tran-
sition and during inflation, the VEV of the Higgs field, at any
point in space, is more or less fixed and constant in time,
since the field configuration is comovingly frozen. Therefore,
there should not be any significant electric field surviving the
transition. After inflation this comoving picture begins to
change but the magnetic field decouples from the Higgs field
and, thus, any electric field produced, by shifting of the mag-
netic field lines, is related to plasma motion phenomena.
Since such reorientations occur, we expect small electric
fields to be present in the form of electromagnetic waves,
which will diffuse and thermalize the gradient energy of the
magnetic field, that is reduced by its reorientation and align-
ment.

VI. AT THE END OF INFLATION

A. The reheating temperature

The timetendwhen inflation ends could be determined by
the reheating temperatureTreh with the use of the well-
known relation

tend.0.3 g
*
21/2S mPl

Treh
2 D , ~77!

where g* is the number of particle degrees of freedom
which, in most models, is of order 102 ~e.g., in the standard
model it is 106.75 whereas in the minimal supersymmetric
standard model it is 229!.

The reheating temperature is usually estimated by@30#

Treh
mPl

'0.78a1/4g
*
21/4SHend

mPl
D 1/2, ~78!

whereHend is the Hubble parameter at the end of inflation
and a is the reheating efficiency, which determines how
much of the inflaton’s energy is going to be thermalized.
Using Eqs.~19! and ~24!, we obtain

Hend.
m

A3
. ~79!

Substituting to Eqs.~77! and ~78!, we find

Treh
2 '0.35a1/2g

*
21/2m mPl . ~80!

In most inflationary models reheating is prompt, it is com-
pleted quickly, anda'1. In case of a quadratic inflaton
potential, however, as in false vacuum inflation, the reheat-
ing process could be incomplete and extremely inefficient
@31#. However, the magnitude of the reheating inefficiency is
still an open question. Kofmanet al. @31# suggest that the
reheating temperature would be of the order
Treh;1022AmmPl which, compared to Eq.~80!, implies that
a;1024. Shtanov, Traschen and Brandenberger@32# make a
lower estimateTreh;m.

B. Thermal fluctuations

The Higgs field, through the Higgs mechanism, provides
the masses of the particles after the GUT phase transition.
Thus, it is in that way coupled to the thermal bath of the
particles. Therefore, at reheating, this coupling introduces
thermal corrections to the effective potential of the Higgs
field. Consequently, if the reheating temperature is high
enough, the configuration of the Higgs field may be de-
stroyed because of excessive thermal fluctuations. This will
erase any magnetic field if the later has not been frozen into
the plasma already. The above will occur if the temperature
exceeds the well-known Ginzburg temperatureTG . More-
over, if the temperature exceeds a critical valueTc , there is
a danger of thermal restoration of the GUT symmetry itself.

The Ginzburg and the critical temperatures are simply re-
lated @33#:

Tc2TG;lTc . ~81!

Thus, forl<1,

TG;Tc;Alm. ~82!

Therefore, it is very important to see if the temperatures
during the reheating process could exceedTc . At this point it
should be noted thatthe reheating temperature is not the
highest temperature achieved during the reheating process.
Indeed, as soon as the field begins its coherent oscillations,
the temperature rises rapidly and assumes its maximum
value @7,26#:

Tmax.~Vend
1/4Treh!

1/2, ~83!

whereVend is the energy density of the inflaton at the end of
inflation. From Eqs.~23! and ~24!, we obtain
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Vend;0.1m2mPl
2 . ~84!

Thus,

Tmax;~AmmPlTreh!
1/2. ~85!

Therefore, in order to avoid symmetry restoration and any
Ginzburg phenomena, we should have

Tmax,Tc⇒Treh,
lm2

AmmPl

. ~86!

If the reheating temperature exceeds the above value then
the magnetic field is thermally unstable and we are in danger
of restoring the GUT symmetry. However, if the field sur-
vives then its stability is ensured@29#.

After reaching its highest valueTmax, the temperature
slowly decreases during the matter-dominated era of the co-
herent inflaton oscillations, until it falls to the valueTreh
when the Universe becomes radiation dominated.9

VII. CONSTRAINTS

A. Constraints on the parameters

If we assume that the observed density perturbations are
because of inflation, then we have, from the Cosmic Back-
ground Explorer~COBE! @24#,

A8p

mPl
m55.531026, ~87!

which yields

m;1013 GeV. ~88!

Other restrictions of the model imposed onm, l, andl8
are @24#

0,l,l8<1, m<
mPl

A8p
;1018 GeV. ~89!

Additional constraints for thel are established by the
inflaton domination condition~25!. Also the ratio of the
l ’s can be determined by Eqs.~16! and ~26! with the rea-
sonable assumption that the number ofe-foldings of inflation
after the phase transition is of orderN;10,

l

l8
;SmPl

m D 2. ~90!

B. The galactic dynamo constraint

From the present understanding of the galactic dynamo
process@3#, it follows that, in order for a primordial mag-
netic field to be the seed for the currently observed galactic

magnetic field, it should be stronger than 10219 G at the time
of galaxy formation, on a comoving scale of a protogalaxy
(;100 kpc!.

Since the gravitational collapse of the protogalaxies en-
hances their frozen-in magnetic field by a factor of
(rG /rc)

2/3;103 ~where rG;10224 g cm23 is the typical
mass density of a galaxy andrc.2310229Vh2 g cm23 is
the current cosmic mass density!, the above seed field corre-
sponds to an field of the order of;10222 G over the comov-
ing scale of;1 Mpc. With the assumption that the rms field
scales asa22 with the expansion of the Universe (a}t2/3 for
the matter era!, we find that the required magnitude of the
seed field atteq is ;10222 G3(tGC/teq)

4/3;10220 G, where
tGC;1015 sec is the time of the gravitational collapse of the
galaxies.

The above justify our choice to calculate the magnetic
field at teq over the comoving scale of 1 Mpc and consider
the constraint

Beq>10220 G. ~91!

From recombination onwards, the nonlinear nature of
structure formation is very difficult to follow. Indeed, there
exists a numerous collection of different models. A strong
primordial magnetic field could influence in various ways
some of these models, possibly with a positive rather than a
negative effect.

C. The nucleosynthesis constraint

One upper bound to be placed on the magnetic field at
teq is coming from nucleosynthesis. This has been studied in
detail by Chenget al. @34#. They conclude that, attnuc;1
sec, the magnetic field should not be stronger than

Bnuc<1011 G ~92!

on a scale larger than;104 cm. A more recent treatment by
Kernanet al. @35# relaxes the bound by about an order of
magnitude,Bnuc<e21(Tn

nuc)2;1012 G, whereTn is the neu-
trino temperature ande is the electric charge. This bound is
valid over all scales. Similar results are also reached by
Grasso and Rubinstein@36#.

D. Energy density constraints

Constraints are also induced by ensuring that the energy
density of the magnetic field is less than the energy density
of the Universe. During the inflationary period, because of
inflaton domination, the energy density of the Universe is
mainly in the inflaton field. However, after reheating and
until teq, the energy density of the Universe is just the radia-
tion energy density.

Thus, for the inflationary period we should verify that

rB
r inf

!1, ~93!

whererB[BCD
2 /8p andr inf[V(f) are the energy densities

of the magnetic and inflaton fields, respectively.
The highest value of the above ratio corresponds to the

time of the phase transition since the magnetic field is rap-
idly diluted during inflation, whereas the inflaton’s potential

9We should mention that this small period of matter domination is
not taken into account in our treatment because of the fact that its
duration is very small compared to the time scales considered and
so we choose to ignore it for the sake of simplicity.
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energy remains almost unchanged. Using Eqs.~48! and~23!,
we find the first energy density constraint:

Amf0.jF
21 . ~94!

After reheating, the expansion of the Universe dilutes the
energy densityrB of the magnetic field, inside a correlated
domain more effectively than the radiation density, which
scales asa24. Therefore, it is sufficient to ensure that
rB(t) is less than the energy densityr(t) of radiation at the
time t i of the formation of the magnetic field configuration.
That is,

rB~ t i !<r~ t i !⇒BCD
i <

A3
2

mPl

t i
, ~95!

which is the second energy density constraint.

E. The non-Abelian constraint

During the electroweak era, the freezing of the magnetic
field into the electroweak plasma is not at all trivial to as-
sume. Indeed, before the electroweak transition, since the
electroweak symmetry group SU(2)3U(1)Y is still unbro-
ken, there are four apparent ‘‘magnetic’’ fields, three of
which are non-Abelian.

It would be more precise, then, to refer only to the Abe-
lian ~hypercharge! part of the magnetic field, which satisfies
the same magnetohydrodynamical equations as the Maxwell
field of electromagnetism. The non-Abelian part of the field
may not influence the motion of the plasma because of the
existence of a temperature-dependent magnetic mass,
mB'0.28g2T ~see, for example,@37,38#!, which could
screen the field over the relevant length scales.

The condition for this screening to be effective can be
obtained by comparing the screening lengthr S;mB

21 of the
non-Abelian magnetic fields with the Larmor radius of the
plasma motionr L;mv/gB, wherem;Aa T (a5g2/4p) is
the temperature-induced physical mass of the plasma par-
ticles, g.0.3 is the gauge coupling~charge!, and v is the
plasma particle velocity. If we assume thermal velocity dis-
tribution, i.e.,mv2;T, we find

R[
r L
r S

;1022
T2

BCD
. ~96!

If R>1, then our restriction to the Abelian~hypercharge!
part of the magnetic field is well justified. This restriction
will not cause any significant change to our results since, at
the electroweak transition, the hypercharge field projects
onto the photon through the Weinberg angle~6!,
cosuW'0.88. If, however,R,1 then the non-Abelian fields
do affect the plasma motion, and should be taken into ac-
count. SinceT}a21 andBCD falls at least as rapid asa22,
R is, in general, an increasing function of time. Thus, the
constraint has to be evaluated at reheating.

F. The monopole constraints

Unfortunately, the mechanism, which we use to generate
the primordial magnetic field, could also produce stable mag-
netic monopoles. Since these monopoles should not domi-

nate the energy density of the Universe, we require that the
the fractionVM of the critical density, contributed by the
monopoles, to be less than unity, that is@26#,

VM h2.1024S nMs D S M

1016 GeVD<1, ~97!

whereM54pmg21;10m is the monopole mass,nM is the
monopole number density,s is the entropy density of the
Universe, andh is the Hubble constant in units of 100
km/sec/Mpc. The rationM /s is a constant10 and can be
evaluated at the end of inflationtend. Taking nM;jend

23 ,
wherejend is the correlation length at that time, we have

nM
s

.
102

z3 S TrehmPl
D 3, ~98!

wherez[jendHend gives the correlation length as a fraction
of the Hubble radius. From Eqs.~97! and ~98! we find the
first monopole constraint@24#:

z3>1011S Treh
1014 GeVD

3S m

1015 GeVD . ~99!

Apart from the above, mass density constraint, another
constraint is the well-known ‘‘Parker bound’’@39#, which
considers the effect of galactic magnetic fields onto the mag-
netic monopole motion. The flux of the monopoles is@26#

FM5
1

4p
nMvM;1010S nMs D S vM

1023D cm22 sr21 sec21,

~100!

wherevM is the monopole velocity. The monopoles are ac-
celerated by the galactic magnetic fieldBg;1026 G to ve-
locity:

vM.S 2hMBgl

M D 1/2;1023S 1016 GeV

M D 1/2, ~101!

wherel;1 kpc is the coherence length of the magnetic field
andhM;e21 is the magnetic charge of the monopole.

The magnetic field ejects the monopoles from the galaxy,
while providing them with kinetic energyEK.hBgl;1011

GeV. Demanding that the monopoles do not drain the field
energy in shorter times than the dynamo time scale, i.e., the
galactic rotation periodt;108 yr, we find the constraint

Bg
2/2

FMEKd
>t ⇒FM<10215 cm22 sr21 sec21, ~102!

whered.30 kpc is the size of the galactic magnetic field
region. Using Eq.~98! and from Eqs.~100! and ~102!, we
find the second monopole constraint,

z3>1012S Treh
1014 GeVD

3S 1015 GeV

m D 1/2. ~103!

10We can ignore monopole annihilations~see@26#!.
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G. Additional constraints and considerations

Finally, we have to make sure that at the time the mag-
netic field is formed the correlation length given by Eq.~47!
is still inside the horizon, that is

HF
21>jF , ~104!

whereHF is the Hubble parameter at the time of the forma-
tion of the magnetic field. With great accuracyHF.H0,
whereH0 is the Hubble parameter at the time of the phase
transition.H0 can be easily computed using Eqs.~16!, ~20!,
and ~27! for the potential~23!.

VIII. EVALUATING

In order to be consistent with our assumptions~e.g., infla-
ton domination!, we will consider the phase transition to take
place at the latest atN.1. We first choose a set of typical
model parameters.

A. Choosing the values of the parameters

As already mentioned, the mass of the inflaton fieldm is
determined by COBE:

m;1013 GeV. ~105!

For the self-coupling of the Higgs fieldl we choose the
usual value

l;1. ~106!

Inserting the above values into the inflaton domination
condition ~25!, we find that the maximum value ofm is

m;1015 GeV. ~107!

Finally, the couplingl8 between the Higgs field and the
inflaton can be determined with the use of Eq.~90!:

l8;1028. ~108!

B. For all N

Now that the parameters of the model are chosen, the only
parameter still to be determined is the numberN of
e-foldings of inflation, which remain after the phase transi-
tion. We will treat this as a free parameter, link it with the
resulting magnetic field, and then try, with the use of the
constraints, to establish its extreme values. In that way we
will be able to fully examine the corresponding behavior of
the field atteq.

We begin by extracting some direct,N-independent re-
sults from the, previously chosen, values of the model pa-
rameters. From Eq.~86! we find that the upper bound for the
reheating temperature is estimated to be

Treh;1014 GeV, ~109!

which is in agreement with the estimates of Kofmanet al.
@31# and higher than the estimates of Shtanovet al. @32#.

Using Eq.~77!, this gives the time when inflation ends:

tend;10235 sec. ~110!

With the use of Eqs.~16! and~37!, the assumption~35! is
easily verified:

L;1022!1. ~111!

Now, for the correlation length, from Eq.~41! we find

j0;10214 GeV21. ~112!

From Eqs.~16! and ~43!, we obtain

tF;10216 GeV21!j0 . ~113!

Thus, from Eq.~45!,

jF
~1!;10214 GeV21. ~114!

Using Eq.~46!, we also find,

jF
~2!;10214 GeV21. ~115!

Therefore, from Eq.~47! and the above, we have

jF;j0;10214 GeV21;10228 cm;10247 pc.
~116!

Now, from Eq.~44!, we find that

DNF;1023!1 ~117!

and, therefore, the phase transition is very rapid.
We can, now, check on the horizon constraint~104!. The

value ofHF is found to be

HF.H0;1013 GeV. ~118!

Comparing with Eq.~116!, we see that the constraint is sat-
isfied. By using Eq.~116! into Eq.~94!, we find that the first
energy density constraint is also satisfied.

The initial magnetic field is found from Eqs.~48! and
~116! to be

B0;1047 G. ~119!

Let us now evaluate theN-dependent quantities.
The correlation length at the end of inflation is

jend5
aend
a0

jF;10214eN GeV21, ~120!

where we have used Eqs.~22!, ~26!, and~116!.
From the above and considering also the fact that, during

inflation, the magnetic field configuration is comovingly fro-
zen, we find that the magnitude of the magnetic field inside a
correlated domain is given by

BCD
end;1047e22N G. ~121!

Evaluating Eq.~96! at the end of inflation, we find

R;0.1 e2N>1 for N>1 ~122!

and the non-Abelian constraint is satisfied for allN.
Using Eqs.~110! and ~121! we can show from Eq.~95!

that the second energy density constraint is also satisfied for
all N.
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From Eq.~64!, we find

K;108e2N GeV1/2. ~123!

We evaluated the above also at the end of inflation, using
Eqs.~14!, ~110!, and~120!.

At early times the correlated domains are opaque to radia-
tion and, thus, their growth is determined by Eq.~66! with
t i→tend. The domains remain opaque at least until the time
of the electron pair annihilation.

At annihilation,tanh;0.1 sec, Eq.~66! gives

janh;H 103eN GeV21, N.15,

1013e2N/2 GeV21, 1<N<15.
~124!

Comparing with the photon mean free path, it is evident
that janh. l T;105 GeV21 for all N.

However, after annihilation,l T increases drastically in
size, l T(tanh);1015 GeV21. Comparing this value with Eq.
~124!, we find that, atT;1 MeV, the correlated domains
become transparent to radiation forN,28. Thus, for
N>28, the Alfvén expansion continues after pair annihila-
tion, whereas forN,28, the Thomson scattering effect has
to be taken into account.

CASE 1:For 1<N<28.

If N,28 then, aftertanh, the Thomson effect has to be
taken into account.

The Alfvén velocity vA at tanh is found by Eq.~65! with
the use of Eq.~123!:

vA~ tanh!;H 0.1e22N, N.15,

10211e2N/2, 1<N<15.
~125!

Similarly, the Thomson velocityvT at tanh is found by Eq.
~67! with the use of Eqs.~64! and ~68!:

vT~ tanh!;H 1010e25N, N.15,

10220e2N/2, 1<N<15.
~126!

From the above it is straightforward that, forN,28,
vT(tanh)<vA(tanh). Therefore, aftertanh, the evolution of the
correlated domains is determined by the Thomson effect. If
we assume that the Alfve´n expansion does not take over
again untilteq, then the correlation length at that time can be
obtained by Eq.~69!,

jeq;H 109eN GeV21, 19<N,28,

1021e2N/2 GeV21, 1<N,19.
~127!

Using this value we can verify that the Thomson velocity
remains always smaller than the Alfve´n velocity until teq.
Physically, Eq.~127! implies that, ifN>19, the damping of
the growth of the correlated domains aftertanh is so effective
that the Hubble term dominates their evolution. However, for
1<N,19, the Thomson velocity, although small, is still ca-
pable of outshining the Hubble term.

CASE 2:For N>28.

For high values ofN the magnetic field is so much diluted
by inflation that the Alfve´n or Thomson expansions are in-
significant. The growth of the correlated domains is driven
solely by the Hubble expansion and, thus,

jeq.A teq
tanh

janh;109eN GeV21, N>28. ~128!

In total, Eqs.~127! and ~128! suggest the following be-
havior for the correlation length atteq:

jeq;H 109eN GeV21, N>19,

1021e2N/2 GeV21, 1<N,19.
~129!

From Eq.~76!, we find that atteq the diffusion length is,
l d
eq;1023 GeV21. Comparing with the above we see that
l d
eq.jeq for N<32. Thus, the dimensions of the correlated
domains atteq are actually given by

jeq;H 109eN GeV21, N.32,

l d
eq;1023 GeV21, 1<N<32.

~130!

C. The magnetic field’s range of values

We are now in the position to calculate the magnetic field
strength atteq. From Eqs.~64! and ~130!, we have

BCD
eq ;H 10e22N G, N.32,

10213e2N G, 1<N<32.
~131!

Also, from Eqs.~52! and ~130!, we get

n;H 1024e2N, N.32,

1010, 1<N<32.
~132!

With the use of the above, in view also of Eq.~53!, we
can immediately find the rms value of the field atteq for a
givenN:

Brms
eq ;H 10211e23N/2 G, N.32,

10218e2N G, 1<N<32.
~133!

As can be seen from Eq.~133!, the maximum rms value
of the field atteq corresponds toN51:

~Brms
eq !max;10218 G. ~134!

For the minimum value of the field we just employ the
galactic dynamo constraint~91!. This gives

Nmax.5. ~135!

Thus, the range of values of the magnetic field is

5>N>1,

10220 G<Beq<10218 G. ~136!

The above results, however, are still subject to the nucleo-
synthesis and monopole constraints.
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D. Nucleosynthesis and monopole constraints onN

Since nucleosynthesis occurs very near the electron pair
annihilation we will assume, for simplicity, that the correla-
tion lengthjnuc at tnuc;1 sec is approximately equal to the
one at annihilation,11 i.e., jnuc;janh.

The diffusion length attanh is found by Eq.~76! to be,
l d
anh;1013 GeV21. Thus, from Eq.~124! we have

jnuc;janh;H 103eN GeV21, N.23,

l d
anh;1013 GeV21, 1<N<23.

~137!

Inserting the above into Eq.~64! and with the use of Eq.
~123!, we find

BCD
nuc;H 1013e22N G, N.23,

103 G, 1<N<23.
~138!

The maximum value of the magnetic field is
BCD
nuc(N51);102 G. Comparing with Eq.~92!, we see that

the maximum value of the field is well below the nucleosyn-
thesis constraint and, therefore, the constraint is not violated
for any value ofN.

Let us consider the monopole constraints. Given the val-
ues of the model parameters and the assumed reheating tem-
perature, both of the monopole constraints~99! and ~103!
reduce toz>104. Using Eqs.~79! and ~120!, we find that

z5jendHend;0.1 eN ~139!

and the constraints are satisfied only ifN>11. Thus, a mag-
netic field strong enough to seed the galactic dynamo, would
violate the monopole constraints.

One way to overcome the monopole problem is to con-
sider GUT models which do not admit monopole solutions,
such as ‘‘flipped’’ SU~5!, i.e., the semisimple group
SU(5)3U(1).

IX. CONCLUSIONS

We have analyzed the creation and evolution of a primor-
dial magnetic field in false vacuum inflation. We have shown
that, in GUT theories that do not produce monopoles, a suf-
ficiently strong primordial magnetic field can be generated,
provided that the phase transition takes place no earlier than
five e-foldings before the end of inflation. Although the mag-
netic field produced is strong enough to seed the dynamo
process in galaxies, it does not violate any of the numerous
constraints imposed~apart from the monopole constraint, if
applicable!.

Our results are sensitive to the reheating efficiency. In-
deed, if reheating is efficient, then the time of the end of
inflation is earlier and the resulting field diluted by the ex-

pansion of the Universe. More importantly, though, if the
reheating temperature is of the order of the critical tempera-
ture or the Ginzburg temperature, then the magnetic field
will be erased. Fortunately, this does not appear to be the
case.

Finally, the strength of the magnetic field produced by our
mechanism relies on the value ofN, i.e., on the moment that
the phase transition occurs. In turn, this depends on the exact
values of the model parameters. Observational data on the
primordial magnetic field could determine, or constraint,
these parameters. Experiments to detect such a field have
occasionally been suggested~see, for example,@40 or 41#!.
Not merely would the observation of a primordial field yield
information on false vacuum inflation, but it would also im-
prove our understanding of the galactic dynamo and of non-
linear astrophysical processes in general.
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APPENDIX: QUANTUM FLUCTUATIONS

In this appendix we treat in some detail the quantum fluc-
tuations of the Higgs and the inflaton fields at the time of the
phase transition. We show that, although the amplitude of the
generated density perturbations is larger than the usual scale-
invariant perturbations of the inflaton, their scale is so small
that they do not contradict with observations since their an-
gular size is unobservable on the microwave sky and, also,
because they are heavily damped after reentering the hori-
zon.

By studying the quantum fluctuations of the above fields
we also justify the Higgs-field configuration picture, de-
scribed in Sec. IV, as well as the estimate of the Higgs-field
gradients given in Eq.~13!.

1. Scale and amplitude of density perturbations

One can calculate the isocurvature fluctuations of the
Higgs field as follows. The fluctuations peak whenmH;H
@18,19#. According to Sec. IV B this corresponds to
f5fF , wherefF is the the inflaton at the time the Higgs
field reaches the minima manifold. From Eq.~42! with
f0.mPl , we obtain,12

~f0
22fF

2 !.
4p

3

m2

l8
. ~A1!

At that moment, the above and Eq.~16! suggest that the
Higgs field is

cF
25meff

2 ~fF!5m22
l8

l
fF
2.

4p

3

m2

l
. ~A2!

11The magnitude ofjnuc does not affect the results when the
Hubble term in the evolution equations is subdominant. In the op-
posite case, our assumption perturbs the results by an order of mag-
nitude in the values ofjeq andn but less than an order of magnitude
in the value of the rms magnetic field, since the later depends on
1/An. 12E.g., forN55, Eq. ~26! givesf0.0.89mPl.
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Thus, the perturbation of the energy density of the Higgs
field corresponding to the comoving scalek that exits the
horizon whenf5fF , is

drc

rc
~k!;

cFdcF

meff
2 ;Al;1, ~A3!

where rc;lmeff(fF)
4 and drc.(]V/]c)dcF

;lmeff(fF)
2cFdcF . We have also used that, during infla-

tion, H.A(4p/3)(f/mPl)m, as suggested by Eqs.~19! and
~23!, and that@18#

dcF.H/A2 p. ~A4!

The inflaton scale-invariant adiabatic perturbations are
similarly found to be

dr

r
;

S dVdf
df D
V

;
df

f
;

m

mPl
;1026, ~A5!

wherer5rf;m2mPl
2 .

Thus, the Higgs-field density perturbations are much
larger than the inflaton’s scale-invariant adiabatic perturba-
tions. However, since the energy density of the Universe
during inflation is dominated by the inflaton field, the isocur-
vature perturbations cannot dominate the inflaton ones:

drc

r
~k!5

drc

rc

rc

r
;10212. ~A6!

Note that both fields decay as matter (r}a23) during
reheating, in contrast with the quartic chaotic inflation case
when the inflaton field decays faster, as radiation (r}a24).
In that way the ratio of their perturbations is conserved.

However, the growth of the Higgs-field perturbations re-
sults in a similar growth of the adiabatic perturbations of the
inflaton @20,21#. Since these adiabatic perturbations of the
inflaton are caused by the isocurvature perturbations, we
should have, for the scalek,

drf

rf
~k!;

drc

rc
~k!;1. ~A7!

The above perturbations are not scale invariant. Instead,
they form a mountain on the spectrum of the scale-invariant
perturbations@20,21#. These perturbations are of much larger
amplitude than the usual, scale-invariant, inflaton perturba-
tions, given by Eq.~A5!, and would produce unacceptably
high density inhomogeneities and CMB temperature
anisotropies,if they corresponded to observable scales.

However, the scale corresponding to the peak of the
mountain is set by the horizon scale at the time of the tran-
sition. Indeed, in@20,21# it is clearly shown that the peak of
the mountain of the adiabatic fluctuations corresponds to the
scale

k5~Ha!expF2
2plm2

l8mpl
2 G5~Ha!expF2

2pf0
2

mPl
2 G

⇒aend kpeak
21 5eNH0

21 , ~A8!

where k is the comoving wave number of the fluctuation
scale,a is the scale factor normalized at the present day, and
H is the Hubble parameter, for which, during inflation,
H.const.m. Thus, the wavelength of the peak of the spec-
trum mountain corresponds to the scale of the horizon at the
phase transition. The width of the mountain can be estimated
by ~see also@18#!

D lnk5
Da

a
5DNF , ~A9!

whereDNF is thee-folding interval whenmH
2 ,0 given by

Eq. ~44!. In the model considered we have shown that
DNF;1023 and, therefore, the mountain is very sharp. As a
consequence, if we move towards larger than the horizon~at
the transition! scales, the amplitude of the perturbations in
expected to be falling rapidly. Thus,we do not expect sig-
nificant perturbations on comoving scales a lot larger than
the scale that leaves the horizon at the time of the phase
transition.

A more thorough investigation of the issue by Nagasawa
and Yokoyama@22# does not change the picture signifi-
cantly. Following their treatment~applied to our model!, we
found that the exponential growth of the perturbations lasts a
little longer andDNF is given by,

DNF5
4p

A2l8

mf0

mPl
2 ;0.1, ~A10!

which is again fairly small. Numerical simulations attempted
by Salopeket al. @21# relax the above number even more and
suggest, in their example, that the mass squared of the field
can remain negative for almost foure-foldings. Their moun-
tain peaks very near the scale of the horizon at the transition.
In their paper they stress the crucial role of the timing of the
transition not only with respect to the scales where the
mountain occurs but also to its other characteristics~width
and height!.

Our phase transition has to occur at the very late stages of
the inflationary period, no earlier than fivee-foldings before
its end. The corresponding scales are so small that in order
for the mountain to have any effect on observable scales it
would have to be extremely wide (DNF>30). The narrow
window of the observable scales is well described in@21#
~see Fig. 4!, where it is pointed out that these scales corre-
spond to inflaton values for whichN.60, for standard cha-
otic inflation ~as in our model!.

The comoving scale of the mountain peak for our model
is given by Eq.~A8!:

k21;1015eN GeV21, ~A11!

with H0;1013 GeV. Thus, the largest peak-scale peak would
be k21(N55);1m.

The fluctuations freeze after they exit the horizon. When
they reenter the horizon they begin oscillating~since the
Jeans length is about the horizon size beforeteq). The reentry
of the above fluctuations occurs attx where
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k5S tprteqD
2/3S teqtx D

1/2FHpr
21S txtprD G⇒tx

5~ tpr
2 teq!

1/3S k

Hpr
21D 2⇒tx;10235e2N sec, ~A12!

wheretpr;1018 sec is the present time,teq;1011 sec is the
time of equal matter and radiation densities, and
Hpr

21;1027 cm;1041 GeV21 is the present size of the ho-
rizon. ForN55, we find that these fluctuations can reenter
the horizon at the latest attx;10231 sec!teq.

Density perturbations of a comoving scale which reenters
the horizon that early, will, most probably, be erased by the
various damping processes~e.g., Silk damping, free-
streaming damping, etc.!. But even if they survived, their
imprint on the microwave background would be too small to
be observable. Indeed, the relevant angular scale is given by
@26#

u.34.4 ~V0h!S k

MpcD arcsec, ~A13!

which, in our model, corresponds to a maximum of
u;10221 arcsec, i.e., entirely unobservable.

2. The Higgs-field gradients

As shown in Sec. IV, the freezing of the Higgs-field con-
figuration occurs whenf5fF and the field has rolled down
to the vacuum manifold. The Higgs-fieldradial fluctuation at
that time can be found by Eqs.~A2! and ~A4!:

dc

c U
F

;
Al

A2 p
;0.1. ~A14!

Thus, the magnitude of the Higgs-field radial fluctuations
at freeze-out is smaller than its expectation value,
Ducu,ucu;meff . This inequality is strengthened with time

since c→m@m;H;dc. Consequently, after freeze-out,
the field evolves classically andits VEV is much larger than
its radial fluctuations. Also, in this case, the typicalphase
fluctuation is given by@19#, dx.H/2pmeff(fF);Al/2p
;0.1,1 at freeze-out. The inequality is again strengthened
with time and, therefore, we can safely consider that, after
the topology of the field configuration freezes,its quantum
fluctuations are too small to perturb the direction of the field
~in its inner space! at any given point in space. What really
happens is that the time of freeze-out is thelast momentthat
the quantum fluctuations could be important. The strength-
ening of the inequalityDc,c in the radial and the azi-
muthal component of the field signifies just that. As a result,
at freeze-out, the importance of the quantum fluctuations is
terminated and the correlation length in later times is deter-
mined only by causality as shown in Sec. IV B.

The reason for having, then, nonzero Higgs-field gradi-
ents is only the fact that, at two points in space, we would
expect the field inner space orientation~phase! to be differ-
ent, if the distance between the points is larger than the cor-
relation length of the configuration. Thus,the existence of
nonzero gradients is an entirely geometrical effect, based on
the fact that over some distance scale the field’s phases are
uncorrelatedand has nothing to do with any fluctuations,
which, in any case, after freeze-out, do not have any effect
on the field configuration.

The stochastic distribution of the phase of the field sug-
gests that, over distances larger than the correlation length,
the phase of the field may vary between 0 andp and, con-
sequently,Dc would be between 0 and 2m. Thus, a reason-
able estimate isDc;m over length scales of the order of the
correlation length. Therefore, the gradients of the field would
be,

]x^c&;
Dc

Dx
;

m

j
~A15!

as suggested also in Eq.~13!.
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