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We present a formalism for analyzing a full-sky temperature and polarization map of the cosmic microwave
background. Temperature maps are analyzed by expanding over the set of spherical harmonics to give multi-
pole moments of the two-point correlation function. Polarization, which is described by a second-rank tensor,
can be treated analogously by expanding in the appropriate tensor spherical harmonics. We provide expressions
for the complete set of temperature and polarization multipole moments for scalar and tensor metric perturba-
tions. Four sets of multipole moments completely describe isotropic temperature and polarization correlations;
for scalar metric perturbations one set is identically zero, giving the possibility of a clean determination of the
vector and tensor contributions. The variance with which the multipole moments can be measured in idealized
experiments is evaluated, including the effects of detector noise, sky coverage, and beam width. Finally, we
construct coordinate-independent polarization two-point correlation functions, express them in terms of the
multipole moments, and derive small-angle lim{iS0556-282(97)05012-1

PACS numbds): 98.70.Vc, 98.80.Cq

[. INTRODUCTION from the electrons and generate a quadrupole moment
through free streaminflL7]. Since by this time most of the
With the advent of a new generation of balloon-borne ancelectrons have recombined into neutral hydrogen, the num-
ground-based experimenf4] and satellite mission§2,3], ber of scatterers available to produce polarization is reduced,
the cosmic microwave backgrouf@MB) will provide an so CMB polarization fluctuations are characteristically at a
unprecedented window to the early Universe. In addition tgpart in 1¢, an order of magnitude below the temperature
determining the origin of large-scale structure, it has beeffluctuations.
argued that CMB temperature maps may determine cosmo- A polarization map will provide information that comple-
logical parameters and the ionization history of the Universements that from a temperature map. For example, polariza-
and perhaps probe long-wavelength gravitational wavesion may help distinguish the gravitational-potential and
[4-9]. peculiar-velocity contributions to the acoustic peaks in the
Any mechanism which produces temperature anisotropieemperature-anisotropy power spectrifi]. In models with
will invariably lead to polarization as we[ll0-14. Tem-  reionization, some of the information lost from damping of
perature fluctuations are the result of perturbations in théemperature anisotropies will be regained in the polarization
gravitational potentials, which contribute directly to the fluc- spectrum [18]. Perhaps most importantly, the density-
tuations via gravitational redshiftinghe Sachs-Wolfe effect perturbation and gravitational-wave or vorticity contributions
[15]) and which drive acoustic oscillations of the primordial to the anisotropy can be geometrically decomposed with a
plasma[5]. These processes result in temperature fluctuapolarization map[16,19—21. Furthermore, although these
tions which are the same order of magnitude as the metrinonscalar signals are expected to be small, they will not be
perturbations. In contrast, polarization is not directly generswamped by cosmic variance from scalar modes dis-
ated by metric perturbations: a net polarization arises frontussed further below Detection of gravity waves is impor-
Compton scattering only when the incident radiation fieldtant for testing inflation and for learning about the inflaton
possesses a nonzero quadrupole momi#6i13, but only  potential which drove inflatiof22].
monopole and dipole fluctuations are possible as long as the Realistically, detection will present a significant experi-
photons in the Universe remain tightly coupled to themental challenge. Current results limit the magnitude of lin-
charged electrons. Polarization is only generated very neasar polarization to roughly a part in 1023]. Experiments
the surface of last scattering as the photons begin to decoupleing planned or built will improve sensitivities by at least
an order of magnitud¢24]. The MAP satellite will make
polarized measurements of the entire microwave sky in

*Electronic address: kamion@phys.columbia.edu around a million pixels with a precision of around one part in
"Electronic address: akosowsky@cfa.harvard.edu 10° per pixel[2]. If CMB polarization is not discovered by a
*Electronic address: stebbins@fnal.gov ground or balloon experiment in the next four years, this
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satellite will almost certainly make the first detection. Theon the sky(assuming its frequency spectrum is a perfect
Planck Surveyor(formerly COBRAS/SAMBA may also blackbody. Polarized radiation is described in terms of the
make polarized measuremef8. These experimental pros- Stokes parameter®, U, andV [26]. For a monochromatic
pects, as well as the theoretical considerations above, motélectromagnetic wave of frequeney, propagating in the

vate the analysis presented in this paper. o direction, the components of the wave’s electric field vector
Previous theoretical treatments of CMB polarization haveyt 5 given point in space can be written as

relied on a small-angle approximation, which is valid when

considering patches of_ the sky _sma_lll enough to be approxi-E,=a,(t)cog wot— O(1)], Ey=ay(t)cod wet— 6y(t)].
mated as flat. Upcoming polarization maps will require a (2.1

more sophisticated formalism. In this paper, we develop in _ .
detail a description of polarization on the full sky. The If these two components are correlated, then the wave is said
Stokes parameters conventionally used to describe polariz& be polarized. The Stokes parameters are defined as the
tion are not invariant under rotations of the coordinate systime averages

tem used to describe them, unlike temperature fluctuations,

but rather transform as a second-rank terfd@]. By ex- I=(af)+(a}), (2.2
pressing the polarization in terms of a complete, orthonormal
set of tensor basis functions on the celestial sphere, power Q=(af)—(aj), 2.3
spectra and correlation functions which are independent of
the coordinate system can be constructed. Earlier work on U=(2a,a,cog 6,— 6,)), (2.4
small patches of the sky chose a particular reference coordi-
nate system which completely defines the polarization but V=(2a,a,sin(6,— 6,)). (2.5

obscures the physical interpretation of the polarization pat-
tern. Also, the signal from vector and tensor perturbations ighe parameter gives the radiation intensity which is posi-
expected to contribute to CMB polarization primarily at tive definite. The other three parameters can take either sign
large angles on the sky through gravitational effects, so thand describe the polarization state. For unpolarized radiation,
correct full-sky analysis is essential. Q=U=V=0. The Stokes parameters are additive for inco-
Our formalism is stated in terms of differential geometry herent superpositions of waves, which makes them natural
on the sphere, using a notation widely used in general relasariables for describing polarized radiative transport.
tivity. Similar calculations have recently been performed by |In most applications polarization is measured in units of
Seljak and Zaldarriagh20,21], using spin-weighted spheri- intensity; however it is conventional and convenient when
cal harmonicg25]. Although the formalisms employed dif- gtydying the CMB to express polarization in terms of the
fer substantially and the calculations are quite lengthy, Weitference in brightness temperature of a particular polariza-
have verified that the end results are equivalent where they,n, state from that of the mean brightness temperature of the
overlap, gving us_confldence both are correct. . CMB. The rationale for this convention comes from the
After a brief review of Stokes parameters, the next section ell-known result that the spectrum of polarization induced

dgfmes the tensor spherlca}l harmonic basis functions anf the CMB is exactly the same as a temperature anisotropy,
gives useful explicit expressions and formulas for decompos-

ing a polarization map into its harmonic components. Sectios® I brightness temperature units the polarization should be
lll covers the statistics of the expansion coefficients of thepndependent of frequency. . .

temperature and polarization harmonics, derivations of vari- 1€ Stokes parametetsandV describe physical observ-
ance estimates for the various multipole moments in ideal@0!€s and are independent of the choice of coordinate sys-
ized experiments, and a recipe for simulating a combinedem. HoweverQ andU describe orthogonal modes of linear
polarization and temperature map given theoretical angu|atpolar|zat|on and depend on the axes in relation to which the
power spectra. Section IV derives exact expressions for all dfnear polarization is defined. From Eq.9), it is easy to

the multipole moments from scalar and tensor metric flucshow that when the coordinate system is rotated by an angle
tuations, expressed in terms of the conventional Fourier come, the same radiation field is now described by the param-
ponents of radiation brightnesses. Section V then treats twaeters

point correlation functions of the Stokes parameters in a

coordinate-independent manner and expresses the multipole Q'=Qcog2a) +Usin(2a),
moments and correlation functions in terms of each other. .
We also reproduce flat-sky results by taking small-angle lim- U’'=-Qsin(2a)+Ucoq2a). (2.6

its and make an explicit connection with earlier work in par- _ _

ticular fixed coordinate systems. Finally, a summary and disStated another way, under rotations of the coordinate system
cussion section briefly considers detection prospects foaround the direction of propagation, tii¢ and U Stokes
various polarization signals. A pair of mathematical appenfparameters transform like the independent components of a
dixes collect results from differential geometry on the spheréwo-dimensional, second rank symmetric trace-f(&dF)

and useful identities of Legendre polynomials and sphericalensor. Thus we can equally well describe the linear polar-
harmonics. ization state by a polarization tens®y,, which coincides

with the photon density matriki 3].
Il. DESCRIPTION OF POLARIZATION

A. Review of Stokes parameters B. Scalar and tensor harmonic expansions

The cosmic microwave background is characterized com- Suppose we have an all-sky map of the CMB temperature
pletely by its temperature and polarization in each directionl(n) and polarization tensdP,,(n). The polarization tensor
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is a 2X2 symmetric @ap=Pps) and trace-free Gab, A S yCx Ay yC ab
(92°P,,=0) tensor, so it is specified by two real quantities. dnY 'm>ab(n) Yar )(n) dn Y iman(n) Y gy >(n)
Given the Stokes paramete@sandU measured in any co- _

ordinate system, we can construgt,. For example, in = S S (212
spherical polar coordinates 6()), the metric is

gap=diag(1,sif6) and f 4R Y85 0o(R) YC,22 () =0, (2.13

Q(n) —U(n)sing , . .
Po(R)== . . 2.7 Note that unlike scalar harmonics, the tensor harmonics only
ab 2| —U(n)sind —Q(n)sirté |- ' exist for|=2 [28].
The basis functiond (1) and Y, .,(n) are given
in terms of covariant derivatives of the spherical harmonics

The factors of si@ must be included since the coordinate
by [28]

basis for @,¢) is an orthogonal, but not an orthonormal
basis.(For more details of differential geometry on the two- 1
sphere, see Appendix AThe Compton scattering process Yﬁm)ab=N, Y (im):ab™ EgabY“m):CC (2.149
which thermalizes the CMB and generates polarization can-

not produce any net circular polarizatip®7]; thus we ex- nd

pectV=0 for the microwave background and do not con-

sider theV Stokes parameter further. Note the spherical polar |

coordinate system adopted in this paper gives an outward Y(Im)ab (Y(|m):ace°b+ Y (im):bc€ a) (2.15
direction for thez axis, which is opposite the radiation
propagation direction. The convention with thexis in the
direction of propagation is sometimes used, particularly mn
Ref. [13]; this leads to the opposite sign for the Stokes

where e, is the completely antisymmetric tensor, the : de-
otes covariant differentiation on the two-sphere, and

parameter, but all results are unchanged. 2(01—2)!

ln the usual way, we can expand the temperature pattern N,= T2 (2.19
T(n) in a set of complete orthonormal basis functions, the
spherical harmonics is a normalization factor.

The existence of two sets of basis functions, labeled here
. T - by G and C, is due to the fact that a symmetric trace-free
T—O=1+Z :E | Bam) Yamy(n), (280 (STP 2x2 tensor is specified by two independent param-
eters. In two dimensions, any STF tensor can be uniquely
decomposed into a part of the forfn,,— (1/2)g.,A . and
another part of the fornB.,.€%,+ B.,.€% , whereA andB
are two scalar functions. This decomposition is quite similar
to the decomposition of a vector field into a part which is the
gradient of a scalar field and a part which is the curl of a
vector field; hence we use the notation G for “gradient” and

are the temperature multipole coefficients dids the mean  C for “curl.” Since the Y ;,,)'s provide a complete basis for
CMB temperature. Thé=1 term in Eq.(2.8) is indistin-  scalar functions on the sphere, tM§, ., and Y, ten-
guishable from the kinematic dipole and is normally ignored.sors provide a complete basis for G-type and C-type STF
Similarly, we can expand the polarization tensor in termstensors, respectively. This G-C decomposition is also known
of a complete set of orthonormal basis functions for symmetas the scalar-pseudoscalar decompositks).
ric trace-free X 2 tensors on the two-sphere: Incidentally, these tensor spherical harmonics are identi-
cal to those which appear in the theory of gravitational ra-
o diation [29,30. The propagating degrees of freedom of
:E E [a(GIm)Y(Crm)ab(ﬁ)+a(clm)Y(C|m)ab(ﬁ)]' gravitational field perturbations are described by a spin-2
=2 m=-| tensor. Computing the flux of gravitational radiation from a
(2.10 source requires the components of the gravitational field tan-
gent to a sphere around the source which are induced by the
where the expansion coefficients are given by motions of that source. Our G harmonics are oft2®—but
not always[30]—referred to as having “electric-type” par-
6 _ Gabx ity, since an electric field can be written as the gradient of a
a(lm)_T_o anab(n)Y (Im) (n), scalar. Likewise, our C harmonics have “magnetic-type”
parity since they are the curl of a vector field. The two vari-
1 eties of harmonics also correspond to electric and magnetic
c Cab * multipole radiation.
B = Tof dn Pab(n)Y('m) (n, 219 Int%gration by parts transforms Eq2.11) into integrals
over scalar spherical harmonics and derivatives of the polar-
which follow from the orthonormality properties ization tensor:

where

1 . -
aﬁme—of dn T(N)Y{im(n) 2.9

Pab(n)
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o _Nif ~ou - :ab( i + —m’ 1 m
N, A A A cosy
a(clm):T_of dn Y;klm)(n) /Pab'ac(n)ecb, (21& +(I+m) sTrrgP|_l(C089), (2.26
where the second equation uses the fact é82t=0. These - _m _ m
forms are useful for theoretical calculations of the multipole G(im)(cost)= in219((I LcosiPy(cosh)

moments. We don’t recommend taking second derivatives of
real data. Sinc& andP,, are real, all of the multipole must
obey the reality condition

—(I+m)P™ (x)). (2.29

These expressions will be useful for the correlation functions
X% _ ¢ 1ymgX in Sec. V, and for simulating maps and data analysis.
Am=(—1) m) s (2.19 : X
In linear theory, scalar perturbations can produce only
where X={T,G,C}. G-type polarization and not C-type polarization. On the other
hand, tensor or vector metric perturbations will produce a
mixture of both typeqd19,20,31. Heuristically, this is be-
cause scalar perturbations have no handedness so they cannot
In spherical polar coordinateg)(¢) the tensor spherical produce any “curl,” whereas vector and tensor perturbations

C. Explicit form of the harmonics

harmonics are given explicitly bj28,30 do have a handedness and therefore can. Observation of a
. . nonzero primordial component of C-type polarizatiamon-
s - N Wim)(n) Xam)(n)sing zeroag,,) in the CMB would provide compelling evidence
Y (imyap(N) = 2 X(|m)(ﬁ)sin0 —W(|m)(ﬁ)sir129 for significant contribution of either vector or tensor pertur-
bations at the time of last scattering.
(2.20 Given a polarization map of even a small part of the sky,
one could in principle test for vector or tensor contribution
and by computing the combination of derivatives of the polariza-
R . tion field given byP2P., €, which will be nonzero only for
c - N, =Xam)(n)  Wm)(n)sing C-type polarization. Of course, taking derivatives of noisy
Y (imyan(N) = 2| Wim)(R)Sing X ym)(N)sir?6 | data is problematic. We discuss more robust probes of this
signal below.
(2.21
Ill. STATISTICS OF THE MULTIPOLE COEFFICIENTS
where
5 2 A. Statistical independence of the coefficients
W('m)(ﬁ):(;az cots— 4 . o )Y(Im)(n) We now have three sets of multipole momerag,
sinc 6
a(lm), and afj (imy» Which fully describe the temperature or
32 - polarization map of the sky. Statistical isotropy implies that
:( 302 =1(I+2) | Y qm)(n) (2.22 . cr G 5
<a(lm)a(| m’ >:CI 5II’5mm’i <a(|r:)a(|’m’)> CI é\II’5mm’v
and N
i <a(lm)a(| )>: CIcéll’émm’: <a(|m)a(| m’ >:CI 65”,5mm,,
- im -
X(Im)(n) Sma( a0 COtﬁ) (Im)(n)' (223) <a(|m)a(| m’ >: CITC‘()\II Omny s
(Note that this definition oKy (n) differs from that in Ref. <aﬁnf>a(c|rmr)> C|GC5||/5mmu 3.1)

[30] by a factor of si#.) The exchange symmetry
{Q Ul—{U,~-Q} as G-C indicates thatY(,., and where the angle brackets are an average over all realizations.
Y(Im ab Fepresent polarizations rotated by 45°. By evaluatingFor Gaussian theories, the statistical properties of a tempera-

the derivatives, these functions can be written ture or polarization map are specified fully by these six sets
of multipole moments. In fact, the scalar spherical harmonics
- 21+1 (I—m)! N im Y and the G tensor harmonic¥® have parity
= - - 7 ¢ (Im) (Im)ab
Wam) (M =2\ (I+m)! Gim)(COSH) €77, (—1)", but the C harmomcs((,m)ab have parity 1)1,

(2.24  Therefore, symmetry under parity transformations requires
that C/C= C,GC=0, which will also be demonstrated explic-
- [21+1 (1—m)! m itly in the following section. Measurement of nonzero cos-
; _ ¢
X m)(M)==2\—— (d+m)! Gim)(cosd) € mological values for these moments would be quite extraor-
(2.25 dinary, demonstrating a handedness to primordial

perturbations. In practice, these two sets of moments can be
where the real function@f,m) are defined by28] used to monitor foreground emission. Furthermore, as men-
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CFZO for scalar metric perturbatiorjd9,20. At small an- C,T= E
gular scales where the contribution from tensor and vector m=-1
perturbations is expected to be negligib& can also be

tioned above and demonstrated explicitly in Sec. 1V, a2 —~ & [a8 |2
(Im) (Im)

G_
21+1° '_m; 21+1°

pressed into duty as a foreground monitor. Exact expressions — ' |aﬁm)|2 _ ' am) aﬁm)
for these multipole moments in terms of the photon bright- cl= > TR cle= > AL (3.9
=t

nesses usually calculated by early-Universe Boltzmann m=-
codes are derived below.

Note that Eq(2.19 guarantees that th@® will be real.

When averaged over the skgenoted by an overbgrthe

For the case of Gaussian statistics, realizations of temmean square temperature anisotropy after subtracting the di-
perature or polarizations maps are easy to generate usifple is
standard techniques. Since the only cross correlation be-
tween mode coefficients, given b§l,TG, correlates only
a(m andag, with the same andm, the total correlation
matrix is block diagonal with the largest blocks being only
2X 2 matrices. In particular, set

B. Map simulation

?QT (3.9

and the mean square polarization is
afim = ¢1(CHY2

CTG CTG 2\ 1/2 ’])ZEQ2+ U2:2Pab7)ab: PGZ+7DC2, (36)
a(|m>—§1w+§2 C ¢ |
— S22+l — * 24+ 1—
2712 = ~~G 2_ 2 C
8t = a(CH™ (3.2 PI=TES, 5 —C PI=Tg3, ———Cl. (37

where for each value df and m>0 choose three complex .
numbers (3,{>,{3) drawn from a Gaussian distribution Even if no singleC{” or C? gives a significant signal, com-

with unit variance, i.e., both/2 Re(f;) and y2 Im(¢) are  bining differentl’s as in P2 or P22 can give a statistically
drawn from a normal distribution. Fon=0 the same equa- sjgnificant signal.

tions hold but theZ; should be real and normally distributed;

for m<0 the coefficients are given by E.19. Note that

in all casesCPC/=(C[®)2. This set of coefficients can be D. Cosmic and pixel-noise variance
combined with Eqs(2.7), (2.10, (2.23, and(2.22) to obtain The averages in Eq$3.1) are over an ensemble of uni-
the explicit expressions verses drawn from a theoretically defined statistical distribu-
tion, or assuming ergodicity, a spatial average over all ob-
Q(N)=2Py,(N) server positions in the Universe. However, we can only

observe a single realization of the ensemble from a single
- -~ location. Therefore, even if we had an ideflll-sky cover-
Ni[aS  Wm () —aS X m(M)] g
ILSm) Y¥(Im) (Im)72(Im) ' age, no foreground contamination, infinite angular resolu-
tion, and no instrumental noisexperiment, the accuracy
with which the estimators in Eq$3.4) could recover the
multipole moments would be limited by a sample variance

I
m=—I

:Toé 2

U(n)=—2csdPy,(N)

w known as “cosmic variance.” Furthermore, a realistic ex-
B G . c . . " )
——T> > Ni[@G X1 (R) + 85 W) (M)] periment may have limited sky coverage and angular resolu

=2 m=—1 tion and some instrumental noise. In this section, we calcu-

late the cosmic variance with which the multipole moments
(3.3 ! A
can be recovered. We also calculate the variance due to finite

with Wy and Xy given by Eqs.(2.24 and (2.25. Note sky coverage, angular resolution, and instrumental noise in

that polarization maps are traditionally plotted as headles&" idea}lized_experiment. To do S0, we adopt' a simplified
vectors with amplitude ®2+U2)¥2 and orientation angle model in which we assume a pixelized map in which the
(1/2)arctany/Q) noise in each pixel is independent and Gaussian distributed

after foregrounds have been successfully subtracted. In many
. respects, our derivation follows that in R¢B2], and our
C. Estimators results agree with those in R¢21].

One of the the main uses of a temperature/polarization We must first determine the contribution of pixel noise to
map will be to determine the multipole moments with the @ach multipole moment, and we begin with the temperature
best possible accuracy. From a full-sky CMB temperaturgnoments. Consider a temperature map of the full sky
map, we can construct the following rotationally invariant T"®{n), which is pixelized withN, pixels. If we assume
estimatorgdenoted by a cargfor the multipole coefficients that each pixel subtends the same area on the sky then we



55 STATISTICS OF COSMIC MICROWAVE BACKGROUND . .. 7373

can construct multipole coefficients of the temperature map Now we move on to the noise contribution to the polar-

using ization moments. We will assume the instrumental noise in
R the polarization measurements is isotropic, the same for all
~ [ TMH(n) - pixels, uncorrelated with the noise in the anisotropy, which
diim=| dn Yam(n) in terms of the Stokes parameters requires
1 N pix A <Qinoi56Q1noise):<UinoiseU Jnoise):-l-g( O'Eix)zaij '
T pY“m)(n ), (3.9
TOJ 1 N

<QinoiseU ?°i55> — <Qinoise]—1{10ise> — < U inoise]—Jnoise> =0.
whereT"*is the measured temperature perturbation in pixel (312

j andn; is its direction. The difference betweehy and  we denote the polarization tensor describing the noise in
a(im) s that the former includes the effects of finite beamp|xel i by 0|se(n) The previous equations are equivalent

size and detector noise; i.€l,y) is measured. The extent to to the coordinate-independent equatisee Ref[28])
which the approximate equality fails is the pixelization noise,

which is small on angular scales much larger than the pixels.

In many of the proposed experiments, which oversample théP32°(n;) Pa3in; ))— To(o-p,x) (QacObd— €ac€ba) Sij
sky when compared to their beam, there will be no loss of

information by ignoring scales close to the pixel scale. The phois nois

observed temperature is due to a cosmological signal and a (Pa e(”) T e(” ))=0. (3.13
pixel noise, T{"*P=T;+T{°*°. If we assume that each pixel
has the same rms n0|se and that the noise in each pixel is.
uncorrelated with that in any other pixel, and is uncorrelate

The mode coefficients for the noise, defined as in([2dL1),
leII have a correlation matrix

with  the  cosmological signal, i.e., <TinOiSe|—JnoiSe> (ke - n0|se*>
=To(op,0) 28 and(T; T]**9=0, then (Im &('m
T, T nois P
<d m)d )> <a|m)a(| )>+<a|mn§JIS (8 m) (Nple ) 2 2 xln?)b*(n)Y(l m’ (n)
Wb 2CT5 S +{a nmsetaT nois X ]
| || 117 fmm < (Im) (1'm ) (3 9) X<Pab(ni)Pcd(nj)>! X,X, E{G,C} (314)

so using Egs(3.13, (2.13, and(A8) we find
where we have written the expectation value of the cosmo-

logical signal in terms of that predicted by thedy multi- (aXnoiseq X’ nonse*>
plied by|WP|? which accounts for beam smearing. Typically (im) 3 m

the beam is approximately Gaussian in shape, corresponding 1( 4ma™.\ 2 Noix
to the window function WP~exp(—I206%/2), where = 4( N plx) 2 2Y5 3P * (ny )Y(l/m,)ab(n )
op= 0FWHM/M =0.00742 6FWHM/1°) and 0FWHM giVeS

pix

the full-width at half maximum. 27 )
The second term in Eq3.9) is = N (Tpix) it Sy Oxx (3.19
pix
. 1 Neix Noix o
<aT nmset a;FI ’nn(:I’S) ?2 2 z ( plx) <T_r10|se-|-n0|se> and, of course,

G, T, C, T,
(@™ agh = (@ ay=0. (3.1

Thus instrumental noise contributes equally to the measured

N
T2 §X am Yoo (R G- and C-polarization components but introduces no cross
(Tpix “ N (am) (M) correlation between them.
pix . X
Collecting the results, il (for X={T,G,Q) are the
~ \dm multipole coefficients for the mafsignal plus noisg their
XYy () |G variances will be
pix
)2 _ bj 2 ~XX' -1
_ 4w'(\lap.x) P (3.10 () ) = ((WPPCI™ + W) it S
pix ,
ED|XX 6||/5mm/, (317)
Therefore, the moments measured by the map are distributed
with a variancd 32] where
T \2 P \2
T ( )? _, Aw( 0'pix) . _ 27 ( Upix)
<d(|m)d(|r*mr)>: C||W|b|2 pIX 5||15mm/. W+ lEN—_, WGé—WCCl:WP lEN—_a
p|x pix pix

(3.11 (3.18
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and w,, =0 for X#X'. The quantitiesw™* are inverse For the diagonal TG component,
statistical weights per unit solid angle, a measure of experi-

T
mental sensitivity independent of pixel sig&2]. (Note that e 2 (dfjmdmd (1myd (|m .
our ng differs by a factor of two from that in Ref21] (DD %)= (2l +1)2
which is consistent with ou€® and CF differing from their
E and B moments by a factor of two. _ 2 [<|dT |2|dG |2 s
Estimators for the multipole moments CMB power spec- (2l +1)z ~ (i)l 19y | %) e
traC*’ are
+<d(lm) (Im)d(|m) (Im )> 1 8mm’)]
Cxx (DXX _Wxx')|W|b| (3.19 5 DI'DCC+ 2(D,T6)2
where T (21+1)2
X (1= 8mm)(D[®)? 1
—_ d g% mm _ TGy 2
X' _ (s i) + 2 = [(D/®)
D _m; 1 (3.20 fope! (21+1) 21+1
_ . o +D/ D[]+ (D)% (3.2
Since the estimators for eadd;” (and therefore for
CX) are constructed from only 121 multipole coeffi- Therefore,
cients, eactC*’ can be recovered only with a finite sam- 1
pling variance, known as cosmic variance. In addition, the Erere=5; ———[(C[®)2+(Cl+w WP ~2?)
six different sets of measured moments are constructed from 21+1
the three sets ofl, coefficients, leading to some covari- ><(C| +wp 1|Wb| 2)]. (3.26
ance between the moments. These variances can be de-
scribed with a (6<6) covariance matrix The diagonal covariance-matrix elements for TC and TG are
— —, , — , obtained similarly and are nonzero even though
Ean=((Ch=CM(CP —Cl))y=(CPcP)y—-cich C/©=CPFc=0. Given a map, it should be checked for con-
— , sistency that there is no statistically significant parity viola-
=((Df'Df )~ DD ) wp| (3.2)  tion.

Finally, for the off-diagonal TG-TT component,
for A=XX".
We now calculate the entries of this matrix. Recall that if
i i i i (D°DT)= E g2 (i 30y &
X; are Gau33|an random varlables with  variances . (2l +1)2 (Im) (Im) mm’

(xx) o,J, then (x’x*)=cfo’+20f, and (x’x;)
2 * G
=30202 . For X= T.G.C. (] |20 ) * A, (L= B )]
(i1l 2) _(_“ T TG
XXX X (Im") = +1|D, D, ". 3.29
(D*Df*y= Z 21 21+1

1 Therefore,
_ XX X' X a

_rgn, (2|+1)2{D| DI (1 5mm’) 2 .

o , Err16= 2|+1[CTG(CT+WT1|W|| 21 (3.28
+[DIDF +2(D{*)2] S }

XX XX 2 and, similarly,
:DI Dl (2| +1)2(D ) . (322
= Ce(CP+wg w2 3.2

The diagonal elements for TT, GG, and CC are thus ceTe= 5yl o W11 (329

— %X L sbl— 212 and this completes the calculation of all nonzero elements of

Sxxxx =g (G T Wx WP (323 the covariance matrix.

To determine the precision with which a temperature or

and the off-diagonal elements are polarization map can recover some cosmological parameters,

e.g.,s={Qq,A,h,Q,, ...}, we can evaluate the curvature,
or Fisher information, matri33], which can be generalized
from that in Ref.[7] to

.
—
Ll

TG\ 2
TT.G6= 2|+1(C )%,

I

TT,CC™ 0, (324) 0CA A’

JC
=2 2 B, (330

S0 Js;

1l

GG,cC 0.
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for A=TT,GG,CC,TG, wher¢ = 1] are elements of the HEMT amplifiers. An important question facing future bo-
inverse ofZ. The standard error with which a given param- lometer experiments is whether to sacrifice half of the tem-
eters; can be recovered after marginalizing over all otherperature sensitivity for polarization informatid4]. If the
parameters is given by the square root of the diagonal elegoal of an experiment is to measure angular power spectra
menti of [«] %, assuming a linear dependenceGifon all  and the temperature measurements are dominated by cosmic
of the parameters. variance, then polarizing the measurement is obviously ad-
The w)}l factors on the right-hand side of Eg8.23, vantageous. The answer is as yet unclear in cases where
(3.26), and(3.29 are those due to instrumental noise. How- COSMic variance is not the controlling factor in the tempera-
ever, note that even in an ideal experiment wit,=0, the ~ ureé measurement.
right-hand sides would still be nonzero, and this is the cos-
mic variance. Equationg3.23, (3.26), and(3.29 are valid IV. CALCULATION OF THE MOMENTS

for a map with full-sky coverage. Realistically, however, |, his section, we calculate the set of multipole moments
only a fractionfg, of the sky will be surveyed, or if the gefined by Eqs(3.1), for scalar and tensor metric perturba-

entire sky is surveyed, only a fraction will be used in thetjons. vector metric perturbations make a negligible contri-
analysis. Therefore, the accuracy with which cosmologicalytion for inflationary theories, although they are generic in
parameters can be recovered will be degraded accordinglyefect models; they will be covered elsewhere. The intensity
Strictly speaking, harmonic analysis on a cut sky will have togng linear-polarization state of the CMB in any given direc-
be performed, and this will introduce correlations in the er-gp, is specified by three quantitiéthe temperaturd and

rors of mu]tipole moments of differeﬁt;. However, if.the the Stokes paramete@® andU), giving six possible sets of
entire sky is surveyed, but only a fraction of the sky is usedmultipole momentsc’, C&, cC CITG CITc andC,GC but

for the analysige.qg., if the Galactic plane has been cut)put
then the effect of partial sky coverage can be approximate
by multiplying the curvature matrix by, (which will in-
crease the standard errors in cosmological parameters
fs_ki,/z). If only a fraction of the sky is surveyed, the curvature
matrix should still be multiplied by, but note thalN, is
the number of pixels actually in the map.

gs argued above, parity demands Bat=CPc=0.

One way to calculate the moments is to rewrite the radia-
tive transfer equations in terms of tensor harmof®ig. The

ntribution of each Fourier mode to each multipole moment
is then obtained by evolving numerically the coupled Ein-
stein and Boltzmann equations for the multipole coefficients
az}m). Integrating over all Fourier modes then gives the mul-
tipole moments. This approach has the advantage of being
E. Pixel noise for a polarization map similar in form to the usual moment hierarchy formulation of

How are the temperature and polarization pixel noises ret’€ Problem, while keeping the independent modes separated

lated? If the two linear polarization states are always giverfiroughout the calculation, giving simple power spectrum
equal integration times, the total number of photons availablEXPressions. A second approach offering computational ad-
for the temperature measurement will be twice the numbey@ntages has been presented in Red], which uses the

available for either polarization measurement. Therefore, SLOKeS parameter evolution equations to write an integral
equation solution for the multipole moments.

T - Another possibility, which r_nakes contact with _preyious_
(opi) “=5 (o) . (3.3)  work on CMB temperature anisotropies and polarization, is
to express the multipole moments in terms of the usual per-
turbations to the photon brightness and polarizatignand
Aq) (see Ref[13] for definitions and description®btained
8 om most current numerical calculatiof85], and this is the
approach adopted here. In this section, we calculate the con-
tributions to these moments from scalar and tensor perturba-

ent receivers(.e., bolometer)smeasurg only the INCOMING 4i5ns. With these results, it is straightforward to modify ex-
total power. In the former case, the signal can be ?F’"‘ Intc%sting numerical codes to obtain all of the multipole
two orthogonal linear polarizations and the phase informa- oments

tion can be retained throughout the entire signal path. |
properly designed, such a system of receivers can measure
the linear polarizations without compromising the tempera- ) ) ) )
ture measurement, so the temperature sensitivity will be de- The simplest calculation of the multipole moments in
termined solely by the amplifier characteristi@. This is  terms of the photon brightnesses uses the fact that, due to
the design strategy for the MAP satellite. statistical isotropy, the contrlbutloq of a givermode to f[he .
On the other hand, bolometers measure only the instantdtomentsC, depends on its magnitude only and not its di-
neous total power received and do not retain any phase ifection. Therefore, we will consider the contribution of a
formation; a filter must be placed in front of the detector forSingle k mode, with the coordinate system always chosen
each linear polarization state, discarding half of the incominguith z in the k direction, and then integrate over &llat the
photons. Thus the temperature sensitivity for a polarized boend. All temperatures, Stokes parameters, polarization ten-
lometer measurement is only half of that for an unpolarizedsors, and expansion coefficients are functionk,adithough
measurement, which collects twice as many photons in theve sometimes drop explicitly referenceskdor notational
same amount of integration time. A compensating factor isimplicity. Functions of the real-space coordinatelo not
that bolometers offer much greater raw sensitivity thanappear in this paper.

However, a crucial difference in overall sensitivity exists
between the two current receiver technologies. Coherent r
ceiversl[i.e., high-electron-mobility transistdHEMT) am-
plifiers] measure the incoming electric field, while incoher-

A. Scalar metric perturbations
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1. Temperature moments where theAg, (k) are Legendre coefficients of the photon
We begin with the familiar temperature moments. ThePolarization distribution function for scalar metric perturba-

by a singlek scalar mode is given by E7.1) in Ref.[13], by this scalar mode is thus

©

T(k,n) 1 _ o
(T =22 2+ 1Pk mAj (k) Pakh) 15 .. t o
0 =1 T—Ozgjgo (2j+1)Pj(k-mAY K| o —sirtg

w

:1+|:22 m; alis (K Yam(n). (4.2 L B
=52, AIFDAGOM sk, (46

The superscripts T and s indicate that we are dealing here

with temperature moments from scalar perturbations. The

A} (k) are Legendre coefficients of the photon intensity dis-ywhere the second line defines the tensby,) op; ie., the
tribution function for scalar metric perturbatiof$3]. The  tensorM2° (with raised indicestakes the form
expansion coefficients are given by the inverse transform, M

Eqg. (2.9,

1 0
0 —csc’-ﬁ) : (4.7)

[

1 . . abyp_5 -
am)(k)=zj§=:0 (2j+1)A|j(k)J dn Py(R-R) Y (N) M) (k=2,n)=P;(cosy)

L1
_ s * =~ J2I+ s
mAGK)Y i) (K) = 5V (21 1) A3 (K) o, This j expansion is not an expansion in tensor spherical har-

4.2 monics and, as we shall see, the harmonic content of the
' M?Jt)’ tensor, while peaked aroure- j, has significant con-
where we have used E4B12) and takingk=2 in the final  tributions froml far from j. .
line. The contribution tc!:?,T'S from this mode is then W.e now p.roceed to re-express the.above representation of
polarization in terms of tensor spherical harmonics. The G
multipole coefficients of the pattern in E.6), given by

1 I Eq. (2.17), are

T8 T, 2. 2

Cl)= 577,20 [aim(K[P=ZIAM (0] 4.3

The total multipole moment from scalar modég =@ is s N e oAb .
given by integrating over ak: a(|r’n)(k):N|J dn Y{im (M P 4p(k,n)

N .. fo oAb
d 1 =g i+ DAY K J AnY iy (MM an().
C?—,Scalar:f (2,”.)3 C;r,s(k)zsﬂ- f k2dk |A||S(k)|2, 8]:0 m ]

which is the usual result. ab - i ,
We may computeM ™., in spherical polar coordinates by

2. Polarization moments substituting Eq(4.7) into Eq.(A13), obtaining

Now we move on to the polarization moments produced
by scalar perturbations. First we describe the “standard”
representation of polarization, which is what has usually ., o ot , A
been computed by Boltzmann codes. In the spherical polar M j):ab= (1= X5 P(X) = 4xPj(x) = 2P;(x), sz'rz o
coordinates €, ¢), the Stokes parameters induced in direc- (4.9
tion n on the sky by a singl& scalar mode in the direction

can be obtained from E¢7.4) in Ref.[13] (the ¢’ there can  This can be simplified using the definition of the associated

be chosen zero fdk=2) and are Legendre polynomial®["(x) and the recursion relation Eq.
A . (B5), giving
Qtkm _1 (2j+1)P;(k-n)AS . (k), U(k,n)=0
To - 455 J j Qj\ ™ VT

(4.5 M{).ab=—P2(X) = 2(j2+j+1)P(x).  (4.10
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P]-z(x) can be represented as a finite serieBifx) using the

\\s\\\{ } ; ;?/ VA NN e NA AN
H HVH ] N S SN S S S NN N\
integral Eq.(B10), giving finally NNNNNNN Y [ 77 s A s e NN
SNNNNNNVN S S A S S S S NN\
J ==
~ ~ NN P, S —
: . NN P et I A B A e S NN T A SR
M= — & (HD(+2ePiken),  Emmeess N — CUTTTIZSN 0
~~~~~~ P NV VLUV T
|- AN S~~~V NN NN\~ / /[ ] ] ]
] e ANNSSSSNANNANNNSN S ]
1 I=j, 22 A R RSN NN NS,
27777 7 T VANANANANSS N NN\ N~ S/
2(2|+1) YOO N NN NN NN NN 4
[—i di<i O A RN N N N S 4
Cle (I+l)(|+2) J even an J’ (4 1]) Vv R NAANNN NSNS S~/

0. |=j odd orl>j. FIG. 1. The basis tensomd ?jg(k) traditionally used for polar-

ization are discontinuous in the orientation of the polarization in the
Making use of Eq(B12) and orthonormality of the spherical directions on the sky both parallel and antiparallektd@he discon-
harmonics, tinuity is either as depicted in the left panel or as depicted in the
right panel. Note that we have just switched the sign of the polar-
ization between the two panels.
f dn'Y Im)(n) M () ab(n)z —(I+1)(1+2)cy;

3. Polarization in thexKk directions

4
X\ /ﬁ dmo (412 As seen from Eq(4.11), whenl is large the coefficients
+ c;; atl=j are much larger than “nearby” coefficients, say

whenl=j—2. If thel=j term dominates, then in the small-

angle ap&)_roximation, i.e., fol>1, the approximation

A (K)~+2 A%, (k) is valid. However, this is priori not a
aim (k)= V”(2|+1)5m0ASG|(k): (4.13 veGr;/ good apglroximation since the contribution from the

terms withl+2<j=<2I to the sum of Eq(4.14) comes to
where nearly as much as the contribution from thel term (al-
though some cancelation may result from sign changes in

Agl) The explanation is that it takes the sum of a large

numberM(J)(n) to represenh(ﬁg;’(n) This behavior is ex-

ab,

(4.149  pected for the simple reason that while tNém)s are

ab»
This infinite sum is, as shown below, equwalent to the flnltes’mOOth functions, thé/{jy's are not: forn= K, i.e., when

sum of Eq.(4.24). The contribution tcCI from thisk mode =0 andw (which are smgular points of the spherical polar
is coordlnate systejm M(J) does not go to zergsince P;(1)

#0 andP;(—1)#0]. Instead the amplitude of the polariza-
, T ) tion approaches a constant but its direction varies discontinu-
H1 |a<|m) )| =E|ASG (K. ously as illustrated in Fig. 1. To represent this discontinuous
behavior as a superposition of smooth functions requires a
(4.19
large number of terms. In fact, the only reason why the sum

The moment<, are rotationally invariant, so assuming sta- of Eq. (4.11) does not contain an infinite number of terms is
tistical isotropy, which guarantees that the differenhodes ~ because itincludes either0 if j is even of =1 if j is odd,

are uncorrelated the total contribution of all scalar modes té&€ither of which are part of the basis of harmonic STF ten-
C sors.

While the M?J? basis functions are discontinuous, the
hysical polarization pattern must be continuous. The polar-
G,scalar_ G, 2 2 P ~ ~
G J (2m)3 ! Gk = 32 J k= dk |Ag (K[ ization will in fact be zero in the directions= =k as can be
(4.16  seen directly from the form of the Boltzmann equatiph3).
Thus the solution of the Boltzmann equation will obey

and

2(1+1)(1+2)

I(1-1)

V22 (2j+1)
2171 Citaitk)-

Aél(k)z_(

CPIK) = 5——

3

The calculation ofC,C'Sbis similakrJ with the replacements
P20 — P3P S andM 2. ., —M20. €% in Eq. (4.9 [cf., . ,
Eqsa(bz 17 and (5 18)] H((]))V\e/lebver gzjg;tittilting ?Ec{.4.7) into Pab(k’+k)szo (2] +1)AZ;(k) =0,

Eq. (Al14) yields M(J) ac€p=0 smceM(” is diagonal and

independent ofb. This is just what we expect: Sm(M(J) is R _

even under parity while, is odd, the product must inte- Pap(k,—k) 2, (=1)I(2j+1)A%;(k)=0, (4.18
grate to zero. Thus for scalar perturbatioag;s(k)(m):o 1=0
and

oo

which in turn implies

cosealas g (4.17) even odd

> (2j+DAY(K =2 (2j+1)A;(k)=0. (4.19
as argued above. =0 =1
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Assuming a continuous polarization pattern and substituting

Eqgs.(4.6) and(4.1]) into Eq.(4.12 gives

| di Vit Pap(,) 3, (21:+1) ¢ %K)
even

=2 (2j+1) A;(k)=0,

=0

[ i Vi) PRtk S, (21+1) g k)

odd
:le (2j+1) AY;(k)=0.

(4.20

Thus the decomposition gP?".,, actually has nd=0 or
=1 content.
Define the coefficients

( 12—1 _
Taina+r2) b
2(21+1) _ .
b=y — | — <l
Ij T D+2)" j even and &]
0, |—j odd orj>I
) (4.21)
which have the property
(I+21)(1+2)
202141 ]2 b (2j+1) Ag;(k)
+12:| cj (2j+1) Agj(k))
even
E (2]+1)A i(K), | even,

J/
=\ odd (4.22

,Zl (2j+1)A%,(k), | odd.

Since these sums are zero for smo@tbsmological polar-
ization patterns, we may use the equality

o] I
J_E:I ¢ (2j+1) AY;(K) _,Zo by (2j+1) A;(K)
(4.23

in Eqg. (4.14 to obtain
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ST 214K
(4.24)

2(|+1)(|+2))1’2
[(1-1)

z.m:(

We have transformed an infinite sum into a finite sum. While
these finite sums are still somewhat cumbersome, they are
significantly less complicated than previous expressions for
moments of Stokes parameters obtained in the small-angle
limit [13,14).

The fact that continuity demands zero polarization at
n=+k is reflected in that bothf(,o)ab andY(Clo)ab are zero at
6=0 and, or equivalently thaG(lo)(tl)ZO; continuity
in fact requires G(ilm)(i 1)=0 for all m except when
m=*+2. Since them=*2 terms correspond to tensor per-
turbations wherk and z are aligned, the polarization from
tensor perturbations does not give large sums, as evidenced
below. However, a similar treatment of vector perturbations
(m==*=1) leads to the same sort of infinite sums encountered
for scalar perturbations.

4, Cross moments

From Egs.(4.2) and (4.13), the contribution to the TG

cross moments from a single scalar mode inkkez direc-
tion is

k)= 2|+1 2 @iy (k) aim (k). (4.29
so integrating over alk gives

CTG,scaIaLJ d3k CTG, Kk
| - (2,“.)§ | S()

167J k2dk AL, (K)AS(K).  (4.26

The vanishing ofa (k) also demonstrates explicitly that
the moment<C 5= CGCS 0, as argued above.

B. Tensor metric perturbations

1. Temperature moments

The calculation of tensor moments proceeds in an analo-
gous fashion. Recall, however, that tensor perturbations have
two polarization statest and X. Consider a single Fourier
mode with+ polarization and as before choose a coordinate
system withz in thek direction. From Eq(7.1) in Ref.[13],

the contribution of thik mode to the temperature anisotropy
is
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T(k, n)+——2 (2j+1)P;(k-n)sir?6 cos2pA;; (k) cT+(k)—2|+12 |afim (k)2
(4.27
a2 A (k) 244(K)

(note that the choice of the zero @fis arbitrary and incon- 8 (I-2)![(21-1)(21+1) (21+3)(21-1)
sequentigl and A | (k) is the perturbation to the photon A (k) 2
brightness mduced by this tensor mode after the Polnarev i A (4.31)
change of variablel36]. For theXx polarization state, simply (21+3)(21+1)
replace cos2 with sin2¢ and_AlT with Ajj . Again, we ex-  and the result for the< polarization state is the santeith
pand this anisotropy pattern in spherical harmonics, the replacement — X, of course. If the spectrum oft and

X states is the sam@vhich is demanded by statistical isot-

ropy), then the total contribution of tensor modes to the tem-
afm (k)= 2 (2] +1)A|J(k)f dn P;(k-n) perature anisotropy is
XY* ~ ino 4.2 T,tensor_ d*k T,+
(imy(N)SINF 6 cos2p. (4.28 C, =2 2P C/'" (k)
Note that fork =z, P;(cosf)=[4/(2l+1)]*?Y ;o). Then Eq. 1+ [, A oK)
(B15) can be used to express the integrapd in@mgY as a _ ~8n (1-2)! k“dK (21-1)(21+1)
sum of products of two spherical harmonics. Orthonormality
of spherical harmonics then gives 20K N Aok |
(21+3)(21-1)  (21+3)(21+1)
4t
iy (k) = <5m2+ On-2) 2 (241 \ g7 (0 (4.32
which agrees with the results of previous calculations
(+1)(j+2)(j+3)(j+4)]¥2 [13,12,37.
. . . |"
(2j+1)(2] +3)2(21 +5) o 2. Polarization moments
Jg+D(-1)(j+2) Finally, we calculate the polarization moments from ten-
+2 (2j—1)(2j+3) sor perturbations. The Stokes parameters induced by a single
tensor Fourier mode witht+ polarization in the direction
N jG-D(G-2)(j-3) | _ n=(6,) are[13]
(2j-1)%(2j+1)(2j-3)] "2 T
(4.29 Q(k,A). =22 (2j+1)Pj(cosd)(1+co$0)
i
The 6,,’s project out only three terms in the sum, and this X cos2p Ag:(k) (4.33
reduces to Ql
~ To . o R+
(T+2) U(k,n)+=Z; (2j+1)Pj(cos)2codsin2¢ Ag;(k),
a(lm (k) \/77'(2| +1)( m2+5m,72) (| 2), (4_34)
Alfl,z(k) 24,7 (k) where agairﬁ'gl(k) are Legendre coefficients of the photon
X (21—1)(21+1) - (21+3)(21—1) polarization brightness for tensor metric perturbations with

+ polarization. NoteU is the opposite sign from Ref13]

A a(k) because the coordinate system there has opposite orientation
(21+3)(21+1) |’ (430 from the one here. The polarization tensor is thus
L . b, Ay 10 ; + ab A
For the X polarlzatlon state, simply replacef,+ 6y, ») PL(k,n)= gE (2j+1) Agj(k) M{™(n), (4.39
with —i(Sm2— 6m,—2) andA™ with A™. .
The contribution of thik mode toCT is then with
(14 cog6)cos2p —2cotsin2¢

M?Jt;(ﬁ):Pi(Cosg) —2cotsin2¢  —(1+cos6)cséhcosp | - (4.36
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For X polarization, make the replacements cps2sin2¢d
and sin2)— —cos2p.

Now we calculate the multipole moments induced by this

single tensor mode. From E¢R.17) above,

G+

N -
afim(0= 5 2 (21+ 1Bk

jdn Yiim)

Calculation of this M(])ab is straightforward using Eq.

(n) M(J) ab(N). (4.37

(A13), but the algebra is considerably longer than the scalar

case. The result is
M} :an=COS2L12(1=x*)P;() +8x(1=x*)P] ()
+(1=xHP{(x)], (4.39

with x=cosf. The X perturbations give the same result with

cos2p—sin2¢. Because of this azimuthal dependence, the

integral in Eq.(4.37) is nonzero only fom= *=2. Using Egs.
(B1), (B6), and(B16), we get

(j+3)(j+4)P%,  6j(j+1)P?
ab _ J !
M{5):a0= OS2 5y 273y T (21+3)(2] - 1)
(j=2)(j—3)P%,
(2j+1)(2j—-1) (439

This is just a sum of the three spherical harmonics with

m=2 and the three witlm=
is

—2. The integral in Eq(4.37)

[ m (+2)!
21+1 (1—2)1 om2 " om—2)

(I+2)(l +2)5|'J-+2
(21—-3)(21-1)
6l(1+1)5
(2I+3)(2| 1)

N [(1=1)6;-2
(21+5)(21+3) |’

f dNY (i) (MM ap(N) =

(4.40

which results in

%(6m2+5m,_zwm

(I+2)(l +1)AQI 2(K)

i (k)=

61(1+1)A (k)

(2I—1)(21+1) (21+3)(21—1)
11=1)A§) (k)
(21+1)(21+3) (449

As before, eaclk mode and each polarization state contrib-
utes toC, in the same way, so integrating oderand multi-
plying by two (for the two polarization stat¢gives

KAMIONKOWSKI, KOSOWSKY, AND STEBBINS

G,tenso 1 (|+2)(|+1)A5,I—2(k)
S szd" 2—D)2+1)
B+ DAGK) 1(1=1)AG,, (k)2
2113)2-1)  (21+1)(21+3)

(4.42

Therefore,C®**"is due to three Legendre expansion coef-

ficientsAQ|(k) as opposed to an infinite sum as in the scalar
case.

The derivation of the multipole moments for the C har-
monics is similar. From Eq2.18 above,

aGm (k)= '2 (2) +1)ES;(K)
xfdﬁ Yiim(M) M3 .ac(N) €. (4.43

This time we get for thet gravity wave polarization

M. aceh=Sin2¢[ —8(1—x?)P; (x) = 2x(1-Xx?)P/(X)]

2(j+3
:sin2¢>[ - % P2, ,(x)
_20=2)

where the second equality uses the identi(®8) and (B7).
For X polarization states, replace sip2>—cos2p. The mul-
tipole coefficients are then

(1+2)A4_4(k)

2 ()= — (8= T
m— g Ome s Tme2h N 21+ 1

2)

+(1=DAG,1(K)]. (4.4

The X perturbations give the same result except for a minus
sign between the Kronecke¥s and an overall factor of.
Again assuming equal contributions from both and X
tensor perturbations,

2
C,tensor_

1 142
cé —Efdkkz

B S U TRt GO
IR U TES T Y
(4.46

This calculation verifies our qualitative arguments that tensor
modes will produe a C polarization field.
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3. Cross moments a Stokes paramet&), which is a tensor component, nor for
the brightness perturbation from tensor modes. The calcula-

From Eqgs.(4.30 and (4.4)), the nonzero cross moments k i :
tion can be reformulated using a tensor-harmonic expansion

are
for these quantities, which provide a natural b&Sib|.
N+
C TG tensor 1 f K2dK Ari-2(k) D. Line-of-sight approach
! 87N, (21-1)(21+1) . . ,
A very efficient and accurate algorithm for computation
24,1 (k) A1 o(K) of multipole moments has recently been given by Seljak and

Zaldarriaga[38] and applied to the polarization multipole
momentg 21] (hereafter, SZ Although significantly differ-

T @321 @2+3)2+ D)

l+2)(1+DAS . (k) 6l(1+1)AE (k ent in appearance, their spin-harmonic formalism is equiva-
(I+2)(+1)Ag, k) 6T+ DA 0040 our tensor-harmonic formalism. Here, we briefly com-
(21-1)(21+1) (21+3)(21-1) pare our results with theirs. Although the formalisms differ

and the calculations are somewhat lengthy, we find that the
' (4.47) results agree, which gives us confidence in both sets of re-
sults. Furthermore, by identifying the moments in their paper
with those in ours, their numerical codevhich has been
assuming equal contributions from the and X tensor per- made publicly availablecan be used to compute the multi-
turbations. Note theN, Lin the prefactor comes from the pole moments presented in this paper.
temperature coefficient, not from the polarization coefficient. Consider, for example, the G polarization moments from
Both the temperature and G multipole coefficients for ascalar perturbations. According to E¢42) and(14) in Sz,
k tensor mode witht polarizationaa’r:]')(k) andaﬁ;TT)(k) are the polarization pattern induced on the sky by a scalar
proportional to G+ 6y —2) [and similarly for X modes mode in thez direction[i.e., their version of our Eq(4.5)] is
with the sum replaced by a difference. On the other hand, the

11— 1)AG 4 2(K)
(21+1)(21+3)

corresponding C multipole coefficienaaéf;ﬁ)(k) are propor- o § 1—co2d JTO dr elkmcos (kK K
tional to (S~ Sm —») (and the same with the difference Q) =z(1-coso) o °7° a(mi(k m)éck),
replaced by a sum fox modeg]. Therefore, after summing (4.48

overm, the cross momen@;©*""and C*"%for tensor i

perturbations vanish. This is a consequence of the symmetgndU (n)=0, wherer is the conformal timeg(7) is a vis-
arguments mentioned above. ibility function, II is a combination of intensity and polar-
ization perturbations, ané(k) is an amplitude for the scalar
mode (see SZ for more detajlsTherefore, the polarization

) ) tensor induced by this scalar mode is
In this section we have calculated the CMB temperature

C. Summary

and polarization multipole moments for both scalar and ten- 3 1 0

. . . . . A 70 X
sor perturbatlo_ns. I_:or_theforles in w_h|ch _the perturbauonq:,ab(n):Zé(k)j d7 g(7)II(k,7)elkmeos 0 —cs@ol
have a Gaussian distributigisuch as inflationary models 0

this set of multipole moments fully specifies the statistical (4.49
properties of the combined temperature or polarization map.

In virtually all theories considered, scalar and tensor perturysing the rules of covariant differentiation, we find that
bations are statistically independent, so their contributions to

the CMB temperature anisotropy and polarization add in . 3 0

quadrature. Even if they are not statistically independent, Pab:ab(n)zgg(k)f dr g(n1Il(k,7)

angular orthogonality of the different modése., scalar, 0

vector, and tensor modes in tledirection induce nonzero J _cosh d ik rcosd
multipole coefficients only fom=0, m=*, andm=*2, X W+3W @_2 e

respectively guarantees that the contributions of scalar, vec-

tor, and tensor perturbations to the multipole moments will 3 K ffo d (K d?

add in quadrature. Therefore, for Gaussian theories, the map =gt0 ] dmg(nII( ’T)d(cosg)2

will be fully described byC/=C/scaay. CcT-ensor[ef Eqs, _

(4.4 and (4.32)], CE=C&seaar, cGensoret ‘Eqs (4,16 and X[(1—cogf)%e 7], (450

(4.42], CF=CF™™" [cf. Egs. (4.46], and _ _ N _

ClTezclTG,scalarJr ClTG,tensor[Cf. Egs. (4.26 and (4.47)]. For wh|ch|agrees with theidz /? given in the|.r Eq.(1.5).- The

non-Gaussian theories)-point correlation functions with C**** moments are obtained by plugging this into Eg.

n>2 may be nonzero. (2.17), squaring, summing oven, and then integrating over
Equation(4.4) for the temperature moments from scalar k. We then find that our results agree with thdirsalizing

perturbations is written as an integral of a square of a singléhat our (2r)® Fourier conventions differ from theifsf we

A, . However, all of the other moments are written asidentify CP=Cg /2, whereCg, are their electric-type mo-

squares of a sum of several,’s and/orAg,'s. This is be- ments. We have further checked that our temperature mo-

cause a spherical-harmonic decomposition is not natural faments agree with theirgvith no factor of twg, and that our
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C moments are half theB moments:CF= Cg//2. OurC|TG one point to be at the north pole, (0,0), and the other to be on
are equal to theilCq /2. Although we do not present it he ¢=0 longitude at a distancé from the north pole,
here, we have checked their tensor-mode calculations d¢,0). Then expand(n) in terms of spherical harmonics as
well. Although significantly more involved, we still find in Eq. (2.8) and note thatY;,)(0,0)= 6ynoV(21 +1)/(4m).
agreement; for example, compare th&fx) and B(x) with So

our Egs.(4.38 and(4.44). The identification of our polariza-

tion moments with theirs is also consistent with ey * in cT( 0)_<

T(0,0 T(0,0)>

Eq. (3.18 being half theirs. To To
V. TWO-POINT CORRELATION FUNCTIONS - IE (@l @ Y i (0.0 Y (0.0)
mi'm

In this section, we relate the multipole momergs ,
CE, cC, andC/C to two-point correlation functions of tem- 21+1
l P = 2 Crﬁll'émm’ 5m0Y(I’m’)(0rO)

perature and Stokes parameters. This will make contact with o A
previous work on the subject. We also derive flat-sky limits
i 21+1
useful for analyzing maps of small sky patches. :El — CT P,(cosh), 5.2

A. Correlations between temperature and stokes parameters
‘where we have used E(.1) to go from the second to the
third line. This recovers the well-known result for the tem-
erature autocorrelation function.

The derivation of the polarization correlation functions

The linear-polarization state at any given point is speci
fied completely by the Stokes paramef@iandU, but these
guantities depend on the coordinate system which on8

chooses. On the other hand, we know tQaand U trans- i d I iand is similar to th ¢ K
form as the components of a STEX2 tensor, so giverQ will proceed analogousliiand is similar to the case for weak-

andU in some coordinate system, we can always determin%?nsmg correlation function528]), and requiresVy, and
Q' andU’ in any other coordinate system am) at the north pole. Using the asymptotic relations

The Universe is assumed to be statistically isotropic, so it (—1)m+imbrz (| 4 Im|)!
is possible to construct two-point correlation functions which P"(cos) ~
depend only on the angular separation between the two
points. But simply correlating andU in a particular coor-
dinate system gives correlation functions which depend on
the positions of the points being correlated as well the angu- 1
lar separation. This is what has been done in previous pub- P(cosf)~1—=1(1+1)#?, 60, (5.4)
lished work. 4

A coordinate-independent set of correlation functions can .
be expressed in terms of the ones which have appeared in tielS Straightforward to ?hov"lmtlf]‘;‘t fofm|=2, X(m and
previous literature. The prescription is simply to define cor-Y(m) aré both asymptotic t@ as 6—0, so they are
relation functions of Stokes parameters with respect to axedonzero at=0 onzly for |m[=2; for m=0 andm=1, they
which are parallel and perpendicular to the great(argeo- ~ aré asymptotic t@” and 6. After a little algebra,
desig connecting the two points being correlated. Qpis 1 BIFL s
the difference in intensities in two linear-polarization states W 00 == +1d+2)! Sk S 5.

. . (Im)( ) ) — ( m2 m, 2) ( 5)
parallel and perpendicular to the great arc connecting the two 2 4w (1-2)!
points, andU, is the difference in two linear-polarization
states which lie 45° away from the parallel and perpendicu@"
lar. The three quantitie§, Q,, andU, have six correlation i 21+
functions between them{TT), (U,U;), (Q:Q/), (Q;T), Xam(0.0= 5\ —F— 7—57(m—Omn—2). (5.6
(Q,U,), and (U, T). However, only four can be nonzero. 2NV 4m (I-2)!
Although Q, and T are invariant under reflection along the
great arc connecting the two points being correlatgd,
changes sign. Therefore, the expectation vali@dJ,) and
(U, T) must be zero from statistical isotropy. This is as ex- c 9):<
pected: four nonzero sets of momer@g¢, C®, CF, and
C[© describe the map. Correspondingly, four nonzero corre-
lation functions provide an equivalent statistical descriptionwhere, once again, the Stokes parameggrare defined with
We begin with the familia{TT) correlation function, respect to axes E)arallel and perpendicular to the great arc
~ R connectingn; andn,. As in the temperature case, choose one
T 0):<T(n1) T(n2)> . 5.2 point to be at the north pole and another a distafi@avay
To To /75 o along the¢p=0 longitude. This c_h0|ce has the adt_:led gdvan-
12 tage that the great arc connecting these two points is along
The correlation function depends only on the angular sepahe 6 direction, so we can use th@ defined in the §, )
ration of the two points, so in calculating it, we may choosecoordinate system, Ed3.3). However, in this coordinate

Sl (= O 00

(m#0), (5.3

d

Now consider thd QQ) correlation function

Q/(Ny) Qr<r‘12>>
To To [4 i -cow

(5.7)
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system, the definition d at the north pole is, strictly speak- Similarly, for the polarization-temperature moments, multi-
ing, ambiguous. Therefore, we always consider a point omply both sides of Eq(5.11) by the associated Legendre func-
the ¢ =0 longitude which is infinitesimally close to the north tion Plz,, integrate, and use E¢B4) to obtain

pole; in other wordsQ(0,0) really means lig,,Q(6,0).

Using Eq.(3.3 for the Stokes parameters, ti@®Q) corre- T
lation function is then Cl°= Wleo dgsingPf(cosy) CT(9).  (5.13
CQ) = Q(0,0 Q(6,0) The derivation of the polarization moments from the po-
To To larization autocorrelation functions is similar. Orthonormal-

ity of the tensor harmonics implies that
= 2 NiNi([aGm Wim)(0,0 = & Xam) (0.0)]

e f LWy (Wt () Xy (1) X1y ()]
x[alm) (|m>(90) alm) 'y (6:00]) ,
= 81 Oy (5.14
= N2 911" Omm
=2 —N|{C.G[W*.2)<00>+Wﬁ (0.0] N
o Crus . and it can also be shown that
HIC[X{12)(0,00=X{j _2(6,01}, (5.8
where we have used Eq€3.1), (5.6, and (5.5, and f [ =X (MW (1) + W (M) Xy ()] dN=0.
<a(G,r:)a(°,m)) 0. This can be simplified using (5.15
X{im=—X{,—m and Wi, =W{; _, and the definitions in
Egs.(2.24) and(2.25), giving ’ To do so, note that thee dependence dciv(|m) andXmy is
juste'™® which means that the integral is immediately zero
o st o for m#m’. Form=m’, the integral over casvanishes us-
(o 9)=2| - NILCPG 12 (cos) + CG 1) (cOsH) ]. ing the explicit forms ofGg,, [28]. From Egs.(5.9 and
c9 (610,

For the(UU) correlation function, the derivation is simi- Q)+ Y 2 2l+1 G, cC
lar, giving [CUAO+CY(0)] =2 5 NI(CP+C)[Wz)

X(6,¢)+1X(12(6,0)], (5.1
cY(e)= }IZ le%le[CFGJZ)(cosﬁ) +CFG 1, (cod)]. 12

(510 [cup-clo)] =2 N (CP=CPIW

2
For the(TQ) cross-correlation function, ,
X(0,6)—1Xq2(0,¢)]. (5.1
cT 9):<@ Q,(n2)> Then multiply both sides of the first equation by
To To Ay hy=cosh W(j2)—iX{j2) and the second by, +iXj;,, , integrate over
o141 all directionsn, and apply Eqgs(5.14 and(5.15), giving

=2

N, C/® P(cosd).  (5.11)

27 N -
Ce+CC= \/2|I1§'J dR[C2(6) +CY(6)]
Equations(5.9), (5.10, and(5.11) areexact(i.e., there is

no small-angle approximatigrexpressions for the polariza- x g2id [W*|2)(“) 'X(|2 (n)], (5.18
tion correlation functions.

B. Multipole moments from correlation functions CP—Cl=1/ m > f dn[C(6)—-CY(0)]
Above, we derived expressions for correlation functions " A e n
in terms of multipole moments, and now we perform the X €' [W[j5)(n) +iX{i, ()] (5.19

inverse transform and express the multipole moments in

terms of correlation functions. Begin with the temperatureUpon summing and differencing and carrying out the inte-
autocorrelation function: multiply both sides of E§.2) by ~ gration overg, we obtain

the Legendre polynomid®,.(cosd), integrate over ca and

use the orthogonality of Legendre polynomials to obtain C|G: WN'ZJ d6sing[ CX 6)G(+,2)(cos9)
0

:27rfowd05ino9P|(cosﬁ) C'(6). (5.12 —CY(6)G ), (cosh)], (5.20
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Cr= wNﬁf;d 0sind[ CY( )G |,,(cosh) C9)= iﬁf I dI[(CP+CP)Io(16)+(CEP—CF)I (16)],

2
B (5.2
—C6)G,)(cosd)], (5.21) _
and from Eq.(5.10 we obtain
which are the desired relations giving the polarization mul- 1
tipole moments in terms of the polarization autocorrelation cY; gy~ — G, C _(CS_C
pole mormen p _ tion C(g)= -~ [ 11dIF(CF+COI(10)- (CP-COL 0],
functions. Given some measured correlation functions, 2m

evaluation of Eq(5.21) for any! will probe the existence of (5.28
nonscalar modes. for o<1,
Equationg5.23), (5.25), (5.27), and(5.28 agree with the
C. Correlation functions in the small-angle limit forms in Eq.(19) in Ref. [39] for =0 and Clczo_ (Also

In order to make contact with previous work and torecall that (QU,)=(TU,)=0) If Cf=0, then
present estimates useful for measurements on a small pat¢R:Q,+U,U,) [which depends on an integral ovj(l6)]
of the sky, we now derive the small-angle limit of the aboveand (Q,Q,—U,U,) [which depends on an integral over
expressions which give correlation functions in terms o0fJ4(16)] depend on the same set of momeﬁlﬁ and are
multipole momentsand vice versa. The correlation func- thereforenot independent. However, i€°+0, then these
tions given in previous work were of Stokes parameters meagorrelation functions will depend on two independent sets of
sured in a fixed coordinate basis, whereas ours are of Stok@soments.
parameters measured with respect to the great arc connectingWe can also derive expressions for the multipole mo-
the two points being correlated. However, our results can benents forl>1 in terms of a correlation function measured at
compared with previous results by takigg=0 in their ex-  small angular separations. For example, using (B®2 to
pressions. Although the expressions for correlation functionapproximate Eq(5.12 for I>1 gives
in the small-angle limit given in Ref§13,14] are quite com-
plicated, when the small-angle limit is taken consistently in
all steps, the expressions simplify greatly, as emphasized in
Ref.[39] (and resemble correlation functions for ellipticities ) ) )
of galaxies due to weak lensing from large-scale inhomoge@nd using Eq(5.24) to approximate Eq(5.13 gives
neities[28,40).

Once again we begin with the temperature moments. A C|TG24\/§7T|2J’ J,(16)C™(6)6 do. (5.30
useful asymptotic relation is

P (cos)~Jo(s), s=(21+1)sin(6/2)—0, (5.22 Using Eq.(5.26, we can approximate E@5.20 by

crzzwj Jo(10)CT(6)6 d6 (5.29

whereJ(s) is the Bessel function of ordem. Substituting Cle‘z ZJ (CRAO)[Io(16)+I,4(16)]
into Eqg. (5.2), approximating the sum by an integral and 2
taking the limitI>1 gives —CY(0)[Iy(16)—34(10)])6 db (5.3)
1 (=~ and Eq.(5.2) b
cT(a)zzf I dl Jo(1)C] (5.23 a.5.21) by
c_T u
o : C|:§f {CE(O[Io(16)+34(16)]

for 6<1. For the temperature-polarization cross-correlation
fUnCtlon, we note that _ CQ( 0)[‘]O(I 0) —J4(| 0)]}0 de. (532)

Pi(cosd)~4l*J,(s), s—0, (5.24  Ifany nonzercCy is found in this way with correlation func-

tions measured on a small patch of the sky, it is an indication
which gives of vector or tensor modes.
23/2
CTQ( 0):? 13d| C|TG~]2(| 9), (5.25 VI. SUMMARY AND DISCUSSION

This paper provides a detailed and complete formalism
for characterizing polarization fluctuations in a full-sky map
of the cosmic microwave background. We give explicit
Yorms for tensor spherical harmonics, in which the polariza-
tion can be expanded in direct analogy to the expansion of
temperature perturbations in the usual spherical harmonics.

G(ilm)(cosﬁ)~ %I“[Jo(s)th(s)], s—0. (5.26 The tenspr harmonic_s are numeric_:allyjust as easy to gvaluate
as spherical harmonics, so polarization map simulation and
analysis will be no more cumbersome than in the tempera-

From Eq.(5.9) we obtain ture case.

for 6<1, from Eq.(5.11).
For the polarization autocorrelation functions, note tha
[28]
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The most important physics results presented here are th&ary Hinshaw for stimulating questions. This work was sup-
of the six sets of multipole coefficients describing the corre-ported by U.S. DOE Contract No. DEFG02-92-ER 40699,
lations in a temperature or polarization map, two must baNASA NAG5-3091, and the Alfred P. Sloan Foundation at
zero if the Universe is parity invariant, and a third vanishesColumbia, NASA AST94-19400 at Fermilab, and the Har-
for scalar metric perturbations. The mome@{s, which are  vard Society of Fellows. M.K. acknowledges the hospitality
nonzero only for vector and tensor metric perturbations, aref the NASA/Fermilab Astrophysics Center and the CERN
in principle an unambiguous probe of primordial gravity Theory Group.
waves and vorticityf 19,20. A cosmological contribution to
the momentsC© or CF® would demonstrate a remarkable
handedness to the primordial perturbation spectrum. A much
more likely and practical use of these moments is to monitor

foreground microwave emission. We also note that CMB  Thjs appendix collects results from differential geometry,
polarization may give useful information on primordial mag- it particular application to the manifol&? (the two-

netic fields[17,41] and galaxy cluster magnetic fielda2]. spherg, which are needed in definitions of and calculations
Measurement of polarization in the Sunyaev-Zeldovich ef-

f with the tensor spherical harmonics on the celestial sphere.

ect can be used to measure cluster transverse velogi@s th tatioh .= 97/ ox® to indicat | tal

and/or the CMB quadrupole moment incident on the clustewe. use the no alo a X" o Indicate a reguiar partia

[44]. derivative E.l‘ﬂ,(,jf;a=Vaf for a covariant de_r!vat|ve. W_e use
Most current microwave background codes calculate thé® colon, ™" rather than the more traditional semicolon,

Legendre coefficients of the radiation brightness in Fourier: !0 distinguish derivatives onS® from four-dimensional

space[35]. We have derived exact expressions for all of thederivatives in general relativity. All of our tensors are de-

multipole moments in terms of these brightness coefficientsfined with respect to a coordinate basis. Note the metric ten-

For tensor metric perturbations, the expressions are partic$0r gap, commutes with covariant differentiatio,,..=0.

larly simple and trivial to implement numerically. The result The determinant of the metric is denoted dps||ga,||. Co-

for scalar perturbations is somewhat more complex, involvvariant derivatives of scalars, vectors, grahk-two tensors

ing an infinite sum over the brightness moments. Howeverare

the contribution of the sum to the final expression for the

APPENDIX A: DIFFERENTIAL GEOMETRY
ON THE SPHERE

multipole moments is only significant for the lowest mo- S.=S.,. 3, =V3, +V°T3_,
ments, so the overall cost of the computation should only ' '
increase slightly. The formulas for the multipole moments
gnty b Tab =T 4+ 7dopa + 720, (A1)

derived in this paper should allow for relatively simple con-
version of existing CMB codes.

Of course, a cosmological signal will have to be distin-
guished from foreground contamination. Synchrotron emis-
sion from our galaxy is highly polarizefd5], and extraga-
lactic radio sources may also contribute significarithg].

The amplitude of these foreground polarization sources is
unknown at the present time. Since both likely foregroundsye have used the formula for the fourth derivatives of a
have a spectral dependence substantially different from thecalar function

blackbody CMB spectrum, the usual techniques for subtract-

ing foregrounds from temperature maps should also work for 1

polarization[47]. Sab  =V2V2S+ RIS, + > RY9S,, V?S=s?2,

Of course, simply attaining the necessary sensitivity to
make any polarization detection will be a great experimental
accomplishment. The MAP satellite, currently being con- Rap=R%cp,  R=R%, (A3)
structed, will have the sensitivity to make a statistical detec-
tion of polarization. The Planck satellite, now in the planningWhereRpcq, Rap, andR are the Riemann tensor, the Ricci
stage, should be capable of seeing polarization on a pixel-byensor, and Ricci scalar, respectively. We have also used the
pixel basis if it is configured to measure polarization. At thisformula of integration by parts
time, it is undecided whether Planck, which uses incoherent
bolometer detectors in its most sensitive frequency channels, ~ Lab B ~ Lab _ ~ ab
will sacrifice some temperature sensitivity to make polarized i; dn X®Y.ap=— § dn X*aY:p= ﬁ; dn XY,
measurements. But optimistically, within a decade we may (A4)
have in hand detailed temperature or polarization maps of the
cosmic microwave background. How much cosmological in-
formation can be extracted from such maps is Currenﬂy unWhere f indicatgs integration over a closed manifold with no
der study[34]. The formalism presented in this paper pro- boundary, andin is shorthand for/g dx'dx?.
vides a basis for addressing such questions. On a two-dimensional manifold the Levi-Civita symbol is

a traceless antisymmetric rank-two tensor given by

where thel'§ . are Christoffel symbols defined by

1
%czi 92%(9ab.c+ Jdep— Tbe,d)- (A2)
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which has the simple properties while explicit expressions for some second derivatives of a
symmetric rank-two tensor are
€ca€b=Uab= ~ €ac€’b,  €ab€cd=YacIbd~ Jadbe:
epo=0, (86) M3 =M% ,+2M %\ +MP® | —sindcospM #? ,
+2cotIM?? ,+4cottM ?® ;4 (1—3cog )M *?
A rank-two tensor is trace-fre@r tracelesksif, and only if,
g2°T,,=0, and a rank-two tensor is symmetric if, and only -m (A13)
if, Tap=Tpa. INn two dimensions the latter requirement is
equivalent toe®"T,,=0. Linear polarization is described by and
a symmetric trace-free rank-two tensor, or STF for short.
The geometry of a two-dimensional manifold is particu-  M?3°., €% =sind(M? ,o+M%? ) —csIM? ,,
larly simple because it is determined solely by the Ricci

6 _ 66 6
scalarR. Some handy identities are +M% ;) —cotesaIM ” ,+5cogM

+3co9M?? , + 3(cosicotd—sind)M 2,

1 1
Rabcdzi R €ap€ca, Rabzz R Gap GabRabcd (A14)
1 which again only apply ie®"M ,,=0.
=R € € Rapca=5 R €pa- (A7) g v appy 2
Anoth ful identity i APPENDIX B: SPHERICAL HARMONIC AND LEGENDRE
nother usetul identity 1S FUNCTION IDENTITIES
bpjcd _ b . . : . o . .
M®N“Ceacepg= —M*Ngp In this appendix, we list some identities involving spheri-
i cal harmonics and Legendre functions which we have used
' in our calculations.
9%°M = g2N = €3°M = €3N, = 0 (A8) The associated Legendre functions are defined by

m

i.e., for STF tensors only. d
| ' PI(X)=(~ D1 P, =0, (BY)

In this paper we are only interested in the geometry of the
unit sphereS?. Its geometry is nearly as simple as can be,

sinceR=2. We exclusively use the explicit coordinate sys- (1—m)!

tem defined by spherical polar coordinat@sd), whered is P M(x)=(—-1)" P"(x), (B2)
the polar angle from a particular point on the sphere &nd (I+m)t

labels the angle on circles which are centered on this same

point. In these coordinates the metric is in terms of Legendre polynomials,

1 0 . )
gab:(o sinzf))’ 9=lgapl=sirPe,  (A9) 1(x)=PP(x) B3

The orthonormality relationship for associated Legendre

while the antisymmetric tensor is functions is given by
o 0 sing a_ 0 sing 1 . 2 (I+m)!
a7l —sing 0 ) """ l-csw 0O _1de}“(x)P|,(x)=5,,,—2|+l T—m (B4)
(A10)
From this metric the Christoffel symbols follow as These functions satisfy the following recursion relati¢sese
Eqgs. 8.733 in Ref[48]):
I'f,=—singcosy, TI'y,=T9,=cot,
rf,=r%=r%,=T¢=T%,=0, A1l P 2(x)+2(m+1) P (%)
00— L op— L po— L oo™ L o ( ) \/TZ
The gxplicit components of the second derivatives of a scalar +(I=m)(I +m+1)PM(x) =0, (B5)
function are
Yo=Y ao—T5pY s (21+1)y1—x2P" =P ,(x)=P".,(x), (B6)
Y00=Y 00 21+ 1)XxP"=(I—-m+ )P, +(I+m)P",,  (B7)

Y.06=Y gg—COOY 4, 4pm
2 I m m
Y.ps=Y 4yt SiNGCOP Y 4, (A12) (1) g =M+ DxPr=(I=m+1Pr,. - (B8)
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,.dP" o o " (I+m+1)(1+m+2)]|*?
(1—x )W=—|XP| +(+mPl,. (B9) e'’sing Y m=— 21+1)(21+3) (I+1m+1)
Using orthonormality and completeness of Legendre (I-m)(I—m—1)]*?
polynomials, an associated Legendre functionmsf2 can (21-1)(21+1) (I=1m+1):

be written in terms of Legendre polynomials using the inte-
(B13)
gral [49]

) o-idsing :[(I—m+1)(l—m+2) 12
J’ilde|(x)P1-2(x) (Im) (21+1)(21+3) (rtm=1)
S (I+m)(1+m—1)]¥?
0, I>j or j+I odd, EREEEEE (I-1m-1)>
=2j(j=D/(2j+1), j=I, 614
4, I<j and j+I even.

which can be iterated and evaluated fo=0 to obtain
(B10)  cos2psir?6 Y,

With the above conventions for Legendre functions, the 4
spherical harmonics are given by =

(I+1)(1+2)(1+3)(1+4)]2

2|l 21+ 1) (21+3)2(21+5) (1+2.2
214+1 (I—m)! _
Yim(6.6)= \|—— P"(cosn)e!™?. VIA=1(+1)(1+2)
4’7T (I+m)| +Y(|+2'72))—2 — (Y(|,2)+Y(|,72))
(B11) (21-1)(21+3)
- ; ; ; I(I-1)(1-2)(1-3) ]2
The convolution of a Legendre polynomial with a spherical +[ Yo oo+ Y . )
harmonic is (21-3)(21—-1)%(21+1) (Yi-22*Yi-2-2)
iy (B15)
J dn Pj(k-n) Y(Im)(”):mY(lm)(k) 3 - For the replacement cog2-sin2¢ make the replacements

(B12) (1/2)—(1/2) in the prefactor and  Yx2
_ _ _ Y -2) = (Y2~ Yx-2)-
This can be obtained by expressing the Legendre polynomial Looking at thed dependence of EqB15), we get
in terms of spherical harmonics with the spherical harmonic

2 2
addition theorem and then using the orthonormality of Pii2 2P

2 —
spherical harmonics. A=XP0= o 1) 2] +3)  (2)-1)(2]+3)
Angular-momentum lowering and raising operators can )
be used to derive the following recursion relations for spheri- n Pi—2 (B16)
cal harmonics: 2j+1)(2j—-1)°
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