
Statistics of cosmic microwave background polarization

Marc Kamionkowski*
Department of Physics, Columbia University, 538 West 120th Street, New York, New York 10027

Arthur Kosowsky†

Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138
and Department of Physics, Lyman Laboratory, Harvard University, Cambridge, Massachusetts 02138

Albert Stebbins‡

NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500
~Received 18 November 1996!

We present a formalism for analyzing a full-sky temperature and polarization map of the cosmic microwave
background. Temperature maps are analyzed by expanding over the set of spherical harmonics to give multi-
pole moments of the two-point correlation function. Polarization, which is described by a second-rank tensor,
can be treated analogously by expanding in the appropriate tensor spherical harmonics. We provide expressions
for the complete set of temperature and polarization multipole moments for scalar and tensor metric perturba-
tions. Four sets of multipole moments completely describe isotropic temperature and polarization correlations;
for scalar metric perturbations one set is identically zero, giving the possibility of a clean determination of the
vector and tensor contributions. The variance with which the multipole moments can be measured in idealized
experiments is evaluated, including the effects of detector noise, sky coverage, and beam width. Finally, we
construct coordinate-independent polarization two-point correlation functions, express them in terms of the
multipole moments, and derive small-angle limits.@S0556-2821~97!05012-1#

PACS number~s!: 98.70.Vc, 98.80.Cq

I. INTRODUCTION

With the advent of a new generation of balloon-borne and
ground-based experiments@1# and satellite missions@2,3#,
the cosmic microwave background~CMB! will provide an
unprecedented window to the early Universe. In addition to
determining the origin of large-scale structure, it has been
argued that CMB temperature maps may determine cosmo-
logical parameters and the ionization history of the Universe,
and perhaps probe long-wavelength gravitational waves
@4–9#.

Any mechanism which produces temperature anisotropies
will invariably lead to polarization as well@10–14#. Tem-
perature fluctuations are the result of perturbations in the
gravitational potentials, which contribute directly to the fluc-
tuations via gravitational redshifting~the Sachs-Wolfe effect
@15#! and which drive acoustic oscillations of the primordial
plasma@5#. These processes result in temperature fluctua-
tions which are the same order of magnitude as the metric
perturbations. In contrast, polarization is not directly gener-
ated by metric perturbations: a net polarization arises from
Compton scattering only when the incident radiation field
possesses a nonzero quadrupole moment@16,13#, but only
monopole and dipole fluctuations are possible as long as the
photons in the Universe remain tightly coupled to the
charged electrons. Polarization is only generated very near
the surface of last scattering as the photons begin to decouple

from the electrons and generate a quadrupole moment
through free streaming@17#. Since by this time most of the
electrons have recombined into neutral hydrogen, the num-
ber of scatterers available to produce polarization is reduced,
so CMB polarization fluctuations are characteristically at a
part in 106, an order of magnitude below the temperature
fluctuations.

A polarization map will provide information that comple-
ments that from a temperature map. For example, polariza-
tion may help distinguish the gravitational-potential and
peculiar-velocity contributions to the acoustic peaks in the
temperature-anisotropy power spectrum@11#. In models with
reionization, some of the information lost from damping of
temperature anisotropies will be regained in the polarization
spectrum @18#. Perhaps most importantly, the density-
perturbation and gravitational-wave or vorticity contributions
to the anisotropy can be geometrically decomposed with a
polarization map@16,19–21#. Furthermore, although these
nonscalar signals are expected to be small, they will not be
swamped by cosmic variance from scalar modes~as dis-
cussed further below!. Detection of gravity waves is impor-
tant for testing inflation and for learning about the inflaton
potential which drove inflation@22#.

Realistically, detection will present a significant experi-
mental challenge. Current results limit the magnitude of lin-
ear polarization to roughly a part in 105 @23#. Experiments
being planned or built will improve sensitivities by at least
an order of magnitude@24#. The MAP satellite will make
polarized measurements of the entire microwave sky in
around a million pixels with a precision of around one part in
105 per pixel@2#. If CMB polarization is not discovered by a
ground or balloon experiment in the next four years, this
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satellite will almost certainly make the first detection. The
Planck Surveyor~formerly COBRAS/SAMBA! may also
make polarized measurements@3#. These experimental pros-
pects, as well as the theoretical considerations above, moti-
vate the analysis presented in this paper.

Previous theoretical treatments of CMB polarization have
relied on a small-angle approximation, which is valid when
considering patches of the sky small enough to be approxi-
mated as flat. Upcoming polarization maps will require a
more sophisticated formalism. In this paper, we develop in
detail a description of polarization on the full sky. The
Stokes parameters conventionally used to describe polariza-
tion are not invariant under rotations of the coordinate sys-
tem used to describe them, unlike temperature fluctuations,
but rather transform as a second-rank tensor@13#. By ex-
pressing the polarization in terms of a complete, orthonormal
set of tensor basis functions on the celestial sphere, power
spectra and correlation functions which are independent of
the coordinate system can be constructed. Earlier work on
small patches of the sky chose a particular reference coordi-
nate system which completely defines the polarization but
obscures the physical interpretation of the polarization pat-
tern. Also, the signal from vector and tensor perturbations is
expected to contribute to CMB polarization primarily at
large angles on the sky through gravitational effects, so the
correct full-sky analysis is essential.

Our formalism is stated in terms of differential geometry
on the sphere, using a notation widely used in general rela-
tivity. Similar calculations have recently been performed by
Seljak and Zaldarriaga@20,21#, using spin-weighted spheri-
cal harmonics@25#. Although the formalisms employed dif-
fer substantially and the calculations are quite lengthy, we
have verified that the end results are equivalent where they
overlap, giving us confidence both are correct.

After a brief review of Stokes parameters, the next section
defines the tensor spherical harmonic basis functions and
gives useful explicit expressions and formulas for decompos-
ing a polarization map into its harmonic components. Section
III covers the statistics of the expansion coefficients of the
temperature and polarization harmonics, derivations of vari-
ance estimates for the various multipole moments in ideal-
ized experiments, and a recipe for simulating a combined
polarization and temperature map given theoretical angular
power spectra. Section IV derives exact expressions for all of
the multipole moments from scalar and tensor metric fluc-
tuations, expressed in terms of the conventional Fourier com-
ponents of radiation brightnesses. Section V then treats two-
point correlation functions of the Stokes parameters in a
coordinate-independent manner and expresses the multipole
moments and correlation functions in terms of each other.
We also reproduce flat-sky results by taking small-angle lim-
its and make an explicit connection with earlier work in par-
ticular fixed coordinate systems. Finally, a summary and dis-
cussion section briefly considers detection prospects for
various polarization signals. A pair of mathematical appen-
dixes collect results from differential geometry on the sphere
and useful identities of Legendre polynomials and spherical
harmonics.

II. DESCRIPTION OF POLARIZATION

A. Review of Stokes parameters

The cosmic microwave background is characterized com-
pletely by its temperature and polarization in each direction

on the sky~assuming its frequency spectrum is a perfect
blackbody!. Polarized radiation is described in terms of the
Stokes parametersQ, U, andV @26#. For a monochromatic
electromagnetic wave of frequencyv0 propagating in thez
direction, the components of the wave’s electric field vector
at a given point in space can be written as

Ex5ax~ t !cos@v0t2ux~ t !#, Ey5ay~ t !cos@v0t2uy~ t !#.
~2.1!

If these two components are correlated, then the wave is said
to be polarized. The Stokes parameters are defined as the
time averages

I[^ax
2&1^ay

2&, ~2.2!

Q[^ax
2&2^ay

2&, ~2.3!

U[^2axaycos~ux2uy!&, ~2.4!

V[^2axaysin~ux2uy!&. ~2.5!

The parameterI gives the radiation intensity which is posi-
tive definite. The other three parameters can take either sign
and describe the polarization state. For unpolarized radiation,
Q5U5V50. The Stokes parameters are additive for inco-
herent superpositions of waves, which makes them natural
variables for describing polarized radiative transport.

In most applications polarization is measured in units of
intensity; however it is conventional and convenient when
studying the CMB to express polarization in terms of the
difference in brightness temperature of a particular polariza-
tion state from that of the mean brightness temperature of the
CMB. The rationale for this convention comes from the
well-known result that the spectrum of polarization induced
in the CMB is exactly the same as a temperature anisotropy,
so in brightness temperature units the polarization should be
independent of frequency.

The Stokes parametersI andV describe physical observ-
ables and are independent of the choice of coordinate sys-
tem. However,Q andU describe orthogonal modes of linear
polarization and depend on the axes in relation to which the
linear polarization is defined. From Eqs.~2.5!, it is easy to
show that when the coordinate system is rotated by an angle
a, the same radiation field is now described by the param-
eters

Q85Qcos~2a!1Usin~2a!,

U852Qsin~2a!1Ucos~2a!. ~2.6!

Stated another way, under rotations of the coordinate system
around the direction of propagation, theQ and U Stokes
parameters transform like the independent components of a
two-dimensional, second rank symmetric trace-free~STF!
tensor. Thus we can equally well describe the linear polar-
ization state by a polarization tensorPab , which coincides
with the photon density matrix@13#.

B. Scalar and tensor harmonic expansions

Suppose we have an all-sky map of the CMB temperature
T(n̂) and polarization tensorPab(n̂). The polarization tensor
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is a 232 symmetric (Pab5Pba) and trace-free
(gabPab50) tensor, so it is specified by two real quantities.
Given the Stokes parametersQ andU measured in any co-
ordinate system, we can constructPab . For example, in
spherical polar coordinates (u,f), the metric is
gab5diag(1,sin2u) and

Pab~ n̂!5
1

2S Q~ n̂! 2U~ n̂!sinu

2U~ n̂!sinu 2Q~ n̂!sin2uD . ~2.7!

The factors of sinu must be included since the coordinate
basis for (u,f) is an orthogonal, but not an orthonormal
basis.~For more details of differential geometry on the two-
sphere, see Appendix A.! The Compton scattering process
which thermalizes the CMB and generates polarization can-
not produce any net circular polarization@27#; thus we ex-
pectV50 for the microwave background and do not con-
sider theV Stokes parameter further. Note the spherical polar
coordinate system adopted in this paper gives an outward
direction for the z axis, which is opposite the radiation
propagation direction. The convention with thez axis in the
direction of propagation is sometimes used, particularly in
Ref. @13#; this leads to the opposite sign for theU Stokes
parameter, but all results are unchanged.

In the usual way, we can expand the temperature pattern
T(n̂) in a set of complete orthonormal basis functions, the
spherical harmonics

T~ n̂!

T0
511(

l51

`

(
m52 l

l

a~ lm!
T Y~ lm!~ n̂!, ~2.8!

where

a~ lm!
T 5

1

T0
E dn̂ T~ n̂!Y~ lm!

* ~ n̂! ~2.9!

are the temperature multipole coefficients andT0 is the mean
CMB temperature. Thel51 term in Eq.~2.8! is indistin-
guishable from the kinematic dipole and is normally ignored.

Similarly, we can expand the polarization tensor in terms
of a complete set of orthonormal basis functions for symmet-
ric trace-free 232 tensors on the two-sphere:

Pab~ n̂!

T0
5(

l52

`

(
m52 l

l

@a~ lm!
G Y~ lm!ab

G ~ n̂!1a~ lm!
C Y~ lm!ab

C ~ n̂!#,

~2.10!

where the expansion coefficients are given by

a~ lm!
G 5

1

T0
E dn̂Pab~ n̂!Y~ lm!

G ab * ~ n̂!,

a~ lm!
C 5

1

T0
E dn̂ Pab~ n̂!Y~ lm!

C ab * ~ n̂!, ~2.11!

which follow from the orthonormality properties

E dn̂ Y~ lm!ab
G * ~ n̂! Y

~ l 8m8!

G ab
~ n̂!5E dn̂ Y~ lm!ab

C * ~ n̂! Y
~ l 8m8!

C ab
~ n̂!

5d l l 8dmm8, ~2.12!

E dn̂ Y~ lm!ab
G * ~ n̂! Y

~ l 8m8!

C ab
~ n̂!50. ~2.13!

Note that unlike scalar harmonics, the tensor harmonics only
exist for l>2 @28#.

The basis functionsY( lm)ab
G (n̂) andY( lm)ab

C (n̂) are given
in terms of covariant derivatives of the spherical harmonics
by @28#

Y~ lm!ab
G 5Nl SY~ lm!:ab2

1

2
gabY~ lm!:c

cD ~2.14!

and

Y~ lm!ab
C 5

Nl

2
~Y~ lm!:ace

c
b1Y~ lm!:bce

c
a!, ~2.15!

whereeab is the completely antisymmetric tensor, the : de-
notes covariant differentiation on the two-sphere, and

Nl[A2~ l22!!

~ l12!!
~2.16!

is a normalization factor.
The existence of two sets of basis functions, labeled here

by G and C, is due to the fact that a symmetric trace-free
~STF! 232 tensor is specified by two independent param-
eters. In two dimensions, any STF tensor can be uniquely
decomposed into a part of the formA:ab2(1/2)gabA:c

c and
another part of the formB:ace

c
b1B:bce

c
a , whereA andB

are two scalar functions. This decomposition is quite similar
to the decomposition of a vector field into a part which is the
gradient of a scalar field and a part which is the curl of a
vector field; hence we use the notation G for ‘‘gradient’’ and
C for ‘‘curl.’’ Since theY( lm)’s provide a complete basis for
scalar functions on the sphere, theY( lm)ab

G andY( lm)ab
C ten-

sors provide a complete basis for G-type and C-type STF
tensors, respectively. This G-C decomposition is also known
as the scalar-pseudoscalar decomposition@28#.

Incidentally, these tensor spherical harmonics are identi-
cal to those which appear in the theory of gravitational ra-
diation @29,30#. The propagating degrees of freedom of
gravitational field perturbations are described by a spin-2
tensor. Computing the flux of gravitational radiation from a
source requires the components of the gravitational field tan-
gent to a sphere around the source which are induced by the
motions of that source. Our G harmonics are often@29#—but
not always@30#—referred to as having ‘‘electric-type’’ par-
ity, since an electric field can be written as the gradient of a
scalar. Likewise, our C harmonics have ‘‘magnetic-type’’
parity since they are the curl of a vector field. The two vari-
eties of harmonics also correspond to electric and magnetic
multipole radiation.

Integration by parts transforms Eqs.~2.11! into integrals
over scalar spherical harmonics and derivatives of the polar-
ization tensor:

7370 55KAMIONKOWSKI, KOSOWSKY, AND STEBBINS



a~ lm!
G 5

Nl

T0
E dn̂ Y~ lm!

* ~ n̂! Pab:ab~ n̂!, ~2.17!

a~ lm!
C 5

Nl

T0
E dn̂ Y~ lm!

* ~ n̂! Pab:ac~ n̂!ec
b, ~2.18!

where the second equation uses the fact thateab:c50. These
forms are useful for theoretical calculations of the multipole
moments. We don’t recommend taking second derivatives of
real data. SinceT andPab are real, all of the multipole must
obey the reality condition

a~ lm!
X * 5~21!ma~ l ,2m!

X , ~2.19!

where X5$T,G,C%.

C. Explicit form of the harmonics

In spherical polar coordinates (u,f) the tensor spherical
harmonics are given explicitly by@28,30#

Y~ lm!ab
G ~ n̂!5

Nl

2 S W~ lm!~ n̂! X~ lm!~ n̂!sinu

X~ lm!~ n̂!sinu 2W~ lm!~ n̂!sin2uD
~2.20!

and

Y~ lm!ab
C ~ n̂!5

Nl

2 S 2X~ lm!~ n̂! W~ lm!~ n̂!sinu

W~ lm!~ n̂!sinu X~ lm!~ n̂!sin2uD ,
~2.21!

where

W~ lm!~ n̂!5S ]2

]u2
2cotu

]

]u
1

m2

sin2u DY~ lm!~ n̂!

5S 2 ]2

]u2
2 l ~ l11! DY~ lm!~ n̂! ~2.22!

and

X~ lm!~ n̂!5
2im

sinuS ]

]u
2cotu DY~ lm!~ n̂!. ~2.23!

„Note that this definition ofX( lm)(n̂) differs from that in Ref.
@30# by a factor of sinu.… The exchange symmetry
$Q,U%↔$U,2Q% as G↔C indicates thatY( lm)ab

G and
Y( lm)ab
C represent polarizations rotated by 45°. By evaluating

the derivatives, these functions can be written

W~ lm!~ n̂!52A2l11

4p

~ l2m!!

~ l1m!!
G~ lm!

1 ~cosu! eimf,

~2.24!

iX ~ lm!~ n̂!522A2l11

4p

~ l2m!!

~ l1m!!
G~ lm!

2 ~cosu! eimf,

~2.25!

where the real functionsG( lm)
6 are defined by@28#

G~ lm!
1 ~cosu![2S l2m2

sin2u
1
1

2
l ~ l21! DPl

m~cosu!

1~ l1m!
cosu

sin2u
Pl21
m ~cosu!, ~2.26!

G~ lm!
2 ~cosu![

m

sin2u
„~ l21!cosuPl

m~cosu!

2~ l1m!Pl21
m ~x!…. ~2.27!

These expressions will be useful for the correlation functions
in Sec. V, and for simulating maps and data analysis.

In linear theory, scalar perturbations can produce only
G-type polarization and not C-type polarization. On the other
hand, tensor or vector metric perturbations will produce a
mixture of both types@19,20,31#. Heuristically, this is be-
cause scalar perturbations have no handedness so they cannot
produce any ‘‘curl,’’ whereas vector and tensor perturbations
do have a handedness and therefore can. Observation of a
nonzero primordial component of C-type polarization~a non-
zeroa( lm)

C ) in the CMB would provide compelling evidence
for significant contribution of either vector or tensor pertur-
bations at the time of last scattering.

Given a polarization map of even a small part of the sky,
one could in principle test for vector or tensor contribution
by computing the combination of derivatives of the polariza-
tion field given byPab:bceca which will be nonzero only for
C-type polarization. Of course, taking derivatives of noisy
data is problematic. We discuss more robust probes of this
signal below.

III. STATISTICS OF THE MULTIPOLE COEFFICIENTS

A. Statistical independence of the coefficients

We now have three sets of multipole moments,a( lm)
T ,

a( lm)
G , and a( lm)

C , which fully describe the temperature or
polarization map of the sky. Statistical isotropy implies that

^a~ lm!
T * a

~ l 8m8!

T
&5Cl

Td l l 8dmm8, ^a~ lm!
G * a

~ l 8m8!

G
&5Cl

Gd l l 8dmm8,

^a~ lm!
C * a

~ l 8m8!

C
&5Cl

Cd l l 8dmm8, ^a~ lm!
T * a

~ l 8m8!

G
&5Cl

TGd l l 8dmm8,

^a~ lm!
T * a

~ l 8m8!

C
&5Cl

TCd l l 8dmm8,

^a~ lm!
G * a

~ l 8m8!

C
&5Cl

GCd l l 8dmm8, ~3.1!

where the angle brackets are an average over all realizations.
For Gaussian theories, the statistical properties of a tempera-
ture or polarization map are specified fully by these six sets
of multipole moments. In fact, the scalar spherical harmonics
Y( lm) and the G tensor harmonicsY( lm)ab

G have parity
(21)l , but the C harmonicsY( lm)ab

C have parity (21)l11.
Therefore, symmetry under parity transformations requires
thatCl

TC5Cl
GC50, which will also be demonstrated explic-

itly in the following section. Measurement of nonzero cos-
mological values for these moments would be quite extraor-
dinary, demonstrating a handedness to primordial
perturbations. In practice, these two sets of moments can be
used to monitor foreground emission. Furthermore, as men-
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tioned above and demonstrated explicitly in Sec. IV,
Cl
C50 for scalar metric perturbations@19,20#. At small an-

gular scales where the contribution from tensor and vector
perturbations is expected to be negligible,Cl

C can also be
pressed into duty as a foreground monitor. Exact expressions
for these multipole moments in terms of the photon bright-
nesses usually calculated by early-Universe Boltzmann
codes are derived below.

B. Map simulation

For the case of Gaussian statistics, realizations of tem-
perature or polarizations maps are easy to generate using
standard techniques. Since the only cross correlation be-
tween mode coefficients, given byCl

TG, correlates only
a( lm)
T anda( lm)

G with the samel andm, the total correlation
matrix is block diagonal with the largest blocks being only
232 matrices. In particular, set

a~ lm!
T 5z1~Cl

T!1/2,

a~ lm!
G 5z1

Cl
TG

~Cl
T!1/2

1z2SCl
G2

~Cl
TG!2

Cl
T D 1/2,

a~ lm!
C 5z3~Cl

C!1/2, ~3.2!

where for each value ofl andm.0 choose three complex
numbers (z1 ,z2 ,z3) drawn from a Gaussian distribution
with unit variance, i.e., bothA2 Re(z i) andA2 Im(z i) are
drawn from a normal distribution. Form50 the same equa-
tions hold but thez i should be real and normally distributed;
for m,0 the coefficients are given by Eq.~2.19!. Note that
in all casesCl

GCl
T>(Cl

TG)2. This set of coefficients can be
combined with Eqs.~2.7!, ~2.10!, ~2.23!, and~2.22! to obtain
the explicit expressions

Q~ n̂!52Puu~ n̂!

5T0(
l52

`

(
m52 l

l

Nl@a~ lm!
G W~ lm!~ n̂!2a~ lm!

C X~ lm!~ n̂!#,

U~ n̂!522cscuPuf~ n̂!

52T0(
l52

`

(
m52 l

l

Nl@a~ lm!
G X~ lm!~ n̂!1a~ lm!

C W~ lm!~ n̂!#

~3.3!

with W( lm) andX( lm) given by Eqs.~2.24! and ~2.25!. Note
that polarization maps are traditionally plotted as headless
vectors with amplitude (Q21U2)1/2 and orientation angle
(1/2)arctan(U/Q).

C. Estimators

One of the the main uses of a temperature/polarization
map will be to determine the multipole moments with the
best possible accuracy. From a full-sky CMB temperature
map, we can construct the following rotationally invariant
estimators~denoted by a caret! for the multipole coefficients

Cl
T̂5 (

m52 l

l ua~ lm!
T u2

2l11
, Cl

Ĝ5 (
m52 l

l ua~ lm!
G u2

2l11
,

Cl
Ĉ5 (

m52 l

l ua~ lm!
C u2

2l11
, Cl

TĜ5 (
m52 l

l a~ lm!
T * a~ lm!

G

2l11
. ~3.4!

Note that Eq.~2.19! guarantees that theCl
TĜ will be real.

When averaged over the sky~denoted by an overbar!, the
mean square temperature anisotropy after subtracting the di-
pole is

S DT

T0
D 25(

l52

`
2l11

4p
Cl
T̂ ~3.5!

and the mean square polarization is

P2[Q21U252PabPab5PG21PC2, ~3.6!

PG2[T0
2(
l52

`
2l11

8p
Cl
Ĝ, PC2[T0

2(
l52

`
2l11

8p
Cl
Ĉ. ~3.7!

Even if no singleCl
Ĉ or Cl

Ĝ gives a significant signal, com-
bining differentl ’s as inPG2 or PC2 can give a statistically
significant signal.

D. Cosmic and pixel-noise variance

The averages in Eqs.~3.1! are over an ensemble of uni-
verses drawn from a theoretically defined statistical distribu-
tion, or assuming ergodicity, a spatial average over all ob-
server positions in the Universe. However, we can only
observe a single realization of the ensemble from a single
location. Therefore, even if we had an ideal~full-sky cover-
age, no foreground contamination, infinite angular resolu-
tion, and no instrumental noise! experiment, the accuracy
with which the estimators in Eqs.~3.4! could recover the
multipole moments would be limited by a sample variance
known as ‘‘cosmic variance.’’ Furthermore, a realistic ex-
periment may have limited sky coverage and angular resolu-
tion and some instrumental noise. In this section, we calcu-
late the cosmic variance with which the multipole moments
can be recovered. We also calculate the variance due to finite
sky coverage, angular resolution, and instrumental noise in
an idealized experiment. To do so, we adopt a simplified
model in which we assume a pixelized map in which the
noise in each pixel is independent and Gaussian distributed
after foregrounds have been successfully subtracted. In many
respects, our derivation follows that in Ref.@32#, and our
results agree with those in Ref.@21#.

We must first determine the contribution of pixel noise to
each multipole moment, and we begin with the temperature
moments. Consider a temperature map of the full sky
Tmap(n̂), which is pixelized withNpix pixels. If we assume
that each pixel subtends the same area on the sky then we
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can construct multipole coefficients of the temperature map
using

d~ lm!
T 5E dn̂ S T map~ n̂!

T0
DY~ lm!~ n̂!

.
1

T0
(
j51

N pix 4p

Npix
Tj
mapY~ lm!~ n̂j !, ~3.8!

whereTj
map is the measured temperature perturbation in pixel

j and n̂j is its direction. The difference betweend( lm) and
a( lm) is that the former includes the effects of finite beam
size and detector noise; i.e.,d( lm) is measured. The extent to
which the approximate equality fails is the pixelization noise,
which is small on angular scales much larger than the pixels.
In many of the proposed experiments, which oversample the
sky when compared to their beam, there will be no loss of
information by ignoring scales close to the pixel scale. The
observed temperature is due to a cosmological signal and a
pixel noise,Tj

map5Tj1Tj
noise. If we assume that each pixel

has the same rms noise, and that the noise in each pixel is
uncorrelated with that in any other pixel, and is uncorrelated
with the cosmological signal, i.e., ^Ti

noiseTj
noise&

5T0
2(spix

T )2d i j and ^Ti Tj
noise&50, then

^d~ lm!
T d

~ l 8m8!

T * &5^a~ lm!
T a

~ l 8m8!

T * &1^a~ lm!
T,noise~a~ l 8m8!

T,noise
!* &

5uWl
bu2Cl

Td l l 8dmm81^a~ lm!
T,noise~a~ l 8m8!

T,noise
!* &,

~3.9!

where we have written the expectation value of the cosmo-
logical signal in terms of that predicted by theoryCl

T multi-
plied by uWl

bu2 which accounts for beam smearing. Typically
the beam is approximately Gaussian in shape, corresponding
to the window function Wl

b'exp(2l2sb
2/2), where

sb5uFWHM /A8ln250.00742 (uFWHM/1°) anduFWHM gives
the full-width at half maximum.

The second term in Eq.~3.9! is

^a~ lm!
T,noise~a~ l 8m8!

T,noise
!* &5

1

T0
2 (
i51

Npix

(
j51

Npix S 4p

Npix
D 2^TinoiseTj

noise&

3Y~ lm!~ n̂i !Y~ l 8m8!
* ~ n̂j !

5~spix
T !2S (

i51

Npix 4p

Npix
Y~ lm!~ n̂i !

3Y~ l 8m8!~ n̂j !D 4p

Npix

5
4p~spix

T !2

Npix
d l l 8 dmm8. ~3.10!

Therefore, the moments measured by the map are distributed
with a variance@32#

^d~ lm!
T d

~ l 8m8!

T * &5SCl uWl
bu21

4p~spix
T !2

Npix
D d l l 8dmm8.

~3.11!

Now we move on to the noise contribution to the polar-
ization moments. We will assume the instrumental noise in
the polarization measurements is isotropic, the same for all
pixels, uncorrelated with the noise in the anisotropy, which
in terms of the Stokes parameters requires

^Qi
noiseQj

noise&5^Ui
noiseUj

noise&5T0
2~spix

P !2d i j ,

^Qi
noiseUj

noise&5^Qi
noiseTj

noise&5^Ui
noiseTj

noise&50.
~3.12!

We denote the polarization tensor describing the noise in
pixel i by Pabnoise(n̂i). The previous equations are equivalent
to the coordinate-independent equation~see Ref.@28#!

^Pabnoise~ n̂i ! Pcdnoise~ n̂j !&5
1

4
T0
2~spix

P !2~gacgbd2eacebd! d i j

^Pabnoise~ n̂i ! Tnoise~ n̂j !&50. ~3.13!

The mode coefficients for the noise, defined as in Eq.~2.11!,
will have a correlation matrix

^a~ lm!
X,noisea

~ l 8m8!

X8,noise* &

5S 4p

NpixT0
D 2 (

i51

Npix

(
j51

Npix

Y~ lm!
X ab * ~ n̂i !Y~ l 8m8!

X8 cd
~ n̂j !

3^Pab~ n̂i !Pcd~ n̂j !&, X,X8P$G,C% ~3.14!

so using Eqs.~3.13!, ~2.13!, and~A8! we find

^a~ lm!
X,noisea

~ l 8m8!

X8,noise* &

5
1

4S 4pspix
P

Npix
D 2 (

i51

Npix

2Y~lm!
X ab * ~ n̂i !Y~ l 8m8!ab

X8 ~ n̂i !

5
2p

Npix
~spix

P !2d l l 8dmm8dXX8 ~3.15!

and, of course,

^a~ lm!
G,noise* a

~ l 8m8!

T,noise
&5^a~ lm!

C,noise* a
~ l 8m8!

T,noise
&50. ~3.16!

Thus instrumental noise contributes equally to the measured
G- and C-polarization components but introduces no cross
correlation between them.

Collecting the results, ifd( lm)
X ~for X5$T,G,C%) are the

multipole coefficients for the map~signal plus noise!, their
variances will be

^d~ lm!
X * d

~ l 8m8!

X8 &5~ uWl
bu2Cl

XX81wXX8
21

!d l l 8dmm8

[Dl
XX8d l l 8dmm8, ~3.17!

where

wT
21[

4p~spix
T !2

Npix
, wGG

215wCC
21[wP

21[
2p~spix

P !2

Npix
,

~3.18!
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and wXX8
21

50 for XÞX8. The quantitiesw21 are inverse
statistical weights per unit solid angle, a measure of experi-
mental sensitivity independent of pixel size@32#. ~Note that
our wP

21 differs by a factor of two from that in Ref.@21#
which is consistent with ourCl

G andCl
C differing from their

E and B moments by a factor of two.!
Estimators for the multipole moments CMB power spec-

tra Cl
XX8 are

Cl
XX8ˆ 5~Dl

XX8ˆ 2wXX8
21

!uWl
bu22, ~3.19!

where

Dl
XX8ˆ 5 (

m52 l

l d~ lm!
X * d~ lm!

X8

2l11
. ~3.20!

Since the estimators for eachDl
XX8 ~and therefore for

Cl
XX8) are constructed from only 2l11 multipole coeffi-

cients, eachCl
XX8 can be recovered only with a finite sam-

pling variance, known as cosmic variance. In addition, the
six different sets of measured moments are constructed from
the three sets ofd( lm) coefficients, leading to some covari-
ance between the moments. These variances can be de-
scribed with a (636) covariance matrix

JAA8[^~Cl
Â2Cl

A!~Cl
A8ˆ 2Cl

A8!&5^Cl
ÂCl

A8ˆ &2Cl
ACl

A8

5~^Dl
ÂDl

A8ˆ &2Dl
ADl

A8!uWl
bu24 ~3.21!

for A5XX 8.
We now calculate the entries of this matrix. Recall that if

xi are Gaussian random variables with variances
^xixj&5s i j

2 , then ^xi
2xj

2&5s i i
2s j j

2 12s i j
2 , and ^xi

3xj&
53s i i

2s i j
2 . For X5$T,G,C%,

^Dl
XX̂Dl

X8X8ˆ &5 (
mm8

^ud~ lm!
X u2ud

~ lm8!

X8 u2&

~2l11!2

5 (
mm8

1

~2l11!2
$Dl

XXDl
X8X8~12dmm8!

1@Dl
XXDl

X8X812~Dl
XX8!2#dmm8%

5Dl
XXDl

XX81
2

~2l11!2
~Dl

XX8!2. ~3.22!

The diagonal elements for TT, GG, and CC are thus

JXX,XX5
2

2l11
~Cl

XX1wX
21uWl

bu22!2 ~3.23!

and the off-diagonal elements are

JTT,GG5
2

2l11
~Cl

TG!2,

JTT,CC50, ~3.24!

JGG,CC50.

For the diagonal TG component,

^Dl
TĜDl

TĜ&5 (
mm8

^d~ lm!
T * d~ lm!

G d
~ lm8!

T * d
~ lm8!

G
&

~2l11!2

5
1

~2l11!2(mm8
@^ud~ lm!

T u2ud~ lm!
G u2&dmm8

1^d~ lm!
T * d~ lm!

G d
~ lm8!

T
d

~ lm8!

G * &~12dmm8!#

5(
m

Dl
TTDl

GG12~Dl
TG!2

~2l11!2

1 (
mm8

~12dmm8!~Dl
TG!2

~2l11!2
5

1

2l11
@~Dl

TG!2

1Dl
TTDl

TG#1~Dl
TG!2. ~3.25!

Therefore,

JTG,TG5
1

2l11
@~Cl

TG!21~Cl
T1wT

21uWl
bu22!

3~Cl
G1wP

21uWl
bu22!#. ~3.26!

The diagonal covariance-matrix elements for TC and TG are
obtained similarly and are nonzero even though
Cl
TC5Cl

GC50. Given a map, it should be checked for con-
sistency that there is no statistically significant parity viola-
tion.

Finally, for the off-diagonal TG-TT component,

^Dl
TĜDl

TT̂&5 (
mm8

1

~2l11!2
@^ud~ lm!

T u3d~ lm!
G &dmm8

1^ud~ lm!
T u2~d~ lm8!

T
!* d

~ lm8!

G
&~12dmm8!#

5S 2

2l11
11DDl

TTDl
TG. ~3.27!

Therefore,

JTT,TG5
2

2l11
@Cl

TG~Cl
T1wT

21uWl
bu22!# ~3.28!

and, similarly,

JGG,TG5
2

2l11
@Cl

TG~Cl
G1wG

21uWl
bu22!#, ~3.29!

and this completes the calculation of all nonzero elements of
the covariance matrix.

To determine the precision with which a temperature or
polarization map can recover some cosmological parameters,
e.g.,s5$V0 ,L,h,Vb , . . . %, we can evaluate the curvature,
or Fisher information, matrix@33#, which can be generalized
from that in Ref.@7# to

a i j5(
l

(
A,A8

]Cl
A

]si
@J21#AA8

]Cl
A8

]sj
, ~3.30!
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for A5TT,GG,CC,TG, where@J21#AA8 are elements of the
inverse ofJ. The standard error with which a given param-
eter si can be recovered after marginalizing over all other
parameters is given by the square root of the diagonal ele-
ment i of @a#21, assuming a linear dependence ofCl

X on all
of the parameters.

The wX
21 factors on the right-hand side of Eqs.~3.23!,

~3.26!, and~3.29! are those due to instrumental noise. How-
ever, note that even in an ideal experiment withspix50, the
right-hand sides would still be nonzero, and this is the cos-
mic variance. Equations~3.23!, ~3.26!, and ~3.29! are valid
for a map with full-sky coverage. Realistically, however,
only a fraction f sky of the sky will be surveyed, or if the
entire sky is surveyed, only a fraction will be used in the
analysis. Therefore, the accuracy with which cosmological
parameters can be recovered will be degraded accordingly.
Strictly speaking, harmonic analysis on a cut sky will have to
be performed, and this will introduce correlations in the er-
rors of multipole moments of differentl ’s. However, if the
entire sky is surveyed, but only a fraction of the sky is used
for the analysis~e.g., if the Galactic plane has been cut out!,
then the effect of partial sky coverage can be approximated
by multiplying the curvature matrix byf sky ~which will in-
crease the standard errors in cosmological parameters by
f sky

21/2). If only a fraction of the sky is surveyed, the curvature
matrix should still be multiplied byf sky, but note thatNpix is
the number of pixels actually in the map.

E. Pixel noise for a polarization map

How are the temperature and polarization pixel noises re-
lated? If the two linear polarization states are always given
equal integration times, the total number of photons available
for the temperature measurement will be twice the number
available for either polarization measurement. Therefore,

~spix
T !25

1

2
~spix

P !2. ~3.31!

However, a crucial difference in overall sensitivity exists
between the two current receiver technologies. Coherent re-
ceivers@i.e., high-electron-mobility transistor~HEMT! am-
plifiers# measure the incoming electric field, while incoher-
ent receivers~i.e., bolometers! measure only the incoming
total power. In the former case, the signal can be split into
two orthogonal linear polarizations and the phase informa-
tion can be retained throughout the entire signal path. If
properly designed, such a system of receivers can measure
the linear polarizations without compromising the tempera-
ture measurement, so the temperature sensitivity will be de-
termined solely by the amplifier characteristics@2#. This is
the design strategy for the MAP satellite.

On the other hand, bolometers measure only the instanta-
neous total power received and do not retain any phase in-
formation; a filter must be placed in front of the detector for
each linear polarization state, discarding half of the incoming
photons. Thus the temperature sensitivity for a polarized bo-
lometer measurement is only half of that for an unpolarized
measurement, which collects twice as many photons in the
same amount of integration time. A compensating factor is
that bolometers offer much greater raw sensitivity than

HEMT amplifiers. An important question facing future bo-
lometer experiments is whether to sacrifice half of the tem-
perature sensitivity for polarization information@34#. If the
goal of an experiment is to measure angular power spectra
and the temperature measurements are dominated by cosmic
variance, then polarizing the measurement is obviously ad-
vantageous. The answer is as yet unclear in cases where
cosmic variance is not the controlling factor in the tempera-
ture measurement.

IV. CALCULATION OF THE MOMENTS

In this section, we calculate the set of multipole moments
defined by Eqs.~3.1!, for scalar and tensor metric perturba-
tions. Vector metric perturbations make a negligible contri-
bution for inflationary theories, although they are generic in
defect models; they will be covered elsewhere. The intensity
and linear-polarization state of the CMB in any given direc-
tion is specified by three quantities~the temperatureT and
the Stokes parametersQ andU), giving six possible sets of
multipole moments,Cl

T , Cl
G, Cl

C, Cl
TG, Cl

TC, andCl
GC, but

as argued above, parity demands thatCl
TC5Cl

GC50.
One way to calculate the moments is to rewrite the radia-

tive transfer equations in terms of tensor harmonics@31#. The
contribution of each Fourier mode to each multipole moment
is then obtained by evolving numerically the coupled Ein-
stein and Boltzmann equations for the multipole coefficients
a( lm)
X . Integrating over all Fourier modes then gives the mul-
tipole moments. This approach has the advantage of being
similar in form to the usual moment hierarchy formulation of
the problem, while keeping the independent modes separated
throughout the calculation, giving simple power spectrum
expressions. A second approach offering computational ad-
vantages has been presented in Ref.@21#, which uses the
Stokes parameter evolution equations to write an integral
equation solution for the multipole moments.

Another possibility, which makes contact with previous
work on CMB temperature anisotropies and polarization, is
to express the multipole moments in terms of the usual per-
turbations to the photon brightness and polarizationD I l and
DQl ~see Ref.@13# for definitions and descriptions! obtained
from most current numerical calculations@35#, and this is the
approach adopted here. In this section, we calculate the con-
tributions to these moments from scalar and tensor perturba-
tions. With these results, it is straightforward to modify ex-
isting numerical codes to obtain all of the multipole
moments.

A. Scalar metric perturbations

The simplest calculation of the multipole moments in
terms of the photon brightnesses uses the fact that, due to
statistical isotropy, the contribution of a givenk mode to the
momentsCl depends on its magnitude only and not its di-
rection. Therefore, we will consider the contribution of a
single k mode, with the coordinate system always chosen
with ẑ in thek direction, and then integrate over allk at the
end. All temperatures, Stokes parameters, polarization ten-
sors, and expansion coefficients are functions ofk, although
we sometimes drop explicitly references tok for notational
simplicity. Functions of the real-space coordinatex do not
appear in this paper.
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1. Temperature moments

We begin with the familiar temperature moments. The
temperature anisotropy induced in the directionn̂ on the sky
by a singlek scalar mode is given by Eq.~7.1! in Ref. @13#,

T~k,n̂!

T0
5
1

4(j51

`

~2 j11!Pj~ k̂•n̂!D I j
s ~k!

511(
l52

`

(
m52 l

l

a~ lm!
T, s ~k!Y~ lm!~ n̂!. ~4.1!

The superscripts T and s indicate that we are dealing here
with temperature moments from scalar perturbations. The
D I l
s (k) are Legendre coefficients of the photon intensity dis-

tribution function for scalar metric perturbations@13#. The
expansion coefficients are given by the inverse transform,
Eq. ~2.9!,

a~ lm!
T,s ~k!5

1

4(j50

`

~2 j11!D I j ~k!E dn̂ Pj~ k̂•n̂!Y~ lm!
* ~ n̂!

5pD I l
s ~k!Y~ lm!

* ~ k̂!5
1

2
A~2l11!p D I l

s ~k!dm0 ,

~4.2!

where we have used Eq.~B12! and takingk̂5 ẑ in the final
line. The contribution toCl

T,s from this mode is then

Cl
T,s~k!5

1

2l11 (
m52 l

l

ua~ lm!
T,s ~k!u25

p

4
uD I l

s ~k!u2. ~4.3!

The total multipole moment from scalar modesCl
T,scalar is

given by integrating over allk:

Cl
T,scalar5E d3k

~2p!3
Cl
T,s~k!5

1

8p E k2dk uD I l
s~k!u2,

~4.4!

which is the usual result.

2. Polarization moments

Now we move on to the polarization moments produced
by scalar perturbations. First we describe the ‘‘standard’’
representation of polarization, which is what has usually
been computed by Boltzmann codes. In the spherical polar
coordinates (u,f), the Stokes parameters induced in direc-
tion n̂ on the sky by a singlek scalar mode in theẑ direction
can be obtained from Eq.~7.4! in Ref. @13# ~thej8 there can
be chosen zero fork̂5 ẑ) and are

Q~k,n̂!

T0
5
1

4(j50

`

~2 j11!Pj~ k̂•n̂!DQj
s ~k!, U~k,n̂!50,

~4.5!

where theDQl
s (k) are Legendre coefficients of the photon

polarization distribution function for scalar metric perturba-
tions. The polarization tensor at a pointn̂ on the sky induced
by this scalar mode is thus

Pab~k,n̂!

T0
5
1

8(j50

`

~2 j11!Pj~ k̂•n̂!DQj
s ~k!S 1 0

0 2sin2u D
5
1

8(j50

`

~2 j11!DQj
s ~k!M ~ j ! ab~ k̂,n̂!, ~4.6!

where the second line defines the tensorM ( j ) ab ; i.e., the
tensorM ( j )

ab ~with raised indices! takes the form

M ~ j !
ab~ k̂5 ẑ,n̂!5Pj~cosu!S 1 0

0 2csc2u D . ~4.7!

This j expansion is not an expansion in tensor spherical har-
monics and, as we shall see, the harmonic content of the
M ( j )

ab tensor, while peaked aroundl5 j , has significant con-
tributions froml far from j .

We now proceed to re-express the above representation of
polarization in terms of tensor spherical harmonics. The G
multipole coefficients of the pattern in Eq.~4.6!, given by
Eq. ~2.17!, are

a~ lm!
G,s ~k!5NlE dn̂ Y~ lm!

* ~ n̂!Pab:ab~k,n̂!

5
Nl

8 (
j50

`

~2 j11!DQj
s ~k!E dn̂Y~ lm!

* ~ n̂!M ~ j !
ab

:ab~ n̂!.

~4.8!

We may computeM j
ab
:ab in spherical polar coordinates by

substituting Eq.~4.7! into Eq. ~A13!, obtaining

M ~ j !
ab

:ab5~12x2!Pj9~x!24xPj8~x!22Pj~x!, x[ k̂•n̂.
~4.9!

This can be simplified using the definition of the associated
Legendre polynomialsPl

m(x) and the recursion relation Eq.
~B5!, giving

M ~ j !
ab

:ab52Pj
2~x!22~ j 21 j11!Pj~x!. ~4.10!
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Pj
2(x) can be represented as a finite series inPl(x) using the

integral Eq.~B10!, giving finally

M ~ j !
ab

:ab5 2(
l50

j

~ l11!~ l12!cl j Pl~ k̂•n̂!,

cl j[5
1 l5 j ,

2~2l11!

~ l11!~ l12!
l2 j even andl, j ,

0, l2 j odd or l. j .

~4.11!

Making use of Eq.~B12! and orthonormality of the spherical
harmonics,

E dn̂ Y~ lm!
* ~ n̂! M ~ j !

ab
:ab~ n̂!52~ l11!~ l12!cl j

3A 4p

2l11
dm0 ~4.12!

and

a~ lm!
G,s ~k!5

1

4
Ap~2l11!dm0DG l

s ~k!, ~4.13!

where

DG l
s ~k![2S 2~ l11!~ l12!

l ~ l21! D 1/2(
j5 l

` S 2 j11

2l11 D cl jDQj
s ~k!.

~4.14!

This infinite sum is, as shown below, equivalent to the finite
sum of Eq.~4.24!. The contribution toCl

G from thisk mode
is

Cl
G,s~k!5

1

2l11 (
m52 l

l

ua~ lm!
G,s ~k!u25

p

16
uDG l

s ~k!u2.

~4.15!

The momentsCl are rotationally invariant, so assuming sta-
tistical isotropy, which guarantees that the differentk modes
are uncorrelated, the total contribution of all scalar modes to
Cl
G is

Cl
G,scalar5E d3k

~2p!3
Cl
G,s~k!5

1

32pE k2 dk uDG l
s ~k!u2.

~4.16!

The calculation ofCl
C,s is similar with the replacements

Pab:ab→Pab:acecb andM ( j )
ab

:ab→M ( j )
ab

:ace
c
b in Eq. ~4.8! @cf.,

Eqs.~2.17! and~2.18!#. However, substituting Eq.~4.7! into
Eq. ~A14! yields M ( j )

ab
:ace

c
b50 sinceM ( j )

ab is diagonal and
independent off. This is just what we expect: SinceM ( j )

ab is
even under parity whileecb is odd, the product must inte-
grate to zero. Thus for scalar perturbations,aC,s(k)( lm)50
and

Cl
C,scalar50, ~4.17!

as argued above.

3. Polarization in the6 k̂ directions

As seen from Eq.~4.11!, when l is large the coefficients
cl j at l5 j are much larger than ‘‘nearby’’ coefficients, say
when l5 j22. If the l5 j term dominates, then in the small-
angle approximation, i.e., forl@1, the approximation
DG l
s (k)'A2 DQl

s (k) is valid. However, this isa priori not a
very good approximation since the contribution from the
terms with l12< j<2l to the sum of Eq.~4.14! comes to
nearly as much as the contribution from thej5 l term ~al-
though some cancelation may result from sign changes in
DQl
s ). The explanation is that it takes the sum of a large

numberM ( j )
ab(n̂) to representY( l0)

Gab(n̂). This behavior is ex-
pected for the simple reason that while theY( lm)

Gab’s are

smooth functions, theM ( j )
ab’s are not: forn̂56 k̂, i.e., when

u50 andp ~which are singular points of the spherical polar
coordinate system!, M ( j )

ab does not go to zero@sincePj (1)
Þ0 andPj (21)Þ0#. Instead the amplitude of the polariza-
tion approaches a constant but its direction varies discontinu-
ously as illustrated in Fig. 1. To represent this discontinuous
behavior as a superposition of smooth functions requires a
large number of terms. In fact, the only reason why the sum
of Eq. ~4.11! does not contain an infinite number of terms is
because it includes eitherl50 if j is even orl51 if j is odd,
neither of which are part of the basis of harmonic STF ten-
sors.

While the M ( j )
ab basis functions are discontinuous, the

physical polarization pattern must be continuous. The polar-
ization will in fact be zero in the directionsn̂56 k̂ as can be
seen directly from the form of the Boltzmann equations@13#.
Thus the solution of the Boltzmann equation will obey

Pab~k,1 k̂!}(
j50

`

~2 j11!DQj
s ~k!50,

Pab~k,2 k̂!}(
j50

`

~21! j~2 j11!DQj
s ~k!50, ~4.18!

which in turn implies

(
j>0

even

~2 j11!DQj
s ~k!5(

j>1

odd

~2 j11!DQj
s ~k!50. ~4.19!

FIG. 1. The basis tensorsM ( j )
ab(k) traditionally used for polar-

ization are discontinuous in the orientation of the polarization in the
directions on the sky both parallel and antiparallel tok. The discon-
tinuity is either as depicted in the left panel or as depicted in the
right panel. Note that we have just switched the sign of the polar-
ization between the two panels.
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Assuming a continuous polarization pattern and substituting
Eqs.~4.6! and ~4.11! into Eq. ~4.12! gives

E dn̂ Y~00!* ~ n̂! Pab:ab~k,n̂!}(
j50

`

~2 j11! c0 jDQj
s ~k!

5(
j>0

even

~2 j11! DQj
s ~k!50,

E dn̂ Y~10!* ~ n̂! Pab:ab~k,n̂!}(
j50

`

~2 j11! c1 jDQj
s ~k!

5(
j>1

odd

~2 j11! DQj
s ~k!50.

~4.20!

Thus the decomposition ofPab:ab actually has nol50 or
l51 content.

Define the coefficients

bl j[5
2

l 221

~ l11!~ l12!
, l5 j ,

2~2l11!

~ l11!~ l12!
, l2 j even and 0, j, l

0, l2 j odd or j. l

~4.21!

which have the property

~ l11!~ l12!

2~2l11! S (
j50

l

bl j ~2 j11! DQj
s ~k!

1(
j5 l

`

cl j ~2 j11! DQj
s ~k!D

55 (
j>0

even

~2 j11!DQj
s ~k!, l even,

(
j>1

odd

~2 j11!DQj
s ~k!, l odd.

~4.22!

Since these sums are zero for smooth~cosmological! polar-
ization patterns, we may use the equality

(
j5 l

`

cl j ~2 j11! DQj
s ~k!52(

j50

l

bl j ~2 j11! DQj
s ~k!

~4.23!

in Eq. ~4.14! to obtain

DG l
s ~k!5S 2~ l11!~ l12!

l ~ l21! D 1/2(
j50

l S 2 j11

2l11 Dbl jDQj
s ~k!.

~4.24!

We have transformed an infinite sum into a finite sum. While
these finite sums are still somewhat cumbersome, they are
significantly less complicated than previous expressions for
moments of Stokes parameters obtained in the small-angle
limit @13,14#.

The fact that continuity demands zero polarization at

n̂56 k̂ is reflected in that bothY( l0)ab
G andY( l0)ab

C are zero at
u50 andp, or equivalently thatG( l0)

6 (61)50; continuity
in fact requiresG( lm)

6 (61)50 for all m except when
m562. Since them562 terms correspond to tensor per-

turbations whenk̂ and ẑ are aligned, the polarization from
tensor perturbations does not give large sums, as evidenced
below. However, a similar treatment of vector perturbations
(m561) leads to the same sort of infinite sums encountered
for scalar perturbations.

4. Cross moments

From Eqs.~4.2! and ~4.13!, the contribution to the TG

cross moments from a single scalar mode in thek̂5 ẑ direc-
tion is

Cl
TG,s~k!5

1

2l11 (
m52 l

l

„a~ lm!
T,s ~k!…* a~ lm!

G,s ~k!, ~4.25!

so integrating over allk̂ gives

Cl
TG,scalar5E d3k

~2p!3
Cl
TG,s~k!

5
1

16pE k2dk DG l
s ~k!D I l

s ~k!. ~4.26!

The vanishing ofa( lm)
C,s (k) also demonstrates explicitly that

the momentsCl
TC,s5Cl

GC,s50, as argued above.

B. Tensor metric perturbations

1. Temperature moments

The calculation of tensor moments proceeds in an analo-
gous fashion. Recall, however, that tensor perturbations have
two polarization states,1 and3. Consider a single Fourier
mode with1 polarization and as before choose a coordinate

system withẑ in the k̂ direction. From Eq.~7.1! in Ref. @13#,
the contribution of thisk mode to the temperature anisotropy
is
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T~k,n̂!15
T0
4 (

j
~2 j11!Pj~ k̂•n̂!sin2u cos2fD̃ I l

1~k!

~4.27!

~note that the choice of the zero off is arbitrary and incon-
sequential!, and D̃ I l

1(k) is the perturbation to the photon
brightness induced by this tensor mode after the Polnarev
change of variables@36#. For the3 polarization state, simply
replace cos2f with sin2f and D̃ I l

1 with D̃ I l
3 . Again, we ex-

pand this anisotropy pattern in spherical harmonics,

a~ lm!
T,1 ~k!5

1

4(j ~2 j11!D̃ I j
1~k!E dn̂ Pj~ k̂•n̂!

3Y~ lm!
* ~ n̂!sin2u cos2f. ~4.28!

Note that fork̂5 ẑ, Pj (cosu)5@4p/(2l11)#1/2Y( j0) . Then Eq.
~B15! can be used to express the integrand in Eq.~4.28! as a
sum of products of two spherical harmonics. Orthonormality
of spherical harmonics then gives

a~ lm!
T,1 ~k!5

1

8
~dm,21dm,22!(

j
~2 j11!A 4p

2 j11
D I j

1~k!

3H F ~ j11!~ j12!~ j13!~ j14!

~2 j11!~2 j13!2~2 j15! G1/2d l , j12

12Aj ~ j11!~ j21!~ j12!

~2 j21!~2 j13!
d l j

1F j ~ j21!~ j22!~ j23!

~2 j21!2~2 j11!~2 j23!G
1/2

d l , j22J .
~4.29!

The d lx’s project out only three terms in the sum, and this
reduces to

a~ lm!
T,1 ~k!5

1

4
Ap~2l11!~dm21dm,22!A~ l12!!

~ l22!!

3F D I ,l22
1 ~k!

~2l21!~2l11!
2

2D I l
1~k!

~2l13!~2l21!

1
D I ,l12~k!

~2l13!~2l11!
G . ~4.30!

For the3 polarization state, simply replace (dm21dm,22)
with 2 i (dm22dm,22) andD1 with D3.

The contribution of thisk mode toCl
T is then

Cl
T,1~k!5

1

2l11(m ua~ lm!
T,1 ~k!u2

5
p

8

~ l12!!

~ l22!! F D I ,l22
1 ~k!

~2l21!~2l11!
2

2D I l
1~k!

~2l13!~2l21!

1
D I ,l12~k!

~2l13!~2l11!
G2, ~4.31!

and the result for the3 polarization state is the same~with
the replacement1→3, of course!. If the spectrum of1 and
3 states is the same~which is demanded by statistical isot-
ropy!, then the total contribution of tensor modes to the tem-
perature anisotropy is

Cl
T,tensor52E d3k

~2p!3
Cl
T,1~k!

5
1

8p

~ l12!!

~ l22!! E k2dkF D I ,l22
1 ~k!

~2l21!~2l11!

2
2D I l

1~k!

~2l13!~2l21!
1

D I ,l12~k!

~2l13!~2l11!
G2,

~4.32!

which agrees with the results of previous calculations
@13,12,37#.

2. Polarization moments

Finally, we calculate the polarization moments from ten-
sor perturbations. The Stokes parameters induced by a single
tensor Fourier mode with1 polarization in the direction
n̂5(u,f) are @13#

Q~k,n̂!15
T0
4 (

j
~2 j11!Pj~cosu!~11cos2u!

3cos2f D̃Qj
1 ~k!, ~4.33!

U~k,n̂!15
T0
4 (

j
~2 j11!Pj~cosu!2cosusin2f D̃Qj

1 ~k!,

~4.34!

where againD̃Ql
s (k) are Legendre coefficients of the photon

polarization brightness for tensor metric perturbations with
1 polarization. NoteU is the opposite sign from Ref.@13#
because the coordinate system there has opposite orientation
from the one here. The polarization tensor is thus

P1
ab~k,n̂!5

T0
8 (

j
~2 j11! DQj

1 ~k! M j
ab~ n̂!, ~4.35!

with

M ~ j !
ab~ n̂!5Pj~cosu!S ~11cos2u!cos2f 22cotusin2f

22cotusin2f 2~11cos2u!csc2ucos2f D . ~4.36!
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For 3 polarization, make the replacements cos2f→sin2f
and sin2f→2cos2f.

Now we calculate the multipole moments induced by this
single tensor mode. From Eq.~2.17! above,

a~ lm!
G,1~k!5

Nl

8 (
j

~2 j11!D̃Qj
1 ~k!

3E dn̂ Y~ lm!
* ~ n̂! M ~ j !

ab
:ab~ n̂!. ~4.37!

Calculation of thisM ( j )
ab

:ab is straightforward using Eq.
~A13!, but the algebra is considerably longer than the scalar
case. The result is

M ~ j !
ab

:ab5cos2f@12~12x2!Pj~x!18x~12x2!Pj8~x!

1~12x4!Pj9~x!#, ~4.38!

with x5cosu. The3 perturbations give the same result with
cos2f→sin2f. Because of this azimuthal dependence, the
integral in Eq.~4.37! is nonzero only form562. Using Eqs.
~B1!, ~B6!, and~B16!, we get

M ~ j !
ab

:ab5cos2fF ~ j13!~ j14!Pj12
2

~2 j11!~2 j13!
1

6 j ~ j11!Pj
2

~2 j13!~2 j21!

1
~ j22!~ j23!Pj22

2

~2 j11!~2 j21!
G . ~4.39!

This is just a sum of the three spherical harmonics with
m52 and the three withm522. The integral in Eq.~4.37!
is

E dn̂Y~ lm!~ n̂!M ~ j !
ab

:ab~ n̂!5A p

2l11

~ l12!!

~ l22!!
~dm21dm,22!

3F ~ l11!~ l12!d l , j12

~2l23!~2l21!

1
6l ~ l11!d l j

~2l13!~2l21!

1
l ~ l21!d l , j22

~2l15!~2l13!G , ~4.40!

which results in

a~ lm!
G,1~k!5

1

8
~dm21dm,22!A2p~2l11!

3F ~ l12!~ l11!DQ,l22
1 ~k!

~2l21!~2l11!
1
6l ~ l11!DQl

1 ~k!

~2l13!~2l21!

1
l ~ l21!DQ,l12

1 ~k!

~2l11!~2l13!
G . ~4.41!

As before, eachk mode and each polarization state contrib-
utes toCl in the same way, so integrating overk and multi-
plying by two ~for the two polarization states! gives

Cl
G,tensor5

1

16pE k2dkF ~ l12!~ l11!DQ,l22
1 ~k!

~2l21!~2l11!

1
6l ~ l11!DQl

1 ~k!

~2l13!~2l21!
1
l ~ l21!DQ,l12

1 ~k!

~2l11!~2l13!
G2.
~4.42!

Therefore,Cl
G,tensoris due to three Legendre expansion coef-

ficientsDQl
1 (k) as opposed to an infinite sum as in the scalar

case.
The derivation of the multipole moments for the C har-

monics is similar. From Eq.~2.18! above,

a~ lm!
C 1~k!5

Nl

8 (
j

~2 j11!D̃Qj
1 ~k!

3E dn̂ Y~ lm!
* ~ n̂! M ~ j !

ab
:ac~ n̂!ecb . ~4.43!

This time we get for the1 gravity wave polarization

M ~ j !
ab

:ace
c
b5sin2f@28~12x2!Pj8~x!22x~12x2!Pj9~x!#

5sin2fF2
2~ j13!

2 j11
Pj11
2 ~x!

2
2~ j22!

2 j11
Pj21
2 ~x!G , ~4.44!

where the second equality uses the identities~B6! and ~B7!.
For3 polarization states, replace sin2f→2cos2f. The mul-
tipole coefficients are then

aC,1~k! lm52
i

4
~dm22dm22!A 2p

2l11
@~ l12!D̃Ql21

1 ~k!

1~ l21!D̃Ql11
1 ~k!#. ~4.45!

The3 perturbations give the same result except for a minus
sign between the Kroneckerd ’s and an overall factor ofi .
Again assuming equal contributions from both1 and 3
tensor perturbations,

Cl
C,tensor5

1

4pE dk k2F l12

2l11
D̃Ql21

1 ~k!1
l21

2l11
D̃Ql21

1 ~k!G2.
~4.46!

This calculation verifies our qualitative arguments that tensor
modes will produce a C polarization field.
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3. Cross moments

From Eqs.~4.30! and ~4.41!, the nonzero cross moments
are

Cl
TG,tensor5

1

8pNl
E k2dkF D̃ I ,l22

1 ~k!

~2l21!~2l11!

2
2D̃ I l

1~k!

~2l13!~2l21!
1

D̃ I ,l12
1 ~k!

~2l13!~2l11!
G

3F ~ l12!~ l11!D̃Q,l22
1 ~k!

~2l21!~2l11!
1
6l ~ l11!D̃Ql

1 ~k!

~2l13!~2l21!

1
l ~ l21!D̃Q,l12

1 ~k!

~2l11!~2l13!
G , ~4.47!

assuming equal contributions from the1 and3 tensor per-
turbations. Note theNl

21 in the prefactor comes from the
temperature coefficient, not from the polarization coefficient.

Both the temperature and G multipole coefficients for a
k tensor mode with1 polarizationa( lm)

T,1 (k) anda( lm)
G,1(k) are

proportional to (dm21dm,22) @and similarly for3 modes
with the sum replaced by a difference. On the other hand, the
corresponding C multipole coefficientsa( lm)

C,1 (k) are propor-
tional to (dm22dm,22) ~and the same with the difference
replaced by a sum for3 modes!#. Therefore, after summing
overm, the cross momentsCl

TC,tensorandCl
GC,tensorfor tensor

perturbations vanish. This is a consequence of the symmetry
arguments mentioned above.

C. Summary

In this section we have calculated the CMB temperature
and polarization multipole moments for both scalar and ten-
sor perturbations. For theories in which the perturbations
have a Gaussian distribution~such as inflationary models!,
this set of multipole moments fully specifies the statistical
properties of the combined temperature or polarization map.
In virtually all theories considered, scalar and tensor pertur-
bations are statistically independent, so their contributions to
the CMB temperature anisotropy and polarization add in
quadrature. Even if they are not statistically independent,
angular orthogonality of the different modes~i.e., scalar,
vector, and tensor modes in theẑ direction induce nonzero
multipole coefficients only form50, m56, andm562,
respectively! guarantees that the contributions of scalar, vec-
tor, and tensor perturbations to the multipole moments will
add in quadrature. Therefore, for Gaussian theories, the map
will be fully described byCl

T5Cl
T,scalar1Cl

T,tensor @cf. Eqs.
~4.4! and~4.32!#, Cl

G5Cl
G,scalar1Cl

G,tensor@cf. Eqs.~4.16! and
~4.42!#, Cl

C5Cl
C,tensor @cf. Eqs. ~4.46!#, and

Cl
TG5Cl

TG,scalar1Cl
TG,tensor @cf. Eqs. ~4.26! and ~4.47!#. For

non-Gaussian theories,n-point correlation functions with
n.2 may be nonzero.

Equation~4.4! for the temperature moments from scalar
perturbations is written as an integral of a square of a single
D I l . However, all of the other moments are written as
squares of a sum of severalD I l ’s and/orDQl’s. This is be-
cause a spherical-harmonic decomposition is not natural for

a Stokes parameterQ, which is a tensor component, nor for
the brightness perturbation from tensor modes. The calcula-
tion can be reformulated using a tensor-harmonic expansion
for these quantities, which provide a natural basis@31#.

D. Line-of-sight approach

A very efficient and accurate algorithm for computation
of multipole moments has recently been given by Seljak and
Zaldarriaga@38# and applied to the polarization multipole
moments@21# ~hereafter, SZ!. Although significantly differ-
ent in appearance, their spin-harmonic formalism is equiva-
lent to our tensor-harmonic formalism. Here, we briefly com-
pare our results with theirs. Although the formalisms differ
and the calculations are somewhat lengthy, we find that the
results agree, which gives us confidence in both sets of re-
sults. Furthermore, by identifying the moments in their paper
with those in ours, their numerical code~which has been
made publicly available! can be used to compute the multi-
pole moments presented in this paper.

Consider, for example, the G polarization moments from
scalar perturbations. According to Eqs.~12! and ~14! in SZ,
the polarization pattern induced on the sky by a scalark
mode in theẑ direction@i.e., their version of our Eq.~4.5!# is

Q~ n̂!5
3

4
~12cos2u!E

0

t0
dt eiktcosug~t!P~k,t!j~k!,

~4.48!

andU(n̂)50, wheret is the conformal time,g(t) is a vis-
ibility function, P is a combination of intensity and polar-
ization perturbations, andj(k) is an amplitude for the scalar
mode~see SZ for more details!. Therefore, the polarization
tensor induced by this scalar mode is

Pab~ n̂!5
3

4
j~k!E

0

t0
dt g~t!P~k,t!eiktcosuS 1 0

0 2csc2u D .
~4.49!

Using the rules of covariant differentiation, we find that

Pab
:ab~ n̂!5

3

8
j~k!E

0

t0
dt g~t!P~k,t!

3S ]2

]u2
13

cosu

sinu

]

]u
22Deiktcosu

5
3

8
j~k!E

0

t0
dt g~t!P~k,t!

d2

d~cosu!2

3@~12cos2u!2eiktcosu#, ~4.50!

which agrees with theirD Ẽ
(S)/2 given in their Eq.~15!. The

Cl
G,scalar moments are obtained by plugging this into Eq.

~2.17!, squaring, summing overm, and then integrating over
k. We then find that our results agree with theirs@realizing
that our (2p)3 Fourier conventions differ from theirs# if we
identify Cl

G5CEl/2, whereCEl are their electric-type mo-
ments. We have further checked that our temperature mo-
ments agree with theirs~with no factor of two!, and that our
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C moments are half theirB moments:Cl
C5CBl/2. OurCl

TG

are equal to theirCCl /A2. Although we do not present it
here, we have checked their tensor-mode calculations as
well. Although significantly more involved, we still find
agreement; for example, compare theirE(x) andB(x) with
our Eqs.~4.38! and~4.44!. The identification of our polariza-
tion moments with theirs is also consistent with ourwP

21 in
Eq. ~3.18! being half theirs.

V. TWO-POINT CORRELATION FUNCTIONS

In this section, we relate the multipole momentsCl
T ,

Cl
G, Cl

C, andCl
TG to two-point correlation functions of tem-

perature and Stokes parameters. This will make contact with
previous work on the subject. We also derive flat-sky limits
useful for analyzing maps of small sky patches.

A. Correlations between temperature and stokes parameters

The linear-polarization state at any given point is speci-
fied completely by the Stokes parameterQ andU, but these
quantities depend on the coordinate system which one
chooses. On the other hand, we know thatQ andU trans-
form as the components of a STF 232 tensor, so givenQ
andU in some coordinate system, we can always determine
Q8 andU8 in any other coordinate system.

The Universe is assumed to be statistically isotropic, so it
is possible to construct two-point correlation functions which
depend only on the angular separation between the two
points. But simply correlatingQ andU in a particular coor-
dinate system gives correlation functions which depend on
the positions of the points being correlated as well the angu-
lar separation. This is what has been done in previous pub-
lished work.

A coordinate-independent set of correlation functions can
be expressed in terms of the ones which have appeared in the
previous literature. The prescription is simply to define cor-
relation functions of Stokes parameters with respect to axes
which are parallel and perpendicular to the great arc~or geo-
desic! connecting the two points being correlated. SoQr is
the difference in intensities in two linear-polarization states
parallel and perpendicular to the great arc connecting the two
points, andUr is the difference in two linear-polarization
states which lie 45° away from the parallel and perpendicu-
lar. The three quantitiesT, Qr , andUr have six correlation
functions between them:̂TT&, ^UrUr&, ^QrQr&, ^QrT&,
^QrUr&, and ^UrT&. However, only four can be nonzero.
AlthoughQr andT are invariant under reflection along the
great arc connecting the two points being correlated,Ur
changes sign. Therefore, the expectation values^QrUr& and
^UrT& must be zero from statistical isotropy. This is as ex-
pected: four nonzero sets of momentsCl

T , Cl
G, Cl

C, and
Cl
TG describe the map. Correspondingly, four nonzero corre-

lation functions provide an equivalent statistical description.
We begin with the familiar̂ TT& correlation function,

CT~u!5K T~ n̂1!

T0

T~ n̂2!

T0
L
n̂1•n̂25cosu

. ~5.1!

The correlation function depends only on the angular sepa-
ration of the two points, so in calculating it, we may choose

one point to be at the north pole, (0,0), and the other to be on
the f50 longitude at a distanceu from the north pole,
(u,0). Then expandT(n̂) in terms of spherical harmonics as
in Eq. ~2.8! and note thatY( lm)(0,0)5dm0A(2l11)/(4p).
So

CT~u!5 K T~0,0!

T0

T~u,0!

T0
L

5 (
lml8m8

^a~ lm!
T * al 8m8

T &Y~ lm!
* ~0,0!Y~ l 8m8!~u,0!

5 (
lml8m8

Cl
Td l l 8dmm8A2l11

4p
dm0Y~ l 8m8!~u,0!

5(
l

2l11

4p
Cl
T Pl~cosu!, ~5.2!

where we have used Eq.~3.1! to go from the second to the
third line. This recovers the well-known result for the tem-
perature autocorrelation function.

The derivation of the polarization correlation functions
will proceed analogously~and is similar to the case for weak-
lensing correlation functions@28#!, and requiresW( lm) and
X( lm) at the north pole. Using the asymptotic relations

Pl
m~cosu!;

~21!~m1umu!/2

2umuumu!
~ l1umu!!
~ l2umu!!

u umu, u→0

~mÞ0!, ~5.3!

Pl~cosu!;12
1

4
l ~ l11!u2, u→0, ~5.4!

it is straightforward to show that forumu>2, X( lm) and
Y( lm) are both asymptotic tou umu22 as u→0, so they are
nonzero atu50 only for umu52; for m50 andm51, they
are asymptotic tou2 andu. After a little algebra,

W~ lm!~0,0!5
1

2
A2l11

4p

~ l12!!

~ l22!!
~dm21dm,22! ~5.5!

and

X~ lm!~0,0!5
i

2
A2l11

4p

~ l12!!

~ l22!!
~dm22dm,22!. ~5.6!

Now consider thêQQ& correlation function

CQ~u!5KQr~ n̂1!

T0

Qr~ n̂2!

T0
L
n̂1•n̂25cosu

, ~5.7!

where, once again, the Stokes parametersQr are defined with
respect to axes parallel and perpendicular to the great arc
connectingn̂1 andn̂2. As in the temperature case, choose one
point to be at the north pole and another a distanceu away
along thef50 longitude. This choice has the added advan-
tage that the great arc connecting these two points is along
the u direction, so we can use theQ defined in the (û,f̂)
coordinate system, Eq.~3.3!. However, in this coordinate
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system, the definition ofQ at the north pole is, strictly speak-
ing, ambiguous. Therefore, we always consider a point on
thef50 longitude which is infinitesimally close to the north
pole; in other words,Q(0,0) really means limu→0Q(u,0).
Using Eq.~3.3! for the Stokes parameters, the^QQ& corre-
lation function is then

CQ~u!5 KQ~0,0!

T0

Q~u,0!

T0
L

5 (
lml8m8

NlNl 8^@a~ lm!
G W~ lm!~0,0!2a~ lm!

C X~ lm!~0,0!#

3@a~ l 8m8!

G * W
~ l 8m8!
* ~u,0!2a

~ l 8m8!

C * X
~ l 8m8!
* ~u,0!#&

5(
l
A2l11

8p
Nl$Cl

G@W~ l2!
* ~u,0!1W~ l ,22!

* ~u,0!#

1 iCl
C@X~ l2!

* ~u,0!2X~ l ,22!
* ~u,0!#%, ~5.8!

where we have used Eqs.~3.1!, ~5.6!, and ~5.5!, and
^a( lm)

G * a( lm)
C &50. This can be simplified using

X( lm)* 52X( l ,2m)* andW( lm)* 5W( l ,2m)* and the definitions in
Eqs.~2.24! and ~2.25!, giving

CQ~u!5(
l

2l11

2p
Nl
2@Cl

GG~ l2!
1 ~cosu!1Cl

CG~ l2!
2 ~cosu!#.

~5.9!

For the^UU& correlation function, the derivation is simi-
lar, giving

CU~u!5(
l

2l11

2p
Nl
2@Cl

CG~ l2!
1 ~cosu!1Cl

GG~ l2!
2 ~cosu!#.

~5.10!

For the^TQ& cross-correlation function,

CTQ~u!5K T~ n̂1!

T0

Qr~ n̂2!

T0
L
n̂1•n̂25cosu

5(
l

2l11

4p
Nl Cl

TG Pl
2~cosu!. ~5.11!

Equations~5.9!, ~5.10!, and~5.11! areexact~i.e., there is
no small-angle approximation! expressions for the polariza-
tion correlation functions.

B. Multipole moments from correlation functions

Above, we derived expressions for correlation functions
in terms of multipole moments, and now we perform the
inverse transform and express the multipole moments in
terms of correlation functions. Begin with the temperature
autocorrelation function: multiply both sides of Eq.~5.2! by
the Legendre polynomialPl 8(cosu), integrate over cosu, and
use the orthogonality of Legendre polynomials to obtain

Cl
T52pE

0

p

dusinuPl~cosu! CT~u!. ~5.12!

Similarly, for the polarization-temperature moments, multi-
ply both sides of Eq.~5.11! by the associated Legendre func-
tion Pl 8

2 , integrate, and use Eq.~B4! to obtain

Cl
TG5pNlE

0

p

dusinuPl
2~cosu! CTQ~u!. ~5.13!

The derivation of the polarization moments from the po-
larization autocorrelation functions is similar. Orthonormal-
ity of the tensor harmonics implies that

E @W~ lm!
* ~ n̂!W~ l 8m8!~ n̂!1X~ lm!

* ~ n̂!X~ l 8m8!~ n̂!# dn̂

5
2

Nl
2 d l l 8dmm8 ~5.14!

and it can also be shown that

E @2X~ lm!
* ~ n̂!W~ l 8m8!~ n̂!1W~ lm!

* ~ n̂!X~ l 8m8!~ n̂!# dn̂50.

~5.15!

To do so, note that thef dependence ofW( lm) andX( lm) is
just eimf, which means that the integral is immediately zero
for mÞm8. Form5m8, the integral over cosu vanishes us-
ing the explicit forms ofG( lm)

6 @28#. From Eqs.~5.9! and
~5.10!,

@CQ~u!1CU~u!# e2if5(
l
A2l11

2p
Nl~Cl

G1Cl
C!@W~ l2!

3~u,f!1 iX ~ l2!~u,f!#, ~5.16!

@CQ~u!2CU~u!# e2if5(
l
A2l11

2p
Nl~Cl

G2Cl
C!@W~ l2!

3~u,f!2 iX ~ l2!~u,f!#. ~5.17!

Then multiply both sides of the first equation by
W( l2)* 2 iX ( l2)* and the second byW( l2)* 1 iX ( l2)* , integrate over

all directionsn̂, and apply Eqs.~5.14! and ~5.15!, giving

Cl
G1Cl

C5A 2p

2l11

Nl

2 E dn̂@CQ~u!1CU~u!#

3e2if @W~ l2!
* ~ n̂!2 iX ~ l2!

* ~ n̂!#, ~5.18!

Cl
G2Cl

C5A 2p

2l11

Nl

2 E dn̂@CQ~u!2CU~u!#

3e2if @W~ l2!
* ~ n̂!1 iX ~ l2!

* ~ n̂!#. ~5.19!

Upon summing and differencing and carrying out the inte-
gration overf, we obtain

Cl
G5pNl

2E
0

p

dusinu@CQ~u!G~ l2!
1 ~cosu!

2CU~u!G~ l2!
2 ~cosu!#, ~5.20!
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Cl
C5pNl

2E
0

p

dusinu@CU~u!G~ l2!
1 ~cosu!

2CQ~u!G~ l2!
2 ~cosu!#, ~5.21!

which are the desired relations giving the polarization mul-
tipole moments in terms of the polarization autocorrelation
functions. Given some measured correlation functions,
evaluation of Eq.~5.21! for any l will probe the existence of
nonscalar modes.

C. Correlation functions in the small-angle limit

In order to make contact with previous work and to
present estimates useful for measurements on a small patch
of the sky, we now derive the small-angle limit of the above
expressions which give correlation functions in terms of
multipole moments~and vice versa!. The correlation func-
tions given in previous work were of Stokes parameters mea-
sured in a fixed coordinate basis, whereas ours are of Stokes
parameters measured with respect to the great arc connecting
the two points being correlated. However, our results can be
compared with previous results by takingf50 in their ex-
pressions. Although the expressions for correlation functions
in the small-angle limit given in Refs.@13,14# are quite com-
plicated, when the small-angle limit is taken consistently in
all steps, the expressions simplify greatly, as emphasized in
Ref. @39# ~and resemble correlation functions for ellipticities
of galaxies due to weak lensing from large-scale inhomoge-
neities@28,40#!.

Once again we begin with the temperature moments. A
useful asymptotic relation is

Pl~cosu!;J0~s!, s[~2l11!sin~u/2!→0, ~5.22!

whereJm(s) is the Bessel function of orderm. Substituting
into Eq. ~5.2!, approximating the sum by an integral and
taking the limit l@1 gives

CT~u!.
1

2pE
`

l dl J0~ lu!Cl
T ~5.23!

for u!1. For the temperature-polarization cross-correlation
function, we note that

Pl
2~cosu!;4l 4J2~s!, s→0, ~5.24!

which gives

CTQ~u!.
23/2

p E l 3dl Cl
TGJ2~ lu!, ~5.25!

for u!1, from Eq.~5.11!.
For the polarization autocorrelation functions, note that

@28#

G~ lm!
6 ~cosu!;

1

4
l 4@J0~s!6J4~s!#, s→0. ~5.26!

From Eq.~5.9! we obtain

CQ~u!.
1

2pE l dl @~Cl
G1Cl

C!J0~ lu!1~Cl
G2Cl

C!J4~ lu!#,

~5.27!

and from Eq.~5.10! we obtain

CU~u!.
1

2pE l dl @~Cl
G1Cl

C!J0~ lu!2~Cl
G2Cl

C!J4~ lu!#,

~5.28!

for u!1.
Equations~5.23!, ~5.25!, ~5.27!, and~5.28! agree with the

forms in Eq.~19! in Ref. @39# for f50 andCl
C50. ~Also

recall that ^QrUr&5^TUr&50.! If Cl
C50, then

^QrQr1UrUr& @which depends on an integral overJ0( lu)#
and ^QrQr2UrUr& @which depends on an integral over
J4( lu)# depend on the same set of momentsCl

G and are
thereforenot independent. However, ifCl

CÞ0, then these
correlation functions will depend on two independent sets of
moments.

We can also derive expressions for the multipole mo-
ments forl@1 in terms of a correlation function measured at
small angular separations. For example, using Eq.~5.22! to
approximate Eq.~5.12! for l@1 gives

Cl
T.2pE J0~ lu!CT~u!u du ~5.29!

and using Eq.~5.24! to approximate Eq.~5.13! gives

Cl
TG.4A2p l 2E J2~ lu!CTQ~u!u du . ~5.30!

Using Eq.~5.26!, we can approximate Eq.~5.20! by

Cl
G.

p

2E ~CQ~u!@J0~ lu!1J4~ lu!#

2CU~u!@J0~ lu!2J4~ lu!#!u du ~5.31!

and Eq.~5.21! by

Cl
C.

p

2E $CU~u!@J0~ lu!1J4~ lu!#

2CQ~u!@J0~ lu!2J4~ lu!#%u du . ~5.32!

If any nonzeroCl
C is found in this way with correlation func-

tions measured on a small patch of the sky, it is an indication
of vector or tensor modes.

VI. SUMMARY AND DISCUSSION

This paper provides a detailed and complete formalism
for characterizing polarization fluctuations in a full-sky map
of the cosmic microwave background. We give explicit
forms for tensor spherical harmonics, in which the polariza-
tion can be expanded in direct analogy to the expansion of
temperature perturbations in the usual spherical harmonics.
The tensor harmonics are numerically just as easy to evaluate
as spherical harmonics, so polarization map simulation and
analysis will be no more cumbersome than in the tempera-
ture case.
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The most important physics results presented here are that
of the six sets of multipole coefficients describing the corre-
lations in a temperature or polarization map, two must be
zero if the Universe is parity invariant, and a third vanishes
for scalar metric perturbations. The momentsCl

C, which are
nonzero only for vector and tensor metric perturbations, are
in principle an unambiguous probe of primordial gravity
waves and vorticity@19,20#. A cosmological contribution to
the momentsCl

TC or Cl
CG would demonstrate a remarkable

handedness to the primordial perturbation spectrum. A much
more likely and practical use of these moments is to monitor
foreground microwave emission. We also note that CMB
polarization may give useful information on primordial mag-
netic fields@17,41# and galaxy cluster magnetic fields@42#.
Measurement of polarization in the Sunyaev-Zeldovich ef-
fect can be used to measure cluster transverse velocities@43#
and/or the CMB quadrupole moment incident on the cluster
@44#.

Most current microwave background codes calculate the
Legendre coefficients of the radiation brightness in Fourier
space@35#. We have derived exact expressions for all of the
multipole moments in terms of these brightness coefficients.
For tensor metric perturbations, the expressions are particu-
larly simple and trivial to implement numerically. The result
for scalar perturbations is somewhat more complex, involv-
ing an infinite sum over the brightness moments. However,
the contribution of the sum to the final expression for the
multipole moments is only significant for the lowest mo-
ments, so the overall cost of the computation should only
increase slightly. The formulas for the multipole moments
derived in this paper should allow for relatively simple con-
version of existing CMB codes.

Of course, a cosmological signal will have to be distin-
guished from foreground contamination. Synchrotron emis-
sion from our galaxy is highly polarized@45#, and extraga-
lactic radio sources may also contribute significantly@46#.
The amplitude of these foreground polarization sources is
unknown at the present time. Since both likely foregrounds
have a spectral dependence substantially different from the
blackbody CMB spectrum, the usual techniques for subtract-
ing foregrounds from temperature maps should also work for
polarization@47#.

Of course, simply attaining the necessary sensitivity to
make any polarization detection will be a great experimental
accomplishment. The MAP satellite, currently being con-
structed, will have the sensitivity to make a statistical detec-
tion of polarization. The Planck satellite, now in the planning
stage, should be capable of seeing polarization on a pixel-by-
pixel basis if it is configured to measure polarization. At this
time, it is undecided whether Planck, which uses incoherent
bolometer detectors in its most sensitive frequency channels,
will sacrifice some temperature sensitivity to make polarized
measurements. But optimistically, within a decade we may
have in hand detailed temperature or polarization maps of the
cosmic microwave background. How much cosmological in-
formation can be extracted from such maps is currently un-
der study@34#. The formalism presented in this paper pro-
vides a basis for addressing such questions.
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APPENDIX A: DIFFERENTIAL GEOMETRY
ON THE SPHERE

This appendix collects results from differential geometry,
with particular application to the manifoldS2 ~the two-
sphere!, which are needed in definitions of and calculations
with the tensor spherical harmonics on the celestial sphere.
We use the notationf ,a[] f /]xa to indicate a regular partial
derivative andf :a[¹af for a covariant derivative. We use
the colon, ‘‘:’’ rather than the more traditional semicolon,
‘‘;’’ to distinguish derivatives onS2 from four-dimensional
derivatives in general relativity. All of our tensors are de-
fined with respect to a coordinate basis. Note the metric ten-
sor gab commutes with covariant differentiation:gab:c50.
The determinant of the metric is denoted byg[uugabuu. Co-
variant derivatives of scalars, vectors, and~rank-two! tensors
are

S:a5S,a , Va
:b5Va

,b1VcGbc
a ,

Tab:c5Tab,c1TdbGcd
a 1TadGcd

b , ~A1!

where theGbc
a are Christoffel symbols defined by

Gbc
a 5

1

2
gad~gdb,c1gdc,b2gbc,d!. ~A2!

We have used the formula for the fourth derivatives of a
scalar function

S:abab5¹2¹2S1RdbS:db1
1

2
R:dS:d , ¹2S[S:aa ,

Rab[Rc
acb , R[Ra

a , ~A3!

whereRabcd, Rab , andR are the Riemann tensor, the Ricci
tensor, and Ricci scalar, respectively. We have also used the
formula of integration by parts

R dn̂ XabY:ab52 R dn̂ Xab
:aY:b5 R dn̂ Xab

:abY,

~A4!

where R indicates integration over a closed manifold with no
boundary, anddn̂ is shorthand forAg dx1dx2.

On a two-dimensional manifold the Levi-Civita symbol is
a traceless antisymmetric rank-two tensor given by

eab5Ag S 0 1

21 0D ~A5!
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which has the simple properties

ecae
c
b5gab52eace

c
b , eabecd5gacgbd2gadgbc ,

eab:c50. ~A6!

A rank-two tensor is trace-free~or traceless! if, and only if,
gabTab50, and a rank-two tensor is symmetric if, and only
if, Tab5Tba . In two dimensions the latter requirement is
equivalent toeabTab50. Linear polarization is described by
a symmetric trace-free rank-two tensor, or STF for short.

The geometry of a two-dimensional manifold is particu-
larly simple because it is determined solely by the Ricci
scalarR. Some handy identities are

Rabcd5
1

2
R eabecd , Rab5

1

2
R gab eabRabcd

5R ecd eacRabcd5
1

2
R ebd . ~A7!

Another useful identity is

MabNcdeacebd52MabNab

if

gabMab5gabNab5eabMab5eabNab50, ~A8!

i.e., for STF tensors only.
In this paper we are only interested in the geometry of the

unit sphereS2. Its geometry is nearly as simple as can be,
sinceR52. We exclusively use the explicit coordinate sys-
tem defined by spherical polar coordinates (u,f), whereu is
the polar angle from a particular point on the sphere andf
labels the angle on circles which are centered on this same
point. In these coordinates the metric is

gab5S 1 0

0 sin2u D , g[igabi5sin2u, ~A9!

while the antisymmetric tensor is

eab5S 0 sinu

2sinu 0 D , eab5S 0 sinu

2cscu 0 D .
~A10!

From this metric the Christoffel symbols follow as

Gff
u 52sinucosu, Guf

f 5Gfu
f 5cotu,

Guu
u 5Guf

u 5Gfu
u 5Guu

f 5Gff
f 50. ~A11!

The explicit components of the second derivatives of a scalar
function are

Y:ab5Y,ab2Gab
c Y,c ;

Y:uu5Y,uu ,

Y:uf5Y,uf2cotu Y,f ,

Y:ff5Y,ff1sinucosu Y,u , ~A12!

while explicit expressions for some second derivatives of a
symmetric rank-two tensor are

Mab
:ab5M uu

,uu12M uf
,uf1Mff

,ff2sinucosuMff
,u

12cotuM uu
,u14cotuM uf

,f1~123cos2u!Mff

2M uu, ~A13!

and

Mab
:ace

c
b5sinu~M uf

,uu1Mff
,fu!2cscu~M uu

,uf

1Mfu
,ff!2cotucscuM uu

,f15cosuM uf
,u

13cosuMff
,f13~cosucotu2sinu!M uf,

~A14!

which again only apply ifeabMab50.

APPENDIX B: SPHERICAL HARMONIC AND LEGENDRE
FUNCTION IDENTITIES

In this appendix, we list some identities involving spheri-
cal harmonics and Legendre functions which we have used
in our calculations.

The associated Legendre functions are defined by

Pl
m~x!5~21!m~12x2!m/2

dm

dxm
Pl~x!, >0, ~B1!

Pl
2m~x!5~21!m

~ l2m!!

~ l1m!!
Pl
m~x!, ~B2!

in terms of Legendre polynomials,

Pl~x![Pl
0~x!. ~B3!

The orthonormality relationship for associated Legendre
functions is given by

E
21

1

dxPl
m~x!Pl 8

m
~x!5d l l 8

2

2l11

~ l1m!!

~ l2m!!
. ~B4!

These functions satisfy the following recursion relations~see
Eqs. 8.733 in Ref.@48#!:

Pl
m12~x!12~m11!

x

A12x2
Pl
m11~x!

1~ l2m!~ l1m11!Pl
m~x!50, ~B5!

~2l11!A12x2Pl
m21~x!5Pl21

m ~x!2Pl11
m ~x!, ~B6!

~2l11!xPl
m5~ l2m11!Pl11

m 1~ l1m!Pl21
m , ~B7!

~12x2!
dPl

m

dx
5~m11!xPl

m2~ l2m11!Pl11
m , ~B8!
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~12x2!
dPl

m

dx
52 lxPl

m1~ l1m!Pl21
m . ~B9!

Using orthonormality and completeness of Legendre
polynomials, an associated Legendre function ofm52 can
be written in terms of Legendre polynomials using the inte-
gral @49#

E
21

1

dxPl~x!Pj
2~x!

5H 0, l. j or j1 l odd,

22 j ~ j21!/~2 j11!, j5 l ,

4, l, j and j1 l even.

~B10!

With the above conventions for Legendre functions, the
spherical harmonics are given by

Y~ lm!~u,f!5A2l11

4p

~ l2m!!

~ l1m!!
Pl
m~cosu!eimf.

~B11!

The convolution of a Legendre polynomial with a spherical
harmonic is

E dn̂ Pj~ k̂•n̂! Y~ lm!~ n̂!5
4p

2l11
Y~ lm!~ k̂! d l j .

~B12!

This can be obtained by expressing the Legendre polynomial
in terms of spherical harmonics with the spherical harmonic
addition theorem and then using the orthonormality of
spherical harmonics.

Angular-momentum lowering and raising operators can
be used to derive the following recursion relations for spheri-
cal harmonics:

eifsinu Y~ lm!52F ~ l1m11!~ l1m12!

~2l11!~2l13! G1/2Y~ l11,m11!

1F ~ l2m!~ l2m21!

~2l21!~2l11! G1/2Y~ l21,m11! ,

~B13!

e2 ifsinu Y~ lm!5F ~ l2m11!~ l2m12!

~2l11!~2l13! G1/2Y~ l11,m21!

2F ~ l1m!~ l1m21!

~2l21!~2l11! G1/2Y~ l21,m21! ,

~B14!

which can be iterated and evaluated form50 to obtain

cos2fsin2u Y~ l0!

5
1

2H F ~ l11!~ l12!~ l13!~ l14!

~2l11!~2l13!2~2l15! G1/2~Y~ l12,2!

1Y~ l12,22!!22
Al ~ l21!~ l11!~ l12!

~2l21!~2l13!
~Y~ l ,2!1Y~ l ,22!!

1F l ~ l21!~ l22!~ l23!

~2l23!~2l21!2~2l11!G
1/2

~Y~ l22,2!1Y~ l22,22!!J .
~B15!

For the replacement cos2f→sin2f make the replacements
(1/2)→(1/2i ) in the prefactor and (Y(x,2)
1Y(x,22))→(Y(x,2)2Y(x,22)).

Looking at theu dependence of Eq.~B15!, we get

~12x2!Pj~x!5
Pj12
2

~2 j11!~2 j13!
2

2Pj
2

~2 j21!~2 j13!

1
Pj22
2

~2 j11!~2 j21!
. ~B16!
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