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We consider the effects of photon diffusion on the small-angle microwave background anisotropies due to
active source models. We find that fluctuations created just before the time of last scattering allow anisotropy
to be created on scales much smaller than allowed by standard Silk damping. Using simple models for string
and texture structure functions as examples, we illustrate differences in the angular power spectrum of the
intrinsic and Doppler components of the anisotropy on scales of the order of a few arcminutes. In particular, we
find that the Doppler peak heights are modified by 10–50% and small-angle fall-off is power law rather than
exponential.@S0556-2821~97!06410-2#

PACS number~s!: 98.70.Vc, 95.35.1d

I. INTRODUCTION

Accurate measurements of the anisotropy in the cosmic
microwave background radiation~CMBR! are a powerful
probe of modern cosmological models since they represent a
snapshot of the universe just before it became transparent to
electromagnetic radiation about 400 000 years after the big
bang. The standard picture is that the initial seed fluctuations
were created close to the Planck epoch by quantum effects,
during a period of superluminal expansion known as infla-
tion. These perturbations have been termed as ‘‘passive’’@1#
since they were created during an early epoch and follow a
linear deterministic evolution until last scattering, where they
leave an imprint in the microwave background.

There are, however, a potentially much larger group of
theories, known as ‘‘active’’ source models@2,3#, which
could lead to the creation of microwave anisotropies and the
formation of large-scale structure. The best motivated of
these are those associated with topological defects@4–6#
formed during cosmological phase transitions, such as cos-
mic strings@7,8# and textures@9#; their generic feature being
that they create perturbations over a very wide range of
scales at all times, from their formation to the present day.

The large-angle (*1°) anisotropies due to defects have
been shown to be compatible with those detected by the
Cosmic Background Explorer~COBE! since they lead to a
near scale-invariant spectrum of perturbations on the relevant
scales~see, for example,@10#!, while little quantitative work
exists on the formation of large-scale structure due to calcu-
lational difficulties in modeling nonlinear effects. The small-
angle (&1°) microwave background anisotropies provide an
area where the predictions from passive and active theories
can be tested since they are generically very different. A
number of works@1–3,11,12# have predicted shifts in the
positions of the so-called Doppler or Sakharov peaks which
occur largely due to the differences in the tight coupling
solutions. Here, we shall discuss the effects of photon diffu-
sion or Silk damping@13# which have until now been ig-
nored or introducedad hoc.

The crucial period for understanding these effects is that

just before last scattering. During this epoch the acoustic
oscillations in the photon-baryon fluid are damped by the
increasing mean free path of the photons. It is not difficult to
see that fluctuations created after the onset of this regime will
receive less damping than those created before it. In particu-
lar, those created just before the time of last scattering will
receive virtually no damping at all. If perturbations are cre-
ated on all scales above the defect size, as is thought to be
the case for defect models, then it will be possible for anisot-
ropy on small angular scales to remain to the present day.
We will see that it is not sufficient to model these effects
with a simple multiplication by an exponential suppression
factor across all scales. Rather it requires careful consider-
ation of the time at which fluctuations are created. Simple
estimates will show that there are potentially important
modifications to peak heights and also power-law suppres-
sion at small angular scales, rather than exponential.

II. ANALYTIC FORMALISM

We shall use the analytic formalism developed in Refs.
@14,15# to describe the small-angle microwave background
anisotropies for passive perturbations. There are, however,
shortcomings in the way Silk damping is modeled which will
lead to discrepancies at small angular scales when applied to
active sources. The starting point for this treatment is the
first-order collisional Boltzmann equation in Fourier space
ignoring the effects of polarization:

Q̇1 ikm~Q1C!52Ḟ1k̇@Q02Q2 1
10P2~m!Q2

2 iP1~m!Vb#. ~1!

In this equation,Q(k,h,m)5((2 i ) lQ l(k,h)Pl(m) is the
Newtonian temperature perturbation,h is conformal time,k
is the wave number,Pl(m) is the Legendre polynomial as-
sociated with angular variablem5cosu, Vb is the baryon
velocity, k̇ is the differential optical depth due to Thomson
scattering, andC, F are the gauge invariant potentials@16#
assumed to be characterized by an external source. One can
solve this equation forQ l ( l.1), if one allows the intrinsic
~or monopole! temperature anisotropy and the baryon veloc-
ity to act as extra source terms. The solution at the present
day is then@17#*Electronic address: r.battye@ic.ac.uk
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1E
0

h0
dh k̇e2k~h,h0!~C2F! j l@kDh#

1E
0

h0
dh k̇e2k~h,h0!S Q̂0 j l@kDh#

1
l

2l11
Vbj l21@kDh#

2
l11

2l11
Vbj l11@kDh# D , ~2!

where Q̂05Q01F, Dh5h02h, k(h1 ,h2)
5*h1

h2dh k̇(h), andj l(x) is a spherical Bessel function. This

expression is slightly different from previous formulations in
that there are the separate termsQ01F andC2F, as op-
posed to justQ01C. The reason for this is that, as we will
see, it is onlyQ01F, henceforth described as the intrinsic
anisotropy, which is modified by Silk damping.

The functionk̇e2k(h,h0) is known as the ‘‘visibility func-
tion’’ and is sharply peaked around the time of last scattering
h* , while e

2k(h,h0) is zero forh!h* and effectively con-
stanth@h* . Therefore, one can see that the anisotropy is
essentially due to three effects. The first sums up all contri-
butions due to the motion of the sources after the time of last
scattering and the second is just the difference of the two
potentials at last scattering. The combination of these two
terms, known as the Sachs-Wolfe effect@18#, dominates the
anisotropy on large angular scales and possibly again at very
small (&18) angular scales where, for example, the Kaiser-
Stebbins effect@19# is prevalent for cosmic strings. The final
contribution is due to the damped acoustic oscillations of the
intrinsic anisotropy and the Doppler effect around last scat-
tering, and it is this which we shall consider in this paper.
This is not to say that the other contributions will have no
effect over the range of angular scales considered, rather that
there are other effects—likely to be of similar amplitude—
which need to be taken into account.

It is clear that in order to calculate the small-angle anisot-
ropy, we must first calculateQ0 andVb around the time of
last scattering and then deduceQ l using Eq.~2!. To do this
we decouple the Boltzmann equation into its multipole mo-
ments:

Q̇052Ḟ2
1

3
kQ1 ,

Q̇15k~Q01C!2
2

5
kQ22k̇~Q12Vb!,

Q̇25
2

3
kQ12

3

7
kQ32

9

10
k̇Q2 ,

Q̇l5kS l

2l21
Q l212

l11

2l13
Q l11D2k̇Q l ~3!

for l.2. As it stands, Eq.~3! is not a complete system of
equations, which can be rectified by introducing the Euler
equation for the baryon velocity

V̇b52
ȧ

a
Vb1kC1

k̇

R
~Q12Vb!, ~4!

whereR53rb/4rg is the baryon to photon ratio normalized
to be 3/4 at photon-baryon equality. Thomson scattering is
highly efficient at early times withk̇ large; therefore, ex-
panding Eq.~3! by ignoringO(k/k̇) yields the equations for
tight-coupling regime. The effects of Silk damping can be
investigated by expanding to higher order. If one ignores
O(k2/k̇2) and alsoO(R2), the equation for the intrinsic an-
isotropy is

Q̈̂01S Ṙ

11R
1

8

27
k2

1

k̇

1

11RD Q̇̂01
1

3
k2

1

11R
Q̂0

5H~h!5
1

3
k2S F

11R
2C D , ~5!

and the baryon velocity is given by the dipole temperature

anisotropy,Vb5Q1523Q̇̂0 /k.
One can solve Eq.~5! for largek using the WKB approxi-

mation and Green’s method;

@11R~h!#1/4Q̂0~h!5e2k2/ks
2
~h,0!H Q̂0~0!coskrs~h!

1
)

k F Q̇̂0~0!1
1

4
Ṙ~0!Q̂0~0!G

3sin krs~h!J 1
)

k

3E
0

h
dh8@11R~h8!#3/4e2k2/ks

2
~h,h8!

3sin@krs~h!2krs~h8!#H~h8!, ~6!

wherer s(h) is the sound horizon distance andks
21(h2 ,h1)

is the Silk damping length, below which photon diffusion
removes anisotropy:

r s~h!5
1

)
E
0

h dh8

A11R~h8!
,

ks
22~h2 ,h1!5

4

27 Eh1

h2 dh8

k̇~h8!

1

11R~h8!
. ~7!

This solution has two parts: the transient whose amplitude
and phase is dependent on the initial conditions, and the
particular integral due to the forcing term. At the simplest
level, the transient solution corresponds to the contribution
from passive perturbations, while calculating the particular
integral represents the effects of active perturbations by a
convolution of the source term and the oscillatory terms
which represent the acoustic waves with the appropriate
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damping coefficient.1 The effect of Silk damping is clearly
different for the passive and active perturbations contrary to
the approach of Refs.@14,15#, since the damping length for
active perturbations depends on when the perturbation is cre-
ated.

In order to investigate the consequences of this effect on
the microwave background, we shall make a number of sim-
plifying assumptions. These assumptions allow simple calcu-
lations to be made, but the underlying physical principles
which we want to illustrate will remain. First, we assume
R'0, which will serve as an illustrative approximation in
the low baryon content universes predicted by big-bang nu-
cleosynthesis, since2 R(h* );30Vbh

2!1. Also we assume
only active perturbations, by ignoring the transient part of
the solution. Under these assumptions, the sound speed of
the photon-baryon fluid is 1/) and

Q̂0~h!5
)

k E
0

h
dh8e2k2/ks

2
~h,h8!sinF k

)
~h2h8!GH~h8!,

1

)
Q1~h!52

)

k E
0

h
dh8e2k2/ks

2
~h,h8!

3cosF k
)

~h2h8!GH~h8!, ~8!

where H(h)5k2(F2C)/3 and ks
22(h2 ,h1)

5(4/27)*h1

h2dh9/k̇(h9).

At this stage, we must attempt to specify the nature of the
source. This can be done using a structure function@21#, a
two-point correlation function of the source potentials, which
determines the wave numbers that are perturbed at a particu-
lar time. A simple example isx4F(x);d(x2xc), for which
a single wave numberk5xc /h will be perturbed at confor-
mal timeh. More realistic examples of active perturbations
will generate perturbations over a range of wavelengths. Of
particular interest in this context is the asymptotic falloff of
the structure function: for smallx causality@22# suggests that
F(x);const, whereas for largex the falloff is given by the
characteristic shape of the anisotropies created by a particu-
lar model. Cosmic strings form linelike patterns@19# leading
to x4F(x)5O(x22), whereas textures form spots implying
that x4F(x)5O(x24). For definiteness, we useF(x)5(x2

1a2)22(12bx1cx2)2n with a52.45, b50.12, c50.006,
andn51 or 2. If n51 the structure function may model a
cosmic string network@3#, while n52 will be described as a
texture model, although in reality the precise values ofa,
b, andc are likely to be somewhat different. These models
have been chosen to exemplify the possible effects of the

modified formalism, although they do have some relevance
for the realistic models which one eventually wants to de-
scribe.

III. SEMIANALYTIC ESTIMATES

For the purposes of this paper, we first concentrate on
calculating the power spectrum~denoted byP! of the intrin-
sic and Doppler contributions to the anisotropies, exhibiting
the differences between the simple exponential
suppression—described as the standard Silk damping
formalism—and the more accurate modified damping for-
malism described in the previous section. This allows the
study of the separate physical effects without confusion,
within a calculationally more simple and intuitive frame-
work.

In order to do this, one must specify the type of statistics
the source satisfies. A simple approximation often used is
to assume that the source is totally coherent. In this case
P(F2C)5h3F(kh) @2,3#, and hence the power spectrum
of the intrinsic contribution to the anisotropy is given by

k3P@Q01F#5
1

3 H E
0

x
*
)

dx x3/2@F~x!#1/2sinS x*2
x

)
D

3expF2
3x
*
2

h
*
2 ks

22S h* ,
xh*
x*)

D G J 2

, ~9!

as a function of the dimensionless parameterx*5kh* /).
However, if the source is totally incoherent then various
modifications to our understanding must be made@2#. In this
case,

k3P@Q01F#5
1

3 E
0

x
*
)

dx x4F~x!sin2S x*2
x

)
D

3expF2
6x
*
2

h
*
2 ks

22S h* ,
xh*
x*)

D G .
~10!

The difference between these two expressions is that the co-
herent approximation allows contributions to the anisotropy
created at times very much before the last scattering to can-
cel out, whereas the incoherent approximation prevents any
cancellations whatsoever, leading to the absence of second-
ary Doppler peaks@2,3#. Neither of the approximations is
likely to be a complete representation of the true physical
situation on all scales, although one may be dominant. Here,
we shall present results for both approximations, but the
reader should note that the texture models are likely to be
more coherent than string models.

One can investigate the effects of damping by evaluating
intrinsic anisotropy power spectra Eqs.~9! or ~10! for par-
ticular structure functions using a numerical integration rou-
tine and the simple model for the standard reionization his-
tory (V051,Vb50.05,h50.5) presented in Ref.@14#.
Figures 1~a! and 1~b! show the results for the coherent ap-
proximation. Both models have their first peak atx*;4
since that is only dependent on the coefficientsa, b, andc
which have been kept constant. If damping is included, dif-

1It should be noted that passive perturbations also create pertur-
bations at horizon crossing and hence the particular integral will
also contribute. However, it can be seen that a source creating per-
turbations on lengthscales close to the horizon size will lead to a
contribution close to being in phase with the initial conditions.
2This approximation ignores the effects of baryon drag@20#,

which lead to a power-law falloff in the power spectrum at small
angular scales.
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FIG. 1. ~a!. The effects of the modified damping formalism compared to the tight coupling solution and the standard Silk damping formalism for coherent
statistics. We plot the power spectrum of intrinsic component of the anisotropy on a log-linear scale. On the left, the tight coupling solution for the cosmic
string ~bottom! and texture structure~top! functions, in the center the standard damping formalism, and on the right the modified formalism. It is clear that the
modified formalism allows much more power to remain on very small scales, with a power law falloff. The logarithm is to base 10.~b!. The effects of the
modified damping formalism~dotted line! compared to the standard Silk damping formalism~solid line! for coherent statistics. We plot the intrinsic anisotropy
on a linear scale for, on the left, the cosmic string model, and on the right, the texture model. This exhibits the differences in the peak height for the secondary
peaks. Note that the scale starts atx*58, which ignores the first peak.

7364 55R. A. BATTYE



FIG. 2. The intrinsic compo-
nent of the anisotropy for incoher-
ent statistics using the same con-
ventions as Fig. 1~a!. Once again
the modified damping formalism
creates more power on small
scales. The logarithm is to base
10.

FIG. 3. The effects of the new
damping formalism on the Dop-
pler contribution to the anisot-
ropy. On the left, the tight cou-
pling solution for a coherent
~bottom! and incoherent~top! cos-
mic string structure function, in
the center, the standard damping
formalism, and on the right, the
modified formalism. Notice that
the difference between the stan-
dard and modified formalisms is
more obvious than for the intrinsic
contribution. The logarithm is to
base 10.
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ferences between the standard and modified spectra become
noticeable forx**10 and dominate forx**50; the effect
being very much stronger for strings since they create more
power on the very smallest scales. As Fig. 1~b! shows, the
peak heights are modified by an increasing amount asx*
increases, with, for example, in the cosmic string model, the
second, fourth, and sixth peak heights being increased by 13,
25, and 44%, respectively.

The decay of the spectrum is approximately exponential
for x*&50 as in the passive case, but with a slightly differ-
ent coefficient which leads to the modifications in the peak
heights. However, forx**50 the behavior of the spectrum
is very different: a power law decay with virtually no peaks.
This distinction can be understood by realizing that forx*
&50, a substantial proportion of the power is created before
the last scattering epoch and hence the spectrum experiences
almost the full effect of the damping, while forx**50 the
power is created during the last few oscillations of the radia-
tion fluid, preventing cancellations and hence peaks, with the
power law decay reflecting the largex falloff of the structure
function. The same features are seen in the power spectrum
for the texture model, but the modifications to the peak
height are smaller and the transition to the power law regime
is shifted to smaller scales (x*;60) since less power is cre-
ated on the smallest scales.

Figure 2 shows the equivalent spectra for the incoherent
approximation. The tight coupling solutions are now totally
devoid of any oscillations since no cancellations have taken
place. This seems to lead to a further shift in the peak to
about x*;8, due to perturbations created at earlier times

feeding into smaller scales. However, the general picture of
the modified formalism differing from the standard picture
for x**10 remains.

The power spectrum of the Doppler~or dipole! compo-
nent was also investigated by replacing the sine in Eqs.~9!
and~10! with a cosine. We have already commented that the
anisotropy on small angular scales is dominated by the last
few oscillations of the radiation fluid. Formally this corre-
sponds to around the region of the top limit of the integral in
Eqs.~9! and ~10!. For the intrinsic component the integrand
is zero at the upper limit, but the situation is very much
different for the Doppler component, which is totally out of
phase with that of the intrinsic component. It will never be
zero in the vicinity of the upper limit of the integral and
hence the effect is enhanced. Figure 3 illustrates this for the
coherent and incoherent string models. Of course, the Dop-
pler component is suppressed with respect to the intrinsic
anisotropy forR.0, but this will have significant implica-
tions for the spectrum of polarization and density perturba-
tions produced since they are created by the dipole anisot-
ropy.

IV. DISCUSSION AND CONCLUSIONS

Until now we have concentrated on the power spectrum
of the intrinsic and Doppler anisotropies. In order to calcu-
late the power spectrum of the total anisotropy, we first as-
sume that it is dominated by the intrinsic component, which
is likely to be a good assumption for angular scales between
1° and 18—although note the discussion of the increased
contribution from the dipole above. To deduce an expression

FIG. 4. The angular power
spectrum of the anisotropy due to
the ~dominant! intrinsic compo-
nent. On the bottom, a sample in-
coherent cosmic string spectrum
for the standard Silk damping ap-
proach~dotted line! and the modi-
fied damping formalism with a fi-
nite last scattering surface
~unbroken line!, which includes
the effects of cancellation damp-
ing. The top illustrates the same
spectra for the coherent string
model. Notice the changes in the
peak heights even on this log-
linear scale, and the power law
rather than exponential tail. The
logarithm is to base 10.
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similar to those provided in Ref.@14#, we must be careful to
include the effects of cancellation on small scales due to
finite width Dh* of the last scattering surface. This is
represented by the rapidly oscillatory nature of the spherical
Bessel function at largek. Averaging this effect
gives ^ j l@k(h02h)#&'(kDh* )

21/2j l@k(h02h* )# for k
*(Dh* )

21 and hence

Q l~h0 ,k!

2l11
5
)

k
j l@k~h02h* !#E

0

h0
dh8H~h8!

3sinF k
)

~h2h8!GD~k,h8,h0!, ~11!

whereD(k,h8,h0) is the equivalent of the acoustic visibility
function in Ref.@14#, given by

D~k,h8,h0!5E
h8

h0
dh k̇e2k~h,h0!e2k2/ks

2
~h,h8!, ~12!

for k,(Dh* )
21, and multiplied by a factor of (kDh* )

21/2

for k.(Dh* )
21.

Figure 4 shows a comparison between the standard damp-
ing mechanism and the modified damping mechanism for a
finite width last scattering surface (h* /Dh*'6) including
the effects of cancellation damping for the coherent and in-
coherent string models. We have assumed that the anisotropy

is dominated by the intrinsic component and have
used the simple relationl5kh0 to calculate (DT/T)2

}*dk k2uQ l(h0 ,k)/(2l11)u2. Although this calculation is
approximate, it shows the important differences of the power
spectra. It is clear that the level of anisotropy possible at very
small angular scales is much larger with the modified damp-
ing formalism.

To summarize, we have presented a simple, intuitive for-
malism to treat the effects of photon diffusion on the CMBR
due to active sources. Simple models for cosmic string and
texture scenarios illustrate that the effects of the Silk damp-
ing mechanism are somewhat different than previously
thought for scales smaller than the first acoustic peak, par-
ticularly in the case of strings. At this stage, we do not claim
quantitative accuracy, rather that we have illustrated an ef-
fect which must be taken into account when making com-
parisons between state of the art Boltzmann codes and semi-
analytic methods similar to those described here, and that it
should be included in future work.
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