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Radiative corrections to the muonium hyperfine structure. Il. The a(Z a)? correction
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This is the second of a series of papers on the radiative corrections of @ft®s), a(Za)?, and various
logarithmic terms of ordew*, to the hyperfine structure of the muonium ground state. This paper deals with
the a(Za)? correction. Based on the NRQED bound state theory, we isolated the term of wfdes)?
exactly. Our result+16.904 2 (11}(Za)?Eg/# for the non-logarithmic part is consistent with the
a(Za)? part of Sapirstein’s calculation and the recent result of Pachucki, and reduces the numerical uncer-
tainty in thea(Za)? term by 2 orders of magnitudgS0556-282(97)03211-4

PACS numbg(s): 36.10.Dr, 06.20.Jr, 12.20.Ds, 31.30.Jv

. INTRODUCTION R.. is the Rydberg constant for infinite nuclear mass, and
m and M are the electron and muon masses, respectively.
Now that thea?(Za) correction to the hyperfine splitting The presence of @) factors is due to the near infrared
of the ground state muonium is known very accurately be{IR) structure of the loosely bound state. The coefficients of
cause of recent workgl-3|, the previously calculated [n%(Za)! and In€e)~* terms were obtained by Layz8]
a(Za)? term has become one of the main sources of thesnd Zwanziger[9] independently. Brodsky and Erickson
remaining theoretical uncertainty. Improvement of this erroif10] confirmed these logarithmic terms and gave the leading
is urgently needed in view of the new muonium hyperfinecontribution of the nonlogarithmic term. Sapirstein reported
measurement in progrep4]. HereZ is the “‘atomic” num-  the numerical evaluation of the nonlogarithmic constant due
ber of the nucleus. Of courge=1 for the muonium, butitis to the radiative photofil1]. For convenience’s sake, we re-
kept to indicate the bound state origin of the correctionfer to this nonlogarithmic constant of thgZ«)? correction
terms. In this paper, we present théZ«)? radiative correc-  as the Brodsky-Erickson-SapirsteiBES) term.
tion evaluated in the nonrelativistic QEMIRQED) bound To compute the BES term, Sapirstein started from the
state formulatior[5], which is as fully relativistic as QED relativistic bound state formalism and evaluated the entire
itself but is adapted to the nonrelativistic situation. a(Za)? term numerically. In his approach, only the double
The previous evaluation of this term, including recentlogarithmic term was confirmed by varying the *‘atomic”
modifications[3,6], gives numberZ. Since the logarithmic term is a consequence of the
near IR singularity of the bound state, the convergence of
numerical integration worsens in the region of small momen-
a(Za)?) 8 tum. The uncertainty in the BES term comes mainly from
[— §In2(Za)‘1 this difficulty in the numerical integration. Note also that his
result contains terms of higher ordersda.

Av[a(Za)?]=Eg

™

8 37 8 Our calculation of the BES term starts from the NRQED
| mgindt gt In(Za)™* formalism proposed by Caswell and Lepadd. This ap-
proach enables us to isolate théZ«)? term without being
tangled up with higher order terms iba: All these terms

+14.8829) |, (1) arise from different parts of the NRQED Hamiltonian. The

leading logarithmic contribution is analytically separated.
The small photon mass is used in our approach but the
where the Fermi frequendy is defined by[7] dependence can be easily identified and analytically sub-
tracted in the numerical evaluation of each diagram. This is
important for reducing the computational error of the BES

16 _3 term.
E—22cr MM 5 Aside from the factof &(Za)?/ w]Eg our results for the
= o CRoo + ( ) . . . 4 ..
3 M M vacuum polarization contribution and the radiative photon

contribution to the BES term are
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and tion in Ref.[10] as was mentioned in a previous papal.
The detail of thex(Za)? correction due to the radiative pho-
ton on the electron line is described in Sec. V. Section VI is
AEgesp=17.122711), (49 devoted to the discussion of our result. Some details of cal-
culations are given in Appendices A and B.

respectively. Our final result for the totalZ«)? correction
is
Il. OUTLINE OF THE NRQED METHOD

The NRQED is a theory with a finite UV cutoff, which is
[— =In?(Za)? completely equivalent to QED when it is applied to low-
3 energy systems with typical momenta less than the UV cut-
off A. The NRQED Lagrangian consists of operators which
4 satisfy the same symmetries as the QED operators except
In(Za) that they satisfy Galileian invariance, although the final ob-
servable results of calculation are Lorentz invariant. Fermi-
ons are represented not by Dirac spinors but by Pauli spinors.
(5) The NRQED Lagrangian can be divided into two parts: The
main partL ., consisting of fermion bilinear operators mul-
tiplied by up to two photon operators or pure photon terms
The BES term has also been evaluated recently by Pachuc&ihd the contact interaction pakt.,nac involving four or
[12] using the method he developed for héZ«)®m Lamb  more fermions. Both parts of the Lagrangian are determined
shift correction[13]. His result for the radiative photon con- by the following simple rule: The operators which appear in
tribution is its Lagrangian and their coefficients are chosen so that any
scattering amplitude calculated in the NRQED coincides
with the correspondingcatteringamplitude of the original
AEggspr=17.122. (6)  QED at some given momentum scale, e.g., at the threshold
of the external on-shell particles. This matching condition is
applied order by order to the expansion in the coupling con-
Although this is in good agreement with our resil, there  stanta and velocityv of the external fermion. The Coulomb
remains some disagreement in the details. This will be disgauge is used in the NRQED, while the Feynman gauge is
cussed in Sec. VI. more convenient to compute the QED scattering diagrams.
In Sec. I, we briefly describe our approach, namely theReaders interested in NRQED may refer to RE#s15-18.
NRQED method, to the bound state problem. A more de-The precise description of the NRQED Hamiltonian can be
tailed prescription of NRQED is found in Reff3]. In Sec.  found in Ref.[3]. After determining all operators and their
I, the well-known Breit Z«)? correction[14] is rederived  coefficients to the desired order of velocityof the electron
from NRQED. This calculation, multiplied by an appropriate and the coupling constanrt, we evaluate the energy shift,
“‘renormalization” factor, actually provides a part of the etc., using the Rayleigh-Schdimger perturbation theory,
a(Za)? term. It also serves as a prototype of the calculatiorchoosing as the unperturbed system the exact solution of the
of the entirea(Za)? correction. In Sec. IV we derive the nonrelativistic Schrdinger Coulomb system.
a(Za)? contribution arising from the vacuum polarizaton ~ The main part of the NRQED Hamiltonia},.;, needed
insertion. We uncovered a mistake in the previous calculato compute thex(Z«)? correction terms is of the form

Av[a(Za)?]=Eg

a(Za)?
iy
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Whereﬁ and 5’ are incoming and outgoing electron mo- HereA' is the UV cutoff of the transverse exchanged photon
momentum. Note that, when the(Z«)? part of Eq.(10) is
evaluated in the first-order perturbation theory, it gives the
a(Za) correction to the hyperfine splitting of the ground
state muonium calculated by Kroll and Pollo¢kP), and
Karplus, Klein, and Schwingdrl9]. For brevity, let us call

menta, respectively, anﬁi is incoming photon momentum.
The superscripfA in Hﬁqain indicates that the theory is regu-
larized by the UV cutoffA for the radiative photonA may
be less tharm. The ‘“‘renormalization” coefficients in Eq.

(7) are the a(Za) correction the KP correction. The coefficients
ce=1+a,, d@, ... d® of the a(Za)® part of Eq.(10) are pure num-
bers. These are the quantities that we want to calculate in this
_ a8 m 3 paper.
co=1+ N5/ — g+ 5|t 2. The Green’s functiofGy(p,q;E) appearing in this calcu-
lation is known in an exact closed form for the nonrelativis-
cs=1+2a,, tic Coulomb potential20]. For an arbitrary energi in the
complexE plane this function takes the form
CW: 1,
_ s s 2m 33> = —2m
_a4| m 3+5+1 L Go(p,Q;E)=—W(27T) b\g(p—q)+m
“=73"M2a) 876 4 2 0 0
—47Za —2m 64 F,)(e - E)
Cprp=2ae, S =5 = A R~(P.Q:E),
PeE lp—al? g*+p5 ¥'(Ze)
@ 11
Cvp=15," 8 1D

where
The first term in Eq(7) is the nonrelativistic kinetic energy
term. The rest are named successively as Coulghbela-
tivistic kinetic energy, dipole coupling, Fermi, Darwin,
seagull,W- (wave function derivative Fermig? derivative
Fermi, andp’p coupling, respectively. The last two terms and
bilinear in photon operators are introduced to represent the .
vacuum polarization insertion in the transverse and Coulomb~ - - _ Y Po 1
photon propagator, respectively. R(p,q,E)—(52+p2)(a2+p2)f
For the muon line, only the Coulomb and Fermi terms are 0 0
needed for the calculation of the(Za)? correction. They p
are obtained by replacingandm of the electron interaction X—= = = .
terms by—Ze gnd IF\)/I , re:?pectivel)f. 4plp—al?pg+ (1—p)*(P*+P3)(a°+ P)
As for the contact part of the NRQED Hamiltonian (13
H2 ace ONly the spin-flip type is needed:

pi=—-2mE, v=-—, (12)

0

The first, second, and third terms of H41) correspond to
A 1 . . zero, one, and two or more Coulomb-photon exchanges. For
H contac™ _dlm(‘ﬁ o) (X ox), ©) E=Ey—k, whereE, is the ground state energy akds the
energy of a radiative photorp,% may be written as
wherey is the Pauli spinor for the positive muon addcan

be written as p5=—2m(Eo—k) = y?+2mk (14)
) 13 3 We calculate theZ«)? and a(Za)? corrections in the sub-
—th=a(Za) T3 '”Z_Z"'Z sequent sections using the NRQED Hamiltonian and the
Green’s function given above.
2 Am A
35 43+ @2 =
+a(Za) B{d [(Zaymp a7 (m) l. THE (Za)? CORRECTION
A’ A’ In this section, we rederive the well-known Brei )?
+d¥In| = +d(0)+d(4)(Za)m+ d(s)m(ﬁ) : relativistic correction[14] from the NRQED in order to il-

lustrate how it works, particularly, how the contact term
(100 HontacidS constructed. The first computation of the Breit term
in the framework of the NRQED was carried out in Réf].
In a previous papdi3], we have shown that bota(Z«) and
The termg, X A(q,) in Egs. (53) and (55) of Ref. [3] must be ~ @?(Za) corrections come from the first-order perturbation
replaced byg, X A(q;). theory of theH 2 ..which represents the difference between
2We use the convention that the electron charge iand the the QED scattering amplitude and the NRQED scattering
positive muon charge is Ze. amplitude calculated frorhi %, alone. In contrast, the con-
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tact term calculated here is derived entirely from the . iezﬁx (;e ize(—K)X o

NRQED scattering amplitudes. Their presence is crucial to Vg(p',p,q)= — - £

cancel the UV divergence occurring in the bound state cal- 4m 2M

culation of the operators in the ... More importantly, the _

calculation carried out in this section immediately yields a X——(—26) —,

part of thea(Z«)? correction if one takes account of appro- k?+\? q°+\?

priate ‘‘renormalization” constants of the potentials. We -

must make sure that this calculation is consistent with the (v >~( @)y ~(Za)6mm (19)
calculation of the other parts of th&(Za)? correction. This S m?M M

is why we want to rederive the Breit correction by the . .
NRQED method, not by other bound state formalism. wherek andq are the transverse and Coulomb photon mo-
menta, respectively.
] ) One must also consider possible contributions from
A. Diagram selection higher order perturbation theory. The second-order perturba-
The first task is to identify the potentials contributing to tion term has the form
the Breit Za)? correction. This can be achieved using the
order of magnitude estimate of various operators appearing 5E=< Vo1 V(éo— |¢n1><¢n1|>v‘ " _1>
in the H2 i, of Eq. (7) [16]: " E-ES_, " o

(9)~m(vlc), (a)~m(vlc)?, (eA)~m(v/c)? :z<</fn=1|V|t//k><wk|V|t/fn=1>

0 0
k#1 En:l_Ek

. (20)

(eA~m(vic)®, (eBE)~m2(v/c)®, (eB)y~m2(vic)?,

Since the denominatde’— E? is of order €«)?m, one po-
(15) n k

tential must be of orderZa)*(m/M)m while the other is of
order Za)*m in order thatSE contributes to the Breit cor-
where @/c)~(Za). For example, for the Coulomb potential rection:

between the electron and the muon

(Za)*(mM/M)m(Za)*m gm
g SE~ Za)2m ~(Za) v (21
Vc(ﬁ' ,5)5 m (160 This can be realized only if one is the Fermi potential and the

other is an order Za)*m spin-non-flip potential. We find
two candidates for the latter: the relativistic kinetic energy
where k=p’—p, we have(Vc)/m~(v/c)®~(Za)?. We term

will set the photon mask to zero in the bound state calcu- >, o - 33> 2
lation. Vi(p',p)=Vk(p)(2m)*5*(p—p’)

Since the Fermi potential (52)2 L
=~ gmg 238 (p—p"),
Vei 5)E—iel2><(;e. izZe(—K)x o, -1 7 X
’ 2m 2M k21 )2 (VK>~%~(Za)4m, (22)

has an expectation value of ordeZ«)*(m/M)m, one and the Darwin term
source of the BreitZa)?Eg correction is the first-order per- .
turbation with the orderZa)®(m/M)m potentials. All po- .. ek

tentials of this type must have the spin-flipping property in Vo(p'.p)= 8m? (=Z¢) ZENE

order to contribute to the hyperfine structure. One of these

potentials is theN-derivative Fermi term in Eq(7) which (Za)y?

yields the potential (Vp)~ —mz—~(Za)4m. (23

—ie(p prokx e iZe(—K)xa, —1 The third- and higher order perturbation terms do not con-

S Ay = tribute to the Breit correction.
VW(p 1p)_ 8m3 M |22+)\21
B. Determination of the NRQED contact terms
(Za)y® ,m We have identified the NRQED potentials necessary for
(V) ~ gy~ ~ (Za)> iy m. (18 the calculation of the Breit correction, namely, the Fermi,

derivative Fermi, seagull, relativistic kinetic energy, and
Darwin terms. The next step is the determination of NRQED
Another contribution comes from the seagull term contact terms corresponding to these potentials. The contact
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terms of spin-non-flip type contribute to the hyperfine split-

. . . 2 phot h.
ting calculation only through the second- or higher order (®) 2 photon exchange

. . QED NRQED
perturbation terms, analogous to the case of the Darwin c D)
relativistic kinetic energy potentials. However, there is no Q g’ i g !
(Za)*m contact term of the spin-non-flip type. The lowest ° %“‘ % °T e 8% § ot o 2% ot o %“‘ ot
order spin-non-flip contact term is of orde¢Z«)°m, which : R R
gives the relativistic binding correction to the Lamb shift. ® @ —
Therefore, we have only to consider the NRQED contac o BTk | ot o %Tko +
terms of spin-flip type: 5 i3
1 (b) 3 photon exchange
M=ty (o) (o). (@4 P, N

In the following the muon is treated as an external static 5
photon source since the infinite muon mass limit is taken ~ ~ S
However, the method of the contact term determination fol . i o ¥ . i SR I A R
the dynamical muon case is essentially the same as the sta g g g |
case and the latter can be readily adapted to the former. ? ? v

As was explained in Ref3], the contact terms are deter- & g O
mined by comparison of QEDcattering amplitudes and ° 8 ot o RN R
NRQED scatteringamplitudes. The lowest order diagrams 3 ? 13
contributing to the contact term relevant to the Breit correc- . @ o
tion is the two-photon-exchange process between the ele: A P O b o
tron and muon, namely, one-loop process. In order to con § %2;3

tribute to the Breit correction, at least one of the photons

must be transverse. The exchange of two transverse photons ] ] )
results in a recoil-type correction proportional tm/(V)? FIG. 1. Comparison of the QED and NRQED scattering ampli-
and is not of interest here. That leaves diagrams with Onéud(_as. The _smaII circles on the edges of each diagram indicate that
transverse photon and one Coulomb photon. In QED, there R diagram is evaluated on-the-mass-shell and at the threshold of
one diagram witley' andey° vertices. NRQED intera'ction external fermion;. Th.e Shf’ided circle @ is a contact term. Th.e
terms which give, in théound state:alt‘;ulation higher order doubly shaded circle ifb) is a contact term, too. A wavy line is
contributions tha7n the order we are interes7ted in are to bcovariant photon in the Feynman gauge, a curly and dashed line are

. . . . i . ansverse and Coulomb photons, respectively, in the Coulomb
ignored in thescatteringamplitude comparison. This reduces gauge. The muon is treated as the static external source and indi-

the relevant NRQED scattering amplitudes to the followingcateq by a dot. For NRQED electron vertices, consult the NRQED
five combinations: a Coulomb potential with a Fermi poten-reynman rules given in Ref3].

tial, a Fermi potential with a relativistic kinetic energy term
and a Coulomb potential, a Fermi potential with a Darwin|ation is not gauge invariant, the gauge invariance can be

potential, a Coulomb potential with a derivative Fermi po-egiored if one chooses appropriate contact terms. What is
tential, and a seagull potential. The first four are given by the,,cia| is that the regularization method of the contact term

second-order perturbation theory of the NRQED Hamil-ig consistent with the bound state calculafiati]. We satisfy
tonian and the fifth is from the tree NRQED Hamiltonian. iiq requirement by introducing an UV cutoff in the mo-

These five together determine the contact terms represent&thtum of the transverse exchanged photon in both the con-
by the shaded circle in Fig.(d). Only thep®/2m part of the 3¢t term calculation and bound state calculation.

NRQED Hamiltonian is treated as an unperturbed system for 114 NRQED scattering diagrams can be easily written
the scattering perturbation theory. In other words, the Cougqawn using the NRQED Feynman rule given in Fig. 3 of
lomb potential appears as one of perturbative potentials ifxef [3]. Against the relativistic kinetic energy term this rule
this comparison. The comparisons are shown in Fig). 1 leads to the contact term of the form

In this case the QED scattering amplitude at threshold is
completely replicated by the NRQED scattering amplitude N
consisting of a Coulomb potential and a Fermi potential. \, :_Zf ﬂv 0 E\—va (E)_va (K,0)

Thus the contact term must be chosen asiaus signtimes lek (2m)3 TFT g2 UK k2 T
the sum of the remaining four NRQED scattering ampli- (25
tudes.

The one-loop contact terms determined in this comparisoiere the factor 2 is to take account of the time-reversed
are all linearly divergent and hence their values depend odiagram. The contact terms against the Darwin term, deriva-
how they are regularized. Although a gauge invariant regutive Fermi term, and seagull term can be similarly con-
larization method is desirable, it is possible in this case tastructed and evaluated. Explicit evaluation of E25) and
use a simple momentum cutoff. This is because, as we shadther terms is carried out in Appendix A.
see in Appendix A, calculation of theound stateexpecta- Next we consider the three-photon-exchange process, or
tion value also leads to a divergent integral and must béwo-loop one, shown in Fig.(b). This requires adding one
regularized. Even though the regularized bound state calcunore Coulomb photon exchange potential to both QED and
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NRQED amplitudes of the two-photon-exchange type. Add-other kinds of potentials, are logarithmically divergent in
ing another type of potential of NRQED, such as the Darwinboth UV and IR regions and will kill UV divergences in the
potential, is not necessary since it gives a power ofbound state calculation. Others are linearly divergent in both
v?~(Za)? higher than what we are interested in. However,UV and IR. These diagrams have the structure such that one
it is necessary to consider new kinds of scattering ampli-Coulomb photon potential is added to the edge of one-loop
tudes, which are the combinations of the contact terms introlinear UV divergent diagrams proportional #/m intro-
duced in the two-photon-exchange comparison and one Cowluced in the two-photon-exchange comparison. The addi-
lomb photon potential. Again, the QEpeft-hand side of tional Coulomb photon on the edge yields the threshold IR
Fig. 1(b)] contribution is equivalent to the first diagram of singularity causing the term to be proportionahtfi\ , where
the NRQED contributionfon the right-hand side of Fig. X\ is the photon mass introduced as the IR cutoff. The mul-
1(b)]. Thus the contact terms are determined by the rest dfiplication of the UV and IR divergences results in the form
the NRQED scattering amplitudes. Processes with four oA/N. The UV-IR singularity A/N appearing in these dia-
more photon exchange clearly have more explicit powers ofjrams is completely canceled out by the diagram which con-
Za, yielding higher order contact terms. Thus we do notsists of the one-loop contact term introduced before and the
have to deal with them as far as we are interested only in th€oulomb photon potential connected by the free fermion
(Za)? Breit correction. propagators.

Some of the two-loop contact terms, which have a Cou- Here we show one of the two-loop contact terms against
lomb photon exchange potential sandwiched between twthe relativistic kinetic energy term:

A dk [ d? . —2m .. -2m_ _-2m_
VZC_k(1)=—2 (ZT):SJ WVF(O,k)?Vc(k,I) I_.Z VK(I) I_.Z Vc(l,o) (26)

Other contact terms related to the relativistic kinetic term in this order are presented in Appendix A. The pdiential is
logarithmically divergent. Other terms are linearly divergent.

The contact term against the combination of the one-loop contact term and the Coulomb potential, which we denote with
the suffix 1loop, is also linearly divergent and is given by

A d3k ddl . —2m_ . -2m_ . —2m_ .
V207k,ll00p2:4f (2,”_)3 (277)3VF(0!k) EZ VK(k) |22 VC(k10) I—>2 VC(Iuo) (27)

Other two-loop contact terms involving the Darwin, derivative Fermi, and seagull terms are given in Appendix A.

C. Summary of the (Za)? correction

We have prepared the nonradiative NRQED Hamiltonian, including the contact terms, up to theZardfényM)m:

P2 Za e . . (p?? e§~§+e{§2,5e~§} e?c-AXE

At P24 F e s
Hiroeo= ¥ {Zm r Jr2maeB 8m®  8m? 8m?® 4m?

1 - -
y—di— (Ploe) - (X o,.x).
(28)
The contact term coefficiertt; is calculated in Appendix A. It is the sum of the contributions from the relativistic kinetic
energy, Darwin, derivative Fermi, and seagull terms:

2
—d1=(Za)3§7T

A A A A 1
—2——2In| — | —4In2+6In3+ —+In| —| +2In2—3In3+ =
v N v N 2

A A A 1
+2—+4In2—4In3— —+In| —| —2In2+In3— =|=0. (29
vy vy A 2
The value ofd, could vary for different regularization meth- Using the nonrelativistic Coulomb system as the unper-

ods. Althoughd; adds up to zero in our regularization turbed system, we can now calculate the binding effect,
method, this does not mean that we do not need the contanamely, the Breit hyperfine energy correction in perturbation
term. The finiteness and gauge invariance of the final answeaheory. The results are summarized here as terms propor-
are guaranteed by the presence of this contact term in indtional to the Fermi energyer. AE,, AE4, AE,, and
vidual terms. AE; are the contributions from the relativistic kinetic energy,
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FIG. 4. Derivative Fermi term diagrams.

which is the well-known Breit correction. Note that the IR
singularities Ink/y) cancel out when all diagrams are

FIG. 2. Relativistic kinetic term diagrams. The angular bracketsq;;mmed up. In Appendix A, we show details of derivation of

indicate that the diagram is evaluated with the bound state wav

these terms.

function. The contact term diagram is shown in the right below the We have shown how the NRQED bound state formalism

corresponding bound state. The time-reversed diagrams are n
shown.R in (&) represents a two- or more photon-exchange part o

the Coulomb Green'’s function.

Darwin, derivative Fermi, and seagull terms, respectivel

(see Figs. 2-p

AE=Eg(Za)?

1 2 N }
—§—6|n(§ +2In(;) , (30

ol
il e

ol

AE4=Er(Za)?

AE,=Eg(Za)?

AE=E((Za)?

} , (33

wherey=Zam is the typical momentum scale of the muo-
nium in the infinite muon mass limit, and is the photon
mass which is set to zero at the end of the calculation. The

sum of Eqs(30)—(33) gives

3
Av[(Za)2]=EE,:(Za)2, (34)
‘@Il;*— <
5 i 5
@ ® ©
) T
o = =] (<] a o
10O % O g
@ ©
~XT e ~§k T
o Bl . o 121 o B ol
-00f § 1 | LOE wor § i |
® © )

FIG. 3. Darwin term diagrams.

orks using the well-known Breit correction to the muonium
hyperfine structure as an example. As we have seen, the con-
tact term in NRQED plays the crucial role: it describes the
high energy behavior, recovers the symmetry, such as Lor-

Yentz symmetry and gauge invariance, and kills the would-be

IR and UV divergent quantities.

IV. THE @(Za)? VACUUM POLARIZATION
CONTRIBUTION

The ordera radiative correction in thex(Za)? term
comes from two sources: One is from the vacuum polariza-
tion insertion in one of the exchanged photons between the
electron and muon and the other is from the spanning photon
on the electron line. They are separately gauge invariant. In
this section, we will deal with the contribution coming from
the vacuum polarization insertion.

The result of our numerical evaluation of the vacuum-
polarization contribution was

2
AV[Q(ZQ)Z]VP:@EF

8 [m
(39

where the error comes from the numerical integration. The
error associated with the finite photon mass, which was used
as an IR regulator, is of order/m, hence negligible for the
caseN/m=10"°. Our result, Eq.(35), disagreed with that
obtained by Brodsky and Ericksd@Ol:
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FIG. 5. Seagull term diagrams.
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This term actually consists of two parts. One corresponds t
the vacuum-polarization insertion in the Coulomb photon,
and the other is insertion in the transverse photon. Our resu
for the first part agrees with the corresponding result of
Brodsky and Erickson. For the second part, however, we
found —0.801(4) instead of-2/3 in Eq.(36). In an effort to
determine the cause of the discrepancy, we have analytical
evaluated the integral expressing the vacuum polarizatio
contribution, given by Zwanziger in Ref22]. Our subse-
guent analytic work showed that the contribution for inser-
tion in the transverse photon is4/5, in agreement with our
numerical result. Using this corrected value, the numerica
value of the nonlogarithmic part & v[ a(Za)?]\p becomes
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Er(—0.218 56 ...). 37) FIG. 6. Vacuum-polarization diagrams contributing to the

a(Za)? correction.

Since we found the error in the calculation of REf0] (in

June, 1994 Sapirstein has also noticed it independentlytion comes from the first-order perturbation of the spin-flip

[23], and Brodsky and Erickson have agreed with the corpotentialVnp of Eg. (38) and from the second-order pertur-

rected valudg 24]. We were also informed by Karshenboim bation involving the spin-non-flip potenti&lcyp of Eq. (39)

[25] that the same result was independently obtained bwnd the Fermi potentiaV/z. The UV divergences in both

Schneider, Greiner, and Sd26]. bound state calculations are taken care of by the correspond-
Let us briefly describe the NRQED evaluation of E8p). ing contact terms derived from the scattering amplitudes of

The terms relevant to the calculation of the NRQED Hamil-these NRQED potentials. The sum of two contributions is

tonian (7) are the Coulomb, Fermi, and two-photon interac-found to be

tion terms. Combining these three interaction terms, we can

construct the effective spin-flip and spin-non-flip potentials: a(Za)®> 8 A 15 5
NRQEDVPZ—E,:l— In ; —9In2+ ?In3— 2l
m(Za) q° 40

TVP= WCVPHZ(¢TqXUe¢)'(XTqXUMX)

hE The remainder is a part of the’.,..,coming from the
X (38 QED scattering amplitude. The three-photon-exchange dia-
(g°+A%) gram with one vacuum-polarization insertion contributes to
and this order. Since, at the two-photon-exchange level, we have
R introduced the contact term in NRQED Hamiltonian repre-
B wla " N 4 senting the vacuum polarization effect of th€Za) KP
Veve=— mZ2 Ccve( ¥ ) (x X)(C?Jr—)\z)zl (39 term, which is the- 3/4 term on the first line of Eq10), we

must also take into account the contribution of this term in

respectively. We will construct the contact term of theevaluating the NRQED scattering amplitude. The NRQED
NRQED Hamiltonian of Eq(9) by comparing the QED and scattering diagram with the Kroll-PolloalKP) contact term
NRQED scattering amp"tudes using the same recipe as fd}onnected with the Coulomb potential by the free electron
the Breit correction discussed in Sec. Il. In this case bottPropagator should be subtracted from the QED scattering
QED and NRQED scattering amplitudes contribute to thedmplitudes. Their numerical value, for the photon mass
contact term.(See Fig. 6. We evaluate the effect of these Am=10"°, is

potentials using the nonrelativistic Rayleigh-Salirmer

i 2
perturbation theory. B a(Za)
To see the UV and IR cancellation of the calculated re->Eeove= Er[5.520 7429)]
sult, however, it is more convenient to decompose the con- (Za)? o
tribution of H2, ..into several parts. The detail is described alca (m)
. . . - = Eg| —=In| —|—0.619 4929 |. 41
in Appendix B 1. In this treatment, the bound state contribu- iy Fl15 n A 0.619 4329) (42)
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between the bound state calculation of the operators from the
HA .. and the corresponding part of the contact term derived
from the same operators. For simplicity we omit the overall
factor[ a(Za)?/w]Eg in the following. This means also that
the anomalous magnetic momext stands for 1/2.

One contribution, denotedg, where B implies the
bound state effect, is the third-order perturbation with two
dipole couplings and one Fermi potential from the main part
of the NRQED HamiltonianHZ ;.. (See Fig. 7. The radia-
tive correction of ordera comes from the presence of an
intermediate virtual photon. For this calculation, we use the
Coulomb Green’s function in the presence of a photon with
energyk obtained from Eq(13). The UV cutoff A is im-
posed on the radiative transverse photon momentum. All UV

FIG. 7. Diagrams relevant to the NRQED bound state contibudivergent parts and some finite parts are analytically calcu-

tion Eg of the a(Za)? correction.

The sum ofA Enrgepve @Nd A Eqepyp gives the result of Eq.

lated. The remaining finite parts are numerically evaluated
using VEGAS [27]. The results are listed in Table I. All rel-
evant formulas are given in Appendix B 2.

(35). The cancellation of the photon mass dependence_be- The second contributioBg comes from the contact inter-
tween AEnroepve @and AEqepyp has been checked numeri- action part ofH .oniac COrresponding to the bound state cal-

cally using various values of. Of course Eq(35) is super-
seded by the analytic result which incorporates 63).

V. THE a(Za)? RADIATIVE PHOTON CONTRIBUTION

culation of Eg. The NRQED scattering diagrams with two
dipole couplings and one Fermi potential yield this contact
interaction term in NRQED(See Fig. 8. The UV cutoff A

is also imposed on the radiative transverse photon momen-
tum. The calculation is entirely analytic. The results are

More challenging is the radiative photon contribution to listed in Table II.

the «(Za)? term. The sources of the(Za)? correction

have been discussed in REB]. Starting with the main part

The third type of contributioieg, whereR stands for the
“R”enormalization constant, is found in the first- and

of the NRQED Hamiltoniari7), we can construct the contact second-order perturbation terms with the potentials which
termH % ace Then we find four types of contributions to the give the Za)? correction. These potentials are found using
a(Za)? correction in the bound state perturbation theory.the analog of the method of the Brei ¢)? correction. In
The manifest cancellation of UV and IR divergences occurshis case, the radiative correction of ordeccomes from the

TABLE I. Bound state contibutiofEg of the a(Za)? correction from individual diagrams shown in Fig.

7. The overall factoEra(Za)?/ 7 is omitted.

Diagram Contribution
Boo 16 \/m 3 [2Am| 3 3
—E 7— Zln(7 +§In2— L—J
Boy 16[1 ,(2Am 1) (2Am| 1 oy T
—?{Zln (7 +| —=In2— Z)In(7)+éln2+ln 2+€
Bo2 16[13 [2Am| 49 13 ﬂz
- Eln(T)_l_Z_ ZInZ—E
Bio 8[1 ,(2Am 1\ (2Am o ™ 3
3 Zln (7 + —3In2+§ In(7 +In2+3In“2+ 3 E}
Bu 8/7 1\[ (2Am
3ls™ E) In 7)—1}—10.499 47861)
Bi2 8/ @ 9\[ [2Am
5(— 5 Z) In(7)—1}—5.393 04255)
Bao +0.761 64852)
B2 +0.491 19242)
B2 +0.221 86136)
Bao 8[1 (2Am| 1 5
_é Z|n(7)—§|n2— ﬂ]
Ba1 —0.316 379(13)
B2 —0.116 135(19)
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66 (12 C Cp,
e TR TTET 95T — %
2| o: §° o: 230_0 3 0_03 EEO 3 zo= a :o
COU R - A - Y 2 O
H ? H 1) 9 k) .l 9 L 94
So Sta St Sie (a) (b)
R % (5%,
! é‘ T 35 Pl § FIG. 9. Diagrams relevant to the ‘‘renormalization” constant
SIS RN B RS B contibution Ex of the a(Za)? correction. Only the diagrams in-
- A v volving p’p interaction term are shown here. For other terms, see
Sw Sy Sm Figs. 2, 3, 4, and 5.

_ FIG. 8. Diagrams relevant to the NRQED scattering state conp’p interaction term are shown in Fig. 9. The formulas for
tibution Es of the a(Za)? correction. both contributions are listed in Appendix B 2. The result of
Er evaluation is summarized in Table Ill. All terms propor-

““renormalization” coefficients of ordeir of these poten- tional to Ir’(Za) and InZa) can be obtained fronkEg and
tials. The UV cutoffA’ is imposed on the exchanged trans-E,. We find

verse photon momentum. Thi&’ cancels out when the

bound state calculation is completed. Some of these contri- 5 8 3 m?
butions are already calculated in Sec. Il concerning the Breit (AB)n=—3In% —]+ 3 —In2+ Z]In| —

. N L 2T Y Y
correction. For the contributions from the relativistic kinetic
energy, Darwin, and the seagull term, we only need to mul- 8 11 m| 7 m
tiply Egs. (30, (31), and (33 with the appropriate 3 52N M 5 aeln 5/ (43)

“‘renormalization” constants given in E@8). The diagrams
for these contributions are shown Figs. 2, 3, and 5, respeavhich agrees with the known result by LayZ8t and Zwan-
tively, and the formulas are given in Appendix A. For in- ziger[9]. Here, the Ing?/+?) term is related to the IR behav-
stance, the contribution associated with the Darwin term isor of the radiative photon and the m(y) term comes from
given by the threshold singularity due to the exchanged Coulomb pho-
ton. The double logarithm fim/y) is a consequence of si-
A&y=(cpCr—1)AEy, (42 multaneous presence of both types of contributions.

The last type of contributiofEg comes from the contact
since it involves both Darwin and Fermi terms. The remain-term of the NRQED Hamiltonian which is calculated from
der, the contributions associated with tifederivative Fermi  the QED scattering amplitudes exchanging three photons be-
andp’p interaction term, requires new calculation. The dia-tween the electron and the muon, dressed by one radiative
grams of theg? derivative Fermi term are analogous to the photon on the electron line. From this one must subtract
derivative Fermi term shown in Fig. 4. The diagrams of thediagrams which are the KP contact term combined with one

TABLE Il. Scattering state contributioBg of the a(Za)? correction from individual diagrams shown in
Fig. 8. The overall factoEga(Za)?/  is omitted. Li(1/3)=0.366 213 29 . . . is thevalue of dilogarithmic
function Li(x) at x=1/3, where Lik)= — [odt[ In(1—t)/t].

Diagram Contribution
So 16\/%
3V
Sia 16[1 ,(2Am 2Am\ 1 - (1
3 Zln (v)fln3ln(v)+iln 3+ Z+LI(§”
S1p 16 \/m 2 2Am| 1 (1
?[2 TJF In§—l In(v +§In 3+Li 5”
Sic 16 2Am [ 2 3| (2Am| 1 | 3 (1
3{2 2 + |n§_§ In(v +§In 3+4In2—§+L| 5)}
Sig 16 [2Am 2Am
§{4 Tr+3ln(—)\r>2}
S 8[1 ,(2Am 1)\ [2Am
~3 Zln (T)+(—2In2—ln3+§ In T)
@ s 5., 8 7
+Z+5LI 3 —2In 2+§In 3+ §In2+ln3——
Sm 8[{ 1 1) (2Am| #* 3 (1} 3 , 2 1
—é[(—EInSJrE In 7)—2—4+§L| 3 +Zln 3—§In2+zln3—l}




55 RADIATIVE CORRECTIONS TO THE ... .1l ... 7277

TABLE Ill. Renormalization constant contributioBg of the TABLE IV. The QED scattering state contributidy, for vari-
a(Za)? correction from individual diagrams shown in Fig. 9. The ous photon mass. The corresponding diagrams are shown in Fig.
overall factorEra(Za)? = is omitted. 10. The overall factoEa(Za)?/ 7 is omitted. The uncertainty of

Eg is from numerical integration byEGAs.
Diagram Contribution
AE, > e m 1 A2/m? Eo Eo— (EQ)in Uncertainty inEq
{SI%—IH(;) 355 g+28ta. 10°° —90.0751 -8.6971 0.0024
A&, 1 5 N 10755 —107.9438 —8.7078 0.0033
— =—6Inz+2In —) a 1078 —127.5751 —8.7139 0.0040
2 3 v 10765 —148.9713 —8.7176 0.0048
A [_ }_,nz_,n(§ 22, 1077 —~172.1390  —8.7255 0.0029
2 3 vy 10775 —197.0627 —8.7220 0.0030
A& 3 4 1 1 1 1078 —223.7589 —8.7237 0.0026
5*4'”2_3'”3} 3Nz T8t 2% 3 1079 ~282.4494  —8.7234 0.0016
A&prp 5 1 3 1\
§+§In272InSf§In(;) Ag ) .
Actually, the logarithmic part
m m
. . _ (EQ)n =C4In?| — +Cz|n<_) (46)
Coulomb potential and the Fermi potential times anomalous A A

magnetic moment combined with two Coulomb potentials.

(See Fig. 10.The numerical results evaluated bgcAs for ~ can be determined analytically, noting that the sum of the
various photon mass are listed in Table IV. The IR regulatorcontributionsEg, Es, Eg, andEg must be free of both UV
mass\ is kept finite in the exchanged photon in the scattercutoff A and IR cutoffA. We find that

ing diagram calculation. The radiative photon is chosen to be

massless. This is allowed since the radiative and exchanged  (Eg)j, = —(Est+Eg)i

photons are separately gauge invariant. The QED scattering

ih it ; 8 m\ 16 9 m
contribution depends only om/A and may be written as =— 22 === 6In2= ZIn3|Inl —
3 A 3 2 N
m m A
Eo=c4ln?| —|+coln| —|+Ca+Cyi—+ ---. (44 11 7 m
A A m —| =+ 5a|In|—|. (47)
9 2 A
The coefficientx,, C,, ... can bedetermined by fitting the
formula with the result of numerical integrati¢88]. Ignor-  From this we obtain
ing ¢4, Cs, . . ., wefound
c1=—2.66444), ¢,=1.1715%71), c3=-—8.53(28). Ci=— §: —2.666 66 . . .,
(45) 3
11 7
£ T, Y it C,=24In3-32In2- 5 — 5a,=1.213 7629... .,
To Tia Tw T2 which are in good agreement with the numerical regts.
Using the analytic resulg48) for ¢, andc,, we can deter-
A . \;e — . C*;e . mine the constants; and c, more precisely from the nu-
i % § % . . 28 2 1l o 3 s merical result. We find28]
" AN T A S O
T, KP A B Cc3=—8.7243+0.0011, c,=8.688+0.825. (49
R o o 2, Using the constants in Eq. (49) together with other contri-
D EOl butions summarized in Tables I, Il, and Ill, we arrive at the
=° § § ° L° % § ° +°§ § -° 8 ° final result for the radiative photon contribution to the BES
ER term:
KP
AEgesp=17.122711). (50)

FIG. 10. Diagrams relevant to the QED scattering state contibu-
tion Eq of the a(Za)? correction. The last line is the definition of
the KP potential which contributes to thgZa) correction of the 3If we choosec; = — 8/3 in Eq.(44), we obtainc,=1.2089(5) and
hyperfine splitting. Cc3=—8.6758(46).
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VI. DISCUSSION merical integration deteriorates steadily with increasing
. . and direct evaluation of our formula At=c becomes im-
Th? vaIug(@) of the a(Za)* correp’uon obtained by Pa- possible. In spite of our considerable computational effort
ChUCk,' [,12] IS In gOOd_ agreemgnt with our resu#). H,OW' . over several months, however, the resultiBg—Eg ob-
ever, it is not fully satisfactory in the sense that details of h'stained thus far is not capable of distinguishing between the
calculation seem to disagree with ours beyond the uncez,yes 0 and the difference 0.0257 mentioned at the begin-
tainty of numerical evaluation. The numerical value of hisning of this section.
low-energy contributiorE, (defined by Eq(16) of [12]) is In conclusion, we have seen nothing wrong thus far with
smaller than ouEg by 0.02572). Unfortunately, his miden-  the analytic form of eitheE, or Eg but have been unable to
ergy contributionEy, or high-energy contributio,; cannot  resolve the apparent numerical discrepancy. Neither can we
be compared directly with ouEg, Eg, or Eo. We find,  rule out an intriguing possibility that Pachucki’'s separation
however, that the sunky+Ey is larger than our sum into low- and higher-energy parts is slightly different from
Est+Egr+Eq by 0.024614). Note that these discrepancies ours but the sum is not affected by how the separation is
nearly cancel out, leading to a good agreement of E)s. made.
and(6). We publish our result in the present form to avoid undue
In order to compare these results in detail, let us examindelay and to encourage further investigation by others.
E, more closely.E, is the low-energy contribution charac-  The result obtained by Sapirstein for the radiative photon
terized by the parameter which is the(UV) cutoff of the  contribution waq11]
frequencyw of the virtual photon. In Ref[12], terms of
E, divergent fore—oo are separated out and evaluated ana-
lytically. The remainder is evaluated partly analytically and AEggspr=15.1429). (51)
partly numerically. Adding up the resul{@4)—(27) of Ref.
[12] gives the sum of these terms from which the contribu-Concerning the apparent discrepancy between Efjsand
tion of mass renormalization term is not subtracted. Mean¢51), Karshenboim pointed out that the latter might include
while, the mass renormalization effect is subtracted out inhe knowna(Za)3In(Za)* correction[29,30Q,
Egs.(B19), (B20), and(B21).
One way to compare these two methods is to drop the
mass renormalization terms from Eq®19), (B20), and m 91
(B21). Then evaluate them, for instance, for an NRQED UV EFa(Za)3|n(;)<5|n2_ E)
cutoff A satisfyingAm/y?>=1. Correspondingly, we choose

em/y?=1 in Pachucki’s formula foE, . We have evaluated _ 3 [ M

both of them numerically. The agreement between the two =Epa(Za)In y (—8.4717@...)
integrated results is excellent: NRQED gives )

0.455 763(0.000 033), while Pachucki's formula gives __ a(Za)

0.455 769(0.000 010). —Ep———(-09%...), (52

In order to identify the leading contributions to the
a(Za)? correction we have also performed an asymptoticin the relativistic bound state formalism adapted in Ref].
expansion of our formulagswithout mass renormalization We wrote the second line of Eq52) to emphasize that,
terms in y?/(Am). The corresponding procedure for Pa- numerically speaking, this contribution is of the same order
chucki'sE, is to take the limit of smally? first and then go  of magnitude as the/(Za)? term.
to vanishinge. Both procedures are found to give the same The correction due to one radiative photon to the hyper-
result for the logarithmically divergent and finite constantfine structure was computed recently for various atomic
terms. This is as expected since the mass subtraction term ilumbersZ [31,32 without expanding in powers ofa.’
NRQED has a linear divergence proportional Aan/y?>  Thus their results foZ =1 must contain corrections of order
without any constant terthNote that the corresponding term a(Za)" with n=0, ... ». Unfortunately, the results at
in Pachucki's method is proportional tem/y?. Thus the Z=1 are not accurate enough to extract the nonlogarithmic
resultant logarithmic and constant terms must be of the sameontribution of thex(Z«)? correction, namely the BES term,
form in bothEg andE, , if we identify A =e€. These checks although Ref[32] obtained a value consistent with our result
have convinced us th&t, andEg are exactly equivalent as using the lowZ extrapolation. Furthermore, in R¢82], the
far as their analytic properties are concerned. authors subtracted the(Z«)? correction from their numeri-

As the second check, we have also evaluated Pachuckisal results and showed that the nonlogarithmic contribution
formula forE, , after carrying out an explicit mass renormal- of order a(Za)® will play an important role in the compari-
ization, by numerical integration for values Af(=€) rang-  son of theory with the forthcoming experimental data.
ing from 13%y%/m to 1Py?/m and extrapolating the result In this circumstance it seems that only a direct evaluation
to A=o. This method is adopted because precision of nuof the purea(Za)® term will clarify the ambiguity in the

theoretical calculation concerning this term. This problem
will be treated in our subsequent papas].
“In fact, in the NRQED approach there is also a contribution pro-

portional toAm/»? from the diagranB, of Fig. 7. This term is
cancelled out by the same but negative contribution from the dia- ®We thank Mohr and Taylor for drawing our attention to H&fL]
gram$S, of Fig. 8. and discussing their results.
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To summarize, we have calculated #€Z«)? correction to the hyperfine splitting to the ground state muonium based on
the NRQED. Including the logarithmic terms, the total contribution of this order becomes

,. a(Za)? _[8 (m) 8 214 4 8 ,(m
Mla(Za)?]= - F 1—5|n — —1—5“’]2 295~ §—§|n —
In2 3| m (8,7 | T +17.122711
+§—n+Zny2—§ﬂ Zaeny + . -()
g 22T 8, 8| 4 37,8 | 16.904211 53
=Ef = §n — |+ —In +3—6+15 n + 2 ) ( )

wherea,= 1/2. Note that the uncertainty due to the numeri- 2
cal integration is now reduced drastically to match the ex- Vieq= f —;VF(O K) ——— VD(k 0), (A1)
pected accuracy of the forthcoming experiment. (2m
Now that we have completed the evaluation of the

a"(Za)® ", n=1,2,3, terms, it seems about time to discuss
the numerical value of the theoretical prediction of the hy- A d3k . =2m .
perfine splitting of the muonium. However, the leading loga- Vie-w= —Zj (ZT)BVW(Oak)?VC(kvO)y (A2)
rithmic corrections of orden"(Za)* ",n=0,1,2,3, turn
out to be numerically of the same order of magnitude as
some a® corrections. Thus, we postpone comparison with
experiment to the next paper in which we will treat these _ A d%k "

. o ) Vig-s=— f 53 Vs(0,0k) (A3)
higher order logarithmic corrections. (2m)
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APPENDIX A: CALCULATION OF THE (Za)? (A5)
CORRECTION
1. List of contact terms 2. The relativistic kinetic energy term

In addition to the contact terif25) against the relativistic The correction coming from the relativistic kinetic energy
kinetic energy term, there are also contact terms against tHerm shown in Fig. 2 is calculated in second-order perturba-
Darwin term, the derivative Fermi term, and the seagull terntion theory given in Eq(20).
determined from the two-photon-exchange scattering ampli- The diagram of Fig. @) with two or more photons ex-
tudes. They are given by changed leads to a finite result
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_ d®p d®q d®l d°r (8\my°)? .. [—64m\_ ..
(=8) (= ya%dq [ 5 y .q 1 9’| | 49
_ 2 _T4 4 14 bl
=Er(Za) 7 (q2+72)4lln2 2+ qtan y 2In 1+ 2T 2
=E((Z 221 A6
=Er(Za)’ I, (A6)

where the factor 2 accounts for two contributing diagrams. The photon xigsset to zero because the bound state is slightly
off shell and free from IR divergence. The brackéts-) mean that we take the difference between the expectation values

with respect to the spid=1 state and the spid=0 state.R’ is the two- or more photon-exchange pRriof the Green’s
function G, given by Eq.(11) minus the pole contribution of the ground state:

-l

R'= lim EE,

E—Eg

(A7)

The explicit form ofR’ can be found in Eq(28) of Ref.[3]. Integration ovel andﬁ in Eq. (A6) can be carried out using the
identity for R’ given in Ref.[34]:

dd d3q %
(277 J(Z )BR( Eo)f(|Q|) 1&73f q(q2+ 2)2R(q) (a), (A8)
where
5 vy q 1 q2 472
R(Q)Zln2—§+ aarctaré; —Eln(1+ 7)+—q2+y2' (A9)

Unlike the two- or more photon-exchange part, the zero- and one-photon-exchange parts of the Green’s function give rise to
linear and logarithmic divergences, respectively. These divergences must be taken care of by the NRQED contact terms. Thus
it is convenient to treat the calculation of the bound state and the corresponding contact terms together, since they have the
same UV behavior.

For the one-photon-exchange part the bound state calculation gives

_ d®p dq d°l d°r (8\my°)?
AE[Fig. Z(b)]sz 2m)2 (P24 Y272+ 12)2
13
1_6 y

2m —2m
(Ve )>a 20("1)» VK(qp)

A
=Er(Za)? —2In2+2In 5] (A10)

whereA is the UV cutoff. It is put to infinity for the finite parts.

The corresponding contact term should have the same structure and we find it among the two-loop contact terms. It is one
Coulomb photon exchange between the Fermi and the relativistic kinetic energy pot¢Bemldrig. 2d).] Since this is a
contact potential, the first-order perturbation theory with the potential becomes the wave function at the origin squared
|#(0)|?= 3= times the minus sign of its scattering amplitude. To avoid the IR singularity caused by the on-shell condition,
we put the infinitesimal photon maasin the photon propagators. This leads to

AE[Fig. 2Ad)]=|#(0)|XVac_k1))=Er(Za)? —2In % +2In3|, (A11)

whereVy._y1) is given by Eq.(26). This InA cancels that oAE [Fig. 2(b)].

The zero-photon exchange part of the bound state theory can be calculated in a similg8eeaffig. 2c).] One subtle
thing takes place in the calculation of the zero-photon-exchange part, because linear divergence causes the integrated result tc
depend on how it is parametrized. If the regulated momentum is shifted, it may give an additional finite piece to the answer.
In order to get rid of the uncertainty due to linear divergence, we will consider the bound state calculation and the contact term

calculation together and put the cutdffin the corresponding transverse photon [i#&]. We choose the momentuknof the
transverse exchanged photon line to have the cutdfiroughout the whole calculation, since it is easily recognized. Keeping
the cutoff A at finite value, we get
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d®p (A d3k (8\my®)? - .. —2m . A 23}
AE[Fig. 2c)]=2 — - Ve(p+k,p) =—— Vk(p)=Eg(Za)? 2— — —|.
[ g 2( )] (277_)3 (277_)3 (|p+k|2+'y2)2(p2+y2)2 F(p p) p2+y2 K(p) F( a) vy 8
(A12)
|
The corresponding contact term gives whereV,. (s is given by Eq.(A5).

The remainder is the contact term that consists of a one-

3 loop contact term and one Coulomb photon exchange:

AE[Fi vy =Ep(Za)? 2A
[Fig. 2(9)]—?< 1c-k =Er(Za)?| — %

(A13)
whereV,._, is given by Eqg.(25). In these calculations, we , ¥ A
have uslecd Ifthe expansion AE[Fig. (h)]= ?<V20*kv1'°0§>:EF(Z“)2 8ﬁ_6 ’
(A17)
A_ﬂ')\l)\so)\E’ AL
arcta I _E_K+§K + X . ( )

whereVy. 1100 IS given by Eq.(27).

) ] Summing up all the contributions relating to the kinetic
Clearly, the one-loop contact term destroys the linkadli-  term correction, we get

vergence iMAE Fig. [2(c)].
The other two-loop contact terms are linearly divergent
due to the threshold singularity. The diagram Fiff) gives

3

1 2
- Y — = —6Inz +2l
AE[Fig. 2f)]=—(Vac—k2) 2 ol

AE,=Eg(Za)?

5) } (A18)
it

A 2
= 2 _ —_—
Er(Za)?| —4——2In5 +3|,

Al5
(A19) Each linearly divergent diagram could have a value which

depends on the regularization method, but the sum remains

where Vae () IS given by Eq.(Ad). Figure 2g) has an o o e o ce of gauge invariance.

expression different from Fig. (B, but their integrals are
identical:

73 3. The Darwin term
AE[Fig. 29)]= ?<V2c—k(3>>
The computation method of the Darwin term shown in
Fig. 3 is almost identical with that of the kinetic term. The
; bound state calculation is also from the second-order pertur-
bation theory. The number of graphs has been already taken
(A16) into account in the equation

A 2
—4——-2In=+3
AT

:EF(ZCY)2 3

_ d®p d®q ol d3r (8\my°)?

72 Vel r»( Zayf)’é'(li&;Eo)vD(&,ﬁ)

=Ep(Za)?

3
- (A19)
Similarly, we find
AE[Fig. 3b)]=Eg(Za)?

—1In , (A20)

A
—) +In2
Y
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A
AE[Fig. 3¢)]=Eg(Za)? —%+1 . (A21)
The contact terms give the contributions
AE[Fig. Ad)]= 273fA K V02 vo ko
[Fig- Ad)]=-27"] 5 53(Vel ')>? p(k,0)
=Er(Za)? A A22
=Er(Za) pyg (A22)
_ A
AE[Fig. 3e)]=Eg(Za)? In(x)—InB , (A23)
AE[Fi f)]=Ex(Z 22A+|2—1 A24
[Fig. 31)]=Er(Za)"| 25— +Ing : (A24)
AE[Fi =Eg(Z 22A+|2—3 A25
[Fig. 3(@)]=Er(Za)?| 2, —+Inz =3, (A25)
A
AE[Fig. 3h)]=Ep(Za)? —4—+3|. (A26)
The sum of the contribution@19)—(A26) is
A 2
AE4=Er(Za)? —In o +3In§}. (A27)

4. The derivative Fermi term

The corrections involving the derivative Fermi term shown in Fig. 4 are calculated in the first-order perturbation theory. We
obtain

A d3k (8\my°)?

@M (p-KP 22K y

j d°p e
AE[Fig. 4(a)]=f 2m 2)2<Vw(|o,|o—k)>

5
_ 2l _o 4
=Er(Za) 2W+ 5| (A28)
_ A
AE[Fig. 4(b)]=EF(Za)22%, (A29)
AE[Fi =Er(Z 24A+2|2—3 A30
[Fig. 4c)]=Er(Ze) N T2z =3, (A30)
. A 2
AE[Fig. 4d)]=Ep(Za)? 4—+2In——3}, (A31)
AT 3
_ A
AE[Fig. 4e)]=Eg(Za)? —8)\—7T+6 . (A32)
The sum of the contribution@28)—(A32) is
2 5
AE,=Er(Za)? Alnz + 5. (A33)

5. The Seagull term

The diagrams involving the seagull term are shown in Fig. 5. The bound state calculation is also carried out in the first-order
perturbation theory. The results are
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d®p (A d3k dl (8\my°)? e e oo
AE[Fig. 5a =2J — — Vg(p—1,p—k,l
[ g a )] (271_)3 (2’7T)3 (277)3 (|p—k|2+'y2)2(|p—I|2+y2)2< S(p p )>
A A
=Er(Za)’——1In —)+In2 , (A34)
Yy Y
) A
AE[Fig. 5b)]=Eg(Za)? —%}, (A35)
AE[Fi =Er(Za)? 4A+| +5+|3 2In2 A36
[Fig. 5c)]=Ep(Za) el b il n2|, (A36)
. A
AE[Fig. 5d)]=Er(Za)? 45—3} (A37)
The sum of the contribution@A34)—(A37) is
AE—EZZI)\I21 A38
s= Er( a)—n;—ng—z- (A38)
Adding up Eqs(A18), (A27), (A33), and(A38) we obtain the Breit Za)? term
3 2
AEBreitZEEF(Za) : (A39)

APPENDIX B: CALCULATION OF THE a(Za)? CORRECTION
1. Vacuum polarization contribution
First let us calculate the NRQED corrections related to the vacuum-polarization insertion in the transverse exchanged
photon. The bound state calculation is the first-order perturbation theory with the NRQED potegtialf Eq. (38):
AE[Fig. 68)]=Er— —— d3p3 * d3k3 § “Wiz |Z_22
v> 157 ) (2m) (2m) (p%+ 2 (|p+K[2+y»)2 M

a(Za)? 8[ A 3 B1

FT T 18ym 2 (B1)
Similarly, for the scattering diagrams of Figgbp-6(e), we obtain

AE[Fig. &by]=g, (22 ~8 A B2

[Fig. &b)]=Er—— 15 yn’ (B2

AE[Fi g K208 A 2L B3

[Fig. 8C)]=Br — 759 — 2, ~2In; + 75|, (B3)

aerFig. 6)]=E. 22 8508 gior Sinas ¥ B4

[Fig. 8(d)]=Ep——— 75 —25~—3In2+ I3+ =/, (B4)

AETE . a(Za)? 8] A 15 85

[Fig. 8&)]1=Br——— g4~ ~ 7| (BS)

Next let us calculate the contribution coming from the NRQED potential representing the vacuum-polarization insertion in the
Coulomb photon given by the potentisl,» of Eq. (39). The bound state calculation is in the second-order perturbation
theory. The two- or more-photon-exchange part of the Coulomb Green’s function gives the correction
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7 —4m(Za)a [ d3p d3q d®l d3r (8\my®)? —647 _ . .
AE[Flg af)] 2EF 3 2 J 12 ~>9 22,72 2,2 4R,(q’I;EO)
15m*m (2m) (P2+ Y24 (r2+92)? (Za)y
a(Za)? 4
=Er——¢. (B6)

Similarly, the one-photon-exchange part gives

oz(Za)2 A
AE[Fig. 6(g)]=E¢ 15 In| — N —In2|. (B7)
The zero-photon-exchange part gives
AE[Fig. 6h)]=E a(Za)2 1 B8
[Fig. 6h)]=Eg 1—%— : (B8)
The corresponding scattering diagrams give the following corrections:
AE(Fi 1= —2E —Am(Za)a (A d3k K* -2m k2
[Flg- &DI==2Be 15— | @m? (@ra2? R Ren?
e a(Za)®> -8 A B9
AR T (B9)
Similarly, we obtain
AE[Fig. 6)]=E a(za)2_8| . B10
[Fig. 61)]=Er——— ¢ -5 (810
AE[Fig. 6g]=E, 222 —8, A 2 28 B11
[Fig. 6k)]=Er——— 75| 2, - TIng3= 35/, (B11)
AE[Fig. &)=, 22 88 o2 2 B12
[Fig. 6()]=Er—— | 25— +2Ing— 75|, (12)
AE[Fi E (Za)2 AL B13
[Fig. 6(m)]=E¢ w457 7l (B13

The sum ofAE [6(a)] - -- AE [6(m)] gives the NRQED contribution o Exrgepye Of EQ. (40).
The remainder is the QED scattering diagrams contribution. The QED three-photon-exchange skeleton diagram gives the
hyperfine splitting contribution

16(p°—p-9+9°)
AE...=E d j d J’ — = . B14
st 7 PJo 4 D N (15— G2 ND( ) (814

Thus the vacuum polarization insertion in the middle exchanged photon gives

. (Za)zfl fw fx fl Ip—ql® 16(p*—p-4+g°)
AE[Fig. 6n)]=E dtp,(t d d d(cod)—=—= = — = ,
[Fig. &n)]=Eg = J, p2(t) o p o q . ( }Ip—q|2+)\2(p2+)\2)(|p—q|2+4m2(1—t2)‘1)(q2+>\z)
(B15)
wherep,(t) is the second-order photon spectral function given by
a t1—(1/3)t?]
poAt)=———F - (B16)

The vacuum-polarization insertion in the outermost exchanged photon leads to
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(Za)? (1 = =1 p? 16(p?—p-q+q?)
> fdtpz(t)f dpJ’ dqf d(cost)=—— —; > IS S35 o
0 0 0 -1 P2+ A% [p+4mA(1—t2) " (|p—agl*+ A9 (g% +\?)
(B17)

AE[Fig. 6(0)]=2E¢

The scattering amplitude due to the KP contact term is

ig. - co > 0 d .
g. 6p F p2(V) | dp ] da TR NE (R ND) s A1) (G nD)
(B18)

The sum ofAE [Fig. &n)], AE [Fig. 6(0)], andAE [Fig. &p)] gives the QED contribution Eqgpyp Of Eq. (41).

2. Radiative photon contribution

We list formulas needed for the calculation of the bound state contrib&ianFor the diagranB, of Fig. 7 we find

_ 7 2a ( d3pdir (8\my°)2 p-pfr —2m
AE[Flg 7(BOO)]ZZEF_3 3_ 2 6 ) N2, 72 2 2_2 ﬁ
vy 3m) (27)° (p2+ 922+ 932 M Jo  p?+p,
Zg)mJA 2p0+’y
3/vJo  (poty)?

a(Za)?
=Er

(B19)
ar

Some contributions of Fig. 7 can be similarly reduced to integrals over the radiative photon monkewntite others are
harder to simplify:

_ a(zmz( 25) fA P ¥+ Po
AE[Fig. 7(By)]=E ~ZIm| dK - + In , B20
[Fig. 7(Boy)]=Ef p 3 o 4(pg_y2) (p%_yz)z 2y (B20)
AE[Fig. 7(Bgy)]=E a(Za)z( 4)JAdk m
ig. = -3
9- o Fom 3/Jo " (P5— ¥ (Pot+y)
2
X| 13p3—27ypg+ 18y?p3—6°p5+ v po+ ¥°+ 16yp3(p5— y?)In 5 Iy) : (B21)
0
2 5 1 +
AE[Fig. 7(Byo)]=E¢ ( o)z fdkk { (Po— y)2+(3p0+y2)|n< p°)—2p§|n@, (B22)
(po—7*)? 2y Y
_ m 2a (d3p diq ol d®r (8\my°)? p-q
AE[Flg 7(811)]:2EF? ﬁj (277.)12 (52+’y2)2(F2+’y2)2F
Xf dkke —2m —4aZa —-2m —-2m —4xZa —2mMm (823
o p2+pe? |p—al? q?+pe? g2+ y? [q—T|? T2+ %

_ m 2a [ d3p dq d®l dr (8\my®)? ..
v 37 (2) (P=+y)(re+v%)

p*+po” |P—dl® a*+po’ Zayy " (1B (B24)

—-2m —4wZa —2m —647 _
f dk k=

T ZaJ d® p d3q d°r (8\my®)?

AE[Fig. 7(Byo)]=2E == = =
[Fig. 7(Byo)] F;ﬁ 3 (2m)° (p2+ y2)2(12+ 72)2

—2m
S et T O (829
a~+y
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T Za/J’ d3pdiqdild®r (8\my®°)?

AE[Fig. 7(By1)]=2E¢ 73 (2m)2 (P24 )12+ 77)2

p qf dk k R( E k) —-2m —4wZa —2m (826)
)4 P B +97 |q=11? P+y

T d3pdiqdild®r (8\my®)?
AE[Fig. 7(Byy)]=2Er—3 ¥ 37 f (2m) 2

(P YD)2A(r?+9?)?
p q — 64 — 64ar
Xm_ dk k(z Yy 2R(p.q:Eo— k)(Z Yy 7R’ (0,1;E), (B27)
. a(Za)?[ 28 A Pot+ Sy
AE[Fig. 7(Bgo)]=Er (—3) mzfo dk km, (B29)

d3p o 8Vmy®)2  p-q (A g | —2m —4xnZ —2m
AE[Fig. 7(Byy)]= EF3 pda_ (8vmy)” paft, ( e

2m° (524 92)(q2++2) M Jo  GE | p2—2mE |p—q| G2-2mE

E=—y2/2m-k

dpddq  (8my5)? 5& 2m 2m | —2m —4nZa —2m
TEF3a) 2m° (5242 (a2+ 2 d . 2t g 2 e =2 . (B29
m) (2m° (P24 92)(q2+ P M p’+ps 9*+pglp°+ps [p—al a’+pg
d*pddq  (8Ymy®)2  p-q(A ( 9 —64mw_ . . )
AE[Fig. 1B E = = —f dk k| —= —=——R(p,q;E . (B30
[ g. ( d2)] F3’7T (271_) (p2+72)(q2+72) m2 JE (Za)’y4 (pq ) £ 2amk ( )
For the scattering state, we put
p5=—2mE=2mk. (B31)
The NRQED scattering state contributionsHg are given by the terms
AE[Fig. 88,)]= - 2E 2af d®p —4nZa —2m p? p-p(A  —2m
ig. = -
9- &S F37) 2m)% p24a2 g2 p2+a2 M Jo  p2+py?
_g 22 sf dk—y s (\3— 3\ p2+2p3 B32
=Er——— W( Po+2py)- (B32)
Similarly, we find
A S a(Za)2 32 1 [pot2\ B33
[Fig. 8S1a)]=EF 3 /o p%—)\zln L (B33
AE[Fig. 8S;,)]=E a(za)ze’szA L [P0y 2y 2P B34
[Fig. 8(S1)]=Er - 3 Jo TP ting+in N+ Do (B34
_ a(Za)? 32m (A 1 [ 2 pg [ potr
AE[FIg 8(Slc)]—E|: o 3 fo kp2 )\Z[Ing—vn po‘i‘—Z)\ (835)
AE[Fig. &5,9]=E, 22 32mf a0 B36
[Fig. 8S14)]=Ef o 3 Jo (pg_)\z)zr (B36)
_ a(Za)? 32m? (A 1 [ [ (pot2))? e Po+2\) 1 (2po+A
AELFg. &S,)]=~Er—— 3 fo KKz M 3nzper ) TP >\2' PotN ) P2\ potn )|

(B37)
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a(Za)2 16mzf 1 [ (po=N? (PG=AD? [potA
AE[Fi =E dk k - + In
+20)2) AN4(2p2—\3) [2pg+\
. (Po ) ( pa ). [2pg (838)
3N(pota) Po Pot+A

The g? derivative Fermi term\&,2 contributing toEr is calculated by replacing®+p’? in Vyy of Eq. (A28), etc., byg?. We
obtain

_ [ dPp (A dk (8\my°)? o ) A
AE[Fig. 4(a)]—f 2m?) 23 (|5_|Z|2+72)2(E2+72)2<qu(k)>—EF(Za) —2%+3 , (B39
AE[Fi b)]|=Eg(Z 22A B40
[Fig. 4b)]=Eg(Za) ot (B40)
AE(Ei - J A 2

E[Fig. 4c)]=Er(Za) 4ﬁ+2ln§—3 , (B41)

. A 9
AE[Fig. 4d)]=Eg(Za)? 4—+2In2 InS—E}, (B42)

A
AE[Fig. 4e)]=Eg(Za)? —8,—+6|. (B43)
The sum of the contributiond839)—(B43) is

AE2=Er(Za)? 4In2—3|n3+g . (B44)

Multiplying AE2 with the *‘renormalization” constant2 of Eq. (8), we obtain the contributiot &2 listed in Table II.

The reminder is the contributiod&,,, coming from thep’p coupling interaction. Thep'p potential Vp/p(f)’,f)) for
spherical symmetric states is defined by

Zam —p2Q?+(p-q)2. -

Vp,p(p’,p): 6meM c_i2+)\2 T Oy . (845)
With this expression, the bound state calculation of Fig) §ives
d®p (A d3k (8\my°)? I
AE F| . Q) :f O = \"Y _k,
[ g q )] (2,”_)3 (271_)3 (|p_k|2+’}/2)2(k2+’)/2)2< p p(p p)>
=Ep(Za)? 1| +1+1|2 B46
The two-loop scattering diagram of Fig(® gives the contribution
A d3k . .. —2m . ... —2m
AE[Fig. Ab)]= f(—g ﬁch(Op k)| |2<Vp p(P—K, p)>?Vc(p,0)
=Egr(Za)? + ! 3| 3 B4
=Er(Za)7|5In| |+ g— 7In3|. (B47)
The sum of Eqs(B46) and(B47) is
N5 01 3
AE, p—EF(Za) ——In +8+§|n2——ln3 (B48)

where \ is the infrared cutoff. Multiplying this with the “renormalization” constant,,=a. of Eq. (8), we find the
contributionA¢&,, listed in Table Il1.
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The contributiorE of the QED scattering diagrams shown in Fig. 10 can be calculated using the techniques similar to one
described in Ref[3]. These diagrams may be expressed in the form

3 d4k d4 d4 , M;LV)\
| @] 2w = (849

2 3_
216429 | ) @) @ (T NB - )2 NPl (aE

whereé&,,,, and MH#"* are factors representing the electron line and the muon line, respectively. For instanceorre-
sponding to the diagrarh,, of Fig. 10 is given by

'yM([b-H+m)'yv(d-H-l—m)'y“(K+aﬁ+i+m)'y>\(K+l+m)ya

[(p+h2—m?+ie][(q+1)°—m’+iel[(k+q+1)>—m>+ie][(K+])>—m°+ie]’ (50
wherel =(m,5). MH"N may be written as the sum of six permutation terms:
K= P+ + M)y (4+H + M)y
Yip )y'(4 )y +permutations in u, v, A\, (B51)

[(—p+r)2=M*+iel[(—q+r)°—M?+ie]

wherer=(M,0).

The integral is greatly simplified in the limit of infinite muon mass. We can extract the contribution to the hyperfine splitting
from each diagram using the projection operator given by (Ef). of [3]. For instance, the contribution from the diagram
T,, Of Fig. 10, after carrying out thk integration and subtracting the vertex renormalization term, is expressed with the help
of Feynman parameters, z,, andzs as

AE[Fig. 10Tq,)]

a(Za)® 1

1
=2B———53 fdzldzzdz55(1 21— Z,— zs)Jda’pf *0=;

p2q2(p%+ 1) (|p—a|>+A2)(q2+1?)

v . 1 1
8ln (p —p-q+0%)+(p?—p-q)(8+8AZ—32A,) VoV,

. 1 . 1 o® .
+q3(8— 24A1)v— 0%(8+8A2— 32A1)V—0+ V{pz( —AA A~ 4A1 A%+ 8A10A)

+P- A(4A1A2— 8A14A ) +G%(8A,, A2q>}}. (B52)

where
A1=Z5, Ap=1l-2z9, Ay=-—124,
V=242~ (21+2,) Ay +2; A0,
Vo=21+2,— (211t 25)A;. (B53)

The integralAE [Fig. 10(T,,)] has one threshold singularity zit=0 and another a5=0. The threshold singularity at

q=0 is canceled by that of the NRQED scattering diagtefh[Fig. 10(A)] which consists of one Fermi and two Coulomb
potentials multiplied by the Fermi term “renormalization” constant of the Fermi tagmnamely the anomalous magnetic
moment of the electron. The latter is of the form

a(Za) 1

AE[Fig. 10A)]=—2E¢ 87r4f dz,dz,dz;6(1— 21— 25— 25)

f d®p J d3g== ! 2(—8A§+8A1)i. (B54)
P?a%(P?+A3)(|p— |2+ 1) 2+>\2) Vo
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The threshold singularity aﬁ=0 is canceled by the contact term consisting of the lower order contact(tkenKP tern),
which contributes to thex(Z«)Eg correction, and the Coulomb potential. From the second and fourth diagrams of the KP
diagram of Fig. 1(KP) we find that the contact term contribution corresponding tg andA of Fig. 10 is given by

pp A2 1 J’d dz,dz:8(1 de fd3 !
TEEFT gt 2,d2,d256(1—2,— 2,— Z5) p q5262(52+)\2)(62+7\2)2
x| —8l v 12+ q2(8— 24A t 1 +(9%)%(8A,, A ! B55
n VO q q ( l) v VO (q ) ( 1q 2q)\_/ . ( )

The sum of Eqs(B52), (B54), and (B55) still suffers from a severe infrared singularity in the limit of vanishing radiative
photon mass. In order to perform numerical integration we identified the IR singular teii@52)fand (B55) and subtracted
them from each integral. The IR subtraction term @62) is of the form

. a(Za)?
AE[F|g 1qT1a)]IR:_2EF p WJ d21d22d255(1—21—22—z5)

1 ey o e s 1 1

X d3Jd3,9 = — - 2—~+2—16(———),

f ") 62 (p2+x2)(|p—q|2+x2)(q2+7\2)(p Prar a1l v
(B56)

where

Vir=21+2,— (2+25) A + 2102 (B57)

This IR subtraction term is completely canceled by thatTgrof Fig. 10. Similar cancellation occurs among the diagrams
Tip, To, andT3. The IR subtraction term for E4B55) is given by

a(Za)? 1
—f dzldzzdz56(1—zl—22—z5)f d3pf dg=

+2E, - S _
™ 8m P292(p?+\?)(g%+\

7—16(1—1) B58
2)254( )V_IR V_o'( )

These types of IR singularities of the KP contact terms cancel out completely among themselves. When summed over all
diagrams of Fig. 10, the resultant integrand has only the infrared singular terms of the fgxm)rand Ing/m).

[1] T. Kinoshita and M. Nio, Phys. Rev. Le2, 3803(19949. edited by T. KinoshitaWorld Scientific, Singapore, 1990p.
[2] M. I. Eides and V. A. Shelyuto, Pis'ma ZhkEp. Teor. Fiz. 81-89.
61, 465(1995 [JETP Lett.61, 478(1995]; Phys. Rev. A52, [16] G. P. Lepage, L. Magnea, C. Nakhleh, U. Magnea, and K.
954 (1995. Hornbostel, Phys. Rev. B6, 4052(1992.
[3] T. Kinoshita and M. Nio, Phys. Rev. B3, 4909(1996. [17] P. Labelle, G. P. Lepage, and U. Magnea, Phys. Rev. L2tt.
[4] V. W. Hughes and G. zu Putlitz, Comments Nucl. Part. Phys. 2006 (1994).
12, 259(19849. [18] P. Labelle, Report No. McGill/96-33, hep-ph/96084ahpub-
[5] W. E. Caswell and G. P. Lepage, Phys. L&87B, 437(1986. lished.
[6] J. R. Sapirsteirfprivate communication [19] N. Kroll and F. Pollock, Phys. Re\84, 594 (1951); 86, 876
[7] E. Fermi, Z. Phys60, 320(1930. (1952; R. Karplus, A. Klein, and J. Schwingeihid. 84, 597
[8] A. J. Layzer, Bull. Am. Phys. So®, 514 (1961); Nuovo Ci- (1951).
mento33, 1538(1964). [20] J. Schwinger, J. Math. Phy&N.Y.) 5, 1606(1964).
[9] D. E. Zwanziger, Bull. Am. Phys. So6, 514 (1961); Nuovo [21] P. Labelle(private communication
Cimento34, 77 (1964. [22] D. A. Zwanziger, Phys. Revl21, 1128(1961).
[10] S. J. Brodsky and G. W. Erickson, Phys. R&¥8 26 (1966. [23] J. R. Sapirsteirfprivate communication
[11] J. R. Sapirstein, Phys. Rev. Leftl, 985(1983. [24] S. J. Brodsky(private communication
[12] K. Pachucki, Phys. Rev. A4, 1994(1996. [25] S. G. Karshenboingprivate communication
[13] K. Pachucki, Ann. PhysIN.Y.) 226, 1 (1993. [26] S. M. Schneider, W. Greiner, and G. Soff, Phys. Rev5@\
[14] G. Breit, Phys. Rev35, 1447(1930. 118(19949.

[15] T. Kinoshita and G. P. Lepage, fQuantum Electrodynamics [27] G. P. Lepage, J. Comput. Phy&7, 192(1978.



7290 M. NIO AND T. KINOSHITA 55

[28] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vet-[31] H. Perssoret al, Phys. Rev. Lett76, 1433(1996; P. Sunner-

terling, Numerical Recipe@Cambridge University Press, Cam- gren, Ph.D. thesis, University of Goteborg, 1996.
bridge, England, 1989 [32] S. A. Blundell, K.T. Cheng, and J. Sapirstéimpublishegl
[29] G. P. Lepagédprivate communication [33] M. Nio and T. Kinoshita(in preparation

[30] S. G. Karshenboim, Z. Phys. B6, 11 (1996. [34] W. E. Caswell and G. P. Lepage, Phys. Rev18\810(1978.



