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This is the second of a series of papers on the radiative corrections of ordera2(Za), a(Za)2, and various
logarithmic terms of ordera4, to the hyperfine structure of the muonium ground state. This paper deals with
the a(Za)2 correction. Based on the NRQED bound state theory, we isolated the term of ordera(Za)2

exactly. Our result116.904 2 (11)a(Za)2EF /p for the non-logarithmic part is consistent with the
a(Za)2 part of Sapirstein’s calculation and the recent result of Pachucki, and reduces the numerical uncer-
tainty in thea(Za)2 term by 2 orders of magnitude.@S0556-2821~97!03211-6#

PACS number~s!: 36.10.Dr, 06.20.Jr, 12.20.Ds, 31.30.Jv

I. INTRODUCTION

Now that thea2(Za) correction to the hyperfine splitting
of the ground state muonium is known very accurately be-
cause of recent works@1–3#, the previously calculated
a(Za)2 term has become one of the main sources of the
remaining theoretical uncertainty. Improvement of this error
is urgently needed in view of the new muonium hyperfine
measurement in progress@4#. HereZ is the ‘‘atomic’’ num-
ber of the nucleus. Of courseZ51 for the muonium, but it is
kept to indicate the bound state origin of the correction
terms. In this paper, we present thea(Za)2 radiative correc-
tion evaluated in the nonrelativistic QED~NRQED! bound
state formulation@5#, which is as fully relativistic as QED
itself but is adapted to the nonrelativistic situation.

The previous evaluation of this term, including recent
modifications@3,6#, gives
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where the Fermi frequencyEF is defined by@7#
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R` is the Rydberg constant for infinite nuclear mass, and
m andM are the electron and muon masses, respectively.
The presence of ln(Za) factors is due to the near infrared
~IR! structure of the loosely bound state. The coefficients of
ln2(Za)21 and ln(Za)21 terms were obtained by Layzer@8#
and Zwanziger@9# independently. Brodsky and Erickson
@10# confirmed these logarithmic terms and gave the leading
contribution of the nonlogarithmic term. Sapirstein reported
the numerical evaluation of the nonlogarithmic constant due
to the radiative photon@11#. For convenience’s sake, we re-
fer to this nonlogarithmic constant of thea(Za)2 correction
as the Brodsky-Erickson-Sapirstein~BES! term.

To compute the BES term, Sapirstein started from the
relativistic bound state formalism and evaluated the entire
a(Za)2 term numerically. In his approach, only the double
logarithmic term was confirmed by varying the ‘‘atomic’’
numberZ. Since the logarithmic term is a consequence of the
near IR singularity of the bound state, the convergence of
numerical integration worsens in the region of small momen-
tum. The uncertainty in the BES term comes mainly from
this difficulty in the numerical integration. Note also that his
result contains terms of higher orders inZa.

Our calculation of the BES term starts from the NRQED
formalism proposed by Caswell and Lepage@5#. This ap-
proach enables us to isolate thea(Za)2 term without being
tangled up with higher order terms inZa: All these terms
arise from different parts of the NRQED Hamiltonian. The
leading logarithmic contribution is analytically separated.
The small photon massl is used in our approach but thel
dependence can be easily identified and analytically sub-
tracted in the numerical evaluation of each diagram. This is
important for reducing the computational error of the BES
term.

Aside from the factor@a(Za)2/p#EF our results for the
vacuum polarization contribution and the radiative photon
contribution to the BES term are
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and

DEBESPH517.1227~11!, ~4!

respectively. Our final result for the totala(Za)2 correction
is
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The BES term has also been evaluated recently by Pachucki
@12# using the method he developed for thea(Za)6m Lamb
shift correction@13#. His result for the radiative photon con-
tribution is

DEBESPH517.122. ~6!

Although this is in good agreement with our result~4!, there
remains some disagreement in the details. This will be dis-
cussed in Sec. VI.

In Sec. II, we briefly describe our approach, namely the
NRQED method, to the bound state problem. A more de-
tailed prescription of NRQED is found in Ref.@3#. In Sec.
III, the well-known Breit (Za)2 correction@14# is rederived
from NRQED. This calculation, multiplied by an appropriate
‘‘renormalization’’ factor, actually provides a part of the
a(Za)2 term. It also serves as a prototype of the calculation
of the entirea(Za)2 correction. In Sec. IV we derive the
a(Za)2 contribution arising from the vacuum polarization
insertion. We uncovered a mistake in the previous calcula-

tion in Ref. @10# as was mentioned in a previous paper@3#.
The detail of thea(Za)2 correction due to the radiative pho-
ton on the electron line is described in Sec. V. Section VI is
devoted to the discussion of our result. Some details of cal-
culations are given in Appendices A and B.

II. OUTLINE OF THE NRQED METHOD

The NRQED is a theory with a finite UV cutoff, which is
completely equivalent to QED when it is applied to low-
energy systems with typical momenta less than the UV cut-
off L. The NRQED Lagrangian consists of operators which
satisfy the same symmetries as the QED operators except
that they satisfy Galileian invariance, although the final ob-
servable results of calculation are Lorentz invariant. Fermi-
ons are represented not by Dirac spinors but by Pauli spinors.
The NRQED Lagrangian can be divided into two parts: The
main partLmain consisting of fermion bilinear operators mul-
tiplied by up to two photon operators or pure photon terms
and the contact interaction partLcontact involving four or
more fermions. Both parts of the Lagrangian are determined
by the following simple rule: The operators which appear in
its Lagrangian and their coefficients are chosen so that any
scattering amplitude calculated in the NRQED coincides
with the correspondingscatteringamplitude of the original
QED at some given momentum scale, e.g., at the threshold
of the external on-shell particles. This matching condition is
applied order by order to the expansion in the coupling con-
stanta and velocityv of the external fermion. The Coulomb
gauge is used in the NRQED, while the Feynman gauge is
more convenient to compute the QED scattering diagrams.
Readers interested in NRQED may refer to Refs.@5,15–18#.
The precise description of the NRQED Hamiltonian can be
found in Ref.@3#. After determining all operators and their
coefficients to the desired order of velocityv of the electron
and the coupling constanta, we evaluate the energy shift,
etc., using the Rayleigh-Schro¨dinger perturbation theory,
choosing as the unperturbed system the exact solution of the
nonrelativistic Schro¨dinger Coulomb system.

The main part of the NRQED HamiltonianHmain
L needed

to compute thea(Za)2 correction terms is of the form
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where pW and pW 8 are incoming and outgoing electron mo-
menta, respectively, andqW is incoming photon momentum.1

The superscriptL in Hmain
L indicates that the theory is regu-

larized by the UV cutoffL for the radiative photon.L may
be less thanm. The ‘‘renormalization’’ coefficients in Eq.
~7! are
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The first term in Eq.~7! is the nonrelativistic kinetic energy
term. The rest are named successively as Coulomb,p4 rela-
tivistic kinetic energy, dipole coupling, Fermi, Darwin,
seagull,W- ~wave function! derivative Fermi,q2 derivative
Fermi, andp8p coupling, respectively. The last two terms
bilinear in photon operators are introduced to represent the
vacuum polarization insertion in the transverse and Coulomb
photon propagator, respectively.

For the muon line, only the Coulomb and Fermi terms are
needed for the calculation of thea(Za)2 correction. They
are obtained by replacinge andm of the electron interaction
terms by2Ze andM , respectively.2

As for the contact part of the NRQED Hamiltonian
Hcontact

L , only the spin-flip type is needed:

Hcontact
L 52d1

1

mM
~c†sW c!•~x†sW x!, ~9!

wherex is the Pauli spinor for the positive muon andd1 can
be written as
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HereL8 is the UV cutoff of the transverse exchanged photon
momentum. Note that, when thea(Za)2 part of Eq.~10! is
evaluated in the first-order perturbation theory, it gives the
a(Za) correction to the hyperfine splitting of the ground
state muonium calculated by Kroll and Pollock~KP!, and
Karplus, Klein, and Schwinger@19#. For brevity, let us call
the a(Za) correction the KP correction. The coefficients
d(0), . . . ,d(5) of thea(Za)3 part of Eq.~10! are pure num-
bers. These are the quantities that we want to calculate in this
paper.

The Green’s functionG̃0(pW ,qW ;E) appearing in this calcu-
lation is known in an exact closed form for the nonrelativis-
tic Coulomb potential@20#. For an arbitrary energyE in the
complexE plane this function takes the form
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and
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The first, second, and third terms of Eq.~11! correspond to
zero, one, and two or more Coulomb-photon exchanges. For
E5E02k, whereE0 is the ground state energy andk is the
energy of a radiative photon,p0

2 may be written as

p0
2522m~E02k!5g212mk. ~14!

We calculate the (Za)2 anda(Za)2 corrections in the sub-
sequent sections using the NRQED Hamiltonian and the
Green’s function given above.

III. THE „Za…2 CORRECTION

In this section, we rederive the well-known Breit (Za)2

relativistic correction@14# from the NRQED in order to il-
lustrate how it works, particularly, how the contact term
Hcontactis constructed. The first computation of the Breit term
in the framework of the NRQED was carried out in Ref.@5#.
In a previous paper@3#, we have shown that botha(Za) and
a2(Za) corrections come from the first-order perturbation
theory of theHcontact

L which represents the difference between
the QED scattering amplitude and the NRQED scattering
amplitude calculated fromHmain

L alone. In contrast, the con-

1The termqW 13AW (q1) in Eqs. ~53! and ~55! of Ref. @3# must be

replaced byqW 23AW (q1).
2We use the convention that the electron charge ise and the

positive muon charge is2Ze.
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tact term calculated here is derived entirely from the
NRQED scattering amplitudes. Their presence is crucial to
cancel the UV divergence occurring in the bound state cal-
culation of the operators in theHmain

L . More importantly, the
calculation carried out in this section immediately yields a
part of thea(Za)2 correction if one takes account of appro-
priate ‘‘renormalization’’ constants of the potentials. We
must make sure that this calculation is consistent with the
calculation of the other parts of thea(Za)2 correction. This
is why we want to rederive the Breit correction by the
NRQED method, not by other bound state formalism.

A. Diagram selection

The first task is to identify the potentials contributing to
the Breit (Za)2 correction. This can be achieved using the
order of magnitude estimate of various operators appearing
in theHmain

L of Eq. ~7! @16#:

^]W &;m~v/c!, ^] t&;m~v/c!2, ^eA0&;m~v/c!2,

^eAW &;m~v/c!3, ^eEW &;m2~v/c!3, ^eBW &;m2~v/c!4,
~15!

where (v/c);(Za). For example, for the Coulomb potential
between the electron and the muon

VC~pW 8,pW ![
2Ze2

kW21l2
, ~16!

where kW5pW 82pW , we have ^VC&/m;(v/c)2;(Za)2. We
will set the photon massl to zero in the bound state calcu-
lation.

Since the Fermi potential

VF~pW 8,pW ![
2 iekW3sW e

2m
•

iZe~2kW !3sW m

2M

21

kW21l2
~17!

has an expectation value of order (Za)4(m/M )m, one
source of the Breit (Za)2EF correction is the first-order per-
turbation with the order (Za)6(m/M )m potentials. All po-
tentials of this type must have the spin-flipping property in
order to contribute to the hyperfine structure. One of these
potentials is theW-derivative Fermi term in Eq.~7! which
yields the potential

VW~pW 8,pW ![
2 ie~pW 21pW 82!kW3sW e

8m3 •

iZe~2kW !3sW m

2M

21
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m

M
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Another contribution comes from the seagull term
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3
21
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1
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,
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~Za!2g4

m2M
;~Za!6

m

M
m, ~19!

wherekW andqW are the transverse and Coulomb photon mo-
menta, respectively.

One must also consider possible contributions from
higher order perturbation theory. The second-order perturba-
tion term has the form

dE5K cn51UVS G̃02
ucn51&^cn51u
E2En51

0 DVUcn51L
E5E

n51
0

5 (
kÞ1

^cn51uVuck&^ckuVucn51&
En51
0 2Ek

0 . ~20!

Since the denominatorEn
02Ek

0 is of order (Za)2m, one po-
tential must be of order (Za)4(m/M )m while the other is of
order (Za)4m in order thatdE contributes to the Breit cor-
rection:

dE;
~Za!4~m/M !m~Za!4m

~Za!2m
;~Za!6

m

M
m. ~21!

This can be realized only if one is the Fermi potential and the
other is an order (Za)4m spin-non-flip potential. We find
two candidates for the latter: the relativistic kinetic energy
term

VK~pW 8,pW ![VK~pW !~2p!3d3~pW 2pW 8!

[2
~pW 2!2

8m3 ~2p!3d3~pW 2pW 8!,

^VK&;
g4

m3;~Za!4m, ~22!

and the Darwin term

VD~pW 8,pW ![
2ekW2

8m2 ~2Ze!
1

kW21l2
,

^VD&;
~Za!g3

m2 ;~Za!4m. ~23!

The third- and higher order perturbation terms do not con-
tribute to the Breit correction.

B. Determination of the NRQED contact terms

We have identified the NRQED potentials necessary for
the calculation of the Breit correction, namely, the Fermi,
derivative Fermi, seagull, relativistic kinetic energy, and
Darwin terms. The next step is the determination of NRQED
contact terms corresponding to these potentials. The contact
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terms of spin-non-flip type contribute to the hyperfine split-
ting calculation only through the second- or higher order
perturbation terms, analogous to the case of the Darwin or
relativistic kinetic energy potentials. However, there is no
(Za)4m contact term of the spin-non-flip type. The lowest
order spin-non-flip contact term is of ordera(Za)5m, which
gives the relativistic binding correction to the Lamb shift.
Therefore, we have only to consider the NRQED contact
terms of spin-flip type:

dH52d1
1

mM
~c†sW ec!•~x†sW mx!. ~24!

In the following the muon is treated as an external static
photon source since the infinite muon mass limit is taken.
However, the method of the contact term determination for
the dynamical muon case is essentially the same as the static
case and the latter can be readily adapted to the former.

As was explained in Ref.@3#, the contact terms are deter-
mined by comparison of QEDscattering amplitudes and
NRQED scatteringamplitudes. The lowest order diagrams
contributing to the contact term relevant to the Breit correc-
tion is the two-photon-exchange process between the elec-
tron and muon, namely, one-loop process. In order to con-
tribute to the Breit correction, at least one of the photons
must be transverse. The exchange of two transverse photons
results in a recoil-type correction proportional to (m/M )2

and is not of interest here. That leaves diagrams with one
transverse photon and one Coulomb photon. In QED, there is
one diagram witheg i andeg0 vertices. NRQED interaction
terms which give, in thebound statecalculation, higher order
contributions than the order we are interested in are to be
ignored in thescatteringamplitude comparison. This reduces
the relevant NRQED scattering amplitudes to the following
five combinations: a Coulomb potential with a Fermi poten-
tial, a Fermi potential with a relativistic kinetic energy term
and a Coulomb potential, a Fermi potential with a Darwin
potential, a Coulomb potential with a derivative Fermi po-
tential, and a seagull potential. The first four are given by the
second-order perturbation theory of the NRQED Hamil-
tonian and the fifth is from the tree NRQED Hamiltonian.
These five together determine the contact terms represented
by the shaded circle in Fig. 1~a!. Only thep2/2m part of the
NRQED Hamiltonian is treated as an unperturbed system for
the scattering perturbation theory. In other words, the Cou-
lomb potential appears as one of perturbative potentials in
this comparison. The comparisons are shown in Fig. 1~a!.

In this case the QED scattering amplitude at threshold is
completely replicated by the NRQED scattering amplitude
consisting of a Coulomb potential and a Fermi potential.
Thus the contact term must be chosen as aminus signtimes
the sum of the remaining four NRQED scattering ampli-
tudes.

The one-loop contact terms determined in this comparison
are all linearly divergent and hence their values depend on
how they are regularized. Although a gauge invariant regu-
larization method is desirable, it is possible in this case to
use a simple momentum cutoff. This is because, as we shall
see in Appendix A, calculation of thebound stateexpecta-
tion value also leads to a divergent integral and must be
regularized. Even though the regularized bound state calcu-

lation is not gauge invariant, the gauge invariance can be
restored if one chooses appropriate contact terms. What is
crucial is that the regularization method of the contact term
is consistent with the bound state calculation@21#. We satisfy
this requirement by introducing an UV cutoffL in the mo-
mentum of the transverse exchanged photon in both the con-
tact term calculation and bound state calculation.

The NRQED scattering diagrams can be easily written
down using the NRQED Feynman rule given in Fig. 3 of
Ref. @3#. Against the relativistic kinetic energy term this rule
leads to the contact term of the form

V1c2k522EL d3k

~2p!3
VF~0,kW !

22m

kW2
VK~kW !

22m

kW2
VC~kW ,0!.

~25!

Here the factor 2 is to take account of the time-reversed
diagram. The contact terms against the Darwin term, deriva-
tive Fermi term, and seagull term can be similarly con-
structed and evaluated. Explicit evaluation of Eq.~25! and
other terms is carried out in Appendix A.

Next we consider the three-photon-exchange process, or
two-loop one, shown in Fig. 1~b!. This requires adding one
more Coulomb photon exchange potential to both QED and

FIG. 1. Comparison of the QED and NRQED scattering ampli-
tudes. The small circles on the edges of each diagram indicate that
a diagram is evaluated on-the-mass-shell and at the threshold of
external fermions. The shaded circle in~a! is a contact term. The
doubly shaded circle in~b! is a contact term, too. A wavy line is
covariant photon in the Feynman gauge, a curly and dashed line are
transverse and Coulomb photons, respectively, in the Coulomb
gauge. The muon is treated as the static external source and indi-
cated by a dot. For NRQED electron vertices, consult the NRQED
Feynman rules given in Ref.@3#.
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NRQED amplitudes of the two-photon-exchange type. Add-
ing another type of potential of NRQED, such as the Darwin
potential, is not necessary since it gives a power of
v2;(Za)2 higher than what we are interested in. However,
it is necessary to consider new kinds of scattering ampli-
tudes, which are the combinations of the contact terms intro-
duced in the two-photon-exchange comparison and one Cou-
lomb photon potential. Again, the QED@left-hand side of
Fig. 1~b!# contribution is equivalent to the first diagram of
the NRQED contribution@on the right-hand side of Fig.
1~b!#. Thus the contact terms are determined by the rest of
the NRQED scattering amplitudes. Processes with four or
more photon exchange clearly have more explicit powers of
Za, yielding higher order contact terms. Thus we do not
have to deal with them as far as we are interested only in the
(Za)2 Breit correction.

Some of the two-loop contact terms, which have a Cou-
lomb photon exchange potential sandwiched between two

other kinds of potentials, are logarithmically divergent in
both UV and IR regions and will kill UV divergences in the
bound state calculation. Others are linearly divergent in both
UV and IR. These diagrams have the structure such that one
Coulomb photon potential is added to the edge of one-loop
linear UV divergent diagrams proportional toL/m intro-
duced in the two-photon-exchange comparison. The addi-
tional Coulomb photon on the edge yields the threshold IR
singularity causing the term to be proportional tom/l, where
l is the photon mass introduced as the IR cutoff. The mul-
tiplication of the UV and IR divergences results in the form
L/l. The UV-IR singularityL/l appearing in these dia-
grams is completely canceled out by the diagram which con-
sists of the one-loop contact term introduced before and the
Coulomb photon potential connected by the free fermion
propagators.

Here we show one of the two-loop contact terms against
the relativistic kinetic energy term:

V2c2k~1!522EL d3k

~2p!3
E d3l

~2p!3
VF~0,kW !

22m

kW2
VC~kW , lW !

22m

lW2
VK~ lW !

22m

lW2
VC~ lW,0!. ~26!

Other contact terms related to the relativistic kinetic term in this order are presented in Appendix A. The potentialV2c2k(1) is
logarithmically divergent. Other terms are linearly divergent.

The contact term against the combination of the one-loop contact term and the Coulomb potential, which we denote with
the suffix 1loop2, is also linearly divergent and is given by

V2c2k,1loop254EL d3k

~2p!3
E d3l

~2p!3
VF~0,kW !

22m

kW2
VK~kW !

22m

kW2
VC~kW ,0!

22m

lW2
VC~ lW,0!. ~27!

Other two-loop contact terms involving the Darwin, derivative Fermi, and seagull terms are given in Appendix A.

C. Summary of the „Za…2 correction

We have prepared the nonradiative NRQED Hamiltonian, including the contact terms, up to the order (Za)6(m/M )m:

HNRQED
L 5c† F pW 2

2m
2
Za

r
1

e

2m
sW e•BW 2

~pW 2!2

8m3 1
e¹W •EW

8m2 1
e$pW 2,sW e•BW %

8m3 2
e2sW •AW 3EW

4m2 Gc2d1
1

mM
~c†sW ec!•~x†sW mx!.

~28!

The contact term coefficientd1 is calculated in Appendix A. It is the sum of the contributions from the relativistic kinetic
energy, Darwin, derivative Fermi, and seagull terms:

2d15~Za!3
2

3
pF22

L

gp
22lnS L

l D24ln216ln31
L

gp
1 lnS L

l D12ln223ln31
1

2

12
L

gp
14ln224ln32

L

gp
1 lnS L

l D22ln21 ln32
1

2G50. ~29!

The value ofd1 could vary for different regularization meth-
ods. Althoughd1 adds up to zero in our regularization
method, this does not mean that we do not need the contact
term. The finiteness and gauge invariance of the final answer
are guaranteed by the presence of this contact term in indi-
vidual terms.

Using the nonrelativistic Coulomb system as the unper-
turbed system, we can now calculate the binding effect,
namely, the Breit hyperfine energy correction in perturbation
theory. The results are summarized here as terms propor-
tional to the Fermi energyEF . DEk , DEd , DEw , and
DEs are the contributions from the relativistic kinetic energy,
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Darwin, derivative Fermi, and seagull terms, respectively
~see Figs. 2–5!:

DEk5EF~Za!2F2
1

2
26lnS 23D12lnS l

g D G , ~30!

DEd5EF~Za!2F3lnS 23D2 lnS l

g D G , ~31!

DEw5EF~Za!2F5214lnS 23D G , ~32!

DEs5EF~Za!2F2
1

2
2 lnS 23D2 lnS l

g D G , ~33!

whereg5Zam is the typical momentum scale of the muo-
nium in the infinite muon mass limit, andl is the photon
mass which is set to zero at the end of the calculation. The
sum of Eqs.~30!–~33! gives

Dn@~Za!2#5
3

2
EF~Za!2, ~34!

which is the well-known Breit correction. Note that the IR
singularities ln(l/g) cancel out when all diagrams are
summed up. In Appendix A, we show details of derivation of
these terms.

We have shown how the NRQED bound state formalism
works using the well-known Breit correction to the muonium
hyperfine structure as an example. As we have seen, the con-
tact term in NRQED plays the crucial role: it describes the
high energy behavior, recovers the symmetry, such as Lor-
entz symmetry and gauge invariance, and kills the would-be
IR and UV divergent quantities.

IV. THE a„Za…2 VACUUM POLARIZATION
CONTRIBUTION

The ordera radiative correction in thea(Za)2 term
comes from two sources: One is from the vacuum polariza-
tion insertion in one of the exchanged photons between the
electron and muon and the other is from the spanning photon
on the electron line. They are separately gauge invariant. In
this section, we will deal with the contribution coming from
the vacuum polarization insertion.

The result of our numerical evaluation of the vacuum-
polarization contribution was

Dn@a~Za!2#VP5
a~Za!2

p
EFF 815lnSmg D20.218 81 ~29!G ,

~35!

where the error comes from the numerical integration. The
error associated with the finite photon mass, which was used
as an IR regulator, is of orderl/m, hence negligible for the
casel/m51025. Our result, Eq.~35!, disagreed with that
obtained by Brodsky and Erickson@10#:

FIG. 2. Relativistic kinetic term diagrams. The angular brackets
indicate that the diagram is evaluated with the bound state wave
function. The contact term diagram is shown in the right below the
corresponding bound state. The time-reversed diagrams are not
shown.R in ~a! represents a two- or more photon-exchange part of
the Coulomb Green’s function.

FIG. 3. Darwin term diagrams.

FIG. 4. Derivative Fermi term diagrams.

FIG. 5. Seagull term diagrams.
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Dn@a~Za!2#VP5
a~Za!2

p
EFF 815lnSmg D2

8

15
ln21

214

225
2
2

3G
5

a~Za!2

p
EFF 815lnSmg D20.085 234 . . . G .

~36!

This term actually consists of two parts. One corresponds to
the vacuum-polarization insertion in the Coulomb photon,
and the other is insertion in the transverse photon. Our result
for the first part agrees with the corresponding result of
Brodsky and Erickson. For the second part, however, we
found20.801(4) instead of22/3 in Eq.~36!. In an effort to
determine the cause of the discrepancy, we have analytically
evaluated the integral expressing the vacuum polarization
contribution, given by Zwanziger in Ref.@22#. Our subse-
quent analytic work showed that the contribution for inser-
tion in the transverse photon is24/5, in agreement with our
numerical result. Using this corrected value, the numerical
value of the nonlogarithmic part ofDn@a(Za)2#VP becomes

DEBESVP5
a~Za!2

p
EFF2

8

15
ln21

214

225
2
4

5G
5

a~Za!2

p
EF~20.218 567 . . . !. ~37!

Since we found the error in the calculation of Ref.@10# ~in
June, 1994!, Sapirstein has also noticed it independently
@23#, and Brodsky and Erickson have agreed with the cor-
rected value@24#. We were also informed by Karshenboim
@25# that the same result was independently obtained by
Schneider, Greiner, and Soff@26#.

Let us briefly describe the NRQED evaluation of Eq.~35!.
The terms relevant to the calculation of the NRQED Hamil-
tonian ~7! are the Coulomb, Fermi, and two-photon interac-
tion terms. Combining these three interaction terms, we can
construct the effective spin-flip and spin-non-flip potentials:

VTVP[
p~Za!

mM
cVP

qW 2

m2 ~c†qW 3sW ec!•~x†qW 3sW mx!

3
qW 2

~qW 21l2!2
~38!

and

VCVP[2
4pZa

m2 cVP~c†c!~x†x!
qW 4

~qW 21l2!2
, ~39!

respectively. We will construct the contact term of the
NRQED Hamiltonian of Eq.~9! by comparing the QED and
NRQED scattering amplitudes using the same recipe as for
the Breit correction discussed in Sec. II. In this case both
QED and NRQED scattering amplitudes contribute to the
contact term.~See Fig. 6.! We evaluate the effect of these
potentials using the nonrelativistic Rayleigh-Schro¨dinger
perturbation theory.

To see the UV and IR cancellation of the calculated re-
sult, however, it is more convenient to decompose the con-
tribution ofHcontact

L into several parts. The detail is described
in Appendix B 1. In this treatment, the bound state contribu-

tion comes from the first-order perturbation of the spin-flip
potentialVTVP of Eq. ~38! and from the second-order pertur-
bation involving the spin-non-flip potentialVCVP of Eq. ~39!
and the Fermi potentialVF . The UV divergences in both
bound state calculations are taken care of by the correspond-
ing contact terms derived from the scattering amplitudes of
these NRQED potentials. The sum of two contributions is
found to be

DENRQEDVP5
a~Za!2

p
EF

8

15F lnS l

g D29ln21
15

2
ln32

5

4G .
~40!

The remainder is a part of theHcontact
L coming from the

QED scattering amplitude. The three-photon-exchange dia-
gram with one vacuum-polarization insertion contributes to
this order. Since, at the two-photon-exchange level, we have
introduced the contact term in NRQED Hamiltonian repre-
senting the vacuum polarization effect of thea(Za) KP
term, which is the2 3/4 term on the first line of Eq.~10!, we
must also take into account the contribution of this term in
evaluating the NRQED scattering amplitude. The NRQED
scattering diagram with the Kroll-Pollock~KP! contact term
connected with the Coulomb potential by the free electron
propagator should be subtracted from the QED scattering
amplitudes. Their numerical value, for the photon mass
l/m51025, is

DEQEDVP5
a~Za!2

p
EF@5.520 74~29!#

5
a~Za!2

p
EFF 815lnSml D20.619 49~29!G . ~41!

FIG. 6. Vacuum-polarization diagrams contributing to the
a(Za)2 correction.
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The sum ofDENRQEDVPandDEQEDVP gives the result of Eq.
~35!. The cancellation of the photon mass dependence be-
tweenDENRQEDVP andDEQEDVP has been checked numeri-
cally using various values ofl. Of course Eq.~35! is super-
seded by the analytic result which incorporates Eq.~37!.

V. THE a„Za…2 RADIATIVE PHOTON CONTRIBUTION

More challenging is the radiative photon contribution to
the a(Za)2 term. The sources of thea(Za)2 correction
have been discussed in Ref.@3#. Starting with the main part
of the NRQED Hamiltonian~7!, we can construct the contact
termHcontact

L . Then we find four types of contributions to the
a(Za)2 correction in the bound state perturbation theory.
The manifest cancellation of UV and IR divergences occurs

between the bound state calculation of the operators from the
Hmain

L and the corresponding part of the contact term derived
from the same operators. For simplicity we omit the overall
factor @a(Za)2/p#EF in the following. This means also that
the anomalous magnetic momentae stands for 1/2.

One contribution, denotedEB , where B implies the
bound state effect, is the third-order perturbation with two
dipole couplings and one Fermi potential from the main part
of the NRQED Hamiltonian,Hmain

L . ~See Fig. 7.! The radia-
tive correction of ordera comes from the presence of an
intermediate virtual photon. For this calculation, we use the
Coulomb Green’s function in the presence of a photon with
energyk obtained from Eq.~13!. The UV cutoffL is im-
posed on the radiative transverse photon momentum. All UV
divergent parts and some finite parts are analytically calcu-
lated. The remaining finite parts are numerically evaluated
usingVEGAS @27#. The results are listed in Table I. All rel-
evant formulas are given in Appendix B 2.

The second contributionES comes from the contact inter-
action part ofHcontact corresponding to the bound state cal-
culation ofEB . The NRQED scattering diagrams with two
dipole couplings and one Fermi potential yield this contact
interaction term in NRQED.~See Fig. 8.! The UV cutoffL
is also imposed on the radiative transverse photon momen-
tum. The calculation is entirely analytic. The results are
listed in Table II.

The third type of contributionER , whereR stands for the
‘‘R’’enormalization constant, is found in the first- and
second-order perturbation terms with the potentials which
give the (Za)2 correction. These potentials are found using
the analog of the method of the Breit (Za)2 correction. In
this case, the radiative correction of ordera comes from the

FIG. 7. Diagrams relevant to the NRQED bound state contibu-
tion EB of thea(Za)2 correction.

TABLE I. Bound state contibutionEB of thea(Za)2 correction from individual diagrams shown in Fig.
7. The overall factorEFa(Za)2/p is omitted.

Diagram Contribution

B00
2
16

3 FA2Lm

g2 2
3

4
lnS2Lm

g2 D1 3

2
ln22

3

4G
B01

2
16

3 F14 ln2S2Lm

g2 D1S2ln22
1

4DlnS2Lm

g2 D1 1

2
ln21ln221

p2

6 G
B02

2
16

3 F138 lnS2Lm

g2 D2 49

12
2
13

4
ln22

p2

8 G
B10 8

3 F14ln2S2Lm

g2 D1S23ln21
1

2DlnS2Lm

g2 D1ln213ln221
p2

3
2
3

2G
B11 8

3 Sp2

6
2
1

2DFlnS2Lm

g2 D21G210.499 478~61!

B12 8

3 S2 p2

6
1
9

4DFlnS2Lm

g2 D21G25.393 042~55!

B20 10.761 648~52!
B21 10.491 192~42!
B22 10.221 861~36!
Bd0

2
8

3 F14lnS2Lm

g2 D2 1

2
ln22

5

24G
Bd1 20.316 379(13)
Bd2 20.116 135(19)
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‘ ‘renormalization’’ coefficients of ordera of these poten-
tials. The UV cutoffL8 is imposed on the exchanged trans-
verse photon momentum. ThisL8 cancels out when the
bound state calculation is completed. Some of these contri-
butions are already calculated in Sec. III concerning the Breit
correction. For the contributions from the relativistic kinetic
energy, Darwin, and the seagull term, we only need to mul-
tiply Eqs. ~30!, ~31!, and ~33! with the appropriate
‘‘renormalization’’ constants given in Eq.~8!. The diagrams
for these contributions are shown Figs. 2, 3, and 5, respec-
tively, and the formulas are given in Appendix A. For in-
stance, the contribution associated with the Darwin term is
given by

DEd5~cDcF21!DEd , ~42!

since it involves both Darwin and Fermi terms. The remain-
der, the contributions associated with theq2 derivative Fermi
andp8p interaction term, requires new calculation. The dia-
grams of theq2 derivative Fermi term are analogous to the
derivative Fermi term shown in Fig. 4. The diagrams of the

p8p interaction term are shown in Fig. 9. The formulas for
both contributions are listed in Appendix B 2. The result of
ER evaluation is summarized in Table III. All terms propor-
tional to ln2(Za) and ln(Za) can be obtained fromEB and
ER . We find

~DE! ln 52
8

3
ln2Smg D1

8

3S 2 ln21
3

4D lnSm
2

g2 D
2
8

3

11

24
lnSmg D2

7

2
aelnSmg D , ~43!

which agrees with the known result by Layzer@8# and Zwan-
ziger @9#. Here, the ln(m2/g2) term is related to the IR behav-
ior of the radiative photon and the ln(m/g) term comes from
the threshold singularity due to the exchanged Coulomb pho-
ton. The double logarithm ln2(m/g) is a consequence of si-
multaneous presence of both types of contributions.

The last type of contributionEQ comes from the contact
term of the NRQED Hamiltonian which is calculated from
the QED scattering amplitudes exchanging three photons be-
tween the electron and the muon, dressed by one radiative
photon on the electron line. From this one must subtract
diagrams which are the KP contact term combined with one

FIG. 8. Diagrams relevant to the NRQED scattering state con-
tibution ES of thea(Za)2 correction.

FIG. 9. Diagrams relevant to the ‘‘renormalization’’ constant
contibutionER of the a(Za)2 correction. Only the diagrams in-
volving p8p interaction term are shown here. For other terms, see
Figs. 2, 3, 4, and 5.

TABLE II. Scattering state contributionES of thea(Za)2 correction from individual diagrams shown in
Fig. 8. The overall factorEFa(Za)2/p is omitted. Li(1/3)50.366 213 229 . . . is thevalue of dilogarithmic
function Li(x) at x51/3, where Li(x)52*0

xdt@ ln(12t)/t#.

Diagram Contribution

S0 16

3
A2Lm

g2

S1a 16

3 F14 ln2S2Lm

l2 D2ln3lnS2Lm

l2 D1 1

2
ln231

p2

4
1Li S 13D G

S1b 16

3 F2A2Lm

l2 1S ln2321DlnS2Lm

l2
D1 1

2
ln231Li S 13D G

S1c 16

3 F2A2Lm

l2 1S ln232
3

2DlnS2Lm

l2
D1 1

2
ln2314ln22

3

2
1Li S 13D G

S1d 16

3 F24A2Lm

l2 13lnS2Lm

l2
D22G

Sv
2
8

3 F14ln2S2Lm

l2 D1S22ln22ln31
1

2DlnS2Lm

l2 D
1

p2

4
15LiS 13D22ln221

5

2
ln231

8

3
ln21ln32

7

2
]

Sm
2
8

3 FS2 1

2
ln31

1

2DlnS2Lm

l2 D2 p2

24
1
3

2
Li S 13D1

3

4
ln232

2

3
ln21

1

2
ln321G
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Coulomb potential and the Fermi potential times anomalous
magnetic moment combined with two Coulomb potentials.
~See Fig. 10.! The numerical results evaluated byVEGAS for
various photon mass are listed in Table IV. The IR regulator
massl is kept finite in the exchanged photon in the scatter-
ing diagram calculation. The radiative photon is chosen to be
massless. This is allowed since the radiative and exchanged
photons are separately gauge invariant. The QED scattering
contribution depends only onm/l and may be written as

EQ5c1ln
2Sml D1c2lnSml D1c31c4

l

m
1 •••. ~44!

The coefficientsc1, c2, . . . can bedetermined by fitting the
formula with the result of numerical integration@28#. Ignor-
ing c4, c5, . . . , wefound

c1522.6644~4!, c251.1715~71!, c3528.530~28!.
~45!

Actually, the logarithmic part

~EQ! ln 5c1ln
2Sml D1c2lnSml D ~46!

can be determined analytically, noting that the sum of the
contributionsEB , ES , ER , andEQ must be free of both UV
cutoff L and IR cutoffl. We find that

~EQ! ln 52~ES1ER! ln

52
8

3
ln2Sml D2

16

3 S 6ln22
9

2
ln3D lnSml D

2S 119 1
7

2
aeD lnSml D . ~47!

From this we obtain

c152
8

3
522.666 666 . . . ,

c2524ln3232ln22
11

9
2
7

2
ae51.213 762 9. . . ,

~48!

which are in good agreement with the numerical result~45!.3

Using the analytic result~48! for c1 and c2, we can deter-
mine the constantsc3 and c4 more precisely from the nu-
merical result. We find@28#

c3528.724360.0011, c458.68860.825. ~49!

Using the constantc3 in Eq. ~49! together with other contri-
butions summarized in Tables I, II, and III, we arrive at the
final result for the radiative photon contribution to the BES
term:

DEBESPH517.1227~11!. ~50!

3If we choosec1528/3 in Eq.~44!, we obtainc251.2089(5) and
c3528.6758(46).

FIG. 10. Diagrams relevant to the QED scattering state contibu-
tion EQ of thea(Za)2 correction. The last line is the definition of
the KP potential which contributes to thea(Za) correction of the
hyperfine splitting.

TABLE III. Renormalization constant contributionER of the
a(Za)2 correction from individual diagrams shown in Fig. 9. The
overall factorEFa(Za)2/p is omitted.

Diagram Contribution

DEd F3ln232lnSlgDGF83lnS m2LD1 11

9
12ae1aeG

DEk F2 1

2
26ln

2

3
12lnSlgDGae

DEs F2 1

2
2ln

2

3
2lnSlgDG2ae

DEq2 F3214ln223ln3GF43lnS m2LD1 11

18
1
1

2
ae1

1

3G
DEp8p F581

1

2
ln22

3

4
ln32

1

2
lnSlgDGae

TABLE IV. The QED scattering state contributionEQ for vari-
ous photon massl. The corresponding diagrams are shown in Fig.
10. The overall factorEFa(Za)2/p is omitted. The uncertainty of
EQ is from numerical integration byVEGAS.

l2/m2 EQ EQ2(EQ) ln Uncertainty inEQ

1025 290.0751 28.6971 0.0024
1025.5 2107.9438 28.7078 0.0033
1026 2127.5751 28.7139 0.0040
1026.5 2148.9713 28.7176 0.0048
1027 2172.1390 28.7255 0.0029
1027.5 2197.0627 28.7220 0.0030
1028 2223.7589 28.7237 0.0026
1029 2282.4494 28.7234 0.0016
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VI. DISCUSSION

The value~6! of the a(Za)2 correction obtained by Pa-
chucki @12# is in good agreement with our result~4!. How-
ever, it is not fully satisfactory in the sense that details of his
calculation seem to disagree with ours beyond the uncer-
tainty of numerical evaluation. The numerical value of his
low-energy contributionEL ~defined by Eq.~16! of @12#! is
smaller than ourEB by 0.0257~2!. Unfortunately, his miden-
ergy contributionEM or high-energy contributionEH cannot
be compared directly with ourES , ER , or EQ . We find,
however, that the sumEM1EH is larger than our sum
ES1ER1EQ by 0.0246~14!. Note that these discrepancies
nearly cancel out, leading to a good agreement of Eqs.~4!
and ~6!.

In order to compare these results in detail, let us examine
EL more closely.EL is the low-energy contribution charac-
terized by the parametere which is the~UV! cutoff of the
frequencyv of the virtual photon. In Ref.@12#, terms of
EL divergent fore→` are separated out and evaluated ana-
lytically. The remainder is evaluated partly analytically and
partly numerically. Adding up the results~24!–~27! of Ref.
@12# gives the sum of these terms from which the contribu-
tion of mass renormalization term is not subtracted. Mean-
while, the mass renormalization effect is subtracted out in
Eqs.~B19!, ~B20!, and~B21!.

One way to compare these two methods is to drop the
mass renormalization terms from Eqs.~B19!, ~B20!, and
~B21!. Then evaluate them, for instance, for an NRQED UV
cutoff L satisfyingLm/g251. Correspondingly, we choose
em/g251 in Pachucki’s formula forEL . We have evaluated
both of them numerically. The agreement between the two
integrated results is excellent: NRQED gives
0.455 763(0.000 033), while Pachucki’s formula gives
0.455 769(0.000 010).

In order to identify the leading contributions to the
a(Za)2 correction we have also performed an asymptotic
expansion of our formulas~without mass renormalization
terms! in g2/(Lm). The corresponding procedure for Pa-
chucki’sEL is to take the limit of smallg

2 first and then go
to vanishinge. Both procedures are found to give the same
result for the logarithmically divergent and finite constant
terms. This is as expected since the mass subtraction term in
NRQED has a linear divergence proportional toLm/g2

without any constant term.4 Note that the corresponding term
in Pachucki’s method is proportional toem/g2. Thus the
resultant logarithmic and constant terms must be of the same
form in bothEB andEL , if we identify L5e. These checks
have convinced us thatEL andEB are exactly equivalent as
far as their analytic properties are concerned.

As the second check, we have also evaluated Pachucki’s
formula forEL , after carrying out an explicit mass renormal-
ization, by numerical integration for values ofL(5e) rang-
ing from 102.5g2/m to 106g2/m and extrapolating the result
to L5`. This method is adopted because precision of nu-

merical integration deteriorates steadily with increasingL
and direct evaluation of our formula atL5` becomes im-
possible. In spite of our considerable computational effort
over several months, however, the resultingEL2EB ob-
tained thus far is not capable of distinguishing between the
values 0 and the difference 0.0257 mentioned at the begin-
ning of this section.

In conclusion, we have seen nothing wrong thus far with
the analytic form of eitherEL or EB but have been unable to
resolve the apparent numerical discrepancy. Neither can we
rule out an intriguing possibility that Pachucki’s separation
into low- and higher-energy parts is slightly different from
ours but the sum is not affected by how the separation is
made.

We publish our result in the present form to avoid undue
delay and to encourage further investigation by others.

The result obtained by Sapirstein for the radiative photon
contribution was@11#

DEBESPH515.10~29!. ~51!

Concerning the apparent discrepancy between Eqs.~4! and
~51!, Karshenboim pointed out that the latter might include
the knowna(Za)3ln(Za)21 correction@29,30#,

EFa~Za!3lnSmg D S 5ln22
191

16 D
5EFa~Za!3lnSmg D ~28.471 764 . . . !

5EF

a~Za!2

p
~20.955 . . . !, ~52!

in the relativistic bound state formalism adapted in Ref.@11#.
We wrote the second line of Eq.~52! to emphasize that,
numerically speaking, this contribution is of the same order
of magnitude as thea(Za)2 term.

The correction due to one radiative photon to the hyper-
fine structure was computed recently for various atomic
numbersZ @31,32# without expanding in powers ofZa.5

Thus their results forZ51 must contain corrections of order
a(Za)n with n50, . . . ,̀ . Unfortunately, the results at
Z51 are not accurate enough to extract the nonlogarithmic
contribution of thea(Za)2 correction, namely the BES term,
although Ref.@32# obtained a value consistent with our result
using the lowZ extrapolation. Furthermore, in Ref.@32#, the
authors subtracted thea(Za)2 correction from their numeri-
cal results and showed that the nonlogarithmic contribution
of ordera(Za)3 will play an important role in the compari-
son of theory with the forthcoming experimental data.

In this circumstance it seems that only a direct evaluation
of the purea(Za)3 term will clarify the ambiguity in the
theoretical calculation concerning this term. This problem
will be treated in our subsequent paper@33#.

4In fact, in the NRQED approach there is also a contribution pro-
portional toALm/g2 from the diagramB00 of Fig. 7. This term is
cancelled out by the same but negative contribution from the dia-
gramS0 of Fig. 8.

5We thank Mohr and Taylor for drawing our attention to Ref.@31#
and discussing their results.
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To summarize, we have calculated thea(Za)2 correction to the hyperfine splitting to the ground state muonium based on
the NRQED. Including the logarithmic terms, the total contribution of this order becomes

Dn@a~Za!2#5
a~Za!2

p
EFF 815lnSmg D2

8

15
ln21

214

225
2
4

5
2
8

3
ln2Smg D

1
8

3S 2 ln21
3

4D lnSm
2

g2 D2S 83 11

24
1
7

2
aeD lnSmg D 117.1227~11!G

5EF

a~Za!2

p F2
8

3
ln2Smg D1S 2

8

3
ln41

37

36
1

8

15D lnSmg D116.9042~11!G , ~53!

whereae51/2. Note that the uncertainty due to the numeri-
cal integration is now reduced drastically to match the ex-
pected accuracy of the forthcoming experiment.

Now that we have completed the evaluation of the
an(Za)32n, n51,2,3, terms, it seems about time to discuss
the numerical value of the theoretical prediction of the hy-
perfine splitting of the muonium. However, the leading loga-
rithmic corrections of orderan(Za)42n,n50,1,2,3, turn
out to be numerically of the same order of magnitude as
somea3 corrections. Thus, we postpone comparison with
experiment to the next paper in which we will treat these
higher order logarithmic corrections.
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APPENDIX A: CALCULATION OF THE „Za…2

CORRECTION

1. List of contact terms

In addition to the contact term~25! against the relativistic
kinetic energy term, there are also contact terms against the
Darwin term, the derivative Fermi term, and the seagull term
determined from the two-photon-exchange scattering ampli-
tudes. They are given by

V1c2d522EL d3k

~2p!3
VF~0,kW !

22m

kW2
VD~kW ,0!, ~A1!

V1c2w522EL d3k

~2p!3
VW~0,kW !

22m

kW2
VC~kW ,0!, ~A2!

V1c2s522EL d3k

~2p!3
VS~0,0,kW !, ~A3!

where the potentialsVF ,VD ,VW ,VC , andVS are defined by
Eqs.~17!, ~23!, ~18!, ~16!, and~19!, respectively.

From the three-photon-exchange scattering amplitude, we
find, in addition to Eq.~26!, the following contact terms
against the relativistic kinetic term:

V2c2k~2!522EL d3k

~2p!3
E d3l

~2p!3
VF~0,kW !

22m

kW2
VK~kW !

3
22m

kW2
VC~kW , lW !

22m

lW2
VC~ lW,0W !, ~A4!

V2c2k~3!522EL d3k

~2p!3
E d3l

~2p!3
VC~0,kW2 lW !

22m

ukW2 lWu2

3VK~kW2 lW !
22m

ukW2 lWu2
VF~kW2 lW, lW !

22m

lW2
VC~ lW,0W !.

~A5!

2. The relativistic kinetic energy term

The correction coming from the relativistic kinetic energy
term shown in Fig. 2 is calculated in second-order perturba-
tion theory given in Eq.~20!.

The diagram of Fig. 2~a! with two or more photons ex-
changed leads to a finite result
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DE@Fig. 2~a!#52E d3p d3q d3l d3r

~2p!12
~8Apg5!2

~pW 21g2!2~rW21g2!2
^VF~rW, lW !&S 264p

Zag4 D R̃8~ lW,qW ;E0!VK~qW ,pW !

5EF~Za!2
~28!

p E
0

` gq6dq

~q21g2!4F ln22
5

2
1

g

q
tan21

q

g
2
1

2
lnS 11

q2

g2D1
4g2

q21g2G
5EF~Za!2

51

16
, ~A6!

where the factor 2 accounts for two contributing diagrams. The photon massl is set to zero because the bound state is slightly
off shell and free from IR divergence. The brackets^•••& mean that we take the difference between the expectation values
with respect to the spinJ51 state and the spinJ50 state.R̃8 is the two- or more photon-exchange partR̃ of the Green’s
function G̃0 given by Eq.~11! minus the pole contribution of the ground state:

R̃8[ lim
E→E0

S R̃2
uc0&^c0u
E2E0

D . ~A7!

The explicit form ofR̃8 can be found in Eq.~28! of Ref. @3#. Integration overlW andqW in Eq. ~A6! can be carried out using the
identity for R̃8 given in Ref.@34#:

E d3l

~2p!3
E d3q

~2p!3
R̃8~ lW,qW ;E0! f ~ uqW u!52

g7

16p3E
0

`

dq
q2

~q21g2!2
R~q! f ~q!, ~A8!

where

R~q!5 ln22
5

2
1

g

q
arctanS qg D2

1

2
lnS 11

q2

g2D1
4g2

q21g2 . ~A9!

Unlike the two- or more photon-exchange part, the zero- and one-photon-exchange parts of the Green’s function give rise to
linear and logarithmic divergences, respectively. These divergences must be taken care of by the NRQED contact terms. Thus
it is convenient to treat the calculation of the bound state and the corresponding contact terms together, since they have the
same UV behavior.

For the one-photon-exchange part the bound state calculation gives

DE@Fig. 2~b!#52E d3p d3q d3l d3r

~2p!12
~8Apg5!2

~pW 21g2!2~rW21g2!2
^VF~rW, lW !&

22m

lW21g2
VC~ lW,qW !

22m

qW 21g2
VK~qW ,pW !

5EF~Za!2F22ln212lnS L

g D2
13

16G , ~A10!

whereL is the UV cutoff. It is put to infinity for the finite parts.
The corresponding contact term should have the same structure and we find it among the two-loop contact terms. It is one

Coulomb photon exchange between the Fermi and the relativistic kinetic energy potentials.@See Fig. 2~d!.# Since this is a
contact potential, the first-order perturbation theory with the potential becomes the wave function at the origin squared
uf(0)u25g3/p times the minus sign of its scattering amplitude. To avoid the IR singularity caused by the on-shell condition,
we put the infinitesimal photon massl in the photon propagators. This leads to

DE@Fig. 2~d!#5uf~0!u2^V2c2k~1!&5EF~Za!2F22lnS L

l D12ln3G , ~A11!

whereV2c2k(1) is given by Eq.~26!. This lnL cancels that ofDE @Fig. 2~b!#.
The zero-photon exchange part of the bound state theory can be calculated in a similar way.@See Fig. 2~c!.# One subtle

thing takes place in the calculation of the zero-photon-exchange part, because linear divergence causes the integrated result to
depend on how it is parametrized. If the regulated momentum is shifted, it may give an additional finite piece to the answer.
In order to get rid of the uncertainty due to linear divergence, we will consider the bound state calculation and the contact term
calculation together and put the cutoffL in the corresponding transverse photon line@21#. We choose the momentumkW of the
transverse exchanged photon line to have the cutoffL throughout the whole calculation, since it is easily recognized. Keeping
the cutoffL at finite value, we get
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DE@Fig. 2~c!#52E d3pW

~2p!3
EL d3kW

~2p!3
~8Apg5!2

~ upW 1kW u21g2!2~pW 21g2!2
VF~pW 1kW ,pW !

22m

pW 21g2
VK~pW !5EF~Za!2F2 L

gp
2
23

8 G .
~A12!

The corresponding contact term gives

DE@Fig. 2~e!#5
g3

p
^V1c2k&5EF~Za!2F22

L

gpG ,
~A13!

whereV1c2k is given by Eq.~25!. In these calculations, we
have used the expansion

arctanS L

l D5
p

2
2

l

L
1
1

3S l

L D 31OF S l

L D 5G . ~A14!

Clearly, the one-loop contact term destroys the linearL di-
vergence inDE Fig. @2~c!#.

The other two-loop contact terms are linearly divergent
due to the threshold singularity. The diagram Fig. 2~f! gives

DE@Fig. 2~ f!#5
g3

p
^V2c2k~2!&

5EF~Za!2F24
L

lp
22ln

2

3
13G ,

~A15!

whereV2c2k(2) is given by Eq.~A4!. Figure 2~g! has an
expression different from Fig. 2~f!, but their integrals are
identical:

DE@Fig. 2~g!#5
g3

p
^V2c2k~3!&

5EF~Za!2F24
L

lp
22ln

2

3
13G ,

~A16!

whereV2c2k(3) is given by Eq.~A5!.
The remainder is the contact term that consists of a one-

loop contact term and one Coulomb photon exchange:

DE@Fig. ~h!#5
g3

p
^V2c2k,1loop2&5EF~Za!2F8 L

lp
26G ,

~A17!

whereV2c2k,1loop2 is given by Eq.~27!.
Summing up all the contributions relating to the kinetic

term correction, we get

DEk5EF~Za!2F2
1

2
26ln

2

3
12lnS l

g D G . ~A18!

Each linearly divergent diagram could have a value which
depends on the regularization method, but the sum remains
the same because of gauge invariance.

3. The Darwin term

The computation method of the Darwin term shown in
Fig. 3 is almost identical with that of the kinetic term. The
bound state calculation is also from the second-order pertur-
bation theory. The number of graphs has been already taken
into account in the equation

DE@Fig. 3~a!#52E d3p d3q d3l d3r

~2p!12
~8Apg5!2

~pW 21g2!2~rW21g2!2
^VF~rW, lW !&S 264p

Zag4 D R̃8~ lW,qW ;E0!VD~qW ,pW !

5EF~Za!2F2
3

2G . ~A19!

Similarly, we find

DE@Fig. 3~b!#5EF~Za!2F2 lnS L

g D1 ln2G , ~A20!
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DE@Fig. 3~c!#5EF~Za!2F2
L

gp
11G . ~A21!

The contact terms give the contributions

DE@Fig. 3~d!#522
g3

p EL d3k

~2p!3
^VF~0,kW !&

22m

kW2
VD~kW ,0!

5EF~Za!2
L

gp
, ~A22!

DE@Fig. 3~e!#5EF~Za!2F lnS L

l D2 ln3G , ~A23!

DE@Fig. 3~ f!#5EF~Za!2F2 L

lp
1 ln

2

3
21G , ~A24!

DE@Fig. 3~g!#5EF~Za!2F2 L

lp
1 ln

2

3
2
3

2G , ~A25!

DE@Fig. 3~h!#5EF~Za!2F24
L

lp
13G . ~A26!

The sum of the contributions~A19!–~A26! is

DEd5EF~Za!2F2 lnS l

g D13ln
2

3G . ~A27!

4. The derivative Fermi term

The corrections involving the derivative Fermi term shown in Fig. 4 are calculated in the first-order perturbation theory. We
obtain

DE@Fig. 4~a!#5E d3p

~2p!3
EL d3k

~2p!3
~8Apg5!2

~ upW 2kW u21g2!2~kW21g2!2
^VW~pW ,pW 2kW !&

5EF~Za!2F22
L

gp
1
5

2G , ~A28!

DE@Fig. 4~b!#5EF~Za!22
L

gp
, ~A29!

DE@Fig. 4~c!#5EF~Za!2F4 L

lp
12ln

2

3
23G , ~A30!

DE@Fig. 4~d!#5EF~Za!2F4 L

lp
12ln

2

3
23G , ~A31!

DE@Fig. 4~e!#5EF~Za!2F28
L

lp
16G . ~A32!

The sum of the contributions~A28!–~A32! is

DEw5EF~Za!2F4ln231
5

2G . ~A33!

5. The Seagull term

The diagrams involving the seagull term are shown in Fig. 5. The bound state calculation is also carried out in the first-order
perturbation theory. The results are
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DE@Fig. 5~a!#52E d3p

~2p!3
EL d3k

~2p!3
E d3l

~2p!3
~8Apg5!2

~ upW 2kW u21g2!2~ upW 2 lWu21g2!2
^VS~pW 2 lW,pW 2kW , lW !&

5EF~Za!2F L

gp
2 lnS L

g D1 ln2G , ~A34!

DE@Fig. 5~b!#5EF~Za!2F2
L

gpG , ~A35!

DE@Fig. 5~c!#5EF~Za!2F24
L

lp
1 lnS L

l D1
5

2
1 ln322ln2G , ~A36!

DE@Fig. 5~d!#5EF~Za!2F4 L

lp
23G . ~A37!

The sum of the contributions~A34!–~A37! is

DEs5EF~Za!2F2 lnS l

g D2 ln
2

3
2
1

2G . ~A38!

Adding up Eqs.~A18!, ~A27!, ~A33!, and~A38! we obtain the Breit (Za)2 term

DEBreit5
3

2
EF~Za!2. ~A39!

APPENDIX B: CALCULATION OF THE a„Za…2 CORRECTION

1. Vacuum polarization contribution

First let us calculate the NRQED corrections related to the vacuum-polarization insertion in the transverse exchanged
photon. The bound state calculation is the first-order perturbation theory with the NRQED potentialVTVP of Eq. ~38!:

DE@Fig. 6~a!#5EF

p

g3

a

15pE d3p

~2p!3
EL d3k

~2p!3
~8Apg5!2

~pW 21g2!2~ upW 1kW u21g2!2
kW2

m2

5EF

a~Za!2

p

8

15F L

gp
2
3

2G . ~B1!

Similarly, for the scattering diagrams of Figs. 6~b!–6~e!, we obtain

DE@Fig. 6~b!#5EF

a~Za!2

p

28

15

L

gp
, ~B2!

DE@Fig. 6~c!#5EF

a~Za!2

p

8

15F22
L

lp
22ln

2

3
1
17

12G , ~B3!

DE@Fig. 6~d!#5EF

a~Za!2

p

8

15F22
L

lp
23ln21

3

2
ln31

17

6 G , ~B4!

DE@Fig. 6~e!#5EF

a~Za!2

p

8

15F4 L

lp
2
15

4 G . ~B5!

Next let us calculate the contribution coming from the NRQED potential representing the vacuum-polarization insertion in the
Coulomb photon given by the potentialVCVP of Eq. ~39!. The bound state calculation is in the second-order perturbation
theory. The two- or more-photon-exchange part of the Coulomb Green’s function gives the correction
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DE@Fig. 6~ f!#52EF

p

g3

24p~Za!a

15m2p E d3p d3q d3l d3r

~2p!12
~8Apg5!2

~pW 21g2!2~rW21g2!2
264p

~Za!g4R̃8~qW , lW;E0!

5EF

a~Za!2

p

4

5
. ~B6!

Similarly, the one-photon-exchange part gives

DE@Fig. 6~g!#5EF

a~Za!2

p

8

15F lnS L

l D2 ln2G . ~B7!

The zero-photon-exchange part gives

DE@Fig. 6~h!#5EF

a~Za!2

p

8

15F L

gp
21G . ~B8!

The corresponding scattering diagrams give the following corrections:

DE@Fig. 6~ i!#522EF

24p~Za!a

15m2p EL d3k

~2p!3
kW4

~kW21l2!2
22m

kW2
kW2

kW21l2

5EF

a~Za!2

p

28

15

L

pg
. ~B9!

Similarly, we obtain

DE@Fig. 6~ j!#5EF

a~Za!2

p

28

15 F lnS L

l D2 ln32
1

6G , ~B10!

DE@Fig. 6~k!#5EF

a~Za!2

p

28

15 F2 L

lp
1 ln

2

3
2
23

12G , ~B11!

DE@Fig. 6~ l!#5EF

a~Za!2

p

28

15 F2 L

lp
12ln

2

3
2
21

12G , ~B12!

DE@Fig. 6~m!#5EF

a~Za!2

p

8

15F4 L

lp
2
15

4 G . ~B13!

The sum ofDE @6~a!# ••• DE @6~m!# gives the NRQED contribution ofDENRQEDVP of Eq. ~40!.
The remainder is the QED scattering diagrams contribution. The QED three-photon-exchange skeleton diagram gives the

hyperfine splitting contribution

DEskl5EF

~Za!2

p2 E
0

`

dpE
0

`

dqE
21

1

d~cosu!
16~pW 22pW •qW 1qW 2!

~pW 21l2!~ upW 2qW u21l2!~qW 21l2!
. ~B14!

Thus the vacuum polarization insertion in the middle exchanged photon gives

DE@Fig. 6~n!#5EF

~Za!2

p2 E
0

1

dt r2~ t !E
0

`

dpE
0

`

dqE
21

1

d~cosu!
upW 2qW u2

upW 2qW u21l2

16~pW 22pW •qW 1qW 2!

~pW 21l2!„upW 2qW u214m2~12t2!21
…~qW 21l2!

,

~B15!

wherer2(t) is the second-order photon spectral function given by

r2~ t !5
a

p

t2@12~1/3!t2#

12t2
. ~B16!

The vacuum-polarization insertion in the outermost exchanged photon leads to
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DE@Fig. 6~o!#52EF

~Za!2

p2 E
0

1

dt r2~ t !E
0

`

dpE
0

`

dqE
21

1

d~cosu!
pW 2

pW 21l2

16~pW 22pW •qW 1qW 2!

@pW 214m2~12t2!21#~ upW 2qW u21l2!~qW 21l2!
.

~B17!

The scattering amplitude due to the KP contact term is

DE@Fig. 6~p!#524EF

~Za!2

p2 E
0

1

dt r2~ t !E
0

`

dpE
0

`

dqE
21

1

d~cosu!
pW 2

pW 21l2

16pW 2

~pW 21l2!@pW 214m2~12t2!21#~qW 21l2!
.

~B18!

The sum ofDE @Fig. 6~n!#, DE @Fig. 6~o!#, andDE @Fig. 6~p!# gives the QED contributionDEQEDVP of Eq. ~41!.

2. Radiative photon contribution

We list formulas needed for the calculation of the bound state contributionEB . For the diagramB00 of Fig. 7 we find

DE@Fig. 7~B00!#52EF

p

g3

2a

3pE d3pd3r

~2p!6
~8Apg5!2

~pW 21g2!2~rW21g2!2
pW •pW

m2 E
0

L

dk
22m

pW 21p0
2

5EF

a~Za!2

p S 2
23

3 Dmg E0Ldk 2p01g

~p01g!2
. ~B19!

Some contributions of Fig. 7 can be similarly reduced to integrals over the radiative photon momentumk while others are
harder to simplify:

DE@Fig. 7~B01!#5EF

a~Za!2

p S 2
25

3 DmE
0

L

dkF2
1

4~p0
22g2!

1
p0
2

~p0
22g2!2

lnS g1p0
2g D G , ~B20!

DE@Fig. 7~B02!#5EF

a~Za!2

p S 2
4

3D E0Ldk m

~p0
22g2!3~p01g!

3F13p05227gp0
4118g2p0

326g3p0
21g4p01g5116gp0

2~p0
22g2!lnS 2g

p01g D G , ~B21!

DE@Fig. 7~B10!#5EF

a~Za!2

p

25

3
m2E

0

L

dkk
1

~p0
22g2!3

F12 ~p02g!21~3p0
21g2!lnS g1p0

2g D22p0
2ln

p0
g G , ~B22!

DE@Fig. 7~B11!#52EF

p

g3

2a

3pE d3p d3q d3l d3r

~2p!12
~8Apg5!2

~pW 21g2!2~rW21g2!2
pW •qW

m2

3E
0

L

dkk
22m

pW 21p0
2

24pZa

upW 2qW u2
22m

qW 21p0
2

22m

qW 21g2

24pZa

uqW 2 lWu2
22m

lW21g2
, ~B23!

DE@Fig. 7~B12!#52EF

p

g3

2a

3pE d3p d3q d3l d3r

~2p!12
~8Apg5!2

~pW 21g2!2~rW21g2!2
pW •qW

3E
0

L

dk k
22m

pW 21p0
2

24pZa

upW 2qW u2
22m

qW 21p0
2

264p

~Za!g4R̃8~qW , lW;E0!, ~B24!

DE@Fig. 7~B20!#52EF

p

g3

2a

3pE d3 p d3q d3r

~2p!9
~8Apg5!2

~pW 21g2!2~rW21g2!2

3
pW •qW

m2 E
0

L

dk k
264p

~Za!g4R̃~pW ,qW ;E02k!
22m

qW 21g2
, ~B25!
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DE@Fig. 7~B21!#52EF

p

g3

2a

3pE d3pd3qd3ld3r

~2p!12
~8Apg5!2

~pW 21g2!2~rW21g2!2

3
pW •qW

m2 E
0

L

dk k
264p

~Za!g4R̃~pW ,qW ;E02k!
22m

qW 21g2

24pZa

uqW 2 lWu2
22m

lW21g2
, ~B26!

DE@Fig. 7~B22!#52EF

p

g3

2a

3pE d3pd3qd3ld3r

~2p!12
~8Apg5!2

~pW 21g2!2~rW21g2!2

3
pW •qW

m2 E
0

L

dk k
264p

~Za!g4R̃~pW ,qW ;E02k!
264p

~Za!g4R̃8~qW , lW;E0!, ~B27!

DE@Fig. 7~Bd0!#5EF

a~Za!2

p S 2
23

3 Dm2E
0

L

dk k
p015g

~p01g!5
, ~B28!

DE@Fig. 7~Bd1!#5EF

2a

3pE d3p d3q

~2p!6
~8Apg5!2

~pW 21g2!~qW 21g2!

pW •qW
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0

L

dk k
]

]E S 22m

pW 222mE

24pZa

upW 2qW u

22m

qW 222mE
D U

E52g2/2m2k

5EF

2a

3pE d3pd3q

~2p!6
~8Apg5!2

~pW 21g2!~qW 21g2!

pW •qW

m2 E
0

L
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2

1
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qW 21p0
2G 22m

pW 21p0
2

24pZa

upW 2qW u

22m

qW 21p0
2
, ~B29!

DE@Fig. 7~Bd2!#5EF

2a

3pE d3pd3q

~2p!6
~8Apg5!2

~pW 21g2!~qW 21g2!

pW •qW

m2 E
0

L

dk kS ]
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~Za!g4R̃~pW ,qW ;E! D U
E52g2/2m2k

. ~B30!

For the scattering state, we put

p0
2522mE52mk. ~B31!

The NRQED scattering state contributions toES are given by the terms

DE@Fig. 8~S0!#522EF

2a

3pE d3p

~2p!3
24pZa

pW 21l2

22m

pW 2
pW 2

pW 21l2

pW •pW

m2 E
0

L

dk
22m

pW 21p0
2

5EF

a~Za!

p

8

3E0
L

dk
1

~p0
22l2!2

~l323lp0
212p0

3!. ~B32!

Similarly, we find

DE@Fig. 8~S1a!#5EF

a~Za!2

p

32

3 E0
L

dk
1

p0
22l2lnS p012l

3l D , ~B33!

DE@Fig. 8~S1b!#5EF

a~Za!2

p

32m

3 E
0

L

dk
1

p0
22l2Fp0l 211 ln

2

3
1 lnS 2l1p0

l1p0
D G , ~B34!

DE@Fig. 8~S1c!#5EF

a~Za!2

p

32m

3 E
0

L

dk
1

p0
22l2F ln232

p0
2

l2lnS p01l

p012l D G , ~B35!

DE@Fig. 8~S1d!#5EF

a~Za!2

p

32m

3 E
0

L

dk
p0
2

~p0
22l2!2

, ~B36!

DE@Fig. 8~Sv!#52EF

a~Za!2

p

32m2

3 E
0

L

dk k
1

~p0
22l2!2F lnS ~p012l!2

3l~2p01l! D1~p0
22l2!H 1l2lnS p012l

p01l D2
1

p0
2lnS 2p01l

p01l D J G ,
~B37!
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DE@Fig. 8~Sm!#5EF

a~Za!2

p

16m2

3 E
0

L

dk k
1

~p0
22l2!2F2

~p02l!2

p0
2 1

~p0
22l2!2
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4 lnS p01l

l D
2 lnS ~p012l!2
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4 lnS 2p01l

p01l D G . ~B38!

Theq2 derivative Fermi termDEq2 contributing toER is calculated by replacingpW
21pW 82 in VW of Eq. ~A28!, etc., byqW 2. We

obtain

DE@Fig. 4~a!#5E d3p

~2p!3
EL d3k

~2p!3
~8Apg5!2

~ upW 2kW u21g2!2~kW21g2!2
^VqW2~kW !&5EF~Za!2F22

L

gp
13G , ~B39!

DE@Fig. 4~b!#5EF~Za!22
L

gp
, ~B40!

DE@Fig. 4~c!#5EF~Za!2F4 L

lp
12ln

2

3
23G , ~B41!

DE@Fig. 4~d!#5EF~Za!2F4 L

lp
12ln22 ln32

9

2G , ~B42!

DE@Fig. 4~e!#5EF~Za!2F28
L

lp
16G . ~B43!

The sum of the contributions~B39!–~B43! is

DEq25EF~Za!2F4ln223ln31
3

2G . ~B44!

Multiplying DEq2 with the ‘‘renormalization’’ constantcq2 of Eq. ~8!, we obtain the contributionDEq2 listed in Table III.
The reminder is the contributionDEp8p coming from thep8p coupling interaction. Thep8p potentialVp8p(p

W 8,pW ) for
spherical symmetric states is defined by

Vp8p~p
W 8,pW !5

Zap

6m3M

2pW 2qW 21~pW •qW !2

qW 21l2
sW e•sW m . ~B45!

With this expression, the bound state calculation of Fig. 9~a! gives

DE@Fig. 9~a!#5E d3p

~2p!3
EL d3k

~2p!3
~8Apg5!2

~ upW 2kW u21g2!2~kW21g2!2
^Vp8p~p

W 2kW ,pW !&

5EF~Za!2F2
1

2
lnS L

g D1
1

2
1
1

2
ln2G . ~B46!

The two-loop scattering diagram of Fig. 9~b! gives the contribution

DE@Fig. 9~b!#5E d3p

~2p!3
EL d3k

~2p!3
VC~0,pW 2kW !

22m

upW 2kW u2
^Vp8p~p

W 2kW ,pW !&
22m

pW 2
VC~pW ,0!

5EF~Za!2F12 lnS L

l D1
1

8
2
3

4
ln3G . ~B47!

The sum of Eqs.~B46! and ~B47! is

DEp8p5EF~Za!2F2
1

2
lnS l

g D1
5

8
1
1

2
ln22

3

4
ln3G , ~B48!

where l is the infrared cutoff. Multiplying this with the ‘‘renormalization’’ constantcp8p5ae of Eq. ~8!, we find the
contributionDEp8p listed in Table III.
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The contributionEQ of the QED scattering diagrams shown in Fig. 10 can be calculated using the techniques similar to one
described in Ref.@3#. These diagrams may be expressed in the form

2ie2~Ze2!3
g3

p E d4k

~2p!4
E d4p

~2p!4
E d4q

~2p!4
EmnlMmnl

~p22l2!@~p2q!22l2#~q22l2!
, ~B49!

whereEmnl andMmnl are factors representing the electron line and the muon line, respectively. For instance,Emnl corre-
sponding to the diagramT1a of Fig. 10 is given by

gm~p”1 ł1m!gn~q”1 ł1m!ga~k”1q”1 ł1m!gl~k”1 ł1m!ga

@~p1 l !22m21 i e#@~q1 l !22m21 i e#@~k1q1 l !22m21 i e#@~k1 l !22m21 i e#
, ~B50!

wherel5(m,0W ).Mmnl may be written as the sum of six permutation terms:

gm~2p”1 łr”1M !gn~q”1 łr”1M !gl

@~2p1r !22M21 i e#@~2q1r !22M21 i e#
1permutations in m, n, l, ~B51!

wherer5(M ,0W ).
The integral is greatly simplified in the limit of infinite muon mass. We can extract the contribution to the hyperfine splitting

from each diagram using the projection operator given by Eq.~65! of @3#. For instance, the contribution from the diagram
T1a of Fig. 10, after carrying out thek integration and subtracting the vertex renormalization term, is expressed with the help
of Feynman parametersz1, z2, andz5 as

DE@Fig. 10~T1a!#

52EF

a~Za!2

p

1

8p4E dz1dz2dz5d~12z12z22z5!E d3pE d3q
1

pW 2qW 2~pW 21l2!~ upW 2qW u21l2!~qW 21l2!

3F28lnS VV0
D ~pW 22pW •qW 1qW 2!1~pW 22pW •qW !~818A1

2232A1!S 1V2
1

V0
D

1qW 2~8224A1!
1

V
2qW 2~818A1

2232A1!
1

V0
1
qW 2

V
$pW 2~24A1A1q24A1A2q18A1qA2q!

1pW •qW ~4A1A2q28A1qA2q!1qW 2~8A1q A2q!%G , ~B52!

where

A15z5 , A1q512z1 , A2q52z1 ,

V5z11z22~z11z2!A11z1 A1qqW
2,

V05z11z22~z11z2!A1 . ~B53!

The integralDE @Fig. 10(T1a)] has one threshold singularity atqW 50 and another atpW 50. The threshold singularity at
qW 50 is canceled by that of the NRQED scattering diagramDE @Fig. 10~A!# which consists of one Fermi and two Coulomb
potentials multiplied by the Fermi term ‘‘renormalization’’ constant of the Fermi termae , namely the anomalous magnetic
moment of the electron. The latter is of the form

DE@Fig. 10~A!#522EF

a~Za!2

p

1

8p4E dz1dz2dz5d~12z12z22z5!

3E d3pE d3q
1

pW 2qW 2~pW 21l2!~ upW 2qW u21l2!~qW 21l2!
qW 2~28A1

218A1!
1

V0
. ~B54!
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The threshold singularity atpW 50 is canceled by the contact term consisting of the lower order contact term~the KP term!,
which contributes to thea(Za)EF correction, and the Coulomb potential. From the second and fourth diagrams of the KP
diagram of Fig. 10~KP! we find that the contact term contribution corresponding toT1a andA of Fig. 10 is given by

22EF

a~Za!2

p

1

8p4E dz1dz2dz5d~12z12z22z5!E d3pE d3q
1

pW 2qW 2~pW 21l2!~qW 21l2!2

3F28lnS VV0
DqW 21qW 2~8224A1!S 1V2

1

V0
D1~qW 2!2~8A1q A2q!

1

VG . ~B55!

The sum of Eqs.~B52!, ~B54!, and ~B55! still suffers from a severe infrared singularity in the limit of vanishing radiative
photon mass. In order to perform numerical integration we identified the IR singular terms of~B52! and~B55! and subtracted
them from each integral. The IR subtraction term for~B52! is of the form

DE@Fig. 10~T1a!# IR522EF

a~Za!2

p

1

8p4E dz1dz2dz5d~12z12z22z5!

3E d3pE d3q
1

pW 2qW 2~pW 21l2!~ upW 2qW u21l2!~qW 21l2!
~pW 22pW •qW 1qW 2!~216!S 1

VIR
2

1

V0
D ,

~B56!

where

VIR5z11z22~z11z2!A11z1qW
2. ~B57!

This IR subtraction term is completely canceled by that forT0 of Fig. 10. Similar cancellation occurs among the diagrams
T1b , T2, andT3. The IR subtraction term for Eq.~B55! is given by

12EF

a~Za!2

p

1

8p4E dz1dz2dz5d~12z12z22z5!E d3pE d3q
1

pW 2qW 2~pW 21l2!~qW 21l2!2
qW 2~216!S 1

VIR
2

1

V0
D . ~B58!

These types of IR singularities of the KP contact terms cancel out completely among themselves. When summed over all
diagrams of Fig. 10, the resultant integrand has only the infrared singular terms of the form ln2(l/m) and ln(l/m).
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