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Rapidity gaps and production of minijets in high-energy hadronic collisions

G. Calucci, R. Ragazzon, and D. Treleani
Dipartimento di Fisica Teorica dell'Universitand INFN Sezione di Trieste, Trieste, | 34014 Italy
(Received 24 October 1996

High-energy hadronic interactions can produce a final state characterized by minijets separated by a large
gap in the rapidity distribution of the produced secondary particles. We discuss the process by keeping in mind
the possibility of having multiple parton collisions in the hadronic interaction. At Fermilab Tevatron energy the
correction to the single scattering term induced by the presence of multiparton interactions is large for trans-
verse momenta smaller than 6 G4$0556-282(197)04209-4

PACS numbegps): 13.87.Ce, 13.85.Hd

[. INTRODUCTION with no further particles in the rapidity interval between

them. On the contrary, in the typical inelastic parton colli-

In the kinematical regime of semihard hadronic collisionssion, represented with a cut BFKL Pomeron, the gap is filled
the momentum transfey, is large enough to apply perturba- uniformly on the average by gluons. The dependence of the
tion theory but it is kept fixed with the c.m. energy, in such parton cross section on the rapidity gap is predicted by the
a way that the Regge limit's—0 is reached from the per- perturbative calculation and it is related by unitarity to the
turbative side. The main feature, which becomes more andependence of the inelastic process on the width of the ra-
more apparent when approaching the Regge limit, is the inpidity interval. The identification of these features in a semi-
creasing complexity of the process. In fact at laggseveral  hard hadronic process would signal the underlying parton

major aspects of the interaction are described by a S'”gleynamics in a distinctive way3]. A difficulty which has

partonic collision represented with a Feynman diagram at thgeen pointed out is that the hadronic event which contains
lowest order in the coupling constant. When moving toward§he semihard partonic interaction is going to fill the gap in

the semihard regime the Regge limit is approached both b ost of the cases. The perturbative cross section with rapid-

the hadronic and by t_he typical partonic collision. As a con=y gap has, therefore, been multiplied by a survival probabil-
sequence the partonic process is not well represented ar.

more by means of a tree level Feynman diagram. Partonil factor [4]. T_he survi_vgl p_robability has been rece_ntly es-
interaction in the Regge limit have been investigated extent-'mated_ by taking eXP“C'tIy into account the underlying soft
sively [1,2]. An approach which has received a lot of a,[ten_hadrc_)mc event anq_|t turns out to be roughly constant as a
tion is the Balitskii-Fadin-Kuraev-Lipato(BFKL) Pomeron function of the rapidity gaps]. The underlying event would
[2]: the partonic reaction is described by the exchange of therefore provide onlly a rescaling factor.to the cross section
gluon ladder, with vacuum quantum numbers in thehan- calc;ulated perturbatlvgly and the behawor of the a_ct.ual ex-
nel. The ladder is constructed by decoupling the transversd€rimental cross section as a function of the rapidity gap
momentum components from the longitudinal ones, which igvould still be linked directly to the BFKL dynamics.

allowed in the kinematical configurations where the suben- While testing the validity of the BFKL approach to semi-
ergy of any pair of gluons is large with respect to the trans-hard parton dynamics is presently one of the main topics in
verse momenta. As a result of this simplified kinematics theperturbative QCD, the delicate point is to keep properly into
gluons can be ordered in rapidity and the overall ladder issccount the structure of the whole hadronic interaction,
built up with two basic element$a) the gauge independent whose effect may mask the BFKL dynami@. In fact the
nonlocal vertices, which sum up the dominant term in theBFKL regime requires a smadf{™" with respect to all longi-
t/s—0 limit, of the diagrams with gluon emission from all tudinal momenta and smaller values aﬂf‘"‘ correspond to
near-by lines, andb) the Reggeization of thechannel glu-  larger values for the partonic cross section. In the BFKL
ons, which is introduced in order to keep into account theregime unitarity corrections are therefore important. Indeed
leading virtual corrections and which allows a solution to thethe closer the parton dynamics to the BFKL limit the stron-
infrared problem. ger the effect of unitarizatiof6].

The iteration of the ladder in thechannel is expressed as  In the present paper we discuss the effect of the unitari-
an integral equation(Lipatov's equatioh which can be zation of the semihard hadronic interaction on the cross sec-
solved explicitly. By considering the parton process repretion for minijet production with rapidity gaps in the distribu-
sented with a cut BFKL Pomeron one may write explicitly tion of final state secondaries. The unitarization of the
the expression for the inclusive cross section to producéadronic semihard interaction induces multiple semihard
minijets, which are to be identified with final state partonspartonic collisions in the inelastic event and the cross section
with transverse momentum larger than the lower threshold ofo produce minijets with associated rapidity gap is therefore
observabilitygi™". One may also consider the elastic partonmodified. To keep into account multiple BFKL Pomeron ex-
interaction with BFKL Pomeron exchange. The elastic parchanges we assume the validity of the Abramovskii-Gribov-
ton collision gives rise to a distinct signature in the final stateKancheli(AGK) cutting rules for semihard interactions. As a
generated by the parton process: two minijets are producetbnsequence the whole semihard hadronic process is repre-
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sented as a probabilistic superposition of multiple BFKLnamics one can relate the rapidiyyof the minijet which
Pomeron exchanges. carries most of the momentum of the initial state pasjani

The paper is organized as follows. In the next section thenary minijed with the fractional momentum variabbe of
single parton interaction is discussed. The argument of thehe incoming parton. The relation is=k.e¥/+/s for forward
following section is multiple parton collisions; we describe final state partons with transverse momentkjrand rapidity
the general formulation to the problem and we derive the; and x:kte’y/\/g for backward partons. Equatidil) can

expression for the cross section with rapidity gap in the simpe integrated on the transverse momenta down to the lower
plest case of multiple parton interactions. A numerical ex-cyt off ™"

ample and some concluding remarks are the argument of the

last section while a few possible generalizations are dis- R do, o 0
cussed in the appendix. ou(y)= fq;"i" k%K, d°kadky
Il. SINGLE SCATTERING TERM aCa 2 3
. . = Srammz FL(Y), (7)
By considering the cut BEFKL Pomeron one may write the m ] 2(q;)

expression for the cross section where two gluons interact
producing many gluons and two of them, the ones with largWhere
est rapidity(in absolute valugin the overall c.m. frame, are
observed. lfy is the separation in rapidity arqg, .k, are the = (y):f haldl o(v)y ®)
transverse momenta of the observed gluons, the inclusive - 2m vi+1/4

cross section is expressed as

with w(v)=w(»,0) as a consequence of the integration on
¢. o is the inclusive cross section for minijet production in
' (1) a parton process represented by a cut BFKL Pomeron. A
different possibility which one may consider is to produce
where C,=N, is the number of colorsgs is the strong- two minijets without cutting the BFKL Pomerdi], namely,
coupling constant, and(k,.k,,y) is the inverse Laplace by elastic scattering of two partons which exchange, a BFKL
transform of the solution to Lipatov’s equation. Actually, ~Pomeron at a momentum transfer larger than the lower cut
off gi"". The corresponding integrated partonic cross section

Caas
K

do,
d%k,d%k,

Cha
f(ka ko ¥)| 7

1 o is expressed gs]
flka koY) = g 2,
afb n= ) (asCA>4 71_5 . ( ) (9)
oo (T = ——
v J'+ deennygiv (/). @) S 7 | 4(g"m?’ S y

and F¢(y) is the convolution of two BFKL propagators in
where ¢ is the azimuth angle between the observed gluonsthe transverse momentum plane

aNe [ [In[+1 (a"? ?
olvm=-2=""Ry| 5 +iv|=y(D)], O Fs(Y)= 153 fqmmdzkfdzqdzq'fkm,q',y) .
t
and (10
d In[(2) k is the overall momentum exchanged through the ladder and

(4)  the labelS refers to the singlet exchange in the elastic par-
tonic collision. Obviously one might consider also the possi-

is the digamma function. The inclusive cross section for pro—bIIIty of haymg a octet exchange,. the contnbuuon (o the
cross section is, however, subleading at large rapidifi¢s

duction of two minijets, as a result of cutting the exchange inTh X ) da’ in Eq. (8 b ; d
the forward direction of a BFKL Pomeron, is obtained by e mtegratlons_ org andq’ in q.( ) can be performe
when using the integral representationféfq,q’,y),

folding Eq. (1) with the structure functions of the interacting

hadronsA andB: )
; [ o taa =iz [ vt ooty

dO-L —f k2 f k2 d(TL M k2 (V2+ 1/4)2 ,

dxadxgd?k 0%k, ef(Xa  K3) Feri(Xp , Kp) dzk—adzkb' (12)

©)

2) dz

and one obtains the asymptotic behavior at large

asCA 4 71_5 e4 In2z 2
) 4(qm)? (” [(712{(3) 727
(12)

wheref o is the effective structure function

(}s(y)z( -

4 _
fer) =G0+ 3 2 [+ Q0] (®)

namely, the gluon structure function pl§®f the quark and wherez=a,C,y/m. For comparison the asymptotic behav-
antiquark structure functions with flavér In the BFKL dy-  ior of o is
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A aCp\2 o gt In2z ll. GENERAL FRAMEWORK FOR MULTIPARTON
UL(Y)z( 7 | 2(q)? ([(7/2)5(3)772]1/2)- (13 INTERACTIONS
Given the scalq{“‘” one may separate parton fluctuations

The “elastic” partonic cross section can be identified with a long lifetime with respect tq{nin and parton fluctua-

with the “diffractive” cut of the double BFKL Pomeron tions with a short lifetime with respect gf™". Parton fluc-

exchange contribution to the forward parton amplit¢f¢  tuations which have a long lifetime are of nonperturbative
At the same order, in the number of exchanged BFKLorigin and can be associated to the initial state. Parton fluc-
Pomerons one needs therefore to keep in mind the one BFK{yations with a short lifetime can be treated perturbatively
Pomeron cut and two BFKL Pomeron cut contributions toand can be associated to the semihard interaction. In the
the partonic process. In fact the relative rate of elastic andimplest case, when the typical value of the rapidity interval
inelastic parton processes, as expressed in@gsand(13), v in the partonic interaction is not too large, the semihard
is not consistent at large rapidity intervals because of the topartonic interaction is described at the lowest order in the
rapid rise of the elastic cross section. We do not try to solvg,ymper of exchanged BFKL Pomerons gff" is relatively
here this unitarity problem. To have an indication on thesmga)| one faces, however, a unitarity problem even if one is
boundaries of the kinematical regime where the problemy 3 regime where the partonic interaction is well described
needs to be faced we have taken the simplest attitude. Within perturbation theory because of the large value of the
analogy to thes-channel unitarization of the soft Pomeron integrated semihard hadronic cross secfibtl: by integrat-

exchange we have included in the semihard partonic interaqﬁg Eq. (5) with the cutoffq[“i” one obtains a cross section

tion the exchange of two BFKL Pomerons and we have useghich easily exceeds the value of the total cross section. On
the AGK cutting rules[9] to obtain the inelastic contribu- ha other hand. the partonic cross section, Eid), is in

tions to the cross section. The semihard partonic cross SeEomparison still rather small. The large value of the inte-

tion a(y) is therefore expressed as grated inclusive cross section is therefore the consequence of
the large flux of partons in the initial state, which gives rise
ou(y)=o0gy)+[o(y)—4ogy)]+204y), (14  to an average number of partonic collisions larger than one
[12]. In the typical semihard hadronic process different par-

where the single BFKL Pomeron exchange contributes witonic interactions are localized in the transverse plane in dif-
&.(y) and the contributions from the double BFKL Pomeron f€rent regions, of size of ordgo,) inside the overlap vol-
exchange, according to the AGK cutting rules, aegy), the ~ UMe of the two interacting h_adrons, V\./hose.tr_ansverse size is
“diffractive” contribution, i.e., neither Pomeron is cut, ofafew fnf. The average dlfferqnce in rapidify) may be
—454(y), the one Pomeron cut, angét25«(y), the two estimated by convoluting with o, as expressed in Eq.
Pomeron cut. Equatiofl4) allows one to define the kine- (16), and the structure functions. As a result of a numerical
matical region of applicability of the approach. Indeed theC@lculation one findgy)=5 at Fermilab Tevatron energy

one BFKL cut Pomeron contribution to the cross section@dd;" =6 GeV. The corresponding value of the partonic
must be positivg10]: cross section igry({y))=8x10"2 mb and one may corre-

spondingly estimate that in a central collision the average
number of partonic interactions is 2+ 4. These features
characterize the kinematical regime which we are presently
interested in: actually, the “elementary” partonic interaction
Equation(15) fixes a limiting value to the rapidity interval s well described within the BFKL dynamics in such a way
y as a function ofag, as an example, fois=0.18 andas  that the bound in Eq(15) is satisfied, and the inclusive had-
=0.22 one obtains about 14 and 10 rapidity units respecronic minijet cross section is larger than the inelastic cross
tively. Strictly speaking the contribution expressed by Eq.section in such a way that the rate of multiple parton inter-
(15) implies that the one-cut-Pomeron events and the twoactions is sizable.

cut-Pomeron events are distinguishable in term of their mul- To discuss multiple parton collisions we follow the ap-
tiplicity. If the fluctuations in multiplicity prevents this iden- proach used in Refd6] and[13,14: In the case of soft

[oL(y)—405(y)]>0. (19

tification we get the milder condition interactions, multi-Reggeon exchanges are conveniently
taken into account by making use of the AGK cutting rules
[oL(y)—264(y)]>0 (15))  [9]. Although no general proof of their validity is available in

the case of semihard interactions, it has nevertheless been
dpossible to show that the cutting rules hold for one of the
components of the interaction which is leading in the large-
s fixed+ limit [15]. If one assumes the validity of the cutting
rules for semihard interactions, one is allowed to represent
the semihard cross sectiery as a probabilistic distribution
R R R R R R of multiple semihard parton collisiori$4]. The most general
oy(y)=og(y) +[oL(y)—204(y)]=0og(y) +op(y) expression foiry requires, however, the introduction of the
(16)  whole infinite set of multiparton distributiongl6], which
keep into account hadron fluctuations in the parton number.
whereap(y) is the contribution from production of second- To that purpose we introduce the exclusiody parton
aries, both from one and two cut BFKL Pomerons. distributionW®(u;---u,), namely, the probabilities to find

which requires only the distinction between diffractive an
nondiffractive events.

We therefore express the semihard cross sedctigfy),
corresponding to a single partonic interaction, as
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a hadron in a fluctuation witlk partons with coordinates localized in the same region, approximately of size
u- Uy, Ui=(b;,x;) standing for the transverse partonic co- (1/g\"")?, in the transverse plane. The most important contri-
ordinate ;) and longitudinal fractional momentumx;j. bution to the semihard cross section arises from the discon-
From the exclusive distributions and the auxiliary functionsnected partonic collisions. In fact, at a given number of par-
J(u) one may construct the generating functiozal]: tonic collisions, the incoming parton flux is maximized in the
L configuration where all collisions are disconnected. It might,
therefore, be meaningful to obtain a simpler expression for
Z[J]:; n! J J(Ug) I(Un) Wr(Ug, ... Un)dUiy - - dUy oy by neglecting thegrescattering procesges in (FE)EQ). To
(17)  that purpose we expand the interaction probabititye factor
in curly bracketsas sums and suppress all addenda contain-
in such a way that the exclusive distributions are the coeffiing repeated indices:
cients of the expansion of the generating functional around
J=0, while the inclusive distributions are the coefficients of n.m . 1 o
{ ]:% Oij = 57 E ooyt

the expansion around=1. A very general expression for l—H [1-0y] 21 & A
=) #1,1#]
(19

the semihard cross section, which is consistent with the cut b
ting rules, is, therefore,

Because of the symmetry of the derivative operators in Eq.

(rH:j d?Bop(B), (18) one can replace the expression in EP) with
1 9 o 11 o (= 1)M(m— 1)yt (20)
_ - . an’ll__In n— m(m-— 0110201 ",
W= 2 s sy A0 2!
1 S S in such a way that the sums overandm in Eq. (18) can be
XE m s =8 slu= performed explicitly. As a consequence the cross section at
m tol(u = p) (U= 5) fixed impact parametes(B) is expressed by the operato-
n m rial form
sz[l][l—H I [1-6n(u,u))]
i=1j=1 ) N )
O'H(B)Z l—exp{ - 5 -0 ﬁ”
X H dudu (18
I=1=0 X Zp[J+1]Zg[1 +1] , (21)
J=1=0

Here theg is the impact parameter between the two interact-

ing hadrons andr(u; ,uj’) represents the probability for the \yhere the dependence on the variahleand u’ is under-
partoni of the A hadron to have a semihard interaction with gtgod.

the partonj of the B hadron. The semihard cross section is  The expression of(8), as given by Eq(21), is still too
constructed by summing over all possible partonic configuzomplicated to be worked out, since all possible multiparton
rations of the two interacting hadroiiie sums oven and  correlations are implicitly present if. The simplest possi-

m) and, for each configuration with A partons andn B pility is to neglect all correlations in the multiparton distri-
partons, summing over all possible multiple partonic interactytions. In this case one writes

tions. This last sum is constructed by asking for the probabil-
ity of no interaction between the two configuratidastually
II_ 11 ;[ 1~ 6 ;]). One minus the probability of not hav- Z[J+ 1]=eXpU D(u)J(u)du
ing any interaction is equal to the sum over all probabilities
of having at least one interaction(B) is then the prob- \yhere D(u) is the average number of partons. The cross
ability to have at least one semihard parton interaction wheQegction assumes therefore the eikonal form
the impact parameter in the hadronic collision is equaB.to
The semihard cross section is obtained by integrating the
probability oy(8) on the impact parameter. Analogously, O'H:f d?B{1—exd —®(B)1}, (23
the elementary semihard cross sectigg(x,x’) is obtained
by integrating the elementary interaction probability
oy(u,u’) on the relative transverse coordinde’.

In Eq. (18) oy is constructed by summing all possible .
semihard two-body parton collisions. Multiple semihard par- P(B)=D(B)+Pr(f)
ton collisions are of two distinct kinds, disconnected colli- Yu YM
sions and rescatterings. In a disconnected collisions different EJ dyf dy'[¢s(B;y.Y' )+ dp(By,y')]
pairs of partons interact independently at different points in Ym Y
the transverse plane. In rescattering a high-energy parton in- (24
teracts several times, with momentum exchange larger than

q{“i” with different target partons, and all interactions arewith

, (22

where
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. doy(A
¢>s,p(,8:y,y’)zf d?bDalb,x(y)]osp(y —Y) %=I d?g

bs(BYY)+ fyydy¢s<ﬁ;y.7>

XDglb—B.x'(y")] (25 Yu _
XL_, dy’ ¢s(Biy.y’)

andyy, .Y, are the maximum and minimum rapidity values

allowed by kinematics. The indeXin Eq. (24) refers to the xXexp(Pg(B;Ay) — Py B)—DPp(B)}. (29

elastic parton interaction, the singlet exchange in @6),

and the indeXP to the inelastic interaction, the one and two  The two addenda in Eq29) are the single and double

cut Pomeron contributions in E4L6). The different contri-  “elastic” scattering terms. In the single scattering term both

butions from multiple semihard parton collisions to the crossobserved minijets are produced in the same elementary par-

section are explicit if one expands the exponential in(8.  tonic interaction, in the double scattering term the two mini-

as jets are generated in different partonic collisions. Both terms
are multiplied by the absorption factor dxgdB)
—®4B;Ay)]} that removes the “elastic” parton interactions

o1 . . _ )
O'H:f dzlgzl ﬁed)(ﬁ)fy ,dY1in[¢s(,3§y1,yi) which would fill the gap; actually, those which produce

<] minijets with rapiditiesy andy’ such thaty<y ory’'<y’.
At a fixed value of 8 the cross section is multiplied by
+dp(BiyryD ] f dy,dy.[bs(BiY,,Y)) exp{—_QJp(ﬂ)} vyh|_ch is thg pr_obablllty of not having any in-
<y, elastic partonic interaction in the process. One may recog-

nize in Eq.(29) the semihard contribution to the survival
+op(B1Y, .Y, (260 probability factor (S(B)) of Ref. [4]. Actually,
exp[—®HB)—Pp(B)} is the probability factor of not having
One is interested in the component @f, which repre- any semihard activity in the underlying hadronic event. A
sents two minijets at rapiditigsandy’, in the central rapid- more detailed analysis of the origin of the survival factor and
ity region, with associated gafiy=y’—y in the rapidity ~©Of the suppression factor due to some elastic scattering is
distribution of secondary produced gluons. To that purpos®resented in the appendix, in the context of a multiparton
one needs to exclude in E6R6) both the “elastic” terms, ~dynamics. In the same appendix the influence of the possible
with final state minijets in the gap, and all the inelastic par-deviation from the Poissonian form of the original parton
tonic interactions, generated with elementary probabilitydistribution is also discussed.
¢p . In fact the cut BFKL Pomeron originates soft gluons
distributed on the average uniformly in rapidity. Local fluc- IV. DISCUSSION AND CONCLUSIONS
tuations in the rapidity distribution of soft gluons, which
could also leave the gap empty in the case of an inelastic High-energy hadronic interactions, with production of
elementary parton interaction, may be neglected if one conMinijets and associated rapidity gap in the distribution of
siders a reasonably large rapidity gap. The cross section g£condaries, is a process where one would expect to observe

observe two minijets at rapiditieg andy’, with the gap  explicitly the unitarity relation at the level of partonic ampli-
Ay=y"—y in the rapidity distribution of secondaries, is tudes. A closer inspection shows that the unitarity problem

therefore expressed as which one faces is twofold. On one hand, if one believes that
the semihard interaction between partons can be described
with the BFKL approach, one needs to solve the problem of
doy(Ay) _ f i
dydy/ - B

o0

> vos(BY.Y)

[Ps(B,AY)]"H the too rapid rise of the partonic cross section as a function
v=1 !

of the rapidity interval between primary minijets. On the
other hand, even if the size of the partonic cross section is
- 2 — not too large, namely if the hadronic c.m. energy is such that
+ Zz v(v— 1)f dyes(B:y,y") the typical rapidity interval between primary minijets is rela-
Ym tively small, the semihard hadronic cross section may still be
Ym — too large. One can therefore distinguish three different re-
vaf’ dy’ ¢<(B1y.y") gimes.
Y (I) The cutoff is sizable with respect to the typical energy
o) available to the semihard partonic interaction. The corre-
' (27) sponding “elementary” parton interaction is small, no uni-
tarization is needed, and the semihard cross section is well
described by a single partonic collision.
where (I The cutoff is moved towards relatively smaller values,
with respect to the available energy. A single partonic inter-
v Yu action is still well described by the BFKL dynamics. The
q’s(ﬂ-AY)Ef dYJf, dy’ ¢s(Biy.y'). (28  semihard hadronic cross section is, however, too large with
Ym y respect to the total inelastic cross section and unitarity cor-
rections are to be taken into account. The unitarization of the
After summing onv one obtains hadronic semihard cross section is achieved by taking into

v—2
« [Ps(B,AY)] .

v!




7196 G. CALUCCI, R. RAGAZZON, AND D. TRELEANI 55

account multiparton interactions, namely, different pairs of 10—
partons interacting independently with BFKL Pomeron ex- s g
change. Typically the different partonic interactions are lo- L -
calized at different points in the transverse plane, in the re-
gion of overlap of the matter distribution of the two hadrons.
(I11) With even smaller values of the cutoff one may still
be in the regime where perturbative QCD can be used, since
the value ofag(gi™") is small, but the typical rapidity inter-
val between primary minijets is too large so the “elemen-
tary” parton process is not well described any more by the L -
single BFKL Pomeron exchange and also the “elementary” L i

g (GeV)

parton process has to be unitarized. One may obtain an indi- B 1 ]

cation on the limits between regions Il and Ill by testing g i RS SN I

whether the bound in Eq15) is satisfied. 1 15 2 25 3
To have a quantitative indication on the boundaries of the Vs (TeV)

kinematical regions, we have worked out a numerical ex-

ample. Since the present available information on multiple FIG. 1. The three different kinematical regions which character-
parton interactions is limited to the scale factor which givesze semihard hadronic interactiori$) only the single partenic col-
the rate of double parton interactiofi], while no informa- lision, described by a single BFKL Pomeron exchange, is relevant;
tion is available on the multiparton correlations, we havelll) multiparton collisions are to be taken into account; each par-
considered the simplest possibility, namely the Poisson gigdonic interaction s, howevgr, well described by a single _BFKL
tribution for the multiparton distributions. On the grounds -°Meron exchangélll) the single BFKL Pomeron exchange is not

that the main contribution to the multiple parton interactions®" adequate description of the single parton interaction any more.

is represented by the disconnected partonic collisions, Wgyitarity relation applied to the “elementary” parton ampli-
have neglected parton rescatterings. The unitarized expregjje The regime where “elementary” interactions with ra-
sion for the cross section is therefore given explicitly as idity gap are a sizeable component of the “elementary”
functio_n of the input which is used to evaluate the singleparton process is, however, a regime where the overall had-
scattering term, namely the average number of partonfnic process is already structured in a nontrivial way, be-

D(b,x) and the “elementary” partonic cross sectian,.  cayse of the large amount of multiparton interactions. To
We have factorized (b, x) asfe(x)<F(b), wherefe(x) IS haye a quantitative feeling of the effect of multiparton inter-

the effectlve strgcture func'glon as expressed in @.and actions, we have performed a numerical calculation in the
F(b) is a Gaussian, normalized to 1 and able to give for the;jmpjest example already considered to obtain the curves in
double scattering term the scale factal [see Eq.(26) of  Fjg 1 The expression of the cross section as a function of
Ref.[6]] consistent with the experimental indicatiptv]. In 1o rapidity intervalAy is given in Eq.(29). We have con-
our numerical example we have choseg=20 mb and as @ gjgeredpp interactions at Tevatron energy and as a lower
scale factor for the structure functions we have takeny oshold to observe minijets we have taken the vajfl8
q""/2. as is a free parameter in the BFKL approach, one_s Gey. In Fig. 2 we plot the cross section, as expressed in
gxpects, hoyvever, that the value @ which one.should use gq. (29), divided by the survival probability factor
is not too dlffer_ent from the value of the runnings at the expl—®«8)—Pp(B)}. The continuous curve is obtained by
scale of the typical momentum transferred in the process. Wﬁsing as a input the value,=20 mb and the dashed curve
have chosen as a value af the value of the running cou- s gptained by usingrer=12 mb. The dotted curve is the
pling computed withg""/2 as a scale factor. The values of contribution of the single scattering term alone.
the semihard cross sectio as expressed in E3) which As is shown in Fig. 2 the effect of unitarization on the
we obtain with this input are consistent with the experimenyehavior of the cross section is large. In the actual case the
tal values published by UA[l18]. At each value of the had- majn modification to the dependence dly is due to the
ronic c.m. energy the boundary of the kinematical regions lpresence of multiple “elastic” parton scatterings whose ef-
II, and Ill are identified by the choice of the cutaff"". The  fect on the cross section is twofold. A different dependence
curve which corresponds to larger valuesgff” in Fig. 1 on Ay, with respect to the single scattering term, is induced
has been drawn requiring that the unitarized hadronic semby the presence of two different sources. The first is the
hard cross sectiowy, as expressed in Eq23), is 20% contribution of the process where the two observed minijets
smaller with respect to the single scattering term. The loweoriginate in different “elastic” partonic interactions, the sec-
curve corresponds to the valuegjf" which, on the average, ond term in Eq(29) and the second source for the different
namely, after integration with the structure functions, satu-dependence omy is the correction induced by multiple
rate the bound in Eq15). The two curves identify the three “elastic” scatterings to the survival probability factor. In
regions mentioned above. fact not all underlying hadron activity needs to be excluded.
Moving from large values ofy; to the semihard region “Elastic” parton scatterings which produce minijets outside
one faces, therefore, two different unitarity problems, whichthe gap are allowed and the corresponding contribution to the
signal the appearance of different levels of structure in theross section depends aky. The effect of the inelastic
hadronic interaction. The gap in the rapidity distribution of semihard partonic interactions is, on the contrary, factorized
produced secondaries is an effect which derives from that fixed impact paramete8 and independent oAy. The
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pidity region in the two-hadron c.m., then the two partons

T 1T LI L LU B LILL P P B I |
¢ L=2rres belong to different original hadrons. The parton population is
divided into three segments,, X, ,X.. TheXx, interval cor-
" 2 responds to the partons which would fill the gap and the
E partons that, in the configuration looked for, are not scat-
B 1 tered. Thex, corresponds to the partons outside the gap and
5 08 the partons which are simply not observed. Thecorre-
o 06 sponds to the parton observed at one end of the gap; the
: 0.4 segment in whickx, lies will be ideally shrunk to one point.
%f\ g . The three regions of variations &freflect into three regions
v B ‘ ] of variations ofu, but clearly the impact parameteris not
0.2 affected by this operation.
This decomposition suggests a way of rewriting the gen-
0.1 4' s ; - 'é' - ; - ';' - '9 erating functional which is sometimes more convenient:

Ay 1

Z[‘]]:z m fJ(Ul)"‘J(Un)Wn(Ul,...,Un)dUl'"dUn
n H

FIG. 2. Cross section for production of minijets with rapidity

gap as a function of the gapy. The process ispp at /s 111

=1.8 TeV andg""=5 GeV. The dotted curve is the single scatter- = Ek ol gt Kl f J(ug)- -+ I(up)--+I(ue)

ing term. The continuous and the dashed curves include all discon- g B

nected multiple parton collisions. Input to the continuous curve is X W qk(Uay- - Up .. Ue)dUg -~ dup---dug, (Al

g#=20 mb and to the dashed curvedss=12 mb(see text

main effect of the inelastic partonic processes is to contributa&vherep is the number of partons of kina, g is the number
to the survival probability S?) of Ref.[4] rather than modi- of partons of kindb, k is the number of partons of kind,
fying the dependence ahy. and an analogous expression is written i (u’)].

The region wherg™" is relatively small is also the region We start by considering the effect of inelastic processes
which is closer to the BFKL kinematics and where, as aand we express the probability thd} a partonu. scatters
consequence, the BFKL approach to parton dynamics is beglastically against a partam. or a partonu. scatters elasti-
ter justified. In high-energy hadronic interactions, at rela-cally against a partom, and partonu; scatters elastically
tively small values ofgy™", unitarity corrections are, how- against a partony, thus giving rise to the two partons at the
ever, large and have to be taken into account. The physica&ind of the gap and nothing is produced in the middle, and
effect which underlies the need of unitarization is the in-(Il) no inelastic scattering takes place, since such a process
creasing complexity of the semihard interaction which ap-would also give rise to partons which could fill the gap.
pears wherg{"" is lowered, as it is shown in Fig. 1. In the  In the formulas the requirement | is expressed by an op-
kinematical region which has been discussed in the presegfatorF while the requirement Il is expressed by an operator
paper, corresponding with region Il in Fig. 1, the “elemen- G, both applied to the produc[ J] Z[1].
tary” parton process is well described within the BFKL ap-  The actual form of the two operators is
proach. The typical hadronic interaction is, however, charac-
terized by several “elementary” partonic collisions,
localized at different points in the transverse plane. One of ]::f ducdu,
the points of interest in the actual kinematical regime is that
in region Il the nonperturbative component of the process,
which is factorized in the multiparton distributions, repre- +(J Se(U)og(Ue,up) Sp(u’) Sp(u)
sents a new piece of information on the hadron structure with
respect to the hadron structure functions of lapg@hysics.

Sc(U)ae(Ug,ug) Se(u’)

: (A2)

X og(Up ,ué)éé(u’)dubdu{))
APPENDIX

1. General features and inelastic scattering 1 1

In this appendix the way in which an overall term inde- = E f f n! n'! S1(u)
pendent ofAy and further corrections explicitly dependent
on Ay may arise out of the many parton dynamics is dis- T L _- / /
cussed in more detail. The functional formulation, which has X On(u)e 8 (UT) -+ Oy (U ) 12=61n(u,u)]dudu
been already employed, is used again and more systemati- (A3)
cally. The longitudinal momenta are always given in terms
of the fractional momentunx; the relation with the corre-
sponding rapidityy was mentioned in Sec. Il. In the definition ofG there is no point in distinguishing

If we look to configurations where there are two radiatedthe intervals of rapidity. Some notational simplification is
partons(jets with the rapidity gap sitting in the central ra- obtained by setting



7198 G. CALUCCI, R. RAGAZZON, AND D. TRELEANI 55

So in general the expression has the form

:5m(u)a

53(up) sl(u —p)

(A4) K(B)=2 [Gyn(BIF(B)+Gy o (BIF'(B)]. (A9)

A first step in the choice of some specific distribution ) ) ) o "
could be to neglect the genuine many-body correlations, in FOr @ Poissonian  partonic distributiond*"’(0)
this case the generating functional is in fact reduced to arm exp:—?)o] results for every derivative, so the double sum
ordinary function of a linear functional of the sources overn,n’ canin prlncllple be Caflfled out yielding an overall
factor G(B) =2 n[G,, ,/(B)+G, ,,(8)] which multiplies

Z[I]=D(Y), y=fD(u)J(u)du. (a5) e remaining term

D(uc)oe(uc,ug)D(ui—pB)

F(,B)zf ducdu;

The division of the field of variation ok into three parts
induces a corresponding decompositps V,+ Vp+ Ve -

Even with the restriction to a pure one-body density the +f D(ug) e(Ug,ul)D(u,— B)
general expression is complicated. A very relevant and effec-
tive simplification is produced if we assume a Poissonian

distribution for the initial partonic distributions XD(up)oe(Up,ul)D(u;—B)dupduy|.
Z[J]=exd Y=ol (A6) (A10)

The normalization ternj)y= fD(u)du ensures thatZ[1] In other words, the results indicate that at fixed hadronic

=1. impact parametep the inelastic processes simply give rise

In looking for some general features of the inelasticto a multiplicative factor to the fundamental amplitude.
rescattering it is, however, possible to use a general partonic In presence of another kind of distribution the treatment is
distribution without many-body correlations, as is describedess straightforward because the sum aver’ does not al-
by the generating functionab()); so we let the functional low the extraction of a common teri(B). It seems, how-
differential operatorsG and F act on the product ever, likely thatin the expression &f the second addendum,
d(O[INPQ1]) and in the end the auxiliary sources are containingF" is more important than the first one, because it

put to zero J=1=0. From the action of the operatgrone involves a less exclusive condition, if this is true then the
obtains the intermediate result sum
11 ~ I
K[3,11=2, f f — =7 D(ug)--D(up)-+ G(B)=2> Ghn(B)
nn’ n! n'! =
, , 1T - , can be still be carried out yielding again a multiplicative
XD(u;=B)--D(uy,=B)11 [1=0oin(u,u’)] factor in front of the fundamental amplitude at fixed hadronic
, impact parameter.
Xdudu @M QINDP1]). (A7) This essential simplicity is destroyed if we are in the pres-

_ ~ence of sizeable two-body correlations. To be definite we
From the further action of the operatétand the condi- may consider an example where we have a Poissonian dis-

tion J=1=0 one obtains the final result tribution corrected by a two-body correlation
11 Z[J]=exd Y-l
K(B)=2 f f Ty D(UD) D (ug)- ’
n,n’ : ’
— 1 Y MY i1
XD(ui—/B)---D(u;,—,B) y—J D(u)J(u)du+2f C(u,u)J(u)J(u)dudu.
(A11)
11 [1_‘7ln(“’“’)]d“d“,f ducdug Then in performing the derivatives in order to calculate
K(B) we end unavoidably with expressions where the corre-
<D ~ uHD(u— B)dM+ (0 Iatioq term C(u,u) links the inelastic component with_ the _
(Ue) (g, Ue) D (U= B) © elastic fundamental one and so the decomposition given in

Eqg. (A10) is no longer possible, in this case we expect that
X(I)(“'“)(O)Jrj D(ug) o (U, up) the inelastic processes modify strongly not only the size but
also the shape of the fundamental elastic process.
X D(up—B)D(up)oe(up,ug)
2. Effect of the multiple elastic scattering
XD(u.— B)du,du,d"*2(0)d ™ +2(0)|. It is clear that in presence of a large flux of partons the
inelastic processes that have been considered till now are not
(A8)  the only disturbing effects, i.e., there are other dynamical
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processes which also act in the sense of filling the rapiditfI[1— o] in multiple interactions, but at this step it seems
gap that the “fundamental” process described in the presenthat the treatment becomes clearer if one chooses some defi-
formalism by F produces. With reference to the notation nite form of the parton distributions.
introduced in Eq(A1), one must take into account also the ~ We choose now a Poissonian distribution of partcarsd
following elastic processes. let the functional differential operatdf act on the product

A partonu, which scatters against a partaf); this even  Z[J]Z[1], after the action ofF. Only at the end the auxiliary
will fill the gap. A partonu, which scatters against a parton sources are put to zerd=1=0. As was already said, for the
up, or a partonu, which scatters against a partor]; this ~ operatoré one is forced to proceed in steps corresponding to
event will also fill the gap. The statement that these kind ofsuccessive reinteractions of the same partons: from the op-
collisions must not happen is expressed byeto operator ~ €ratorA one gets
which, in absence of inelastic interactions, would have the

form A(ua,lv---vua,p):D(ua,l)'"D(ua,p)
111 1 A ,
= - - - - Xex 1—2 oe(Ugi,Up)
5%%ffp!q!p’!q’! p{” T
><§a(U)"'5b(U)"'5é(u’)“'5k'J(u') +E %(}E(ua,i1u[,))a-E(ua‘jvukl))+”'

7]
X1 [1-0e(ua,up)l[1—oe(ua,up)]
XD(ut’,—,B)dut’,]. (A16)
X[1—og(up,uy)]dudu,dudup . (A12)

The fact that the parton of kindl are unobserved suggests Alsodtr:je tELmE:H[ll_ Te(Uai Ua ) =110y, ] is ex-
that the sum oveq,q’ is the first operation to be performed. panded with the result
For a fixedp the term containing the sum ovef is

1 le_z f}i,r+22 %&iyr&jys

A(uavl""’ua,p):5a(U1)"'5a(up)Z q_,'
q _222 (1/3|)a-|ra-JSa-kt+ . (Al?)

Xl;[ [J [1_&E(Ua,1,u|2)]'“

In the repeated sums the pairs of indices cannot be equal,
e.g., (,r)#(j,s); it is, however, possible to have either
X[1=0g(Uap, U 18p(up)duy|. =j orr=s, which correspond to a rescattering of a particu-
lar parton. If we took only term 1 and the simple sum in the
(A13)  exponent ofA, out of the operato€ we would get the result

Since all theu, are dummy variables the sum owgr can be

carried out and gives an exponential; then the product of the Eo=eXF{f D(ua)I'(ua—B)du,
[1— o] factors in the exponent may be expanded in terms
containing noo, onec, two ¢, and so on:

Xexy{f D(u,—pB)I'(u})du)
A(Ug1,.--Uap)
. (A18)

=5a(u1)-~-5a(up)eX;“ (1—§i) Te(Uqj,Up) XeXPH D(Ub)dutﬁrf D(up)duy

In this formula the absorption factods have been intro-
duced. In their definition the property thatdepends only on

15 Cue U+ 8 (udu!
Jﬂ; 20E(Ua,i Uk TE(Ua i) T 9p(Uic) d . the difference of the impact parameters has been used:
(A14)
The sum oven is obviously treated in the same way and we F(ua—ﬁ)=ex;{ - f 0e(Ua,Up) D(up— B)duy |,
get for £ the expression
11 A , Cou)= _J s uD :
=X f S T L= Ge(ua U TA (Ua . ia p) (Ua) eXF’[ (U, Up) D (Up)dUp .
oo optpt
XA(uavl"“’ua,p’)H du,dus, . (A1) lin order to perform the actual calculation it may be useful to

remember the identit§(d/dx)g(X)|x=o=g(d/dx)f(X)|x=¢, Which
In order to obtain more explicit expressions it is necessaryis evident whenever the two functions admit a power expansion
now, to expand both the operatord and the term around O; in particular it yield$(d/dx)e"™|,_o=f(h).
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The factorE, takes into account the interaction of the [14], the generating functional of a negative binomial distri-
partons of kinda with those of kindb, but not the interaction bution allows a representation which is an integral transform
of thea partons among themselves. It could be put in a formof a Poisson generating functional:
that could be of easier interpretation: i.e.,

(1-0)

Eo=epr D(u)du+f D(u’)du’ 1=y

xexr{—f D(up)[1- (s~ B)]du,

= F(la) (1—370)“] eVe te1dt,
(A21)

()=

So, in principle, from the previous expressions holding for a
Poisson distribution of partons it would be possible to get the
analogous one for a negative binomial distribution by apply-
ing the following prescriptiond) Take away the normaliza-
tion term, Np=exd —),—Y,] and substitute it byAg
(A1) =[T(a)]72(1-2p)*(1-Vp)* (1) multiply by a factort
every D(u) explicit or implicit, i.e., insidel’ and B, and
In this expression the first exponential, where also themultiply by a factors everyD(u’) explicit or implicit, i.e.,
small contribution fromu. has been included, simply takes insidel” andB; (Ill ) multiply the overall resulting expression
away the normalization term ekp),— )y]; it does not be- by e "S(ts)* L. (IV) integrate the result idt dsfrom 0 to
long to the multiple scattering, while the second tekp,is +oo.

n “absorption” term due to some of the disconnected col- It is evident that the Poissonian and the negative binomial
lision which fill the gap. We can do better and consider thedistribution for the original partons are only the simplest
other terms in the expansion &f=II[1—¢; ], with the  oOnes which can be chosen; in terms of the integral transforms
restriction of excluding the repeated interaction of the sam@f the generating functions other distributions could be built
a parton. In this way, in formulas#j and r#s, a further  Up.
factor is produced which multiplies the former expression,

i.e., 3. Elastic and inelastic scattering

xexp{—f D(ua—B)[1-T'(uy)]du,

The real case implies evidently both elastic and inelastic
Elzexﬁ{ _f D(ux)T (Ug— B)0e(uy,ul) scattering. The requirement that there be no production pro-
cess filling the gap is expressed by an operator of the form

X D(u,—B)T (ul)du,duy|. (A19)  ,_ 2 E f f 1111
pl ql ’I q'l
p.p’ 9.9’

Going on means producing expressions that are quite elabo- o o

rate; one could, as an example, calculate the factors which X Oa(U) (U Fp(u’) - Fp(u’)

describe a double interaction of partons either of kanor of R R R

kind b. When the partona are allowed to collide twice, but X [T [1=67(ua,u) 1= 61(Ua,up) I 1= Gr(up,ul)]
not three times, the following factor is produced:

X [T [1-61n(up,up) 1du,duyduldug, (A22)
E2=eXp%

f D(ua)r(ua_ B)&E(ua ,Ué)D(Ué_,B)
X Gr= &gt o (A23)
XT'(uz)oe(ug,uz)D(ug)l'(uz— B)duduzdu;,
The statement expressed by this operator is that while the

+j D(us—B)T(u})oe(ul,uy)D(uy)T (uy— B) parton of kinda must not suffer interactions at all, the par-

tons of kindb may interact provided their interaction is elas-

tic. In its full form this expression appears quite intractable,

X og(Uy,upD(uf— BT (updu,dusd u%. (A20)  however, one can follow the idea that the most relevant dy-
namical feature is the inelastic scattering and the elastic scat-
The expansion can be further continued, e.g., by considerinéerlng is a perturbation. It does not seems convenient, how-

also the collision of two partons of kintl, and then the ver, to start from the inelastic operatarit is more efficient

various results can be collected. From the term explicitly!® Start with an “exaggerated” form of the operatorsuch
that the elastic interactions of the partobsare also ex-

calculated one get€E~E(E,E,--- . This factor modifies cluded, by defi
qualitatively the result expressed in E4.9): because in that ed, by defining
expression the terns, ,» were independent of the rapidities

defining the gap which appear if,, through u, ff P 51(u)

=(X.,b), now, on the contrary, these variables appear ex-
plicitly in the termsE.
Other form of partonic distributions give rise to more ><5n(u)-~51(u’)--'5;],(u’)1_[ [1-o(u,u’)]dudu,
complicated final expressions, but some of them allow some
elaboration anyhow; in particular as already remarked in (A24)
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yvhich looks very similar tog, Eq. (A4), and so yields, by [A+B]99 =A% 4 qg'BA@- D@ ~Laa-1ad -1 g2...
itself, a factor independent gf. Then one has to correct the

result by an expansion iorg that uses Eq(A23). Since the  In this way, through a shift i andq’, the integrand of the
coordinatewu are all equivalent the expansion has the sameperatorC, is reproduced with additional factors. The actual
combinatorial structure as form of the first order correction ifg is

Sa(U) -+~ Sp(U) -+ F(U") -+ Sp(U") p(v) Fp(v”)

Q—EEJJlll

op’ aq p!'q!' p'! q'!
X IT [1-&r(ua,up) 1= G7(ua UL — 67Uy, uz) IT1— Er(up , up) duadupduzdu,

xf aewp o)1 [1=o(up o)1 [1-61(vp,up)16u(v) 8)(v")dvydoy, . (A25)

In a limit in which terms likeogo; are neglected, while Now we decide, on the basis of the physical consideration
keeping the powers af; the correction may be factorized in outlined, that they parton suffer only elastic scattering with-
the form out any other interaction, then necessaslys’, and there
ares! ways of pairing they with thev'. So it is not difficult
to see that the rest éfreconstruct the factdf, of Eq. (A24)
Ci~ J Sp(v) 6 dvyd A26 . .0 . ’
1~Co | Te(vn,vp)(v) S0 ) dupdug.  (A26) whereas the sum ovelyields an exponential. In this way the

approximate expression faris given b
This approximation for the correctiafy suggests also a gen- PP P g y

eralization. The expression itself originates from the division

of the whole flux of parton in a pair suffering only elastic ~ "na N ,

scattering and in a rest for which all interactions are consid- €=Co exp{J' F(v") vy, 0p) Op(v ") dopu |

ered. This attitude can be extended to a more general situa- (A27")
tion, on the grounds that, as already noticed, in the presence

of large parton fluxes the multiple disconnected interactions When the parton distribution is Poissonian out of Eq.
may become more relevant than the reinteractions. So, withA27’) one gets the expression of the first correction due to
reference to Eq(A22) we can divide they partons of kind  multiple scattering depending aly which corresponds to

b into two subsets of ands partons, obviously wittr+s  what was previously stated in Sec. lll, E&9). Anyhow, in
=q, and the same fog’. The coordinates of the partons a way wholly independent of the validity of the approxima-
will be still denoted byu, the coordinates of the partons tion we see that the correction is always positive because it

will be calledw. In this way Eq.(A22) takes the form represents a compensation for the previous exclusion of con-
figurations that should be allowed and the amount of the

. Z 2 2 J' 111111 correction diminishes by enlarging the rapidity gap since the
op Tr S8 p! rl st p'lr'l gl integration runs over the complementary domain. For our

purposes the most relevant feature of the elastic interactions
e A Py is that they produce effects depending, from the very begin-
X 33(u)-+- (v ) [ [1-61dusdundvydugdugdug, ning, on they of the gap because the integrations over
(A27) v’ depend explicitly orx., x. which are precisely the vari-
ables that set the difference between partons of kirahd
where the productI[1— o] contains nine kinds of factors. partons of kindb.

[1] B. M. McCoy and T. T. Wu, Phys. Rev. Le®85, 604 (1975; Y. Lo, ibid. 15, 2959(1977); H. Cheng and T. T. Wugxpand-
Phys. Rev. D13, 1076(1976; V. S. Fadin, E. A. Kuraev, and ing Protons: Scattering at High EnergigMIT Press, Cam-
L. N. Lipatov, Phys. Lett60B, 50(1975; L. tukaszuk and X. bridge, MA, 1987; H. Cheng, J. A. Dickinson, and K. Olaus-
Y. Pham,ibid. 53B, 287 (1974; H. T. Nieh and Y. P. Yao, sen, Phys. Rev. 23, 534(1981).

Phys. Rev. D13, 1082 (1976; L. Tyburski, ibid. 13, 1107 [2] M. T. Grisaru, H. J. Schnitzer, and H. S. Tsao, Phys. Rev. Lett.
(1976; L. L. Frankfurt and V. E. Sherman, Sov. J. Nucl. Phys. 30, 811(1973; L. N. Lipatov, Yad. Fiz.23, 642(1976; E. A.
23,581(1976; C. Y. Lo and H. Cheng, Phys. Rev.I3, 1131 Kuraev, L. N. Lipatov, and V. S. Fadin, Zh. Eksp. Teor. Fiz.
(1976; P. S. Yeungjbid. 13, 2306(1976; H. Cheng and C. 71, 840 (1976 [Sov. Phys. JETR4, 443 (1976]; 72, 377



7202 G. CALUCCI, R. RAGAZZON, AND D. TRELEANI 55

(1977 [45, 199(1977)]; Ya. Ya. Balitskii and L. N. Lipatov,

Yad. Fiz. 28, 15971978 [Sov. J. Nucl. Phys28, 822(1978];
Pis’'ma zh. Eksp. Teor. Fi0, 383(1979 [JETP Lett.30, 355

(1979]; V. Del Duca, Report No. DESY 95-023, DFTT 13/95
(unpublishegt V. T. Kim and G. B. Pivovarov, Phys. Rev. D

53, 6 (1996; 54, 725(1996; M. A. Braun, Phys. Lett. B345
155(1999; Z. Phys. C70, 103(1996; N. N. Nikolaev, G. B.
Zakharov, and V. R. Zoller, Phys. Lett. 866, 337 (1966.

[3] V. Del Duca and W.-K. Tang, Phys. Lett. B12 225
(1993.

[4] J. D. Bjorken, Phys. Rev. @7, 101(1992.

[5] E. Gotsman, E. M. Levin, and U. Maor, Phys. Lett3B3 526
(1995.

[6] R. Ragazzon and D. Treleani, Phys. Rev5® 55 (1996.

[7] A. H. Mueller and W.-K. Tang, Phys. Lett. B84, 123
(1992.

[8] L. V. Gribov, E. M. Levin, and M. G. Ryskin, Phys. Repd0,
1(1983.

[9] V. Abramovskii, V. N. Gribov, and O. V. Kancheli, Yad. Fiz.

18, 595(1973 [Sov. J. Nucl. Physl18, 308(1974)].

[10] L. Frankfurt, W. Koepf, and M. Strikman, Phys. Rev. 33,
3194(1996.

[11] G. Pancheri and Y. Srivastava, Phys. Lett1 &, 199(1986);

S. Lomatch, F. I. Olness, and J. C. Collins, Nucl. PiB3317,
617 (1989.

[12] M. Jacob and P. V. Landshoff, Mod. Phys. Lett. 1A 657
(1986); LI. Ametller and D. Treleani, Int. J. Mod. Phys. 3
521(1988.

[13] L. S. Brown, Phys. Rev. 3, 748(1972; Y. Akiyama and S.
Hori, Prog. Theor. Phys48, 276 (1973.

[14] G. Calucci and D. Treleani, ifProceedings of the Topical
Workshop on the Small-x Behavior of Deep Inelastic Scatter-
ing Structure Functions QCPHamburg, Germany, 1990, ed-
ited by A. Ali and J. Bartel{Nucl. Phys. B(Proc. Supp).
18C, 187(1990]; Int. J. Mod. Phys. A6, 4375(1991.

[15] G. Calucci and D. Treleani, Phys. Rev.49, 138(1994; 50,
4703(1994; J. Bartels and M. Wsthoff, Z. Phys. (66, 157
(1995.

[16] H. D. Politzer, Nucl. PhysB172, 349(1980; R. K. Ellis, R.
Petronzio, and W. Furmanskbid. B207, 1 (1981); N. Paver
and D. Treleani, Nuovo Cimento A0, 215(1982; Z. Phys. C
28, 187(1985; B. Humpert, Phys. Lettl31B, 461(1983; B.
Humpert and R. Odoricabid. 154B, 211(1985; T. Sjostrand
and M. Van Zijl, Phys. Rev. 86, 2019(1987.

[17] F. Abeet al, Phys. Rev. D47, 4857(1993.

[18] C. Albajaret al,, Nucl. Phys.B309 405 (1988.



