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High-energy hadronic interactions can produce a final state characterized by minijets separated by a large
gap in the rapidity distribution of the produced secondary particles. We discuss the process by keeping in mind
the possibility of having multiple parton collisions in the hadronic interaction. At Fermilab Tevatron energy the
correction to the single scattering term induced by the presence of multiparton interactions is large for trans-
verse momenta smaller than 6 GeV.@S0556-2821~97!04209-4#

PACS number~s!: 13.87.Ce, 13.85.Hd

I. INTRODUCTION

In the kinematical regime of semihard hadronic collisions
the momentum transferqt is large enough to apply perturba-
tion theory but it is kept fixed with the c.m. energy, in such
a way that the Regge limitt/s→0 is reached from the per-
turbative side. The main feature, which becomes more and
more apparent when approaching the Regge limit, is the in-
creasing complexity of the process. In fact at largeqt several
major aspects of the interaction are described by a single
partonic collision represented with a Feynman diagram at the
lowest order in the coupling constant. When moving towards
the semihard regime the Regge limit is approached both by
the hadronic and by the typical partonic collision. As a con-
sequence the partonic process is not well represented any
more by means of a tree level Feynman diagram. Partonic
interaction in the Regge limit have been investigated exten-
sively @1,2#. An approach which has received a lot of atten-
tion is the Balitskii-Fadin-Kuraev-Lipatov~BFKL! Pomeron
@2#: the partonic reaction is described by the exchange of a
gluon ladder, with vacuum quantum numbers in thet chan-
nel. The ladder is constructed by decoupling the transverse-
momentum components from the longitudinal ones, which is
allowed in the kinematical configurations where the suben-
ergy of any pair of gluons is large with respect to the trans-
verse momenta. As a result of this simplified kinematics the
gluons can be ordered in rapidity and the overall ladder is
built up with two basic elements:~a! the gauge independent
nonlocal vertices, which sum up the dominant term in the
t/s→0 limit, of the diagrams with gluon emission from all
near-by lines, and~b! the Reggeization of thet-channel glu-
ons, which is introduced in order to keep into account the
leading virtual corrections and which allows a solution to the
infrared problem.

The iteration of the ladder in thet channel is expressed as
an integral equation~Lipatov’s equation! which can be
solved explicitly. By considering the parton process repre-
sented with a cut BFKL Pomeron one may write explicitly
the expression for the inclusive cross section to produce
minijets, which are to be identified with final state partons
with transverse momentum larger than the lower threshold of
observabilityqt

min . One may also consider the elastic parton
interaction with BFKL Pomeron exchange. The elastic par-
ton collision gives rise to a distinct signature in the final state
generated by the parton process: two minijets are produced

with no further particles in the rapidity interval between
them. On the contrary, in the typical inelastic parton colli-
sion, represented with a cut BFKL Pomeron, the gap is filled
uniformly on the average by gluons. The dependence of the
parton cross section on the rapidity gap is predicted by the
perturbative calculation and it is related by unitarity to the
dependence of the inelastic process on the width of the ra-
pidity interval. The identification of these features in a semi-
hard hadronic process would signal the underlying parton
dynamics in a distinctive way@3#. A difficulty which has
been pointed out is that the hadronic event which contains
the semihard partonic interaction is going to fill the gap in
most of the cases. The perturbative cross section with rapid-
ity gap has, therefore, been multiplied by a survival probabil-
ity factor @4#. The survival probability has been recently es-
timated by taking explicitly into account the underlying soft
hadronic event and it turns out to be roughly constant as a
function of the rapidity gap@5#. The underlying event would
therefore provide only a rescaling factor to the cross section
calculated perturbatively and the behavior of the actual ex-
perimental cross section as a function of the rapidity gap
would still be linked directly to the BFKL dynamics.

While testing the validity of the BFKL approach to semi-
hard parton dynamics is presently one of the main topics in
perturbative QCD, the delicate point is to keep properly into
account the structure of the whole hadronic interaction,
whose effect may mask the BFKL dynamics@6#. In fact the
BFKL regime requires a smallqt

min with respect to all longi-
tudinal momenta and smaller values ofqt

min correspond to
larger values for the partonic cross section. In the BFKL
regime unitarity corrections are therefore important. Indeed
the closer the parton dynamics to the BFKL limit the stron-
ger the effect of unitarization@6#.

In the present paper we discuss the effect of the unitari-
zation of the semihard hadronic interaction on the cross sec-
tion for minijet production with rapidity gaps in the distribu-
tion of final state secondaries. The unitarization of the
hadronic semihard interaction induces multiple semihard
partonic collisions in the inelastic event and the cross section
to produce minijets with associated rapidity gap is therefore
modified. To keep into account multiple BFKL Pomeron ex-
changes we assume the validity of the Abramovskii-Gribov-
Kancheli~AGK! cutting rules for semihard interactions. As a
consequence the whole semihard hadronic process is repre-
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sented as a probabilistic superposition of multiple BFKL
Pomeron exchanges.

The paper is organized as follows. In the next section the
single parton interaction is discussed. The argument of the
following section is multiple parton collisions; we describe
the general formulation to the problem and we derive the
expression for the cross section with rapidity gap in the sim-
plest case of multiple parton interactions. A numerical ex-
ample and some concluding remarks are the argument of the
last section while a few possible generalizations are dis-
cussed in the appendix.

II. SINGLE SCATTERING TERM

By considering the cut BFKL Pomeron one may write the
expression for the cross section where two gluons interact
producing many gluons and two of them, the ones with larg-
est rapidity~in absolute value! in the overall c.m. frame, are
observed. Ify is the separation in rapidity andka ,kb are the
transverse momenta of the observed gluons, the inclusive
cross section is expressed as

dŝL

d2kad
2kb

5FCAas

ka
2 G f ~ka ,kb ,y!FCAas

kb
2 G , ~1!

whereCA5Nc is the number of colors,as is the strong-
coupling constant, andf (ka ,kb ,y) is the inverse Laplace
transform of the solution to Lipatov’s equation. Actually,

f ~ka ,kb ,y!5
1

~2p!2kakb
(

n52`

1`

einf

3E
2`

1`

dnev~n,n!yein ln~ka
2/kb

2
!, ~2!

wheref is the azimuth angle between the observed gluons,

v~n,n!522
asNc

p
RFcS unu11

2
1 in D2c~1!G , ~3!

and

c~z!5
d lnG~z!

dz
~4!

is the digamma function. The inclusive cross section for pro-
duction of two minijets, as a result of cutting the exchange in
the forward direction of a BFKL Pomeron, is obtained by
folding Eq.~1! with the structure functions of the interacting
hadronsA andB:

dsL

dxAdxBd
2kad

2kb
5 f eff~xA ,ka

2! f eff~xB ,kb
2!

dŝL

d2kad
2kb

,

~5!

where f eff is the effective structure function

f eff~x!5G~x!1
4

9 (
f

@Qf~x!1Q̄f~x!#, ~6!

namely, the gluon structure function plus49 of the quark and
antiquark structure functions with flavorf . In the BFKL dy-

namics one can relate the rapidityy of the minijet which
carries most of the momentum of the initial state parton~pri-
mary minijet! with the fractional momentum variablex of
the incoming parton. The relation isx5kte

y/As for forward
final state partons with transverse momentumkt and rapidity
y andx5kte

2y/As for backward partons. Equation~1! can
be integrated on the transverse momenta down to the lower
cut off qt

min :

ŝL~y!5E
qt
min

dŝL

d2kad
2kb

d2kad
2kb

5S asCA

p D 2 p3

2~qt
min!2

FL~y!, ~7!

where

FL~y!5E dn

2p

1

n211/4
ev~n!y ~8!

with v(n)[v(n,0) as a consequence of the integration on
f. ŝL is the inclusive cross section for minijet production in
a parton process represented by a cut BFKL Pomeron. A
different possibility which one may consider is to produce
two minijets without cutting the BFKL Pomeron@7#, namely,
by elastic scattering of two partons which exchange, a BFKL
Pomeron at a momentum transfer larger than the lower cut
off qt

min . The corresponding integrated partonic cross section
is expressed as@3#

ŝS5S asCA

p D 4 p5

4~qt
min!2

FS~y! ~9!

andFS(y) is the convolution of two BFKL propagators in
the transverse momentum plane

FS~y!5
~qt

min!2

16p3 E
qt
min
d2kU E d2qd2q8 f k~q,q8,y!U2.

~10!

k is the overall momentum exchanged through the ladder and
the labelS refers to the singlet exchange in the elastic par-
tonic collision. Obviously one might consider also the possi-
bility of having a octet exchange, the contribution to the
cross section is, however, subleading at large rapidities@3#.
The integrations onq and q8 in Eq. ~8! can be performed
when using the integral representation off k(q,q8,y),

E d2qd2q8 f k~q,q8,y!5
4

k2 E dn
n2

~n211/4!2
exp@v~n!y#,

~11!

and one obtains the asymptotic behavior at largey:

ŝS~y!.S asCA

p D 4 p5

4~qt
min!2

S p
e4 ln 2z

@~7/2!z~3!pz#3/2D
2

,

~12!

wherez5asCAy/p. For comparison the asymptotic behav-
ior of ŝL is
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ŝL~y!.S asCA

p D 2 p3

2~qt
min!2

S e4 ln2z

@~7/2!z~3!pz#1/2D . ~13!

The ‘‘elastic’’ partonic cross section can be identified
with the ‘‘diffractive’’ cut of the double BFKL Pomeron
exchange contribution to the forward parton amplitude@8#.
At the same order, in the number of exchanged BFKL
Pomerons one needs therefore to keep in mind the one BFKL
Pomeron cut and two BFKL Pomeron cut contributions to
the partonic process. In fact the relative rate of elastic and
inelastic parton processes, as expressed in Eqs.~12! and~13!,
is not consistent at large rapidity intervals because of the too
rapid rise of the elastic cross section. We do not try to solve
here this unitarity problem. To have an indication on the
boundaries of the kinematical regime where the problem
needs to be faced we have taken the simplest attitude. In
analogy to thes-channel unitarization of the soft Pomeron
exchange we have included in the semihard partonic interac-
tion the exchange of two BFKL Pomerons and we have used
the AGK cutting rules@9# to obtain the inelastic contribu-
tions to the cross section. The semihard partonic cross sec-
tion ŝH(y) is therefore expressed as

ŝH~y!5ŝS~y!1@ŝL~y!24ŝS~y!#12ŝS~y!, ~14!

where the single BFKL Pomeron exchange contributes with
ŝL(y) and the contributions from the double BFKL Pomeron
exchange, according to the AGK cutting rules, areŝS(y), the
‘‘diffractive’’ contribution, i.e., neither Pomeron is cut,
24ŝS(y), the one Pomeron cut, and12ŝS(y), the two
Pomeron cut. Equation~14! allows one to define the kine-
matical region of applicability of the approach. Indeed the
one BFKL cut Pomeron contribution to the cross section
must be positive@10#:

@ŝL~y!24ŝS~y!#.0. ~15!

Equation~15! fixes a limiting value to the rapidity interval
y as a function ofaS , as an example, foras50.18 andaS
50.22 one obtains about 14 and 10 rapidity units respec-
tively. Strictly speaking the contribution expressed by Eq.
~15! implies that the one-cut-Pomeron events and the two-
cut-Pomeron events are distinguishable in term of their mul-
tiplicity. If the fluctuations in multiplicity prevents this iden-
tification we get the milder condition

@ŝL~y!22ŝS~y!#.0 ~158!

which requires only the distinction between diffractive and
nondiffractive events.

We therefore express the semihard cross sectionŝH(y),
corresponding to a single partonic interaction, as

ŝH~y!5ŝS~y!1@ŝL~y!22ŝS~y!#[ŝS~y!1ŝP~y!
~16!

whereŝP(y) is the contribution from production of second-
aries, both from one and two cut BFKL Pomerons.

III. GENERAL FRAMEWORK FOR MULTIPARTON
INTERACTIONS

Given the scaleqt
min one may separate parton fluctuations

with a long lifetime with respect toqt
min and parton fluctua-

tions with a short lifetime with respect toqt
min . Parton fluc-

tuations which have a long lifetime are of nonperturbative
origin and can be associated to the initial state. Parton fluc-
tuations with a short lifetime can be treated perturbatively
and can be associated to the semihard interaction. In the
simplest case, when the typical value of the rapidity interval
y in the partonic interaction is not too large, the semihard
partonic interaction is described at the lowest order in the
number of exchanged BFKL Pomerons. Ifqt

min is relatively
small one faces, however, a unitarity problem even if one is
in a regime where the partonic interaction is well described
within perturbation theory because of the large value of the
integrated semihard hadronic cross section@11#: by integrat-
ing Eq. ~5! with the cutoffqt

min one obtains a cross section
which easily exceeds the value of the total cross section. On
the other hand, the partonic cross section, Eq.~16!, is in
comparison still rather small. The large value of the inte-
grated inclusive cross section is therefore the consequence of
the large flux of partons in the initial state, which gives rise
to an average number of partonic collisions larger than one
@12#. In the typical semihard hadronic process different par-
tonic interactions are localized in the transverse plane in dif-
ferent regions, of size of order^ŝH& inside the overlap vol-
ume of the two interacting hadrons, whose transverse size is
of a few fm2. The average difference in rapidity^y& may be
estimated by convolutingy with ŝH , as expressed in Eq.
~16!, and the structure functions. As a result of a numerical
calculation one findŝ y&.5 at Fermilab Tevatron energy
and qt

min56 GeV. The corresponding value of the partonic
cross section isŝH(^y&).831022 mb and one may corre-
spondingly estimate that in a central collision the average
number of partonic interactions is.2↔4. These features
characterize the kinematical regime which we are presently
interested in: actually, the ‘‘elementary’’ partonic interaction
is well described within the BFKL dynamics in such a way
that the bound in Eq.~15! is satisfied, and the inclusive had-
ronic minijet cross section is larger than the inelastic cross
section in such a way that the rate of multiple parton inter-
actions is sizable.

To discuss multiple parton collisions we follow the ap-
proach used in Refs.@6# and @13,14#: In the case of soft
interactions, multi-Reggeon exchanges are conveniently
taken into account by making use of the AGK cutting rules
@9#. Although no general proof of their validity is available in
the case of semihard interactions, it has nevertheless been
possible to show that the cutting rules hold for one of the
components of the interaction which is leading in the large-
ŝ fixed-t̂ limit @15#. If one assumes the validity of the cutting
rules for semihard interactions, one is allowed to represent
the semihard cross sectionsH as a probabilistic distribution
of multiple semihard parton collisions@14#. The most general
expression forsH requires, however, the introduction of the
whole infinite set of multiparton distributions@16#, which
keep into account hadron fluctuations in the parton number.
To that purpose we introduce the exclusivek-body parton
distributionW(k)(u1•••uk), namely, the probabilities to find
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a hadron in a fluctuation withk partons with coordinates
u1•••uk , ui[(bi ,xi) standing for the transverse partonic co-
ordinate (bi) and longitudinal fractional momentum (xi).
From the exclusive distributions and the auxiliary functions
J(u) one may construct the generating functionalZ@J#:

Z@J#5(
n

1

n! E J~u1!•••J~un!Wn~u1 ,...,un!du1•••dun

~17!

in such a way that the exclusive distributions are the coeffi-
cients of the expansion of the generating functional around
J50, while the inclusive distributions are the coefficients of
the expansion aroundJ51. A very general expression for
the semihard cross section, which is consistent with the cut-
ting rules, is, therefore,

sH5E d2bsH~b!,

sH~b!5E (
n

1

n!

d

dJ~u1!
•••

d

dJ~un!
ZA@J#

3(
m

1

m!

d

dI ~u182b!
•••

d

dI ~um8 2b!

3ZB@ I #H 12)
i51

n

)
j51

m

@12ŝH~ui ,uj8!#J
3) dudu8U

J5I50

. ~18!

Here theb is the impact parameter between the two interact-
ing hadrons andŝH(ui ,uj8) represents the probability for the
partoni of theA hadron to have a semihard interaction with
the partonj of theB hadron. The semihard cross section is
constructed by summing over all possible partonic configu-
rations of the two interacting hadrons~the sums overn and
m! and, for each configuration withn A partons andm B
partons, summing over all possible multiple partonic interac-
tions. This last sum is constructed by asking for the probabil-
ity of no interaction between the two configurations~actually
P i51

n P j51
m @12ŝ i , j #). One minus the probability of not hav-

ing any interaction is equal to the sum over all probabilities
of having at least one interaction.sH(b) is then the prob-
ability to have at least one semihard parton interaction when
the impact parameter in the hadronic collision is equal tob.
The semihard cross section is obtained by integrating the
probability sH(b) on the impact parameter. Analogously,
the elementary semihard cross sectionŝH(x,x8) is obtained
by integrating the elementary interaction probability
ŝH(u,u8) on the relative transverse coordinateb-b8.

In Eq. ~18! sH is constructed by summing all possible
semihard two-body parton collisions. Multiple semihard par-
ton collisions are of two distinct kinds, disconnected colli-
sions and rescatterings. In a disconnected collisions different
pairs of partons interact independently at different points in
the transverse plane. In rescattering a high-energy parton in-
teracts several times, with momentum exchange larger than
qt
min with different target partons, and all interactions are

localized in the same region, approximately of size
(1/qt

min)2, in the transverse plane. The most important contri-
bution to the semihard cross section arises from the discon-
nected partonic collisions. In fact, at a given number of par-
tonic collisions, the incoming parton flux is maximized in the
configuration where all collisions are disconnected. It might,
therefore, be meaningful to obtain a simpler expression for
sH by neglecting the rescattering processes in Eq.~18!. To
that purpose we expand the interaction probability~the factor
in curly brackets! as sums and suppress all addenda contain-
ing repeated indices:

H 12)
i , j

n,m

@12ŝ i j #J ⇒(
i j

ŝ i j2
1

2! (i j (
kÞ i ,lÞ j

ŝ i j ŝkl1••• .

~19!

Because of the symmetry of the derivative operators in Eq.
~18! one can replace the expression in Eq.~19! with

nmŝ112
1

2!
n~n21!m~m21!ŝ11ŝ221••• , ~20!

in such a way that the sums overn andm in Eq. ~18! can be
performed explicitly. As a consequence the cross section at
fixed impact parametersH(b) is expressed by the operato-
rial form

sH~b!5F12expS 2
d

dJ
•ŝ•

d

dI D G
3ZA@J11#ZB@ I11#U

J5I50

, ~21!

where the dependence on the variablesu and u8 is under-
stood.

The expression ofsH(b), as given by Eq.~21!, is still too
complicated to be worked out, since all possible multiparton
correlations are implicitly present inZ. The simplest possi-
bility is to neglect all correlations in the multiparton distri-
butions. In this case one writes

Z@J11#5expS E D~u!J~u!duD , ~22!

whereD(u) is the average number of partons. The cross
section assumes therefore the eikonal form

sH5E d2b$12exp@2F~b!#%, ~23!

where

F~b![FS~b!1FP~b!

[E
ym

yM
dyE

y

yM
dy8@fS~b;y,y8!1fP~b;y,y8!#

~24!

with
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fS,P~b;y,y8![E d2bDA@b,x~y!#ŝS,P~y82y!

3DB@b2b,x8~y8!# ~25!

andyM ,ym are the maximum and minimum rapidity values
allowed by kinematics. The indexS in Eq. ~24! refers to the
elastic parton interaction, the singlet exchange in Eq.~16!,
and the indexP to the inelastic interaction, the one and two
cut Pomeron contributions in Eq.~16!. The different contri-
butions from multiple semihard parton collisions to the cross
section are explicit if one expands the exponential in Eq.~23!
as

sH5E d2b (
n51

`
1

n!
e2F~b!E

y1,y18
dy1dy18@fS~b;y1 ,y18!

1fP~b;y1 ,y18!#•••E
yn,yn8

dyndyn8@fS~b;yn ,yn8!

1fP~b;yn ,yn8!#. ~26!

One is interested in the component ofsH which repre-
sents two minijets at rapiditiesȳ andȳ8, in the central rapid-
ity region, with associated gapDy5 ȳ82 ȳ in the rapidity
distribution of secondary produced gluons. To that purpose
one needs to exclude in Eq.~26! both the ‘‘elastic’’ terms,
with final state minijets in the gap, and all the inelastic par-
tonic interactions, generated with elementary probability
fP . In fact the cut BFKL Pomeron originates soft gluons
distributed on the average uniformly in rapidity. Local fluc-
tuations in the rapidity distribution of soft gluons, which
could also leave the gap empty in the case of an inelastic
elementary parton interaction, may be neglected if one con-
siders a reasonably large rapidity gap. The cross section to
observe two minijets at rapiditiesȳ and ȳ8, with the gap
Dy5 ȳ82 ȳ in the rapidity distribution of secondaries, is
therefore expressed as

dsH~Dy!

dȳdȳ8
5E d2bF (

n51

`

nfS~b; ȳ,ȳ8!
@FS~b,Dy!#n21

n!

1 (
n52

`

n~n21!E
ym

ȳ
dyfS~b;y,ȳ8!

3E
ȳ 8

yM
dy8fS~b; ȳ,y8!

3
@FS~b,Dy!#n22

n! Ge2F~b!, ~27!

where

FS~b,Dy![E
ym

ȳ
dyE

ȳ 8

yM
dy8fS~b;y,y8!. ~28!

After summing onn one obtains

dsH~Dy!

dȳdȳ8
5E d2bFfS~b; ȳ,ȳ8!1E

ym

ȳ
dyfS~b;y,ȳ8!

3E
ȳ 8

yM
dy8fS~b; ȳ,y8!G

3exp$FS~b;Dy!2FS~b!2FP~b!%. ~29!

The two addenda in Eq.~29! are the single and double
‘‘elastic’’ scattering terms. In the single scattering term both
observed minijets are produced in the same elementary par-
tonic interaction, in the double scattering term the two mini-
jets are generated in different partonic collisions. Both terms
are multiplied by the absorption factor exp$2@FS(b)
2FS(b;Dy)#% that removes the ‘‘elastic’’ parton interactions
which would fill the gap; actually, those which produce
minijets with rapiditiesy andy8 such thatȳ<y or y8< ȳ8.
At a fixed value ofb the cross section is multiplied by
exp$2FP(b)% which is the probability of not having any in-
elastic partonic interaction in the process. One may recog-
nize in Eq. ~29! the semihard contribution to the survival
probability factor ^S2(b)& of Ref. @4#. Actually,
exp$2FS(b)2FP(b)% is the probability factor of not having
any semihard activity in the underlying hadronic event. A
more detailed analysis of the origin of the survival factor and
of the suppression factor due to some elastic scattering is
presented in the appendix, in the context of a multiparton
dynamics. In the same appendix the influence of the possible
deviation from the Poissonian form of the original parton
distribution is also discussed.

IV. DISCUSSION AND CONCLUSIONS

High-energy hadronic interactions, with production of
minijets and associated rapidity gap in the distribution of
secondaries, is a process where one would expect to observe
explicitly the unitarity relation at the level of partonic ampli-
tudes. A closer inspection shows that the unitarity problem
which one faces is twofold. On one hand, if one believes that
the semihard interaction between partons can be described
with the BFKL approach, one needs to solve the problem of
the too rapid rise of the partonic cross section as a function
of the rapidity interval between primary minijets. On the
other hand, even if the size of the partonic cross section is
not too large, namely if the hadronic c.m. energy is such that
the typical rapidity interval between primary minijets is rela-
tively small, the semihard hadronic cross section may still be
too large. One can therefore distinguish three different re-
gimes.

~I! The cutoff is sizable with respect to the typical energy
available to the semihard partonic interaction. The corre-
sponding ‘‘elementary’’ parton interaction is small, no uni-
tarization is needed, and the semihard cross section is well
described by a single partonic collision.

~II ! The cutoff is moved towards relatively smaller values,
with respect to the available energy. A single partonic inter-
action is still well described by the BFKL dynamics. The
semihard hadronic cross section is, however, too large with
respect to the total inelastic cross section and unitarity cor-
rections are to be taken into account. The unitarization of the
hadronic semihard cross section is achieved by taking into
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account multiparton interactions, namely, different pairs of
partons interacting independently with BFKL Pomeron ex-
change. Typically the different partonic interactions are lo-
calized at different points in the transverse plane, in the re-
gion of overlap of the matter distribution of the two hadrons.

~III ! With even smaller values of the cutoff one may still
be in the regime where perturbative QCD can be used, since
the value ofaS(qt

min) is small, but the typical rapidity inter-
val between primary minijets is too large so the ‘‘elemen-
tary’’ parton process is not well described any more by the
single BFKL Pomeron exchange and also the ‘‘elementary’’
parton process has to be unitarized. One may obtain an indi-
cation on the limits between regions II and III by testing
whether the bound in Eq.~15! is satisfied.

To have a quantitative indication on the boundaries of the
kinematical regions, we have worked out a numerical ex-
ample. Since the present available information on multiple
parton interactions is limited to the scale factor which gives
the rate of double parton interactions@17#, while no informa-
tion is available on the multiparton correlations, we have
considered the simplest possibility, namely the Poisson dis-
tribution for the multiparton distributions. On the grounds
that the main contribution to the multiple parton interactions
is represented by the disconnected partonic collisions, we
have neglected parton rescatterings. The unitarized expres-
sion for the cross section is therefore given explicitly as a
function of the input which is used to evaluate the single
scattering term, namely the average number of partons
D(b,x) and the ‘‘elementary’’ partonic cross sectionŝH .
We have factorizedD(b,x) as f eff(x)3F(b), where f eff(x) is
the effective structure function as expressed in Eq.~6! and
F(b) is a Gaussian, normalized to 1 and able to give for the
double scattering term the scale factorseff @see Eq.~26! of
Ref. @6## consistent with the experimental indication@17#. In
our numerical example we have chosenseff520 mb and as a
scale factor for the structure functions we have taken
qt
min/2. aS is a free parameter in the BFKL approach, one
expects, however, that the value ofaS which one should use
is not too different from the value of the runningaS at the
scale of the typical momentum transferred in the process. We
have chosen as a value ofaS the value of the running cou-
pling computed withqt

min/2 as a scale factor. The values of
the semihard cross sectionsH as expressed in Eq.~23! which
we obtain with this input are consistent with the experimen-
tal values published by UA1@18#. At each value of the had-
ronic c.m. energy the boundary of the kinematical regions I,
II, and III are identified by the choice of the cutoffqt

min . The
curve which corresponds to larger values ofqt

min in Fig. 1
has been drawn requiring that the unitarized hadronic semi-
hard cross sectionsH , as expressed in Eq.~23!, is 20%
smaller with respect to the single scattering term. The lower
curve corresponds to the value ofqt

min which, on the average,
namely, after integration with the structure functions, satu-
rate the bound in Eq.~15!. The two curves identify the three
regions mentioned above.

Moving from large values ofqt to the semihard region
one faces, therefore, two different unitarity problems, which
signal the appearance of different levels of structure in the
hadronic interaction. The gap in the rapidity distribution of
produced secondaries is an effect which derives from the

unitarity relation applied to the ‘‘elementary’’ parton ampli-
tude. The regime where ‘‘elementary’’ interactions with ra-
pidity gap are a sizeable component of the ‘‘elementary’’
parton process is, however, a regime where the overall had-
ronic process is already structured in a nontrivial way, be-
cause of the large amount of multiparton interactions. To
have a quantitative feeling of the effect of multiparton inter-
actions, we have performed a numerical calculation in the
simplest example already considered to obtain the curves in
Fig. 1. The expression of the cross section as a function of
the rapidity intervalDy is given in Eq.~29!. We have con-
sideredpp̄ interactions at Tevatron energy and as a lower
threshold to observe minijets we have taken the valueqt

min

55 GeV. In Fig. 2 we plot the cross section, as expressed in
Eq. ~29!, divided by the survival probability factor
exp$2FS(b)2FP(b)%. The continuous curve is obtained by
using as a input the valueseff520 mb and the dashed curve
is obtained by usingseff512 mb. The dotted curve is the
contribution of the single scattering term alone.

As is shown in Fig. 2 the effect of unitarization on the
behavior of the cross section is large. In the actual case the
main modification to the dependence onDy is due to the
presence of multiple ‘‘elastic’’ parton scatterings whose ef-
fect on the cross section is twofold. A different dependence
on Dy, with respect to the single scattering term, is induced
by the presence of two different sources. The first is the
contribution of the process where the two observed minijets
originate in different ‘‘elastic’’ partonic interactions, the sec-
ond term in Eq.~29! and the second source for the different
dependence onDy is the correction induced by multiple
‘‘elastic’’ scatterings to the survival probability factor. In
fact not all underlying hadron activity needs to be excluded.
‘‘Elastic’’ parton scatterings which produce minijets outside
the gap are allowed and the corresponding contribution to the
cross section depends onDy. The effect of the inelastic
semihard partonic interactions is, on the contrary, factorized
at fixed impact parameterb and independent onDy. The

FIG. 1. The three different kinematical regions which character-
ize semihard hadronic interactions:~I! only the single partonic col-
lision, described by a single BFKL Pomeron exchange, is relevant;
~II ! multiparton collisions are to be taken into account; each par-
tonic interaction is, however, well described by a single BFKL
Pomeron exchange;~III ! the single BFKL Pomeron exchange is not
an adequate description of the single parton interaction any more.
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main effect of the inelastic partonic processes is to contribute
to the survival probabilitŷS2& of Ref. @4# rather than modi-
fying the dependence onDy.

The region whereqt
min is relatively small is also the region

which is closer to the BFKL kinematics and where, as a
consequence, the BFKL approach to parton dynamics is bet-
ter justified. In high-energy hadronic interactions, at rela-
tively small values ofqt

min , unitarity corrections are, how-
ever, large and have to be taken into account. The physical
effect which underlies the need of unitarization is the in-
creasing complexity of the semihard interaction which ap-
pears whenqt

min is lowered, as it is shown in Fig. 1. In the
kinematical region which has been discussed in the present
paper, corresponding with region II in Fig. 1, the ‘‘elemen-
tary’’ parton process is well described within the BFKL ap-
proach. The typical hadronic interaction is, however, charac-
terized by several ‘‘elementary’’ partonic collisions,
localized at different points in the transverse plane. One of
the points of interest in the actual kinematical regime is that
in region II the nonperturbative component of the process,
which is factorized in the multiparton distributions, repre-
sents a new piece of information on the hadron structure with
respect to the hadron structure functions of largept physics.

APPENDIX

1. General features and inelastic scattering

In this appendix the way in which an overall term inde-
pendent ofDy and further corrections explicitly dependent
on Dy may arise out of the many parton dynamics is dis-
cussed in more detail. The functional formulation, which has
been already employed, is used again and more systemati-
cally. The longitudinal momenta are always given in terms
of the fractional momentumx; the relation with the corre-
sponding rapidityy was mentioned in Sec. II.

If we look to configurations where there are two radiated
partons~jets! with the rapidity gap sitting in the central ra-

pidity region in the two-hadron c.m., then the two partons
belong to different original hadrons. The parton population is
divided into three segmentsxa ,xb ,xc . The xa interval cor-
responds to the partons which would fill the gap and the
partons that, in the configuration looked for, are not scat-
tered. Thexb corresponds to the partons outside the gap and
the partons which are simply not observed. Thexc corre-
sponds to the parton observed at one end of the gap; the
segment in whichxc lies will be ideally shrunk to one point.
The three regions of variations ofx reflect into three regions
of variations ofu, but clearly the impact parameterb is not
affected by this operation.

This decomposition suggests a way of rewriting the gen-
erating functional which is sometimes more convenient:

Z@J#5(
n

1

n! E J~u1!•••J~un!Wn~u1 ,...,un!du1•••dun

5 (
p,q,k

1

p!

1

q!

1

k! E J~ua!•••J~ub!•••J~uc!

3Wp,q,k~ua ,...,ub ,...,uc!dua•••dub•••duc , ~A1!

wherep is the number of partons of kinda, q is the number
of partons of kindb, k is the number of partons of kindc,
and an analogous expression is written forZ@ I (u8)#.

We start by considering the effect of inelastic processes
and we express the probability that~I! a partonuc scatters
elastically against a partonuc8 or a partonuc scatters elasti-
cally against a partonub8 and partonuc8 scatters elastically
against a partonub thus giving rise to the two partons at the
end of the gap and nothing is produced in the middle, and
~II ! no inelastic scattering takes place, since such a process
would also give rise to partons which could fill the gap.

In the formulas the requirement I is expressed by an op-
eratorF while the requirement II is expressed by an operator
G, both applied to the productZ@J#Z@ I #.

The actual form of the two operators is

F5E ducduc8Fdc~u!ŝE~uc ,uc8!dc8~u8!

1S E dc~u!ŝE~uc ,ub8!db8~u8!db~u!

3ŝE~ub ,uc8!dc8~u8!dubdub8 D G , ~A2!

G5 (
n,n8

E E 1

n!

1

n8!
d1~u!•••

3dn~u!•••d18~u8!•••dn8
8 ~u8!) @12ŝ In~u,u8!#dudu8.

~A3!

In the definition ofG there is no point in distinguishing
the intervals of rapidity. Some notational simplification is
obtained by setting

FIG. 2. Cross section for production of minijets with rapidity
gap as a function of the gapDy. The process ispp̄ at As
51.8 TeV andqt

min55 GeV. The dotted curve is the single scatter-
ing term. The continuous and the dashed curves include all discon-
nected multiple parton collisions. Input to the continuous curve is
seff520 mb and to the dashed curve isseff512 mb ~see text!.
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d

dJ~um!
5dm~u!,

d

dI ~um8 2b!
5dm8 ~u8!, m5a,b.

~A4!

A first step in the choice of some specific distribution
could be to neglect the genuine many-body correlations, in
this case the generating functional is in fact reduced to an
ordinary function of a linear functional of the sources

Z@J#5F~Y!, Y5E D~u!J~u!du. ~A5!

The division of the field of variation ofx into three parts
induces a corresponding decompositionY5Ya1Yb1Yc .

Even with the restriction to a pure one-body density the
general expression is complicated. A very relevant and effec-
tive simplification is produced if we assume a Poissonian
distribution for the initial partonic distributions

Z@J#5exp@Y2Y0#. ~A6!

The normalization termY05*D(u)du ensures thatZ@1#
51.

In looking for some general features of the inelastic
rescattering it is, however, possible to use a general partonic
distribution without many-body correlations, as is described
by the generating functionalF~Y!; so we let the functional
differential operators G and F act on the product
F(Y@J#)F(Y@ I #) and in the end the auxiliary sources are
put to zero,J5I50. From the action of the operatorG one
obtains the intermediate result

K@J,I #5 (
n,n8

E E 1

n!

1

n8!
D~u1!•••D~un!•••

3D~u182b!•••D~un8
8 2b!) @12ŝ In~u,u8!#

3dudu8F~n!~Y@J# !F~n8!~Y@ I # !. ~A7!

From the further action of the operatorF and the condi-
tion J5I50 one obtains the final result

K~b!5 (
n,n8

E E 1

n!

1

n8!
D~u1!•••D~un!•••

3D~u182b!•••D~un8
8 2b!

3) @12ŝ In~u,u8!#dudu8E ducduc8

3FD~uc!ŝE~uc ,uc8!D~uc82b!F~n11!~0!

3F~n811!~0!1E D~uc!ŝE~uc ,ub8!

3D~ub82b!D~ub!ŝE~ub ,uc8!

3D~uc82b!dubdub8F
~n12!~0!F~n812!~0!G .

~A8!

So in general the expression has the form

K~b!5 (
n,n8

@Gn,n8
I

~b!F I~b!1Gn,n8
II

~b!F II~b!#. ~A9!

For a Poissonian partonic distributionF (n)(0)
5exp@2Y0# results for every derivative, so the double sum
overn,n8 can in principle be carried out yielding an overall
factor G(b)5Sn,n8@Gn,n8

I (b)1Gn,n8
II (b)# which multiplies

the remaining term

F~b!5E ducduc8FD~uc!ŝE~uc ,uc8!D~uc82b!

1E D~uc!ŝE~uc ,ub8!D~ub82b!

3D~ub!ŝE~ub ,uc8!D~uc82b!dubdub8G .
~A10!

In other words, the results indicate that at fixed hadronic
impact parameterb the inelastic processes simply give rise
to a multiplicative factor to the fundamental amplitude.

In presence of another kind of distribution the treatment is
less straightforward because the sum overn,n8 does not al-
low the extraction of a common termF(b). It seems, how-
ever, likely that in the expression ofK the second addendum,
containingF II is more important than the first one, because it
involves a less exclusive condition, if this is true then the
sum

Ḡ~b!5 (
n,n8

Gn,n8
II

~b!

can be still be carried out yielding again a multiplicative
factor in front of the fundamental amplitude at fixed hadronic
impact parameter.

This essential simplicity is destroyed if we are in the pres-
ence of sizeable two-body correlations. To be definite we
may consider an example where we have a Poissonian dis-
tribution corrected by a two-body correlation

Z@J#5exp@Y2Y0#.

Y5E D~u!J~u!du1 1
2 E C~u,ū!J~u!J~ ū!dudū.

~A11!

Then in performing the derivatives in order to calculate
K(b) we end unavoidably with expressions where the corre-
lation termC(u,ū) links the inelastic component with the
elastic fundamental one and so the decomposition given in
Eq. ~A10! is no longer possible, in this case we expect that
the inelastic processes modify strongly not only the size but
also the shape of the fundamental elastic process.

2. Effect of the multiple elastic scattering

It is clear that in presence of a large flux of partons the
inelastic processes that have been considered till now are not
the only disturbing effects, i.e., there are other dynamical
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processes which also act in the sense of filling the rapidity
gap that the ‘‘fundamental’’ process described in the present
formalism byF produces. With reference to the notation
introduced in Eq.~A1!, one must take into account also the
following elastic processes.

A partonua which scatters against a partonua8 ; this even
will fill the gap. A partonua which scatters against a parton
ub8 or a partonub which scatters against a partonua8 ; this
event will also fill the gap. The statement that these kind of
collisions must not happen is expressed by aveto operator
which, in absence of inelastic interactions, would have the
form

E5 (
p,p8

(
q,q8

E E 1

p!

1

q!

1

p8!

1

q8!

3da~u!•••db~u!•••da8~u8!•••db8~u8!

3) @12ŝE~ua ,ua8!#@12ŝE~ua ,ub8!#

3@12ŝE~ub ,ua8!#duadubdua8dub8 . ~A12!

The fact that the parton of kindb are unobserved suggests
that the sum overq,q8 is the first operation to be performed.

For a fixedp the term containing the sum overq8 is

D~ua,1 ,...,ua,p!5da~u1!•••da~up!(
q8

1

q8!

3)
k

F E @12ŝE~ua,1 ,uk8!#•••

3@12ŝE~ua,p ,uk8!#db8~uk8!duk8G .
~A13!

Since all theuk8 are dummy variables the sum overq8 can be
carried out and gives an exponential; then the product of the
@12ŝ# factors in the exponent may be expanded in terms
containing noŝ, oneŝ, two ŝ, and so on:

D~ua,1 ,...,ua,p!

5da~u1!•••da~up!expF E S 12(
j

ŝE~ua, j ,uk8!

1(
iÞ j

1
2 ŝE~ua,i ,uk8!ŝE~ua, j ,uk8!1••• D db8~uk8!duk8.

~A14!

The sum overq is obviously treated in the same way and we
get for E the expression

E5 (
p,p8

E 1

p!

1

p8! ) @12ŝE~ua ,ua8!#D~ua,1 ,...,ua,p!

3D~ua,18 ,...,ua,p8
8 !) duadua8 . ~A15!

In order to obtain more explicit expressions it is necessary,
now, to expand both the operatorsD and the term

P@12ŝ# in multiple interactions, but at this step it seems
that the treatment becomes clearer if one chooses some defi-
nite form of the parton distributions.

We choose now a Poissonian distribution of partons1 and
let the functional differential operatorE act on the product
Z@J#Z@ I #, after the action ofF. Only at the end the auxiliary
sources are put to zero:J5I50. As was already said, for the
operatorE one is forced to proceed in steps corresponding to
successive reinteractions of the same partons: from the op-
eratorD one gets

A~ua,1 ,...,ua,p!5D~ua,1!•••D~ua,p!

3expH E F12(
i

ŝE~ua,i ,ub8!

1(
iÞ j

1
2 ŝE~ua,i ,ub8!ŝE~ua, j ,ub8!1•••G

3D~ub82b!dub8J . ~A16!

Also the termP5P@12ŝE(ua,i ,ua,r8 )#[P@12ŝ i ,r # is ex-
panded with the result

P512( ŝ i ,r1(( 1
2 ŝ i ,r ŝ j ,s

2((( ~1/3!!ŝ i ,r ŝ j ,sŝk,t1••• . ~A17!

In the repeated sums the pairs of indices cannot be equal,
e.g., (i ,r )Þ( j ,s); it is, however, possible to have eitheri
5 j or r5s, which correspond to a rescattering of a particu-
lar parton. If we took only term 1 and the simple sum in the
exponent ofD, out of the operatorE we would get the result

E05expF E D~ua!G~ua2b!duaG
3expF E D~ua82b!G~ua8!dua8G
3expF E D~ub!dub1E D~ub8!dub8G . ~A18!

In this formula the absorption factorsG have been intro-
duced. In their definition the property thatŝ depends only on
the difference of the impact parameters has been used:

G~ua2b!5expF2E ŝE~ua ,ub8!D~ub82b!dub8G ,
G~ua8!5expF2E ŝE~ua8 ,ub!D~ub!dub8G .

1In order to perform the actual calculation it may be useful to
remember the identityf (d/dx)g(x)ux505g(d/dx) f (x)ux50 , which
is evident whenever the two functions admit a power expansion
around 0; in particular it yieldsf (d/dx)ehxux505 f (h).
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The factorE0 takes into account the interaction of the
partons of kinda with those of kindb, but not the interaction
of thea partons among themselves. It could be put in a form
that could be of easier interpretation: i.e.,

E05expF E D~u!du1E D~u8!du8G
3expF2E D~ua!@12G~ua2b!#duaG
3expF2E D~ua82b!@12G~ua8!#dua8G .

~A188!

In this expression the first exponential, where also the
small contribution fromuc has been included, simply takes
away the normalization term exp@2Y02Y08#; it does not be-
long to the multiple scattering, while the second term,E08 is
an ‘‘absorption’’ term due to some of the disconnected col-
lision which fill the gap. We can do better and consider the
other terms in the expansion ofP5P@12ŝ i , j #, with the
restriction of excluding the repeated interaction of the same
a parton. In this way, in formulasiÞ j and rÞs, a further
factor is produced which multiplies the former expression,
i.e.,

E15expF2E D~ua!G~ua2b!ŝE~ua ,ua8!

3D~ua82b!G~ua8!duadua8G . ~A19!

Going on means producing expressions that are quite elabo-
rate; one could, as an example, calculate the factors which
describe a double interaction of partons either of kinda or of
kind b. When the partonsa are allowed to collide twice, but
not three times, the following factor is produced:

E25exp12 F E D~ua!G~ua2b!ŝE~ua ,ua8!D~ua82b!

3G~ua8!ŝE~ua8 ,uā !D~uā !G~uā2b!duaduādua8

1E D~ua82b!G~ua8!ŝE~ua8 ,ua!D~ua!G~ua2b!

3ŝE~ua ,uā8 !D~uā8 2b!G~uā8 !duadua8duā8 G . ~A20!

The expansion can be further continued, e.g., by considering
also the collision of two partons of kindb, and then the
various results can be collected. From the term explicitly
calculated one gets:E'E08E1E2••• . This factor modifies
qualitatively the result expressed in Eq.~A9!: because in that
expression the termsGn,n8 were independent of the rapidities
defining the gap which appear inFn,n8 through uc
5(xc ,b), now, on the contrary, these variables appear ex-
plicitly in the termsE.

Other form of partonic distributions give rise to more
complicated final expressions, but some of them allow some
elaboration anyhow; in particular as already remarked in

@14#, the generating functional of a negative binomial distri-
bution allows a representation which is an integral transform
of a Poisson generating functional:

F~Y!5
~12Y0!a

~12Y!a 5
1

G~a!
~12Y0!aE etYe2tta21dt.

~A21!

So, in principle, from the previous expressions holding for a
Poisson distribution of partons it would be possible to get the
analogous one for a negative binomial distribution by apply-
ing the following prescriptions:~I! Take away the normaliza-
tion term, NP5exp@2Y02Y08# and substitute it byNB

5@G(a)#22(12Y0)a(12Y08)a; ~II ! multiply by a factor t
every D(u) explicit or implicit, i.e., insideG and B, and
multiply by a factors everyD(u8) explicit or implicit, i.e.,
insideG andB; ~III ! multiply the overall resulting expression
by e2t2s(ts)a21. ~IV ! integrate the result indt ds from 0 to
1`.

It is evident that the Poissonian and the negative binomial
distribution for the original partons are only the simplest
ones which can be chosen; in terms of the integral transforms
of the generating functions other distributions could be built
up.

3. Elastic and inelastic scattering

The real case implies evidently both elastic and inelastic
scattering. The requirement that there be no production pro-
cess filling the gap is expressed by an operator of the form

C5 (
p,p8

(
q,q8

E E 1

p!

1

q!

1

p8!

1

q8!

3da~u!•••db~u!•••da8~u8!•••db8~u8!

3) @12ŝT~ua ,ua8!#@12ŝT~ua ,ub8!#@12ŝT~ub ,ua8!#

3) @12ŝ In~ub ,ub8!#duadubdua8dub8 , ~A22!

ŝT5ŝE1ŝ In . ~A23!

The statement expressed by this operator is that while the
parton of kinda must not suffer interactions at all, the par-
tons of kindb may interact provided their interaction is elas-
tic. In its full form this expression appears quite intractable,
however, one can follow the idea that the most relevant dy-
namical feature is the inelastic scattering and the elastic scat-
tering is a perturbation. It does not seems convenient, how-
ever, to start from the inelastic operatorG; it is more efficient
to start with an ‘‘exaggerated’’ form of the operatorC such
that the elastic interactions of the partonsb are also ex-
cluded, by defining

C05 (
n,n8

E E 1

n!

1

n8!
d1~u!•••

3dn~u!•••d18~u8!•••dn8
8 ~u8!) @12ŝT~u,u8!#dudu8,

~A24!
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which looks very similar toG, Eq. ~A4!, and so yields, by
itself, a factor independent ofy. Then one has to correct the
result by an expansion inŝE that uses Eq.~A23!. Since the
coordinatesu are all equivalent the expansion has the same
combinatorial structure as

@A1B#qq85Aqq81qq8BA~q21!~q821!Aq21Aq8211B2••• .

In this way, through a shift inq andq8, the integrand of the
operatorC0 is reproduced with additional factors. The actual
form of the first order correction inŝE is

C15 (
p,p8

(
q,q8

E E 1

p!

1

q!

1

p8!

1

q8!
da~u!•••db~u!•••da8~u8!•••db8~u8!db~v !db8~v8!

3) @12ŝT~ua ,ua8!#@12ŝT~ua ,ub8!#@12ŝT~ub ,ua8!#@12ŝT~ub ,ub8!#duadubdua8dub8

3E ŝE~vb ,vb8!) @12ŝT~ub ,vb8!#) @12ŝT~vb ,ub8!#db~v !db8~v8!dvbdvb8 . ~A25!

In a limit in which terms likeŝEŝT are neglected, while
keeping the powers ofŝT the correction may be factorized in
the form

C1'C0E ŝE~vb ,vb8!db~v !db8~v8!dvbdvb8 . ~A26!

This approximation for the correctionC1 suggests also a gen-
eralization. The expression itself originates from the division
of the whole flux of parton in a pair suffering only elastic
scattering and in a rest for which all interactions are consid-
ered. This attitude can be extended to a more general situa-
tion, on the grounds that, as already noticed, in the presence
of large parton fluxes the multiple disconnected interactions
may become more relevant than the reinteractions. So, with
reference to Eq.~A22! we can divide theq partons of kind
b into two subsets ofr ands partons, obviously withr1s
5q, and the same forq8. The coordinates of ther partons
will be still denoted byu, the coordinates of thes partons
will be calledv. In this way Eq.~A22! takes the form

C5 (
p,p8

(
r ,r 8

(
s,s8

E 1

p!

1

r !

1

s!

1

p8!

1

r 8!

1

s8!

3da~u!•••db8~v8!) @12ŝ#duadubdvbdua8dub8dvb8 ,

~A27!

where the productP@12ŝ# contains nine kinds of factors.

Now we decide, on the basis of the physical consideration
outlined, that thev parton suffer only elastic scattering with-
out any other interaction, then necessarilys5s8, and there
ares! ways of pairing thev with thev8. So it is not difficult
to see that the rest ofC reconstruct the factorC0 of Eq. ~A24!,
whereas the sum overs yields an exponential. In this way the
approximate expression forC is given by

C'C0 expF E db~v8!ŝE~vb ,vb8!db8~v8!dvbdvb8G .
~A278!

When the parton distribution is Poissonian out of Eq.
~A278! one gets the expression of the first correction due to
multiple scattering depending onDy which corresponds to
what was previously stated in Sec. III, Eq.~29!. Anyhow, in
a way wholly independent of the validity of the approxima-
tion we see that the correction is always positive because it
represents a compensation for the previous exclusion of con-
figurations that should be allowed and the amount of the
correction diminishes by enlarging the rapidity gap since the
integration runs over the complementary domain. For our
purposes the most relevant feature of the elastic interactions
is that they produce effects depending, from the very begin-
ning, on they of the gap because the integrations overv,
v8 depend explicitly onxc , xc8 which are precisely the vari-
ables that set the difference between partons of kinda and
partons of kindb.
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