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We report the results of a next-to-leading order event generator of purely gluonic jet production. This
calculation is the first step in the construction of a full next-to-leading order calculation of three-jet production
at hadron colliders. Several jet algorithms commonly used in experiments are implemented and their numerical
stability is investigated.@S0556-2821~97!02711-2#
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I. INTRODUCTION

In this paper we report the first step in constructing a
next-to-leading order~NLO! three-jet event generator for
hadron colliders. This involves the construction of the pure
gluonic contribution to this cross section. The calculation
combines the one-loop virtual matrix elementsgg→ggg @1#
with the real matrix elementsgg→gggg @2–7#. The major
issue we want to address in this paper is the convergence and
numerical stability of the NLO event generator. The jet al-
gorithm is an integral part of the observed final state and is
needed to define the NLO three-jet cross section. Unlike the
NLO two-jet calculation, the NLO three-jet calculation is
sensitive to many details of the jet algorithm. This is because
of the presence of the four-parton final state, which by ap-
plying the jet algorithm is converted into either a two-,
three-, or four-jet final state. A complete understanding of
this partitioning into different numbers of jets requires a
careful study of the details of different jet algorithms. For
this paper we consider four algorithms:~a! the ‘‘fixed-cone’’
algorithm, used by UA2@8#; ~b! the ‘‘iterative-cone’’ algo-
rithm, used by the Collider Detector at Fermilab~CDF! @9#
and D0 Collaborations@10#; ~c! the ‘‘KT’’ algorithm @11#,
under study by CDF and D0@12#; ~d! the ‘‘EKS’’ algorithm,
used in NLO one-jet and two-jet inclusive calculations@13#.

In Sec. II we will describe the methods and techniques
used in the event generator in some detail. Section III de-
scribes and investigates the stability of the four-jet algo-
rithms. Some distributions are shown in Sec. IV as an illus-
tration of the achievable numerical accuracy of the event
generator. No attempt is made for a detailed phenomenologi-
cal study; this only makes sense once the quark contributions
have been included. Finally, in Sec. V we summarize the
findings of the study.

II. THE METHOD

The construction of a flexible event generator requires the
generation of partonic final states with a minimal amount of
implicit phase space integration. At leading order~LO! this
is trivial, but at NLO it requires careful handling of the can-
cellation of divergences between the soft and collinear con-
tributions and the virtual corrections. The divergences stem

from the fact that at NLO a parton can only be defined
through a resolution criterion. This resolution criterion can
take many forms, from a simple invariant mass cut to a full
blown fragmentation function. For the studies in this paper a
simple invariant mass resolution criterionsmin suffices. That
is, if the invariant mass of two partons is smaller thansmin
they are considered to be unresolvable and treated as a single
parton by integrating out the unresolved phase space. This
isolates the unresolved soft and collinear regions of phase
space from the resolved bremsstrahlung phase space. After
this rearrangement, both the resolved contribution and the
combination of the unresolved soft and collinear contribu-
tions with the virtual corrections are finite@14,15#.

With the above method it is easy to calculate the soft and
collinear contributions. The next step is to use this calcula-
tion to construct a NLO event generator. There are in prin-
ciple three methods of putting together the resolved partonic
cross sections in order to make the NLO jet event generator.
In order of complexity they are:~a! ‘‘the slicing method,’’ in
which both matrix element and phase space are approxi-
mated@16# in the soft and collinear regions,~b! ‘‘the sub-
traction method,’’ in which the phase space is still approxi-
mated in the soft and collinear regions, but the matrix
element is now exact~by adding in the correction factor nu-
merically!, and ~c! ‘‘the exact method,’’ in which both the
correction factors for the phase space and matrix elements in
the unresolved region are added in numerically. Note that
several other methods exist in the literature which are
equivalent to method~c! @17#. Method~a! is used to calculate
analytically the soft and collinear regions. To be able to per-
form the integrations and extend the method to arbitrary par-
tonic processes one has to approximate both the matrix ele-
ment and the phase space in the soft and collinear regions.
For any useful and numerically stable event generator
method~b! is often sufficient. In a numerical calculation it is
trivial to extend method~a! to method~b!. Method ~c! is
attractive because there are no approximations. That is, no
terms of ordersmin have been neglected and one can choose
the resolution parameter as large as one wants without
changing the results. This method, however, is more cumber-
some to implement.

One can describe the different methods better using a
schematic formula. Then-parton contribution to the
(n21)-jet cross section is given by
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dsn5uMnu23JndPn

5@ uMnu23~12us!1uMnu23us!]Jn dPn

5uMnu23~12us!Jn dPn1us3@T1~us!1T2~us!

1T3~us!#, ~1!

where then-parton differential cross sectiondsn is given by
the matrix element squareduMnu2 and the phase space con-
straints from the jet algorithm and cutsJn integrated over the
n-parton phase spacedPn . The soft or collinear unresolved
part of phase space is separated off using the resolution cri-
terion embodied in the quantityus , which takes the value
us51 in the unresolved phase space region andus50 oth-
erwise.

T1 is given by

T1~us!5SuMn21u23Jn21dPsoftdPn21

5R~us!uMn21u23Jn21dPn21 , ~2!

and represents the product of the approximate matrix ele-
ment uMnu2→SuMn21u2 and the approximate phase space
dPn→dPsoftdPn21. The resolution factorR(us) is indepen-
dent of the hard scattering and can be integrated analytically
for a wide range of multiparton processes@14,15#. T2 is
given by

T2~us!5~ uMnu22SuMn21u2!Jn dPn ~3!

and represents the difference between the true matrix ele-
ment and the approximate matrix element over the true un-
resolved phase space.T3 is given by

T3~us!5SuMn21u2~JndPn2Jn21dPn21dPsoft!, ~4!

and represents the approximate matrix element over the dif-
ference between the true unresolved phase space and the ap-
proximate unresolved phase space. Note thatT1 contains the
soft and collinear divergences needed to cancel the singulari-
ties of the virtual term, whileT2 andT3 vanish as the domain
of support forus is taken to zero.

Method ~a! keepsT1, but setsT25T350, method~b!
keeps bothT1 and T2, but setsT350, while method~c!
keeps all three terms. The terms proportional to the soft fac-
tor S cancel betweenT2 andT3 so that the final expression
for method ~c! is somewhat simplified. The advantage of
method~c! is that theus dependence exactly cancels for any
value of this resolution parameter. The drawback is that apart
from the usual negative weighted virtual plus soft and col-
linear and positive weighted bremsstrahlung contributions
we have now an additional type of negative weighted events
which numerically cancel the subtraction termR(us). This
can often be confusing, especially when one chooses large
values ofus , because one has a different phase space con-
straint on this type of bremsstrahlung term. Using method~b!
removes these additional events, but now we must choose
us to be sufficiently small that the phase space approxima-
tions are valid. In general this poses no problem and in prac-
tice this is the method we use. The effects of the three meth-
ods can easily be demonstrated numerically. Thesmin

dependence of methods~a! and ~b! are shown in Fig. 1 for
several jet algorithms. We postpone the discussion of these
dependences to Sec. IV.

III. JET ALGORITHMS

The purpose of the jet algorithm is to quantify certain
topological features of hadronic energy flow in scattering
processes. By identifying high transverse momentum had-
ronic clusters in collisions we can make a connection with
the underlying partonic scattering and apply perturbative
QCD to predict the cross section. The form of the jet algo-
rithm depends to a large extent on the capability of the de-
tector and on the collision environment. Theoretical issues
are only of secondary importance. A stable experimental jet
algorithm is, by definition, theoretically infrared safe. There
are of course issues of perturbative convergence, but the ex-
periment~and implicitly the data! should determine the jet
algorithm not vice versa.

With current techniques for theoretical calculations one
can easily accommodate any stable experimental jet algo-
rithm. The only crucial theoretical issue is a reliable estima-
tion of the theoretical uncertainties. This is why the NLO
predictions for observables are so important. By comparing
NLO with LO we can determine the regions of phase space
where we can make reliable predictions and give estimates of
the uncertainty. There is no point ‘‘improving’’ predictions
without a clear understanding of the theoretical uncertainties
in the ‘‘improved’’ predictions.

The extension of the NLO two-jet calculation to NLO
three jet is nontrivial with respect to the jet algorithm as we
will now explain. The algorithms usually depend on a cone-
size or distance scale between the clusters:

R5A~Dh!21~Df!2 , ~5!

whereDh is the difference in pseudorapidity andDf is the
difference in azimuthal angle. When combining clusters of
energy one usually follows the ‘‘Snowmass accord’’@19#
which uses transverse energy-weighted (ET-weighted! clus-
tering:

ET
tot5(

i
ET

~ i !

^h&5
1

ET
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i
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~ i !h i ~6!

^f&5
1

ET
tot(

i
ET
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We will now summarize our implementations of the four-jet
algorithms under consideration.

~a! The ‘‘fixed-cone’’ algorithm.This algorithm was used
by UA2 and is described in some detail in Ref.@8#. This
algorithm is the most basic and straightforward of the four
algorithms we are considering. The procedure is very simple.

~1! Form a cluster list, ordering all clusters byET .
~2! Select the highestET cluster from the cluster list and

draw a cone of radiusR around the cluster axis. Calculate the
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transverse jet energy and a new jet axis by performing the
ET-weighted sum of all the clusters in the cone as defined in
Eq. ~6!.

~3! Remove all clusters in the cone from the cluster list
and move the jet to the jet list.

~4! If the cluster list is not empty go to step~2!.
~5! Apply the appropriate minimum transverse energy and

rapidity cuts to the entries in the jet list to find the final set of
jets.

Note that all of the basic physics involved in the clustering
is already contained in the three parton final states~i.e., NLO
two-jet production or LO three-jet production!. No matter
how many additional partons are added to the final state,
each will be assigned unambiguously to a jet.

~b! The ‘‘iterative-cone’’ algorithm.Both CDF and D0
use this algorithm. While it is clearly based on the ‘‘fixed-
cone’’ jet algorithm, there are important additions. The algo-
rithm is given by the following.

~1! Form a cluster list, ordered byET .
~2! Select the highest unassignedET cluster, and draw a

cone of radiusR around the axis of this cluster. Calculate the
transverse jet energy and a new jet axis by merging the clus-
ters in the cone as in Eq.~6!.

~3! Draw a new cone around the new jet axis. Recalculate
the jet axis using the clusters in the new cone. Repeat this
step until a stable jet axis is found.

~4! If there are clusters not yet assigned to at least one jet,
go to step~1!.

FIG. 1. Thesmin-dependence of the cross section for the different jet algorithms and numerical methods.
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~5! Check for overlapping clusters, i.e., clusters assigned
to two or more jets. If overlaps occur, one has to decide
whether to merge the jets or to assign the overlapping clus-
ters to separate jets. CDF and D0 have different methods for
doing this. CDF merges the jets if any of the overlapping jets
shares more than 75% of itsET . Otherwise each shared clus-
ter is assigned to the jet to whose axis it is closest inh-f
space. D0 merges the jets if any jet shares more than 50% of
its transverse energy. Otherwise the shared transverse energy
is divided equally between the two jets.

~6! Once all clusters have been uniquely assigned to jets,
the final jet parameters are calculated, but not using the
ET-weighted scheme of Eq.~6!. For both CDF and D0, the
energy and momentum three-vector are calculated by simply
adding the four-vectors of the clusters assigned to the jet, and
the direction of the jet is given by the sum of the momentum
three-vectors. CDF computes the transverse energy of the jet
asE sinu, whereE is the energy calculated above, andu is
the polar angle of the jet direction. D0 computes the trans-
verse energy as the scalar sum of the transverse energies of
the component clusters. It is worth mentioning that Ref.@18#
recently argued that the D0 procedure of defining the final jet
parameters leads to large perturbative corrections and there-
fore should not be used.

~7! Apply the appropriate minimum transverse energy and
rapidity cuts to the entries in the jet list to find the final set of
jets.

Note that in this case, unlike the ‘‘fixed-cone’’ algorithm, a
lot of the physics is missing in the three-parton final state,
where there is never an iteration nor is there ever shared
energy. To get at all the basic physics one needs at least four
parton final states, or in other words NNLO two-jet, NLO
three-jet, or LO four-jet production. In fact for NLO two jet
and LO three jet the ‘‘iterative-cone’’ algorithm is identical
to the ‘‘fixed-cone’’ algorithm.

~c! The ‘‘EKS’’ algorithm.The fact that the NLO two-jet
calculation does not contain all the needed physics in the jet
algorithms used by CDF and D0 inspired the authors of Ref.
@13# to introduce an ‘‘improved’’ algorithm which phenom-
enologically modeled the missing physics. Because this is a
theoretical algorithm we will describe it in terms of partons.
In NLO two-jet production we have only to consider the
three parton final state. The algorithm is then very simple:
~1! Consider the possible two-parton configurations by cal-
culating theirET-weighted jet axis as if they were clustered;
~2! if both partons are within the cone sizeR of the hypo-
thetical jet axis they are merged into a single jet;~3! go to
step~1! until all two parton configurations have been consid-
ered.~4! apply the appropriate minimum transverse energy
and rapidity cuts to the entries in the jet list to find the final
set of jets.

Note that this maximizes the energy in the cone and simu-
lates the ‘‘iterative-cone’’ algorithm by assuming that it al-
ways find the optimum jet axis to maximize the energy in a
jet. This in fact overestimates the clustering effects of the
‘‘iterative-cone’’ algorithm. To correct for this an additional
parameter calledRsep

(2) was introduced@20#. With this param-
eter one can impose the additional constraint that only two-
parton pairs separated by less thanR3Rsep

(2) can be clustered.

Experimentally it was found thatRsep
(2)51.3 worked best for

R50.7 @21#. Note that the quantityRsep
(2) has no equivalent in

experimental jet algorithms and is a purely phenomenologi-
cal quantity. TheRsep

(2) prescription was tuned to the NLO
two-jet calculation, and there are many possible ways to ex-
tend it to the NLO three-jet calculation. We choose to do the
following.

~1! Consider the possible three-parton configurations by
calculating theirET-weighted jet axis as if they were clus-
tered. If the three partons are withinR of the hypothetical jet
axis and each pair of partons are separated by less than
R3Rsep

(3) they are merged into a single jet. Repeat this step
until all three parton configurations have been considered.

~2! Consider the possible two-cluster configurations by
calculating theirET-weighted jet axis as if they were clus-
tered. If both partons are withinR of the hypothetical jet axis
and are separated from one another by less thanR3Rsep

(2) they
are merged into a single jet. Repeat this step until all two-
cluster configurations have been considered.

It is possible for two two-parton clusters to overlap. These
situations are resolved in the following fashion.

~3! If the shared parton contributes more than 75% of the
ET of either jet, all three partons are merged. If not, the
shared parton is assigned to the jet to whose axis it is closest
in h-f space.

~4! Apply the appropriate minimum transverse energy and
rapidity cuts to the entries in the jet list to find the final set of
jets.

Note that our implementation of theRsep parameters and
overlap resolution condition aread hoc, not tuned to the data
asRsep

(2) was for the NLO two-jet calculation. For the NLO
three-jet calculation, it could be thatRsep

(3) should take on a
different value thanRsep

(2) , that a different overlap resolution
prescription will be preferred, or that additional parameters
will be needed to accurately describe the data.

~d! The ‘‘ KT’’ algorithm.This algorithm finds its roots in
thee1e2 environment. Its adaptation to thep p̄ environment
was proposed in Ref.@11#. The algorithm is currently under
study in CDF and D0@12#. Our implementation is based on
Ref. @22#.

~1! For each clusteri define a ‘‘closeness’’ to the beam as
dib5ETiRb . For each pair of clustersi , j , define their close-
ness to one another asdi j5min$ETi ,ETj%DRij .

~2! Choose the cluster closest to the beam (min$dib%). If
min$dij%,dib , mergej into i , and removej from the cluster
list. If all di j.dib , jet i is said to be ‘‘complete.’’

~3! Go to step~1! until all jets are complete.
~4! Apply the appropriate rapidity and transverse energy

cuts to select the final set of jets.

All of the basic physics involved in theKT clustering algo-
rithm was already present in the three parton final states.
Like the fixed cone algorithm, theKT algorithm unambigu-
ously assigns additional partons to jets, no matter how many
are added.

The numerical stability of the four jet algorithms is re-
lated to the degree to which the algorithm is sensitive to soft
radiation, or in other words the infrared stability of the par-
ticular algorithm. For the method of resolved partons, as is
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used in this paper, infrared stability is related to the extent to
which the results are independent of the the resolution pa-
rametersmin . This dependence is shown in Fig. 1 and will be
discussed in the next section.

IV. NUMERICAL RESULTS

The calculation presented in this paper includes only the
gg→ggg andgg→gggg contribution to the NLO three-jet
cross section. This means that any comparison with experi-
mental results would be premature. However, there are sev-
eral issues we can address in the context of investigating the
numerical applicability of the resolved parton approach.
First, we can get a first impression of the size of the radiative
corrections in the inclusive three-jet cross section by com-
paring the all-gluon LO three-jet results with the NLO three-
jet results. Second, we can start to look at questions related
to the jet algorithms and to what extent observables depend
on the choice of algorithm. We will look at two particular
sets of observables. The first set is the transverse energy
distribution of the leading, second, and third jet in the event.
The second set involves the transverse energy fraction of the
leading, second, and third jet.

For all numerical results in this section we used the
CTEQ3M @23# parton distribution functions~PDF’s!, a fixed
renormalization or factorization scale of 100 GeV and a cen-
ter of mass energy of thepp̄ system equal to 1800 GeV. The
fixed scale is needed at NLO because we calculate the
gluons-only cross section. The full PDF’s, including the
quarks, are evolved up toQ5100 GeV. The input gluon
PDF is then taken at this scale and not evolved any further
~the factorization scale is fixed at 100 GeV!. In this manner
we get a consistent cross section with only gluons~i.e., tak-
ing the number of flavors equal to zero! at NLO. To select
events we required at least one jet withET.50 GeV in the
rapidity regionuhu,4. Additional jets were required to have
ET.20 GeV and rapidity in the rangeuhu,4. Only events
with at least three jets in the final state were selected. The
cone sizes were chosen differently per algorithm such that
they give approximately the same cross section. The
‘‘iterative-cone’’ algorithm uses the same cone size of 0.7 as
is usually chosen experimentally. In the ‘‘EKS’’ algorithm
the cone size was chosen to be 0.7 withRsep

(2)5Rsep
(3)51.3 as

is common in the NLO two-jet calculations. In order to
accommodate the larger ‘‘effective’’ cone of the two previ-
ous algorithms we chose the ‘‘fixed-cone’ algorithm to have
a larger cone, R50.731.350.91. Finally for the
‘‘ KT’’-clustering algorithm the closeness parameter is set to
Rb51.0 ~note that this quantity is not really a cone size!.

The first issue to be considered is thesmin dependence of
the cross section and the determination of the range in which
we can choose its value such that the approximations made
in the different numerical methods are valid. The results are
shown in Fig. 1 for both the slicing and subtraction method
~the exact method has not yet been implemented! and all four
types of jet algorithms. The first thing to notice is that the
behavior of the iterative cone algorithm is quantitatively dif-
ferent from that of the three other algorithms. The other three
algorithms behave as expected and it is clear how to choose
smin for them. For the slicing method one has to choose
smin smaller than 1 GeV

2 in order to get the correct answer.

As expected the subtraction method allows us to choose
larger values ofsmin , though the value should still not be
larger than 10 GeV2. For the results presented later in this
section we will use the subtraction method withsmin52.5
GeV2.

We now consider the iterative cone algorithm. As can be
seen in Fig. 1~c!, the cross section does not become indepen-
dent from the resolution parameter, even at very small values
of smin . In fact the behavior fits very well to a logarithmic
dependence on the resolution parameter. This means that the
algorithm is not infrared safe in that we can change the jet
multiplicity by adding a soft parton somewhere in the event.
It is obvious that this can occur when we have three parton
configurations in which two of the partons are slightly more
than the cone sizeR apart balancing the leading third parton.
For the tree level and virtual contributions this is a three-jet
event. The situation should not change if we add a soft par-
ton in between the two nearby partons, and in fact it does not
change for any of the jet algorithms besides the iterative
cone. The soft parton gets clustered with one of the hard
partons, slightly changing the jet parameters, but not affect-
ing the jet multiplicity. In the case of the iterative cone,
however, one of the two hard partons will cluster with the
soft parton thereby shifting its jet axis to withinR from the
other parton. Because of the iterative nature of this algorithm
the two clusters will subsequently be merged further into a
single jet yielding a two-jet final state. Thus, we have
changed the jet multiplicity by adding an arbitrarily soft par-
ton to the event. As a result the algorithm is infrared unstable
and cannot be used within the context of perturbative QCD.
Experimentally this means that the jet algorithm depends on
the implicit soft cutoffs in the detector, e.g., granularity of
the detector, cluster cutoff, and ultimately hadron masses. In
other words, the jet multiplicity depends on the ability of the
detector to resolve and measure soft hadrons. It is clear that
we cannot use this algorithm within the NLO calculation.
Note that this result does not make the one- and two-jet
inclusive cross sections infrared unstable since in those cases
we do not have to resolve three-jet configurations. Both CDF
and D0 have compared their multijet data~i.e., more than
two jets in the final state! with LO Monte Carlos@10,24#. It
is interesting to note that the experiments have in fact added
an additional cut to their multijet cross section in order to
make these comparisons. This cut requires all the jets in the
event to be further apart than their cone size ofR50.7. For
CDF this cut wasDRj j.1.0, while for D0 the requirement is
DRj j.1.4. This additional requirement in the jet algorithm
changes thesmin dependence of the cross section dramati-
cally, as can be seen clearly in Fig. 1~c!. In fact the behavior
is now very similar to the other three algorithms. This is no
surprise since with this additional selection cut the infrared
instability is removed. This means that the iterative cone
algorithm needs to be augmented with a jet separation cut in
order to be an infrared safe jet algorithm.

The most basic distributions we can look at are the
ET-ordered transverse energy distributions. These distribu-
tions are given in Fig. 2 for various jet algorithms. The
curves are fits to Monte Carlo output and have a fit uncer-
tainty associated with them. The fit uncertainty for the lead-
ing jet is shown in Fig. 2~d! where the leading jetK factor
~i.e., the ratio of NLO over LO! is given together with the 1-
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s boundary on the fit. The uncertainties on the second and
third jet are very similar in size andET dependence. As can
be seen from Figs. 2~a!, 2~b!, and 2~c! the differences be-
tween the jet algorithms are small and stable, especially
when taking the fit uncertainties into account. The LO nor-
malization is highly uncertain because it is anaS

3 process and
therefore very dependent on the value ofaS ~i.e., at LO the
renormalization scale choice!. The radiative corrections,
however, show more structure than a simple normalization
shift. The radiative effects can be quite substantial, with a
K factor as large as 3 forET5350 GeV. There are two
reasons for these large corrections. Note that the minimum in
theK factor for leading jet occurs atET5100 GeV, exactly

at the renormalization or factorization scale choice. This is
no accident. Usually one would choose this scale to be equal
or proportional to the leading jetET . For the gluons-only
process, however, this would require evolving the PDF’s
with nf50. So, part of the large corrections away from
ET5100 GeV are due to the choice of renormalization or
factorization scale which generates large logarithmic correc-
tions at higher orders. The second reason is that we look at
gluons only, while evolving the PDF’s to a scale of 100 GeV
using both quarks and gluons. This means the gluon content
of the proton and therefore the size of the radiative correc-
tions in the gluons-only case depend on the mass factor-
ization scheme used in the PDF and matrix element. Any

FIG. 2. TheET spectra of the~a! leading,~b! second, and~c! third jet. ~d! contains theK factor of the leading jet for the EKS clustering
scheme.
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conclusion on the radiative corrections in the full case
~i.e., including the quark processes! is therefore prema-
ture. Note that in the modified minimal subtraction~MS!
scheme used in this calculation the contribution of gluon
initiated scattering atET5350 GeV is very small. The scat-
tering at such large momentum transfers is dominated by
t-channel quark scattering, making the size of the gluons-
only K factor irrelevant.

The final observable we will look at in our investigation
of the stability of the NLO three-jet event generator is the
transverse energy fractionXT

( i )52ET
( i )/( j51

3 ET
( j ) of the three

leading jets~in transverse energy! in the event. These are
different from the usual observables used by the experimen-
talists ~see, e.g., the CDF papers@9,24#!. They look at the

energy fractionX( i )52E( i )/M j j j where the energies are de-
fined in the center-of-mass frame of the collision andM j j j is
the invariant mass of the three leading jets. We have chosen
the transverse energy fractions because they do not require
the determination of the center-of-mass reference frame. At
NLO, the determination of the center-of-mass frame is
strongly dependent on the ability to detect forward radiation,
making the NLO prediction rather unstable and detector de-
pendent. The transverse energy fraction, on the other hand,
behaves more stably and radiative effects are small. This can
be seen in Fig. 3 where the normalized LO and NLO trans-
verse energy fraction distributions are plotted for several jet
algorithms. Also shown is theK factor for the normalized
XT
(1) distribution together with its fit uncertainties. The radia-

FIG. 3. TheXT spectra of the~a! leading,~b! second, and~c! third jet and~d! theK factor for the leading jet as a function ofXT .
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tive corrections for these distributions are in general small,
except at the edge of LO phase space where the jet algorithm
sensitivity also becomes large.~At LO the transverse energy
fractions are constrained to 2/3,XT

(1),1, 1/2,XT
(2),1, and

0,XT
(3),2/3, not taking anyET cuts into account.! The

NLO three-jet event generator is capable of predicting these
distributions accurately enough for comparisons with experi-
ments.

V. CONCLUSIONS

In this paper we have presented results on the purely glu-
onic contribution to the NLO three-jet cross section. All of
the techniques used can be readily applied to the quark con-
tributions. Several techniques to isolate the soft or collinear
contributions were explored and their numerical effects in-
vestigated.

All of the relevant experimental jet algorithms were
implemented in the NLO three-jet event generator and their
radiative effects studied. For the iterative cone algorithm it
was necessary to augment the algorithm with an additional
jet separation cut in order to obtain infrared stability. Both
CDF and D0 already apply such a cut in their multijet analy-

sis, though the reason is the inefficiency of the cluster algo-
rithm instead of the theoretically motivated removal of the
infrared instability. The other jet algorithms behaved prop-
erly and no additional cuts were needed.

The NLO three-jet event generator was applied to several
distributions and it was demonstrated that one could obtain
useful results which can be compared to the experimental
data, once the quark matrix elements are included.

Note added: After this work was completed, we learned of
a similar calculation by Z. Tro´csányi @25#.
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