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An improved effective vector-boson approximation is applied to hadron-hadron collisions. The effective
vector-boson approximation in this form is accurate enough to reproduce the result of a complete perturbative
calculation for the specific example ofZZ production within 10%. This is true even far away from a possible
Higgs boson resonance and thus in a region where the transverse intermediate vector bosons give the dominant
contribution. Simple approximate formulas which greatly reduce the calculational effort are derived. The full
information about the kinematics is, however, lost in these approximations. A comparison between the im-
proved, the approximate, and existing formulations is presented.@S0556-2821~97!03109-3#

PACS number~s!: 13.85.Qk, 11.80.Fv

I. INTRODUCTION

The effective photon approximation~EPA! Weizsäcker-
Williams approximation! of QED @1# has proved to be a
useful tool in the study of photon-photon processes at
e1e2 colliders. With the prospect of high-energy hadron-
hadron colliders, the possibility to study the scattering of
massivevector bosons is given. Massive vector-boson scat-
tering is of particular interest as the symmetry-breaking sec-
tor of the electroweak theory and the self-interactions of the
vector bosons are directly tested. The method equivalent to
the EPA applying to the scattering of massive vector bosons
is the effective vector-boson approximation~EVBA! @2–5#.
The EVBA can be applied to fermion-fermion scattering pro-
cesses in which the final state consists of two fermions and a
stateJ which can be produced by the scattering of two
vector bosons. The fermion-fermion cross section is written
as a product of a probability distribution and the cross sec-
tions for vector boson scattering. The probability distribution
describes the emission of vector bosons from fermions. The
method is an approximate one which neglects Feynman dia-
grams of bremsstrahlung type. In general, the method is ap-
plicable if the fermion scattering energy is large against the
masses of the electroweak vector bosons.

The possibility of an EVBA has been first noticed in con-
nection with heavy Higgs boson production@6#. The Higgs
boson can be produced via the diagram in Fig. 1~a!, where a

sum over all vector-boson pairsV1 ,V2, which can couple to
the Higgs boson, is to be taken.

In this early application of the EVBA only the contribu-
tion from longitudinally polarized intermediate vector
bosonsV1,LV2,L was calculated and the result was found to
give a reasonable approximation to an exact perturbative cal-
culation @7#.

Subsequently, the EVBA was also applied to processes of
the typepp→V3V41X, where two vector bosons are pro-
duced. The vector bosonsV3 andV4 emerge as the decay
products of a near-resonant heavy Higgs particle@2#. The
scattering process was described by the diagram in Fig. 1~b!.
Also in this case, the inclusion of only longitudinal interme-
diate vector bosons was sufficient. It was noted that the pro-
duction of heavy particles~Higgs bosons or fermions! is
mainly due to the longitudinal intermediate states@4#.

The concept of vector bosons as partons in quarks was
further established and expressions for vector-boson distribu-
tions in quarks were derived@3,4#. The expressions were
given for all polarizations of the intermediate vector bosons.
By convolution with the quark distributions in a proton, nu-
merical results were given for vector boson distributions in a
proton @3#. For the production via two intermediate vector
bosons it was assumed that convolutions of the distributions
of single vector bosons could describe the emission probabil-
ity of the vector-boson pair. The EVBA in this form gave
reliable results for heavy Higgs boson production@3,4,7–9#

FIG. 1. ~a! The diagram for Higgs boson production in quark-quark scatteringq1q2→q18q28H. ~b! The diagram for the production of a
vector-boson pairV3V4 as the decay products of a heavy Higgs boson inq1q2 scattering.
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and heavy fermion production@10#.
The necessity to include all vector-boson scattering dia-

grams forV1V2→V3V4 in order to obtain EVBA predictions
for the production of a vector-boson pairV3V4, not neces-
sarily near a Higgs boson resonance, was first mentioned in
@9# and @11#. The possible diagrams for these processes,
q1q2→q18q28V3V4, whereqi ,qi8 are quarks, are shown in Fig.
2.

It was further pointed out that the yield ofV3V4 pairs
from q1q2→q18q28V3V4 must be discussed together with the
yield from the direct reactionq1q2→V3V4 ~Drell-Yan reac-
tion! unless a suitable analysis of the different proton rem-
nants from the two production mechanisms allows one to
separate the different production mechanisms.

In first applications to vector-boson scattering, again only
the contribution from the longitudinal intermediate states
was considered while the contribution from transverse states
was neglected. This contribution was taken to be small
against theq1q2→V3V4 contribution while the contribution
from V1,LV2,L→V3V4 could be large if the longitudinal vec-
tor bosons interact strongly. The interest in the strongly in-
teracting scenario@12# was the original motivation to use the
EVBA.

The EVBA has been used for vector-boson scattering in
@2#, @13–17#. In @14#, the EVBA was used only for the lon-
gitudinal intermediate states. The transverse states were

taken into account by a complete perturbative calculation~to
lowest order in the coupling! of the process
q1q2→q18q28V3V4. This calculation requires the evaluation of
more diagrams than only the vector-boson scattering dia-
grams, as indicated in Fig. 3. To be precise, in@14# the
EVBA was used only to calculate the difference between the
cross sections in a strongly interacting model and in the stan-
dard model with a light Higgs boson. This difference shows
an interesting behavior in a strongly interacting scenario and
was therefore considered as a potential signal for strongly
interacting vector bosons. The difference receives a contri-
bution virtually only from the longitudinal states. It was
found @14# that this calculation agrees with a complete per-
turbative calculation to about 10%~evidenced forW6Z and
W6W6 production! if the standard model with a heavy
Higgs boson is taken as the strongly interacting model. I note
that for strong scattering a method has been recently de-
scribed which does not make use of the EVBA@18#.

In @13,16,17# the application of the EVBA was extended
to the contributions from all intermediate polarization states.
It was known, however, that the EVBA can overestimate
results of complete perturbative calculations by a factor of 3
if the transverse helicities are important@19,20#. Other com-
parisons of results of complete calculations for
pp→V3V41X with EVBA results @21,22# showed that the
EVBA is always a good approximation on the Higgs boson

FIG. 2. The diagram forq1q2→q18q28V3V4 in the effective vector-boson approximation and the diagrams for vector-boson scattering.

7166 55I. KUSS



resonance but in general overestimates the transverse contri-
bution which is the important one for vector-boson scattering
away from a Higgs boson resonance. The EVBA was found
to be unreliable away from the Higgs boson resonance. Fur-
thermore, the EVBA result depends strongly on the details of
the approximations made in deriving the EVBA@19,20#. In
particular, the frequently used leading logarithmic approxi-
mation can overestimate the transverse luminosity by an or-
der of magnitude@23,24#.

In this paper we will obtain exact luminosities for vector-
boson pairs in a hadron pair from an improved formulation
of the EVBA, previously introduced for fermion-fermion
scattering in@25#. This formulation makes no approximation
in the integration over the phase space of the two intermedi-
ate vector bosons. The only remaining assumption, necessary
in an EVBA, concerns the off-shell behavior of vector-boson
cross sections. The formulation, however, involves multiple
numerical integrals and is thus not very practical in itself.
However, we will apply suitable approximations in which
some of the integrals can be carried out in closed form. The
exact luminosities form a unique basis to test the quality of
these approximations. We will present a test of the approxi-
mations here and also compare with other existing approxi-
mations. In addition, by means of a specific example, we will
compare the EVBA, using the exact luminosities, with a cal-
culation in which no EVBA has been applied.

In Sec. II the improved EVBA is applied to hadron colli-
sions and numerical results for the exact luminosities are

given. We derive useful approximations to the improved
EVBA. A comparison with previous formulations of the
EVBA is given. Section III contains a comparison of EVBA
results with a complete perturbative calculation for
pp→ZZ1X. Details of various existing formulations of the
EVBA are discussed in the Appendix.

II. LUMINOSITIES FOR VECTOR-BOSON PAIRS
IN HADRON PAIRS

A. Improved effective vector-boson approximation

Applying the treatment of the improved EVBA@25#, we
present exact luminosities for finding a vector-boson pair in a
hadron pair. The luminosities apply to the process shown in
Fig. 4.

The cross section for a scattering process of two hadrons
h1 andh2 with high energies, in which an arbitrary final state
J is produced, is given~in the quark-parton model! by a
two-dimensional integral over a product of parton distribu-
tion functions and the cross sections for parton-parton scat-
tering processes:

s~h1h2→J1X,shh!

5 (
q1 ,q2

E
0

1

dj1E
0

1

dj2 f q1
h1~j1 ,m1

2! f q2
h2~j2 ,m2

2!

3s~q1q2→J1X8,sqq!. ~1!

The sum in Eq.~1! extends over all partons~quarks, anti-
quarks, and gluons! q1 in the hadronh1 andq2 in the hadron
h2. The variablej i in Eq. ~1! is the ratio of the momentum of
the partonqi and the hadronhi . The quantitiesf qi

hi(j i ,m i
2)

are the parton distribution functions, evaluated at the mo-
mentum fractionsj i and the factorization scalesm i

2 . The
scale is a characteristic energy of the process which is initi-
ated by the partonqi . The quantitiess(q1q2→J1X8) in
Eq. ~1! are the cross sections for the parton-parton processes.
In Eq. ~1!, shh is the square of the hadron-hadron scattering
energy, related to the parton-parton scattering energyAsqq
by

FIG. 3. Some of the Feynman diagrams for a process
q1q2→q18q28V3V4 in a complete perturbative calculation. In the top
row to the right is the diagram for vector-boson scattering, which is
the only type of diagram which is considered in the effective
vector-boson approximation. The bottom row shows diagrams of
bremsstrahlung type.

FIG. 4. The diagram for the hadron-hadron scattering process
proceeding via two intermediate vector bosons
h1h2→q1q2→q18q28V1V2 andV1V2→J.
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sqq5j1j2shh . ~2!

The symbolsX andX8 represent additional particles in the
final state. In writing down Eq.~1!, we assumed that the
partons have no transverse momentum. We also neglected
the masses of the hadrons and partons. These approximations
may be made in any frame in which both hadrons are highly
relativistic.

Expressed in terms of the ratio of the squared invariant
massest[sqq /shh and the rapidityyq of the motion of the
center-of-mass of the parton pair in the center-of-mass sys-
tem ~c.m.s.! of the hadrons1 the cross section~1! takes on the
form

s~h1h2→J1X,shh!

5 (
q1 ,q2

E
0

1

dtE
~1/2!ln~t!

2~1/2!ln~t!

dyq

3 f q1
h1~Ateyq,m1

2! f q2
h2~Ate2yq,m2

2!

3s~q1q2→J1X8,sqq5tshh!. ~3!

The relations between the variablesj1 ,j2 in Eq. ~1! and
t,yq in Eq. ~3! are given byt[j1j2, yq[

1
2ln(j1 /j2) or,

equivalently,j1[Ateyq andj2[Ate2yq.
If the final stateJ is produced via the vector-boson fu-

sion mechanismV1V2→J and the partons are quarks or
antiquarks~we will simply call them quarks here! an expres-
sion for the parton-parton cross section is given in the EVBA
by

s~q1q2→J1X8,sqq!

5s~q1q2→q18q28J,sqq!

5 (
V1 ,V2

(
pol

E
0

1

dx̂LV1 ,V2 ,pol
q1q2 ~ x̂!

3spol~V1V2→J,W 25 x̂sqq!. ~4!

In Eq. ~4!, the quantitiesLV1 ,V2 ,pol
q1q2 ( x̂) are luminosities for

vector-boson pairs in fermion pairs. The variablex̂ is the
ratio of the squared invariant massW 2 of the vector-boson
pair and the one of the quark pair:

x̂[
W 2

sqq
. ~5!

The sum in Eq.~4! runs over all vector bosonsV1 ,V2 which
can produce the final stateJ and over all their helicity states
labeled by ‘‘pol.’’ Expressions for the luminosities
LV1 ,V2 ,pol
q1q2 ( x̂), using no other approximations than those in-

herent in the effective vector-boson method, have been given
in @25#. The luminosities can be written in the form

LV1 ,V2 ,pol
q1q2 ~ x̂!5S a

2p D 2x̂cq1~V1!
pol cq2~V2!

pol

3E
x̂

1dẑ

ẑ
LpolS x̂,ẑ,M1

2

sqq
,
M2

2

sqq
D . ~6!

In Eq. ~6!, ẑ is the ratio of the squared invariant massMY
2 of

a system consisting ofV1 and the quarkq2 and the squared
invariant mass of the quark pair:

ẑ[
MY

2

sqq
. ~7!

The parametera is the fine-structure constant andMi are the
vector-boson masses. The quantitiescqi (Vi )

pol are combinations

of the vector and axial-vector couplingsv i andai , respec-
tively, of Vi to qi . They can be eitherv i

21ai
2 or 2v iai ,

depending on pol. In Eq.~6!, the quantities

LpolS x̂,ẑ,M1
2

sqq
,
M2

2

sqq
D

5h0E
2sqq~12 ẑ!

0

dk1
2E

2sqqẑ~12 x̂/ ẑ!

0

dK2
2 1

~k1
22M1

2!2

3
1

~k2
22M2

2!2
E
0

2pdw1

2p
f polKpol ~8!

are ‘‘amputated’’ differential luminosities, which do not any-
more contain the fermionic coupling constants. They depend
only on the variablesx̂ and ẑ and, since they are dimension-
less, on the masses of the vector bosons via the ratios
M1

2/sqq andM2
2/sqq . In Eq. ~8!, h0 is the ratio of the on-

shell flux factor for the processV1V2→J and the flux factor
for the same process evaluated forMi

250:

h0

5A11S M1
2

W 2D 21S M2
2

W 2D 222
M1

2

W 2 22
M2

2

W 2 22
M1

2

W 2

M2
2

W 2.

~9!

We simply refer toh0 as the on-shell flux factor. Theki
2 are

the squared four-momenta of the vector bosons and

K2
2[

1

12„k1
2/~ ẑsqq!…

k2
2 . ~10!

The quantitiesw1 , f pol , andKpol have been defined in@25#.
We note that if the momentum ofV1 is lightlike, k1

250, the
directions of motion ofV1 andq1 are parallel. In this case,
ẑ is the ratio of the energy ofV1 and the energy ofq1. The
variable ẑ has in this case the same interpretation for the
emission of a vector bosonV1 from a quarkq1 asj i has for
the emission of a quarkqi from a hadronhi . The corre-
sponding variable for the emission ofV2 from q2 is x̂/ ẑ. The

1The rapidity is taken along the direction of motion of the hadron
h1.
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vector bosons can be approximately treated as ‘‘partons’’ in
the quarks. In analogy toj1 and j2 we introduce the two
variablesẑ15 ẑ and ẑ25 x̂/ ẑ.

Inserting Eq.~4! into Eq. ~3! yields an expression for the
cross section for the production of the stateJ in the hadron-
hadron process, proceeding via vector-boson fusion:

s~h1h2→q1q2→q18q28J,shh!

[s~h1h2→V1V2→J,shh!

5 (
q1 ,q2

(
V1 ,V2

(
pol

E
0

1

dtE
~1/2!ln~t!

2~1/2!ln~t!

dyq f q1
h1~Ateyq,m1

2!

3 f q2
h2~Ate2yq,m2

2!

3E
0

1

dx̂LV1 ,V2 ,pol
q1q2 ~ x̂!s~V1V2→J,W 25t x̂shh!. ~11!

The expression~11! allows one to define luminosities
L(V1V2)pol
h1h2 (x) of vector-boson pairs in a hadron-pair:

s~h1h2→V1V2→J,shh!

5 (
~V1 ,V2!pol

E
xmin

1

dxL
~V1V2!pol

h1h2 ~x!

3spol~V1V2→J,W 25xshh!. ~12!

In Eq. ~12!,

x[W 2/shh ~13!

is the ratio of the squares of the invariant masses of the
vector-boson pair and of the hadron pair. The minimum
value forx is given byxmin5(M11M2)

2/shh . The summa-
tion in Eq. ~12! extends over all~unordered! vector-boson
pairs (V1V2) which can produce the stateJ and the lumi-
nosities are given by the expression

L
~V1V2!pol

h1h2 ~x!5C~12!S a

2p D 2xE
0

2 ln~x! d@ ln~1/t!#

t

3$I y,pol
h1h2~t!1I y,pol

h2h1~t!%

3E
~1/2!ln~ x̂!

2~1/2!ln~ x̂!
dŷLpolS x̂,Ax̂eŷ,M1

2

sqq
,
M2

2

sqq
D ,
~14!

with

I y,pol
h1h2~t!5E

~1/2!ln~t!

2~1/2!ln~t!

dyqS (
q1~V1!

cq1~V1!
pol f q1

h1~Ateyq,m1
2! D

3S (
q2~V2!

cq2~V2!
pol f q2

h2~Ate2yq,m2
2! D . ~15!

The luminosities~14! are exact in the sense that no approxi-
mation has been made on the kinematics of the two vector
bosons. The only approximations which have been made are
those inherent in the EVBA, thus the neglect of bremsstrah-
lung diagrams and the continuation from on-shell to off-shell

vector-boson scattering. We call Eq.~14! with Eq. ~8! the
exact luminosities. In Eq.~14!,

C~12![H 1 if V1ÞV2 ,

1/2 if V15V2 ,
~16!

is a combinatorial factor. We further introduced the variable

ŷ[
1

2
ln~ ẑ2/ x̂!5

1

2
lnS ẑ1

ẑ2
D . ~17!

In the case of lightlike momenta of the vector bosonsV1 and
V2, the variableŷ is the rapidity of the (V1V2) center-of-
mass motion in the quark-quark c.m.s., taken along the di-
rection of motion of the quark from whichV1 was emitted.
The functionsI y,pol

h1h2(t) contain all dependence on the type of
the quarksqi(Vi), i.e., on the parton distribution functions
and on the quark couplings to the vector bosons. The remain-
ing part of thet integral in Eq.~14! depends only on kine-
matical variables. The summations in Eq.~15! extend over
all quarksq1 andq2 which can couple to the vector bosons
V1 andV2, respectively. In the derivation of Eqs.~14!, ~15!
we made use of the symmetry property of the luminosities
for vector-boson pairs in fermion pairs:

E dŷLpolS x̂,Ax̂eŷ,M1
2

sqq
,
M2

2

sqq
D

5E dŷLpolS x̂,Ax̂eŷ,M2
2

sqq
,
M1

2

sqq
D , ~18!

wherepol is obtained from pol by exchanging the helicities
of V1 andV2 ~i.e. TL→LT, TT→TT, etc.!.

Figure 5 shows the exact luminosities~14! with ~8! for the
vector-boson pairsW1W2,W1Z,W2Z, andZZ in a proton
pair ofAshh514 TeV for the diagonal helicity combinations
as a function ofx. The definition for the helicity combina-
tions TT, TT, TL, LT, andLL can be found, e.g., in@25#.
The Martin-Roberts-Stirling set A@MRS~A!# parametrization
@26# in the deep inelastic scattering~DIS! scheme was used
for the parton distributions2 f qi

p (j i ,m i
2). The electroweak pa-

rameters werea51/128,MW580.17 GeV, andMZ591.19
GeV.

B. Approximate luminosities

We give approximations to the exact luminosities which
are obtained from the full expression~8!. We stress, how-
ever, that these approximations do not contain the full infor-
mation about the kinematic variables ofV1 andV2 which is
contained in Eq.~8! anymore. Therefore, these approxima-
tions might not be used for studies involving cuts on the
kinematics of the outgoing quark jets as, e.g., carried out in

2We usem i
25j ishh unless explicitly stated otherwise. The sensi-

tivity to the precise choice of the scale is small.
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@14#. The approximations are similar to luminosities which
were commonly used in the literature. These luminosities

were functions ofx̂ andẑ only. To obtain the approximations

all kinematical variables other thanx̂ and ẑ are integrated
out. The integrations can be carried out analytically which
results in simple formulas. The aim of this section is to com-
pare the exact expressions~8! with approximations. If one is

interested in distributions of other variables thanx̂ andẑ one
has to go back to the exact expressions~8! and consider their
differential forms. It is not meaningful to use the approxima-
tions in this case because in general no simplifications are
obtained.

It has been shown in@25# how the expression~6! reduces
to a convolution of vector-boson distributions if certain ki-
nematical approximations are made. The approximate ex-
pression for~6! is given by

LV1 ,V2 ,l1l2

q1q2 ~ x̂!5h0E
x̂

1dẑ

ẑ
f V1 ,l1
q1 S ẑ,M1

2

sqq
D f V2 ,l2q2 S x̂

ẑ
,
M2

2

ẑsqq
D ,
~19!

where the functionsf VT
q , f VT̄

q , and f VL
q ~we useV5Vi ,

q5qi , etc., if no distinction between two different particles
is necessary! are the distribution functions of vector bosons
in fermions of@27#3. The labell5T,T̄,L denotes the helicity

3No correction for the flux factor has to be applied to the distri-
butions@27# appearing in Eq.~19! ~as opposed to the prescription
given in the Appendix!. This is because the boson-boson flux factor
already appears explicitly in front of the integral in Eq.~19!. It does
not have to be approximated as a product of boson-quark flux fac-
tors.

FIG. 5. The exact luminositiesLV1V2
h1h2 (x), Eq. ~14! using Eq.~8!, for finding a vector-boson pair inside a proton pair ofAshh514 TeV for

the diagonal helicity combinations of various vector-boson pairs as a function of the variablex.
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of the vector boson. Distribution functions of vector bosons
in fermions describe the process shown in Fig. 6. The cross
section for the process in Fig. 6, averaged over the helicities
of the quarkq1 and summed over the helicities of the quark
q18 , is given in terms off Vl

q by the expression

s~q1q2→q18Y,sqq!5 (
V1 ,l1

E
0

1

dẑ f V1,l1
q1 S ẑ,M1

2

sqq
D

3s~V1,l1
q2→Y,MY

25 ẑsqq!. ~20!

The distribution functionf Vl

q ( ẑ,M2/sqq) is the probability

density for the emission of a vector bosonV with the helicity
l and massM from a fermionq. Separating the fermionic
couplings, thef Vl

q can be written as

f Vl

q S ẑ,M2

sqq
D5

a

2p
ẑcq~V!

l hlS ẑ,M2

sqq
D . ~21!

The quantitieshl in Eq. ~21! are ‘‘amputated’’ vector-boson
distribution functions. They only depend on two dimension-
less variables. Equivalent to Eq.~19!, for the corresponding
amputated differential luminosities one obtains the forms

Ll1l2S x̂,ẑ,M1
2

sqq
,
M2

2

sqq
D 5h0hl1S ẑ,M1

2

sqq
D hl2S x̂ẑ , M2

2

ẑsqq
D .

~22!

The amputated distribution functions4 hT , hT̄, andhL have
been given in closed form in@27#. We further approximate
Eq. ~22! by the expression

Ll1l2S x̂,ẑ,M1
2

sqq
,
M2

2

sqqD .h0hl1S ẑ, M1
2

Aẑsqq
D hl2S x̂ẑ ,M2

2Aẑ
Ax̂sqq

D .
~23!

The luminosity~23! is invariant under the simultaneous ex-
change of the vector bosonsV1 andV2 ~i.e., their masses,

fermionic couplings, and helicitiesl1 andl2) and the fer-
mionsq1 andq2. We refer to the luminosities~14! using Eq.
~23! as Approximation 1.

Figure 7 addresses the quality of Approximation 1. Fig-
ures 7~a! and 7~b! show the amputated luminosities of the
improved EVBA, Eq.~8!, for finding aW1W2 pair in a
fermion pair as a function of the rapidityŷ. We chose
Asqq52 TeV and x̂51021 as typical values for a quark
subprocess inpp collisions atAspp514 TeV. Figure 7~c!
shows the ratios of the luminosities calculated in Approxi-
mation 1, Eq.~23!, and the luminosities~8!. For the domi-
nantTT helicity combination, the ratio decreases with grow-
ing ŷ. Figure 7~d! shows the ratios of the approximation of
@27#, Eq. ~31!, with the vector-boson distribution functions
@27# ~to be discussed in Sec. IIC! and the luminosities~8!.
This latter approximation is clearly worse than Approxima-
tion 1. This result will be confirmed by the one obtained for
the invariant mass distributions, shown in Figs. 8~a! and 8~b!
~to be discussed below!.

Figure 8~a! shows the ratios of the luminosities Eq.~14!,
evaluated with~23!, and the exact luminosities~14! with ~8!,
for the diagonal helicity combinations as a function ofx. The
region 1023&x&231022 is particularly interesting for
vector-boson pair production. It corresponds to invariant
masses of 400 GeV&MV3V4

&2 TeV. In this region, the

dominantTT luminosity deviates by less than 30% from the

4For numerical evaluation we requireẑ.M1
2/sqq and

x̂/ ẑ.M2
2/sqq , otherwise the functions are set to zero.

FIG. 7. ~a! and ~b!: The amputated differential luminosities~8!
for finding a W1W2 pair with an invariant mass squared

W25 x̂sqq , x̂50.1, in a fermion pair ofAsqq52 TeV as a function

of the rapidity ŷ. ~a! shows the helicity combinations which are
diagonal, ~b! those which are nondiagonal in helicity space.~c!
shows the ratios of the luminosities in Approximation 1, Eq.~23!,
and the luminosities~8!. ~d! shows the ratios of the luminosities
~31! evaluated with the vector-boson distributions@27# and the lu-
minosities~8!.

FIG. 6. The Feynman diagram in the effective vector-boson ap-
proximation for the scattering of a quarkq1 with a quarkq2 at a
scattering energyAsqq. A final stateY with the squared invariant
massMY

2 is produced. The particleV1 is an exchanged vector bo-
son. The four-momenta of the particles are denoted byl , l 8, k, and
p.
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exact result. A comparison with results of other authors will
be given in Sec. IIC.

Further approximations may be applied. So far we have
employed approximate expressions for theLV1 ,V2 ,pol

q1q2 ( x̂) but

we used the correct expression for the quark-quark suben-
ergysqq[tshh . If approximate expressions forsqq are used,
the luminosityL(V1V2)pol

h1h2 (x) can be approximated as a con-

volution of vector-boson distribution functionsf Vl

h in had-

rons. Luminosities have been previously obtained in this way
@5,23#. The possibility of using vector-boson distributions in
hadrons has already been mentioned in@3#. An equivalent
expression for Eq.~14! is

L
~V1V2!pol

h1h2 ~x!5C~12!S a

2p D 2xE
x

1dz

z Ez
1dj1

j1
E
x/z

1 dj2
j2

1

j1j2

3F S (
q1~V1!

cq1~V1!
pol f q1

h1~j1 ,m1
2! D

3S (
q2~V2!

cq2~V2!
pol f q2

h2~j2 ,m2
2! D 1h1↔h2G

3LpolS x̂5
x

j1j2
,ẑ5

z

j1
,
M1

2

sqq
,
M2

2

sqq
D , ~24!

where we introduced the variablez[j1ẑ1. The variablez
describes the invariant mass squaredMY

2 which is left for the
reaction of the vector bosonV1 with the quarkq2. If V1 is
lightlike, z is equal to the ratio of the energy ofV1 and the
energy of the hadron from which it was emitted. In analogy
to ẑ1 andẑ2 we introduce the variablesz15z andz25x/z. It
follows that zi5j i ẑi . Inserting the convolutions~23! into
~24! leads to the expression

L
~V1V2!l1l2

h1h2 ~x!5C~12!h0E
x

1dz

z Ez
1

dj1E
x/z

1

dj2

3Fd fV1,l1h1

dj1
~z!

d fV2,l2
h2

dj2
S x
z
D 1h1↔h2G .

~25!

In Eq. ~25!, the quantitiesd fVl

h /dj are differential distribu-

tion functions of a vector bosonVl in a hadronh. They are
given by

j
d fVl

h

dj
~z!5

a

2p

z

j (
q~V!

cq~V!
l f q

h~j,m2!hlS zj ,M2Aj

Azsqq
D ,

~26!

with sqq5j1j2shh .
The integrations overj1 and j2 in Eq. ~25! cannot be

carried out independently becausesqq in the differential dis-
tributions ~26! depends on bothj1 and j2. We may, how-
ever, approximatesqq by sqq5j i

2shh . It means that we as-
sume the same energy,E5j iEh , for the quark which emits
the vector bosonVi and the other quark which emitsVj .
Eh is the hadron energy evaluated in the hadron-hadron
c.m.s.Eh5Ashh/2. Equivalently, it means that the parton-
parton c.m.s. is approximated as the hadron-hadron c.m.s.
With this approximation the vector-boson distributions in a
hadron are given by

f Vl

h ~z!5E
z

1dj

j (
q~V!

f q
h~j,m2! f Vl

q S zj ,M2Aj

Azsqq
D , ~27!

with sqq5j2shh and f Vl

q ( ẑ5z/j) from Eq. ~21!. We require

z/j.M2/sqq , i.e., jmin5max@z,M2/(zshh)# as the lower limit
of integration in Eq.~27!. Again, as in Eq.~19!, the functions
~27! do not contain a flux factor since the boson-boson flux
factorh0 already appears explicitly in front of the integral in
Eq. ~25!.

The luminositiesL(V1V2)
h1h2 (x) which one obtains by using

the functions~27! in Eq. ~25! are given by

L
~V1V2!l1l2

h1h2 ~x!5C~12!h0E
~1/2!ln~x!

2~1/2!ln~x!

dy@ f V1,l1
h1 ~Axey!

3 f V2,l2
h2 ~Axe2y!1h1↔h2#, ~28!

where we introduced the variable

FIG. 8. The ratio of the luminosities using the approximations
~23! or ~31! and the exact luminosities, Eq.~8!, for finding a
W1Z pair in a proton pair ofAshh514 TeV for the diagonal helic-
ity combinations as a function of the variablex. In ~a!, the direct
approximation, Eq.~23!, was used. In~b!, ~c!, and~d!, the vector-
boson distributions of@27#, Eq. ~A10! ~DGC for Dawsen, Godbole,
and Capdequi!, and the leading logarithm approximation~LLA !,
respectively, were used to evaluateLpol according to Eq.~31!. All
luminosities have been calculated according to Eq.~14!.
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y[
1

2
ln~z2/x!5

1

2
lnS z1z2D5yq1 ŷ. ~29!

If the vector bosonsV1 ,V2 are lightlike,y is the rapidity of
theV1V2 center-of-mass motion taken along the direction of
motion of the hadron which emittedV1. The formula~28!
has been derived with only the mentioned approximations
@using the factorized forms~23! and approximatingsqq by
sqq.j2shh# from the exact luminosities for a vector-boson
pair in a proton pair, Eq.~14! with Eq. ~8!. We refer to Eq.
~28! as Approximation 2.

Figure 9~a! shows the ratios of the luminosities in Ap-
proximation 2, Eq.~28!, and the exact luminosities for find-
ing aW1Z pair in a proton pair ofAshh514 TeV for the
diagonal helicity combinations as a function ofx. The Ap-
proximation 2 is in excellent agreement with the improved
EVBA. The results of other authors will be discussed in the
following section.

C. Comparison with the literature

The exact luminosities~14! with ~8! may be compared
with results presented in the literature@3,5,23#. In contrast to
the approximations~23! and~28!, these results do not use the
exact expression as a starting point. Instead, they use thead

hoc assumption that the luminositiesLV1 ,V2 ,pol
q1q2 ( x̂) can be

obtained by convolutions of vector-boson distribution func-
tions. The convolution is similar to Eq.~19! and is given by

LV1 ,V2 ,l1l2

q1q2 ~ x̂!5E
x̂

1dẑ

ẑ
f V1,l1
q1 S ẑ,M1

2

sqq
D f V2,l2q2 S x̂

ẑ
,
M2

2

sqq
D .

~30!

Instead of the particular functionsf Vl

q of @27#, various differ-

ent functions have been used. Equivalent to the approxima-
tion ~30!, the amputated differential luminosities are written
as a product of amputated distribution functions:

Ll1l2S x̂,ẑ,M1
2

sqq
,
M2

2

sqq
D 5hl1S ẑ,M1

2

sqq
D hl2S x̂ẑ ,M2

2

sqq
D . ~31!

Vector-boson distribution functions have been derived by
several authors@3–5,20,22,23,27,28#. In most cases more as-
sumptions than only the ones inherent in the EVBA, i.e., that
the reaction proceeds via the exchange of vector bosons and
that the vector-boson scattering cross sections for off-shell
vector bosons must be known~or an assumption has to be
made!, were made in the derivation. The differences of vari-
ous derivations are discussed in the Appendix. In the Appen-
dix we also specify the vector-boson distribution functions
f Vl

q which we use for our numerical examples.

Figures 8~b!, 8~c!, and 8~d! show the ratios of the approxi-
mated luminosities, Eq.~14! evaluated with Eq.~31!, and the
exact luminosities, Eq.~14! with Eq. ~8!, using forhl the
distributions@27#, the distributions~A10!, and the LLA,5 re-
spectively, for the diagonal helicity combinations as a func-
tion of x. The LLA overestimates the improved EVBA by an
order of magnitude at smallx if both polarizations are trans-
verse. Using Eq.~A10! or @27#, instead, greatly diminishes
the deviation of the approximation from the improved
EVBA. We note that the better agreement of the distributions
~A10! than the one of the distributions@27# with the im-
proved EVBA is accidental since the distributions~A10! in-
volve additional approximations as compared to the distribu-
tions @27# ~see the Appendix!. One sees that the use of Eq.
~23! @Fig. 8~a!# further improves the agreement between ap-
proximated and exact luminsoities, at least compared to the
convolutions of@27#. In particular, the agreement is substan-
tially improved for the dominatingTT luminosity.

Similarly to Approximation 2, vector-boson distribution
functions in hadrons have been used. They were derived in
order to describe the process shown in Fig. 10. The distribu-
tion functions were obtained as convolutions of the quark
distributions in hadrons and the vector-boson distributions in
quarks:

f Vl

h ~z!5E
z

1dj

j (
q~V!

f q
h~j,m i

2! f Vl

q S zj ,M
2

sqq
D . ~32!

5We usesqq /M
2 as the arguments of the logarithms. This is the

simplest choice. Other choices and next-to-leading forms have been
used, e.g., in@29#.

FIG. 9. The ratio of the luminosities approximated as convolu-
tions of vector-boson distribution functionsf Vl

p and the exact lumi-

nosities for finding aW1Z pair in a proton pair ofAshh514 TeV
for the diagonal helicity combinations as a function of the variable
x. In ~a!, Eq. ~28! was used to evaluatef Vl

q in Eq. ~32!. In ~b!, ~c!,
and~d!, Eq.~35! was used and the vector-boson distributions of@5#,
Eq. ~A10! ~DGC!, and the LLA, respectively, were used.
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The functionsf Vl

h describe the emission probability of a vec-

tor bosonV with helicity l and massM from a hadronh.
The sum in ~32! extends over all quarks and antiquarks
which can couple toV. Equation~32! is similar to Eq.~27!,
however, in Eq.~27! the specific distributions@27# have to be
used. In addition, in Eq.~27! we included the square roots
introduced in~23!. The definition ofz in terms ofshq ~de-
fined in Fig. 10! andMY

2 is given by

z[MY
2/shq . ~33!

The cross section for the process shown in Fig. 10 is given
by

s~h1q2→h18Y,shq!5 (
V1 ,l1

E
0

1

dz fV1,l1
h1 S z,M1

2

sqq
D

3s~V1,l1
q2→Y,MY

2 !. ~34!

In writing down Eq. ~34! no other assumptions than those
inherent in the EVBA have been made.

The quark-quark energysqq is in principle unknown if
only the energyEh of the hadron or the hadron-hadron scat-
tering energyshh is known. Thus, an approximation forsqq
has to be made. We will again usesqq.j2shh , as above.

In @29#, a variableQ2, which was defined byQ2[MY
2

was used. The approximationsqq.j2shh applied toQ2 is
Q25 ẑsqq5z/(jsqq).zjshh .

The luminositiesL(V1V2)l1l2

h1h2 (x) were approximately ex-

pressed as convolutions of the vector-boson distribution
functions~32!:

L
~V1V2!l1l2

h1h2 ~x!5C~12!E
~1/2!ln~x!

2~1/2!ln~x!

dy@ f V1,l1
h1 ~Axey!

3 f V2,l2
h2 ~Axe2y!1h1↔h2#. ~35!

The approximation~35! has often been used in the past and
numerical results for the luminosities can be found in
@23,29#.

We note that in@29# an excellent approximation was
made. As discussed above, instead of the variablesqq two
variablesQ1

2 andQ2
2, which appear inf V1,l1

h1 and f V2,l2
h2 , re-

spectively, were used. TheQi
2 are the squared invariant

masses of a vector boson and a quark which are defined in
terms ofsqq or, alternatively, in terms ofshh by

Qi
2[ ẑisqq5

zi
j i
sqq5x

j j
zj
shh , iÞ j , i51,2, ~36!

where we have only used the exact relationssqq5j1j2shh
andz1z25x. Clearly, again, factorization does not occur us-
ing the exact expressions~36!. Instead of using the approxi-
mation sqq.j i

2shh , another approximation for theQi
2 has

been made in@29# when luminosities were calculated,
namely, the simple approximate choiceQi

2.xshh5W 2.
Thus, the quark vector-boson invariant massesQi

2 have been
approximated by the vector-boson–vector-boson invariant
mass. This choice always underestimates6 the exact values of
Qi
2 . However, we know that reducing the invariant masses

involving quarks will in general improve the agreement with
the improved EVBA. We will therefore use this choice of
Qi
2 in our numerical example below. It leads to an excellent

agreement with the improved EVBA. For the other distribu-
tions f Vl

h , we usesqq.j i
2shh as before.

Figures 9~b!, 9~c!, and 9~d! show the ratios of the lumi-
nosities calculated according to Eq.~35! and the exact lumi-
nosities for finding aW1Z pair in a proton pair of
Ashh514 TeV for the diagonal helicity combinations as a
function of x. To evaluate Eq.~35!, the distributions of@5#
~usingQi

25W 2), the distributions~A10!, and the LLA were
used. The LLA overestimates the exact luminosities by far.
The distributions~A10! yield slightly low values at lowx.
The distributions@5# are an excellent approximation to the
improved EVBA. For the dominantTT luminosity, the direct
approximation@Fig. 9~a!# is better than the distributions@5#.

We finally present numerical results for the vector-boson
distribution functions in hadrons. In this numerical example
we approximate the boson-boson flux factor in Eq.~25! by a
product of boson-quark flux factors,

h0.S 12
M1

2

ẑ1sqq
D S 12

M2
2

ẑ2sqq
D . ~37!

One of the boson-quark flux factors,@12(M2/ ẑsqq)#, is then
included in the f Vl

q ( ẑ5z/j) in Eq. ~27!. No changes are

made in Eq.~32!. Figure 11 shows the distributions functions
for aW1 in a proton ofEh5Ashh/257 TeV for the various
helicity combinations of theW1 as a function ofz. The
distribution functions have been calculated according to Eq.
~27! or Eq. ~32!. To evaluate Eq.~32!, the LLA, the distri-
butions~A10!, and those of@5# and @27# have been used for
f Vl

q . We note that we used the complete expressions@5#

instead of the next-to leading forms@29#.
For theT and T̄ polarization, the LLA overestimates any

of the other distributions by far. The distributions@27# are
larger than those of Eq.~27!. The distributions~A10! yield

6We see from Eq.~36! that the approximated values for theQi
2 are

smaller by the factorszj /j j,1 than the exact values. One should
note that the variablej i runs in the limitszi,j i,1.

FIG. 10. The diagram for the scattering of a hadronh1 and a
quarkq2 proceeding via the exchange of a single vector bosonV1

originating from the hadron. A final stateY of invariant massMY is
produced.
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rather low values. The differences between the distributions
increase at smallz. For theL polarization, the differences
between the models only manifest themselves at low values
of z.

We note that a typical value forz is z5Ax.731022 if a
final stateJ of mass 1 TeV is produced inpp collisions at
Ashh514 TeV. However, all values ofz in the range
x,z,1 contribute to the integral in Eq.~28! or ~35!. For
W5450 GeV, which is still a large energy compared to the
vector-boson masses,z becomes as small asz5x.1023 and
the whole range ofz which is shown in Fig. 11 contributes to
the luminosity.

III. COMPARISON WITH A COMPLETE PERTURBATIVE
CALCULATION

We are now going to present a numerical comparison of
the EVBA with a complete perturbative calculation. The
complete perturbative calculation includes the contribution
from bremsstrahlung diagrams as shown in Fig. 3. As an
example for a vector-boson pair production process, we

choose the processpp→ZZ1X, for which complete results
are available in the literature.

The complete perturbative calculation uses in Eq.~3! the
complete~lowest order! cross section of the process on the
quark levelq1q2→q18q28ZZ. Numerical results of the com-
plete calculation forAs540 TeV can be found in@30# and
@22,31#. Only the production via W1W2-pairs,
pp→W1W2→ZZ, was considered.7

In the EVBA one has to calculate the cross sections for

7A separation into a contribution from intermediateW1W2 pairs
and a contribution from intermediateZZ pairs is also possible in the
complete calculation~in a very good approximation! @30#. The dia-
grams of the complete calculation can be grouped into two classes.
One class contains theW1W2 diagrams of the EVBA and addi-
tional bremsstrahlung-type diagrams, the other class contains the
ZZ diagrams and also additional bremsstrahlung diagrams. Both
classes are a gauge-invariant subset. The interference term between
the two classes, which arises when the amplitude is squared, is very
small.

FIG. 11. The distribution functions of aW1 boson in a proton ofEh5Ashh/257 TeV, Eq.~27! ~this work!, or Eq.~32! ~all others!, for
the helicity combinationsT, T̄, andL as a function ofz. The LLA, Eq.~A10! ~DGC!, and the distributions@5# and@27# were used to evaluate
f Vl

q in Eq. ~32!.
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W1W2→ZZ. In the Born approximation there are four dia-
grams which contribute to these processes. Two diagrams
describe the exchange of massive vector bosons, one dia-
gram a four-particle point interaction, and one diagram
Higgs boson exchange. An analytical expression for the he-
licity amplitudes has been given in@32#.

As in @22#, we apply a rapidity cut on the produced vector
bosonsV3V45ZZ in the hadron-hadron c.m.s. frame. We
treat this cut approximately assuming that the vector bosons
V1 ,V2 move collinearly to the hadron beam direction. The
rapidities of the vector bosonsV3 andV4 in theV1V2 c.m.s.
frame, taken along the direction of motion of the hadron
from whichV1 is emitted, are

y3*5arctanhS qcosu

Aq21M3
2D , y4*5arctanhS 2qcosu

Aq21M4
2D .

~38!

In Eq. ~38!, u is the angle between the directions of motion
of V1 andV3 evaluated in the (V1V2) center-of-mass system.
The variableq is the magnitude of the spacelike momentum
of the vector bosonV3 in this system:

q5
AW2

2
A12

2

W2 ~M3
21M4

2!1
1

W4 ~M3
22M4

2!2. ~39!

The rapiditiesy3 ,y4 of V3 ,V4 in the hadron-hadron c.m.s.
frame are approximately obtained by addition,y3.y1y3*
and y4.y1y4* , where the equality holds strictly if both
V1 andV2 are lightlike. We apply a rapidity cutY to both
produced vector bosons:

uy3u,Y

and

uy4u,Y. ~40!

Following from Eq. ~12! and Eq. ~14! with Eq. ~15!, we
obtain the expression for the cross section for
h1h2→V1V2→V3V4 with a rapidity cut:

ds

dx
~h1h2→V1V2→V3V4 ,shh!u~Y2uy3u!u~Y2uy4u!

5S a

2p D 2xE
2ymax

ymax
dy E

0

ln~1/x! dln~1/t!

t E
max[2~1/2!ln~1/t!,2~1/2!ln~t/x!1y]

min[~1/2!ln~1/t!,~1/2!ln~t/x!1y]

dyq (
~V1V2!

C~12!h0(
pol

3F S (
q1~V1!

f q1
h1~Ateyq,m1

2!cq1~V1!
pol D S (

q2~V2!
f q2
h2~Ate2yq,m2

2!cq2~V2!
pol DLpolS x̂,Ax

t
ey2yq,

M1
2

sqq
,
M2

2

sqq
D 1h1↔h2G

3E
zmin~y!

zmax~y!

dcosu
ds

dcosu
@~V1V2!pol→V3V4 ,W 2#, ~41!

where the integration limits are determined by the rapidity
cut,

ymax5minFY,12lnS1xDG,
zmin~y!5maxF2tanh~Y1y!

b~M3
2 ,M4

2!
,
2tanh~Y2y!

b~M4
2 ,M3

2!
,2cosuminG ,

zmax~y!5minF tanh~Y2y!

b~M3
2 ,M4

2!
,
tanh~Y1y!

b~M4
2 ,M3

2!
,cosuminG , ~42!

with

b~M2,M 82!

[
A12~2/W2!~M21M 82!1~1/W4!~M22M 82!2

11„~M22M 82!W2
…

5
q

Aq21M2
, ~43!

and cosumin51. On the left-hand side of the equality sign in
Eq. ~41! u is the Heaviside function. In the vicinity of the
threshold for the production of the pairV3V4, the rapidity cut
has no effect anymore, i.e.,zmax(y) and zmin(y) are deter-
mined by cosumin51.

If the masses of the vector bosonsV3 andV4 are equal or
only slightly different,M3

2.M4
2, or if the momenta of the

bosons are large against their masses,q2@max(M3
2,M4

2), the
expressions ~42! for zmin and zmax simplify to give
zmax52zmin5z0, where

z05minF tanh~Y2uyu!
b~M3

2 ,M4
2!

,cosuminG . ~44!

If one applies a rapidity cut to the expression for convolu-
tions of vector-boson distributions, Eq.~28! with ~27!, one
obtains the expression
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ds

dx
~h1h2→V1V2→V3V4 ,shh!ucut

5 (
~V1V2!

C~12!h0 (
pol5l1l2

E
2ymax

ymax
dy@ f V1,l1

h1 ~Axey,m1
2!

3 f V2,l2
h2 ~Axe2y,m2

2!1h1↔h2#E
zmin~y!

zmax~y!

dcosu

3
ds

dcosu
@~V1V2!l1l2

→V3V4 ,W 2#, ~45!

with ymax, zmin(y), andzmax(y) from Eq. ~42!.
We calculate the differential cross sectionds/dMZZ from

Eq. ~41! with the luminosities of the improved EVBA. As in
@22#, the quark distributions of EHLQ@33#, set 2, are used
and the electroweak parameters area51/128,
sW
2 50.22,MW580 GeV, MH50.5 TeV, and GH551.5
GeV. For the scalesm i

2 in the quark distributions,
m i
25sqq/4 is chosen. We also carry out a calculation with the

convolutions of vector-boson distributions from Eq.~45!.8

Figure 12 shows the cross section for
pp→W1W2→ZZ at a scattering energy ofAshh540 TeV

as a function of the invariant massMZZ of the ZZ pair for
rapidity cuts ofY52.5 andY51.5 as a result of the im-
proved EVBA calculation and the calculation with convolu-
tions of vector-boson distributions together with the com-
plete result from@22#. For Y52.5, the cross section of the
improved EVBA deviates by a factor of 2 from the complete
result atMZZ*0.7 TeV. The result obtained with the convo-
lutions deviates by 13% (MZZ51.2 TeV! and 18%
(MZZ50.6 TeV! from the improved EVBA result, indepen-
dently of the magnitude of the cut. ForY51.5, a good agree-
ment between the improved EVBA and the complete calcu-
lation is found. The EVBA deviates by less than 10% from
the exact result forMZZ.0.4 TeV.

An explanation for the different results forY52.5 and
Y51.5 is that the bremsstrahlung-type diagrams in Fig. 3
begin to play a role if the angle between the produced vector
boson and the hadron beam direction is small. This is the
case forY52.5. In contrast, the bremsstrahlung diagrams
might be neglected if only large angles are involved. This is
the case forY51.5. For a cut ofY52.5 the smallest allowed
angle isumin59.4°, while the smallest angle forY51.5 is
umin525.2°.

In summary, we have seen that the improved EVBA de-
viates by only;10% from the result of a complete pertur-
bative calculation for a cut ofY51.5. This result was found
for pp→ZZ1X at Ashh540 TeV and invariant masses of8The value ofm i

2 in f qi
h (j i ,m i

2) was againm i
25j ishh .

FIG. 12. The cross section forpp→ZZ1X viaW1W2 scattering as a function of the invariant massMZZ atAshh540 TeV. A rapidity
cut ofY52.5 andY51.5 was applied. Shown is the result of the complete perturbative calculation@22#, the improved EVBA~41!, and the
result of the convolutions of vector-boson distributions~45!.
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AW 2.0.4 TeV. There is, however, no reason that a similar
conclusion could not also be drawn for the production of
other vector-boson pairspp→V3V41X. We expect this be-
cause the EVBA only pertains to the process-independent
vector boson luminosities. The use of convolutions instead of
the improved EVBA leads to an additional error of,20%
for AW 2*0.5 TeV (10% atAW 252 TeV!.

We finally present another result which is of interest in
connection with the EVBA. It concerns the magnitude of the
off-diagonal terms in the helicities ofV1 andV2, denoted by
TTTT, TLTL, andT̄LT̄L in @25#. Figure 13 shows the con-
tributions of theLL-diagonal, the other diagonal, the nondi-
agonal, and the sum of all helicity combinations for the cross
section forpp→(W1W21ZZ)→ZZ at Ashh514 TeV as a
function of the invariant massMZZ for a rapidity cut of
Y51.5. The parameters and parton distributions were chosen
as in Sec. II and the parameters for the Higgs boson were
MH5500 GeV andGH551.5 GeV. The sum of the nondi-
agonal helicity contributionsTTTT, TLTL, and T̄LT̄L is
negative and very small compared to the diagonal helicity
combinations. The nondiagonal terms can therefore be safely
neglected for this process. The longitudinal helicity combi-
nationLL only plays a role near the Higgs resonance and is
otherwise also small. For the production of vector-boson
pairs with large invariant masses, the transverse helicities are
important.

IV. CONCLUSION

We have given exact results for luminosities of vector-
boson pairs in a proton pair. In contrast to previous results,
our treatment of the effective vector-boson method made no
approximation in the integration over the phase space of the
two intermediate vector bosons. The full calculation is in-
volved but we have shown that approximate expressions ex-
ist which reproduce the exact luminosities to a fairly good
degree. Identifying in detail the approximations leading to
the simple formalism of convolutions of vector-boson distri-
butions in hadrons we have given a direct approximation to
the exact luminosities. For one of the phenomenologically
interesting processes of vector-boson pair production in
high-energy proton-proton collisions we have shown that the
direct approximation deviates by less than 20% from the
result obtained with the exact luminosities.

In a numerical comparison of the improved EVBA with a
complete perturbative calculation for the process
pp→ZZ1X we have shown that the improved EVBA can
reproduce the complete result to;10% if a rapidity cut of
large enough strength is applied. This is true not only on the
Higgs boson resonance but also far away from it. The im-
proved EVBA thus gives a good approximation not only for
longitudinal but also for transverse vector-boson scattering.
If a light Higgs boson exists, this latter process is the domi-
nating production mechanism of high-energy vector-boson
pairs inpp collisions at LHC energies.

We further investigated previous formulations of the
EVBA. These formulations always used the approximation
of convolutions of distribution functions of single vector
bosons. We investigated in detail the approximations which
were made and discussed the differences between various
existing derivations. Only some of the derivations use no
other approximations than those inherent in the EVBA. We
numerically addressed the deviation of existing formulations
from the exact luminosities. The deviations are in general
larger than those of the direct approximation given here.
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APPENDIX: DIFFERENCES BETWEEN
VECTOR-BOSON DISTRIBUTION FUNCTIONS

IN THE LITERATURE

In the main text I gave some results obtained by using
vector-boson distribution functions in fermionsf Vl

q ( ẑ). In

this appendix I specify the explicit forms which I used for
the functions and briefly discuss the differences of various
functions which were derived in the literature.

Vector-boson distribution functions have been derived by
several authors@3–5,20,22,23,27,28#. All distributions de-
scribe the emission of a vector boson as shown in Fig. 6
according to Eq.~20!. In general the functions differ from

FIG. 13. The cross section forpp→(W1W21ZZ)→ZZ in the
improved EVBA, Eq.~41!, for a scattering energy ofAshh514 TeV
with a rapidity cut ofY51.5 as a function of the invariant mass
MZZ . The contribution from theLL-diagonal, the diagonal~without
LL), the nondiagonal, and the sum of all helicity combinations are
shown separately.
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each other because different approximations and assump-
tions were made. A discussion of the differences can be
found in @34#. We repeat the main points. In@4,22#, kine-
matic approximations concerning the transverse momentum
k' of the vector boson were made. It was assumed that
k'
2!sqq . These approximations were removed in@28#. Also
in @3,20,23#, no approximations of this kind were made. The
distributions @3,20,23# are all very similar to each other.
They have in common that the scale variableẑ was defined
as the ratio of the vector boson’s energy and the energy of
the quarkq ẑ[k0/E. For clarity, we define a single set of
distribution functions instead of using any particluar one of
the parametrizations@3,20,23# or @28#. The three parametri-
zations@3,20,23# all agree if they are written in the form

f Vl

q ~ ẑ!5
a

2pE24E2~12 ẑ!

0

dk2
Tl

~k22M2!2
FVp~M

2!

Flp

3
uM̂ul

2~k2!

uM̂ul
2~M2!

. ~A1!

In Eq. ~A1!, Tl is the fermionic trace tensor contracted with
the polarization vectorse(h):

TT5~v21a2! (
h51,2

@ l •e* ~h!l 8•e~h!

1 l •e~h!l 8•e* ~h!1 l • l 8#,

TT̄5~2va! (
h51,2

~21!hi emm8rsl rl s8em* ~h!em8~h!,

TL5~v21a2!@2l •e~0!l 8•e~0!2 l • l 8e~0!•e~0!#.
~A2!

The indexh is the helicity of the vector boson and we used
the four-momenta defined in Fig. 6.FVp(M

2) andFlp are the
on-shell flux factors for the scattering of the vector boson
with the quarkq2 and for the scattering of the two quarks
with each other, respectively. In terms of the particles’ four-
momenta the flux factors are given by

FVp~k
2!5A~k•p!21k2p2, Flp5A~ l •p!21 l 2p2.

~A3!

The quantitiesuM̂ul
2(M2) anduM̂ul

2(k2) are the on-shell and
off-shell, respectively, squared matrix elements for the scat-
tering of the vector boson with the quarkq2.

The polarization vectors were defined in a system in
which the vector boson has a three-momentumkW of magni-
tude K along a particular direction in spacekW5Kêz . We
haveK25 ẑ2E22k2. Inserting the polarization vectors one
obtains

TT5~v21a2!
~2k2!@11~12 ẑ!22„k2/~2E2!…#

ẑ22~k2/E2!
,

TT̄5~2va!
E

K
~22 ẑ!~2k2!. ~A4!

To evaluateTL , the polarization vectore(0) for an on-shell
vector boson was used in@3,20# while e(0) for a vector
boson of arbitraryk2 was used in@23#. Since one has to
integrate overk2, we use the latter choice, leading to

TL52~v21a2!E2~2k2!
12 ẑ1„k2/~4E2!…

K2 . ~A5!

So far, no reference has been made to a specific frame. In all
distributions@3,20,23# the flux factor ratio in~A1! was evalu-
ated in the laboratory system of the quarkq2, thus,

FVp~M
2!/Flp5Aẑ22M2/E2. ~A6!

In this frame, however, the relationMY
2/sqq5 ẑ is only an

approximate one. It is really given byMY
2/sqq

5 ẑ1k2/(2Emq), wheremq is the mass of the quarkq2. I
note that since the integration variableuk2u becomes as large
as 4E2(12 ẑ), the desired connection betweenẑ and
MY

2/sqq becomes completely disturbed even ifuk2u is not
even very large. It is therefore not meaningful to carry out
the integration overk2 in the laboratory frame. The relation
ẑ5MY

2/sqq , however, holds exactly in the c.m.s. ofq1 and
q2. We therefore evaluate the flux factor ratio in the c.m.s.,

FVp~M
2!/Flp5 ẑ2

M2

4E2 , ~A7!

and we have 4E25sqq . The remaining task in evaluating
Eq. ~A1! is to make a model assumption about thek2 depen-
dence of theuM̂ul

2 . The most simple assumption,

uM̂ul
2~k2!

uM̂ul
2~M2!

51, ~A8!

was made for alll in @3,20#. In @23#, more refined assump-
tions were made. These led to the same simple relation~A8!
for l5T and different relations forl5T̄ andl5L. We will
adopt here the following minimal model assumptions:

uM̂ul
2~k2!

uM̂ul
2~M2!

51, l5T,T̄,

uM̂ul
2~k2!

uM̂ul
2~M2!

5
M2

2k2
, l5L. ~A9!

The same assumptions have been made in@27#. They amount
to taking into account thek2 dependence of the polarization
vectors and assuming nok2 dependence otherwise. The dis-
tribution functions are now given by
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f VT
q ~ ẑ!5

a

2p
~v21a2!S ẑ2

M2

4E2D E
24E2~12 ẑ!

0

dk2
~2k2!@11~12 ẑ!22„k2/~2E2!…#

~k22M2!2@ ẑ22~k2/E2!#
,

f VT̄
q ~ ẑ!5

a

2p
~2va!S ẑ2

M2

4E2D E
24E2~12 ẑ!

0

dk2
~2k2!~22 ẑ!

~k22M2!2Aẑ22~k2/E2!
,

f VL
q ~ ẑ!5

a

p
~v21a2!S ẑ2

M2

4E2DM2E
24E2~12 ẑ!

0

dk2
12 ẑ1 „k2/~4E2!…

~k22M2!2@ ẑ22~k2/E2!#
. ~A10!

The distribution functionf VT
q in Eq. ~A10! is the one given

~in integrated form! in @3,20# ~and it is also the one in@23#,
but there are errors in the formulas given there! provided one
divides these latter functions by the flux factor ratio in the
laboratory frame and multiplies by the flux factor ratio in the
c.m.s., thus,

f Vl

q 5
12„M2/~4ẑE2!…

A12„M2/~ ẑ2E2!…
f Vl

q u literature. ~A11!

The distribution functionf VT̄
q in Eq. ~A10! is the one given

in @20# provided one applies the same multiplication~A11!.
The function f VT̄

q has only been given forẑ.M /E

in @20#. For arbitrary values ofẑ @in the allowed range
M2/(4E2), ẑ,1# it is given by

f VT̄
q ~ ẑ!5

a

2p
~2va!S ẑ2

M2

4E2D ~22 ẑ!I 3 . ~A12!

The integralI 3 in Eq. ~A12! is defined by

I 35E
24E2~12 ẑ!

0 dk2~2k2!

~k22M2!2Aẑ22~k2/E2!
. ~A13!

For ẑ,M /E, the result of the integration is

I 352
1

ẑ22~M2/E2!
S ẑ2

M2~22 ẑ!

4E2~12 ẑ!1M2D
1

2ẑ2E22M2

2~ ẑ2E22M2!

2

AM2/E22 ẑ2

3FarctanS 22 ẑ

AM2/E22 ẑ2
D 2arctanS ẑ

AM2/E22 ẑ2
D G .

~A14!

This result thus continues the result given in@20# into the
regionẑ,M /E. The distribution functionf VL

q in Eq. ~A10! is

different from any one of those in@3,20,23#. It is given by

f VL
q ~ ẑ!5

a

p
~v21a2!S ẑ2

M2

4E2D F ~12 ẑ!I 42
M2

4E2 I 1G ,
~A15!

with the integrals

I 15E2E
24E2~12 ẑ!

0 dk2~2k2!

~k22M2!2~ ẑ2E22k2!

5
ẑ2E4

~ ẑ2E22M2!2
F lnS 4E2~12 ẑ!1M2

M2 D 22ln
22 ẑ

ẑ G
2

E2

ẑ2E22M2 H 12
M2

4E2~12 ẑ!1M2 J , ~A16!

I 45M2E2E
24E2~12 ẑ!

0 dk2

~k22M2!2~ ẑ2E22k2!

5
E2

ẑ2E22M2 S 12
M2

4E2~12 ẑ!1M2D
2

M2E2

~ ẑ2E22M2!2
F lnS 4E2~12 ẑ!1M2

M2 D 22ln
22 ẑ

ẑ
G .

~A17!

The distribution functions~A10! are defined for all values of
ẑ in the range

M 2/sqq, ẑ,1, ~A18!

where sqq54E2, and they are zero otherwise. The lower
limit in Eq. ~A18! is meaningful because the cross sections
for on-shell vector-boson scattering vanish for
ẑsqq5MY

2,M2. We will use the distributions~A10! in the
main text.

Having evaluated the functions~A1! in the center-of-mass
frame of the quarks we have induced an additional approxi-
mation, namely that the helicitiesh50,61 are not well de-
fined. To the orderk'

2 /E2, there appears mixing between the
helicity states. In particular, the transverse and longitudinal
helicity states mix. To see this we note that the on-shell cross
sections(V1,l1

q2→Y,MY
2) appearing in Eq.~20! must be

evaluated for definite values of the components of the four-
vectorsk and p since one has to use specific polarization
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vectors. In particular, the components cannot depend on the
integration variablek2 appearing in Eq.~A10!. Of course, for
a given value of the integration variable, a Lorentz transfor-
mation into a frame in whichk andp have given components
may be applied. However, this transformation in general
changes the helicity of the vector boson. Only in frames
which are related to each other by a boost in the direction of
motion of the vector boson is the helicity the same. There-
fore, in the frame in which the helicity is defined, the trans-
verse components ofp with respect tok must be the same
for all values of the integration variablek2. For the distribu-
tions ~A10! evaluated in theq1q2 center-of-mass frame this
is not the case. I note that the helicity could have been de-
fined without an approximation in the laboratory frame. It
thus seems that with the distributions~A10! we can choose
between either having mixing of the helicity states or a vio-
lation of the relation~7!.

The above-mentioned approximations were avoided in the
derivations@5,27#. By definingẑ directly asẑ[MY

2/sqq ~i.e.,
not as a ratio of energies! and defining the vector-boson he-
licity in its Breit frame no approximations of kinematic ori-
gin were made. The only remaining necessary~in the frame-
work of the EVBA! assumption concerned the continuation
of the vector-boson cross sections into the region of virtual
vector bosons. In@5#, the specific assumption that the final
stateY couples like a fermion to the intermediate vector
boson was made. In@27#, the minimal assumptions~A9!
were used. Concerning@5#, I note that the expression for the
integral I 2( ẑ) given there is not correct. This expression
would lead to vector-boson distribution functions which be-
come infinite asẑ→M2/sqq . The expression must be re-

placed by

I2~ẑ!5@a212ẑr~12r!a#lnS a
ẑr
D1ln~ẑ!1b~122a!,

~A19!

where I used the variablesr , a, andb defined in@5#. Con-
cerning@27#, I note that the flux factorFVp was evaluated at
k250 but it should be evaluated atk25M2 @since it is the
cross section for on-shell vector bosons which appears in Eq.
~20!#. I therefore multiplied the distributions of@27# by the
flux factor ratioFVp(M

2)/FVp(0)5@12M2/( ẑsqq)# before
using them for numerical examples.9 Like the distributions
~A10!, the distributions@5,27# are defined for all values of
ẑ in the range~A18! and they are zero otherwise.

All distribution functions reduce to the same analytical
expressions if a crude approximation is made. This approxi-
mation is obtained by retaining only the leading terms in the
limit of vanishing vector-boson massesM2! ẑsqq and
M2!(12 ẑ) ẑsqq . This approximation has been frequently
used in the literature and has been called the leading loga-
rithmic approximation~LLA !.10 Expressions for thef Vl

q in

the LLA can be found, e.g., in@3,23,29#. We use the lower
limit for ẑ, ẑ.M2/sqq , also for the LLA distributions.
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