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We study in QCD the physics of deeply virtual Compton scattering~DVCS!—the virtual Compton process
in the larges and smallt kinematic region. We show that DVCS can probe a new type ofoff-forwardparton
distributions. We derive an Altarelli-Parisi-type of evolution equations for these distributions. We also derive
their sum rules in terms of nucleon form factors of the twist-two quark and gluon operators. In particular, we
find that the second sum rule is related to fractions of the nucleon spin carried separately by quarks and gluons.
We estimate the cross section for DVCS and compare it with the accompanying Bethe-Heitler process at
CEBAF and HERMES kinematics.@S0556-2821~97!00811-4#

PACS number~s!: 13.60.Hb, 13.88.1e, 14.20.Dh

I. INTRODUCTION

The Compton process, which refers to elastic scattering of
a photon off a charged object, has played an important role
in the history of quantum electrodynamics: It provided early
evidence that the electromagnetic wave is quantized and,
hence, has the nature of particles@1#. The role of the Comp-
ton process in studying the structure of hadrons has been
explored since the 1950s, when Low’s low-energy theorems
@2#, analogous to the well-known Thomson cross section,
were derived. Those theorems assert, for instance, that at
sufficiently low energy the spin-dependent part of the Comp-
ton amplitude is determined by the anomalous magnetic mo-
ment of a composite system. Going to higher-order terms in
the low-energy expansion, one finds the electric and mag-
netic polarizabilities@3#. In recent years, experimental and
theoretical works in measuring and understanding the polar-
izabilities of the nucleon and pion have flourished@4#.

Generally speaking, however, the Compton process on a
composite system is quite complicated. When a pointlike
constituent absorbs an incoming photon, the system becomes
excited. As it propagates in time, the system eventually emits
a photon and comes back to the ground state. Quantum-
mechanical propagation of a composite system is difficult to
handle theoretically, except in spatial kinematic regions. The
low-energy theorems exist for the Compton scattering on the
nucleon because the intermediate propagation at low energy
is dominated by the nucleon itself@2#. Another kinematic
region known to have a simple scattering mechanism is
where thet-channel momentum transfer is large, i.e., where
the nucleon has a large recoil@5#. In this case, perturbative
quantum chromodynamics can be used to understand the in-
termediate propagation. In fact, according to the so-called
power-counting rule@6#, the most important intermediate
states are those created from three valence quarks through
hard-gluon exchanges. Simple as it may be, one still has to
compute hundreds of Feynman diagrams to obtain the scat-
tering cross section.

The purpose of this paper is to study the Compton scat-
tering by a virtual photon in a special kinematic limit. As-

suming the virtual photon is generated by inelastic lepton
scattering, we are interested in the Bjorken limit, i.e., the
energy and momentum of the virtual photon going to infinity
at the same rate. We shall call the process deeply virtual
Compton scattering~DVCS!. As we shall discuss in the next
section, the basic mechanism for DVCS is a quark absorbing
the virtual photon, immediately radiating a real photon and
falling back to the nucleon ground state. Thus the physics of
DVCS is quite simple.

Our interest in studying DVCS is generated from the fact
that it offers a way to measure the off-forward parton distri-
butions ~OFPD’s!, a new type of parton distributions that
generalizes the usual parton distributions and the nucleon
form factors. When taking moments of OFPD’s, one gets
form factors of the spin-n, twist-2 quark and gluon operators.
When going to the forward limit, OFPD’s become the usual
quark and gluon distributions. Because the spin-2, twist-2
operators are part of the energy-momentum tensor of QCD
and because the form factors of the energy-momentum ten-
sor contain information about the quark and gluon contribu-
tions to the nucleon spin, DVCS may provide a novel way to
measure the fraction of the nucleon spin carried by the quark
orbital angular momentum, a subject of great current interest
@7#.

The presentation of the paper is as follows. In Sec. II, we
consider DVCS in QCD at the tree level. We identify the
off-forward parton distributions from the Compton ampli-
tude and then study some simple aspects of the distributions,
such as sum rules. In Sec. III, we study the leading-
logarithmic evolution of the OFPD’s. The results are pre-
sented in the form of generalized Altarelli-Parisi equations.
In Sec. IV, we work out the cross sections for DVCS and the
accompanying Bethe-Heitler process and their interference.
To be complete, we consider all cases including unpolarized,
double-spin, and single-spin processes. Some estimates are
given at the Continuous Electron Beam Accelerator Facility
~CEBAF! and HERMES kinematics. The final section con-
tains comments and discussions.

A preliminary account of the DVCS process is discussed
in a Letter by this author@8#. Subsequently, Radyushkin

PHYSICAL REVIEW D 1 JUNE 1997VOLUME 55, NUMBER 11

550556-2821/97/55~11!/7114~12!/$10.00 7114 © 1997 The American Physical Society



studied the scaling limit atD250 from a different angle@9#.
Actually, processes similar to DVCS were first considered by
Geyer and co-workers in studying the anomalous dimensions
of light-ray operators@10#, where the ‘‘interpolating func-
tions’’ were introduced. The evolution of these functions is
found to interpolate the Brodsky-Lepage and Altarelli-Parisi
equations. Similar objects were also considered by Jain and
Ralston in the context of studying the violation of helicity
selection rule and the effects of transverse momentum@11#.

II. DEEPLY VIRTUAL COMPTON SCATTERING
AT LEADING ORDER

This section is devoted to studying the virtual Compton
scattering in deep-inelastic kinematics and at the leading or-
der in perturbative QCD. The main result is that DVCS is
dominated by single-quark scattering, and therefore the am-
plitude can be expressed in terms of the off-forward parton
distributions. We also study sum rules of these distributions
and show that the second sum rule is related to the total
quark ~gluon! contribution to the spin of the nucleon.

We picture the virtual Compton scattering in Fig. 1,
where a nucleon of momentumPm absorbs a virtual photon
of momentumqm, producing an outgoing real photon of mo-
mentumq8m5qm2Dm and a recoil nucleon of momentum
P8m5Pm1Dm. We focus on the deeply virtual kinematic
region of qm, namely, the Bjorken limitQ252q2→`,
P•q→`, andQ2/P•q finite. In this region, the quark that
absorbs the virtual photon becomes highly virtual and hence
propagates perturbatively. The simplest mechanism to form
the Compton final state is for the quark to promptly radiate a
real photon and fall back to the nucleon ground state. This
‘‘handbag’’ subprocess is shown in Fig. 2~a!.

In QCD, more complicated ‘‘tree’’ subprocesses are pos-
sible. By tree, we mean perturbative diagrams in which every
vertex is next to the nucleon blob. For instance, the highly
virtual quark can interact with gluon fields in the nucleon, as
shown in Fig. 2~b!, or it can transfer its virtuality to another
quark through one-gluon exchanges, as shown in Fig. 2~c!. A
detailed calculation shows that both subprocesses are sup-
pressed by 1/Q2 relative to the handbag diagram, except
when the polarization of the gluon in Fig. 2~b! is longitudi-
nal. Fortunately, in the light-cone gaugeA150, the longitu-
dinally polarized gluons do not contribute by definition. Thus
in the deeply virtual limit, the single-quark process indeed
dominates the Compton scattering.

Of course, one can decorate the handbag with radiative
loops, such as those shown in Figs. 2~d! and 2~e!. Those
diagrams in certain kinematic region produce leading-
logarithmic corrections to the simple handbag, as we shall

discuss in the next section. In other kinematic regions, they
give rise to order-as(Q

2) radiative corrections and hence can
be ignored in the deeply virtual limit. One exception is the
gluon vertex correction for the real photon in Fig. 2~e!,
where as the two quark lines have momenta predominantly
parallel to the photon momentum, the diagram has an infra-
red divergence reflecting the nonperturbative photon wave
function. Fortunately, a simple calculation shows that the
contribution in this kinematic region is suppressed by 1/Q2

relative to the handbag due to the hard-gluon propagator.
Thus, in the remainder of this section we concentrate solely
on the dominant subprocess in Fig. 2~a!.

According to Feynman rules, the handbag diagram corre-
sponds to the Compton amplitude:

Tmn5 i E d4k

~2p!4
TrH Fgn

i

k”2aD” 1k”1 i e
gm

1gm
i

k”1~12a!k”D2q”1 i e
gnGM ~k!J , ~1!

wherem andn are the polarization indices of the virtual and
real photons andM (k) is a quark density matrix,

M ~k!5E eikzd4z^P8uc̄~2az!c@~12a!z#uP&, ~2!

where 0,a,1 reflects the arbitrariness of the looping mo-
mentumkm. To proceed further, it is convenient to define a
special system of coordinates. We chooseqm and
P̄m5(P1P8)m/2 to be collinear and in thez direction. In-
troduce two lightlike vectors pm5L(1,0,0,1) and
nm5(1,0,0,21)/(2L), with p25n250, p•n51, andL ar-
bitrary. We expand other vectors in terms ofpm, nm and
transverse vectors:

P̄m5pm1~M̄2/2!nm, qm52jpm1~Q2/2j!nm,

Dm52j@pm2~M̄2/2!nm#1D'
m ,

km5~k•n!pm1~k•p!nm1k'
m , ~3!

whereM̄25M22D2/4 and

FIG. 1. Virtual Compton scattering process.

FIG. 2. QCD diagrams for deeply virtual Compton scattering:
~a! the handbag diagram;~b!,~c! some 1/Q2 corrections; and~d!,~e!
some radiative corrections.
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j5@2 P̄•q1A~ P̄•q!21Q2M̄2#/M̄2.

The j variable is analogous to the Bjorken variablexB in
deep-inelastic scattering and is bounded by 0 and

A2D2/AM22D2/4. We neglect components of four vectors
which do not produce large scalars in the Bjorken limit. In-
troducing the factor*dx(dl/2p)eil(x2k•n)51 and integrat-
ing overkm andzm, we simplify the Compton amplitude to

Tmn~P,q,D!5 1
2 ~gmn2pmnn2pnnm!E

21

1

dxS 1

x2j/21 i e
1

1

x1j/22 i e D FH~x,j,D2!Ū~P8!n”U~P!

1E~x,j,D2!Ū~P8!
isabnaDb

2M
U~P!G1

i

2
emnabpanbE

21

1

dxS 1

x2j/21 i e
2

1

x1j/22 i e D
3F H̃~x,j,D2!Ū~P8!n”g5U~P!1Ẽ~x,j,D2!

D•n

2M
Ū~P8!g5U~P!G , ~4!

where we have chosena51/2 for symmetrical reason.H, H̃, E, andẼ are off-forward, twist-2 parton distributions defined
through the light-cone correlation functions

E dl

2p
eilx^P8uc̄~2ln/2!gmc~ln/2!uP&5H~x,j,D2!Ū~P8!gmU~P!1E~x,jD2!Ū~P8!

ismnDn

2M
U~P!1•••,

E dl

2p
eilx^P8uc̄~2ln/2!gmg5c~ln/2!uP&5H̃~x,j,D2!Ū~P8!gmg5U~P!1Ẽ~x,j,D2!Ū~P8!

g5D
m

2M
U~P!1•••, ~5!

where the ellipses denote higher-twist distributions. Accord-
ing to our definition, the initial nucleon and the active quark
have the longitudinal momentum 11j/2 andx1j/2, respec-
tively. „In covariant gauge, the longitudinal gluons produce a
gauge link exp@2 ig*l/2

2l/2n•A(an)da# between the two
quark fields, restoring explicit gauge invariance of the light-
cone correlations. Here we are working in the light-cone
gaugen•A50; hence, the longitudinal gluons and the gauge
link never appear. Nonetheless, the result shall be taken as
implicitly gauge invariant.…

A systematic counting indicates that the virtual Compton
scattering depends on 12 helicity amplitudes@12#. The above
result implies that only four of them survive the Bjorken
limit. An quick inspection shows all amplitudes with longi-
tudinally polarized virtual photons are subleading. For the
transversely polarized virtual photon scattering, the emitted
photon retains the helicity of the incident photon at the lead-
ing order. This selection rule can serve as a useful check that
deeply virtual Compton scattering is indeed dominated by
the single-quark process. Of the four off-forward parton dis-
tributions,H and H̃ conserve the nucleon helicity, whileE
and Ẽ flip the nucleon helicity.

The off-forward parton distributions just defined have
characters of both the ordinary parton distributions and
nucleon form factors. In fact, in the limit ofDm→0, we have

H~x,0,0!5q~x!, H̃~x,0,0!5Dq~x!, ~6!

whereq(x) andDq(x) are quark and quark helicity distri-
butions, defined through similar light-cone correlations@13#.
On the other hand, forming the first moment of the new
distributions, one gets the sum rules@8,11#

E
21

1

dxH~x,j,D2!5F1~D2!,

E
21

1

dxE~x,j,D2!5F2~D2!,

E
21

1

dxH̃~x,j,D2!5GA~D2!,

E
21

1

dxẼ~x,j,D2!5GP~D2!, ~7!

where F1(D
2) and F2(D

2) are the Dirac and Pauli form
factors andGA(D

2) and GP(D
2) are the axial-vector and

pseudoscalar form factors.~Usually the argument of form
factors is the positive2D2. Here we omit the minus sign for
simplicity.!

The second moment of the parton distributions is relevant
to the spin structure of the nucleon. To see this, we first write
down the angular momentum operator in QCD as the sum of
quark and gluon contributions@8#:

JWQCD5JWq1JWg , ~8!

where

JWq5E d3xxW3TW q5E d3xFc†
SW

2
c1c†xW3~2 iDW !cG ,

JWg5E d3xxW3~EW 3BW !. ~9!
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HereTW q andEW 3BW are the quark and gluon momentum den-
sities, respectively.SW is the Dirac spin matrix and
DW 5]W1 igAW is the covariant derivative. By an analogy with
the magnetic moment, one can get the separate quark and
gluon contributions to the nucleon spin if the form factors of
the momentum density, or equivalently the energy-
momentum tensor of QCD, are known at zero momentum
transfer. Using Lorentz covariance and other symmetry prin-
ciples, one can write down four form factors separately for
quark and gluon parts of the energy-momentum tensor:

^P8uTq,g
mn uP&5Ū~P8!@Aq,g~D2!g~mP̄n)

1Bq,g~D2!P̄~misn)aDa/2M

1Cq,g~D2!~DmDn2gmnD2!/M

1C̄q,g~D2!gmnMU~P!, ~10!

where againP̄m5(Pm1Pm8)/2, Dm5Pm82Pm, andU(P)
is the nucleon spinor. Substituting the above into the nucleon
matrix element ofJWq,g , one finds fractions of the nucleon
spin carried by quarks,Jq , and gluons,Jg :

Jq,g5
1
2 @Aq,g~0!1Bq,g~0!#, Jq1Jg5

1
2 . ~11!

According to the definition, the second moment of off-
forward parton distributions yields the form factors of the
energy-momentum tensor:

E
21

1

dxx@H~x,j,D2!1E~x,j,D2!#5A~D2!1B~D2!,

~12!

where luckily thej dependence, orCq(D
2) contamination,

drops out. Extrapolating the sum rule toD250, one gets
Jq,g . Note that only in this special application are we inter-
ested in theD2→0 limit. In general discussions of DVCS,
such a limit is of course not necessary.

By forming still higher moments, one obtains form factors
of the twist-2 operators of spin greater than 2. In general,
there are many form factors for each of the tensor operators;
however, only special combinations of them appear in mo-
ments of the OFPD’s. The relative weighting of the different
form factors is determined by the variablej.

III. LEADING-LOGARITHMIC EVOLUTION
OF OFF-FORWARD PARTON DISTRIBUTIONS

In this section, we study the leading-logarithmic evolution
of the off-forward parton distributions. Like the leading-
logarithmic evolution of the usual parton distributions
~Altarelli-Parisi equation@14#!, there are many approaches to
calculate it. Here we use the momentum-space Feynman dia-
gram technique. For simplicity, our calculation is done in the
light-cone gauge, although one is free to work entirely in
covariant gauge. While the result of Sec. III A has appeared
in different forms in the literature before@10,15,16#, the re-
sult of Sec. III B is new.

The evolutions of the helicity-independent and helicity-

dependent distributions are different; hence, we treat the two
cases separately.

A. Evolution of parton-helicity-independent distributions

In this subsection, we consider evolution of helicity-
independent off-forward parton distributions. We use a ge-
neric notationES,NS(x,j,D

2,Q2) to denote singlet and non
singlet quark density:

ES,NS~x,j,D
2,Q2!5

1

2E dl

2p
eilx

3 K P8Uc̄S 2
l

2
nDn”cS l

2
nD UPL ,

~13!

where the flavor indices and the gauge link have been ig-
nored, andEG(x,j,D

2,Q2) denotes the gluon distribution:

EG~x,j,D2,Q2!52
1

2xE dl

2p
eilx

3 K P8UFmaS 2
l

2
nDFa

n S l

2
nD UPL nmnn .

~14!

Since gluons are bosons, we haveEG(2x)52EG(x). The
support for the light-cone variablex can be studied as in Ref.
@17# and is21,x,1. Since the evolution equations are
independent ofD2, we will omit the variable in the following
equations.

The evolution of the nonsinglet quark density atx.j/2,
where both quark lines represent quarks, takes the form

FIG. 3. Leading-logarithmic evolution of the off-forward parton
distributions.
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DQENS~x,j,Q
2!

D lnQ2 5
as~Q

2!

2p E
x

1dy

y
PNSS xy ,jyDENS~y,j,Q

2!,

~15!

where

DQ

D lnQ2 5
d

dlnQ22
as~Q

2!

2p
CFF321E

j/2

x dy

y2x2 i e

1E
2j/2

x dy

y2x2 i eG . ~16!

The parton-splitting function is calculated according to Fig.
3~a!,

PNS~x,j!5CF

x2112j2/2

~12x1 i e!~12j2/4!
, ~17!

whereCF54/3 for the SU~3! color group. The endpoint sin-
gularity is canceled by the divergent integrals in
DQ /D lnQ

2. Obviously, whenj50, the splitting function be-
comes the usual Altarelli-Parisi evolution kernel. For
2j/2,x,j/2 where one of the two quark lines represents a
quark and the other represents an antiquark, the evolution
takes the form

DQENS~x,j,Q
2!

D lnQ2 5
as~Q

2!

2p F E
x

1dy

y
PNS8 S xy , jyD

2E
21

x dy

y
PNS8 S xy ,2 j

yD GENS~y,j,Q
2!,

~18!

where

PNS8 ~x,j!5CF

x1j/2

j~11j/2! S 11
j

12x1 i e D . ~19!

Whenj52, shifting the variablex→x21 and then scaling
the x by a factor of 2, one finds that the evolution equation
becomes the Brodsky-Lepage evolution equation for the pion
wave function@18#. For x,2j/2 where both quark lines
represent antiquarks, the evolution takes the same form as
Eq. ~15!, apart from the replacement*x

1→2*21
x .

The evolution of the singlet-quark density mixes with that
of the gluon density. Forx.j/2, the coupled evolution takes
the form

DQES~x,j,Q
2!

D lnQ2 5
as~Q

2!

2p E
x

1dy

y FPSSS xy ,jyDES~y,j,Q
2!12nFPSGS xy , jyDEG~y,j,Q2!G ,

DGEG~x,j,Q2!

D lnQ2 5
as~Q

2!

2p E
x

1dy

y FPGSS xy , jyD12„ES~y,j,Q
2!2ES~2y,j,Q2!…1PGGS xy , jyDEG~y,j,Q2!G , ~20!

wherenF is the number of quark flavors and

DG

D lnQ2 5
d

dlnQ22
as~Q

2!

2p
CAF116 2

nF
3CA

1E
j/2

x dy

y2x2 i e
1E

2j/2

x dy

y2x2 i eG . ~21!

The evolution kernels are

PSS~x,j!5PNS~x,j!, PSG~x,j!5TF
x21~12x!22j2/4

~12j2/4!2
, PGS~x,j!5CF

11~12x!22j2/4

x~12j2/4!
,

PGG~x,j!5CA

~x22j2/4!

x~12j2/4!2F11
2~12x!~11x2!

x22j2/4
1
11x2j2/2

12x1 i e G , ~22!

whereTF51/2 andCA53. As j→0, we again get the usual Altarelli-Parisi evolution kernels.
For 2j/2,x,j/2, we have

DQES~x,j,Q
2!

D lnQ2 5
as~Q

2!

2p F E
x

1dy

y
PSS8 S xy , jyD 2E

21

x dy

y
PSS8 S xy ,2 j

yD GES~y,j,Q
2!

1
as~Q

2!

2p F E
x

1dy

y
PSG8 S xy , jyD 2E

21

x dy

y
PSG8 S xy ,2 j

yD G2nfEG~y,j,Q2!, ~23!
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DGEG~x,j,Q2!

D lnQ2 5
as~Q

2!

2p F E
x

1dy

y
PGS8 S xy , jyD 2E

21

x dy

y
PGS8 S xy ,2 j

yD G12„ES~y,j,Q
2!2ES~2y,j,Q2!…

1
as~Q

2!

2p F E
x

1dy

y
PGG8 S xy , jyD 2E

21

x dy

y
PGG8 S xy ,2 j

yD GEG~y,j,Q2!,

where the evolution kernels are

PSS8 ~x,j!5PNS8 ~x,j!, PSG8 ~x,j!5TF
~x1j/2!~122x1j/2!

j~11j/2!~12j2/4!
, PGS8 ~x,j!5CF

~x1j/2!~22x1j/2!

xj~11j/2!
,

PGG8 ~x,j!52CA

~x22j2/4!

xj~12j2/4!F12
j

12x1 i e
2

2~11x2!

~11j/2!~x2j/2!G . ~24!

For x,2j/2, the evolution equations are the same as Eq.~20!, except*x
1→2*21

x .

B. Evolution of parton-helicity-dependent distributions

The helicity-dependent distributions are defined as follows: The singlet and nonsinglet quark distributions are

ẼS,NS~x,j,D
2,Q2!5

1

2E dl

2p
eilxK P8Uc̄S 2

l

2
nDn”g5cS l

2
nD UPL . ~25!

The gluon distribution is

ẼG~x,j,D2,Q2!52
i

2xE dl

2p
eilxK P8UFmaS 2

l

2
nD F̃a

n S l

2
nD UPL nmnn , ~26!

whereF̃ab5
1
2

eabgdFgd . It is easy to see thatẼG(2x)5ẼG(x).

The evolution of the nonsinglet helicity-dependent quark density is exactly the same as that of the nonsinglet helicity-
independent quark density.

For the singlet evolution, we consider mixing between the singlet quark and gluon distributions. Forx.j/2, the evolution
equations are

DQẼS~x,j,Q
2!

D lnQ2 5
as~Q

2!

2p E
x

1dy

y FDPSSS xy , jyD ẼS~y,j,Q
2!12nFDPSGS xy , jyD ẼG~y,j,Q2!G ,

DGẼG~x,j,Q2!

D lnQ2 5
as~Q

2!

2p E
x

1dy

y FDPGSS xy , jyD12„ẼS~y,j,Q
2!1ẼS~2y,j,Q2!…1DPGGS xy , jyD ẼG~y,j,Q2!G , ~27!

where the splitting functions are

DPSS~x,j!5PNS~x,j!, DPSG~x,j!5TF
x22~12x!22j2/4

~12j2/4!2
, DPGS~x,j!5CF

12~12x!22j2/4

x~12j2/4!
,

DPGG~x,j!5CA

~x22j2/4!

x~12j2/4!2F11
4x~12x!

x22j2/4
1
11x2j2/2

12x1 i e G . ~28!

Again, whenj50, the splitting functions are the usual spin-dependent Altarelli-Parisi kernel. For2j/2,x,j/2, the evolution
equations are

DQẼS~x,j,Q
2!

D lnQ2 5
as~Q

2!

2p F E
x

1dy

y
DPSS8 S xy ,jyD 2E

21

x dy

y
DPSS8 S xy ,2 j

yD G ẼS~y,j,Q
2!

1
as~Q

2!

2p F E
x

1dy

y
DPSG8 S xy , jyD 2E

21

x dy

y
DPSG8 S xy ,2 j

yD G2nfẼG~y,j,Q2!, ~29!
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DGẼG~x,j,Q2!

D lnQ2 5
as~Q

2!

2p F E
x

1dy

y
DPGS8 S xy ,jyD 2E

21

x dy

y
DPGS8 S xy ,2 j

yD G12„ẼS~y,j,Q
2!1ES~2y,j,Q2!…

1
as~Q

2!

2p F E
x

1dy

y
DPGG8 S xy , jyD 2E

21

x dy

y
DPGG8 S xy ,2 j

yD G ẼG~y,j,Q2!,

where the splitting functions are

DPSS8 ~x,j!5PNS8 ~x,j!,

DPSG8 ~x,j!5TF
~x1j/2!~211j/2!

j~11j/2!~12j2/4!
,

DPGS8 ~x,j!5CF

~x1j/2!2

xj~11j/2!
,

DPGG8 ~x,j!52 CA

~x22j2/4!

xj~12j2/4!

3F12
j

12x1 i e
2

4x

~11j/2!~x2j/2!G .
~30!

For x,2j/2, the evolution equations are the same as Eq.
~27!, except*x

1→2*21
x .

Of course, in a reasonable range ofQ2, the OFPD’s do
not evolve dramatically. Thus, a second check on the DVCS
dynamical mechanism is to find smallQ2 dependences of
relevant scaling functions.

IV. CROSS SECTIONS AND ESTIMATES

In this section, we calculate the cross section for electro-
production of a real photon off a nucleon. As shown in Fig.
4, we usek5(v,kW ) and k85(v8,kW8) to denote the four-
momenta of the intial and final electrons,P5(M ,0) and
P85(E8,PW 8), the intial and final momenta of the nucleon,
q85(n8,qW 8), and the momentum of the final photon. The
differential cross section in the laboratory frame is

ds5
1

4vM
uT u2~2p!4d4~k1P2k82P82q8!

3
d3kW8

2v8~2p!3
d3PW 8

2E8~2p!3
d3qW 8

2n8~2p!3
, ~31!

whereM is the nucleon mass andT is theT matrix of the
scattering. Integrating over the photon momentum, we find

ds5
1

4vM
uT u2

v8dv8dVe8
2~2p!3

2pd„~k1P2k82P8!2…

3
d3P8W

2E8~2p!3
, ~32!

where thed function reflects the photon on-shell condition,
which constrains the direction and magnitude of the momen-
tum of the recoiling nucleon,PW 8,

s1M222@~n1M !E82qW •P8W #50, ~33!

where s5(q1P)2, qm5(n,qW )5km2k8m. Thus the phase
space of the recoiling proton is specified by the solid angle
dVP8. Note, however, that for larges andn, there are two
solutions of uPW 8u corresponding to one orientation ofPW 8.
Physically one of them represents the recoil proton at the
backward angle in the center-of-mass frame. Integrating over
the magnitude ofPW 8, we get

ds5
1

32~2p!5vM
v8dv8dVe8dVP8

3
P82

uP8~n1M !2qE8cosfu
uTu2, ~34!

wheref is the angle betweenqW andPW 8, and the sum over
two possible solutions ofuPW 8u is implicit. We choose thez
axis to be the direction of the incident electron and thex axis
in the plane formed by the initial and final electron momenta.
In this coordinate system, the final electron has the polar
angleu. The polar and azimuthal angles ofPW 8 are denoted
by uP8 andfP8, respectively. Note thatuT u2 has the dimen-
sion of a cross section.

Alternatively, we can integrate out the momentum of the
recoil proton:

ds5
1

32~2p!5vM
v8dv8dVe8dVq8

n8

un1M2qcosf8u
uT u2,

~35!

wheref8 is the angle betweenqW and qW 8. The polar and
azimuthal angles ofqW 8 are denoted byuq8 andfq8, respec-
tively. The constraint between the energy and direction of
the outgoing photon is

s2M222n8~n1M2qcosf8!50. ~36!
FIG. 4. Electroproduction of a photon off the nucleon:~a! the

virtual Compton scattering; and~b!,~c! the Bethe-Heitler process.

7120 55XIANGDONG JI



A. T matrix

We calculate the Feynman diagrams shown in Fig. 4. We
assume for the moment that the scattering lepton is nega-
tively charged (e.0). TheT matrix for the Compton scat-
tering part is

T152e3ū~k8!gmu~k!
1

q2
Tmnen* , ~37!

where ū,u are the spinors of the lepton ande is the polar-
ization of the emitting photon.Tmn is the standard Compton
amplitude:

Tmn5 i E e2 iq•z^P8uTJm~z!Jn~0!uP&d4z. ~38!

In the deeply virtual region,Tmn is expressed in terms of
off-forward parton distributions in Eq.~4!.

TheT matrix for the Bethe-Heitler~BH! process is

T252e3ū~k8!Fe”* 1

k”2D” 2me1 i e
gm

1gm
1

k” 81D” 2me1 i e
e”* Gu~k!

1

D2 ^P8uJm~0!uP&,

~39!

whereme is the mass of electron and will be ignored for the
following discussion. The elastic nucleon matrix element is

^P8uJm~0!uP&5Ū~P8!FgmF1~D2!

1F2~D2!
ismnDn

2M GU~P!, ~40!

whereŪ,U are the nucleon spinors andF1 andF2 are the
usual Dirac and Pauli form factors of the nucleon.

The totalT matrix is the sum of the two above:

T5T11T2 . ~41!

B. Unpolarized scattering

First, we consider the scattering process without polariza-
tions. The square of theT matrix has three terms. First, the
pure Compton process gives

uT1u252
e6

q4
l VC

mnWVCmn , ~42!

where the lepton tensor is

l VC
~mn!52~kmk8n1knk8m2gmnk•k8!. ~43!

The hadron tensor is calculated from Eq.~4!:

WVC
~mn!5 1

4 ~gmn2pmnn2pnnm!H E
21

1

dxa~x!E
21

1

dx8a* ~x8!F2j2@H~x,j,D2!1E~x,j,D2!#@H~x8,j,D2!1E~x8,j,D2!#

14H~x,j,D2!H~x8,j,D2!2
D2

M2E~x,j,D2!E~x8,j,D2!G
1E

21

1

dxb~x!E
21

1

dx8b* ~x8!F2j2@H̃~x,j,D2!1Ẽ~x,j,D2!#@H̃~x8,j,D2!1Ẽ~x8,j,D2!#

14H̃~x,j,D2!H̃~x8,j,D2!1j2Ẽ~x,j,D2!Ẽ~x8,j,D2!S 12
D2

4M2D G J , ~44!

wherea(x) andb(x) are

a~x!5
1

x2j/21 i e
1

1

x1j/22 i e
, b~x!5

1

x2j/21 i e
2

1

x1j/22 i e
. ~45!

Thus, forH(x) andE(x) less singular thanx22 andH̃(x) and Ẽ(x) less singular thanx21, the integrals are convergent. To
simplify the expression, we have left out as usual the sum over quark flavors weighted by the electric charge squared. To find
the product of the two tensors, one shall express the null vectorsn andp in terms of physical vectorsP̄ andq by inverting Eq.
~3!. The result is thatuT1u2 goes like 1/Q2 at largeQ2, like the inclusive deep-inelastic process.

The pure Bethe-Heitler process gives

uT2u25
e6

D4l BH
~mn!WBH~mn! , ~46!

where the lepton tensor is

l BH
~mn!5

8

~k81D!4
@k•~k81D!#~2k8mk8n1Dmk8n1Dnk8m2gmnk8•D!

1
8

~k2D!4
@k8•~k2D!#~2kmkn2Dmkn2Dnkm1gmnk•D!

1
8

~k2D!2~k81D!2
$@2~k81D!•~k2D!1D2#~k8mkn1k8nkm!

12~k8mk8nD•k2kmknD•k8!1@~km2k8m!Dn2~k8n2kn!Dm1~k82k!•Dgmn#k•k8%. ~47!
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As Dm→0, it diverges quadratically as expected from low-
energy theorems. The hadron tensor is

WBH
~mn!5@F1~D2!1F2~D2!#2~D2gmn2DmDn!

1S P1
D

2 D mS P1
D

2 D n

4S F1~D2!2

2
D2

4M2F2~D2!2D , ~48!

which is well known from elastic scattering. Although the
product of the two tensors is complicated in general, it sim-
plifies to

uT2u25
8e6M2Q2

D4 S v

k•D
2

v8

k8•D D 2 ~49!

as Dm→0. Thus, for smallDm, the cross section of the
Bethe-Heitler process dominates that of DVCS. To have a
clear DVCS signal, one must have aD2 reasonably large~at
least on the order of the nucleon mass! and aQ2 not too
large.

To appreciate the relative and absolute sizes of the DVCS
and BH cross sections, we shown in Fig. 5 some calculations
at the electron beam energiesv 5 6 GeV ~CEBAF after
upgrading! andv 5 30 GeV~DESY!. For the Bethe-Heitler
process, the cross section can be evaluated accurately using
the experimentally measured nucleon form factors. For the
DVCS cross section, we need a model for the OFPD’s. Since
at the moment we are interested in only a rough estimate, we
assumeE5Ẽ50 and

H~x,j,D2!5H̃~x,j,D2!5q~x!eD2/~2 GeV2!. ~50!

In Fig. 5~a!, we have shown the DVCS~solid! and BH
~dashed! cross sections at incident electron energyv56
GeV and scattering angleu518°, with a virtual photon
n53 GeV andQ251.76 GeV2. The recoil proton is de-
tected in the electron scattering plane and at the same side of
the scattered electron. In Fig. 5~b!, we have shown similar
cross sections atv530 GeV and scattering angleu53.5°,
with the photon energyn57 GeV,Q252.6 GeV2. Since the

BH cross section is calculable, experimental cross sections
tell us about the DVCS cross section plus the interference
cross section which we now turn to.

The interference contribution has the structure

T1* T21T1T2*522
e6

D2q2
~ l ~mn!aReH ~mn!a

1l [mn]aReH [mn]a!, ~51!

where the lepton tensor has been divided into symmetric and
antisymmetric parts according to the indicesm and n. The
symmetric lepton tensor is

l ~mn!a5
2

~k2D!2
$~k8mkn1k8nkm!~k2D!a1@k8m~k2D!n1k8n~k2D!m#ka1~k8mgna1k8ngma!~k•D!

2gmn@k•k8~k2D!a1k8•~k2D!ka1k8a~k•D!#%1
2

~k81D!2
$~k8mkn1k8nkm!~k81D!a

1@km~k81D!n1kn~k81D!m#k8a2~kmgna1kngma!~k8•D!2gmn@k•k8~k81D!a1k•~k81D!k8a2ka~k8•D!#%,
~52!

and the antisymmetric lepton tensor is

l [mn]a5
2

~k2D!2
@2~k•k8!~Dmgna2Dngma!1~k8•D!~kmgna2kngma!2k8a~kmDn2knDm!#

1
2

~k81D!2
@~k•k8!~Dmgna2Dngma!2~k•D!~k8mgna2k8ngma!1ka~k8mDn2k8nDm!#. ~53!

FIG. 5. Comparison of the DVCS and BH cross sections at~a!
CEBAF and~b! HERMES kinematics.
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As Dm→0, the symmetric part dominates over the antisymmetric part.
The hadron tensor is also separated into two contributions. The symmetric part is

H ~mn!a5~gmn2pmnn2pnnm!E
21

1

dxa* ~x!F @F1~D2!1F2~D2!#@E~x,j,D2!1H~x,j,D2!#S j

2
Da1

D2

2
naD

12P̄aSH~x,j,D2!F1~D2!2
D2

4M2E~x,j,D2!F2~D2! D G , ~54!

and the antisymmetric part is

H [mn]a52emnrsnrpsebgdanbpgDdE
21

1

dxb* ~x!@F1~D2!1F2~D2!#H̃~x,j,D2!. ~55!

The final expression for products of the tensors above is quite lengthy and is omitted. It is generally believed that the
interference contribution has a size between the BH and DVCS cross sections. Thus, if the BH cross section is much larger
than that of DVCS, the DVCS amplitude might be accessible through the interference term which, for instance, can be
extracted by comparing electron and positron scatterings, or by a direct subtraction.

C. Double-spin process

In this subsection, we consider scattering with both lepton beam and nucleon target polarized. The structure of the cross
section is similar to that of the unpolarized case. Indeed, the spin-dependent part of theT matrix squared has three contribu-
tions. The pure virtual Compton process gives

uT1u252
e6

q4
l VC
[mn]WVC[mn] . ~56!

The spin-dependent lepton tensor is antisymmetric:

l VC
[mn]522l i emnabkakb8 , ~57!

wherel561 represent the positive or negative helicity of the scattering lepton. The spin-dependent hadron tensor is also
antisymmetric:

WVC
[mn]5

i

2
emnabpanbE

21

1

dxE
21

1

dx8Re@a~x!b* ~x8!#H 4H~x,j,D2!H̃~x8,j,D2!~S•n!S 12
j

2D
22E~x,j,D2!H̃~x8,j,D2!F ~S•n!S j2

D2

2M2D2
~S•D!

M2 S 11
j

2D G2@H~x,j,D2!1E~x,j,D2!#Ẽ~x8,j,D2!

3
j

M2 F ~S•D!S 11
j

2D1~S•n!
D2

2 G1E~x,j,D2!Ẽ~x8,j,D2!
j

M2 ~S•D!J , ~58!

whereSm is the polarization of the nucleon with normaliza-
tion S252M2. Using emnabemn

gd 522(gaggbd2gadgbg),
one can straightforwardly work out the product of the two
tensors.

The pure Bethe-Heitler process gives

uT2u25
e6

D4l BH
[mn]WBH[mn] . ~59!

The antisymmetric lepton tensor is

l BH
[mn]528l i emnabDaFkb8 ~k81D!•k

~k81D!4
1
kb~k2D!•k8

~k2D!4

2
~k1k8!b~k•k8!

~k2D!2~k81D!2
G , ~60!

and the antisymmetric hadron tensor is

WBH
[mn]5 i emnabDaH 2@F1~D2!1F2~D2!#

3S F1~D2!1
D2

4M2F2~D2! DSb

1F2~D2!@F1~D2!1F2~D2!#
~S•D!

M2 PbJ . ~61!

As Dm→0, the lepton tensor is subleading relative to the
spin-independent counterpart shown in Eq.~47!. Thus the
spin asymmetry in the BH process vanishes in such a limit.

Finally, we consider the interference contribution
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T1* T21T1T2*522
e6

D2q2
~Dl ~mn!aRe@DH ~mn!a#

1Dl [mn]aRe@DH [mn]a#!, ~62!

where the spin-dependent lepton tensor has both symmetry
and antisymmetric parts. The symmetric part is

Dl ~mn!a5
2l i

~k2D!2
~k8menars1k8nemars

2gmnelarskl8 !Drks1
2l i

~k81D!2

3~kmenars1knemars2gmnelarskl!Drks8 ,

~63!

and the antisymmetric part is

Dl [mn]a5
2l

~k2D!2
i emnrs@~k2D!akr1ka~k2D!r

1gr
ak•D#ks82

2l

~k81D!2
i emnrs@~k81D!akr8

1k8a~k81D!r2gr
ak8•D#ks . ~64!

As Dm→0, the antisymmetric part dominates over the sym-
metric part.

The spin-dependent hadron tensor is separated into two
parts accordingly. The symmetric part is

DH ~mn!a52 i ~gmn2pmnn2pnnm!E
21

1

dxa* ~x!F @F1~D2!1F2~D2!#@E~x,j,D2!1H~x,j,D2!#ealrsnlSrDs1F2~D2!

3@H~x,j,D2!1E~x,j,D2!#
Pa

M2 elrstplSrnsDt2@F1~D2!1F2~D2!#E~x,j,D2!
1

M2 ealrsPlSrDsG , ~65!

and the antisymmetric part is

DH [mn]a5 i emnrsnrpsE
21

1

dxb* ~x!H @F1~D2!1F2~D2!#H̃~x,j,D2!@~S•n!2P̄a2jSa2~S•D!na#

22H̃~x,j,D2!F2~D2!P̄aF ~S•n!S 12
D2

4M2D2
~S•D!

2M2 S 11
j

2D G2@F1~D2!1F2~D2!#Ẽ~x,j,D2!

3
j

2M2 F ~S•D!P̄a1
D2

2
SaG1

j

2M2F2~D2!Ẽ~x,j,D2!~S•D!P̄aJ . ~66!

The product of tensors leads to a lengthy expression which
we again omit.

D. Single-spin process

The virtual compton amplitude is complex because of the
intermediate quark propagation. This gives rise to the so-
called single-spin asymmetry, that is, the cross section asym-
metry depending on a single polarization. For instance, sup-
pose the lepton beam is polarized and the hadron is
unpolarized, the single-spin asymmetry is proportional to

AL
e;22

e6

D2q2
~Dl ~mn!aImH ~mn!a1Dl [mn]aImH [mn]a!.

~67!

On the other hand, if the nucleon is polarized and the lepton
is unpolarized, the single-spin asymmetry is proportional to

AL,T
N ;22

e6

D2q2
~ l ~mn!aIm@DH ~mn!a#

1l [mn]aIm@DH [mn]a#!. ~68!

The size of these spin asymmetries directly reflects the rela-
tive contributions of the DVCS and BH processes. Their
measurement and interpretation are very interesting although
they only depend on the parton distributions atx56j/2.

V. COMMENTS AND CONCLUSIONS

In this paper, we studied some basic aspects of deeply
virtual Compton scattering. The motivation is that in the
deeply virtual kinematics, the scattering mechanism appears
to be simple, and hence, one can learn some structural infor-
mation from the process. The QCD analysis shows that it is
the off-forward parton distributions that are probed. In a par-
ticular experiment, of course, one has to decide whether one
is at the deeply virtual kinematics. As we discussed in the
paper, one can look at certain observables which vanish in
the kinematic limit~like R5sL /sT in deep-inelastic scatter-
ing!. Those includesL , sTT , and sLT discussed in Ref.
@12#. One can also check the slow-Q2 dependence of certain
scaling functions. As a first guess, one shall be at least at the
deep-inelastic kinematic region, and the recoil nucleon shall
be at backward angles. It would be interesting to demonstrate
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experimentally that the single-quark scattering mechanism is
at work.

One important theoretical issue is whether a factorization
theorem exists for the deeply virtual Compton process. The
answer is most likely yes for several reasons. First, the tree
result we obtained can be easily cast into an operator product
expansion. Such an expansion is generally believed to be
valid, independent of external states. Second, the radiative
corrections to the tree process are quite similar to the correc-
tions tog*p→g, a process known to be factorizable at the
one-loop level. Nonetheless, one still has to prove explicitly
the factorization theorem for DVCS, which will be done in a
separate publication. A factorization proof for a similar pro-
cess, electroproduction of mesons, has appeared recently
@19#.

DVCS at smallD2 is especially interesting, because the
nucleon form-factor suppression is small and because
D2→0 limit is relevant to the spin structure of the nucleon.
However, because of QED infrared divergences, the Bethe-
Heitler process becomes dominant there despite the fact that
the DVCS cross section scales like the deep-inelastic scatter-
ing cross section. Thus one cannot go to too smallD2. One
may get around this to some extent by isolating the DVCS
and BH interference term through single-spin asymmetry
and/or combined lepton-antilepton scattering. A theoretical
study of D2 dependence of the OFPD’s, in particular, its
relation to the meson dominance and the exponential decay
law for exclusive cross sections, is urgently needed.

The OFPD’s depend on four independent variables: the
Bjorken-type of variablej, the Feynman-type variablex, the
momentum transferD2, and the virtual-photon massQ2. It is
unlikely that one can learn the entire parameter space of the
distributions in one kind of experiments. As our formulas

show, different kinds of experiments are sensitive to differ-
ent combinations of parton distributions and hence they are
complementary.@The reason that the nucleon helicity-flip
distributions contribute to unpolarized scattering is similar to
that for which the Pauli form factorF2(D

2) appears in un-
polarized elastic scattering.# However, to be able to study
sum rules, one must have accurate data in an extended kine-
matic region. To achieve this, one must have dedicated ex-
periments at a suitable machine like ELFE for extended run-
ning @20#.

The off-forward parton distributions can also be defined
for quark helicity-flip~chiral-odd! correlations and for higher
twists. DVCS provides one process to access to these distri-
butions. There are other processes one can consider to mea-
sure them. For instance, the diffractiver or J/c production
studied by Brodskyet al. @21# can be used to measure the
off-forward gluon distributions. Recently, Radyushkin has
published a paper aimed in this direction@16#. Thus there is
now new territory to explore in the quark and gluon structure
of the nucleon besides the traditional inclusive~parton dis-
tributions! and exclusive~form factors! processes.
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