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We study in QCD the physics of deeply virtual Compton scattetingCS)—the virtual Compton process
in the larges and smallt kinematic region. We show that DVCS can probe a new typefieforward parton
distributions. We derive an Altarelli-Parisi-type of evolution equations for these distributions. We also derive
their sum rules in terms of nucleon form factors of the twist-two quark and gluon operators. In particular, we
find that the second sum rule is related to fractions of the nucleon spin carried separately by quarks and gluons.
We estimate the cross section for DVCS and compare it with the accompanying Bethe-Heitler process at
CEBAF and HERMES kinematic$§S0556-282(97)00811-4

PACS numbd(s): 13.60.Hb, 13.88te, 14.20.Dh

[. INTRODUCTION suming the virtual photon is generated by inelastic lepton
scattering, we are interested in the Bjorken limit, i.e., the
The Compton process, which refers to elastic scattering oénergy and momentum of the virtual photon going to infinity
a photon off a charged object, has played an important rolat the same rate. We shall call the process deeply virtual
in the history of quantum electrodynamics: It provided earlyCompton scatteringDVCS). As we shall discuss in the next
evidence that the electromagnetic wave is quantized andection, the basic mechanism for DVCS is a quark absorbing
hence, has the nature of partic[d3. The role of the Comp- the virtual photon, immediately radiating a real photon and
ton process in studying the structure of hadrons has beefalling back to the nucleon ground state. Thus the physics of
explored since the 1950s, when Low’s low-energy theorem®VCS is quite simple.
[2], analogous to the well-known Thomson cross section, Our interest in studying DVCS is generated from the fact
were derived. Those theorems assert, for instance, that #iat it offers a way to measure the off-forward parton distri-
sufficiently low energy the spin-dependent part of the Compbutions (OFPD’s, a new type of parton distributions that
ton amplitude is determined by the anomalous magnetic mogeneralizes the usual parton distributions and the nucleon
ment of a composite system. Going to higher-order terms ifiorm factors. When taking moments of OFPD’s, one gets
the low-energy expansion, one finds the electric and magform factors of the spim, twist-2 quark and gluon operators.
netic polarizabilities3]. In recent years, experimental and When going to the forward limit, OFPD’s become the usual
theoretical works in measuring and understanding the polamguark and gluon distributions. Because the spin-2, twist-2
izabilities of the nucleon and pion have flourisHéd. operators are part of the energy-momentum tensor of QCD
Generally speaking, however, the Compton process on and because the form factors of the energy-momentum ten-
composite system is quite complicated. When a pointlikesor contain information about the quark and gluon contribu-
constituent absorbs an incoming photon, the system becomésns to the nucleon spin, DVCS may provide a novel way to
excited. As it propagates in time, the system eventually emitsneasure the fraction of the nucleon spin carried by the quark
a photon and comes back to the ground state. Quantunmrbital angular momentum, a subject of great current interest
mechanical propagation of a composite system is difficult td7].
handle theoretically, except in spatial kinematic regions. The The presentation of the paper is as follows. In Sec. I, we
low-energy theorems exist for the Compton scattering on theonsider DVCS in QCD at the tree level. We identify the
nucleon because the intermediate propagation at low energyff-forward parton distributions from the Compton ampli-
is dominated by the nucleon its€l2]. Another kinematic tude and then study some simple aspects of the distributions,
region known to have a simple scattering mechanism isuch as sum rules. In Sec. lll, we study the leading-
where thet-channel momentum transfer is large, i.e., wherelogarithmic evolution of the OFPD’s. The results are pre-
the nucleon has a large recf]. In this case, perturbative sented in the form of generalized Altarelli-Parisi equations.
guantum chromodynamics can be used to understand the iin Sec. IV, we work out the cross sections for DVCS and the
termediate propagation. In fact, according to the so-callediccompanying Bethe-Heitler process and their interference.
power-counting rule[6], the most important intermediate To be complete, we consider all cases including unpolarized,
states are those created from three valence quarks througlouble-spin, and single-spin processes. Some estimates are
hard-gluon exchanges. Simple as it may be, one still has tgiven at the Continuous Electron Beam Accelerator Facility
compute hundreds of Feynman diagrams to obtain the scatCEBAF) and HERMES kinematics. The final section con-
tering cross section. tains comments and discussions.
The purpose of this paper is to study the Compton scat- A preliminary account of the DVCS process is discussed
tering by a virtual photon in a special kinematic limit. As- in a Letter by this authof8]. Subsequently, Radyushkin
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FIG. 1. Virtual Compton scattering process. //\/—_j\ :%%

studied the scaling limit aA?=0 from a different angl¢9].

Actually, processes similar to DVCS were first considered by (d) (e)
Geyer and co-workers in studying the anomalous dimensions
of light-ray operatord10], where the “interpolating func- FIG. 2. QCD diagrams for deeply virtual Compton scattering:

tions” were introduced. The evolution of these functions is(a) the handbag diagrantb),(c) some 102 corrections; andd),(e)
found to interpolate the Brodsky-Lepage and Altarelli-Parisisome radiative corrections.
equations. Similar objects were also considered by Jain and
Ralston in the context of studying the violation of helicity discuss in the next section. In other kinematic regions, they
selection rule and the effects of transverse momerjtlih give rise to ordeta(Q?) radiative corrections and hence can
be ignored in the deeply virtual limit. One exception is the
gluon vertex correction for the real photon in FigeR
where as the two quark lines have momenta predominantly
parallel to the photon momentum, the diagram has an infra-
This section is devoted to studying the virtual Comptonred divergence reflecting the nonperturbative photon wave
scattering in deep-inelastic kinematics and at the leading ofinction. Fortunately, a simple calculation shows that the
der in perturbative QCD. The main result is that DVCS iscontribution in this kinematic region is suppressed b@2/
dominated by single-quark scattering, and therefore the anfelative to the handbag due to the hard-gluon propagator.
p||tude can be expressed in terms of the off-forward partoﬁrhus, in the remainder of this section we concentrate SOler
distributions. We also study sum rules of these distribution®n the dominant subprocess in Figag
and show that the second sum rule is related to the total According to Feynman rules, the handbag diagram corre-

Il. DEEPLY VIRTUAL COMPTON SCATTERING
AT LEADING ORDER

quark (gluon) contribution to the spin of the nucleon. sponds to the Compton amplitude:

We picture the virtual Compton scattering in Fig. 1, 4 ,
where a nucleon of momentu* absorbs a virtual photon TW:iJ dk Tr[ ¥ : —
of momenturmg*, producing an outgoing real photon of mo- (2m)* K—ah+Kk+ie

mentumq’#=qg*—A* and a recoil nucleon of momentum
P’'#=P#*+A* We focus on the deeply virtual kinematic + oy —
region of g*, r12amely, the Bjorken limitQ?= —q?—o, K+(1-a)kA—q+ie
P-gq—«, andQ“/P-q finite. In this region, the quark that N .
absorbs the virtual photon becomes highly virtual and henc¥/néréx andy are the polarization indices of the virtual and
propagates perturbatively. The simplest mechanism to forn€@l Photons and/i(k) is a quark density matrix,
the Compton final state is for the quark to promptly radiate a o
real photon and fall back to the nucleon ground state. This M(k):f eik2d4z<pf|¢(_az) Y(1—-a)Z]|P), (2
“handbag” subprocess is shown in Figa2

. In QCD, more complicated trge sfubproce.sses are POSY here 0< <1 reflects the arbitrariness of the looping mo-
sible. By tree, we mean perturbative diagrams in which BVery  ontumk®. To proceed further, it is convenient to define a
vertex is next to the nucleon blob. For instance, the highlys ecial s.stem of coordina'tes We choo and
virtual quark can interact with gluon fields in the nucleon, a2 y, i T ) s;é‘
shown in Fig. 2b), or it can transfer its virtuality to another P*=(P+P")*/2 to be collinear and in the direction. In-
quark through one-gluon exchanges, as shown in Fig. 2  troduce  two lightlike vgctorzs p#=A(1,0,0,1) and
detailed calculation shows that both subprocesses are suE_’f:(l’o’o'_l)/(ZA)’ with p*=n“=0, p-n=1, andA ar-
pressed by T3 relative to the handbag diagram, except itrary. We expand other vectors in terms pf, n* and
when the polarization of the gluon in Fig(l is longitudi-  (fansverse vectors:
nal. Fortunately, in the light-cone gaugé =0, the longitu-
dinally polarized gluons do not contribute by definition. Thus
in the deeply virtual limit, the single-quark process indeed

M(k)], ()

Pr=pit (M22)n%, = —¢pi+(Q¥2¢)n*,

dominates the Compton scattering. A#=—¢[p*—(M?2)n*]+ AL,
Of course, one can decorate the handbag with radiative
loops, such as those shown in Figgd)2and Ze). Those kt=(k-n)p*+(k-p)n*+kt, 3)

diagrams in certain kinematic region produce leading- _
logarithmic corrections to the simple handbag, as we shalvhereM?=M?—A2?/4 and
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e=[—P-q+(P-q)2+Q2M2]IM2. V=A% M?—AZ/4. We neglect components of four vectors
which do not produce large scalars in the Bjorken limit. In-

The ¢ variable is analogous to the Bjorken variablg in  troducing the factoff dx(d\/27)e**~* MW =1 and integrat-
deep-inelastic scattering and is bounded by 0 andng overk” andz*, we simplify the Compton amplitude to

H(x,&A2)U(P")hU(P)

1 1 1
v =1 v_ V—pV
T(P,q,A)=2(g""—p“n"—p ””)f_ldx(x—glzﬂﬁ x+§/2—ie>

s, da*Pn, AL i 1 1 1
FEXEADUP)—Zg—U(P) +§€Wﬁpanﬂf_1dx X—E2tic Xt él2—ie
~ — - An—
x H(x,f.A2>U<P'>my5U(P>+E(x,g,M)z—JwP’MU(P)}, @

where we have chosem=1/2 for symmetrical reasor, H, E, andE are off-forward, twist-2 parton distributions defined
through the light-cone correlation functions

_ _ . 1 MV
f :—:\Tei“(P’|w(—)\n/Z)y"w()\nIZHP}:H(X,§,A2)U(P’)7“U(P)+E(x,gAz)U(P’)IUZM "U(P)+---,
f d)\ IAX v y o 211/D7 yn = N1 1/ 175AM
5. ¢ (P'|p(=XnI2) y*ysp(ANI2)|P)=H(X,&,A%)U(P") y*ysU(P) + E(x,&,A°)U(P )WU(PHW, 5

where the ellipses denote higher-twist distributions. Accord- 1

ing to our definition, the initial nucleon and the active quark f_ldXH(X,&AZ): Fi(A%),
have the longitudinal momentunt1£/2 andx+ £/2, respec-

tively. (In covariant gauge, the longitudinal gluons produce a 1

gauge link exp—igf;,g’zn-A(an)da] between the two f dXE(x,&,A%)=F,(A?),
quark fields, restoring explicit gauge invariance of the light- -1

cone correlations. Here we are working in the light-cone
gaugen-A=0; hence, the longitudinal gluons and the gauge
link never appear. Nonetheless, the result shall be taken as
implicitly gauge invarian).

A systematic counting indicates that the virtual Compton 1 -
scattering depends on 12 helicity amplitu@&g]. The above J dxE(x,£,A%)=Gp(A?), (7)
result implies that only four of them survive the Bjorken -1
B o es i o uhere (4% and () ar the D and Paui form

y P P 9. actors andG,(A?) and Gp(A?) are the axial-vector and

- - : 1
transversely polarized virtual photon scattering, the em'tte?:)seudoscalar form factor€Usually the argument of form
g?ctors is the positive- A%. Here we omit the minus sign for

photon retains the helicity of the incident photon at the lead
Simplicity.)

ing order. This selection rule can serve as a useful check th
deeply virtual Compton scattering is indeed dominated by The second moment of the parton distributions is relevant
to the spin structure of the nucleon. To see this, we first write

the single-quark process. Of the four off-forward parton dis-
tributions,H andH conserve the nucleon helicity, while down the angular momentum operator in QCD as the sum of

J " dxFIx,£,0%) = G(A2),
-1

andE flip the nucleon helicity. _ quark and gluon contributiors]:
The off-forward parton distributions just defined have
characters of both the ordinary parton distributions and jQCD: jq + jg (8)

nucleon form factors. In fact, in the limit &“—0, we have
where
H(x,0,0 =q(x), H(x,0,0=Aq(x), (6)

ﬁw YIXX(—iD)y
5 ,

- jq:J dsx;qu=J dx
whereq(x) and Aq(x) are quark and quark helicity distri-

butions, defined through similar light-cone correlatiph3].

On the other hand, forming the first moment of the new

. s 23
distributions, one gets the sum rulés11] ‘]g_f d*xxX(EXB). ©)
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Herefq andE X B are the quark and gluon momentum den-dependent distributions are different; hence, we treat the two
sities, respectively.S is the Dirac spin matrix and Cases separately.

I5=5+ig,5\ is the covariant derivative. By an analogy with
the magnetic moment, one can get the separate quark and
gluon contributions to the nucleon spin if the form factors of

the momentum density, or equivalently the energy- |, s sybsection, we consider evolution of helicity-

momentum tensor of QCD, are known at zero momenmn?ndependent off-forward parton distributions. We use a ge-
transfer. Using Lorentz covariance and other symmetry prin- . . 2 ~2 .

) ) neric notationEg ndX,£,A%,Q%) to denote singlet and non
ciples, one can write down four form factors separately for ;

quark and gluon parts of the energy-momentum tensor: singlet quark density:

A. Evolution of parton-helicity-independent distributions

J— 2 J— E ix f AZ QZ):E d_)\eihx
(P'|TGglPY=U(P)[Aqq(A%) y“P? SNERET T2 2
2 _( P v)a A A
By o(A2)PHi g DA J2M ><<F,, J‘E”)W(z”) P>,

+C, (AD)(A*AY—gH"AZ)IM
a.g(A%)( g ) 13

+Cqg(ADG"MU(P), (10

where againﬁ:(pu+ P#")[2, A¥=P# —Pr andU(P)  Where the flavor indices and the gauge link have been ig-
is the nucleon spinor. Substituting the above into the nucleofored, ancEg(x,£,A%,Q?) denotes the gluon distribution:

matrix element of], 4, one finds fractions of the nucleon
spin carried by quarksl,, and gluons]y:

. . Eo(x,£,42,Q%) = — o [ X g
Ja.g= 2[Aq,g(0) +Bg g(0)], Jgt+Ig=3. (11 L& 2x) 2w
According to the definition, the second moment of off- el N oA
L . X{P'|F¥* —=n|F’| =n||P)n,n
forward parton distributions yields the form factors of the 2 “\ 2 ey

nergy-momentum tensor:
energy-momentum tenso (14

1
f dxH(x,&A%) +E(x,£A%)]=A(A%)+B(A?),

-1 Since gluons are bosons, we hag(—x)=—Eg(x). The
(12) support for the light-cone variablecan be studied as in Ref.
[17] and is —1<x<1. Since the evolution equations are
independent oA2, we will omit the variable in the following
equations.

The evolution of the nonsinglet quark densityxat £/2,

where both quark lines represent quarks, takes the form

where luckily the¢ dependence, o@Q(AZ) contamination,
drops out. Extrapolating the sum rule 5?=0, one gets
Jq.g- Note that only in this special application are we inter-
ested in theA2—0 limit. In general discussions of DVCS,
such a limit is of course not necessary.

By forming still higher moments, one obtains form factors
of the twist-2 operators of spin greater than 2. In general,
there are many form factors for each of the tensor operators;
however, only special combinations of them appear in mo-
ments of the OFPD'’s. The relative weighting of the different
form factors is determined by the variakje

IIl. LEADING-LOGARITHMIC EVOLUTION
OF OFF-FORWARD PARTON DISTRIBUTIONS (a) (b)

In this section, we study the leading-logarithmic evolution
of the off-forward parton distributions. Like the leading-
logarithmic evolution of the usual parton distributions
(Altarelli-Parisi equatiori14]), there are many approaches to
calculate it. Here we use the momentum-space Feynman dia-
gram technique. For simplicity, our calculation is done in the
light-cone gauge, although one is free to work entirely in

covariant gauge. While the result of Sec. lll A has appeared (c) (d)
in different forms in the literature befofd.0,15,14, the re-
sult of Sec. Il B is new. FIG. 3. Leading-logarithmic evolution of the off-forward parton

The evolutions of the helicity-independent and helicity- distributions.
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DInQ? T om [y Thslyry ensYs &R0, DInQ? 2w Sy Mly'y
(15
[ ey (X —5) Ensly.£.Q?)
where Ly Ns{y Ty |Ens Y. ¢, '
Do _ d _alQ) §+Jx dy (18)
DInQ? dinQ*> 27 F|2  Jypy—x—ie
X dy where
—g2Y—X—le
The parton-splitting function is calculated according to Fig. PL(X,£)=C x+§l2 1+ 3 (19)
3(a), NSt Fe1+¢2) 1-x+ie”

B x2+1— €22
_CF(l—x+ie)(1—§2/4)’

Pns(X,€) (170 When¢=2, shifting the variablex—x—1 and then scaling

the x by a factor of 2, one finds that the evolution equation
whereCg=4/3 for the SUW3) color group. The endpoint sin- becomes the Brodsky-Lepage evolution equation for the pion
gularity is canceled by the divergent integrals inwave function[18]. For x<—¢&/2 where both quark lines
DQ/DInQZ. Obviously, wheré=0, the splitting function be- represent antiquarks, the evolution takes the same form as
comes the usual Altarelli-Parisi evolution kernel. For Eq.(15), apart from the replacemeyﬁﬂﬂ—fx_l.
— &2<x< &/2 where one of the two quark lines represents a The evolution of the singlet-quark density mixes with that
guark and the other represents an antiquark, the evolutioof the gluon density. Fox> ¢/2, the coupled evolution takes
takes the form the form

X &

y'y

DoEs(x,6,Q%)  as(Q
DInQ? = 27

. as(Qz)fld_y
- 27 x Y

whereng is the number of quark flavors and

2)f1d—y Pss(
x Y

1
PGS(§1§) E(ES(yingz) - ES( _yifin))—’_ PGG(

2 x £ 2
Eq(y,£,Q%)+2nePgg v'y Ec(y,&,Q9) |,

DGEG(XrgiQZ)
DInQ?

f g) EG(yf:QZ)},

y'y 20

Dg  d
DInQ?  dInQ?

aS(QZ)
2

11 ng
6 3C,

X dy

+f —+
g2 Y —X—1€

dy
&2 y—x—ie

A (21

)

The evolution kernels are

X2+ (1—x)2— &4
(1-£74)%

1

(1-£%4)7

1+(1—x)%— £%/4

PSéxaf):PNS(ng)! PSG(va):TF X(1_§2/4)

y PGS(X1§) = CF

(X*=&%14)

2(1—x)(1+x%) 1+x—&%2
PGG(X-S):CAX ( ( + ¢

X2 — £214 1-x+ie

(22)

whereTg=1/2 andC,=3. As £{—0, we again get the usual Altarelli-Parisi evolution kernels.

For — £/2<x< £&/2, we have
idy x £
_P’ —
L y 55( )
&

y'y
2 1d
+as(Q) y_, z_s

j X
2 X_ SG y

y y

DQES(XlgiQZ) _
DInQ?>

aS(QZ)[

X & xdy
277[ y y

y’§)_j1ypsg(

X dy ,
R

y'y

ES(yigin)

|

znfEG(y7ng2)v (23)
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DGEG(XangZ)_aS(QZ)[ idy X § xdy | (x &)1
DINQ? = o [LV esly'y _flVPGs(y,_y)}E(ES(Y@QZ)—Es(_yf,Qz))

idy X & xdy X _é
nyp (y y) J17PGG(y’ y)

" aS(QZ)

2 EG(yingz)v

where the evolution kernels are

(X+&/2)(1—2x+E&12) , (X+€&/2)(2—x+E&12)
séx é:) PNS(X f) PSG(X g) TF §(1+ 5/2)(1 52/4) PGS(X'§ =CF Xf(1+ 5/2) ’

Psa(x,§)=—C

2__ g2 2
(2= 214 | £ 2(1+x2) } 0

Ax§(1—§2/4)[1_1—x+ie_ (1+€12)(x—&12) |
For x< — ¢/2, the evolution equations are the same as(26), exceptf1— — %,

B. Evolution of parton-helicity-dependent distributions

The helicity-dependent distributions are defined as follows: The singlet and nonsinglet quark distributions are

A N
— 5N Aysg| 5N
oo =g Fil3n)

—En o En

The evolution of the nonsinglet helicity-dependent quark density is exactly the same as that of the nonsinglet helicity-
independent quark density.

For the singlet evolution, we consider mixing between the singlet quark and gluon distributions> Ef&, the evolution
equations are

P

ESNS(X £A%2,Q0%) == f d:‘Te'“< P’ P>. (25)

The gluon distribution is

Eo(x,6,A2,Q%)=— 2le s)‘ e'“< P’ P> NN, (26)

-~ 1 ~ ~
whereF*A= Ee“ﬂV‘sFyﬁ. It is easy to see thd&g(—x)=Eg(X).

AP g(f é) E«(Y,&,Q%) +2nAP
S y'y SUYs 6 F SG

DoEs(x,£,Q%)  ay(Q?) Jldy
DInQ*> 27 Jyy

DoEa(X.£,Q%) as(Qz) fldy
DInQ?

X &= 2}
yiy) EG(yvgiQ ) ’

(X ) ~Edy.£,Q%)+Eo— y§Q>>+APGG(y j)Edny%} 27)

where the splitting functions are

B X (1-x)2— %4 L 1-(1-x)?-¢4
APSixvé)_PNS(Xig)r APSG(ng)_TF (1_52/4)2 ’ APGS(Xvé)_CF X(l_§2/4) )

(X2— &£2/4) [ 4x(1-x) 1+x—&2/2

APecX O =Cas g 1 e—gia T Txrie

(28)

Again, whené= 0, the splitting functions are the usual spin-dependent Altarelli-Parisi kernet- Ef2<<x< &/2, the evolution
equations are

DQES(X’giQZ)_as(QZ)[ idy X & Nk dy , (x _f _ ,
DInQ> 2w [LVAPSS(yy) f_lyﬁpss(;,y ;) Es(y.£,Q%)
ad @) (dy L (x &) (xdy o (x & =
T on fx y APs (y y) f_17APse(y’ y> 2n¢Eg(y,£,Q%), (29)
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DeEs(x.£Q%)  adQ¥)[ [rdy _ (x & (xdy _ [x &)1
DInQZ - 20 [fXV PGS(;’)_/ _f_lvAPGS()_/’_)_/)}E(ES(yangz)—’—ES(_ylngz))

as(Q?) fldy x & JX dy x €)=
+ —APLsl =, 2| - | —APLgl =.— =] |Eg(Y.£Q?),
o7 | )y ~reelyy Ly APee(y Ty c(y,€,Q%)
|
where the splitting functions are whereM is the nucleon mass ariflis the T matrix of the

scattering. Integrating over the photon momentum, we find

APsdx,8)=Pyg(x,é),
1 ,0'do’'dQe
do

(X+ €12)(— 1+ &12) = Zam 7] 2(2m)°
E(1+E2)(1—E214)°

2m8((k+P—k'—P")?)

APS(x,6) =Tk

X i (32
SET (9.3
. (X+ 5/2)2 2E (27T)
APes = Cr it | it
x¢(1+¢/2) where theé function reflects the photon on-shell condition,
s o which constrains the direction and magnitude of the momen-
xX“—¢&°/4 i 30
APL (X, 6)=— CAX(f(l—glej-) tum of the recoiling nucleor?’,
2_ I_N. D=
£ ax s+M“=2[(v+M)E'—q-P']=0, (33

x| 1— — — .
1=x+ie (1+¢&/2)(x—¢/2) where s=(q+P)2, g#=(v,q)=k“—k’#. Thus the phase
(30) space of the recoiling proton is specified by the solid angle
dQp,. Note, however, that for large and v, there are two

For x<—¢/2, the evolution equations are the same as Edsolutions of|P’| corresponding to one orientation &f'.

(27), exceptfy——* ;. Physically one of them represents the recoil proton at the
Of course, in a reasonable range @f, the OFPD’s do  backward angle in the center-of-mass frame. Integrating over

not evolve dramatically. Thus, a second check on the DVC$ne magnitude of’, we get

dynamical mechanism is to find small> dependences of

relevant scaling functions.
do

= mw’dw'dﬂe,dﬂp/
IV. CROSS SECTIONS AND ESTIMATES P2
i i i - X 2 4
In this section, we calculate the cross section for electro [P"(v+M)—qE cosj| |72, (34

production of a real photon off a nucleon. As shown in Fig.
4, we usek=(w,k) andk’'=(w’,k’) to denote the four-
momenta of the intial and final electron8=(M,0) and two possible solutions dfP’| is implicit. We choose the

P’=(E’,P’), the intial and final momenta of the nucleon, 4,is to be the direction of the incident electron andstreis
q'=(v",q), and the momentum of the final photon. The jn the plane formed by the initial and final electron momenta.

where ¢ is the angle betweeq and P’, and the sum over

differential cross section in the laboratory frame is In this coordinate system, the final electron has the polar
1 angle . The polar and azimuthal angles Bf are denoted
do= 1 T|2(2m)*6*(k+P—k' —P'—q') by 6 and ¢p/, respectively. Note thd7]? has the dimen-
4oM sion of a cross section.

3/ 33 3= Alternatively, we can integrate out the momentum of the
% d>k d°P dq (31) recoil proton:
2w' (2m)3 2E' (27)3 2v' (27)%’

!

14
- ’ , — 2
4o = S zmBam® 9 4 dQa oy 7%

(35
where ¢’ is the angle betweeq and q’. The polar and
(a)

azimuthal angles oﬁ’ are denoted by, and ¢, respec-
(b) (c) tively. The constraint between the energy and direction of
the outgoing photon is
FIG. 4. Electroproduction of a photon off the nucleda) the
virtual Compton scattering; anh),(c) the Bethe-Heitler process. s—M?=2v'(v+M—qcosp’)=0. (36)
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A. T matrix _ )
We calculate the Feynman diagrams shown in Fig. 4. We (P'13.(0)[P)=U(P")] 7,F1(A%)
assume for the moment that the scattering lepton is nega- ic Av
tively charged €>0). The T matrix for the Compton scat- +F,(A?) 5;\’/' }U(P), (40)
tering part is
T,= —e3u_(k’)y“u(k)—12TWeV*, (377 WhereU,U are the nucleon spinors arity andF, are the
q usual Dirac and Pauli form factors of the nucleon.
whereu,u are the spinors of the lepton ardis the polar- The total T matrix is the sum of the two above:
ization of the emitting photoril ,, is the standard Compton
amplitude: T=T+7T,. (41

T’“’:if eiiq.Z<P’|TJ/‘(Z)JV(O)|P>d4z' (38) B. Unpolarized scattering

In the deeply virtual regionT,, is expressed in terms of  First, we consider the scattering process without polariza-

off-forward parton distributions in Eq4). . tions. The square of th& matrix has three terms. First, the
The T matrix for the Bethe-HeitlefBH) process is pure Compton process gives

1 6

— a3k * o e
L L = e ITaf*= — o ieWoeuns (42)

1 oo
+ Y“mé u(k) 52(P'[3,.(0)[P), where the lepton tensor is

(39) /{,’L&D)ZZ(k“k,V‘F kyk"u'_g’u'yk'k,). (43)

wherem, is the mass of electron and will be ignored for the
following discussion. The elastic nucleon matrix element is The hadron tensor is calculated from E4):

W= 39"~ P“n”—pyn“)[ fl 0|Xa(X)jl dx’o* (x")| = E[H(x,£,A%) +E(x,&A)][H(X',§A%) +E(X',£,A7)]
-1 -1
AZ
+4H(x,§,A2>H(x',§,AZ)—WE(x,f,AZ)E(x',g,AZ)}

— E[H(x,£A) +E(X,£A)H(X £ AY) +E(X’,£,A%)]

+fjldx/3(x) ledx’ﬁ*(x’)

~ ~ —_ - AZ
+AH(X,£,A2)H(X', £,A%) + EPE(X,£,A%) E(X’ ,§,A2)( 1- W)

] : (44)

wherea(x) and 8(x) are

1 1 1
x—&2+ie x+éz—ie’ P TEarie xtrEa=ie
Thus, forH(x) andE(x) less singular tham ™2 andﬁ(x) andE(x) less singular tham ™1, the integrals are convergent. To
simplify the expression, we have left out as usual the sum over quark flavors weighted by the electric charge squared. To find

the product of the two tensors, one shall express the null vestarslp in terms of physical vector® andq by inverting Eq.
(3). The result is that7;|? goes like 102 at largeQ?, like the inclusive deep-inelastic process.
The pure Bethe-Heitler process gives

a(x)= (45

22 ©
| 75| :F/BH WaH(u) » (46)
where the lepton tensor is

24 [k- (K +A)J(2K #K" "+ APK "+ APk “—gr?K' - A)

+ ek (k= A) )2k - AMK - Atk gtk A)

8
a2 ) (k) + A2 M+ )
20Kk A - K—kPKPA k') +[(KE— K/ ) A= (K'Y= K" AR+ (K — k) - AgP ]k K'). @7



7122 XIANGDONG JI 55
= 101
As A*—Q0, it diverges quadratically as expected from low- &
energy theorems. The hadron tensor is >
2 100
14 14 14 ~ 10 3
Wi =[F1(A%) +F5(A%)]2(A%g" — AA") &
S
A\# v o
2\2
+ P+§ P+§ 4(F1(A ) 210_1 L
o
2 s
_ = 2y2 ©
4|\/|2F2(A ) (48 'UIO 2 | | 1 |
-1 -15 -2 -25 -3
which is well known from elastic scattering. Although the 2
. . . Lo (a) A
product of the two tensors is complicated in general, it sim-
plifies to = 10l . . : .
I 2_BGGMZQ2 ) o' \? 49 é s
X A Y 49 3
< 100 | N .
as A#*—0. Thus, for smallA#, the cross section of the gg \\\ 1
Bethe-Heitler process dominates that of DVCS. To have a ® Sl
clear DVCS signal, one must haveA& reasonably largéat D q0-1 L Tl o4
least on the order of the nucleon massid aQ? not too g T
large. E
To appreciate the relative and absolute sizes of the DVCS o 2 . | | .
and BH cross sections, we shown in Fig. 5 some calculations 10 05 -1 -15 -2 —25 _3
at the electron beam energies = 6 GeV (CEBAF after ’ T, '
(b) A

upgrading andw = 30 GeV(DESY). For the Bethe-Heitler

process, the cross section can be evaluated accurately usingrIG. 5. Comparison of the DVCS and BH cross sectiongt
the experimentally measured nucleon form factors. For th€EBAF and(b) HERMES kinematics.

DVCS cross section, we need a model for the OFPD'’s. Since

at the moment we are interested in only a rough estimate, wBH cross section is calculable, experimental cross sections

assumeE=E=0 and

cross section which we now turn to.

H(x,&A2)=H(x,&A2) =q(x)ed726¥) (50

In Fig. 5@, we have shown the DVC$solid and BH
(dashedl cross sections at incident electron energy- 6
GeV and scattering anglé=18°, with a virtual photon
v=3 GeV andQ?=1.76 Ge\2. The recoil proton is de-

tected in the electron scattering plane and at the same side of
where the lepton tensor has been divided into symmetric and
antisymmetric parts according to the indicesand v. The

symmetric lepton tensor is

the scattered electron. In Fig(l), we have shown similar
cross sections ab=30 GeV and scattering angk=3.5°,
with the photon energy=7 GeV,Q?=2.6 Ge\~. Since the

VACTOLES

2
(k=4)?

7?7—2+717§:_2A

6
€ A uv)a
2q2(/ ReH

+/1eReH 040,

{(K K7+ Kk (k= A) T+ [K (k= A) "+ K "(k— A)#Tk+ (k' #g"+ k' "g») (k- A)

2
—gPTk-K (K= A)* 4K - (k= A)KY+K (K- A) ]+ s L (K K7+ K KE) (K +A)®

(k

+A)

tell us about the DVCS cross section plus the interference

The interference contribution has the structure

uv)a

(51)

+{kA(k" +A)"+ k(K" + A)#Tk"*— (k*g¥*+ k"g**) (k' - A)—g*[k-k' (k' + A)*+ k- (k' +A)k"*—k*(k" - A)]},

and the antisymmetric lepton tensor is

Aluv]a —
=Ky

[—(k-k")(A*g"“—AYgHe) + (k' A)(kHg"* —k"gH*) —Kk"“(k*A"—k"A#)]

2
2Lk = Age) = (ke A) (K g™ K ") k(K #A 7= K PA#)].

(52

(53
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As A*—0, the symmetric part dominates over the antisymmetric part.
The hadron tensor is also separated into two contributions. The symmetric part is

2
HUke= (gH7—prn’—p'nk) f " dxa* (0| [F2(42)+ Fo( AD)TE(x,,42)+ H(x,f,A2>](§A“+ %n“)
-1

2

— A
+2P“< H(x,&A%)F(A%)— WE(X,g,AZ)FZ(AZ)”, (54)

and the antisymmetric part is
1 ~
HU#e= — e7on p YN gp A 5 J | XBT (OIFL(AD) +Fo(A%) JH(x,£,4%), (55

The final expression for products of the tensors above is quite lengthy and is omitted. It is generally believed that the

interference contribution has a size between the BH and DVCS cross sections. Thus, if the BH cross section is much larger
than that of DVCS, the DVCS amplitude might be accessible through the interference term which, for instance, can be

extracted by comparing electron and positron scatterings, or by a direct subtraction.

C. Double-spin process

In this subsection, we consider scattering with both lepton beam and nucleon target polarized. The structure of the cross
section is similar to that of the unpolarized case. Indeed, the spin-dependent parfTofntteix squared has three contribu-
tions. The pure virtual Compton process gives

6

2 e A pv]
| T1|*=— ?/vc Wyer g - (56)
The spin-dependent lepton tensor is antisymmetric:
A= —2Ni " Pk K, (57)

whereA==*1 represent the positive or negative helicity of the scattering lepton. The spin-dependent hadron tensor is also
antisymmetric:

wlvfgl='§ewﬁpanﬁf_lldxf_lldx’ Re[a(x)ﬁ*(x')](4H(x,§,A2)ﬁ(x',§,A2)(s. n)( 1- g)
- A%\ (S-A) & -
—2E(x,&ADH(X,EAD)| (S n)| - W)__M?_(“E —[H(x,&A2) +E(x,&A)]E(X,£A2)
A2 ~
x% (S-A) 1+§ +(Sn)— +E(x,g,AZ)E(x’,g,AZ)%(s-A)}, (58)

where$* is the polarization of the nucleon with normaliza- and the antisymmetric hadron tensor is
tion S°= —M_Z. Using e“"*fel0=—2(g*"gh°—g*’gP7),
one can straightforwardly work out the product of the two

tensors. . _ W = e“”“BAa[ 2[F1(A%)+F,(A%)]
The pure Bethe-Heitler process gives

e® x| F1(A2)+ A (AZ))S
|7E|2=P/{3’ﬁv]WBH[MV]- (59 . 4M2" 2 A
S-A
The antisymmetric lepton tensor is +Fy(A?)[F(A%)+ Fz(AZ)](—MT) Pﬁ}. (62)

k;g(k’+A)-ki Kg(k—A)-K’'
(kK'+A)* 7 (k—=A)* As A*—0, the lepton tensor is subleading relative to the
, , spin-independent counterpart shown in E47). Thus the
_ (k+k')g(k-k") (60) spin asymmetry in the BH process vanishes in such a limit.
(k—A)2(k" +A)?| Finally, we consider the interference contribution

= —8\iet e PA
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eb / and the antisymmetric part is
T TL+TT=— ZW(A/(‘”’)“RQAH(W)Q]

+A/MeRg AH , 62 2\
q [Mv]a]) ( ) A/[#V]a:(k_A)ziEMVPU[(k_A)akp+ ka(k_A)p
where the spin-dependent lepton tensor has both symmetry
and antisymmetric parts. The symmetric part is " , 2N T L s
~ +gpk-A]ko_— mlé [(k +A) kp
A/,/‘(,u,v)a: kr,u, vapo k/V napo
4 k=nyz (ke € +k' (K +A),— gk’ - ATK, . (64)
g#’eM Pk A Kk, + 2\
—g"e TRy . . .
MEPRTT (K +A)? As A“—0, the antisymmetric part dominates over the sym-
X(k,uevaprr+ kveﬂaplr_gﬂve)xap(rk)\)Apk(/r' metric part.

The spin-dependent hadron tensor is separated into two
(63 parts accordingly. The symmetric part is

AH®Y = —j(gr’—pHn’— anM)fl dxa* (X)| [F1(A?) +F(A?)[E(X,&,A%) +H(X,£A%) 1€ N, S, A, +F(A?)
-1

a

2 2 P ApoT 2 2 2 1 akpo
X[H(ngaA )+E(X1§!A )]Wf p)\Spna'AT_[Fl(A )+F2(A )]E(ngaA )Wf P)\SpAU' ’ (65)

and the antisymmetric part is

AH[#e=jeren p, f 1 dXﬁ*(X)([Fl(A2)+Fz(AZ)]ﬁ(X,f,AZ)[(S~n)ZE’—fS“—(S-A)n“]
-1

~ — A? S-A ~
—2H(x,£,A%)Fo(A%)P* (S~n>(1—m>—%(1+§ ~[F1(A%)+Fo(A%)]E(x,£,A%)
2 SAE+A—Zsa+iF A2)E(x,£,A2)(S-A)P? (66)
2M2 ( ° ) 2 2M2 2( ) (X,g, )( : ) .

The product of tensors leads to a lengthy expression whicfihe size of these spin asymmetries directly reflects the rela-
we again omit. tive contributions of the DVCS and BH processes. Their
measurement and interpretation are very interesting although
D. Single-spin process they only depend on the parton distributions<at = £/2.

The virtual compton amplitude is complex because of the
intermediate quark propagation. This gives rise to the so-
called single-spin asymmetry, that is, the cross section asym-
metry depending on a single polarization. For instance, sup- In this paper, we studied some basic aspects of deeply
pose the lepton beam is polarized and the hadron igirtual Compton scattering. The motivation is that in the
unpolarized, the single-spin asymmetry is proportional to  deeply virtual kinematics, the scattering mechanism appears

V. COMMENTS AND CONCLUSIONS

o to be simple, and hence, one can learn some structural infor-
Al~_2 A/EDamH L p AR My mation from the process. 'I_'he _QCD analysis shows that it is
- AZQZ( (#r) [ur1e) the off-forward parton distributions that are probed. In a par-

(67)  ticular experiment, of course, one has to decide whether one

is at the deeply virtual kinematics. As we discussed in the

On the other hand, if the nucleon is polarized and the leptopaper, one can look at certain observables which vanish in
is unpolarized, the single-spin asymmetry is proportional tothe kinematic limit(like R= o /o7 in deep-inelastic scatter-
ing). Those includeo| , o11, and o 1 discussed in Ref.

e y [12]. One can also check the slo@? dependence of certain
AZqZ(/(MV)alm[AH(p.V)a] scaling functions. As a first guess, one shall be at least at the
deep-inelastic kinematic region, and the recoil nucleon shall
+/[’”]“Im[AH[W] o)) (68) be at backward angles. It would be interesting to demonstrate

6

Al ~-2
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experimentally that the single-quark scattering mechanism ishow, different kinds of experiments are sensitive to differ-
at work. ent combinations of parton distributions and hence they are
One important theoretical issue is whether a factorizatiorcomplementary[The reason that the nucleon helicity-flip
theorem exists for the deeply virtual Compton process. Thelistributions contribute to unpolarized scattering is similar to
answer is most likely yes for several reasons. First, the trethat for which the Pauli form factoF,(A?) appears in un-
result we obtained can be easily cast into an operator produgblarized elastic scatteringHowever, to be able to study
expansion. Such an expansion is generally believed to bgum rules, one must have accurate data in an extended kine-
valid, independent of external states. Second, the radiativenatic region. To achieve this, one must have dedicated ex-
corrections to the tree process are quite similar to the corregeriments at a suitable machine like ELFE for extended run-
tions to y* m— vy, a process known to be factorizable at thening[20].
one-loop level. Nonetheless, one still has to prove explicity The off-forward parton distributions can also be defined
the factorization theorem for DVCS, which will be done in a for quark helicity-flip(chiral-odd correlations and for higher
separate publication. A factorization proof for a similar pro-twists. DVCS provides one process to access to these distri-
cess, electroproduction of mesons, has appeared recentyitions. There are other processes one can consider to mea-
[19]. sure them. For instance, the diffractigeor J/ production
DVCS at smallA? is especially interesting, because the studied by Brodskyet al. [21] can be used to measure the
nucleon form-factor suppression is small and becauseff-forward gluon distributions. Recently, Radyushkin has
A2-0 limit is relevant to the spin structure of the nucleon. published a paper aimed in this directifi6]. Thus there is
However, because of QED infrared divergences, the Bethaiow new territory to explore in the quark and gluon structure
Heitler process becomes dominant there despite the fact thaf the nucleon besides the traditional inclusiyarton dis-
the DVCS cross section scales like the deep-inelastic scattetributions and exclusiveform factorg processes.
ing cross section. Thus one cannot go to too smallOne
may get around this to some extent by isolating the DVCS
and BH interference term through single-spin asymmetry
and/or combined lepton-antilepton scattering. A theoretical | thank I. Balitksy, D. Beck, V. Braun, S. Brodsky, R.
study of A? dependence of the OFPD’s, in particular, its Jaffe, R. McKeown, A. Nathan, and A. Radyushkin for their
relation to the meson dominance and the exponential decajiscussions and interest, S. Forte, P. Guichon, Wei Lu, and
law for exclusive cross sections, is urgently needed. A. Radyushkin for their constructive comments and criti-
The OFPD’s depend on four independent variables: theisms about the manuscript, and O. Teryaev for pointing out
Bjorken-type of variablé, the Feynman-type variable the  Ref.[10]. This work was supported in part by funds provided
momentum transfeA?, and the virtual-photon masg?. Itis by the U.S. Department of EnerdpOE) under Cooperative
unlikely that one can learn the entire parameter space of thdgreement Nos. DF-FC02-94ER40818 and DOE-FGO02-
distributions in one kind of experiments. As our formulas 93ER-40762.
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