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Electromagnetic mass differences of pions and kaons
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We use the Cottingham method to calculate the pion and kaon electromagnetic mass differences with as few
model-dependent inputs as possible. The constraints of chiral symmetry at low energy, QCD at high energy,
and experimental data in between are used in the dispersion relation. We find excellent agreement with
experiment for the pion mass difference. The kaon mass difference exhibits a strong violation of the lowest
order prediction of Dashen’'s theorem, in qualitative agreement with several other recent calculations.
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[. INTRODUCTION results. The most important of these are the following.
(1) There exists a rigorous result for these mass differ-

The calculation of the electromagnetiEM) mass differ- ~ ences, exact in the limit thah,— 0, (q=u,d) which states
ences of pions and kaons has recently been quite an acti¥@at in this chiral limit the pion mass difference is
topic[1-5] in the field of chiral perturbation studies. This is
partially due to the interest in the values of the light quark ) 3a
mass ratios, for which we need to be able to separate elec- AmZ=— 477sz dssins[py(s) = pa(s)], (1)
tromagnetic from quark mass effed&—8]. The realization ”
that Dashen’s theorenf®], relating pion and kaon electro- )
magnetic mass differences in the limit of vanishing Wherepv(s) andpa(s) af_ejhﬁ vector and axial-vector spec-
my,My,Ms, could be significantly violated in the real world {ral functions measured " e annihilation and in- decays
[3-5,1( has added to the importance of a direct calculationt 13l This is a poyverful constrgmt because it requires thzat the
of these electromagnetic effects. Moreover, these calculdull calculation differs from this only by terms of orden;;
tions have an intrinsic interest as state of the art investiga®r higher, and must reduce to thism§—0. Many of these
tions of our ability to handle new types of chiral calculations.deviations are kinematic in origin and hence are well tied
The classic studies of chiral perturbation theptyt,17 are  down by this constraint.
being extended to calculations where one must obtain more (2) Dashen’s theorem states that in an(Sjuextension of
detailed information of the intermediate energy region usinghis same limitm,=0, (q=u,d,s) that the kaon mass differ-
dispersion relationgor sometimes modelsThe electromag- €nce is equal to the pion mass difference. This means that
netic mass differences are nonleptonic amplitudes which argimilar physics enters both amplitudes and one is able to
a challenge to calculate in a controlled fashion. It is our goafocus more directly on S(3) breaking.
in this paper to calculate these mass differences as well as we (3) The low energy structure of the Compton amplitudes
can at present. ymr— ym and yK— yK are known rigorously from chiral

Our tool is the Cottingham method for calculating elec-perturbation theory14—-17 and the process in the crossed
tromagnetic mass differences. As explained more fully inchannelyy— mm matches well with experimeni.7].
Sec. llI, this converts the mass difference amplitude into a (4) QCD gives us important information about the high
dispersion integral over the amplitudes fprr inelastic scat- energy behavior of the dispersive integral, with the result
tering. As we learned in the 1970s from the studyjgf  thatAm? is finite up to ordem?, while AmZ has at most a
inelastic scattering, the physics of such a process is reasolegarithmic divergence at orden,, which is to be absorbed
ably simple. The elastic scattering is well known. At low into the u,d quark masses. This is very useful in pinning
energies, one sees the inelastic production of the low-lyinglown the high energy parts of the calculation.
resonances. In our study we take these resonances and their(5) The medium energy intermediate states are known di-
coupling constants from experimental data. At high energiesectly from experiment. This region is the most difficult to
one enters the deep inelastic region for which perturbativeontrol purely theoretically, and so we rely on experimental
QCD can be used. It turns out that in the pion mass differdata to overcome our inability to provide a first-principles
ence the deep inelastic region cancels out both at zeroth arideoretical calculation.
first order in the quark masses. This leaves the mass differ- These properties are important ingredients for the reliabil-
ences to be dominated by the lower energy region. ity of our method. While there are still some approximations

There are a series of constraints on the calculation whicland educated guesses involved in the matching up of the
are important for giving us control over our method andvarious regions of the calculation, this method is more than
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just another model and represents the real world as well as is
possible in analytic calculations at present.

While we estimate that our uncertainty is about 10% for
pions, and 20% for kaons, our calculated value for the pion
mass difference agrees excellently with experiment
(Am"=4.54+0.50 MeV vsAm®*'=4.60 Me\). In the case
of kaons, our calculated value dami’= 2.6+ 0.6 MeV, indi-

cating a strong breaking of Dashen’s theoreAmg'=1.3  chiral energy expansion. At lowest order, which is order

MeV), in agreement with many other recent wofls-5]. p°, the unique effective Lagrangian with the right symmetry-
In the next section, we briefly review the physics andbreaking properties is

history of the calculations of electromagnetic mass differ- N

ences. Section lll presents the basics of the Cottingham Lo=gemTr(QUQU™). ®)

method, while Sec. IV describes our application of it to theThjs | agrangian produces no shift in the masses of neutral

pion mass difference. The kaon mass difference is studied ifesons and equal shifts far™ andK™*, so that it results in

Sec. V, and we summarize our findings in Sec. VI.

FIG. 1. Electromagnetic self-energy.

Am2=AmZ. (7

Il. REVIEW OF THE PROBLEM This equality is known in the literature as Dashen’s theorem
The mass differences of kaons and pions [9]. It is valid in the limit of vanishing quark masses
et (u, d, ands) and hence of massless pions and kaons. There
AmZP=m_+—m_o=4.5936+0.0005 MeV, are a large number of effective Lagrangians possible with
extra derivatives and/or factors of the quark masses, so that
Amﬁxp‘z M = — Myo= — 3.995+ 0.0034 MeV, 2 Dashen’s theorem will receive corrections of oraay or,
equivalently, of ordermﬁ [18]. Unfortunately, the coeffi-
or cients of the higher order Lagrangians are not known, so that
o (avg _ _3 one cannot obtain the corrections to Dashen’s theorem from
Ami—ZmW Am,=(1.2612:0.0009x 10 * GeV, symmetry considerations. A direct calculation is required.
In order to obtain the electromagnetic mass shifts, one
AmZ=2m@9Am, = (—3.9604+0.0039 X103 Ge\?, must calculate

)

2_§f 4 mv
where m&9= 1/2[ M . =+M. mo] are because of two o= | I (PITIL0 3,07 (P)DE(X)
sources: quark masses and electromagnetic interactions. The 8
difference in mass of the up and down quarks can producgg in Fig. 1.

isospin breaking in hadron masses. However, because the |5 momentum space this is

guark mass splitting id1=1 and the pion mass difference is - A i 5

only sensitive toAl=2 effects, the pion mass difference sz S d*q g*"T,.(9%p-q)
only receives contributions of second order, i.e.,

(myg—my)2. In fact, the leading effect of this order is calcu-
lable in chiral perturbation theory:

2 ) (2m)*? q’+ie

: €)

where

1 (my—my)? ) " T,W(qz,p~q)=ifd4xe’iq'X<W(p)IT[JM(X)JV(O)]Iw(p)>-

- ~—m -,

4 (my+mg)(ms—m) 7 (10
This calculation is different from standard calculations

and is quite small. To the level of our approximations weyithin chiral perturbation theory, because we need to be able

Wi|| neglect this quark mass effect_and treat the pion masgy explicitly calculate(and not just parametrizghe medium
difference as purely electromagnetic. The kaon mass differenergy and high energy contributions.

ence, on the other hand, does receive an important contribu- There are a few things that we know rigorously about the

2 _
AmZom=

tion linear inmg—m, calculation. Within QCD, the high energy renormalization of
a quark mass involves a logarithmic divergence which is

) m,—my ) proportional to the quark mass itself. Therefore the pion
AmK(QM):mmw+ O((my—mgy)“). (5 mass difference can pick up divergences only proportional to

the second power of the quark masses, which will go into

This relation i fthe ori finf . defining renormalized masses in Ed). In our approxima-
Is relation Is one of the primary sources of information oo, o' more strictly in the chiral limit, the pion electromag-

quark mass ratios. For it to be useful we need to known howetic mass difference is finite. For the kaon there may appear
much of the kaon mass difference is because of electromag; divergence of ordexm, or amy, i.e., suppressed by one
netic interactions. _ __ power of the light quark masses. This goes into a renormal-
We have one handle on the electromagnetic mass diffefization of the quark masses in E@). In principle, there is
ences which comes purely from symmetry considerationsan ambiguity about how much of the electromagnetic inter-
The electromagnetic interaction explicitly violates chiral action goes into the renormalized values of the quark masses.
SU(3) symmetry, and its effect can be described within theThis can only be solved by a precise renormalization condi-
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tion which defines the renormalized quark masses. HoweveklVe have used the standard definitions for these tensors. Note

because this ambiguity is proportional tan, and amgy, that in the soft-pion limit, i.e.,p,—0, the combination

while the kaon mass difference needs only one facter of D,,, T, vanishes as we will see in the following section.

(myg—m,), this ambiguity is tiny and is far below the sensi- A first step consists of a rotation in the complex plane and

tivity of our calculation. a change of variables. We work in the pion rest frame,
The earliest attempts at explicit calculatiofRiazuddin  p-g=m_qo. Since the singularities i, are located just

[19] and Socolow 20]) appeared plausible but can now be below the positive real axis and above the negative real axis

recognized as mistreating the chiral portions of the calculain the complexq, plane, the integration oven, may be

tion. The earliest valid method, and still a remarkably beautotated to the imaginary axigg—iqg, without encountering

tiful result, came in the work of Dast al. [21]. Here soft any singularities. After this transformation the integral in-

pion theorems were used to turn the matrix element of Eqvolves only spacelike moments for photons, i.e.,

(10) into a vacuum polarization function, which in turn can o2=— Q2= —(92+@?), and the mass shift becomes

be written as a dispersion relation in terms of the spectral

functions of the vector and axial-vector currents, yielding the Z—GZJ d3qda, 9" ,,(0ido)

5 .

formula quoted in Eq(1). Since QCD satisfies the chiral and 7 ~
2m)" g5+’

high energy properties assumed in the original derivations,
this remains an exact statement of QCD in the limit

m,=my=0. The original authors saturated the spectral funcA change of variables from &cqo) to (Q%v), where
tions by a single vector and axial-vector pole satisfying thev=m_qg, involves

WeinbergDsum rule§22], leading to a remarkably good

value Am>2=5.0 MeV. More recently, this sum rule has dev

been explored using the measured spectral functions from fd qdqo—27rf szf m VmiQP—»2 (13)
e"e” annihilation andr decay, plus QCD constrainf43].

These show that the phySiCS of the pion mass difference |§/h|ch converts the mass shift to

remarkably simple in the chiral limit with the most important

effects being those of the lightest resonance contributions.

(12

. . m:Q dv ym Jym2Q%—12
The Daset al. calculation remains a benchmark for other 5m2— —_—
calculations and will be an important constraint on our work. 16m° m;Q m Q
Through the experience of the past decade of studies of X gH'T (_Qz i)
chiral perturbation theory, we have gained some insight into my ’
the physics of intermediate energies. This leads to model m,Q dy ‘/meQ2_,,2
attempts to calculate electromagnetic mass differefSgs = 1673 f f I
. . T Q
These calculations showed a large breaKingto a factor of M
2) of Dashen’s theorem because of mass effects. To a large 12
extent the violation of Dashen’s theorem has a simple kine- —3T1(—Q2,i v)+|1— —2—2> T2(—Q2,i v)|.
matic origin in the pseudoscalar propagators of the one-loop m=Q
diagram! Lattice simulations have also recently been started (14
to be applied to this problem. They also see a significant
violation of Dashen’s theoremA(m,=1.9 MeV) [10]. This has reduced the mass shift to an integration over the
forward Compton scattering amplitude for spacelike photons.
ll. THE COTTINGHAM METHOD The reduced Compton amplitud&s andT, are presently
AND MESON MASS SHIFT required to be evaluated at imaginary momemia, How-

ever, they can be written in terms of physical amplitudes via
The nonleptonic matrix element which we must Ca|CU|ated|sperS|on relations. The Compton amplitudes are known to

is given in Eq.(10). If we decompose the Compton ampli- opey dispersion relations in the variable with that forT,
tude in terms of gauge-invariant tensors, we can define  requiring one subtraction:

=dv’'2 ImT
T (0%, P~ ) = Di,,, Ty(6%,p- ) + D, To(G2,P- @), T =Ty(R0) + - f v ,12(1; !,
qﬂqv
Dl,uV g,uv ' 1~ ImT
@ Tz(QZ,V)Z—f dV'Zfzz(—q:) (15
mJo 14
o A _ea [ _pa a
2ur 2 Pu q° Qe || Pv q° 9] The imaginary part of the forward scattering amplitudes

Im T; are defined as electron scattering structure functions

!As was pointed out in Ref2], Ref.[5] has an error in one of the ilmTi(—Qz,V)ZWi( —Q%y) fori=1,2. (16
mass effects. The correct amplitude is shown in &%) of this m

paper. We disagree with the methodology of R&] which at-

tempted to correct this problem, and agree with the critiqui2bf ~ After employing these dispersion relations, the integration
which is contained irf4]. over v can be done explicitly with the result
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wrd 2
AmzZif 9912 grry - 020 i
4mJo Q 2 {)
°°dV,2 V72 M
+3Q2fo 2 W1(—Q2,V’)A1(mz—Qz) (b)
.\’\\Aﬁ/\’\ﬂ /
oQdV/Z , V/Z ©
+f0 - Wo(—Q%v')A, m2Q?) [ (17)
" " \/\’\« ﬁ W
where )
1 1
My)=5+y-y\ 1+ y é - § + ﬁ

(e)

3 1 FIG. 2. Compton scattering diagrams for the meson resonances.

Ax(Y)=—=—y+(1+Yy) [1+ =, (18 (a) Elastic diagrams(b) Pseudoscalar sea gull diagrafo). Vector

2 y resonance sea gull diagrantd) Axial-vector resonance intermedi-

ate state diagramse) Pion form factor diagrams.
These manipulations have transformed the mass shifts into
integrations over the structure functions in the physical re- ) ] )
gion, as well as the subtraction terfy(—Q20). The troduced by Eckeetal.[24,25. This Lagrangian provides
(Q2,v) plane is shown in Fig. 3 below, as is the physical@n accurate description at low and medium energigsto
region wherew;#0. ~1 GeV:
2

1 F2
L=—ZFuFr+ TTr(DMUD“UMXUU—XTU)
IV. THE PION EM MASS DIFFERENCE

In this section, we describg the details of the calculation _ ETr( 2SR RV EM\z,Vf“’V V)
of the electromagnetic mass difference of the pion. The exact 2 2 #
result of the Daset al. [21] calculation in the chiral limit

involves the difference of spectral functiopg(s) —pa(s). n i
This difference is entirely determined by the leading vector 22
and axial-vector resonances. Therefore, our first step is to
study the low energy chiral amplitudes supplemented by the
interactions of vector and axial-vector resonances. These
have been previously studied in a model field-theoretic cal-
culation[5]. We correct the mistake found in that wdrK], Fa ,

and transform the results into our dispersive framework. This + ﬁ Tr(A,,f29). (19)
allows us to show how the Cottingham method merges with

the chiral limit result of Da®t al. asm,—0. The notation is defined in the appendix. The relevant terms

We subsequently ggn.eralize the cal_culgtion by t_reating thgfier expanding the above Lagrangian in terms of pion, pho-
resonances more realistically and adding in other ingredientg), 44 spin-1 resonance fields are

to the amplitude. The former improvement involves the re-
placement of the “narrow-width” treatment of the reso-
nances, which occurs in any field-theoretic treatment, by
spectral functions which account for the energy variation and B e_FVF/w 0 ( 1- 7T+7T)
width of the resonances. To complete the ingredients to the

calculation, we add resonance transitions not accounted for

iGy

V2

1 N v, 1 2 v
- ST VAALY AT SMEARA,,

Tr(V,,f47")+ Tr(V,,u*u”)

_ + - - + 2 + -
L=ieA (T d,m" —m d,m ) +eAtA, 7" m

previously and also the deep inelastic continuum. The reso-
nance couplings follow from experiment, and their presence
in the Compton amplitude is confirmed by the comparison of
theory and experiment inyy— 7%#° [14,15,17,23 The
deep inelastic region cancels in the mass difference to the
order that we are working, so that we include only a few
comments on the matching of low and high energies.
Lagrangian with spin-1 resonance®ur starting point for
calculating the pion Compton scattering amplitude is a La-
grangian which include®(E?) chiral terms andD(E*) vec-

iG
+ F—z\/pgy(&"w*&”wf +otm dvmt)

2eGy

- —FQ—A”p?W( a7’ n’)
ko

ieFa
2F .

Fer(a; wt—al o). (20)
1 1
mv 3%

The Feynman diagrams which contribute to the pion

tor (JP¢=1"") and axial-vector {’°=1"*) couplings, in- Compton scattering amplitude, given by the above Lagrang-
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ian, are shown in Fig. 2. It is convenient to classify theseThe numerical values that we use for the parameters in-
diagrams in three groups, which correspond with threevolved in the previous five equations are
gauge-invariant terms of the amplitude.
The first term encloses the contribution given by Figs.
2(a), and Zb),
m_=m_+=0.139 569 95:0.000 000 35 GeV,

(0% p-a)=—2D;  +4m2|G(q?)|?
F,=0.0924=0.0003 GeV,

1
o u——
mz—(p+q)°—ie my,=0.7699+ 0.0008 GeV,

. 1
mZ—(p—q)2—ie

) Dz, (2D Fy=0.1529+0.0036 GeV. (26)

where we have used the vector resonance dominance ap-

proximation in the pion form factor, i.e., For the numerical results in the soft-pion limit, we use the
axial-vector resonance parameters,, andF,, obtained by
the Weinberg sum ruld22] in the narrow-width approxima-

FvGv tion,
=1, (22)
This is equivalent to saturating the pion form factor with the FWSR= |F2—F2=0.1218-0.0045 GeV,
p Meson resonance:
(WSR) Fvmy
N mjy =" 0.9664+0.0427 GeV. (27
m A
G.(0%) = —"=. 23

The p? corrections to the finain,, andF 4 which we use in
The second term, which we call the vector seagull, isour final numerical answer at the end of this section, even
given in Fig. Zc). It differs from the pseudoscalar sea gull though necessary to cancel divergences, are minimal and
because one of the photon lines interacts through a vect@so have a minute effect on the numerical results for
resonance, Am,_.
Beyond the narrow-width approximatioriThe above
analysis utilizes zero-widthp and a; resonances. This
F\Z, q? “narrow-width” approximation is a poor description for
= quDlw- (24 these resonances since they are not particularly narrow, es-
T pecially thea;. The full resonance spectrum can be taken
into account by employing the spectral function, llia-
Lehmann, representati$¢@6,27). Furthermore, this represen-
The third group, because of the axial-vector intermediateation includes the effect of higher mass resonances with the
state, given by the diagrams in Fig.d2, is same quantum numbers suchgss in the vector case. The
spectral function representation of these resonances general-
izes the spin-1 resonance pro(p)agators encountered in the
2 212 1 27 m2 2 Compton scattering amplitudes! (g2,p- fori=1-3
Fi [(P-a+9)°+g’msi—(p+0)°] givenpabove: g amp u(07P- ) )

(2) - _
T2(a%p-q)=—2

(3) 2 . =
T..(a%p-q) = M (pra)2_ie

(p-q—g?)%+ qz[m}‘i—(p—q)z]>
+ luv

2_ N2 1 R(s
M~ (Pmay—ie rr]z_—z_-—>f ds_p—g_)-- (28)
g°—ie s—(g°—ie
Fi [ —mig?
+
Fomal ma—(p+a)’~ie
—m2g2 The sum of the three terms, Eq&1), (24), and(25), of the
. -4 — ) - (25) pion forward Compton scattering amplitude in the spectral
ma—(p—q)°—ie/ # function representation reads
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2 (* o G 1 (= pas)(p-a+g)*+q’s—(p+q)?]
Tw(qz'p'q):Dlw{_z_EifodSpV(S)ﬁZJFEifo 9575 s—(p+a)?-ie HqH_q))
2 1
+D2My[4m§7 Gﬂ(qz) (mz_(p+q)2_|6+(qﬂ_q))
1 (= pa(s)  —mig?
+F_fjo A s s=(prg=ic 1@ - (29

The narrow-width result can be readily reproduced by let-The domain of both structure functions in the,Q?) plane
ting covers the area in the first quadrant which lies between the
positivev axis (x=0) and the elastic linex=1). This is the
(30) unshaded region shown in Fig. 3 for pion kinematics. Within
this sector, the figure shows other lines of constamthich
. : help describe the structure functions in the scaling region. It
z\éré;er:n?(ez\%élues fdfv, Fa, my, andm, are given in Eqs. also shows two lines of constast m3 which mark the re-
The Cottingham approachSince we have a complete gion where the resonant intermediate states are the dominant

form for the Compton scattering amplitude we could directlycontribution. _ _ .

calculate the pion EM mass difference with E@), avoiding 2The scaling region for nucleons is the region above
the Cottingham method altogether. Nevertheless, the CoR 1 GeV. Itis described by perturbative QCD. The rel-
tingham method28] allows us to gain control and insight €vant degrees of freedom are quarks and gluons, and the
into the calculation. This method requires the breakdown oftructure functions are described in terms of quark distribu-

the scattering amplitude into subtraction and structure function functions, which depend only oaif we neglect loga-
tions terms, which are easily extracted from E20): rithmic deviations. In this approximation, the structure func-
tions are constant along the constaritnes.

(NW)
PoA (S)=Fgad(s—mG ),

2w Q2 The resonance region in the,Q?) plane is described by
T.(—Q%0=—2+ FJ dSp\F}(s)ﬁ the two dashed lines parallel to the elasticor1 line.
w’0 s+Q These lines satisfy the equation for constant squared invari-
2 (o Q2 p2 ant mass of intermediate resonant states:
——| dspR(s)—=—|1——
F2)o " PAY s=p?+ Q2 s/ 2 2_ 2 2
7 Mg=(p+0q)°=p°+2r—Q". (33
o0 R i i i
We(—O2 )= i q PA(S) o Slnce the graph |s_for pion values we chpose aheas the
1(—=Q%v) Fz ), 9575 (r—Q°) first resonancem, =1.26 GeV. We also include a second
" by resonance with masag= \/Emal in order to show the posi-
X (s=p°+Q°=2v), tion of possible higher resonances.
This resonance region is described by chiral Lagrangians
, o me\? ) which include spin-1 resonances such as @4) [24,25.
Wo(=Q%v)=4m7 2+ Q2 5(Q°—2w) The structure functions obtained through the chiral
P
1 o pR(S) 10
+ —Zf ds———" p2Q28(s— p2+Q2—2v).
F-Jo S 8

(31

6

Before we describe each of these terms in detail, it is
useful to be more familiar with their domain in the,Q?)
plane. The subtraction term is the value Bf along the
negativeQ? axis. The structure functions are limited by ki-
nematics to a sector of the first quadrant and their domain is
better understood if we introduce the Bjorken scaling vari-
able,x= Q?%2v. The allowed kinematic ranges for the vari- .
ables involved are 0 :

Q? FIG. 3. (v,Q?) plane. Units in Ge¥. Unshaded region is the
0=0%<w, c=<p=w», and Osx<1, wherec= —. domain of the structure functions. Dashed and solid lines are for
Q v 2 x= 0, 0.2, 0.4, 0.6, 0.8, and 1.0. Dashed-dotted lines are for
(32 M3= 1.6 and 3.2 Ge¥.

:l 6 8
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Lagrangians in the narrow-width approximation are con- 1
strained to the elastic line, the, line, plus other parallel
lines corresponding to possible higher resonances. If we in-
clude a finite width for the resonances, these lines become
bands whose thickness is proportional to the resonance
width. 0.6
The usefulness of applying the Cottingham method arises
from the breakdown of the scattering amplitude into the three 0.4
terms shown in Eq(31). We gain control because we can
make reasonable assumptions and establish constraints on  ,
the pion structure functions. At the same time, it is possible
to relate the subtraction term to the soft-pion limit.
All of the resonance couplings will contain form factors 1 2 3 4 5
which suppress the effect of an individual resonance as
Q?—. We will assume that the fall off of all such photon  FIG. 4. FactoK(»,s) and pion EM form factor v&?’. Pion EM
form factors will involve a scale which is a typical vector- form ;aﬁtor,Ksohc; g]e{;(vamﬂ)a dlgsheg ||r_1eK(v|,1 Gel\F), dash-
meson mass. We now tumn to the procedure to mtroduc@%ttif] G'Z‘\a/'z. (v.2 GeV), dotted line. Horizontal scale represents
these form factors in our dispersive framework. This has Y
subtlety in that some naive structures for this form factor
could upset the soft-pion limits in our formulas. We will
choose a form which is well behaved in the soft-pion limit. w

here

The form factor also solves what would appear to be a prob- s [ s—p2\4
lem in the present inclusion of resonances, i.e., the structure = s | 1+ — ) -1, (37)
function W,;(Q?,») given in Eq.(31) has terms proportional s—p?| my

to »?> and Q* which would generate divergences for large s 2 ,
Q2. This does not occur in the presence of the form factors2dP“=m7 . We have chosen the appropriate value for the
This divergent behavior is clear if we calculafé,(Q?,»)  VECtor-meson massy,=m, . The factork(»,s) above also
along the lines of constast=m2. We use thes function to ~ Nas the property of being very close to heontribution to

o S 21 2 the pion EM form factor fois=p<, as it can be seen in Fig.
el!m|nate thev dependence, i.ex=3(s—p“+Q°), to ob- ,
tain The inclusion of this factor in our analysis is easily
1 p%(s) achieved through the substitution

A

F2 s

Vv(lcst s)(Q21 V) —

1(S_ p2—Q?2, (39 R R

4 Pa(S)—pa(S)K(v,S). (38
which diverges a®Q“. A structure function for a given reso- The structure functions and subtraction terms read
nant state cannot diverge for lar@ without violating uni-
tarity. For a single resonance, as it is the case in question, the 2 2 (= &
structure function must go to zero if we follow a line of ~ 11(~Q ’O)__2+|:_§T o dSPv(S)S+Q2
constant invariant mass to high energies. In order to
achieve this behavior, we introduce a multiplicative factor 2 (= &

which forces its convergence. This facto(v,s) resembles “EZ ), dspa(s) =21 02 p?+ Q2
the form factor obtained for the elastic term through the i

2

2

2
¥
S

vector-meson dominance model. In addition, it has the prop- 1 (= pR(s)
erties Wl(—Qz,v)=E2—f ds AS K(v,s)(v—Q?)?
xJo
K(v=05)=1, 2 2
X 8(s—p +Q°—2v), (39
1
lim K(Vys)(CSt S>~§! W( QZ ) 4 2 mi 25(Q2 2 )
Q2—>oc 20— V)= m’TT 21 A2 v
m,+Q
[K(v,5)*" ¥q2_o=1. (39 pA

1 (= (s)
+ = f ds K(v,s)
These properties ensure that the subtraction term is left FzJo S
unchanged, and that the structure function will converge for
large Q2. The form factor is normalized in order to agree
with the previous result &?=0 for fixeds. The form factor
that satisfies these conditions is

X p2Q28(s— p?+Q2—2v).

The pion EM mass difference for the above functions is
readily obtained with Eq(17). We choose to break it into
4 2y terms corresponding to those shown in the above equation
(1+ ,]_>, (36)  With an extra subdivision of th&V, contribution which iso-
S lates the elastic term

2

K(v,s)=

v
m\2,+2v
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2

Am (subtr)——f sz { depV(S)

s+Q?
. 2 p2
R — [N —
et el - |
w 6 [ pR(s) 1 [A2 2
2 _ @ 2 9 A 22 A2
Am“(wl)_wfon F7), 95 s & ( > Q )
A4 A2
el 7).
2 2
) _ o (= Qo
R
2 _i * 2 1 pA(S)
AmEW,) = 4 | (aQ ey | as” ™
4 AZ
XAZAZ(W)K(7,S ) (40)

whereA2=s—p?+Q?, andA,(y) (fori=1,2) are defined in
Eq. (18).

High energy constraintsEven though we can obtain an
explicit formula for the pion EM mass difference by adding
all the contributions in Eqg40), it is necessary to analyze
the upper limit of theQ? integral. Adding all the different
contributions in Eqs(40), and expanding th@? integrand in
powers of 10?", we obtain

3a e p2\ 1] 1
—(4wFi)[—Fi+ JO d%p@(s)wﬁ(s)(l—;) }@
(ot s -stofs- 2Tl

4mFZ sqp{(s)—pi(s)| 1 Q? Q)
(41)
where, p?=mZ . If the first two terms are not zero, they

originate linear and logarithmic divergences, respectively. In
order to obtain a finite pion EM mass difference we cancel

them explicitly generating two constraint equations,

w 02
f dS[P\Ff(S)—Pﬁ(S) 1- ?)
0

fomdss{p&s)—pi(s)(

=F2, (42)

2

4
1—2p—+p—2) =0.
S S

(43
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tained by lettingp?=0. We will see later a more detailed
explanation of this limit and its relation to the subtraction
term.

Because of the introduction of the convergence factor
K(v,s), the above divergences originate only from the sub-
traction term. We incorporate the higp? constraints in the
subtraction term of the pion EM mass difference, &), in
order to make all the contributions finite. The following pro-
cedure removes both divergences.

Subtract the linear divergence from the subtraction term
by means of Eq(42):

2

” Q
J, i e

p2
g

= 3
2 _“ 2 2
AmZ(subtp 47TJ0 dQ Fi[F

J dspA(s) 5 +Q2 -
—[Ff,— f:dSP\Ff(S)
+foxd3p§(s)<l—p;2)”

:%f:dQ2%[ f:dSpff(S)%z

p2

7

s—p*+Q°

Integrate oveiQ? and cancel the corresponding logarithmic
divergence by subtracting E(3) multiplied by InA g

3 fmd R(s)l
4_':_37 . spy(s)in
P
S

—f dspR(s) 1—
0

S

AQ2+S

AmZ(subty=lim S

AQZ*}DO

- f:dSpE(S)(s— pz)(l—

><|nAQ;—I_——Z;p2—[j:dSSp5(S)|nAQ2
_f:dSp,Fi(s)(s_ pz)zmAQz ] (45)
Add the terms and take the limi o2— o0, to obtain
Am? (subtr)——— f s[s |nSpV(S) (s—p?)
xIn(s— p2>pA<s>(1— %) . (46)

These highQ? constraints become the Weinberg sum rulesThe above contribution is free of divergences. Furthermore,
in the soft-pion limit, which in the above equations is ob-in the soft-pion limit, i.e. p?>=0, it is equivalent to the Das
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calculatesm(E™ free of divergences, which was mainly the I|m TN (9%p-a)=—

et al. calculation[21]. Finally, we have a useful formula to qtq” 2 fw
ds
product of the Lagrangian introducing the chiral couplings of P+~

the spin-1 resonances. We proceed to show the close relation rqV
of the subtraction term and the soft-pion limit and to see how X| —gt'+ — )[pV(S) —pal(s)]
we reproduce the results &f(p*) chiral perturbation theory q
with the above scattering amplitude. q°
Soft-pion limit and its relation to the subtraction terin. Xm- (52

the following we will show that the subtraction term is given
by the soft-pion limit up to corrections of ord@f. In this  The contact term or pion sea gull contribution to the pion
discussion we refer to noncontact contributions as all contriCompton scattering amplitude is

butions except the pion sea gull term. This term is the only

one which has both photons interacting at the same vertex T(C (q P-9)=29,,, (53
and, therefore, we treat it differently in the following discus-
sion. which remains unchanged in the soft-pion limit. Adding both
The noncontact contributions to the Compton scatteringontributions to the pion Compton scattering amplitude in
amplitude have the form the soft-pion limit, we obtain
_ 2
T;Nf)(qz,p.q):if dxe (7| T[V ,(X)V,(0)]| ). pllmOTW(q P-q)=Dy 1 —2+ sz ds{pv(s)
@7 ,
. . q
Consider the soft-pion theorefag] —PA(S)]E]- (54)

lim (7%(p)B|O|a)=— |—<,8|[Q'g,o]|a>, (48)  An alternative way of reproducing the soft-pion limit result
p,—0 Far above is lettingp,—0 in Eq. (29). In order to implement

. « 3 Kyon this limit the following relations are useful:
whereB and« are arbitrary states ar@s = [d°xAy(X) is an

axial charge. We also need the commutators lim Dl Dlw’
S - o . Pu—0
[Q5,VLI=ifIkVE, [Qy,AL]=ifUkAK. (49
lim p2D2 =0,
The result of applying the soft-pion theorem to E4j7) is py—0
lim T8 (6?,p-q) lim T1(9%,p-a)=T1(9%0)[p2—0- (55)
p,—0 p,—0
= _if d4xeiqx_—22 From these relations it follows that the only surviving term
Fa in this limit is the subtraction territ;(g2,0):
X(O|T[VE(X)V3(0)—A5(X)A3(0)]|0).  (50) lim T,,(0%p-q)= Dy, lim T1(9%,0). (56)
P —0 p —0
The two-current time-ordered products are related to the
spectral functions by This gives the same result as E§4) when we identify
°° lim (p(s)—pR(s))=[py(S)—pa(s)]. 5
(O T[VE(X)VE(0)]10) =i 8ap fo dspy(s)(0g,,,— 9" oM PSRN LoV pal S (57
dk o ikx We can now calculate the soft-pion limit to the pion EM

—g mass difference:
(2m)* k*—s+ie’

v . 2 d4k e—ikx I|m Amﬂ,Z—J’ dQZ
(OITTIALOOAL(0)]]0) =~ 0aF 300" | 3 e
ee] 2 B B Q@
—Héabfo dspa(s)(Lg,., = d"d") X [ Fa fo ds{py(s) PA(S)]Q2+S :
d*k e ikx 58
(277)4 —zm (51 Whel'eQ2: _q2. We follow the procedure described earlier

in order to cancel the linear and logarithmic divergences oc-
Upon combining Eqgs(50) and (51), integrating overd“x, curring in the above equation. The cancellation of these di-
and using the resulting function to integrate oved*k, we  vergences imposed by the finiteness of the pion EM mass
obtain difference requires
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o 0.08
fo dslpv(s)—pa(s)]=F3, (59
o 0.06 v
fo dsqpy(s)—pa(s)]=0. (60)
0.04
These are Weinberg sum rulgg2], obtained in our case as a
consequence of the finiteness 6m55M> in the soft-pion

limit. Subtracting the linear and logarithmic divergences in 0.0z
the same way as for the subtraction term, E44)—(46), we
obtain

055 1 2 3 4 5 ;

a 3 [«
lim Am2=———f dsdns[py(s)—pa(s)]. (61
K 4 FfT 0 Lov(S)=pa(s)]. (61) FIG. 5. Vector and axial-vector spectral functions. The graph

Pu=0 shows (V) p(s), (A) pR(s), and(C) pc(s) vs s. Thes scale is
This is the result obtained by Das al.[21]. given in GeV.
Finally, we evaluate Eq(61) in the narrow-width ap-
proximation to obtain the numerical result fication which is valid in the chiral limit in order to provide
_ W) this numerical input. There could be shifts in the couplings
lim Amz™'=4.685 MeV. (620 of these resonances which are of oraef. These could

Pu—0 provide changes in the final answer at orm%rwhich would

Spectral functionsWe seek an improved description of the Pe of interest to us. This is partially relieved by the fact that
physics of the resonance region with the spectral function§€ analysis of13] was carried out with real world data, not

p\R/)(S) andp,Fi(S) replacing the narrow-width description. The Stl’iCﬂy in the chiral limit. Thus the masses, Widths, and

ingredients to the spectral functions clearly are the saméhzapes of the resonances will accurately reflect physics with

resonance states that are revealed by the usual vector afts* 0. Likewise, we know that in the narrow-width ap-
axial-vector spectral functions,(s) andpa(s). In addition, ~ Proximation we have.the right dgscnpuon, so that we do not
we have just seen that in the soft-pion limit there is an exact€€ @ source of major uncertainty because of the nonzero
correspondencss(s)—pﬁ(s):pv(s)—pA(s). This leads us WIdthS. Th;s means that our model dependence comes from
to utilize the experimental spectral functions determined inPOSSiblem’ dependences in the resonance couplings, and
Ref.[13] in order to produce a shape fpf(s) andpR(s). In  OUr implicit assumption is that these are smaller than the
. . !
both the soft-pion limit and the full Cottingham calculation M= dependence from the propagators. We have not been able

at ordermf,, the high energy continuum cancels in the masdo find away to do better than this in the phenomenological
shift. We, therefore, separate each spectral function into qwagnalysis. . 4 chiral . h |
contributions, one because of the resonances and the otgﬁ(rComparlson QE") chiral perturbation theory We also

because of the high energy continuum common to both vediKe 0 compare our method to the standard chiral perturba-
{gn approach. The lowest energy region of the pion structure
o

tor and axial-vector channels. The resonant part is chosen . ) > .
match the resonances revealed in the phenomenologick{nction can be described by the chiral YLagrangian to

4
analysis of the data ifiL3]. These spectral functions are then order p%, or|g|_n_ally develqped by Gasser and Leutyvyler
slightly altered to obey the full constraint equations includ-[11,12- In addition to elastic and sea gull terms, and ignor-
ing p? terms of Eqs(85) and (86) below. A continuum con- ing pion loops, the only rglevant terms involved in the pion
tribution, common to both vector and axial-vector channels,Cornpton scattering amplitude are thg andL,, terms:

was included if13], but is here kept separate from the reso-

nances. The result of this is that we identify L4=—iLgTr(FKD,UD,UT+F{'D,U'D,U)
t v
Py.a(9)=pT AS) +PYA(S), (63) FL1oTHUIFRTUFL,) + other. €9
with a continuum contribution The pion forward Compton scattering amplitude resulting
from this Lagrangian was calculated by Bijnens and Cornet
pC(s)=pS(s)=pS(s). (64)  [14], and Donoghuet al.[15]. Their result, up to pion loop

S _ _ _contributions which are small, is
The precise identification of the continuum is not unique,

but since the difference of spectral functions enters, reason- 8p2q? / 2L5q2 2
able variations do not produce a large final effect. The spe- T (p.a)=— =3 5 5 D, —2D,
cific form that we use is shown in Fig. 5. a*=(2p-)%| Fa w

It is clear that the greatest source of model dependence in 8L" o2
our calculation comes form the numerical identification de- + ;ng + loops. (66)
scribed above. Our procedure in setting up the calculation in - m

the Cottingham method is very general. However, we do not
have directly available the experimental structure function€Expanding our narrow-width result in powers of external
for photons scattering off of pions. We have used an identimomentap,, andq,,, we obtain
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k. V ke T V T

2 Fvo®  Fad
Tifvexp><q2,p~q>=D1M[_Z_ZEiH“ZEf—z]

p T mA
+D (4m2 PP
Zuv i H\Z/ q*—(2p-q)° FIG. 6. Intermediate vector diagrams.
2 _ 2.2 .
" Fa m-q To the extent that tha, d masses are different, the structure
F2mi mj functions may differ. However, we are calculating the elec-

tromagnetic effect in the limitn,=my so that we are not
sensitive to this effect.
(67) V—1ry contribution. To have a more complete phenom-
enological description of the Compton scattering amplitude
The relations for the.q andL , in terms of the spin-1 reso- we also include the effect of intermediate vector-meson dia-
nance parameters are obtained by inspection from @s. grams shown in Fig. 6. The motivation for introducing these

+ higher order terms ing?,p- q,p?).

and(67). diagrams is the experimental observation of the radiative me-
Fi son decaysw— 7y andp— 7y, and¢— my. The effective
ngﬂ, Lagrangian which includes théwy vertices is
JRy
1F2 F2 o L= et PF N g, (72)
10= "2\ m2 " 2m2)” (68)

This Lagrangian is invariant under parity and charge conju-
This result is in agreement with Ecket al.[24]. The above 9ation transformations, as well as under chiral rotations. The

the sum rule(WO) in Ref.[13]. gauge invariance, and the pion momentum dependence cor-
Substituting the narrow-width parameters in E8g), we ~ responds to the correct soft-pion limit for the vertex.
obtain We introduce the spectral functiogg(s) to describe the
Le=(7.20+0.05 X 103 intermediate states in Fig. 6. The normalization of these
o ’ functions is chosen in order to make the subtraction term
— _(589+0.65X10°3. contribution compatible wnh the ones thal.ned for thg axial-
L1p=—(5.890.69x10 (69) vector case. The narrow-width approximation €gs(s) is
Thesg are seen to k_3e within reasonable agreement with the gy(s)= H\Z,(S(s— m\2,)=FfTRV5(s— m\z/)_ (73
experimental values;
Le=(7.1+0.3)x 10 3, The subtraction term and the structure functions for the in-
termediate vector-meson diagrams follow from the Lagrang-
Lyo=—(6.84£0.3) X103, (70) ian in Eq.(72):
The difference between the values in E¢89) and (70) Ti(—0? 0)=£fwdsg,(5) p’Q?
gives an estimate for the loop contributions which we ne- ! 7 F2)o s—p°+Q%’

glected in theO(p*) chiral Lagrangian calculation of the
Compton scattering amplitude. Besides the loop corrections, 1 (=
the difference can also be because of the inaccuracy of the ~Wi(—Q%v)= F_ZJ dsg,(s)K(v,s)(v*+p?Q?)
narrow-width approximation. w0
Scaling region.The low and intermediate energy regions X 8(s—p2+Q%—2v),
of the structure functions are described above. To complete

the analysis of the structure functions we need to describe the 1 (=

scaling region at large values of,Q?). The ingredients and Wy(— Q% v)= F_ZJ dsgy(s)K(v,s)

general behavior in this region are well known. The structure w0

functions become largely functions of the Bjorken scaling X p2Q28(s—p?+Q2—2v), (74)

variable x=Q?/2v, with logarithmic Q? variations predict-

able by QCD[30]. This is easy to build into the Cottingham whereK(»,s) is the factor defined in Eq36). The factor
analysis[31]. However, there is not a need to describe theK(v,s) ensures theQ? convergence of the structure func-
details here since the scaling region cancels in the differenciéons as in the intermediate axial-vector state case. We only
between the charged and neutral pions masses, to the ordezed to find the spectral functi@y(s) in order to determine
that we are working here. the above functions.

In the limit that theu andd quark masses are equal, the  There are four possible vector intermediate states for the
deep inelastic structure functions of the neutral and chargegion Compton amplitude, the™ for the charged pions, and
pions are equal. This leads to the p°, w, and ¢ for the neutral pion. The coupling con-

stants,R,+, Ry, R,, andR,, can be extracted from the
Am_(scaling=0. (71 radiative decays of these vector mesons. We refer the reader
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to Refs.[17,23,32,33 for a review and examples of obtain- where A?=s—p?+Q?, pzzmi, and the functions\;(y)

ing such couplings. The coupling,- andR 0 are the same for i=1,2 are defined in Eq18). The extra minus sign ap-

if we take isospin to be an exact symmetry. This means thabears because the vector intermediate state diagrams contrib-
the charged and neutral pion EM self-energies because of thee to the neutral pion EM self-energy.

p intermediate state would cancel in the pion EM mass dif- General treatment of other possible contributioAs this
ference. However, the and ¢ intermediate state contribu- point we have a fairly complete calculation of the pion EM
tions do not present such a cancellation. Since isospinmass difference broken down into different contributions.
breaking effects are generally of small magnitude, we shalWe have included the spin-1 resonances through their lowest

neglect the intermediate contribution to the pion EM mass order chiral couplings, the scaling, and the intermediate vec-

difference. tor resonance contributions to the pion EM mass difference.
We can determine the coupling R, from the experi- By analogy with the nucleon structure functions, we are
mental measurement of the radiative deaay 7°y: comfortable with our estimates of the structure function con-
3 tributions. These are small, and even a factor of 2 correction

24 m, would amount to a small correction to the total mass differ-

= _ 2
Rw p m[‘wﬂﬂ 5.40+0.32 GeV “. (75)

ence. Therefore, we concentrate in the subtraction term con-

tribution estimate.

Likewise, we determine the couplingR,,: The subtraction term has been obtained by calculating the
pion Compton scattering amplitude with the effective chiral
Lagrangian for the vector and axial-vector resonances of Eq.
(19) and the effective Lagrangian for the intermediate vector-

(76) meson contribution of Eq(72). In general, there could be
other possible contributions to the subtraction term. These

where we have used the experimental values listed by theould be introduced by higher order effective Lagrangians.

Particle Data Group[34]. We do not consider the Their contributions tosm=™ would be small since they

¢-vector-meson intermediate state further because its coygould be of higher order in the external momema and

pling is an order of magn_itude smaller than the experimentahZ_ The terms with higher powers @f are naturally small,
uncertainty of thew coupling. otherwise terms of higher order of are in principle diver-

We are now ready to determine the spectral functiorngent The finiteness odmt™ requires that all the higher
gv(s). Since the only resonance involved is the we can  hoyers ofg? cancel in the same way that the order one and
safely use the narrow-width approximation of E@3). The  1/52 cancel because of the Weinberg sum rules in the soft-
width of the w is only 1% of its mass. This is in contrast pion limit case.

with the p and a, resonances for which the widths are * \ye jnclude all other possible contributions to the subtrac-

20% and 33% qf their mass, respectively. In the narrowsign term. not yet accounted for in the previous analysis, by
width approximation we only neeu,, taken from[34], and  introducing the remainder term

Hy given by

w

3
_24 my,

_ 2
R"S_E (m(zz)——mffr‘ﬁ_’m_ 0.019+0.002 GeV -,

2 ©
Hy=F_JRy=0.215-0.013. (77) E;LdsRQ%paﬁ- (79

We should be careful when comparigg(s) to py a(S)
since they have different units. The relationship among thes
structure functions will become clear in the following sub-
section.

The intermediate vector meson subtraction term an
structure function contributions to the pion EM mass differ-
ence are obtained by combining E¢$7) and(74),

ghe purpose of including this term is to show explicitly the
effect of possible corrections to our current scattering ampli-
tude and its role in the high energy constraints and final
Jormula for the EM mass difference.

There are some conditions required upon this remainder
term. It cannot alter our previous soft-pion limit result; there-

fore,
3a (= o sz2
2 _ 2 %
amigsubty = 7| 6* [ dsais) o, im [ “asR@?p25)-0. (80
(78) p,—0-0
— o o 2 It is also convenient to use the following notation for its
o 6 A
AmZ(W,)= —f sz—zf dsgAs)K(—,s) expansion in powers of @?:
47 Jo F Jo 2
2h,(p?,s) 1
A4 A4 2 02 )= 2 2 P Na(P~.S) i
X_Z _+p2Q2 Al ——, R(Q lp !S) p hl(p vs)+ Q2+f(p2,s) O(QA)
A%\ 4 4p-Q 81)
_ © 1 0 AZ . . . .
2 __“ 2 =2 We have explicitly introduced a factor pf in order to make
Amz(Wa) 4 jo aQ ZF?JO ng“(S)K( 2 ’S) sure that this term vanishes in the soft-pion limit as given in

4 Eqg. (80). This limit also requires that the functions
S AZA A hi(p?,s) (fori=1,2) do not have a pole af=0. The above
2 4p7Q2 ' equation is not a formal expansion in orders o®4/since
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we have introduced the functidi{p?,s) in the denominator =1, 2) is to include all other possible contributions. The
of the second term. This has been done in order to make thebove constraints must be satisfied exactly, otherwise the
Q? integral of this term convergent at lo®?. The reason pion EM mass difference would be divergent.
for choosing the above notation will be clear in the following We can use the Weinberg sum rules, E§®) and (60),
extraction of the subtraction term contribution&mi"". to further simplify the previous equations:

We rewrite the subtraction term contribution

0 R S
pzf ds s )—gv(s)+h1(p2,5) =0, (87)
5 —3a (= ) 5 0
AmZ(subthy=——| dQ°T.(—Q%0). (82
8 0 w
2 Ry
The subtraction term including the remainder part, except its P fo ds{ [2pA(8)~50/(5)]
O(1/Q* contributions not present ih,, is R (s)
s
2 (= Q2 + p2 gV(S)_ Pa + hZ( pzls)) =0. (88)
Ti(—Q%0)=—2+ F—zf dS[ P5(5)3+—(32
m’0 We can use solutions available for the functigris) [13]
Q2 p2 andgy(s) to estimate the integrals for the remainder terms:
—oRq)—— = (1
PA(S) s—p2+Q? S ) B . pﬁ(s)
02Q? fo dspthy(p?,s)= fo dsp?| g,(s)— ——
—9v(S) == =7 +P*hy(p%9)
S—pHQ —=3.0x10° %, (89)
PPha(p*,s). @3 . ;
Q*+f(p%s))’ JO dspPhy(p?,s)= jo ds[ P[2pR(5) —Sau(S)]
We expand the above equation in powers @2in order to R
obtain 4 PA(S)
+p7|gv(s) — S
2 2 (= R s—p? R = -4
T(—Q2.0)= 2+ F_Zf 0 pfis)~ > p(s) ~6.1x10°% (90)
xJ 0
As expected, these values are small when compared to the
— p2gu(s)+ p2h,(p2.s integrals involvingpy(s) which are the larger terms in the
P7gv(s) P hi(P7S) constraint equations:
& (s—p?)? -
+ fo d5[5p5(s)— s PA(S) f dspR(s)=3.83x 1072, (91)
0
—p?(s—p?)gu(s) + p*h,(p?,s) = ’
v 2P 352 f ds(s)=5.62x10 2. (92
0
1
+0 a) (84) The remainder ternR(Q?,p?,s) allows us to satisfy the

constraints exactly since it introduces a small correction to
The finiteness oBm? requires the cancellation of the linear € Prévious constraint equations. We can proceed to find the

and logarithmic divergences, resulting in the constraints: subtraction term contribution by following the steps that we
used previously in order to obtain Eq44)—(46)

R
- AQ) —3a (» -p?)?
| ds{[p5<s>—p§<s>]+p2 s —g,,<s>+hl<p2,s>] Am(subiy= ;57 fods[p&s)slns—pﬁ(s)(s LL
=F2, (85 X In(s—p?) —gy(s)p?(s—p?)In(s—p?)
» +p2h2(p2,s)lnf(p2,s)]. (93
| ds{[Sp5<s>—s;)§<s>]+pZ[zpfi(s)—sgv(s)]

Even though the function§(p?,s) and h,(p?,s) are unde-
termined, we have seen in EQO) that their contributions to
2 2 —
+pha(p ’S)] =0. (86) the constraint Eq(86) are small.
Numerical result.The total pion electromagnetic mass
These constraints also reduce to the Weinberg sum ruledifference is given by the addition of the elastic term of Egs.
when we letp?=0. The role of the functions;(p?,s) (for  (40), the structure function terms of Eqgt0) and(78), and

PA(S)

S

+p¥ gy(s)—
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the subtraction constant term of E§3). The results for the TABLE I. AmEM results.

narrow-width approximation and for the corresponding spec

tral functions is given in Table I. Narrow width PA(S),pY(S)
We see from the results that the dominant contribution (MeV) (MeV)

comes from the subtraction term, which is largely the effectSubtr 4.306 4124

of vector and axial-vector resonances, with modest deper]E-Iastic

2 2 . . h 0.500 0.500
dence omp“=m‘ . The elastic term gives the only other sig- :
. LT P Str. Fn.a; int. st. 0.028 0.041
nificant contribution. The modification because of nonzero .
. . N Str. Fn.w int. st. —-0.127 —-0.127
width is also not large. The overall result is in excellent
agreement with experiment. Total calculated 4.707 4,538
Experiment 4,594 4,594
V. THE KAON EM MASS DIFFERENCE kaon case all the three nonet vector resonances contribute.

. . Another difference is that there is an elastic contribution to
Having set up and tested our methodology for the PIOMthe neutral kaon self-energy. This contribution vanishes in
we now procged o ihe calculatlo_n of the kaon elgctromagfhe ideal mixing approximation together with the limit where
netic mass difference. The most important effect is that th%ll the vector resonance masses are equal
larger mass of the kaon leads to kinematic corrections in the The contribution to the kaon Compton s.,cattering ampli-
various formulas. There are also changes in the mass, Widtp

and couplings of the resonances which we extract from theUde given by the Feynman diagrams of Fige) 2nd 2b) is

data. T(l,f(K)(qz,p~q)=—2D +4m2D
The kaon calculation is very similar to the pion one de- a Lur K20
scribed in the previous section, therefore, we will concentrate x{[Gk+(9?) 12~ [Gko(gd)]?}
on the differences that arise in the kaon case. The kaon coun-
terpart for the Lagrangian of E§20) expanded in terms of
kaon, photon, and spin-1 resonance fields is X mﬁ—(p+q)2—ie+(qH_Q) ;
—i w + - _ K-~ + 21 +— (95)
L=ieAK"3,K"—K"3,K")+e"A*A K"K
where
eFvF}w 0 +\F¢ +1 )
T T Puv APurT 5 Wuy ® u
2 #ON3TE 3T GK+,o(q2)Ef du S+ ou), (96)
o Uu—q
Fv _
FﬁF/”(pwar V2,,+ w,,) KK and
s olU) = S(U—MP) + = B(U—m2)+ = S(u—m?)
iGy - k+o(U)=E5d(Uu—m)+ = d(u—my)+ = S(u—mp).
+ Fz—(P,gﬁ V2¢,,+ @,,)9,K9,K 2 3 6 97)
K
iG, . We have subtracted the neutral kaon contribution in order to
+ F—z(—p?w+ V2¢,,+®,,)8,K°9 KO be able to use this equation in the following kaon EM mass
K difference formulas.
E The vector sea gull contribution, Fig(c, is
e
- ZFAFW(K; K*—K; K, (94) F2re o
v mv
K ng(K)(qZ’p.q)z—ZEzfo duW5K+(u)D1MV'
where we have used ideal mixing for the vector-meson reso- K (99)

nances.
The major difference between the pion and kaonFinally, the axial-vector resonance intermediate state contri-
Lagrangians, Eq920) and (94), respectively, is that in the bution, Fig. 2d), is

FX* (p-a+0®)?+ g mg —(p+a)’]
FRm, mi, —(p+a)*~ie

T (92, p-q)= +(g——0)Dy,,,

FA [ —mig?

Fiemi | mi,—(p+a)>=ie

+(qH_Q) DZMV‘ (99)
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The axial-vector intermediate state for the kaon is les®xtra minus sign to be able to insert them directly in the kaon
straightforward than that for the pion since the axial-vectorEM mass difference formula, are
mesonK is an ill-determined mixture of the physical states
K,(1270) andK,(1400) [34]. We will treat this issue later 5 2 (= p2Q?
when we estimate the spectral function for the axial-vector Ty(—=Q%0)= F_ﬁfo dsg{,(s)m,
intermediate state.
The breakdown into structure function and subtraction 1 (= _
terms of the Compton scattering amplitude given by the Wl(_QZ!V):_Zj dsdi(s)(v2+ p?QH)K(v,s)
above three termg(){"), (for i =1-3), in the spectral func- FicJo

tion representation is X 8(s—p?+Q%—2v), (109

2 (= Q?
—02%0)=— K ”
T(=Q%0=~2+ FszodSpV(s)SJer W2<—Q2,v)=Fi2f dsdj(s)p*Q%K(1,5)
KJ0

o 2 2
_EZZK_L dprlj(S)s_pTQ 1—%), X 8(s—p?+Q*—2v).
SN I . (C B Catse.of the. small wich of the* miermediate. siates,
Wil = Q%m)= F_ﬁf ds S (= QYK(.) Therefore, we use the definition .
X 8(s—p2+Q%—2v), (100

95(S)=HZ08(S— M2,0) —HZ, 4 8(s— M7y +). (106
W,(—Q2,v)=4m; 8(Q%*—2 o . . : :

2(=Q%w) ko(Q V) Unlike in the pion case, there is an intermediate vector-

X{[Gk+(—Q?)1?—[Gko(— Q%1 meson contribution for the neutral kaon as well as for the

charged kaon, in the SB) limit. For the pions, the interme-
diate p-meson contribution canceled in the @Jlimit (since
charged and neutral couplings become equaleaving only
s the intermediates and ¢ contributions to the neutral pion
X 8(s—p“+Q°—-2v), Compton scattering amplitude.

. We determine th&* couplings from the radiative decays
where v=p-q=mgqy, and p2=mﬁ. We have also intro- K* Ky ping Y

duced the convergence factor

1 [ PA(S) , o
+F_ﬁsf dsTp Q°K(v,s)

3
K “d (152 Re =4 T’ —0.70:+0.06 GeV 2
K(V,S)_fo u Ut 2p 1+ ﬂ(u)? §K+(U), Kx "= P (mi*+_mﬁ)3 K* k= U AUV e ,

(101)
3
where 24 M, 0 )
Ry«0= — Z—HFK*OHK%: 1.61+0.14 GeV <,
@ (m_,o—my)
- s | s—p?\* (M0 M
W= 1) -t @02
from which we obtain the values for
andp?=m3.
The definition of the kaon vector spectral function is Hyx " =FxVRgx+=0.093£0.004,
1 1 1 H 0= Fg+Rg+°=0.143+ 0.006. (107
PUSI=5pp(8)+ 5p3(S)+ 5pa(s), (103 D

In the kaon case, the mass difference need not be finite
wherep,'f(s) is the spectral function introduced in Fig. 5, and because there can be divergences which are absorbed into the
the other two are because of theandw intermediate states. renormalized masses of the up and down quarks. However,
For these last two it is appropriate to use the narrow-widtithis effect is relatively small because it is proportional to
approximation. am, or amy compared to the dominant electromagnetic

We also include the V# vertices in the same way as we mass shift which is simply of ordex. We assume that the
did for the pions. The effective Lagrangian that we use forenormalization of the up- and down-quark masses has been

the K*Ky vertex is carried out, although the precise renormalization prescription
is hard to define because of the small size of this effect. The
VRy vap remaining electromagnetic effects are finite.
L=e 2 """ PF 1V adgK. (104 We can now determine the full higQ? constraints for a

finite kaon EM self-energy given by combining Eq400)
The subtraction term and structure functions that follow fromand (105, and including the remainder terms introduced in
the above Lagrangian, including th€® functions with an  Eq. (81),
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TABLE Il. AmgM results.

Narrow width pR(S),p%5(s)

(MeV) (MeV)
Subtr 2.56 1.80
Elastic 0.92 0.92
Str. Fn.K; int. st. 0.05 0.07

Str. Fn.K* int. st. -0.18 -0.18
Total calculated 3.35 2.61
Dashen 1.27 1.27

pK<s>
dS [p(S) = pA(S) ]+ p?x| —— —gi(s) +hf(p?,s)

=F2, (108

j:ds{ [spy(s)—spa(s)]+ P 2pA(S) —sdi(s)]

K

+p* gv(S) -

)+p2h2(p s)} 0, (109

wherep?=
countered in the pion case.

Using the above constraints and all available data for the

vector spectral functiopf}(s) and the narrow-width approxi-
mation for gy(s), and thew, ¢, w(1420), w(1600) and
¢(1680) resonances, we obtain toy=h,=0:

2

d5p§(5)< 1- %) =0.017G12) GeV?, (110

f dssw‘i(s)(

wherep?=mg .
We try first the narrow-width approximation to the axial-
vector spectral function

p2 2
1—?) =0.040616) GeV*, (111

K (NW)

pr (S)=Fa%nw)[ ooy d(s— mi1(14oq)

+sin g 8(s— mﬁl(1270) +RE (s~ mil(HR))]-
112

This parametrization includes th€;(1270) andK,(1400)
resonances as well as a higher mass resornéndeR). The
input parameters tp,'f\ for this calculation are

0K: and mKl(HR):Z.O GeV. (113)

a
4
These choices are sensible but arbitrary. They fix the values
of FA and Ry through the constraint equatiori$10) and
(111). The obtained values deA and R show a sizable
dependence on the choice o L(HR) - The results for the

different contributions tosmg" obtained by this narrow-
width approximation are given in Table Il. In particular, we

find that the subtraction term contribution is very large.

JOHN F. DONOGHUE AND ANTONIO F. PREZ

=mZ . These equations are similar to the ones en-

. o,
o*s
o
. 0* o,

o . ..0..:.....00.00-000 *e0s0sag,,

1 1.5 2 2.5

FIG. 7. pa(S) VS My, (GeV).

However, this contribution varies fromm{"?"~2.3 MeV
for myg ur=18 GeV to sm*"~3.1 MeV for
Mk, 1Ry = 2.4 GeV. These numerical results only constitute a

very rough estimate. This is already indicated by the large
dependence irmKl(HR) and, once again, it involves the
narrow-width approximation for broad resonances.

There is another constraint on the axial-vector spectral
function because of decay:

me oK s |2
B(r—v Ki—v Krm)=E, dspa(S) 1_W
0 T

x| 14 2s 114
mf_ ] ( )
where
G2mi|V,4?
T:@ =0.6633 GeV 2. (115
8wl

The data for ther lepton decay,r— v, K, gives the
branching ratio$35],

B(r —v,K w7 )=(0.40:0.09%, (116
B(7~—» K7 7%)=(0.41:0.07%, (117
B(r — v, K 7%7%=(0.09+0.03 %), (118

B(r— v, K77)=(0.90+0.12%. (119

The last branching ratio is the sum of the three different
decay channels with the uncertainties added in quadrature.
Even though we expect these branching ratios to be domi-
nated by the axial-vector channels, especially khé1270)
and theK;(1400), there should also be a contribution be-
cause of the vector resonan&e (1410) [36]. This reso-
nance will contribute through the decay proc&ss(1410)

S,K*(892)r—Kmm. The branching ratio for
K*(1410)—-K*(892)7 is greater than 40% at 95% confi-
dence leve[34], andB[ K* (892— K ) ]~100%. Therefore,
the 7 branching ratio into the strange axial-vector channels
should be somewhat lower than stated in Ed.9.

We obtain the shape qf,'i(s), up to mg,,=2.1 GeV,
from diffractive production experimental data obtained by
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the ACCMOR Collaboration in 198f137]. The data was ex- dane effects, and does not represent any breakdown of chiral

tracted from 200000 examples of the reactionsymmetry. The main effect seems to be the kaon mass in the

K p—K ™7~ «*p. The intensity for the 1 channel gives propagator of the Born diagram which, hence, is a rather

us the shape gfk(s). long-distance effect, while the remaining dependence comes
We add a high energy tail to the data, up tofrom the known shift in resonance masses because of the

My .,.=2.54 GeV, which decreases quadratically. The constrange quark mass. This mass difference is important for the

straint equations favor this quadratic choice instead of otheextraction of theu—d quark mass difference.

simple parametrizations. The final normalization of the spec-

tral function is obtained by enforcing the constraint equa- ACKNOWLEDGMENTS

tions (110 and(111). If we define ]
We would like to thank the U.S. Department of Energy

Koo — _ (Grant No. DE-FG02-84ER40152and the National Science
PA(S)=Fp pa(s), where [ dspa(s)=1, (120 Egundation for providing the funds that supported this work.

we obtainF=0.144 GeV, and thea(s) given in Fig. 7. APPENDIX
The choice ofp)y results in an estimate for the branch- . o )
ing ratio for theK* (1410) vectorial resonance, The notation used for th®(E~) chiral terms in the La-

grangian of Eq(19) is
B[ 7— »,K*(1410]=(0.46+=0.13%. (121
U=exp(i2®/F),

This value could be extracted from data by doing an angular 0
momentum analysis of thi 77 final state. T, ot K+

The final results for the different contributionsany are \/5 \/5
given in Table Il. We estimate the uncertainty of the total 0
kaon EM mass difference to he(Amy)~0.6 MeV. d= o r

Our result is about 100% greater than Dashen’s result. N
This result is in better agreement with earlier R¢85,38,
and with the recent investigatiga], but in disagreement K- KO —377
with Baur and Urech2]. Given the uncertainty of our result, J6 8
we feel more comfortable by saying that we find a modifi-
cation of Dashen’s theorem between 160% and 240% . m, 0O O

KO

X:ZBO 0 My 0 ,
0O 0 mg

VI. CONCLUSIONS

The calculation of nonleptonic amplitudes is in general
one of the most difficult tasks for analytic strong interaction D,U=d,U—i(v,+a,)U+iU(v,—a,), (A1)
techniques. The elecromagnetic mass differences of the pseu-
doscalar mesons seems to us to be the most favorable casesherev*, a* are the external fields. In order to include EM
attempt a controlled calculation. There turn out to be severabne needs to define
favorable circumstances that help in this endeavor. As we
have exploited above, the relevant current-current products a,=0, v,=eQA,, (A2)
have several connections to known phenomenology, and
have important constraints because of the long-distance chivhere A, is the photon field, and should not be confused
ral behavior and the short-distance properties of QCD. with the axial-vector antisymmetric tensor field which has
The calculation of the known pion mass difference wastwo Lorentz indicesA,, . Q is the quark charge matrix, for
quite successful. It turns out that intermediate mass scaldbeu, d, ands quarks,
(around 1 GeV are the most important for this matrix ele-

ment, and these are well represented by resonance contribu- 2.0 0

tions. In fact, this structure is already visible in the old cal- L

culation in the soft-pion limit given by Dast al. where the Q=0 -5 0 |. (A3)
vector and axial-vector spectral functions determine the mass 0o 0o -1

difference in the chiral limit. There are calculable corrections

and even new diagrams that come in as oné includes a non- The notation used for Lagrangian containing the chiral

zero pion mass, but the pion mass is still small enough tha5ouplings of the vector and axial-vector-meson resonances,

one does not change the general anatomy of the matrix eIeE- (19), is

ment. a !
In the case of the kaon mass difference, the experimental

result is not known. We find a large deviation from the pre-

diction of Dashen’s theorem, which is valid in the limit of

massless kaons. While the magnitude of this effect is larger

than most S\B)-breaking effects in chiral calculations, we ]

stress that its origin is in reasonably well-known and mun- FRL=d*(v"*a") —d"(v**a*)—i[v**a* v"*a"],

t

—_int t_
u,=iu DMUu =U,,

fAr=uFf uT+u'FE",
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2 .
2wy ) =5 {u'Tay—i(vy+a)lu+uld—i(v,—a)]u'}.
V,,= P -—+—= K* ,
u 2 6 (A5)
. 5 2 From the kinetic terms of the Lagrangian in Ef9) one
K K* - Tws derives the free propagator for the antisymmetric tensor field
6 v representation24],
a_‘f+f_1 a Ky (O] TR, (X)R,4( )|0>:_—ijﬁ—e_i(x_y)
> \/5 1 1 wv polY M2 22 M2—K2—ie
_ ad o X[0,p900(M2=K?) + 0,k K,
A= a - T+ T Ki , (A4)
2 6 _g,ua'kvkp_(/'u—”/)]v (A6)
K] K_i) _ ifl where the normalization is given by
NG

y2%

V)\R,u.v: a)\RMV—i_ [F)\ vR,uv]!

—i
(OIR,[R(€,p)) =11 [Puen(P) —Puen(P)].  (AT)
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