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We use the Cottingham method to calculate the pion and kaon electromagnetic mass differences with as few
model-dependent inputs as possible. The constraints of chiral symmetry at low energy, QCD at high energy,
and experimental data in between are used in the dispersion relation. We find excellent agreement with
experiment for the pion mass difference. The kaon mass difference exhibits a strong violation of the lowest
order prediction of Dashen’s theorem, in qualitative agreement with several other recent calculations.
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I. INTRODUCTION

The calculation of the electromagnetic~EM! mass differ-
ences of pions and kaons has recently been quite an active
topic @1–5# in the field of chiral perturbation studies. This is
partially due to the interest in the values of the light quark
mass ratios, for which we need to be able to separate elec-
tromagnetic from quark mass effects@6–8#. The realization
that Dashen’s theorem@9#, relating pion and kaon electro-
magnetic mass differences in the limit of vanishing
mu ,md ,ms , could be significantly violated in the real world
@3–5,10# has added to the importance of a direct calculation
of these electromagnetic effects. Moreover, these calcula-
tions have an intrinsic interest as state of the art investiga-
tions of our ability to handle new types of chiral calculations.
The classic studies of chiral perturbation theory@11,12# are
being extended to calculations where one must obtain more
detailed information of the intermediate energy region using
dispersion relations~or sometimes models!. The electromag-
netic mass differences are nonleptonic amplitudes which are
a challenge to calculate in a controlled fashion. It is our goal
in this paper to calculate these mass differences as well as we
can at present.

Our tool is the Cottingham method for calculating elec-
tromagnetic mass differences. As explained more fully in
Sec. III, this converts the mass difference amplitude into a
dispersion integral over the amplitudes forgp inelastic scat-
tering. As we learned in the 1970s from the study ofgp
inelastic scattering, the physics of such a process is reason-
ably simple. The elastic scattering is well known. At low
energies, one sees the inelastic production of the low-lying
resonances. In our study we take these resonances and their
coupling constants from experimental data. At high energies
one enters the deep inelastic region for which perturbative
QCD can be used. It turns out that in the pion mass differ-
ence the deep inelastic region cancels out both at zeroth and
first order in the quark masses. This leaves the mass differ-
ences to be dominated by the lower energy region.

There are a series of constraints on the calculation which
are important for giving us control over our method and

results. The most important of these are the following.
~1! There exists a rigorous result for these mass differ-

ences, exact in the limit thatmq→0, (q5u,d) which states
that in this chiral limit the pion mass difference is

Dmp
252

3a

4pFp
2 E dss lns@rV~s!2rA~s!#, ~1!

whererV(s) andrA(s) are the vector and axial-vector spec-
tral functions measured ine1e2 annihilation and int decays
@13#. This is a powerful constraint because it requires that the
full calculation differs from this only by terms of ordermp

2

or higher, and must reduce to this asmp
2→0. Many of these

deviations are kinematic in origin and hence are well tied
down by this constraint.

~2! Dashen’s theorem states that in an SU~3! extension of
this same limitmq50, (q5u,d,s) that the kaon mass differ-
ence is equal to the pion mass difference. This means that
similar physics enters both amplitudes and one is able to
focus more directly on SU~3! breaking.

~3! The low energy structure of the Compton amplitudes
gp→gp and gK→gK are known rigorously from chiral
perturbation theory@14–17# and the process in the crossed
channelgg→pp matches well with experiment@17#.

~4! QCD gives us important information about the high
energy behavior of the dispersive integral, with the result
thatDmp

2 is finite up to ordermq
2 , while DmK

2 has at most a
logarithmic divergence at ordermq , which is to be absorbed
into the u,d quark masses. This is very useful in pinning
down the high energy parts of the calculation.

~5! The medium energy intermediate states are known di-
rectly from experiment. This region is the most difficult to
control purely theoretically, and so we rely on experimental
data to overcome our inability to provide a first-principles
theoretical calculation.

These properties are important ingredients for the reliabil-
ity of our method. While there are still some approximations
and educated guesses involved in the matching up of the
various regions of the calculation, this method is more than
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just another model and represents the real world as well as is
possible in analytic calculations at present.

While we estimate that our uncertainty is about 10% for
pions, and 20% for kaons, our calculated value for the pion
mass difference agrees excellently with experiment
(Dmp

th54.5460.50 MeV vsDmp
expt54.60 MeV!. In the case

of kaons, our calculated value isDmK
th52.660.6 MeV, indi-

cating a strong breaking of Dashen’s theorem (DmK
DT51.3

MeV!, in agreement with many other recent works@3–5#.
In the next section, we briefly review the physics and

history of the calculations of electromagnetic mass differ-
ences. Section III presents the basics of the Cottingham
method, while Sec. IV describes our application of it to the
pion mass difference. The kaon mass difference is studied in
Sec. V, and we summarize our findings in Sec. VI.

II. REVIEW OF THE PROBLEM

The mass differences of kaons and pions
Dmp

expt[mp62mp054.593660.0005 MeV,

DmK
expt[mK62mK0523.99560.0034 MeV, ~2!

or
Dmp

252mp
~avg!Dmp5~1.261260.0001!31023 GeV2,

DmK
252mK

~avg!DmK5~23.960460.0035!31023 GeV2,
~3!

wheremK,p
(avg)[ 1/2@m(K,p)61m(K,p)0# are because of two

sources: quark masses and electromagnetic interactions. The
difference in mass of the up and down quarks can produce
isospin breaking in hadron masses. However, because the
quark mass splitting isDI51 and the pion mass difference is
only sensitive toDI52 effects, the pion mass difference
only receives contributions of second order, i.e.,
(md2mu)

2. In fact, the leading effect of this order is calcu-
lable in chiral perturbation theory:

Dmp
2

~QM!5
1

4

~mu2md!
2

~mu1md!~ms2m̂!
mp6
2 , ~4!

and is quite small. To the level of our approximations we
will neglect this quark mass effect and treat the pion mass
difference as purely electromagnetic. The kaon mass differ-
ence, on the other hand, does receive an important contribu-
tion linear inmd2mu

DmK
2

~QM!5
mu2md

mu1md
mp
21O„~mu2md!

2
…. ~5!

This relation is one of the primary sources of information on
quark mass ratios. For it to be useful we need to known how
much of the kaon mass difference is because of electromag-
netic interactions.

We have one handle on the electromagnetic mass differ-
ences which comes purely from symmetry considerations.
The electromagnetic interaction explicitly violates chiral
SU~3! symmetry, and its effect can be described within the

chiral energy expansion. At lowest order, which is order
p0, the unique effective Lagrangian with the right symmetry-
breaking properties is

L05gEMTr~QUQU
1!. ~6!

This Lagrangian produces no shift in the masses of neutral
mesons and equal shifts forp1 andK1, so that it results in

Dmp
25DmK

2 . ~7!

This equality is known in the literature as Dashen’s theorem
@9#. It is valid in the limit of vanishing quark masses
(u, d, ands! and hence of massless pions and kaons. There
are a large number of effective Lagrangians possible with
extra derivatives and/or factors of the quark masses, so that
Dashen’s theorem will receive corrections of orderms or,
equivalently, of ordermK

2 @18#. Unfortunately, the coeffi-
cients of the higher order Lagrangians are not known, so that
one cannot obtain the corrections to Dashen’s theorem from
symmetry considerations. A direct calculation is required.

In order to obtain the electromagnetic mass shifts, one
must calculate

dm25
ie2

2 E d4x^p~p!uT@Jm~x!Jn~0!#up~p!&DF
mn~x!

~8!

as in Fig. 1.
In momentum space this is

dm25
ie2

2 E d4q

~2p!4
gmnTmn~q2,p•q!

q21 i e
, ~9!

where

Tmn~q2,p•q!5 i E d4xe2 iq•x^p~p!uT@Jm~x!Jn~0!#up~p!&.

~10!

This calculation is different from standard calculations
within chiral perturbation theory, because we need to be able
to explicitly calculate~and not just parametrize! the medium
energy and high energy contributions.

There are a few things that we know rigorously about the
calculation. Within QCD, the high energy renormalization of
a quark mass involves a logarithmic divergence which is
proportional to the quark mass itself. Therefore the pion
mass difference can pick up divergences only proportional to
the second power of the quark masses, which will go into
defining renormalized masses in Eq.~4!. In our approxima-
tion, or more strictly in the chiral limit, the pion electromag-
netic mass difference is finite. For the kaon there may appear
a divergence of orderamu or amd , i.e., suppressed by one
power of the light quark masses. This goes into a renormal-
ization of the quark masses in Eq.~5!. In principle, there is
an ambiguity about how much of the electromagnetic inter-
action goes into the renormalized values of the quark masses.
This can only be solved by a precise renormalization condi-

FIG. 1. Electromagnetic self-energy.

7076 55JOHN F. DONOGHUE AND ANTONIO F. PE´REZ



tion which defines the renormalized quark masses. However,
because this ambiguity is proportional toamu and amd ,
while the kaon mass difference needs only one factor ofa or
(md2mu), this ambiguity is tiny and is far below the sensi-
tivity of our calculation.

The earliest attempts at explicit calculations~Riazuddin
@19# and Socolow@20#! appeared plausible but can now be
recognized as mistreating the chiral portions of the calcula-
tion. The earliest valid method, and still a remarkably beau-
tiful result, came in the work of Daset al. @21#. Here soft
pion theorems were used to turn the matrix element of Eq.
~10! into a vacuum polarization function, which in turn can
be written as a dispersion relation in terms of the spectral
functions of the vector and axial-vector currents, yielding the
formula quoted in Eq.~1!. Since QCD satisfies the chiral and
high energy properties assumed in the original derivations,
this remains an exact statement of QCD in the limit
mu5md50. The original authors saturated the spectral func-
tions by a single vector and axial-vector pole satisfying the
Weinberg sum rules@22#, leading to a remarkably good
value Dmp

Das55.0 MeV. More recently, this sum rule has
been explored using the measured spectral functions from
e1e2 annihilation andt decay, plus QCD constraints@13#.
These show that the physics of the pion mass difference is
remarkably simple in the chiral limit with the most important
effects being those of the lightest resonance contributions.
The Daset al. calculation remains a benchmark for other
calculations and will be an important constraint on our work.

Through the experience of the past decade of studies of
chiral perturbation theory, we have gained some insight into
the physics of intermediate energies. This leads to model
attempts to calculate electromagnetic mass differences@5#.
These calculations showed a large breaking~up to a factor of
2! of Dashen’s theorem because of mass effects. To a large
extent the violation of Dashen’s theorem has a simple kine-
matic origin in the pseudoscalar propagators of the one-loop
diagram.1 Lattice simulations have also recently been started
to be applied to this problem. They also see a significant
violation of Dashen’s theorem, (DmK51.9 MeV! @10#.

III. THE COTTINGHAM METHOD
AND MESON MASS SHIFT

The nonleptonic matrix element which we must calculate
is given in Eq.~10!. If we decompose the Compton ampli-
tude in terms of gauge-invariant tensors, we can define

Tmn~q2,p•q!5D1mnT1~q
2,p•q!1D2mnT2~q

2,p•q!,

D1mn52gmn1
qmqn

q2
,

D2mn5
1

p2S pm2
p•q

q2
qmD S pn2

p•q

q2
qnD . ~11!

We have used the standard definitions for these tensors. Note
that in the soft-pion limit, i.e.,pm→0, the combination
D2mnT2 vanishes as we will see in the following section.

A first step consists of a rotation in the complex plane and
a change of variables. We work in the pion rest frame,
p•q5mpq0. Since the singularities inTmn are located just
below the positive real axis and above the negative real axis
in the complexq0 plane, the integration overq0 may be
rotated to the imaginary axis,q0→ iq0, without encountering
any singularities. After this transformation the integral in-
volves only spacelike moments for photons, i.e.,
q2[2Q252(q0

21qW 2), and the mass shift becomes

dm25
e2

2 E d3qWdq0
~2p!4

gmnTmn~qW ,iq0!

q0
21qW 2

. ~12!

A change of variables from (qW ,q0) to (Q2,n), where
n5mpq0, involves

E d3qWdq052pE
0

`

dQ2E
mpQ

2mpQdn

mp
2Amp

2Q22n2, ~13!

which converts the mass shift to

dm25
e2

16p3E
0

`

dQ2E
2mpQ

mpQ dn

mp
2

Amp
2Q22n2

Q2

3gmnTmn~2Q2,in!

5
e2

16p3E
0

`

dQ2E
2mpQ

mpQ dn

mp
2

Amp
2Q22n2

Q2

1F23T1~2Q2,in!1S 12
n2

mp
2Q2DT2~2Q2,in!G .

~14!

This has reduced the mass shift to an integration over the
forward Compton scattering amplitude for spacelike photons.

The reduced Compton amplitudesT1 andT2 are presently
required to be evaluated at imaginary momenta,in. How-
ever, they can be written in terms of physical amplitudes via
dispersion relations. The Compton amplitudes are known to
obey dispersion relations in then variable with that forT1
requiring one subtraction:

T1~q
2,n!5T1~q

2,0!1
n2

p E
0

`dn82

n82
ImT1~q

2,n8!

n822n2
,

T2~q
2,n!5

1

pE0
`

dn82
ImT2~q

2,n8!

n822n2
. ~15!

The imaginary part of the forward scattering amplitudes
Im Ti are defined as electron scattering structure functions

1

p
ImTi~2Q2,n!5Wi~2Q2,n! for i51,2. ~16!

After employing these dispersion relations, the integration
over n can be done explicitly with the result

1As was pointed out in Ref.@2#, Ref. @5# has an error in one of the
mass effects. The correct amplitude is shown in Eq.~25! of this
paper. We disagree with the methodology of Ref.@2# which at-
tempted to correct this problem, and agree with the critique of@2#
which is contained in@4#.
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Dm25
a

4pE0
`dQ2

Q2 H 2
3

2
Q2T1~2Q2,0!

13Q2E
0

`dn82

n82
W1~2Q2,n8!L1S n82

mp
2Q2D

1E
0

`dn82

mp
2 W2~2Q2,n8!L2S n82

mp
2Q2D J , ~17!

where

L1~y![
1

2
1y2yA11

1

y
,

L2~y![2
3

2
2y1~11y!A11

1

y
. ~18!

These manipulations have transformed the mass shifts into
integrations over the structure functions in the physical re-
gion, as well as the subtraction termT1(2Q2,0). The
(Q2,n) plane is shown in Fig. 3 below, as is the physical
region whereWiÞ0.

IV. THE PION EM MASS DIFFERENCE

In this section, we describe the details of the calculation
of the electromagnetic mass difference of the pion. The exact
result of the Daset al. @21# calculation in the chiral limit
involves the difference of spectral functionsrV(s)2rA(s).
This difference is entirely determined by the leading vector
and axial-vector resonances. Therefore, our first step is to
study the low energy chiral amplitudes supplemented by the
interactions of vector and axial-vector resonances. These
have been previously studied in a model field-theoretic cal-
culation @5#. We correct the mistake found in that work@2#,
and transform the results into our dispersive framework. This
allows us to show how the Cottingham method merges with
the chiral limit result of Daset al. asmp→0.

We subsequently generalize the calculation by treating the
resonances more realistically and adding in other ingredients
to the amplitude. The former improvement involves the re-
placement of the ‘‘narrow-width’’ treatment of the reso-
nances, which occurs in any field-theoretic treatment, by
spectral functions which account for the energy variation and
width of the resonances. To complete the ingredients to the
calculation, we add resonance transitions not accounted for
previously and also the deep inelastic continuum. The reso-
nance couplings follow from experiment, and their presence
in the Compton amplitude is confirmed by the comparison of
theory and experiment ingg→p0p0 @14,15,17,23#. The
deep inelastic region cancels in the mass difference to the
order that we are working, so that we include only a few
comments on the matching of low and high energies.

Lagrangian with spin-1 resonances.Our starting point for
calculating the pion Compton scattering amplitude is a La-
grangian which includesO(E2) chiral terms andO(E4) vec-
tor (JPC5122) and axial-vector (JPC5111) couplings, in-

troduced by Eckeret al. @24,25#. This Lagrangian provides
an accurate description at low and medium energies~up to
;1 GeV!:

L52
1

4
FmnF

mn1
Fp
2

4
Tr~DmUD

mU†1xU†1x†U !

2
1

2
TrS ¹lVln¹nV

nm2
1

2
MV

2VmnVmnD
1

FV

2A2
Tr~Vmn f1

mn!1
iGV

A2
Tr~Vmnu

mun!

2
1

2
TrS ¹lAln¹nA

nm2
1

2
MA

2AmnAmnD
1

FA

2A2
Tr~Amn f2

mn!. ~19!

The notation is defined in the appendix. The relevant terms
after expanding the above Lagrangian in terms of pion, pho-
ton, and spin-1 resonance fields are

L5 ieAm~p1]mp22p2]mp1!1e2AmAmp1p2

2
eFV
2

Fmnrmn
0 S 12

p1p2

Fp
2 D

1
iGV

Fp
2 rmn

0 ~]mp1]np21]mp2]np1!

2
2eGV

Fp
2 Amrmn

0 ~p1]np21p2]np1!

2
ieFA
2Fp

Fmn~a1mn

2 p12a1mn

1 p2!. ~20!

The Feynman diagrams which contribute to the pion
Compton scattering amplitude, given by the above Lagrang-

FIG. 2. Compton scattering diagrams for the meson resonances.
~a! Elastic diagrams.~b! Pseudoscalar sea gull diagram.~c! Vector
resonance sea gull diagrams.~d! Axial-vector resonance intermedi-
ate state diagrams.~e! Pion form factor diagrams.
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ian, are shown in Fig. 2. It is convenient to classify these
diagrams in three groups, which correspond with three
gauge-invariant terms of the amplitude.

The first term encloses the contribution given by Figs.
2~a!, and 2~b!,

Tmn
~1!~q2,p•q!522D1mn

14mp
2 uGp~q2!u2

3S 1

mp
22~p1q!22 i e

1
1

mp
22~p2q!22 i e DD2mn

, ~21!

where we have used the vector resonance dominance ap-
proximation in the pion form factor, i.e.,

FVGV

Fp
2 51. ~22!

This is equivalent to saturating the pion form factor with the
r meson resonance:

Gp~q2!5
mr
2

mr
22q2

. ~23!

The second term, which we call the vector seagull, is
given in Fig. 2~c!. It differs from the pseudoscalar sea gull
because one of the photon lines interacts through a vector
resonance,

Tmn
~2!~q2,p•q!522

FV
2

Fp
2

q2

mr
22q2

D1mn
. ~24!

The third group, because of the axial-vector intermediate
state, given by the diagrams in Fig. 2~d!, is

Tmn
~3!~q2,p•q!5

FA
2

Fp
2mA

2 S ~p•q1q2!21q2@mA
22~p1q!2#

mA
22~p1q!22 i e

1
~p•q2q2!21q2@mA

22~p2q!2#

mA
22~p2q!22 i e DD1mn

1
FA
2

Fp
2mA

2 S 2mp
2q2

mA
22~p1q!22 i e

1
2mp

2q2

mA
22~p2q!22 i e DD2mn . ~25!

The numerical values that we use for the parameters in-
volved in the previous five equations are

mp5mp650.139 569 9560.000 000 35 GeV,

Fp50.092460.0003 GeV,

mV50.769960.0008 GeV,

FV50.152960.0036 GeV. ~26!

For the numerical results in the soft-pion limit, we use the
axial-vector resonance parameters,mA , andFA , obtained by
the Weinberg sum rules@22# in the narrow-width approxima-
tion,

FA
~WSR!5AFV

22Fp
250.121860.0045 GeV,

mA
~WSR!5

FVmV

FA
50.966460.0427 GeV. ~27!

Thep2 corrections to the finalmA , andFA which we use in
our final numerical answer at the end of this section, even
though necessary to cancel divergences, are minimal and
also have a minute effect on the numerical results for
Dmp .

Beyond the narrow-width approximation.The above
analysis utilizes zero-widthr and a1 resonances. This
‘‘narrow-width’’ approximation is a poor description for
these resonances since they are not particularly narrow, es-
pecially thea1. The full resonance spectrum can be taken
into account by employing the spectral function, Ka¨llen-
Lehmann, representation@26,27#. Furthermore, this represen-
tation includes the effect of higher mass resonances with the
same quantum numbers such asr8’s in the vector case. The
spectral function representation of these resonances general-
izes the spin-1 resonance propagators encountered in the
Compton scattering amplitudes,Tmn

( i ) (q2,p•q) ~for i51–3)
given above:

1

m22q22 i e
→E ds

rR~s!

s2q22 i e
. ~28!

The sum of the three terms, Eqs.~21!, ~24!, and~25!, of the
pion forward Compton scattering amplitude in the spectral
function representation reads
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Tmn~q2,p•q!5D1mnH 222
2

Fp
2 E

0

`

dsrV
R~s!

q2

s2q2
1

1

Fp
2 E

0

`

ds
rA
R~s!

s S ~p•q1q2!21q2@s2~p1q!2#

s2~p1q!22 i e
1~q→2q! D J

1D2mnH 4mp
2UGp~q2!U2S 1

mp
22~p1q!22 i e

1~q→2q! D
1

1

Fp
2 E

0

`

ds
rA
R~s!

s S 2mp
2q2

s2~p1q!22 i e
1~q→2q! D J . ~29!

The narrow-width result can be readily reproduced by let-
ting

rV,A
R~NW!

~s!5FV,A
2 d~s2mV,A

2 !, ~30!

where the values forFV , FA , mV , andmA are given in Eqs.
~26! and ~27!.

The Cottingham approach.Since we have a complete
form for the Compton scattering amplitude we could directly
calculate the pion EM mass difference with Eq.~9!, avoiding
the Cottingham method altogether. Nevertheless, the Cot-
tingham method@28# allows us to gain control and insight
into the calculation. This method requires the breakdown of
the scattering amplitude into subtraction and structure func-
tions terms, which are easily extracted from Eq.~29!:

T1~2Q2,0!5221
2

Fp
2 E

0

`

dsrV
R~s!

Q2

s1Q2

2
2

Fp
2 E

0

`

dsrA
R~s!

Q2

s2p21Q2 S 12
p2

s D ,
W1~2Q2,n!5

1

Fp
2 E

0

`

ds
rA
R~s!

s
~n2Q2!2

3d~s2p21Q222n!,

W2~2Q2,n!54mp
2 S mr

2

mr
21Q2D 2d~Q222n!

1
1

Fp
2 E

0

`

ds
rA
R~s!

s
p2Q2d~s2p21Q222n!.

~31!

Before we describe each of these terms in detail, it is
useful to be more familiar with their domain in the (n,Q2)
plane. The subtraction term is the value ofT1 along the
negativeQ2 axis. The structure functions are limited by ki-
nematics to a sector of the first quadrant and their domain is
better understood if we introduce the Bjorken scaling vari-
able,x5 Q2/2n . The allowed kinematic ranges for the vari-
ables involved are

0<Q2<`, c<n<`, and 0<x<1, wherec5
Q2

2
.

~32!

The domain of both structure functions in the (n,Q2) plane
covers the area in the first quadrant which lies between the
positiven axis (x50) and the elastic line (x51). This is the
unshaded region shown in Fig. 3 for pion kinematics. Within
this sector, the figure shows other lines of constantx which
help describe the structure functions in the scaling region. It
also shows two lines of constants5mR

2 which mark the re-
gion where the resonant intermediate states are the dominant
contribution.

The scaling region for nucleons is the region above
Q2;1 GeV. It is described by perturbative QCD. The rel-
evant degrees of freedom are quarks and gluons, and the
structure functions are described in terms of quark distribu-
tion functions, which depend only onx if we neglect loga-
rithmic deviations. In this approximation, the structure func-
tions are constant along the constant-x lines.

The resonance region in the (n,Q2) plane is described by
the two dashed lines parallel to the elastic orx51 line.
These lines satisfy the equation for constant squared invari-
ant mass of intermediate resonant states:

MR
25~p1q!25p212n2Q2. ~33!

Since the graph is for pion values we choose thea1 as the
first resonance,ma1

51.26 GeV. We also include a second

resonance with massmR5A2ma1
in order to show the posi-

tion of possible higher resonances.
This resonance region is described by chiral Lagrangians

which include spin-1 resonances such as Eq.~19! @24,25#.
The structure functions obtained through the chiral

FIG. 3. (n,Q2) plane. Units in GeV2. Unshaded region is the
domain of the structure functions. Dashed and solid lines are for
x5 0, 0.2, 0.4, 0.6, 0.8, and 1.0. Dashed-dotted lines are for
MR

25 1.6 and 3.2 GeV2.
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Lagrangians in the narrow-width approximation are con-
strained to the elastic line, thea1 line, plus other parallel
lines corresponding to possible higher resonances. If we in-
clude a finite width for the resonances, these lines become
bands whose thickness is proportional to the resonance
width.

The usefulness of applying the Cottingham method arises
from the breakdown of the scattering amplitude into the three
terms shown in Eq.~31!. We gain control because we can
make reasonable assumptions and establish constraints on
the pion structure functions. At the same time, it is possible
to relate the subtraction term to the soft-pion limit.

All of the resonance couplings will contain form factors
which suppress the effect of an individual resonance as
Q2→`. We will assume that the fall off of all such photon
form factors will involve a scale which is a typical vector-
meson mass. We now turn to the procedure to introduce
these form factors in our dispersive framework. This has a
subtlety in that some naive structures for this form factor
could upset the soft-pion limits in our formulas. We will
choose a form which is well behaved in the soft-pion limit.
The form factor also solves what would appear to be a prob-
lem in the present inclusion of resonances, i.e., the structure
functionW1(Q

2,n) given in Eq.~31! has terms proportional
to n2 andQ4 which would generate divergences for large
Q2. This does not occur in the presence of the form factors.
This divergent behavior is clear if we calculateW1(Q

2,n)
along the lines of constants5mR

2 . We use thed function to

eliminate then dependence, i.e.,n5 1
2 (s2p21Q2), to ob-

tain

W1
~cst. s!~Q2,n!5

1

Fp
2

rA
R~s!

s

1

4
~s2p22Q2!2, ~34!

which diverges asQ4. A structure function for a given reso-
nant state cannot diverge for largeQ2 without violating uni-
tarity. For a single resonance, as it is the case in question, the
structure function must go to zero if we follow a line of
constant invariant masss to high energies. In order to
achieve this behavior, we introduce a multiplicative factor
which forces its convergence. This factorK(n,s) resembles
the form factor obtained for the elastic term through the
vector-meson dominance model. In addition, it has the prop-
erties

K~n50,s!51,

lim
Q2→`

K~n,s!~cst. s!;
1

Q6 ,

@K~n,s!~cst. s!#Q25051. ~35!

These properties ensure that the subtraction term is left
unchanged, and that the structure function will converge for
largeQ2. The form factor is normalized in order to agree
with the previous result atQ250 for fixeds. The form factor
that satisfies these conditions is

K~n,s!5S mV
2

mV
212n D 4S 11h

2n

s D , ~36!

where

h5
s

s2p2F S 11
s2p2

mV
2 D 421G , ~37!

andp25mp
2 . We have chosen the appropriate value for the

vector-meson mass,mV5mr . The factorK(n,s) above also
has the property of being very close to ther contribution to
the pion EM form factor fors5p2, as it can be seen in Fig.
4.

The inclusion of this factor in our analysis is easily
achieved through the substitution

rA
R~s!→rA

R~s!K~n,s!. ~38!

The structure functions and subtraction terms read

T1~2Q2,0!5221
2

Fp
2 E

0

`

dsrV
R~s!

Q2

s1Q2

2
2

Fp
2 E

0

`

dsrA
R~s!

Q2

s2p21Q2S 12
p2

s D ,
W1~2Q2,n!5

1

Fp
2 E

0

`

ds
rA
R~s!

s
K~n,s!~n2Q2!2

3d~s2p21Q222n!, ~39!

W2~2Q2,n!54mp
2 S mr

2

mr
21Q2D 2d~Q222n!

1
1

Fp
2 E

0

`

ds
rA
R~s!

s
K~n,s!

3p2Q2d~s2p21Q222n!.

The pion EM mass difference for the above functions is
readily obtained with Eq.~17!. We choose to break it into
terms corresponding to those shown in the above equation
with an extra subdivision of theW2 contribution which iso-
lates the elastic term

FIG. 4. FactorK(n,s) and pion EM form factor vsQ2. Pion EM
form factor, solid line.K(n,mp

2 ), dashed line.K(n,1 GeV2), dash-
dotted line.K(n,2 GeV2), dotted line. Horizontal scale represents
Q2 in GeV2.
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Dmp
2 ~subtr!5

a

4pE0
`

dQ2
3

Fp
2 FFp

22E
0

`

dsrV
R~s!

Q2

s1Q2

1E
0

`

dsrA
R~s!

Q2

s2p21Q2S 12
p2

s D G ,
Dmp

2 ~W1!5
a

4pE0
`

dQ2
6

Fp
2 E

0

`

ds
rA
R~s!

s

1

D2 S D2

2
2Q2D 2

3L1S D4

4p2Q2DKS D2

2
,sD ,

Dmp
2 ~elast!5

a

4pE0
`

dQ2S mr
2

mr
21Q2D 2L2S Q2

4p2D ,

Dmp
2 ~W2!5

a

4pE0
`

dQ2
1

2Fp
2 E

0

`

ds
rA
R~s!

s

3D2L2S D4

4p2Q2DKS D2

2
,sD , ~40!

whereD25s2p21Q2, andL i(y) ~for i51,2) are defined in
Eq. ~18!.

High energy constraints.Even though we can obtain an
explicit formula for the pion EM mass difference by adding
all the contributions in Eqs.~40!, it is necessary to analyze
the upper limit of theQ2 integral. Adding all the different
contributions in Eqs.~40!, and expanding theQ2 integrand in
powers of 1/Q2n, we obtain

2S 3a

4pFp
2 D H 2Fp

21E
0

`

dsFrVR~s!2rA
R~s!S 12

p2

s D G J 1

Q0

1S 3a

4pFp
2 D E

0

`

dssFrVR~s!2rA
R~s!S 12

p2

s D 2G 1Q2 1OS 1

Q4D ,
~41!

where, p25mp
2 . If the first two terms are not zero, they

originate linear and logarithmic divergences, respectively. In
order to obtain a finite pion EM mass difference we cancel
them explicitly generating two constraint equations,

E
0

`

dsFrVR~s!2rA
R~s!S 12

p2

s D G5Fp
2 , ~42!

E
0

`

dssFrVR~s!2rA
R~s!S 122

p2

s
1
p4

s2 D G50. ~43!

These highQ2 constraints become the Weinberg sum rules
in the soft-pion limit, which in the above equations is ob-

tained by lettingp250. We will see later a more detailed
explanation of this limit and its relation to the subtraction
term.

Because of the introduction of the convergence factor
K(n,s), the above divergences originate only from the sub-
traction term. We incorporate the highQ2 constraints in the
subtraction term of the pion EM mass difference, Eq.~40!, in
order to make all the contributions finite. The following pro-
cedure removes both divergences.

Subtract the linear divergence from the subtraction term
by means of Eq.~42!:

Dmp
2 ~subtr!5

a

4pE0
`

dQ2
3

Fp
2 H Fp

22E
0

`

dsrV
R~s!

Q2

s1Q2

1E
0

`

dsrA
R~s!

Q2

s2p21Q2S 12
p2

s D
2FFp

22E
0

`

dsrV
R~s!

1E
0

`

dsrA
R~s!S 12

p2

s D G J
5

a

4pE0
`

dQ2
3

Fp
2 H E

0

`

dsrV
R~s!

s

s1Q2

2E
0

`

dsrA
R~s!

s2p2

s2p21Q2 S 12
p2

s D J . ~44!

Integrate overQ2 and cancel the corresponding logarithmic
divergence by subtracting Eq.~43! multiplied by lnLQ2:

Dmp
2 ~subtr!5 lim

LQ2→`

a

4p

3

Fp
2 H E

0

`

dssrV
R~s!ln

LQ21s

s

2E
0

`

dsrA
R~s!~s2p2!S 12

p2

s D
3 ln

LQ21s2p2

s2p2
2F E

0

`

dssrV
R~s!lnLQ2

2E
0

`

dsrA
R~s!

~s2p2!2

s
lnLQ2G J . ~45!

Add the terms and take the limitLQ2→`, to obtain

Dmp
2 ~subtr!52

a

4p

3

Fp
2 E

0

`

dsFs lnsrVR~s!2~s2p2!

3 ln~s2p2!rA
R~s!S 12

p2

s D G . ~46!

The above contribution is free of divergences. Furthermore,
in the soft-pion limit, i.e.,p250, it is equivalent to the Das
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et al. calculation@21#. Finally, we have a useful formula to
calculatedmp

(EM) free of divergences, which was mainly the
product of the Lagrangian introducing the chiral couplings of
the spin-1 resonances. We proceed to show the close relation
of the subtraction term and the soft-pion limit and to see how
we reproduce the results ofO(p4) chiral perturbation theory
with the above scattering amplitude.

Soft-pion limit and its relation to the subtraction term.In
the following we will show that the subtraction term is given
by the soft-pion limit up to corrections of orderp2. In this
discussion we refer to noncontact contributions as all contri-
butions except the pion sea gull term. This term is the only
one which has both photons interacting at the same vertex
and, therefore, we treat it differently in the following discus-
sion.

The noncontact contributions to the Compton scattering
amplitude have the form

Tmn
~NC!~q2,p•q!5 i E dxe2 iqx^puT@Vm~x!Vn~0!#up&.

~47!

Consider the soft-pion theorem@29#

lim
pm→0

^pk~p!buOua&52
i

Fp
^bu@Q5

k ,O#ua&, ~48!

whereb anda are arbitrary states andQ5
k5*d3xA0

k(x) is an
axial charge. We also need the commutators

@Q5
i ,Vm

j #5 i f i jkVm
k , @Q5

i ,Am
j #5 i f i jkAm

k . ~49!

The result of applying the soft-pion theorem to Eq.~47! is

lim
pm→0

Tmn
~NC!~q2,p•q!

52 i E d4xeiqx
22

Fp
2

3^0uT@V3
m~x!V3

n~0!2A3
m~x!A3

n~0!#u0&. ~50!

The two-current time-ordered products are related to the
spectral functions by

^0uT@Va
m~x!Vb

n~0!#u0&5 idabE
0

`

dsrV~s!~hgmn2]m]n!

3E d4k

~2p!4
e2 ikx

k22s1 i e
,

^0uT@Aa
m~x!Ab

n~0!#u0&52 idabFp
2 ]m]nE d4k

~2p!4
e2 ikx

k21 i e

1 idabE
0

`

dsrA~s!~hgmn2]m]n!

3E d4k

~2p!4
e2 ikx

k22s1 i e
. ~51!

Upon combining Eqs.~50! and ~51!, integrating overd4x,
and using the resultingd function to integrate overd4k, we
obtain

lim
pm→0

Tmn
~NC!~q2,p•q!522

qmqn

q21 i e
1

2

Fp
2 E

0

`

ds

3S 2gmn1
qmqn

q2 D @rV~s!2rA~s!#

3
q2

q22s1 i e
. ~52!

The contact term or pion sea gull contribution to the pion
Compton scattering amplitude is

Tmn
~C!~q2,p•q!52gmn , ~53!

which remains unchanged in the soft-pion limit. Adding both
contributions to the pion Compton scattering amplitude in
the soft-pion limit, we obtain

lim
pm→0

Tmn~q2,p•q!5D1mnH 221
2

Fp
2 E

0

`

ds@rV~s!

2rA~s!#
q2

q22s J . ~54!

An alternative way of reproducing the soft-pion limit result
above is lettingpm→0 in Eq. ~29!. In order to implement
this limit the following relations are useful:

lim
pm→0

D1mn
5D1mn

,

lim
pm→0

p2D2mn
50,

lim
pm→0

T1~q
2,p•q!5T1~q

2,0!up250 . ~55!

From these relations it follows that the only surviving term
in this limit is the subtraction termT1(q

2,0):

lim
pm→0

Tmn~q2,p•q!5D1mn
lim
pm→0

T1~q
2,0!. ~56!

This gives the same result as Eq.~54! when we identify

lim
pm→0

~rV
R~s!2rA

R~s!!5@rV~s!2rA~s!#. ~57!

We can now calculate the soft-pion limit to the pion EM
mass difference:

lim
pm→0

Dmp
25

a

4pE0
`

dQ2
3

Fp
2

3H Fp
22E

0

`

ds@rV~s!2rA~s!#
Q2

Q21s J ,
~58!

whereQ252q2. We follow the procedure described earlier
in order to cancel the linear and logarithmic divergences oc-
curring in the above equation. The cancellation of these di-
vergences imposed by the finiteness of the pion EM mass
difference requires
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E
0

`

ds@rV~s!2rA~s!#5Fp
2 , ~59!

E
0

`

dss@rV~s!2rA~s!#50. ~60!

These are Weinberg sum rules@22#, obtained in our case as a
consequence of the finiteness ofdmp

(EM) in the soft-pion
limit. Subtracting the linear and logarithmic divergences in
the same way as for the subtraction term, Eqs.~44!–~46!, we
obtain

lim
pm→0

Dmp
252

a

4p

3

Fp
2 E

0

`

dsslns@rV~s!2rA~s!#. ~61!

This is the result obtained by Daset al. @21#.
Finally, we evaluate Eq.~61! in the narrow-width ap-

proximation to obtain the numerical result

lim
pm→0

Dmp
~NW!54.685 MeV. ~62!

Spectral functions.We seek an improved description of the
physics of the resonance region with the spectral functions
rV
R(s) andrA

R(s) replacing the narrow-width description. The
ingredients to the spectral functions clearly are the same
resonance states that are revealed by the usual vector and
axial-vector spectral functionsrV(s) andrA(s). In addition,
we have just seen that in the soft-pion limit there is an exact
correspondencerV

R(s)2rA
R(s)5rV(s)2rA(s). This leads us

to utilize the experimental spectral functions determined in
Ref. @13# in order to produce a shape forrV

R(s) andrA
R(s). In

both the soft-pion limit and the full Cottingham calculation
at ordermp

2 , the high energy continuum cancels in the mass
shift. We, therefore, separate each spectral function into two
contributions, one because of the resonances and the other
because of the high energy continuum common to both vec-
tor and axial-vector channels. The resonant part is chosen to
match the resonances revealed in the phenomenological
analysis of the data in@13#. These spectral functions are then
slightly altered to obey the full constraint equations includ-
ing p2 terms of Eqs.~85! and~86! below. A continuum con-
tribution, common to both vector and axial-vector channels,
was included in@13#, but is here kept separate from the reso-
nances. The result of this is that we identify

rV,A~s!5rV,A
R ~s!1rV,A

C ~s!, ~63!

with a continuum contribution

rC~s!5rV
C~s!5rA

C~s!. ~64!

The precise identification of the continuum is not unique,
but since the difference of spectral functions enters, reason-
able variations do not produce a large final effect. The spe-
cific form that we use is shown in Fig. 5.

It is clear that the greatest source of model dependence in
our calculation comes form the numerical identification de-
scribed above. Our procedure in setting up the calculation in
the Cottingham method is very general. However, we do not
have directly available the experimental structure functions
for photons scattering off of pions. We have used an identi-

fication which is valid in the chiral limit in order to provide
this numerical input. There could be shifts in the couplings
of these resonances which are of ordermp

2 . These could
provide changes in the final answer at ordermp

2 which would
be of interest to us. This is partially relieved by the fact that
the analysis of@13# was carried out with real world data, not
strictly in the chiral limit. Thus the masses, widths, and
shapes of the resonances will accurately reflect physics with
mp
2Þ0. Likewise, we know that in the narrow-width ap-

proximation we have the right description, so that we do not
see a source of major uncertainty because of the nonzero
widths. This means that our model dependence comes from
possiblemp

2 dependences in the resonance couplings, and
our implicit assumption is that these are smaller than the
mp
2 dependence from the propagators. We have not been able

to find a way to do better than this in the phenomenological
analysis.

Comparison O(E4) chiral perturbation theory.We also
like to compare our method to the standard chiral perturba-
tion approach. The lowest energy region of the pion structure
function can be described by the chiral SU~3! Lagrangian to
order p4, originally developed by Gasser and Leutwyler
@11,12#. In addition to elastic and sea gull terms, and ignor-
ing pion loops, the only relevant terms involved in the pion
Compton scattering amplitude are theL9 andL10 terms:

L452 iL 9Tr~FR
mnDmUDnU

†1FL
mnDmU

†DnU !

1L10Tr~U
†FR

mnUFLmn!1 other. ~65!

The pion forward Compton scattering amplitude resulting
from this Lagrangian was calculated by Bijnens and Cornet
@14#, and Donoghueet al. @15#. Their result, up to pion loop
contributions which are small, is

Tmn~p,q!52
8p2q2

q42~2p•q!2S 11
2L9

r q2

Fp
2 D 2D2mn

22D1mn

1
8L10

r q2

Fp
2 D1mn

1 loops. ~66!

Expanding our narrow-width result in powers of external
momentapm andqm , we obtain

FIG. 5. Vector and axial-vector spectral functions. The graph
shows~V! rV

R(s), ~A! rA
R(s), and ~C! rC(s) vs s. The s scale is

given in GeV2.
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Tmn
~q2exp!~q2,p•q!5D1mnH 2222

FV
2

Fp
2

q2

mr
2 12

FA
2

Fp
2

q2

mA
2 J

1D2mnH 4mp
2 S 11

q2

mV
2 D 2 22q2

q42~2p•q!2

12
FA
2

Fp
2mA

2

2mp
2q2

mA
2 J

1 higher order terms in~q2,p•q,p2!.

~67!

The relations for theL9 andL10 in terms of the spin-1 reso-
nance parameters are obtained by inspection from Eqs.~66!
and ~67!.

L95
Fp
2

2mV
2 ,

L1052
1

4S FV
2

mV
2 2

FA
2

2mA
2 D . ~68!

This result is in agreement with Eckeret al. @24#. The above
equation forL10 is also the narrow-width approximation for
the sum rule~W0! in Ref. @13#.

Substituting the narrow-width parameters in Eq.~68!, we
obtain

L95~7.2060.05!31023,

L1052~5.8960.65!31023. ~69!

These are seen to be within reasonable agreement with the
experimental values;

L95~7.160.3!31023,

L1052~6.8460.3!31023. ~70!

The difference between the values in Eqs.~69! and ~70!
gives an estimate for the loop contributions which we ne-
glected in theO(p4) chiral Lagrangian calculation of the
Compton scattering amplitude. Besides the loop corrections,
the difference can also be because of the inaccuracy of the
narrow-width approximation.

Scaling region.The low and intermediate energy regions
of the structure functions are described above. To complete
the analysis of the structure functions we need to describe the
scaling region at large values of (n,Q2). The ingredients and
general behavior in this region are well known. The structure
functions become largely functions of the Bjorken scaling
variablex5Q2/2n, with logarithmicQ2 variations predict-
able by QCD@30#. This is easy to build into the Cottingham
analysis@31#. However, there is not a need to describe the
details here since the scaling region cancels in the difference
between the charged and neutral pions masses, to the order
that we are working here.

In the limit that theu andd quark masses are equal, the
deep inelastic structure functions of the neutral and charged
pions are equal. This leads to

Dmp~scaling!50. ~71!

To the extent that theu, d masses are different, the structure
functions may differ. However, we are calculating the elec-
tromagnetic effect in the limitmu5md so that we are not
sensitive to this effect.

V→pg contribution.To have a more complete phenom-
enological description of the Compton scattering amplitude
we also include the effect of intermediate vector-meson dia-
grams shown in Fig. 6. The motivation for introducing these
diagrams is the experimental observation of the radiative me-
son decaysv→pg andr→pg, andf→pg. The effective
Lagrangian which includes theVpg vertices is

L5e
ARV

2
emnabFmnVa]bp. ~72!

This Lagrangian is invariant under parity and charge conju-
gation transformations, as well as under chiral rotations. The
choice of including the EM field strength tensor ensures
gauge invariance, and the pion momentum dependence cor-
responds to the correct soft-pion limit for the vertex.

We introduce the spectral functionsgV(s) to describe the
intermediate states in Fig. 6. The normalization of these
functions is chosen in order to make the subtraction term
contribution compatible with the ones obtained for the axial-
vector case. The narrow-width approximation forgV(s) is

gV~s!5HV
2d~s2mV

2 !5Fp
2RVd~s2mV

2 !. ~73!

The subtraction term and the structure functions for the in-
termediate vector-meson diagrams follow from the Lagrang-
ian in Eq.~72!:

T1~2Q2,0!5
2

Fp
2 E

0

`

dsgV~s!
p2Q2

s2p21Q2 ,

W1~2Q2,n!5
1

Fp
2 E

0

`

dsgV~s!K~n,s!~n21p2Q2!

3d~s2p21Q222n!,

W2~2Q2,n!5
1

Fp
2 E

0

`

dsgV~s!K~n,s!

3p2Q2d~s2p21Q222n!, ~74!

whereK(n,s) is the factor defined in Eq.~36!. The factor
K(n,s) ensures theQ2 convergence of the structure func-
tions as in the intermediate axial-vector state case. We only
need to find the spectral functiongV(s) in order to determine
the above functions.

There are four possible vector intermediate states for the
pion Compton amplitude, ther6 for the charged pions, and
the r0, v, andf for the neutral pion. The coupling con-
stants,Rr6, Rr0, Rv , andRf , can be extracted from the
radiative decays of these vector mesons. We refer the reader

FIG. 6. Intermediate vector diagrams.
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to Refs.@17,23,32,33# for a review and examples of obtain-
ing such couplings. The couplingsRr6 andRr0 are the same
if we take isospin to be an exact symmetry. This means that
the charged and neutral pion EM self-energies because of the
r intermediate state would cancel in the pion EM mass dif-
ference. However, thev andf intermediate state contribu-
tions do not present such a cancellation. Since isospin-
breaking effects are generally of small magnitude, we shall
neglect the intermediater contribution to the pion EM mass
difference.

We can determine thev couplingRv from the experi-
mental measurement of the radiative decayv→p0g:

Rv5
24

a

mv
3

~mv
22mp

2 !3
Gv→pg55.4060.32 GeV22. ~75!

Likewise, we determine thef couplingRf :

Rf5
24

a

mf
3

~mf
22mp

2 !3
Gf→pg50.01960.002 GeV22,

~76!

where we have used the experimental values listed by the
Particle Data Group @34#. We do not consider the
f-vector-meson intermediate state further because its cou-
pling is an order of magnitude smaller than the experimental
uncertainty of thev coupling.

We are now ready to determine the spectral function
gV(s). Since the only resonance involved is thev, we can
safely use the narrow-width approximation of Eq.~73!. The
width of thev is only 1% of its mass. This is in contrast
with the r and a1 resonances for which the widths are
20% and 33% of their mass, respectively. In the narrow-
width approximation we only needmv taken from@34#, and
HV given by

HV5FpARV50.21560.013. ~77!

We should be careful when comparinggV(s) to rV,A(s)
since they have different units. The relationship among these
structure functions will become clear in the following sub-
section.

The intermediate vector meson subtraction term and
structure function contributions to the pion EM mass differ-
ence are obtained by combining Eqs.~17! and ~74!,

Dmp
2 ~subtr!5

3a

4pFp
2 E

0

`

dQ2E
0

`

dsgV~s!
p2Q2

s2p21Q2 ,

~78!

Dmp
2 ~W1!5

2a

4p E
0

`

dQ2
6

Fp
2 E

0

`

dsgV~s!KS D2

2
,sD

3
1

D2S D4

4
1p2Q2DL1S D4

4p2Q2D ,
Dmp

2 ~W2!5
2a

4p E
0

`

dQ2
1

2Fp
2 E

0

`

dsgV~s!KS D2

2
,sD

3D2L2S D4

4p2Q2D ,

whereD25s2p21Q2, p25mp
2 , and the functionsL i(y)

for i51,2 are defined in Eq.~18!. The extra minus sign ap-
pears because the vector intermediate state diagrams contrib-
ute to the neutral pion EM self-energy.

General treatment of other possible contributions.At this
point we have a fairly complete calculation of the pion EM
mass difference broken down into different contributions.
We have included the spin-1 resonances through their lowest
order chiral couplings, the scaling, and the intermediate vec-
tor resonance contributions to the pion EM mass difference.
By analogy with the nucleon structure functions, we are
comfortable with our estimates of the structure function con-
tributions. These are small, and even a factor of 2 correction
would amount to a small correction to the total mass differ-
ence. Therefore, we concentrate in the subtraction term con-
tribution estimate.

The subtraction term has been obtained by calculating the
pion Compton scattering amplitude with the effective chiral
Lagrangian for the vector and axial-vector resonances of Eq.
~19! and the effective Lagrangian for the intermediate vector-
meson contribution of Eq.~72!. In general, there could be
other possible contributions to the subtraction term. These
could be introduced by higher order effective Lagrangians.
Their contributions todmp

EM would be small since they
would be of higher order in the external momentap2 and
q2. The terms with higher powers ofp2 are naturally small,
otherwise terms of higher order inq2 are in principle diver-
gent. The finiteness ofdmp

EM requires that all the higher
powers ofq2 cancel in the same way that the order one and
1/Q2 cancel because of the Weinberg sum rules in the soft-
pion limit case.

We include all other possible contributions to the subtrac-
tion term, not yet accounted for in the previous analysis, by
introducing the remainder term

2

Fp
2 E

0

`

dsR~Q2,p2,s!. ~79!

The purpose of including this term is to show explicitly the
effect of possible corrections to our current scattering ampli-
tude and its role in the high energy constraints and final
formula for the EM mass difference.

There are some conditions required upon this remainder
term. It cannot alter our previous soft-pion limit result; there-
fore,

lim
pm→0

E
0

`

dsR~Q2,p2,s!50. ~80!

It is also convenient to use the following notation for its
expansion in powers of 1/Q2:

R~Q2,p2,s!5p2h1~p
2,s!1

p2h2~p
2,s!

Q21 f ~p2,s!
1OS 1

Q4D .
~81!

We have explicitly introduced a factor ofp2 in order to make
sure that this term vanishes in the soft-pion limit as given in
Eq. ~80!. This limit also requires that the functions
hi(p

2,s) ~for i51,2) do not have a pole atp250. The above
equation is not a formal expansion in orders of 1/Q2 since
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we have introduced the functionf (p2,s) in the denominator
of the second term. This has been done in order to make the
Q2 integral of this term convergent at lowQ2. The reason
for choosing the above notation will be clear in the following
extraction of the subtraction term contribution todmp

EM .
We rewrite the subtraction term contribution

Dmp
2 ~subtr!5

23a

8p E
0

`

dQ2T1~2Q2,0!. ~82!

The subtraction term including the remainder part, except its
O(1/Q4) contributions not present inh2, is

T1~2Q2,0!5221
2

Fp
2 E

0

`

dsH rV
R~s!

Q2

s1Q2

2rA
R~s!

Q2

s2p21Q2 S 12
p2

s D
2gV~s!

p2Q2

s2p21Q2 1p2h1~p
2,s!

1
p2h2~p

2,s!

Q21 f ~p2,s!J . ~83!

We expand the above equation in powers of 1/Q2 in order to
obtain

T1~2Q2,0!5221
2

Fp
2 E

0

`

dsFrVR~s!2
s2p2

s
rA
R~s!

2p2gV~s!1p2h1~p
2,s!G

1E
0

`

dsFsrVR~s!2
~s2p2!2

s
rA
R~s!

2p2~s2p2!gV~s!1p2h2~p
2,s!G 1Q2

1OS 1

Q4D . ~84!

The finiteness ofdmp
2 requires the cancellation of the linear

and logarithmic divergences, resulting in the constraints:

E
0

`

dsH @rV
R~s!2rA

R~s!#1p2FrA
R~s!

s
2gv~s!1h1~p

2,s!G J
5Fp

2 , ~85!

E
0

`

dsH @srV
R~s!2srA

R~s!#1p2@2rA
R~s!2sgV~s!#

1p4FgV~s!2
rA
R~s!

s G1p2h2~p
2,s!J 50. ~86!

These constraints also reduce to the Weinberg sum rules
when we letp250. The role of the functionshi(p

2,s) ~for

i51, 2! is to include all other possible contributions. The
above constraints must be satisfied exactly, otherwise the
pion EM mass difference would be divergent.

We can use the Weinberg sum rules, Eqs.~59! and ~60!,
to further simplify the previous equations:

p2E
0

`

dsFrA
R~s!

s
2gv~s!1h1~p

2,s!G50, ~87!

p2E
0

`

dsH @2rA
R~s!2sgV~s!#

1p2FgV~s!2
rA
R~s!

s G1h2~p
2,s!J 50. ~88!

We can use solutions available for the functionsrA
R(s) @13#

andgV(s) to estimate the integrals for the remainder terms:

E
0

`

dsp2h1~p
2,s!5E

0

`

dsp2Fgv~s!2
rA
R~s!

s G
53.031024, ~89!

E
0

`

dsp2h2~p
2,s!5E

0

`

dsH p2@2rA
R~s!2sgV~s!#

1p4FgV~s!2
rA
R~s!

s G J
56.131024. ~90!

As expected, these values are small when compared to the
integrals involvingrV

R(s) which are the larger terms in the
constraint equations:

E
0

`

dsrV
R~s!53.8331022, ~91!

E
0

`

dssrV
R~s!55.6231022. ~92!

The remainder termR(Q2,p2,s) allows us to satisfy the
constraints exactly since it introduces a small correction to
the previous constraint equations. We can proceed to find the
subtraction term contribution by following the steps that we
used previously in order to obtain Eqs.~44!–~46!

Dmp
2 ~subtr!5

23a

4pFp
2 E

0

`

dsH rV
R~s!s lns2rA

R~s!
~s2p2!2

s

3 ln~s2p2!2gV~s!p2~s2p2!ln~s2p2!

1p2h2~p
2,s!lnf ~p2,s!J . ~93!

Even though the functionsf (p2,s) and h2(p
2,s) are unde-

termined, we have seen in Eq.~90! that their contributions to
the constraint Eq.~86! are small.

Numerical result.The total pion electromagnetic mass
difference is given by the addition of the elastic term of Eqs.
~40!, the structure function terms of Eqs.~40! and ~78!, and
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the subtraction constant term of Eq.~93!. The results for the
narrow-width approximation and for the corresponding spec-
tral functions is given in Table I.

We see from the results that the dominant contribution
comes from the subtraction term, which is largely the effect
of vector and axial-vector resonances, with modest depen-
dence onp25mp

2 . The elastic term gives the only other sig-
nificant contribution. The modification because of nonzero
width is also not large. The overall result is in excellent
agreement with experiment.

V. THE KAON EM MASS DIFFERENCE

Having set up and tested our methodology for the pion,
we now proceed to the calculation of the kaon electromag-
netic mass difference. The most important effect is that the
larger mass of the kaon leads to kinematic corrections in the
various formulas. There are also changes in the mass, width
and couplings of the resonances which we extract from the
data.

The kaon calculation is very similar to the pion one de-
scribed in the previous section, therefore, we will concentrate
on the differences that arise in the kaon case. The kaon coun-
terpart for the Lagrangian of Eq.~20! expanded in terms of
kaon, photon, and spin-1 resonance fields is

L5 ieAm~K1]mK
22K2]mK

1!1e2AmAmK
1K2

2
eFV
2

FmnS rmn
0 1A2

3
fmn1

1

3
vmnD

1
eFV
4FK

2 F
mn~rmn

0 1A2fmn1vmn!K1K2

1
iGV

FK
2 ~rmn

0 1A2fmn1vmn!]mK
1]nK

2

1
iGV

FK
2 ~2rmn

0 1A2fmn1vmn!]mK
0]nK

0

2
ieFA
2FK

Fmn~K1mn

2 K12K1mn

1 K2!, ~94!

where we have used ideal mixing for the vector-meson reso-
nances.

The major difference between the pion and kaon
Lagrangians, Eqs.~20! and ~94!, respectively, is that in the

kaon case all the three nonet vector resonances contribute.
Another difference is that there is an elastic contribution to
the neutral kaon self-energy. This contribution vanishes in
the ideal mixing approximation together with the limit where
all the vector resonance masses are equal.

The contribution to the kaon Compton scattering ampli-
tude given by the Feynman diagrams of Figs. 2~a! and 2~b! is

Tmn
~1!~K !~q2,p•q!522D1mn

14mK
2D2mn

3$@GK1~q2!#22@GK0~q
2!#2%

3S 1

mK
22~p1q!22 i e

1~q→2q! D ,
~95!

where

GK1,0~q2![E
0

`

du
u

u2q2
dK1,0~u!, ~96!

and

dK1,0~u![6
1

2
d~u2mr

2!1
1

3
d~u2mf

2 !1
1

6
d~u2mv

2 !.

~97!

We have subtracted the neutral kaon contribution in order to
be able to use this equation in the following kaon EM mass
difference formulas.

The vector sea gull contribution, Fig. 2~c!, is

Tmn
~2!~K !~q2,p•q!522

FV
2

FK
2 E

0

`

du
q2

u2q2
dK1~u!D1mn

.

~98!

Finally, the axial-vector resonance intermediate state contri-
bution, Fig. 2~d!, is

Tmn
~3!~K !~q2,p•q!5

FA
K2

FK
2mK1

2

~p•q1q2!21q2@mK1
2 2~p1q!2#

mK1
2 2~p1q!22 i e

1~q→2q!D1mn

1
FA
K2

FK
2mK1

2 S 2mK
2q2

mK1
2 2~p1q!22 i e

1~q→2q!DD2mn . ~99!

TABLE I. Dmp
EM results.

Narrow width
~MeV!

rA
R(s),rV

R(s)
~MeV!

Subtr 4.306 4.124
Elastic 0.500 0.500
Str. Fn.a1 int. st. 0.028 0.041
Str. Fn.v int. st. 20.127 20.127
Total calculated 4.707 4.538
Experiment 4.594 4.594
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The axial-vector intermediate state for the kaon is less
straightforward than that for the pion since the axial-vector
mesonK1 is an ill-determined mixture of the physical states
K1(1270) andK1(1400) @34#. We will treat this issue later
when we estimate the spectral function for the axial-vector
intermediate state.

The breakdown into structure function and subtraction
terms of the Compton scattering amplitude given by the
above three termsTmn

( i )(K) , ~for i51–3!, in the spectral func-
tion representation is

T1~2Q2,0!5221
2

FK
2 E

0

`

dsrV
K~s!

Q2

s1Q2

2
2

FK
2 E

0

`

dsrV
K~s!

Q2

s2p21Q2S 12
p2

s D ,
W1~2Q2,n!5

1

FK
2 E ds

rA
K~s!

s
~n2Q2!2K̃~n,s!

3d~s2p21Q222n!, ~100!

W2~2Q2,n!54mK
2d~Q222n!

3$@GK1~2Q2!#22@GK0~2Q2!#2%

1
1

FK
2s
E ds

rA
K~s!

s
p2Q2K̃~n,s!

3d~s2p21Q222n!,

where n5p•q5mKq0, and p
25mK

2 . We have also intro-
duced the convergence factor

K̃~n,s!5E
0

`

duS u

u12n D 4S 11h̃~u!
2n

s D dK1~u!,

~101!

where

h̃~u!5
s

s2p2F S 11
s2p2

u D 421G , ~102!

andp25mK
2 .

The definition of the kaon vector spectral function is

rV
K~s![

1

2
rr
R~s!1

1

2
rf
R~s!1

1

6
rv
R~s!, ~103!

whererr
R(s) is the spectral function introduced in Fig. 5, and

the other two are because of thef andv intermediate states.
For these last two it is appropriate to use the narrow-width
approximation.

We also include the VPg vertices in the same way as we
did for the pions. The effective Lagrangian that we use for
theK*Kg vertex is

L5e
ARV

2
emnabFmnVa]bK. ~104!

The subtraction term and structure functions that follow from
the above Lagrangian, including theK0 functions with an

extra minus sign to be able to insert them directly in the kaon
EM mass difference formula, are

T1~2Q2,0!5
2

FK
2 E

0

`

dsgV
K~s!

p2Q2

s2p21Q2 ,

W1~2Q2,n!5
1

FK
2 E

0

`

dsgV
K~s!~n21p2Q2!K̃~n,s!

3d~s2p21Q222n!, ~105!

W2~2Q2,n!5
1

FK
2 E

0

`

dsgV
K~s!p2Q2K̃~n,s!

3d~s2p21Q222n!.

The narrow-width approximation is justified in this case be-
cause of the small width of theK* intermediate states.
Therefore, we use the definition

gV
K~s![HK* 0

2 d~s2mK* 0
2

!2HK*1
2 d~s2mK*1

2
!. ~106!

Unlike in the pion case, there is an intermediate vector-
meson contribution for the neutral kaon as well as for the
charged kaon, in the SU~3! limit. For the pions, the interme-
diater-meson contribution canceled in the SU~2! limit ~since
charged and neutralr couplings become equal!, leaving only
the intermediatev andf contributions to the neutral pion
Compton scattering amplitude.

We determine theK* couplings from the radiative decays
K*→Kg,

RK*
15

24

a

m
K*

1
3

~m
K*

1
2

2mK
2 !3

GK*
1→K1g50.7060.06 GeV22,

RK*
05

24

a

m
K*

0
3

~m
K*

0
2

2mK
2 !3

GK*
0→K0g51.6160.14 GeV22,

from which we obtain the values for

HK*
15FKARK*

150.09360.004,

HK*
05FKARK*

050.14360.006. ~107!

In the kaon case, the mass difference need not be finite
because there can be divergences which are absorbed into the
renormalized masses of the up and down quarks. However,
this effect is relatively small because it is proportional to
amu or amd compared to the dominant electromagnetic
mass shift which is simply of ordera. We assume that the
renormalization of the up- and down-quark masses has been
carried out, although the precise renormalization prescription
is hard to define because of the small size of this effect. The
remaining electromagnetic effects are finite.

We can now determine the full highQ2 constraints for a
finite kaon EM self-energy given by combining Eqs.~100!
and ~105!, and including the remainder terms introduced in
Eq. ~81!,
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E
0

`

dsH @rV
K~s!2rA

K~s!#1p2xFrA
K~s!

s
2gv

K~s!1h1
K~p2,s!G J

5FK
2 , ~108!

E
0

`

dsH @srV
K~s!2srA

K~s!#1p2@2rA
K~s!2sgV

K~s!#

1p4FgVK~s!2
rA
K~s!

s G1p2h2
K~p2,s!J 50, ~109!

wherep25mK
2 . These equations are similar to the ones en-

countered in the pion case.
Using the above constraints and all available data for the

vector spectral functionrV
R(s) and the narrow-width approxi-

mation for gV(s), and thev, f, v(1420), v(1600), and
f(1680) resonances, we obtain forh15h250:

E dsrA
K~s!S 12

p2

s D50.0170~12! GeV2, ~110!

E dssrA
K~s!S 12

p2

s D 250.0406~16! GeV4, ~111!

wherep25mK
2 .

We try first the narrow-width approximation to the axial-
vector spectral function

rA
K~NW!

~s!5FA
K2

~NW!@cos
2uKd~s2mK1~1400!

2 !

1sin2uKd~s2mK1~1270!
2 !1RK

2d~s2mK1~HR!
2 !#.

~112!

This parametrization includes theK1(1270) andK1(1400)
resonances as well as a higher mass resonanceK1(HR). The
input parameters torA

K for this calculation are

uK5
p

4
and mK1~HR!52.0 GeV. ~113!

These choices are sensible but arbitrary. They fix the values
of FA

K and RK through the constraint equations~110! and
~111!. The obtained values forFA

K andRK show a sizable
dependence on the choice ofmK1(HR)

. The results for the

different contributions todmK
EM obtained by this narrow-

width approximation are given in Table II. In particular, we
find that the subtraction term contribution is very large.

However, this contribution varies fromdmK
(subtr);2.3 MeV

for mK1(HR)
51.8 GeV to dmK

(subtr);3.1 MeV for

mK1(HR)
52.4 GeV. These numerical results only constitute a

very rough estimate. This is already indicated by the large
dependence inmK1(HR)

and, once again, it involves the
narrow-width approximation for broad resonances.

There is another constraint on the axial-vector spectral
function because oft decay:

B~t→ntK1→ntKpp!5EtE
0

mt
2

dsrA
K~s!S 12

s

mt
2D 2

3S 11
2s

mt
2D , ~114!

where

Et5
Gm
2mt

3uVusu2

8pGt
50.6633 GeV22. ~115!

The data for thet lepton decay,t→ntKpp, gives the
branching ratios@35#,

B~t2→ntK
2p1p2!5~0.4060.09!%, ~116!

B~t2→ntK̄
0p2p0!5~0.4160.07!%, ~117!

B~t2→ntK
2p0p0!5~0.0960.03!%, ~118!

B~t→ntKpp!5~0.9060.12!%. ~119!

The last branching ratio is the sum of the three different
decay channels with the uncertainties added in quadrature.
Even though we expect these branching ratios to be domi-
nated by the axial-vector channels, especially theK1(1270)
and theK1(1400), there should also be a contribution be-
cause of the vector resonanceK* (1410) @36#. This reso-
nance will contribute through the decay processK* (1410)
→K* (892)p→Kpp. The branching ratio for
K* (1410)→K* (892)p is greater than 40% at 95% confi-
dence level@34#, andB@K* (892→Kp)#;100%. Therefore,
the t branching ratio into the strange axial-vector channels
should be somewhat lower than stated in Eq.~119!.

We obtain the shape ofrA
K(s), up to mKpp52.1 GeV,

from diffractive production experimental data obtained by

TABLE II. DmK
EM results.

Narrow width
~MeV!

rA
K(s),rV

K(s)
~MeV!

Subtr 2.56 1.80
Elastic 0.92 0.92
Str. Fn.K1 int. st. 0.05 0.07
Str. Fn.K* int. st. 20.18 20.18
Total calculated 3.35 2.61
Dashen 1.27 1.27

FIG. 7. r̄A(s) vsmKpp ~GeV!.
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the ACCMOR Collaboration in 1981@37#. The data was ex-
tracted from 200 000 examples of the reaction
K2p→K2p2p1p. The intensity for the 11 channel gives
us the shape ofrA

K(s).
We add a high energy tail to the data, up to

mKpp52.54 GeV, which decreases quadratically. The con-
straint equations favor this quadratic choice instead of other
simple parametrizations. The final normalization of the spec-
tral function is obtained by enforcing the constraint equa-
tions ~110! and ~111!. If we define

rA
K~s![FA

K2r̄A~s!, whereE dsr̄A~s!51, ~120!

we obtainFA
K50.144 GeV, and ther̄A(s) given in Fig. 7.

The choice ofrA
K results in an estimate for thet branch-

ing ratio for theK* (1410) vectorial resonance,

B@t→ntK* ~1410!#5~0.4660.13!%. ~121!

This value could be extracted from data by doing an angular
momentum analysis of theKpp final state.

The final results for the different contributions toDmK are
given in Table II. We estimate the uncertainty of the total
kaon EM mass difference to bes(DmK);0.6 MeV.

Our result is about 100% greater than Dashen’s result.
This result is in better agreement with earlier Refs.@3,5,38#,
and with the recent investigation@4#, but in disagreement
with Baur and Urech@2#. Given the uncertainty of our result,
we feel more comfortable by saying that we find a modifi-
cation of Dashen’s theorem between 160% and 240% .

VI. CONCLUSIONS

The calculation of nonleptonic amplitudes is in general
one of the most difficult tasks for analytic strong interaction
techniques. The elecromagnetic mass differences of the pseu-
doscalar mesons seems to us to be the most favorable case to
attempt a controlled calculation. There turn out to be several
favorable circumstances that help in this endeavor. As we
have exploited above, the relevant current-current products
have several connections to known phenomenology, and
have important constraints because of the long-distance chi-
ral behavior and the short-distance properties of QCD.

The calculation of the known pion mass difference was
quite successful. It turns out that intermediate mass scales
~around 1 GeV! are the most important for this matrix ele-
ment, and these are well represented by resonance contribu-
tions. In fact, this structure is already visible in the old cal-
culation in the soft-pion limit given by Daset al.where the
vector and axial-vector spectral functions determine the mass
difference in the chiral limit. There are calculable corrections
and even new diagrams that come in as one includes a non-
zero pion mass, but the pion mass is still small enough that
one does not change the general anatomy of the matrix ele-
ment.

In the case of the kaon mass difference, the experimental
result is not known. We find a large deviation from the pre-
diction of Dashen’s theorem, which is valid in the limit of
massless kaons. While the magnitude of this effect is larger
than most SU~3!-breaking effects in chiral calculations, we
stress that its origin is in reasonably well-known and mun-

dane effects, and does not represent any breakdown of chiral
symmetry. The main effect seems to be the kaon mass in the
propagator of the Born diagram which, hence, is a rather
long-distance effect, while the remaining dependence comes
from the known shift in resonance masses because of the
strange quark mass. This mass difference is important for the
extraction of theu2d quark mass difference.

ACKNOWLEDGMENTS

We would like to thank the U.S. Department of Energy
~Grant No. DE-FG02-84ER40153! and the National Science
Foundation for providing the funds that supported this work.

APPENDIX

The notation used for theO(E2) chiral terms in the La-
grangian of Eq.~19! is

U5exp~ iA2F/F !,

F5S p0

A2
1

h8

A6
p1 K1

p2
2

p0

A2
1

h8

A6
K0

K2 K0 2
2

A6
h8

D ,

x52B0S mu 0 0

0 md 0

0 0 ms

D ,
DmU5]mU2 i ~vm1am!U1 iU ~vm2am!, ~A1!

wherevm, am are the external fields. In order to include EM
one needs to define

am50, vm5eQAm , ~A2!

whereAm is the photon field, and should not be confused
with the axial-vector antisymmetric tensor field which has
two Lorentz indices,Amn . Q is the quark charge matrix, for
theu, d, ands quarks,

Q5S 2
3 0 0

0 2 1
3 0

0 0 2 1
3

D . ~A3!

The notation used for Lagrangian containing the chiral
couplings of the vector and axial-vector-meson resonances,
Eq. ~19!, is

um5 iu†DmUu
†5um

† ,

f6
mn5uFL

mnu†6u†FR
mnu,

FR,L
mn 5]m~vn6an!2]n~vm6am!2 i @vm6am,vn6an#,
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Vmn5S r0

A2
1

v8

A6
r1 K*1

r2
2

r0

A2
1

v8

A6
K* 0

K*2 K* 0 2
2

A6
v8

D
mn

,

Amn5S a1
0

A2
1

f 1

A6
a1

1 K1
1

a1
2

2
a1
0

A2
1

f 1

A6
K1
0

K1
2 K1

0 2
2

A6
f 1

D
mn
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From the kinetic terms of the Lagrangian in Eq.~19! one
derives the free propagator for the antisymmetric tensor field
representation@24#,
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where the normalization is given by

^0uRmnuR~e,p!&5
2 i
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@pmen~p!2pnem~p!#. ~A7!
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@31# A. F. Pérez, Ph.D. thesis, University of Massachusetts, Am-

herst, 1995.
@32# P. J. O’Donnell, Rev. Mod. Phys.53, 673 ~1981!.
@33# K. Tanaka, Phys. Rev.133, B1540~1964!.
@34# Particle Data Group, L. Montanetet al., Phys. Rev. D50, 1173

~1994!.
@35# B. K. Heltsley, Nucl. Phys.B250, 539 ~1985!.
@36# D. Astonet al., Nucl. Phys.B202, 21 ~1982!.
@37# ACCMOR Collaboration, C. Daumet al., Nucl. Phys.B187, 1

~1981!.
@38# J. Gasser and H. Leutwyler, Nucl. Phys.B250, 539 ~1985!.

7092 55JOHN F. DONOGHUE AND ANTONIO F. PE´REZ


