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I construct a spherically symmetric solution for a massless real scalar field minimally coupled to general
relativity which is discretely self-similar~DSS! and regular. This solution coincides with the intermediate
attractor found by Choptuik in critical gravitational collapse. The echoing period isD53.445360.0005. The
solution is continued to the future self-similarity horizon, which is also the future light cone of a naked
singularity. The scalar field and metric areC1 but notC2 at this Cauchy horizon. The curvature is finite
nevertheless, and the horizon carries regular null data. These are very nearly flat. The solution has exactly one
growing perturbation mode, thus confirming the standard explanation for universality. The growth of this mode
corresponds to a critical exponent ofg50.37460.001, in agreement with the best experimental value. I predict
that in critical collapse dominated by a DSS critical solution, the scaling of the black hole mass shows a
periodic wiggle, which likeg is universal. My results carry over to the free complex scalar field. Connections
with previous investigations of self-similar scalar field solutions are discussed, as well as an interpretation of
D andg as anomalous dimensions.@S0556-2821~97!03402-4#

PACS number~s!: 04.25.Dm, 04.20.Dw, 04.40.Nr, 04.70.Bw

I. INTRODUCTION

A. Critical phenomena in gravitational collapse

In an astrophysical context, gravitational collapse nor-
mally begins with a star. This means that the initial data are
almost stationary, and that they have a characteristic scale
which is provided by the matter. Therefore astrophysical
black holes have a minimum mass, namely, the Chan-
drasekhar mass. Abandoning the restriction to almost station-
ary initial data, or alternatively to realistic matter, one should
be able to make arbitrarily small black holes. One may then
ask what happens if one tries to make a black hole of infini-
tesimal mass by fine-tuning the initial data.

The investigation is simplified by choosing a matter
model that does not admit stable stationary solutions. Then,
for any initial data, there are only two possible outcomes:
formation of a black hole, or dispersion leaving behind flat
spacetime. The first systematic numerical examination of the
limit between the two~the ‘‘critical surface’’ in phase space!
was carried out by Choptuik@1# for a massless minimally
coupled real scalar field in spherical symmetry. He evolved
members of various one-parameter families of initial data
each of which comprised both collapsing and dispersing
data, and searched for the critical parameter value by bisec-
tion. For all families he investigated he was able to make
arbitrarily small black holes by tuning the parameterp of the
data: there was no evidence for a ‘‘mass gap.’’ Instead he
found two unexpected new phenomena.

For marginal data, both supercritical and subcritical, the
time evolution approaches a certain universal solution which
is the same for all one-parameter families of data. This solu-
tion is an ‘‘intermediate attractor’’ in the sense that the time

evolution first converges onto, but eventually diverges from
it, to either form a black hole or to disperse. This universal
solution ~also called the ‘‘critical solution’’! has a curious
symmetry: it is periodic in the logarithm of spacetime scale,
with a period ofD.3.44. This is also referred to as ‘‘echo-
ing,’’ or discrete self-similarity~DSS!.

Moreover, for marginallysupercritical data, the final
black hole mass scales asM;(p2p* )

g, where p is the
parameter of the family of initial data, andp* its critical
value. The ‘‘critical exponent’’g has the value.0.37 for
the scalar field, and like the critical solution it is universal in
the sense that it is the same for all one-parameter families of
data.

Both phenomena were then also found in the axisymmet-
ric collapse of pure gravity@2#, indicating that they are an
artifact of neither the choice of matter nor of spherical sym-
metry. There,D was found to be.0.6, and the critical ex-
ponentg to be.0.36. For a perfect fluid with equation of
statep5r/3 in spherical symmetry@3#, the universal attrac-
tor has a different symmetry: it is not discretely, but continu-
ously self-similar~CSS!. g is found to be.0.36 once more.

Choptuik’s results for the scalar field have been dupli-
cated, to varying precision, in@4–6#.

Subsequently, the matter models were generalized. For a
fluid with p5kr in spherical symmetry, now with arbitrary
constantk, g was found to be stronglyk-dependent@7,8#.
The real scalar field model was generalized to a one-
parameter family of two-component nonlinears models@9#.
This family includes the cases of a free complex scalar field
@10,11#, a real scalar field coupled to Brans-Dicke gravity
@12# and, as a special case of the latter, a string-inspired
axion-dilaton model @13#. For the axion-dilaton model,
g.0.264 is found in collapse simulations@14#. From these
new examples it is clear thatg is not universal with respect
to different kinds of matter, but only with respect to the
initial data for any one matter model.
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B. The emerging picture

Let us now examine some general features of the ‘‘critical
solutions’’ which appear as intermediate attractors in col-
lapse, and which seem to describe the limiting case of the
formation of a zero mass black hole. First of all, they must
be scale invariant in some way, and in fact will show homo-
theticity, or ‘‘self-similarity of the first kind’’ @15#. Because
of self-similarity, they must have a curvature singularity, but
they should not have an event horizon. The absence of a
horizon means that the collapsing matter always remains vis-
ible in the solution.

The unique end point of gravitational collapse is given by
the Kerr-Newman family of solutions because, roughly
speaking, they only admit damped perturbations: they are
attractors in phase space. If the critical collapse solutions
were also attractors, we would see many naked singularities
in nature, and this is clearly not the case. In fact they are
attractors of codimension one, and we shall see that this
gives rise to an analogue of the ‘‘no hair’’ theorem: univer-
sality. The Kerr-Newman and critical collapse solutions are
briefly contrasted in Table I.

In a schematic picture of phase space@16#, the critical
solution remains within the critical surface. The observed
universality suggests that it is an attractor within the critical
surface, and in consequence an attractor of codimension one
in phase space. This attractor could either be a fixed point,
corresponding to CSS, or a limit cycle, corresponding to
DSS. Figure 1 illustrates the DSS case.

Nearly critical Cauchy data are situated close to the criti-
cal surface, but may be far from the critical point. Under
time evolution they are attracted towards the critical point.
While they approach it, their ‘‘distance’’ from the critical
surface increases exponentially but remains small until they
are close to the critical point because, by the assumption of
near-criticality, it is initially very small. Near the critical
point, the exponential increase takes over, and the phase
space trajectories are repelled from the critical surface, all
into the same direction. This constitutes the mechanism of
universality with respect to initial data. The formula for the
black hole mass follows essentially by dimensional analysis,
and the critical exponentg can be read off from the linear
perturbations of the critical solution@16#. As we shall see in
Sec. IVB, the periodicity of the critical solution in the DSS
case gives rise to a periodic wiggle in the scaling law.

What confuses the naive phase space picture is gauge in-
variance: the same spacetime corresponds to very different
trajectories in superspace, depending on how it is sliced. The

naive picture must therefore be used with care pending its
formulation in geometric terms.

CSS solutions and their linear perturbations have already
been calculated for various matter models. For thep5r/3
model @3,16# and for the axion-dilaton model@13,14# they
agree with the critical solution found in collapse simulations,
and give the correct critical exponent. For thep5kr model
with kÞ1/3, g has been calculated on the basis of the per-
turbations of a CSS solution@7,8#. No CSS solution exists
for k*0.888 @7#, but the CSS solution appears to be the
critical solution right up to that limit@8#.

For the complex scalar field a CSS solution has been
found @10#, but it is only an attractor of codimension three
@11#. The CSS solution and its perturbations have been cal-
culated also for the family of nonlinears models@9#. The
number of unstable modes of the CSS solution changes from
one to three at some~known! value of the parameter. This
probably indicates the changeover from CSS to DSS in the
critical solution. Why some critical solutions are CSS and
others DSS is not yet understood, however.

The present paper gives the first calculation of a DSS
critical solution, together with its maximal extension and its
linear perturbations. This is technically much more difficult
than CSS, but DSS is the most generic case of self-similarity,
and the mathematical and numerical methods developed here
will be useful in other applications. The critical mass scaling
generalizes to contain a universal periodic wiggle.

The plan of the paper is as follows. In Sec. II, I define
DSS and construct the DSS solution of the real scalar field
model in the past light cone of the singularity as a nonlinear
eigenvalue problem. It agrees with the critical solution found

TABLE I. A comparison between the Kerr-Newman and critical
collapse solutions.

Kerr-Newman solutions Critical collapse solutions

Length scaleM Scale-invariant
Stationary Self-similar
Horizon Naked singularity
⇒ vacuum ⇒ matter dependent
Quasinormal modeseiv i t/M Perturbationstl i

Attractor Attractor of codimension one
⇒ ‘‘no hair’’ ⇒ universality

FIG. 1. The phase space picture for discrete self-similarity. The
plane represents the critical surface.~In reality this is a hypersurface
of codimension one in an infinite-dimensional space.! The circle
~fat unbroken line! is the limit cycle representing the critical solu-
tion. The thin unbroken curves are spacetimes attracted to it. The
dashed curves are spacetimes repelled from it. There are two fami-
lies of such curves, labeled by one periodic parametert, one form-
ing a black hole, the other dispersing to infinity. Only one member
of each family is shown.
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by Choptuik@1#. This section, together with Appendixes A,
C, D, and F, is an expansion of@17#. Sections III and IV both
build on Sec. II, but are independent of each other.

In Sec. III, I extend the critical solution up to the future
light cone of the naked singularity. I find that this Cauchy
horizon is regular, and that it is in fact nearly flat. In Sec. IV,
I calculate the linear perturbations, and generalize the calcu-
lation of the critical exponent to the DSS case. My value for
g agrees with the experimental one, but I also predict the
existence of a~small! universal wiggle overlaid on the
power-law scaling. I show that the Choptuik solution is the
critical solution not only for the real, but also the complex
scalar field. In Sec. V, I put my results into the context of
results for other collapsing systems on one hand, and of the
study of ~continuously! self-similar scalar field models on
the other. I then discuss the next steps to be taken, and the
possible connection with critical phenomena in statistical
mechanics and quantum field theory. Various details are
given in the Appendixes.

II. THE CRITICAL SOLUTION

A. Field equations

In this section I construct an isolated solution of general
relativity minimally coupled to a massless real scalar field
with the following properties:~1! spherical symmetry,~2!
discrete self-similarity~to be defined below!, ~3! analytic at
the center of spherical symmetry,~4! analytic at the past
self-similarity horizon,~5! the scalar field is bounded.@It is
likely that there is no solution obeying~1!–~4! that does not
also obey~5!, but I have not shown this.#

The Einstein equations we consider here are

Gab58pGS f ,af ,b2
1

2
gabf ,cf

,cD , ~1!

in spherical symmetry. The matter equationf ,c
;c50 follows

from the Einstein equations as the contracted Bianchi iden-
tity. The spacetime metric is

ds2[2a~r ,t !2dt21a~r ,t !2dr21r 2~du21sin2udw2!.
~2!

This form of the metric is invariant under transformations
t→ t̃(t), a→ã, such thatadt5ãdt̃. In order to write the
matter equations in first-order form, we introduce the auxil-
iary matter fields

X~r ,t ![A2pG
r

a
f ,r , Y~r ,t ![A2pG

r

a
f ,t . ~3!

The combinationsX65X6Y of these fields propagate along
characteristics. The radial null geodesics, which are also the
matter characteristics, are characterized by the quantity
g[a/a.1 The scalar wave equation inX6 is then

r ~X6,r7gX6,t!5F6r
a,t
a

2r
a ,r

a GX62X7 . ~4!

In the following we useX1 , X2 , g, and a as our basic
variables. A complete set of Einstein equations in these vari-
ables is

rg ,r5~12a2!g, ~5!

ra ,r5
1

2
a@~12a2!1a2~X1

2 1X2
2 !#[C1 , ~6!

gra,t5
1

2
a3~X1

2 2X2
2 ![C2 , ~7!

and the matter equations become

r ~X6,r7gX6,t!5F12 ~12a2!2a2X7
2 GX62X7[C6

~8!

when we eliminate the metric derivatives with the help of the
Einstein equations. The five first-order equations~5!–~8! are
our field equations. I have defined the expressionsC6 , C1,
and C2 for later use. The absence ofg,t in the equations
reflects the fact thata, and henceg, contains a gauge degree
of freedom not determined by the Cauchy data.

The two scalars made from the Ricci curvature, using the
Einstein equations, are

R54r22X1X2 , RabR
ab5R2. ~9!

The Riemann tensor will be considered in Appendix G.

B. Discrete self-similarity

The concept of~continuous! self-similarity ~CSS! ~or ho-
motheticity! has been defined in a relativistic context@18,15#
as the presence of a vector fieldx such that

Lxgab52gab , ~10!

whereLx denotes the Lie derivative. I now introduce the
concept of discrete self-similarity~DSS!. In this symmetry
there exist a diffeomorphismf and a real constantD such
that, for any integern,

~f* !ngab5e2nDgab , ~11!

wheref* is the pullback off.
To see what DSS looks like in coordinate terms, we in-

troduce coordinates (s,xa), such that if a pointp has coor-
dinates (s,xa), its imagef(p) has coordinates (s1D,xa).
One can verify that DSS in these coordinates is equivalent to

gmn~s,xa!5e2sg̃mn~s,xa!,

where

g̃mn~s,xa!5g̃mn~s1D,xa!. ~12!

In other words, the DSS acts as a discrete isomorphism on
the rescaled metricg̃mn . s is intuitively speaking the loga-
rithm of spacetime scale.

1I have made one change of notation. In@17# I defined
g[exp(j0)a/a, while g[a/a here. This is for greater convenience
in the remainder of the paper.
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One can formally construct such a coordinate system in
the following way: Fix a hypersurfaceS such that its image
S8 underf does not intersectS. Introduce coordinatesxa in
S, and copy them toS8 with f. Introduce coordinates
(s,xa) in the region betweenS and S8 such thats has
range@0,D#, their restriction toS is (0,xa) and their restric-
tion to S8 is (D,xa). Finally, copy these coordinates to the
entire spacetime, such that ifp has coordinates (s,xa), its
nth image fn(p) is assigned coordinates (s1nD,xa).
Clearly there is enormous freedom in defining such coordi-
nates.

In order to clarify the connection between CSS and DSS,
one may define a vector fieldx[]/]s, although there is no
uniquex associated with a givenf. The discrete diffeomor-
phismf is then realized as the Lie dragging alongx by a
distanceD. Clearly, CSS corresponds to DSS for infinitesi-
mally smallD, and hence for allD, and is in this sense a
degenerate case of DSS. In this limit,x becomes unique. In
the following I speak of DSS only in the absence of CSS.

In order to see what form DSS takes in spherical symme-
try in the particular coordinates defined in Eq.~2!, we make
a coordinate transformationt[esT(s,z) and r[esR(s,z),
whereT andR are periodic ins with periodD. Heres is the
same as in the general construction, andxa5(z,u,w). In the
new coordinates the metric~2! takes the form

ds25e2s$2a2@~T1T,s!ds1T,zdz#
2

1a2@~R1R,s!ds1R,zdz#
21R2~du21sin2udw2!%.

~13!

This is of the form~12! if and only if a(z,s) anda(z,s) are
also periodic ins with periodD. In terms of t and r this
periodicity corresponds to

a~r ,t !5a~enDr ,enDt !, a~r ,t !5a~enDr ,enDt !. ~14!

This is not yet the most general way to impose DSS in Eq.
~2!. We obtain that by also admitting the transformations
t→ t̄(t), with a→ā5dt/dt̄a. ā need no longer be periodic,
but it must be related in this way to somea that is.

C. Formulation as an eigenvalue problem

We now introduce specific coordinates of the kind just
discussed. The following choice will be sufficiently general
for our purpose:

t[ lnS tr 0D , z[ lnS rt D2j0~t!. ~15!

Here r 0 is an arbitrary fixed scale, andj0(t) is a periodic
function with periodD.2 Both are to be determined later. In
the new coordinates, the matter and Einstein equations are

X6,z5
C66ez1j0gX6,t

16~11j08!ez1j0g
, ~16!

g,z5~12a2!g, ~17!

a,z5C1 , ~18!

a,t5e2~z1j0!g21C21~11j08!C1 . ~19!

Here j085dj0(t)/dt, and in this paper a prime always de-
notes the derivative of a function of one variable with respect
to its formal argument. The equations are invariant under a
translation int, corresponding to a change in the arbitrary
scaler 0.

In order to impose discrete homotheticity, we demand the
periodicity ~14!. We also impose the regularity condition
a51 at r50 and the gauge conditiona51 at r50. ~Both
are compatible with the periodicity.! In our choice of depen-
dent and independent variables we therefore impose bound-
ary conditions

a~z,t1nD!5a~z,t!, g~z,t1nD!5a~z,t!, ~20!

and

a~z52`,t!51, g~z52`,t!51. ~21!

Note that we continue to describe the metric with the vari-
ablesa anda, but that they are not the coefficients of the
metric associated with coordinates (t,z).

From the Einstein equations it follows that the periodicity
condition must hold also forX1 andX2 . From the equations
definingX andY, we obtain

f ,t5~2pG!21/2a@~11j08!X1g21e2~z1j0!Y#,

f ,z5~2pG!21/2aX. ~22!

Because the right-hand sides of both equations are periodic
in t, the scalar fieldf itself is of the form

f~z,t1D!5 ~periodic int!1kt, ~23!

wherek is a constant.k is not an independent parameter, but
is determined through the first of Eqs.~22!. f is bounded and
periodic if and only ifk50.

As we have a (111)-dimensional hyperbolic problem,
we can interchange space and time. In this view, near
r50, Eqs.~16!, ~17!, and ~18! form a first-order system of
evolution equations fora, g, X1 , andX2 with ‘‘time’’ co-
ordinatez and~periodic! ‘‘space’’ coordinatet. The data are
subject to one constraint~19!, which is propagated by the
evolution equations. Asz→2`, we impose boundary con-
ditions corresponding to a regular centerr50.

The equations become singular where the denominator of
Eq. ~16! vanishes. The treatment of this singular surface,
both analytical and numerical, is simplified if we use the
coordinate freedom incorporated in the choice ofj0(t) to
make this happen ‘‘for allt at once,’’ namely on the line
z50. We therefore impose the coordinate condition

@12~11j08!ej0g#z5050. ~24!

2As in @17# I assumet.0. In a collapse context, where the space-
time region we are about to calculate is to the past of the singular-
ity, t then decreases to the future, but this is purely a matter of
convention. The convention can be reversed in the results simply by
changing the sign ofY.
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A necessary condition for regularity is now that the numera-
tor also vanishes atz50, or

@C22ej0gX2,t#z5050. ~25!

We may look at this from a different angle: The coordinate
condition means thatz50 is null, and hence a characteristic
of the equations. Such a characteristic which is mapped onto
itself by the self-similarity mapf is called a ‘‘self-similarity
horizon’’ ~SSH!, or a ‘‘sonic line’’ @19#. For our equations,
with periodic boundary conditions in the ‘‘space’’ coordinate
t, it constitutes a Cauchy horizon. On any otherz5const
surface,X1 and X2 would be free Cauchy data, but on
z50 they are overdetermined, as one requires only charac-
teristic data. This gives again rise to the condition~25!.

We still have to see what kind of regularity this condition
enforces, and if it is sufficient as well as necessary. To in-
vestigate the possible behavior of the solution at the past
SSHz50, we assume for the moment thata, g, andX1 are
at leastC0 there, and expand the equation forX2 to leading
order in z. The resulting approximate equation, using the
coordinate condition~24! and Eq.~17!, is

X2,z5
A~t!X22X2,t1C~t!

zB~t!
, ~26!

where the coefficients

A5~11j08!F12 ~12a0
2!2a0

2X10
2 G , B52~11j08!~12a0

2!,

C52~11j08!X10 ~27!

are evaluated atz50. This approximate equation admits an
exact general solution: namely,

X25X2
inhom~t!1X2

hom~z,t!. ~28!

The particular inhomogeneous solutionX2
inhom is defined as

the unique solution of the ordinary differential equation
~ODE!

AX2
inhom2X,t

inhom1C50 ~29!

with periodic boundary conditions. This solution exists and
is unique, unless the average value ofA vanishes. The gen-
eral homogeneous solutionX2

hom is of the form

X2
hom5z Â0 /B̂0eI0A2~Â0 /B̂0!I0BFF t1

I 0B2 lnuzu

B̂0
G . ~30!

The notation here is that of Appendix C:Â0 is the constant
part, or average value, of the periodic functionA. I 0A de-
notes the principal function ofA2Â0, that is ofA minus its
average, with the integration constant defined so thatI 0A
itself has zero average.F is a periodic function of one vari-
able with periodD. It is the free parameter of the solution.
We do not need to determine it here. What is important is
that the solution is analytic if and only ifF vanishes identi-
cally. If F does not vanish, there are two possibilities. If
Â0 /B̂0,0, the solution blows up atz50. If Â0 /B̂0.0, the
solution isC0 but notC1 there. It is easy to see thatÂ0,0

and B̂0.0 in our case, so that the solution either blows up
or, for F[0, is analytic. So with the one condition~25! we
automatically enforce analyticity.

We shall impose one extra symmetry on our ansatz. The
results of numerical collapse simulations@1# indicate thatf
itself is periodic. Moreover, even if one adds a potential to
the scalar field action, the attractor is found to be the same as
for the massless field@20#. This requiresf to remain
bounded in the critical solution, because only then can a
polynomial off be neglected with respect to the space and
time derivatives off, which are unbounded because of the
echoing on an exponentially decreasing spacetime scale@20#.
For this reason we look for a solution withk50. k is the
average value~averaged over one period int, for any z) of
f ,t , as defined in the first of Eqs.~22!. This average may
vanish by a cancellation on the right-hand side of that equa-
tion, but this appears unlikely. If the even frequencies of
X6 and the odd frequencies ofa and g vanish for all z,
however,k vanishes automatically, without any unexplained
cancellation. In our ansatz we impose this as an assumption:
a andg, as well asj0, are composed only of even frequency
terms in t, and X6 only of odd frequency terms. This
reflection-type symmetry is compatible with the field equa-
tions. Imposing it is justifieda posteriori: a solution with the
symmetry exists~and is the same as the one found by Chop-
tuik!.

We have now completed the formulation of a hyperbolic
boundary value problem. Its Cauchy data are values for the
four fieldsa, g, X1 , andX2 , up to one constraint, and up to
a translation invariance int, plus the unknown value ofD
and the unknown functionj0(t). The count is therefore
4N2N21111N54N. ~HereN stands for the countably
infinite number of degrees of freedom of a periodic function
of one variable.! These free data are balanced by two bound-
ary conditions atz52` and two atz50, or 4N degrees of
freedom again. One would therefore expect this boundary
value problem to have at most a discrete set of solutions.

Numerically I have constructed one such solution. Locally
it is unique. To solve the boundary value problem numeri-
cally, I have expanded all periodic fields in Fourier compo-
nents oft, truncating the expansion at some relatively small
numberN of Fourier components. This takes advantage of
the fact that the solution is smooth, so that the Fourier series
converges rapidly. The fielda is not evolved inz, but recon-
structed at each step from the constraint~19!. Details are
given in the appendices. I find thatD53.445360.0005. In a
previous publication @17#, I had given a value of
D53.443960.0004. The difference, corresponding to 3.5
standard errors, is due to a change in numerical details of the
algorithm. These changes correct what I now regard as an
inconsistency in my original pseudo-Fourier method, and are
therefore ‘‘systematic error.’’ The quoted error is in both
cases estimated discretization error, which is discussed in
Appendix F. The present Fourier methods are outlined in
Appendix C.

I have shown in@17# that the DSS solution I have con-
structed agrees with the intermediate attractor observed by
Choptuik @1# to the numerical precision of the latter. The
error in the DSS solution I have corrected here is small
enough not to affect this agreement.
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III. MAXIMAL EXTENSION OF THE CRITICAL
SPACETIME

A. From the past self-similarity horizon to t50

The coordinates (z,t) become singular att50 (z5`).
Clearly it will be necessary to replace lnt with lnr as the
periodic coordinates to regularize the equations there. Be-
fore we do this, it is useful to examine the asymptotic behav-
ior of the solution in the old variables asz→`, or t→0.
Neglecting terms of order exp(2z), the field equations in this
limit reduce to

~11j08!X6,z5X6,t , ~31!

~11j08!a,z5a,t , ~32!

a,z5C1 , ~33!

g,z5~12a2!g, ~34!

with the general solution

X65X60~r!, ~35!

a5a0~r!, ~36!

g5g0~t!es~r!1nz, ~37!

where

r[z1t1j0~t![ lnS rr 0D , ~38!

and the periodic functionsX60 andg0 are free parameters of
the general solution. The periodic functiona0 is uniquely
determined byX60 through the ODE

a085
1

2
a0@~12a0

2!1a0
2~X10

2 1X20
2 !#, ~39!

and the periodic functions and constantn are determined
from a0 by integration, as

s5I 0~12a0
2!, n5~12a0

2!̂0 , ~40!

where the notation is that of Appendix C.
From this asymptotic expansion we see thata andX6 are

regular att50, while g is not and will have to be replaced
by another dependent variable.

We replacez andt by r as above andw given by

w[exp@~11n!~t2r!1 f ~t!1h~r!#, ~41!

wheren is a constant andh(r) and f (t) are periodic func-
tions of one variable, all yet to be determined. Among the
dependent variables, we replaceg by

ḡ[@11n1 f 8~t!#en~t2r!1 f ~t!1h~r!g. ~42!

We now have DSS if the dependent variablesa, ḡ, X1 , and
X2 are periodic inr at constantw, with the same periodD
we have determined previously. Figure 2 summarizes the
different coordinate systems we use in this paper: (z,t),

(w,r), and a second version of (w,r), with different func-
tionsh and f , to be introduced later.

The field equations in the new dependent and independent
variables are

X6,w5
C62X6,r

2Gw7ḡ
, ~43!

ḡ,w5
ḡ,r1~a2221G!ḡ

Gw
, ~44!

a,w5ḡ21C2 , ~45!

a,r5C11Gwḡ21C2 , ~46!

where

G~r![11n2h8~r!. ~47!

We are dealing again with four evolution equations~now in
w instead ofz) ~43!–~45! and one constraint~46!. Singular
points arise where the denominator of Eq.~43! or of Eq.~44!
vanishes.

We first examine the singular pointw50, corresponding
to t50. We assume thata is at leastC0 there, as suggested

FIG. 2. Schematic diagram of the coordinate systems I use. The
horizontal and vertical axes arer and2t. Horizontal accumulating
lines aret50, t5D, t52D, etc., from bottom up. Vertical accu-
mulating lines arer50, r5D, r52D, etc., from right to left.~a!
The curvature singularity (r50,t50). ~b! The regular center
(r50,t.0). ~c! The past self-similarity horizonz50. ~d! The
matching linez5z0⇔w51. ~e! The matching linew50⇔t50.
~f! The future self-similarity horizonw521. I use four separate
coordinate patches:~1! The nonlinear eigenvalue problem forD. ~2!
Continuation toz0. ~3! Continuation tot50. ~4! Continuation to the
future SSH.
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by the asymptotics, and takes the valuea0(r). If we set
a5a0(r) in Eq. ~44!, this approximate equation admits an
exact general solution, which we can write as

ḡ~w,r!5w~n2n!/~11n!expH 2
n2n

11n
h~r!2I 0~a

2221g!~r!

1FFr1
lnuwu2h~r!

11n G J . ~48!

Heren is defined by Eq.~40!, andF is a periodic function of
one variable with periodD, which serves as the free param-
eter of the solution. We see thatḡ will either blow up or
vanish atw50, unless we imposen5n. Furthermoreḡ will
not beC0 unlessF[0. But imposing these two conditions is
equivalent to the one condition

@ ḡ,r1~a2221G!ḡ #w5050. ~49!

~This is so because the expressiona2221G can only be the
derivative of the periodic function lnḡ if its average value
vanishes. This corresponds precisely ton5n, althoughn
does of course not appear explicitly in the equations.! This is
just the regularity condition one would have expected from
inspecting the equations, but now we have shown that im-
posing it actually corresponds to imposing analyticity.~Note
that this is not a condition ong, but a partial fixing of the
free parameters in the new coordinate system.!

Before we discuss the other singular points, we use
h(r) to identify z5z0 with w51, thus simplifying the
matching between the two coordinate systems.~Then we
have to interpolate only in one, not two dimensions, in order
to match the grids. 0,z0,` is arbitrary.! We define the
periodic functionj̃0 implicitly in terms of j0 andz0 by the
equation

j̃0@t1z01j0~t!#[j0~t!. ~50!

~Numerically, this is solved by iteration.! Next we define

f̃ ~r![ f @r2z02 j̃0~r!#. ~51!

This definition implies thatf̃ (r) and f (t) coincide when
restricted to the linez5z0. Now we fix h as

h~r![~11n!@z01 j̃0~r!#2 f̃ ~r!, ~52!

and it can be verified that with this definitionw51 for
z5z0. Now let a0(t)[a(z0 ,t), and defineã0 from a0 in
the same way asf̃ from f . Proceed similarly forg, X1, and
X2 . ã0 andX̃60 now constitute initial data fora andX6 on
w51. The initial data forḡ on w51 can be expressed in
terms ofg̃0 as

ḡ~w51,r!5
G

12 j̃08
ez01 j̃0~r!g̃0~r!. ~53!

Now we come back to the other singular points of the
equations, namely where2Gw7ḡ50. Straightforward cal-
culation shows that this happens wheredw50 is null, just as
the denominator of Eq.~16! vanishes wheredz50 is null.
Either occurrence indicates a SSH. If we choosez0 large

enough, we do not encounter the past SSH. Why do we not
simply choosez050, however? As one expects, the denomi-
nator of the matter equation then vanishes on the entire line
w51, but it vanishes also at two more lines~per period in
r) crossingw51. This behavior would give us the numeri-
cal problems we avoided in the old coordinate system by
making the SSH a line of constantz. @The denominator of
the matter equation in the (z,t) coordinate system is every-
where increasing withz, which means that it vanishes only at
z50 and nowhere else.#

We have now formulated the analytic continuation at
t50 as a boundary value problem mathematically quite
similar to the one we have solved above. We considera as
determined byḡ and X6 via the constraint~46!. The un-
knowns are the fieldsḡ andX6 betweenw51 andw50,
and the functionG(r). The three boundary conditions on the
left are the matching ofḡ andX6 to the data atz5z0, and
the one boundary condition on the right is Eq.~49!. Note that
the unknown functions and constant appear in the field equa-
tions only in the one combinationG, and thatg̃(w51) is
determined fromG, j̃0, andg̃0. This breaks up our numerical
procedure naturally into two steps. In a first step, the func-
tions j̃0, ã0, g̃0, and X̃60 are once and for all determined
from the data atz5z0. Then we varyG in a relaxation al-
gorithm, until we have solved the system~43!–~46! with
boundary condition~49!.

We have seen that in the boundary value problem we are
only dealing with one free functionG(r) to be determined
~which plays the same role asj0 before!, while f , h, andn
do not appear explicitly or separately. I have introduced
them because they are useful in deriving an initial guess for
G for use in the numerical algorithm. Substituting the asymp-
totic form ~37! of g into the definition ofḡ we obtain

ḡ.g0~t!@11n1 f 8~t!#exp@ f ~t!2nj0~t!

1~n2n!~t2r!1s~r!1h~r!#. ~54!

~Note that, exceptionally, I have mixed coordinate systems,
in usingr andt as independent variables.! This is regular at
t5` if n5n, and if

g0~t!@11n1 f 8~t!#ef ~t!2nj0~t!51. ~55!

This latter condition can be considered as a linear ODE for
exp@f(t)#, given g0 and n5n. By evolving in coordinates
(z,t) to large z, and comparing with the asymptotic form
~37! we can estimaten andg0. From there we can calculate
an estimate forf via Eq.~55! and then forh and henceG via
Eqs.~50!–~52!.

Now that the problem has been solved in the new vari-
ables, we can calculatea5a/g from Eq. ~42!. It contains a
singulart-dependent factor that we can absorb into the~sin-
gular! redefinitiont→ t̄5t11nef [ ln(t/r0)]. The resulting regular
ā is

ā5e2nr1h~r!
a

ḡ
. ~56!

n andh are given in terms of the now determined function
G by n5G̃021 and h52I 0G. Note that ā is no longer
periodic inr, although the spacetime is DSS. We have had to
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use the most general form of the metric compatible with Eq.
~2!, abandoning the gauge conditiona51 at r50. In fact
ā is singular atr50, but then we only use it for a patch
around spacelike infinity.

We obtain a clearer picture of the behavior at spacelike
infinity by ignoring the ‘‘wiggles’’ in a and a. Then they
simplify to the expressions

a;A12n, ā;r2n, ~57!

which are valid forr@utu. The Hawking mass is proportional
to the radius, and the geometry at spacelike infinity is coni-
cal. Our constantn coincides with ‘‘2111/n’’ in the nota-
tion of @3#. Numerically I findn.20.16.

B. From t50 to the future self-similarity horizon

It remains to extend the spacetime all the way to the fu-
ture SSH, the future light cone of the singularity at
(t50,r50), beyond which the continuation is no longer
unique.A priori, the future SSH might itself be singular,
because we have no free parameters left to make it regular.

At t50, the periodic dataX6(r) are fixed, and they de-
termine a(r) through the constraint~46!. ḡ, on the other
hand, is pure gauge att50, depending on our choice ofG
through Eq.~49!. We now continue to evolve inw with the
same equations as before, but with a new choice ofG. This
means that we introduce a third coordinate system, although
one of the same class~38! and~41! as before. Figure 2 shows
where this third coordinate system is used. This time we
chooseG so as to make the linew521 the future SSH,
which is also the future light cone of the singularity. Our
reason for this is twofold: on the one hand, we are better
placed to control the vanishing of the denominator in the
matter equation~now for X1 instead ofX2) when it takes
places on a coordinate line, on the other hand, we want the
edge of the domain of dependence of our data to coincide
with a coordinate line, so that we can evolve right up to it.
Our boundary conditions are now the data forX6 anda at
w50, the constraint~49! which determinesḡ from G at
w50 ~up to a constant factor!, and the coordinate condition
ḡ5G ~vanishing of the denominator ofX1,w) at w51. A
priori this new boundary value problem is not well posed.
We have no freedom left to impose the vanishing of the
numerator ofX1,w at w51 as an additional boundary con-
dition, so that the solution should be genuinely singular at
this point.

To investigate what happens we once more make an ana-
lytic approximation. Let us assume thatX2 is at leastC0 at
w521, and takes valueX20(r). By definition, as our new
coordinate condition,ḡ takes the valueG(r). In consequence
X1 drops out of the constraint~45!, and independently of the
value ofX1 , a takes the valuea0(r), which is the solution
of the ODE:

a085
1

2
a0~12a0

2!1a0
3X20

2 ~58!

with periodic boundary conditions. The solution exists and is
unique. We can now calculateḡ,w atw521, and hence the
linear approximation to the denominator2Gw2ḡ near
w521. With these expressions in hand we write out the

equation forX1 , in the leading terms in both the numerator
and the denominator. We obtain an approximate equation of
the same form as Eq.~26!: namely,

X1,w5
A~r!X12X1,r1C~r!

~w11!B~r!
, ~59!

where the coefficients are

A~r!5
1

2
~12a0

2!2a0
2X20

2 , B~r!5a0
2221~ lnG!8,

C~r!52X20 . ~60!

The exact general solution to the approximate equation is,
once more,

X15X1
inhom~r!1X1

hom~w,r!, ~61!

where

AX1
inhom2X1,r

inhom1C50 ~62!

and

X1
hom5~w11!Â0 /B̂0eI0A2~Â0 /B̂0!I0BFFr1

I 0B2 lnuw11u
B0

G .
~63!

As we have no freedom to impose any boundary conditions,
F does not vanish and the solution is not analytic at
w521. But we see thatB̂0,0, while Â0,0 unless
(a021) andX20 vanish identically. The infinitely oscillat-
ing term therefore vanishes atw521 as (w11)e, wheree
is positive and small.X1 is thereforeC0, although notC1.
This is a remarkable result: The presence of even a small
amount of radiation crossing the future SSH~the component
X2) regularizes the radiation running along the horizon~the
componentX1), by damping its oscillations. A similar result
was found by Horne in the axion-dilaton@13# and free com-
plex scalar@10# ~see note added in print! CSS solutions, us-
ing a similar analytic approximation. I have no explanation
of this phenomenon in physical terms.

From the field equations it follows thata, ḡ, andX2 are
C1 but notC2 ~with respect tow, differentiation with respect
to r is not a problem!. As not all second derivatives of the
metric exist, one must ask if the spacetime curvature is finite.
In Appendix G, I show that all components of the Riemann
tensor are in factC0.

Although the numerical problem is ill defined because of
the presence of an infinite number of oscillations inX1 , I
have run a naive relaxation algorithm on it. The algorithm
does in fact converge, and I even see convergence in the
values ofG, a0, andX20 with decreasing step size. I find
G.11n, and a0.1 andX20.0. This means that space-
time is approximately flat on the future SSH, and very little
scalar field radiation is crossing it.X1, however, oscillates
more and more rapidly. These oscillations appear to be at
constant amplitude, and I do not see their eventual decay
numerically. This is consistent with the fact thate!1, so
that the decay is very slow.
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In order to make the problem numerically well defined, in
spite of the solution being singular, one would have to sub-
tract the singular part, solving forF in another boundary
value problem.~This caveat may apply also to Horne’s nu-
merical results@13#.! I have not attempted this nontrivial
step, as I do not see an immediate need for quantitative re-
sults. Although the problem is not numerically well defined
as it stands, I am confident in the qualitative result that the
null data at the future SSH are regular, and nearly, but not
quite flat.

While all this explains in hindsight why the future SSH is,
in some sense, regular, it does not explain why it is nearly
flat, that is, whyX20 is so small. I do not see a mechanism in
the field equations that would drive arbitrary data atw50 to
very nearly flat space values. And in fact the SSH tends to be
less flat when I slightly perturbX1 or X2 at w50 ~and
adjusta accordingly!. This indicates that the near-flatness at
the future SSH is a property of the special DSS solution
which is regular at the past SSH.~Incidentally, it is also an
argument against near-flatness being a numerical artifact.!

IV. LINEARIZED PERTURBATIONS
AND CRITICAL EXPONENT

A. The linear eigenvalue problem

Now we turn to the study of the linearized perturbations
of the critical solution, specifically those which leave the
perturbed solution regular atr50 andz50. If such a regular
perturbation existed that was also periodic int, the critical

solution would not be isolated. The perturbations must there-
fore break the discrete homotheticity, that is, the periodicity
in t. The coefficients of the linearized equations, however,
are periodic, and therefore the general linear perturbation is a
superposition of terms of the form

dZ~z,t!5(
i51

`

Cie
l itd iZ~z,t!, ~64!

where eachd iZ is periodic in t with period D ~although
dZ is not!. Z is shorthand for (a,g,X1 ,X2). The exponents
l i and hence thed iZ must be allowed to be complex even
for real dZ. As the equations are real, they form complex
conjugate pairs, corresponding to sine and cosine oscillations
in t with frequency Iml i . Because the ansatz already con-
tains all frequencies that are integer multiples of 2p/D, and
because values ofl i come in complex conjugate pairs, we
need consider only 0<Iml i,p/D.

If the equation fordZ is of the form

dZ,z5AdZ1BdZ,t , ~65!

the equation ford iZ is of the form

d iZ,z5~A1l iB!d iZ1Bd iZ,t . ~66!

This indicates how we obtain the equations ford iZ from the
linearized equations fordZ. In the following I denote the
components ofd iZ by d ia, d ig, andd iX6 . The equations
for the periodic quantitiesd iZ are then

d iX6,z5H F12 ~12a2!2a2X7
2 Gd iX62~2a2X1X211!d iX72aX6~112X7

2 !d ia6ez1j0@X6,td ig1g~d iX6,t1l id iX6!

2~11j08!X6,zd ig#J @16~11j08!ez1j0g#21, ~67!

d ig,z5~12a2!d ig22agd ia, ~68!

d ia,z5F121
3

2
a2~X1

2 1X2
2 21!Gd ia1a3~X1d iX11X2d iX2!, ~69!

d ia,t52l id ia1e2~z1j0!g21F32 a2~X1
2 2X2

2 !d ia1a3~X1d iX12X2d iX2!2
1

2
g21a3~X1

2 2X2
2 !d igG

1~11j08!H F121
3

2
a2~X1

2 1X2
2 21!Gd ia1a3~X1d iX11X2d iX2!J . ~70!

We now consider the boundary conditions for these equa-
tions. At z→2` we have one free functiond iY1(t) ~com-
pare Appendices A and B!. At the boundaryz50, the de-
nominator of thed iX2 equation vanishes, because it is the
same as that of theX2 equation. We therefore have to im-
pose the vanishing of the numerator. Imposing the linear
constraint as well, we can freely specifyd ig and d iX1 at
z50, and calculate from themd ia and d iX2 . Details are
given in Appendix B.

We now have three free functionsd iY1, d ig0, and
d iX20 at the boundaries. At some intermediate point the
three functionsd ig, d iX1 , andd iX2 will have to match. The
fourth, d ia, will match automatically by virtue of the linear-
ized constraint~70!. We also have the free constantl i to
solve for. Its presence is balanced by the fact that because of
linearity an overall factor in the perturbations is arbitrary and
has to be fixed in some way. Thel i are the eigenvalues in a
new hyperbolic boundary value problem, this time a linear
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one. One would therefore expect them to form a discrete set.
Details of the numerical method are given in Appendix E,

and an error estimate in Appendix F. Because of the even-
odd symmetry of the background, perturbations which have
the same symmetry decouple from perturbations with the
opposite symmetry, and we can consider them separately.

In the left half plane ofl i , corresponding to modes that
grow towards the singularityt52`, I have found one per-
turbation of the first type. In the following I refer to this
mode by i51. It is real, withl1522.67460.009, corre-
sponding to a critical exponentg50.37460.001. I find no
perturbations of the second type in the left half plane. There
is one perturbation, of the first type, atl i50. It is the gauge
modedZ}Z* ,t , corresponding to a translation of the back-
ground int. On the positive real axis I find perturbations of
both types, and presumably there are more elsewhere in the
right half-plane.

B. Critical scaling of the black hole mass

The derivation of the scaling of the black hole mass for
near-critical initial data which I present here was suggested
in @3#, and first made explicit in@16# for the CSS case. The
DSS case requires a subtle generalization, and I find a new
phenomenon: a ‘‘wiggle’’ in the mass scaling law.

In preparation, let us consider a family of Cauchy data at
constantt: namely,

Zt~r !5Z* S ln rr 0 ,t D1ed1ZS ln rr 0 ,t D , ~71!

wheret is the parameter of the family. HereZ* (z,t) is the
critical solution that we have just constructed, and
el1td1Z(z,t) is the one linear perturbation mode that is
growing on small scales, that is, which has negativel. r 0 is
an arbitrary length scale ande is a fixed small constant,
small enough so that the linear approximation is good ini-
tially. lnr/r0 is the value the formal argumentz takes. Clearly
this family is periodic int with periodD.

What happens at late times when these data are evolved in
t? For one sign ofe, saye,0, we must find dispersion, for
the other a black hole. The key observation@11# is that the
data depend onr only through the dimensionless combina-
tion r /r 0, while the evolution equations themselves have no
scale. The entire solution evolved from these data scales with
r 0 as

Zt~r ,t !5 f S rr 0 , tr 0 ,t D . ~72!

Therefore we know, without having to rely on the linear
approximation, that the black hole mass, which has dimen-
sion length, must be proportional tor 0 ~with at most a peri-
odic dependence ont). More precisely, we have

M5r 0e
m~t!, ~73!

wherem(t) is an unknown periodic function of periodD. It
can be calculated numerically by evolving members of the
family Zt which span one period int.

Now we consider a generic solution. If the initial data are
sufficiently close to criticality, there is a spacetime region in

their evolution where the solution ‘‘echos,’’ that is, where it
is close to the critical solution. There the solution is well
approximated by the critical solution plus linear perturba-
tions, as

Z~z,t!.Z* ~z,t!1(
i51

`

Ci~p!el itd iZ~z,t!. ~74!

The amplitudesCi of the perturbations depend in a compli-
cated way on the initial data in general and hence on the
parameterp of a given one-parameter family of initial data.
As t→0 but while the perturbations are still small, we can
neglect all perturbations but the growing one, and we have

Z~z,t!.Z* ~z,t!1C1~p!el1td1Z~z,t!. ~75!

By definition we obtain the precisely critical solution for
p5p* , and so we must haveC1(p* )50. Linearizing
C1(p) aroundp* , we obtain

Z~z,t!.Z* ~z,t!1~p2p* !
]C1~p* !

]p
el1td1Z~z,t!.

~76!

We define

g[2
1

l1
~77!

~as the notation suggests, this will turn out to be the critical
exponent!, and

t* ~p![g lnF ~p2p* !
1

e

]C1

]p
~p* !G ,

r ~p![r 0e
t
* ~p!1j0[ t* ~p!] , ~78!

wheree is the same arbitrary small constant as in definition
~71!. If we now fix t5t* (p) in the approximate solution
~76!, we obtain a p-dependent family of Cauchy data,
namely

Zp~r !5Z* S ln r

r ~p!
,t* ~p! D1ed1ZS ln r

r ~p!
,t* ~p! D .

~79!

But this is of the form for which we know the black hole
mass. Therefore we have, for the mass of the black hole as a
function of p,

M ~p!5r ~p!em[ t
* ~p!]

5r 0~p2p* !get f1m[g ln~p2p
*

!1t f ]1j0[g ln~p2p
*

!1t f ]

[r 0~p2p* !get f1m̄@g ln~p2p
*

!1t f ] , ~80!

where

t f[g lnF1e ]C1

]p
~p* !G ~81!

is a family-dependent constant, whilem and j0, and hence
m̄[m1j0 are not family dependent. Let us first consider the
CSS case. Thenm and j0 degenerate into constants. We

704 55CARSTEN GUNDLACH



recover the well-known exact scaling of the black hole mass.
The unknown, family-dependent, constantt f corresponds to
an unknown overall factor in the mass.

In the DSS case we find a ‘‘wiggle’’ overlaid on the scal-
ing law, unless the function (m1j0) vanishes identically.
The period of bothm andj0 is nominallyD, but j0 has only
even frequencies, and so doesm, being based only on the
metric coefficientsa and g. The real period int of
(m1j0) is thereforeD/2, and hence the period of the wiggle
in the directly measured parameter ln(p2p* ) is
D/(2g).4.61.

The offset of the wiggle is the same constantt f that al-
ready appears in the overall factor. Given the function
m(t) @or equivalentlym̄(t)#, the black hole mass is therefore
as much determined in the DSS case, namely up to one
family-dependent constant, as in the CSS case, andm(t) has
the same universal significance asg. It would therefore be
interesting to determinem(t) from evolving Eq.~71! and to
test the expression~80! against collapse simulations.

C. The free complex scalar field model

As mentioned already, there is a regular spherically sym-
metric CSS solution for the free complex scalar field, that is
a complex scalar field with neither a mass term nor a cou-
pling to an electromagnetic field@10#. Later it was discov-
ered that this solution has not one but three unstable modes
@11#, and that the critical solution for the free complex scalar
field is in fact the real DSS solution we have discussed here
~up to a global complex phase! @21#.

The action is, in loose notation,R1u]Fu2. Writing the
complex scalar F as f1 ic, the action becomes
R1(]f)21(]c)2, or that of two real scalar fields. Any so-
lution of the real scalar field model is therefore also a solu-
tion of the free complex scalar field model.

We now consider the real scalar DSS solution as a solu-
tion of the complex scalar model, by settingf5f* and
c50. Its linear perturbations decouple into two kinds. We
have already obtained the purely real perturbations~with
dc50), and the accompanying metric perturbations. Purely
imaginary scalar field perturbations, withdf50, must be
considered separately. They do not give rise to metric per-
turbations~to linear order! because the stress tensor is the
sum of a term quadratic inf and one quadratic inc. The
first-order perturbation of this second term vanishes if the
background value ofc is zero. The perturbationsdc there-
fore obey the real free wave equation on the background
spacetimeZ* . This also means that they decouple from the
real perturbationsdf.

Using the same numerical methods as for the real pertur-
bations, only with different field equations, I have checked
that all imaginary modesdc are damped. With a little extra
work I have thus confirmed perturbatively that the real DSS
solution is an attractor of codimension one even in the free
complex model. Details will be given elsewhere@22#.

V. CONCLUSIONS

A. Critical solutions and matter models

As I have argued in the Introduction, critical solutions of
the kind discussed here play a role in critical collapse similar

to the role the Kerr-Newman solution plays in generic, non-
critical, collapse. The crucial difference is the presence of
matter: A critical solution does not have a horizon, and there-
fore depends explicitly on the choice of matter. This reduces
the importance of any one such solution. Two other differ-
ences are mainly of technical importance. While the Kerr-
Newman solutions are known in closed form, all critical so-
lutions discovered so far are only known numerically.
Furthermore, CSS solutions, like stationary ones, effectively
depend on one dimension fewer, but this simplification does
not hold for the DSS ansatz: it only makes all fields periodic
in one coordinate. The labor involved in constructing the real
scalar field critical solution, which is DSS, is therefore much
greater than for the other self-similar solutions found so far,
all of which are CSS. There are three reasons for investing it.

First, the real scalar field model is the first in which criti-
cal phenomena were observed, and has raised much interest,
probably as much because of the ‘‘echos’’ as because of the
critical mass scaling. Here we have explained the echos as a
natural generalization of~continuous! self-similarity.

Second, this investigation has predicted a new phenom-
enon, the ‘‘wiggle’’ in the mass scaling law, which had not
been seen in Choptuik’s pioneering work.

Note added:After submission of this paper I learned of an
independent prediction, together with a numerical confirma-
tion in collapse simulations, of the ‘‘wiggle’’ in the mass
scaling@23#.

Finally, the real scalar field is a test bed of methods for
dealing with DSS which can now be applied to other DSS
critical solutions. The most interesting of these is probably
that of pure gravity in axisymmetry@2#.

This raises the fundamental problem of angular momen-
tum and electric charge in the initial data for gravitational
collapse. On the one hand, the resulting black hole can have
angular momentum and charge. On the other, both must be
smaller than the mass. So what happens to the black hole
charge and angular momentum if one tries to fine-tune the
black hole mass to zero? Clearly the case of rotation is the
more interesting one, but it cannot be treated in spherical
symmetry. Only in one case so far has critical collapse been
considered in axisymmetry@2#, but in vacuum and therefore
without angular momentum.

Another restriction of the matter models which have so
far been considered in the study of critical phenomena is that
most of them, in marked difference from any realistic mac-
roscopic matter, do not introduce a preferred length scale.~In
units whereG5c51, this is equivalent to the absence of
dimensionful parameters in the action.! This guarantees the
existence of an exactly self-similar solution. Even in the
presence of a preferred scale, however, a self-similar solution
may still be a good approximation towards the singularity, as
s2[r 21t2→0. An example for this is adding a mass term
m2f2 is added to the scalar field action. Then the DSS so-
lution we have constructed here is a good approximation for
s!m21, simply becausef is bounded while]f is not. In
collapse simulations, it is found that the Choptuik solution is
in fact the attractor for the massive scalar field@20#. It re-
mains to be investigated how other matter models introduc-
ing a scale react to the attempt to make small black holes. A
very recent example is the Einstein-Yang-Mills system,
which has one intrinsic scale, and which shows both a mass
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gap, and critical mass scaling, for different classes of initial
data@24#. The critical solution for this system has now been
constructed@36#. A rather different, and interesting, one is
the attempt to consider semiclassical Einstein equations, with
the new scale being the Planck length@25#.

B. Other self-similar scalar field solutions

In this paper, I have considered a scalar fieldf which is
~a! bounded on the entire spacetime (k50), ~b! real, and~c!
discretely self-similar~DSS!. These conditions are suggested
by the universal attractor that Choptuik@1# found in critical
collapse of a real scalar field, and they are justified by the
fact that the unique solution of the resulting eigenvalue prob-
lem coincides with Choptuik’s attractor to numerical preci-
sion @17#. I now review some related work on self-similar
scalar field solutions departing from one or another of these
assumptions.

CSS real scalar field solutions have been studied in@26#.
The solution fork50 can be derived in closed form and was
apparently first published in@27#, then rediscovered in the
context of critical phenomena in@28,29#. CSS arises as a
degenerate case of our formalism whena, g, andX6 are not
only periodic in t, but do not depend ont at all. In our
notation, continuous self-similarity implies thatY1(t) in Eq.
~A2! is a constant, namelyY15k. ~This is incompatible with
the even-odd symmetry I have assumed.!

Brady @26# has shown that for allk in the CSS case,
boundedness at the past SSH is automatic, in contrast to the
DSS case. As in the DSS case, continuation beyond the past
SSH is not unique. Brady has considered the one-parameter
family of possible continuations~for each value ofk). Un-
fortunately, it is not clear which of his continuations is the
analytic one. In the DSS case, I have investigated only the
analytic continuation at the past SSH, because the past SSH
is in the Cauchy development of regular data when we think
of it as arising as an attractor in collapse simulations, and
therefore I believe it should be analytic. Of Brady’s results I
review here only the special casek50, because it appears to
be most closely related to our case. It is qualitatively differ-
ent fromkÞ0, in that no CSS solution with a regular center
exists, except for flat empty space. There is a one-parameter
family of solutions with a singular centerr50. One branch
of r50 is always timelike and has negative~Hawking! mass,
the other is either timelike with negative mass~called sub-
critical solutions in@28#!, or spacelike with positive mass,
and in the latter case it is preceded by an apparent horizon
~supercritical solutions!. In either case both the past and the
future SSH carry flat-space null data, and one can therefore
replace the negative mass part of the solution with flat space
in both the past and future light cone of the singularity. Sub-
critical solutions thus pieced together are qualitatively like
the maximally extended Choptuik solution in thatr50 is a
regular center, except at the single point (r50,t50), which
is a naked singularity. Both the past and the future SSH are
regular and flat, however.~In the Choptuik solution the past
SSH is not flat, and the future SSH is only nearly flat.!

What would happen if we allowedkÞ0 in DSS, while
still imposing regularity at the center and on the past SSH?
Because of mode coupling, this would mean giving up the
even-odd symmetry, and doubling the~infinite! number of

degrees of freedom in the boundary value problem. There-
fore, one might obtain an infinity of new solutions, some, or
no new solutions at all. If any new solutions exist, one would
wonder next why it is only the one withk50 that serves as
a universal attractor. If there is a family of such solutions
continuous with the Choptuik solution, that question would
be even more acute. I leave these questions to future work.

A CSS solution~with k50 assumed implicitly! has also
been constructed for the free complex scalar field@10#. In
this solution, only the metric and the scalar field modulus are
CSS, but the complex phase of the scalar field isivt for
some constantv, so that the complex scalar field might be
considered DSS with~in our notation! D52p/v. Not sur-
prisingly, our solution shares more features with this one
than with the CSS real scalar field models: There is a unique
solution with a regular center and regular past SSH, and the
null data on the future SSH are for nearly flat space. The
same qualitative picture was found for the CSS solution with
axion-dilaton matter@13#. It is remarkable that now three
different self-similar solutions are known which are nearly,
but not quite, flat at the future SSH. The Roberts solution is
clearly the limiting case, with a flat SSH~but consequently a
scalar field that is notC0), and may be of help in finding an
explanation.

C. Perturbations, universality, and ‘‘renormalization’’

I have found exactly one unstable mode of the critical
solution. The picture of an attractor of codimension one is
thus confirmed perturbatively. The Lyapunov exponent of
l.22.67460.009 gives rise to the valueg.0.37460.001
of the critical exponent. This value agrees with the most
precise value obtained from collapse calculations@6#, which
is given as 0.374. Allowing for complex scalar field pertur-
bations around the real Choptuik solution does not add any
unstable modes. The Choptuik solution is therefore an attrac-
tor of codimension one even for the complex scalar field.

It would be interesting to run collapse calculations for a
one-parameter family of matter models, such as thep5kr
family @7# or the nonlinears model@9#, where the Lyapunov
exponents of the perturbations change continuously with the
parameter. One might thus be able to find parameter regions
where two equally strong attractors coexist, and new inter-
esting phenomena would arise. It would also be extremely
interesting if one could find a way of calculating or estimat-
ing the number of unstable modes of a given self-similar
solution other than by constructing the solution and all its
perturbations explicitly.

Another point should be addressed in future theoretical
work. As I mentioned in the Introduction, the phase space
picture of universality, although apparently correct in some
aspects, is strictly speaking wrong because the same space-
time corresponds to many different trajectories in super-
space, according to the way it is sliced. At the very least one
should be able to derive a universal geometrical prescription
fixing the lapse and shift from Cauchy data in superspace,
such that the intuitive phase space flow is realized as a
Hamiltonian flow. Furthermore, this Hamiltonian flow
should admit a geometric interpretation as a scaling, or
‘‘renormalization group,’’ flow. The evolution in the time
variable t ~at constantz) does in fact go from one set of
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Cauchy data to the same, only changed in overall scale.
Clearly the idea of approximate scale invariance is at the

core of renormalization group ideas and methods. Further-
more, the calculation ofg as given in Sec. IVB is identical
with the calculation of the critical exponent governing the
divergence of the correlation length given in any textbook on
critical phenomena in statistical mechanics, for example
@30#. As far as I can see, however, the ‘‘critical phenomena’’
analogy is not with critical phenomena in a system which is
described by a partition function~such as a system in thermal
equilibrium or a quantum field!. There is neither a nonvan-
ishing Hamiltonian, nor an inverse temperatureb, or quan-
tum of action\, such that one could construct a weight on
phase space.

The analogy seems to be rather with the application of
renormalization group methods to deterministic partial dif-
ferential equations~PDE’s! @31#. This takes up ideas of
Barenblatt’s@32# of generalizing a self-similar ansatz such as
f (r 2/t) for a PDE such as a generalized diffusion equation to
ta f (r 2/t). Here,a is a noninteger ‘‘anomalous dimension’’
that cannot be determined by dimensional analysis. But the
factor ta gives rise to terms proportional toa in the equation
for f , and this equation will admit regular solutions only for
certain values ofa: one has a nonlinear eigenvalue problem.

In the critical collapse case we see this twice. In our an-
satz for the perturbations we clearly have an explicit factor
tl. But D has the same function in the background solution.
There we expand all fields, which are periodic int, in terms
of einvtZn(z), wherev[2p/D. In consequence we obtain
terms proportional tov in the equations for the expansion
coefficientsZn(z). The CSS case corresponds to these terms
being absent. We may therefore consider the DSS ansatz as a
generalization of the CSS ansatz parallel to the anomalous
dimension in Barenblatt’s examples, and consideriv a com-
plex anomalous dimension. These parallels certainly put the
investigation of critical gravitational collapse into a wider
context, and may yet give rise to new predictions or a sim-
plified theory.
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APPENDIX A: BACKGROUND BOUNDARY CONDITIONS

z52` andz50 are singular points of the equations. The
boundary conditions are therefore implemented by expand-
ing the field equations in powers ofez aroundz52` and of
z aroundz50. The resulting equations are given here. Using
these expansions we can calculate Cauchy data for a very
large and a very small negative value ofz, thus avoiding the
vanishing ofX6 at z52` and the breakdown of the Cauchy
scheme atz50.

The regularity conditions atz→2` can be solved in
closed form. We expand in powers ofez, as

a~z,t!5a0~t!1a1~t!ez1a2~t!e2z1•••. ~A1!

It turns out to be more natural to expandX andY instead of
X1 andX2 . As discussed in Sec. II, we imposea051 and
g051. Expanding the field equations, we find that the two
~periodic! functionsY1(h) andj0(h) can be chosen freely.
Their significance here is the following.j0 parametrizes the
class of spacetime coordinates we use, while a combination
of the two contains free boundary data for the scalar fieldf
at r50:3

e2j0~t!Y1~t!5A2pG
]f

]~ lnt !U
r50

. ~A2!

The other nonvanishing expansion coefficients up to order
e3z in X, Y, a, andg are

a252g25
1

3
Y1
2 , ~A3!

X25
1

3
ej0@Y182~11j08!Y1#, ~A4!

Y352
2

3
Y1
31ej0F12X282~11j08!X2G , ~A5!

while the other coefficients vanish. These coefficients were
calculated froma05g051 and the evolution equations
alone, but they also obey the constraint order by order.

Regularity conditions at the boundaryz50 give rise to an
ODE system. We again make a power-law ansatz of the form

a~z,t!5a0~t!1a1~t!z1a2~t!z21•••. ~A6!

Here we find that convenient fields to expand in area,
X1 , X2 and, instead ofg, the quantity

D5~11j08!ez1j0g. ~A7!

Its evolution equation is easily seen to be

D ,z5D~22a2!. ~A8!

The expansion coefficients can be calculated recursively, by
the solution of first-order ODE’s, if we useX10(t) and
j0(t) as the free parameters. Our coordinate condition~24!
is simply

D051. ~A9!

We note thatX2 drops out of the constraint~19! to leading
order, which is

a085~11j08!a0F121a0
2SX10

2 2
1

2D G . ~A10!

Given X10, this is a nonlinear, inhomogeneous, first-order
ODE for a0. The one integration constant is fixed uniquely
by the requirement that the solution be periodic. The regu-
larity condition ~25! gives us another ODE, this time linear,
for X20:

3This quantity was calledY0(t) in @17#.
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X208 1~11j08!Fa02S 121X10
2 D2

1

2GX201~11j08!X1050.

~A11!

We can now calculate algebraically,

D1522a0
2 , ~A12!

a15
1

2
a0@~12a0

2!1a0
2~X10

2 1X20
2 !#, ~A13!

X115
1

2 F2a0
2X10S 121X20

2 D1
1

2
X102X20

1~11j08!21X108 G . ~A14!

For X21 we obtain again a linear ODE,

X218 1~11j08!F2
5

2
1a0

2S 321X10
2 D GX211~11j08!F2a0a1X20S 121X10

2 D12a0
2X20X10X111X11G1~22a0

2!X208 50.

~A15!

To quadratic order, we have three algebraic expressions
and one more linear ODE, which we do not give here.@We
need the previous equations to determineX21, which will be
needed in Eq.~B6! below.# We have used explicitly only the
zeroth order of the constraint~19!, but the first and second
orders are satisfied identically as expected.

APPENDIX B: BOUNDARY CONDITIONS
FOR THE PERTURBATIONS

The perturbed boundary conditions atz→2` in terms of
the free perturbationd iY1(t) are

d ia252d ig25
2

3
Y1d iY1 , ~B1!

d iX25
1

3
ej0@d iY181~l i212j08!d iY1#, ~B2!

d iY3522Y1
2d iY11ej0F12 d iX281S 12 l i212j08D d iX2G .

~B3!

At z50 the perturbed constraint~70! simplifies and no
longer containsd iX2 :

d ia0,t1l id ia05~11j08!H F121
3

2
a0
2~2X10

2 21!Gd ia0
12a0

3X10d iX102
1

2
g0

21a0
3

3~X10
2 2X20

2 !d ig0J . ~B4!

We can specifyd iX10 andd ig0 freely and solve this equa-
tion for d ia10.

One detail requires consideration. The average value of
the coefficient ofd ia0 in Eq. ~B4! is l i11. When this van-
ishes, the equation has no solution~with periodic boundary
conditions!, as discussed in Appendix C. This means that for
l i521, there are no perturbations that are regular on

z50. In thel plane this gives rise to a pole atl521, see
Appendix E.@To calculate the average value of the coeffi-
cient, we note that the background constraint~19!, evaluated
at z50 with the boundary condition~24!, reduces to

~ lna0! ,t5~11j08!F12 ~12a0
2!1a0

2X10
2 G . ~B5!

As the left-hand side is the derivative of a periodic function,
the right-hand side has vanishing average.#

The vanishing of the numerator of thed iX2 equation is an
ODE that can be solved ford iX20; namely,

d iX208 1Fl i2~11j08!S 12 ~12a0
2!2a0

2X10
2 D Gd iX20

1~11j08!$a0X20~112X10
2 !d ia0

1@~11j08!21X208 2X21#g0
21d ig0

1~2a0
2X10X2011!d iX10%

50. ~B6!

This equation in turn has no solution if the coefficient of
d iX20 has vanishing average. This is the case ifl i equals the
average of (11j08)(12a0

2), which numerically has value
.20.385. This gives rise to another pole.

We do not need to expand the perturbations away from
z50, because in the discretization~D1! of the linearized
equations we do not need to evaluate thez derivatives of the
perturbations atz50.

APPENDIX C: PSEUDO-FOURIER METHOD

The discrete Fourier transform of theN complex numbers
f n is defined by

f̂ k5
1

N(
n50

N21

f ne
2p ikn/N, ~C1!

and its inverse is
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f n5 (
k50

N21

f̂ ke
22p ikn/N. ~C2!

The motivation of this definition is of course that thef n
represent the values of a smooth periodic~complex! function
f (x) at N equidistant points over one period. The essential
idea of pseudospectral~here pseudo-Fourier! methods is to
carry out algebraic operations pointwise on thef n , and inte-
gration and differentiation on thef̂ k , switching from one to
the other with a fast Fourier transform algorithm. A detailed
description of pseudospectral methods can be found in@33#.
I give here only the technical information necessary to
specify my numerical method.

We shall need to define various operations on the Fourier
componentsf̂ k which represent operations onf (x). To do
this in a consistent way, we have to start from adefinitionof
f (x) in terms of thef̂ k . We choose

f ~x!5 f̂ 01 (
k51

N/221

~ f̂ ke
2~2p ik/D!x1 f̂ N2ke

~2p ik/D!x!

1 f N/2cosSNp

D
xD , ~C3!

where D is the period of f (x). This expression obeys
f (xn)5 f n for xn5nD/N, but this requirement alone does not
uniquely define it. We can nowderivehow any operation on
the fictitious functionf (x) is represented as an operation on
the f̂ k , for example, interpolation off (x) to arbitrary values
of x, differentiation or integration. Let us begin with differ-
entiation. The corresponding operatorD is given by

~D f̂ !k52
2pk

D
f̂ k , 0<k<N/221,

~D f̂ !N/250,

~D f̂ !k52
2p~k2N!

D
f̂ k , N/211<k<N21. ~C4!

We see that on differentiation the high-frequency cosine,
which takes values of61 on thexn , is annihilated, because
the high-frequency sine takes the value 0 on thexn . For the
purpose of integration we define a more general operator,
namelyI l given by

~ I l f̂ !05
f̂ 0
l
, lÞ0,

~ I l f̂ !050, l50,

~ I l f̂ !k5
1

l22pk/D
f̂ k , 1<k<N/221,

~ I l f̂ !N/25
l

l22~pN/D!2
f̂ N/2 ,

~ I l f̂ !k5
1

l22p~k2N!/D
f̂ k , N/211<k<N21.

~C5!

Clearly, forl50 and f̂ 050, this is simply integration, with
the integration constant fixed so that the integral has vanish-
ing zero-frequency component. Iff (x) has a nonvanishing
average~zero-frequency part! f̂ 0, then its principal function
has a partf̂ 0x and is no longer periodic. In this caseI l

enforces periodicity by settingf̂ 0 equal to zero. Whenl
Þ0, however, even forf̂ 0Þ0, I l f solves the ODE

~ I l f !81lI l f5 f , ~C6!

with the integration constant chosen such thatI l f is itself
periodic. With the help of this definition we can write the
unique periodic solutionf of

f 81g f1h50 ~C7!

in closed form, namely as

f52e2I0gI ĝ0~e
I0gh!. ~C8!

This is, of course, only the standard use of an integration
factor, written in Fourier components, and so that it obeys
periodic boundary conditions. The expression diverges as
1/ĝ0 as ĝ0→0, and indeed Eq.~C7! has no solution with
periodic boundary conditions forĝ050. All the ODE’s we
have to solve are of the form~C7! except the constraint~19!,
which is nonlinear, of the form

22a81ga1ha350. ~C9!

Fortunately, it can be reduced to the linear form~C7! by the
substitutionf5a22.

We also need to define an operation that doublesN while
representing the same functionf (x), and its inverse. These
operations will be required for de-aliasing—doubling thef̂ k
before going to thef n , carrying out the necessary algebraic
operations on the doubledf n and going back to thef̂ k , then
halving thef̂ k and thus throwing away high-frequency noise.
With our definition of f̂ (x), doubling means splitting the
high-frequency cosine. The doubling operationB from N to
2N components is

~B f̂ !k5 f̂ k , 0<k<N/221,

~B f̂ !N/25~1/2! f̂ N/2 ,

~B f̂ !k50, N/211<k<3N/221,

~B f̂ !3N/25~1/2! f̂ N/2 ,

~B f̂ !k5 f̂ k2N , 3N/211<k<2N21. ~C10!

The halving operationS from N to N/2 components is

~S f̂!k5 f̂ k , 0<k<N/421,

~S f̂!N/45 f̂ N/41 f̂ 3N/4 ,

~S f̂!k5 f̂ k1N/2 , N/411<k<N/221. ~C11!

I stress once more that the definitions ofD, I l , B, and
S follow uniquely from the definition~C3!. With our choice,
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D and I 0 are not the inverse of one another because of the
treatment of the high-frequency cosine.S+B is the identity
operator, whileB+S is a smoothing operator. Our choice of
definition is motivated by the requirement that none of the
operations mix the real and imaginary part, that isDf , I l f ,
Bf , andSf are all real if f is real. I require this because I
typically encode two independent real functions as the real
and imaginary parts of one complex function.

In a previous code@17#, I did not use one consistent defi-
nition of f (x) in the Fourier discretization. More seriously,
the discretization mixed real and imaginary parts in some
places even where the real and imaginary parts represent two
unrelated real functions. I have therefore replaced it by the
one described above. This results in a small change in the
numerical results for the same differential equations dis-
cretized on the same grid, in particular a slightly changed
value ofD.

APPENDIX D: NUMERICAL METHODS
FOR THE CRITICAL SOLUTION

I use Fourier transformation to transform 111 hyperbolic
PDE’s into an ODE system, and ODE boundary conditions
into algebraic boundary conditions. I use the assumption that
X6 are odd whilea, g, andj0 are even int to encode the
variables X6 , g, and j0 as a single complex one, as
j01 ig1X11 iX2 . The discrete Fourier transform of this
function constitutes my independent variables. Let us assume
that the information contained in them is to correspond to a
sampling ofX6 , g, andj0 at N points each. Then the total
number of complex variables is alsoN, or 2N real variables.
Typically I use 2N5128. Out of these 2N variables, I set the
one combination corresponding to the fundamental sine
mode ofj0 equal to zero, storingD in its place. As men-
tioned in the main text, this fixes the translation invariance in
t of the problem and balances the degrees of freedom against
the constraints. In the analytic continuation problem the
complex variable function isG1 iG1X11 iX2 . For the lin-
earized perturbations it isid ig1d iX11 id iX2 , plus the con-
stantl i , corresponding to 3N/211 real variables. The linear
perturbations are normalized by an additional condition at
the right boundary, namely that the root-mean square of
X10 be 1.

j0 andD are formally part of the dependent variables of
the background problem, although with vanishingz deriva-
tive. In the perturbation problem they are supplied as exter-
nal fixed parameters, together with the background solution.
In each case,a or d ia is reconstructed at each step from the
other three fields by the solution of the constraint. This so-
lution can be given in closed form in Fourier components, as
explained in Appendix C. Previously, we have doubled the
number of Fourier components, transformed back to real
space, and separated the real and imaginary and the even and
odd parts to obtain our four fields sampled at 2N points each.
At the same time we have calculated the necessaryt deriva-
tives. Now we calculate the necessary algebraic expressions
pointwise in the 2N sampling points, put the result back
together in complex form, transform back, and halve the
number of Fourier components.

The ODE systemd f /dz5F( f ,z) is discretized in a stan-
dard way as

f n112 f n5~zn112zn!FF f n111 f n
2

,
zn111zn

2 G . ~D1!

To solve this system of algebraic equations to machine pre-
cision together with algebraic boundary conditions on two
sides, I use a standard relaxation algorithm@34#. If I have to
integrate these equations forward~that is, with boundary
conditions~‘‘initial data’’ ! only on one side!, I use a second-
order Runge-Kutta step as a first guess forf n11, and then
solve the discretized equations to machine precision using
Newton’s method. On the one hand, this is necessary be-
cause an explicit algorithm is unstable for these equations
even for very small time steps. On the other, I want the
equations to be discretized in the same way as in the relax-
ation algorithm when I continue the solution fromz50 to
largez.

Schematically,F( f ,z)5N( f ,z)/D( f ,z). As discussed in
the main text, the SSH announces itself byD50. As a
boundary condition we impose thatD50 at z50 for all t.
We then imposeN50 as a second boundary condition at
z50. z50 is itself the last grid point. We see from Eq.~D1!
thatF is never evaluated atD50. There is therefore no need
to treat the singular pointz50 in a special way. If we want
to shoot away fromz50, however, for example in order to
prime the relaxation algorithm, we need to expand the field
equations in powers ofz. This is done in Appendix A.

The other set of boundary conditions are imposed at
z52`. We do this by expanding in powers of expz ~see
Appendix A!.

APPENDIX E: NUMERICAL TREATMENT
OF THE PERTURBATIONS

I have studied the perturbations with two partially inde-
pendent codes. One code assumes thatl i is real and that the
perturbations have the same symmetry (X6 odd anda and
g even! as the background. A second code allows for com-
plexl i and perturbations, and the perturbations either having
the same symmetry as the background, or the opposite sym-
metry. The two kinds of perturbations decouple because of
the background symmetry, and can be considered separately.

I used the following discretization of the linearized ver-
sion dd f /dz5]F( f ,z)/] fd f of the ODE system
d f /dz5F( f ,z):

d f n115S 12
h

2

]F

] f D
21S 11

h

2

]F

] f D d f n. ~E1!

The matrix]F( f ,z)/] f is extracted in Fourier components,
by varying one Fourier component ofd f at a time in the
linearized derivatives]F( f ,z)/] fd f . Its coefficients are
evaluated on the background taken at the midpoint between
f n and f n11, andh[zn112zn . This scheme is implicit~and
in fact stable! and second-order accurate.

For finding the eigenvaluesl i , both codes generalize
ideas already used in similar calculations@11#, using the lin-
earity of the equations. All possible linear perturbations com-
patible with the boundary conditions at eitherz50 or
z52` are evolved together to a midpoint, sayz521. One
obtains a complex square matrix]~mismatch at the mid-
point!/]~free parameters at the end points!. As a test, I have
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varied the real and imaginary part of the free parameters
independently. The Cauchy-Riemann equations~with respect
to the free parameters! are obeyed without any numerical
error.

This matrix, sayA, depends onl i . If for a given l i a
linear perturbation exists which obeys all boundary condi-
tions at both end points, detA50, and this perturbation is the
eigenvector with eigenvalue zero. We therefore search for
zeros of detA(l i) in the complex plane. Becausel i* does not
appear in the equations, detA(l i) is holomorphic. Complex
conjugation ofA corresponds to a certain interchange of both
rows and columns~the interchange of positive and negative
frequencies int), and therefore detA(l i* )5detA(l i)* . I
have checked both symmetries numerically. I find a relative
numerical error in the Schwarz reflection principle of 10210

and in the Cauchy-Riemann equations~with respect tol i) of
1029.

It is sufficient to consider the strip 0<Iml i,D/p. Be-
cause detA(l i) is holomorphic, we can use the well-known
contour integral *A8/Adl i52p i (Nz2Np) to count the
number of zeroes minus the number of poles within the con-
tour. Apart from the perturbations discussed in Sec. IV, I find
a simple pole atl i521, for modes with the same symmetry
as the background, and a simple pole atl.20.385 for
modes with the opposite symmetry. Their origin is discussed
in Appendix B.

Once I have found a zero of detA(l i), I determine the
zero eigenvector, and hence the corresponding perturbation
field. ~Numerically I find the eigenvector by singular value
decomposition.! To refine this result, and to provide an inde-
pendent check, I use it as the starting point of a relaxation
algorithm. In this algorithm,l i is one of the dependent vari-
ables, and its presence is balanced by a boundary condition
fixing the norm of the linear perturbation. I have imple-
mented this algorithm only for reall i , as I am mainly inter-
ested in the unstable mode, which is real.

APPENDIX F: NUMERICAL ERROR ESTIMATES

For an ODE discretization to second order such as Eq.
~D1! one would expect the solution to converge globally to
second order in the step size. I had incorrectly claimed to
observe this in@17#. The real situation is more complicated:
the root-mean-squared or maximum measure of convergence
show convergence that is quadraticon the averageover a
wide range of step sizes. By quadratic on the average I mean
that the log-log plot of step size versus the difference of two
numerical solutions with different step sizes is a somewhat
wiggly line, but with an average slope of two, as illustrated
in Fig. 3. This result is puzzling, because one would expect a
much tighter result to hold, namely that the numerical solu-
tion of the equations at a given step sizeh is equal to the
continuum solution plus a discretization error which itself is
a power series in even powers ofh only ~the Richardson
form!. This clearly does not hold here. I believe that the
irregularity is due either to the presence of boundary condi-
tions, or in particular to the singular nature of the boundaries.

The fact that the numerical solution really obeys Eq.~D1!
to machine precision is easily established, independently of
the ~complicated! relaxation algorithm that found the solu-
tion in the first place. Furthermore the convergence behavior

should be independent of what is inside the~complicated!
routines that supply the algebraic boundary conditions and
the derivativeF( f ,z). Therefore it appears unlikely that the
cause of the irregular convergence behavior is a program-
ming error.

When a numerical error has the Richardson form, one
obtains a sharp error estimate based on a theory of the nu-
merical solution process. Here I cannot use this theory. Nev-
ertheless, there clearly is something like quadratic conver-
gence with decreasing step size, and so I feel justified to use
the difference between the numerical solution withN grid-
points and the numerical solution with 2N gridpoints as a
measure of the numerical error of the solution withN grid-
points. Adding a safety factor of 4, I take this value as the
error of the 2N solution, and the 2N solution itself as the
best value.

Figure 3 plots maximum and root-mean-square measures
of convergence of the entire solution. As it happens, the
maximum measure is dominated by the error inD, and so
doubles as an error plot forD. As described above, I obtain
the best value and error barD53.445360.0005.

Table II gives the values of the parametersD, l1, and
l2 for variousN. l2 is the gauge mode corresponding to a
translation of the background solution, and we should find
l250. Its absolute numerical value gives a bound on the
error of l of 60.009, while from the convergence ofl1 I
would have estimated a much smaller error of60.0002. I
opt for the larger error estimate, and obtain
l1522.67460.009, corresponding to a critical exponent
g521/l150.37460.001.

APPENDIX G: CURVATURE AT THE FUTURE SSH

The Riemann tensor in spherical symmetry in general co-
ordinates has been calculated in@35#. Substituting the form

FIG. 3. Convergence of the solution fromr50 to the past SSH.
The horizontal axis gives the number of grid points~26, 51, . . . ,
801!. The vertical axis gives the difference between the numerical
solution and the reference solution with 1601 points. The upper line
shows the maximum error over all components and grid points,
while the lower line shows the root-mean-square error. The upper
line coincides with the error inD, as this is the component which
has the largest error. For comparison, note that the diagonal of the
box has slope 2, the expected convergence behavior.
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~2! of the metric, it is straightforward to verify that the only
appearance of any second derivatives ofa or a with respect
to r and t in any component of the Riemann tensor is in the
combination

a

a
r S r a,ta D

,t

2r S r a ,r

a D
,r

. ~G1!

We now use the Einstein equations

r
a,t
a

5
1

2
a2~X1

2 2X2
2 !,

r
a ,r

a
5
1

2
~a221!1

1

2
a2~X1

2 2X2
2 !, ~G2!

to transform the terms in round brackets into algebraic ex-
pressions, and we transform the outer derivatives from coor-
dinates (r ,t) to coordinates (w,r) via

gr
]

]t
5G

]

]w
, r

]

]r
5

]

]r
2Gw

]

]w
. ~G3!

The only derivative in the resulting expression that poten-
tially does not exist isX1,w . But it arises as

~G1Gw!~a2X1
2 ! ,w , ~G4!

and whileX1,w blows up as (w11)e21 asw→21, the co-
efficient vanishes as (w11), because of the coordinate con-
dition G5G at w521. We conclude that the curvature re-
mains finite atw521 although not all second derivatives of
the metric are finite there.
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