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| construct a spherically symmetric solution for a massless real scalar field minimally coupled to general
relativity which is discretely self-similatDSS and regular. This solution coincides with the intermediate
attractor found by Choptuik in critical gravitational collapse. The echoing peridd=i8.4453+0.0005. The
solution is continued to the future self-similarity horizon, which is also the future light cone of a naked
singularity. The scalar field and metric a@ but not C? at this Cauchy horizon. The curvature is finite
nevertheless, and the horizon carries regular null data. These are very nearly flat. The solution has exactly one
growing perturbation mode, thus confirming the standard explanation for universality. The growth of this mode
corresponds to a critical exponentwf 0.374+0.001, in agreement with the best experimental value. | predict
that in critical collapse dominated by a DSS critical solution, the scaling of the black hole mass shows a
periodic wiggle, which likey is universal. My results carry over to the free complex scalar field. Connections
with previous investigations of self-similar scalar field solutions are discussed, as well as an interpretation of
A andy as anomalous dimensiorf$0556-282(97)03402-4

PACS numbgs): 04.25.Dm, 04.20.Dw, 04.40.Nr, 04.70.Bw

[. INTRODUCTION evolution first converges onto, but eventually diverges from
it, to either form a black hole or to disperse. This universal
solution (also called the “critical solution) has a curious
In an astrophysical context, gravitational collapse nor-symmetry: it is periodic in the logarithm of spacetime scale,
mally begins with a star. This means that the initial data areyjth a period ofA~3.44. This is also referred to as “echo-
almost stationary, and that they have a characteristic scalgg » or discrete self-similarityfDSS.
which is provided by the matter. Therefore astrophysical Moreover, for marginallysupecritical data, the final
black holes have a minimum mass, namely, the Chanp|ack hole mass scales a8~ (p—p,)”, wherep is the
drasekhar mass. Abandoning the restriction to almost statiofsarameter of the family of initial data, angl, its critical
ary initial data, or aItgrna_tiver to realistic matter, one should,, 51 e. The “critical exponent™y has the value=0.37 for
be able to make arbitrarily small black holes. One may thefy,q gcqr field, and like the critical solution it is universal in

ask_ what happens_: i one tries to.”?a_"‘e a black hole of Inflnl'the sense that it is the same for all one-parameter families of
tesimal mass by fine-tuning the initial data. data

The investigation is simplified by choosing a matter Both phenomena were then also found in the axisymmet-
model that does not admit stable stationary solutions. Then b y

for any initial data, there are only two possible outcomes:ric.Couapse 9f pure gravi_ty2], indicating that they are an
formation of a black hole, or dispersion leaving behind ﬂatamfact of neither the choice of matter nor of spherical sym-

spacetime. The first systematic numerical examination of th8'€try. There A was found to be=0.6, and the critical ex-
limit between the twathe “critical surface” in phase spage Ponenty to be=0.36. For a perfect fluid with equation of
was carried out by Choptuikl] for a massless minimally statep= p/3 in spherical symmetrj3], the universal attrac-
coupled real scalar field in spherical symmetry. He evolvedor has a different symmetry: it is not discretely, but continu-
members of various one-parameter families of initial dataously self-similar(CSS. y is found to be=0.36 once more.
each of which comprised both collapsing and dispersing Choptuik’s results for the scalar field have been dupli-
data, and searched for the critical parameter value by bisecated, to varying precision, if#—6].
tion. For all families he investigated he was able to make Subsequently, the matter models were generalized. For a
arbitrarily small black holes by tuning the parameagesf the  fluid with p=Kkp in spherical symmetry, now with arbitrary
data: there was no evidence for a “mass gap.” Instead heonstantk, y was found to be stronglk-dependen{7,8].
found two unexpected new phenomena. The real scalar field model was generalized to a one-
For marginal data, both supercritical and subcritical, theparameter family of two-component nonlineamodels|9].
time evolution approaches a certain universal solution whictThis family includes the cases of a free complex scalar field
is the same for all one-parameter families of data. This soluf10,11], a real scalar field coupled to Brans-Dicke gravity
tion is an “intermediate attractor” in the sense that the time[12] and, as a special case of the latter, a string-inspired
axion-dilaton model[13]. For the axion-dilaton model,
v=0.264 is found in collapse simulatiof$4]. From these
*Current address: Max-Planck-Institut rfuGravitationsphysik ~ nhew examples it is clear that is not universal with respect
(Albert-Einstein-Institut, Schlaatzweg 1, D-14473 Potsdam, Ger- to different kinds of matter, but only with respect to the
many. Electronic address: gundlach@aei-potsdam.mpg.de initial data for any one matter model.

A. Critical phenomena in gravitational collapse
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collapse solutions.

TABLE I. A comparison between the Kerr-Newman and critical i

Kerr-Newman solutions Critical collapse solutions
p

Length scaleM Scale-invariant

Stationary Self-similar

Horizon Naked singularity

= vacuum = matter dependent

Quasinormal modes'“it'M Perturbationg™i

Attractor Attractor of codimension one

= “no hair” = universality

B. The emerging picture

Let us now examine some general features of the “critical
solutions” which appear as intermediate attractors in col-
lapse, and which seem to describe the limiting case of the
formation of a zero mass black hole. First of all, they must |
be scale invariant in some way, and in fact will show homo-
theticity, or “self-similarity of the first kind”[15]. Because FIG. 1. The phase space picture for discrete self-similarity. The
of self-similarity, they must have a curvature singularity, butplane represents the critical surfagie. reality this is a hypersurface
they should not have an event horizon. The absence of ef codimension one in an infinite-dimensional spacehe circle
horizon means that the collapsing matter always remains vigfat unbroken ling is the limit cycle representing the critical solu-
ible in the solution. tion. The thin unbroken curves are spacetimes attracted to it. The
The unique end point of gravitational collapse is given bydashed curves are spacetimes repelled from it. There are two fami-
the Kerr-Newman family of solutions because, roughly!ies of such curves, labeled I_oy one periodic parametene form-
speaking, they only admit damped perturbations: they aré9 & black holg, the other dispersing to infinity. Only one member
attractors in phase space. If the critical collapse solution§' €ach family is shown.
were also attractors, we would see many naked singularities
in nature, and this is clearly not the case. In fact they aregnaive picture must therefore be used with care pending its
attractors of codimension one, and we shall see that thiformulation in geometric terms.
gives rise to an analogue of the “no hair” theorem: univer- CSS solutions and their linear perturbations have already
sality. The Kerr-Newman and critical collapse solutions arebeen calculated for various matter models. For frep/3
briefly contrasted in Table I. model [3,16] and for the axion-dilaton mod¢lL3,14] they
In a schematic picture of phase spdd®], the critical — agree with the critical solution found in collapse simulations,
solution remains within the critical surface. The observedand give the correct critical exponent. For ihe kp model
universality suggests that it is an attractor within the criticalwith k# 1/3, y has been calculated on the basis of the per-
surface, and in consequence an attractor of codimension otierbations of a CSS solutiofv,8]. No CSS solution exists
in phase space. This attractor could either be a fixed poinfpor k=0.888[7], but the CSS solution appears to be the
corresponding to CSS, or a limit cycle, corresponding tocritical solution right up to that limif8].

DSS. Figure 1 illustrates the DSS case. For the complex scalar field a CSS solution has been
Nearly critical Cauchy data are situated close to the critifound [10], but it is only an attractor of codimension three
cal surface, but may be far from the critical point. Under[11]. The CSS solution and its perturbations have been cal-

time evolution they are attracted towards the critical point.culated also for the family of nonlinear models[9]. The
While they approach it, their “distance” from the critical number of unstable modes of the CSS solution changes from
surface increases exponentially but remains small until thepne to three at somé&nown) value of the parameter. This
are close to the critical point because, by the assumption girobably indicates the changeover from CSS to DSS in the
near-criticality, it is initially very small. Near the critical critical solution. Why some critical solutions are CSS and
point, the exponential increase takes over, and the phasghers DSS is not yet understood, however.
space trajectories are repelled from the critical surface, all The present paper gives the first calculation of a DSS
into the same direction. This constitutes the mechanism ofritical solution, together with its maximal extension and its
universality with respect to initial data. The formula for the linear perturbations. This is technically much more difficult
black hole mass follows essentially by dimensional analysisthan CSS, but DSS is the most generic case of self-similarity,
and the critical exponeny can be read off from the linear and the mathematical and numerical methods developed here
perturbations of the critical solutidri6]. As we shall see in  will be useful in other applications. The critical mass scaling
Sec. IVB, the periodicity of the critical solution in the DSS generalizes to contain a universal periodic wiggle.
case gives rise to a periodic wiggle in the scaling law. The plan of the paper is as follows. In Sec. Il, | define
What confuses the naive phase space picture is gauge iSS and construct the DSS solution of the real scalar field
variance: the same spacetime corresponds to very differemodel in the past light cone of the singularity as a nonlinear
trajectories in superspace, depending on how it is sliced. Theigenvalue problem. It agrees with the critical solution found
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by Choptuik[1]. This section, together with Appendixes A, a, a,
C, D, and F, is an expansion [7]. Sections Ill and IV both r(X+,rIgX+,t):[ xr ;'—f 7’ Xe—X=. (4)
build on Sec. Il, but are independent of each other.

In Sec. lll, | extend the critical solution up to the future In the f0||owing we useX,, X_, g, and a as our basic

light cone of the naked singularity. | find that this Cauchy variables. A complete set of Einstein equations in these vari-
horizon is regular, and that it is in fact nearly flat. In Sec. IV, gples is

| calculate the linear perturbations, and generalize the calcu-

lation of the critical exponent to the DSS case. My value for rg,rz(l—az)g, (5)
v agrees with the experimental one, but | also predict the
existence of a(small) universal wiggle overlaid on the
power-law scaling. | show that the Choptuik solution is the
critical solution not only for the real, but also the complex
scalar field. In Sec. V, | put my results into the context of 302 w2
results for other collapsing systems on one hand, and of the gra;=za’ (X3 —X2)=Cy, )
study of (continuously self-similar scalar field models on

the other. | then discuss the next steps to be taken, and thnd the matter equations become

possible connection with critical phenomena in statistical

1
ra,rzza[(l—az)+a2(xi+x2,)]zcl, (6)

mechanics and quantum field theory. Various details are _ P N v
given in the Appendixes. F(Xe F0Xe )= | 5 (17a%) —aiks (X =X =Ce
8
Il. THE CRITICAL SOLUTION . . . .
when we eliminate the metric derivatives with the help of the
A. Field equations Einstein equations. The five first-order equati¢bis-(8) are

In this section | construct an isolated solution of generaU' field equations. I have defined the expressions C,,
relativity minimally coupled to a massless real scalar fielg@d C2 for later use. The absence gf; in the equations
with the following properties(1) spherical symmetry(2) reflects the fact thad, a_nd hence, contains a gauge degree
discrete self-similarity(to be defined beloyy (3) analytic at  ©f freedom not determined by the Cauchy data. _
the center of spherical symmetry) analytic at the past 'The. two sca}Iars made from the Ricci curvature, using the
self-similarity horizon,(5) the scalar field is boundeflt is ~ EINStéin equations, are

likely that there is no solution obeying)—(4) that does not _a-2 ab_ o2
also obey(5), but | have not shown thik. R=4r "X, X, RupRT=R" ©
The Einstein equations we consider here are The Riemann tensor will be considered in Appendix G.
1
Gap=87G| ¢ ¢ p— Egab¢’c¢’° , 1 B. Discrete self-similarity

The concept ofcontinuou$ self-similarity (CSS (or ho-

i i e motheticity) has been defined in a relativistic contgk8,15
in spherical symmetry. The matter equatign'“=0 follows as the presence of a vector figjdsuch that

from the Einstein equations as the contracted Bianchi iden-
tity. The spacetime metric is £,9a5=20ap. (10)

ds?=—a(r,t)2dt?+a(r,t)?dr?+r?(d 6%+ sirf 0d ¢?). where £, denotes the Lie derivative. | now introduce the
(2)  concept of discrete self-similarityDSS. In this symmetry
there exist a diffeomorphismp and a real constamt such
This form of the metric is invariant under transformationsthat, for any integen,
t—1(t), a—a, such thatadt="adt. In order to write the ]
matter equations in first-order form, we introduce the auxil- (¢x)"gap=¢€
iary matter fields

ZHAgab ’ (11)
where ¢, is the pullback ofe.
; . To see what DSS looks like in coordinate terms, we in-
— — troduce coordinateso(,x%), such that if a poinp has coor-
X(r,t)=\V27G=¢,, Y(r,t1)=V27G—¢;. 3 ) S .
(Tt 4 :’:ld)'r ("t 4 ad)'t ® dinates ¢r,x%), its image¢(p) has coordinates+ A,x?).
One can verify that DSS in these coordinates is equivalent to
The combinationX.. = X=*Y of these fields propagate along o Do N
characteristics. The radial null geodesics, which are also the 9ur(0,X%) =879, (0,x%),
matter characteristics, are characterized by the quanti%h ere
g=al/a.! The scalar wave equation K. is then

GMV(O',XQ):EMV(O"FA,XQ). (12)

!} have made one change of notation. [A7] | defined In other words, the DSS acts as a discrete isomorphism on
g=expy)a/e, while g=a/a here. This is for greater convenience the rescaled metrl’g‘w. o is intuitively speaking the loga-
in the remainder of the paper. rithm of spacetime scale.
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One can formally construct such a coordinate system in C.xelftéogX, .
the following way: Fix a hypersurfacg such that its image Xi,g=1+(1+§,)eg+§(;g, (16)
2" under¢ does not intersed.. Introduce coordinates” in B 0
3, and copy them toX’ with ¢. Introduce coordinates gygz(l—az)g, (17)

(o,x%) in the region betweerX and X’ such thato has
range[ 0,A], their restriction taX, is (0x*) and their restric-
tion to X’ is (A,x%). Finally, copy these coordinates to the
entire spacetime, such that jif has coordinatesdaf,x%), its a =ef(“§0)g*1C2+(1+§6)Cl. (19
nth image ¢"(p) is assigned coordinateso{nA,x®). 7
Clearly there is enormous freedom in defining such coordiyere &4=d&o(7)/d7, and in this paper a prime always de-
nates. _ _ notes the derivative of a function of one variable with respect
In order to clarify the connection between CSS and DSSyg its formal argument. The equations are invariant under a
one may define a vector fiejg=d/da, although there is no  yranslation inr, corresponding to a change in the arbitrary
uniquey associated with a gives. The discrete diffeomor-  gcgjer,,.
phism ¢ is then realized as the Lie dragging alopgy @ |n order to impose discrete homotheticity, we demand the
dIStanceA. Clearly, CSS COI’I’eSpOI’IdS to DSS fOI’ InflnlteSI— per|od|c|ty (14) We also impose the regu'arity condition
mally small A, and hence for al\, and is in this sense a 3=1 atr=0 and the gauge conditiom=1 atr=0. (Both
degenerate case of DSS. In this limjtbecomes unique. In - are compatible with the periodicityln our choice of depen-

the following | speak of DSS only in the absence of CSS. dent and independent variables we therefore impose bound-
In order to see what form DSS takes in spherical symmegry conditions

try in the particular coordinates defined in Eg), we make
a coordinate transformatiar=e’T(o,z) andr=e’R(0,2), a(,7+nA)=a({,7), g, 7+nA)=a(l,7), (20
whereT andR are periodic inor- with periodA. Hereo is the

same as in the general construction, afie (z,6,¢). Inthe ~ and
new coordinates the metri@) takes the form

a,=Cy, (19

a({=—-o,7)=1, g({=-o,7)=1. (21
— 20 2 2
ds’=e*"{—a [(T+T,)do+T dz] Note that we continue to describe the metric with the vari-
+a[(R+R ,)do+R ,dz]2+R2(d 62+ sirtd p?)}. ablesa and «, but that they are not the coefficients of the
¢ ’ metric associated with coordinates, {).
(13 From the Einstein equations it follows that the periodicity

condition must hold also foX, andX_ . From the equations

This is of the form(12) if and only if «(z,0) anda(z,o) are definingX andY, we obtain

also periodic inc with period A. In terms oft andr this
periodicity corresponds to ¢ .=(27G) Y2a[(1+ g)X+g le ttdly],

a(r,t)y=a(e™r,e"), a(r,t)=a(er,e™t). (14 b .=(27G) Y2ax. (22)

This is not yet the most general way to impose DSS in EqBecause the right-hand sides of both equations are periodic
(2). We obtain that by also admitting the transformationsin 7, the scalar field itself is of the form

t—t(t), with a— a=dt/dta. « need no longer be periodic,

but it must be related in this way to sorethat is. ¢({,7+A)= (periodicin7)+ kT, (23

_ ) wherek is a constantx is not an independent parameter, but
C. Formulation as an eigenvalue problem is determined through the first of Eq&2). ¢ is bounded and
We now introduce specific coordinates of the kind justperiodic if and only ifx=0.
discussed. The following choice will be sufficiently general As we have a (% 1)-dimensional hyperbolic problem,

for our purpose: we can interchange space and time. In this view, near
. r=0, Egs.(16), (17), and(18) form a first-order system of
r ; : b G »
—nl — —mnl~| - _ 1 evolution equations foa, g, X, , andX_ with “time” co-
7 n( ro)’ ¢=In t) €o(7) (19 ordinate and(periodig “space” coordinater. The data are

subject to one constrainfl9), which is propagated by the
Herer, is an arbitrary fixed scale, ang)(7) is a periodic  evolution equations. A§— —c, we impose boundary con-
function with periodA .2 Both are to be determined later. In ditions corresponding to a regular centerO.
the new coordinates, the matter and Einstein equations are The equations become singular where the denominator of
Eq. (16) vanishes. The treatment of this singular surface,
both analytical and numerical, is simplified if we use the
2Asin[17] | assume>0. In a collapse context, where the space- coordinate freedom incorporated in the choiceégfr) to
time region we are about to calculate is to the past of the singularhake this happen “for all- at once,” namely on the line
ity, t then decreases to the future, but this is purely a matter of =0. We therefore impose the coordinate condition

convention. The convention can be reversed in the results simply by ok
changing the sign of. [1-(1+§&p)e*og],—o=0. (24
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A necessary condition for regularity is now that the numeragnd éo>0 in our case, so that the solution either blows up

tor also vanishes at=0, or or, for F=0, is analytic. So with the one conditid@5) we
¢ _ automatically enforce analyticity.
[C-—e%gX_ ]=0=0. (25 We shall impose one extra symmetry on our ansatz. The

We may look at this from a different angle: The coordinateresults of numerical collapse simulatiofid indicate thate
condition means that=0 is null, and hence a characteristic itself is periodic. Moreover, even if one adds a potential to
of the equations. Such a characteristic which is mapped ontihe scalar field action, the attractor is found to be the same as
itself by the self-similarity magp is called a “self-similarity ~ for the massless field20]. This requires¢ to remain
horizon” (SSH), or a “sonic line” [19]. For our equations, bounded in the critical solution, because only then can a
with periodic boundary conditions in the “space” coordinate polynomial of ¢ be neglected with respect to the space and
7, it constitutes a Cauchy horizon. On any otl{erconst time derivatives of¢, which are unbounded because of the
surface, X, and X_ would be free Cauchy data, but on echoing on an exponentially decreasing spacetime §2@je
{=0 they are overdetermined, as one requires only charagor this reason we look for a solution withk=0. « is the
teristic data. This gives again rise to the condit{@s). average Va|uéaveraged over one period in for any é’) of
We still havg to see whgt kind of regularity this conditio_n é ., as defined in the first of Eq$22). This average may

enforces, and if it is sufficient as well as necessary. To inyanish by a cancellation on the right-hand side of that equa-
vestigate the possible behavior of the solution at the Pasion, but this appears unlikely. If the even frequencies of
SSH{=0, we assume for the moment tfatg, andX, are  y  anq the odd frequencies @ and g vanish for all ¢,

0 . .
at(;eagtc ﬂjﬁ:e’ andltgxpand the .equtatlon X’f to Ieagllngth however,x vanishes automatically, without any unexplained
order In ¢. The resulting approximate equation, using the,,cq|1ation. In our ansatz we impose this as an assumption:
coordinate conditior§24) and Eq.(17), is
a andg, as well asf,, are composed only of even frequency

A(T)X_—X_ +C(7) terms in 7, and X. only of odd frequency terms. This
-z 7B(7) ) (26) reflection-type symmetry is compatible with the field equa-
tions. Imposing it is justifiec posteriori a solution with the
where the coefficients symmetry existgand is the same as the one found by Chop-
tuik).

We have now completed the formulation of a hyperbolic
boundary value problem. Its Cauchy data are values for the
four fieldsa, g, X, , andX_ , up to one constraint, and up to

C=—(1+&)X 0 (27 a translation invariance im, plus the unknown value oA
and the unknown functioréy(7). The count is therefore
are evaluated af=0. This approximate equation admits an 4AN—N—1+1+N=4N. (Here N stands for the countably

1
A=(1+&)| 5(1-ag) ~aeX%o|,  B=—(1+&)(1-ap),

exact general solution: namely, infinite number of degrees of freedom of a periodic function
inhom ho of one variable. These free data are balanced by two bound-
X_ =X + XML, 7). (28 ary conditions af = —« and two at{=0, or 4N degrees of

freedom again. One would therefore expect this boundary
value problem to have at most a discrete set of solutions.
Numerically | have constructed one such solution. Locally
it is unique. To solve the boundary value problem numeri-
cally, | have expanded all periodic fields in Fourier compo-
nents ofr, truncating the expansion at some relatively small

with periodic boundary conditions. This solution exists andUmPerN of Fourier components. This takes advantage of
is unique, unless the average valuefofianishes. The gen- the fact that the solution is smooth, so that the Fourier series

eral homogeneous solutioff®™ is of the form converges rapidly. The field is not evolved in, but recon-
structed at each step from the constraib®). Details are
given in the appendices. | find thAt=3.4453+ 0.0005. In a
. (300 previous publication[17], | had given a value of
A=3.4439-0.0004. The difference, corresponding to 3.5
The notation here is that of Appendix & is the constant 2708 S L2 B 2 e ot e
part, or ave.rag-e value, _Of the periodic f.unctueun I_OA dg— inconsistency in my original pseudo-Fourier method, and are
notes the principal function oA—A,, that is of A minus its  harefore “systematic error.” The quoted error is in both
average, with the integration constant defined so thAt  c5ses estimated discretization error, which is discussed in
itself has zero averagé. is a periodic function of one vari- Appendix F. The present Fourier methods are outlined in
able with periodA. It is the free parameter of the solution. Appendix C.
We do not need to determine it here. What is important is " | have shown in17] that the DSS solution | have con-
that the solution is analytic if and only K vanishes identi- stycted agrees with the intermediate attractor observed by
cally. If F does not vanish, there are two possibilities. If choptuik [1] to the numerical precision of the latter. The
Ay/By<0, the solution blows up af=0. If Ag/By>0, the  error in the DSS solution | have corrected here is small
solution isCy but notC, there. It is easy to see thay<<O  enough not to affect this agreement.

The particular inhomogeneous solutidf"™ is defined as
the unique solution of the ordinary differential equation
(ODE)

AXIOM— XMy C=0 (29

1B —In¢]

xhom_ g,&o/izoeloA—(}Ao/EUnoBF —+

0
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IIl. MAXIMAL EXTENSION OF THE CRITICAL
SPACETIME

A. From the past self-similarity horizon to t=0

The coordinates {,7) become singular at=0 ({=0).
Clearly it will be necessary to replacetlwith Inr as the
periodic coordinater to regularize the equations there. Be-
fore we do this, it is useful to examine the asymptotic behav-
ior of the solution in the old variables as—, or t—0.
Neglecting terms of order exp(), the field equations in this
limit reduce to

(L+ &)X (=Xs 7, (31)
(1+é&a=a,, (32)
a,=Cy, (33
9,=(1-a%g, (34)

with the general solution

4
2
a = \ "
3

FIG. 2. Schematic diagram of the coordinate systems | use. The

X+=X+o0(p), (35 horizontal and vertical axes areand —t. Horizontal accumulating
lines arer=0, 7=A, 7=2A, etc., from bottom up. Vertical accu-
a=ap(p), (36)  mulating lines arep=0, p=A, p=2A, etc., from right to left.(a)
The curvature singularity re0t=0). (b) The regular center
g=go(7)e” P (37 (r=0t>0). (c) The past self-similarity horizory=0. (d) The
matching line{={yew=1. (e) The matching linen=0<t=0.
where (f) The future self-similarity horizomw=—1. | use four separate
coordinate patchesl) The nonlinear eigenvalue problem fvr (2)
p=(+7+ §O(T)Eln<L), (38) Continuation taZ,. (3) Continuation ta =0. (4) Continuation to the
future SSH.

and the periodic functionX .., andg, are free parameters of
the general solution. The periodic functi@g is uniquely
determined byX., through the ODE

(w,p), and a second version ofv(p), with different func-
tionsh andf, to be introduced later.
The field equations in the new dependent and independent

variables are

1
ap=5 o[ (1—ag) +ag(X3o+X2o)], (39

and the periodic functiomr and constanv are determined
from aq by integration, as

Xo y=——22, (43

o=lo(1-ad), v=(1—ad),, (40) g +(@-2+T)g
W= ’ (44)
L . I'w
where the notation is that of Appendix C.
From this asymptotic expansion we see thandX.. are .
regular att=0, while g is not and will have to be replaced ay=9g "Cj, (45)
by another dependent variable.
We replace/ and = by p as above andv given by a,pzcl+l“wg_*lcz, (46)
w=exg (1+n)(7—p)+f(7)+h(p)], (41
where
wheren is a constant ant(p) and f(r) are periodic func-
tions of one varlable, all yet to be determined. Among the T'(p)=1+n—h'(p). (47)
dependent variables, we replagdy
g=[1+n+f'(7r)]e"7 P Ti(D+hipg, (42)  We are dealing again with four evolution equatidnsw in

w instead of{) (43)—(45) and one constrain@6). Singular
We now have DSS if the dependent variatdeg), X, , and  points arise where the denominator of E4g) or of Eq.(44)
X_ are periodic inp at constaniv, with the same period vanishes.
we have determined previously. Figure 2 summarizes the We first examine the singular poimi=0, corresponding
different coordinate systems we use in this papgr7), tot=0. We assume that is at leastC® there, as suggested
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by the asymptotics, and takes the valag(p). If we set enough, we do not encounter the past SSH. Why do we not
a=ay(p) in Eq. (44), this approximate equation admits an simply choos&,=0, however? As one expects, the denomi-
exact general solution, which we can write as nator of the matter equation then vanishes on the entire line
w=1, but it vanishes also at two more lingser period in
= —w(n—»/(1+n _h-v _ 2 p) crossingw=1. This behavior would give us the numeri-
glw.p)=w"" )exp[ l+nh(p) lo(@" =2+ 7)(p) cal problems we avoided in the old coordinate system by
making the SSH a line of constatit [The denominator of
(48) the matter equation in the/(7) coordinate system is every-
where increasing witlf, which means that it vanishes only at
{=0 and nowhere elsk.

We have now formulated the analytic continuation at
t=0 as a boundary value problem mathematically quite
similar to the one we have solved above. We consales
determined byg and X.. via the constrain{46). The un-
knowns are the fieldg and X.. betweenw=1 andw=0,
and the functio’(p). The three boundary conditions on the
— 2 — _ left are the matching off and X.. to the data at= ¢,, and
[9,+ (@ =2+1)9 Jw-0=0. (49) the one boundary condition on the right is E49). Note that

(This is so because the expressii-2+T can only be the t_he unknOV\_/n functions and constant appear in the field_ equa-
derivative of the periodic function tnif its average value tions only in the one combinatioh, and thatg(w=1) is
vanishes. This corresponds preciselyrte v, althoughy  determined fronT’, &, andg,. This breaks up our numerical
does of course not appear explicitly in the equatipfikis is ~ procedure naturally into two steps. In a first step, the func-
just the regularity condition one would have expected fromtions &,, 2y, gy, and X.., are once and for all determined
inspecting the equations, but now we have shown that imfrom the data at={,. Then we varyl' in a relaxation al-
posing it actually corresponds to imposing analyticityote  gorithm, until we have solved the syste@®3)—(46) with
that this is not a condition og, but a partial fixing of the boundary conditior(49).
free parameters in the new coordinate system. We have seen that in the boundary value problem we are
Before we discuss the other singular points, we usenly dealing with one free functiof’(p) to be determined
h(p) to identify {=¢, with w=1, thus simplifying the (which plays the same role &g before, while f, h, andn
matching between the two coordinate systeififien we do not appear explicitly or separately. | have introduced
have to interpolate only in one, not two dimensions, in ordethem because they are useful in deriving an initial guess for
to match the grids. €{,< is arbitrary) We define the I’ for use in the numerical algorithm. Substituting the asymp-
periodic functiong, implicitly in terms of & and £, by the  totic form (37) of g into the definition ofg we obtain

equation ) g=0o(7)[1+n+f'(7)]exd f(7)— vé&(7)
Sol 7+ Lot o( 1) ]=E0(7). (50 +(n=v)(7—p)+a(p)+h(p)]. (54)

Injw|—h(p)
1+n

Herev is defined by Eq(40), andF is a periodic function of
one variable with period, which serves as the free param-
eter of the solution. We see thgtwill either blow up or
vanish atw=0, unless we impose= v. Furthermoreg will
not beC® unlessF=0. But imposing these two conditions is
equivalent to the one condition

(Numerically, this is solved by iterationNext we define (Note that, exceptionally, | have mixed coordinate systems,

~ ~ in usingp and 7 as independent variableg his is regular at
f(p)=1lp— Lo~ Eolp)]. (5 [NUsinGp and7 asindep # g

This definition implies thatf(p) and f(7) coincide when Jo()[1+n+f'(7)]el (D éN=1, (55)
restricted to the lin€=¢,. Now we fixh as
- - This latter condition can be considered as a linear ODE for
h(p)=(1+n)[{o+&o(p)]—1f(p), (52 exff(7)], given g, and n=wv. By evolving in coordinates
. . ) . _ (¢,7) to large ¢, and comparing with the asymptotic form
and it can be verified that with this definitiow=1 for (37 \ye can estimate andg,. From there we can calculate
{={o. Now letag(7)=a(lo,7), and defineay from &, in 4 estimate fof via Eq.(55) and then foh and hencd’ via
the same way a from f. Proceed similarly fog, X,, and  Egs.(50)—(52).
X_ .3, andX. o now constitute initial data foa andX.. on Now that the problem has been solved in the new vari-
w=1. The initial data forg on w=1 can be expressed in ables, we can calculate=a/g from Eqg. (42). It contains a
terms ofg, as singulart-dependent factor that we can absorb into (ie-
gulan redefinitiont—t=t**"e'"("dl. The resulting regular

efo* &G (). (53 s

w=1p)=
9( p) —Z
Now we come back to the other singular points of the
equations, namely where 'w+g=0. Straightforward cal-
culation shows that this happens whdre=0 is null, justas n andh are given in terms of the now determined function
the denominator of Eq(16) vanishes wher@l{=0 is null. T by n=I',—1 andh=—I,I". Note thata is no longer
Either occurrence indicates a SSH. If we chodgelarge  periodic inp, although the spacetime is DSS. We have had to

— a
a:e*nrﬁh(p)? (56)
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use the most general form of the metric compatible with Eqequation forX, , in the leading terms in both the numerator
(2), abandoning the gauge conditiean=1 atr=0. In fact and the denominator. We obtain an approximate equation of
a is singular atr=0, but then we only use it for a patch the same form as E¢26): namely,

around spacelike infinity.

We obtain a clearer picture of the behavior at spacelike _A(p)X: =X, ,+C(p)

infinity by ignoring the “wiggles” in a and «. Then they X w= (w+1)B(p) ' (59
simplify to the expressions
_ where the coefficients are
a~+\1l-n, a~r ", (57)
1
which are valid for >|t|. The Hawking mass is proportional A(p)= E(l—ag)—agxz,o, B(p)=a§—2+(|n1")’,
to the radius, and the geometry at spacelike infinity is coni-
cal. Our constanh coincides with “—1+1/n" in the nota-
C(p)=—X_o. (60)

tion of [3]. Numerically | findn=—0.16.

The exact general solution to the approximate equation is,
once more,

It remains to extend the spacetime all the way to the fu- .
ture SSH, the future light cone of the singularity at X, =X p) + XMW, p), (61)
(t=0r=0), beyond which the continuation is no longer
unique. A priori, the future SSH might itself be singular, Where
because we have no free parameters left to make it regular. inhom  winhom

At t=0, the periodic datX_ (p) are fixed, and they de- AXTT =X, +C=0 (62)
termine a(p) through the constraint46). g, on the other
hand, is pure gauge &t=0, depending on our choice &  an
through Eqg.(49). We now continue to evolve iw with the

B. From t=0 to the future self-similarity horizon

same equations as before, but with a new choicE.oThis Xhom:(W_}_l)AO/ABOeIOA—(:%/ABO)IOBF n 0B~ Injw+1| _
means that we introduce a third coordinate system, although™ " Bo
one of the same cla$38) and(41) as before. Figure 2 shows (63

where this third coordinate system is used. This time we . .
choosel’ so as to make the linw=—1 the future SSH, As we have no freedom to impose any boundary conditions,
which is also the future light cone of the singularity. Our F does not vanish and the solution is_not analytic at
reason for this is twofold: on the one hand, we are bette?w=—1. But we see thatBy<0, while A;<O unless
placed to control the vanishing of the denominator in the(@—1) andX_q vanish identically. The infinitely oscillat-
matter equatiorinow for X, instead ofX_) when it takes ing term therefore vanishes at=—1 as (v+1)¢, wheree
places on a coordinate line, on the other hand, we want thig positive and smallX, is thereforeC, although notC™.
edge of the domain of dependence of our data to coinciddhis is a remarkable result: The presence of even a small
with a coordinate line, so that we can evolve right up to it.amount of radiation crossing the future S8&He component
Our boundary conditions are now the data Jor anda at ~ X_) regularizes the radiation running along the horizthre
w=0, the constrain(49) which determinesg from I' at  componenk,), by damping its oscillations. A similar result
w=0 (up to a constant factprand the coordinate condition was found by Horne in the axion-dilat¢3] and free com-
g=T" (vanishing of the denominator of, ,) atw=1.A plex scalaf10] (see note added in prin€SS solutions, us-
priori this new boundary value problem is not well posed.ing a similar analytic approximation. | have no explanation
We have no freedom left to impose the vanishing of theof this phenomenon in physical terms.
numerator ofX, , atw=1 as an additional boundary con- _From the field equations it follows that g, andX_ are
dition, so that the solution should be genuinely singular aC* but notC? (with respect taw, differentiation with respect
this point. to p is not a problem As not all second derivatives of the
To investigate what happens we once more make an an&€tric exist, one must ask if the spacetime curvature is finite.
lytic approximation. Let us assume thét is at leastC® at  In Appendix G, | show that all components of the Riemann
w=—1, and takes valu¥_(p). By definition, as our new tensor are in fac€®.
coordinate conditiong takes the valu€ (p). In consequence Although the numerical problem is ill defined because of
X drops out of the constraiti5), and independently of the the presence of an infinite number of oscillationsXin, |

value ofX,, , a takes the valu@y(p), which is the solution have run a naive relaxation algorithm on it. The algorithm
of the ODE: does in fact converge, and | even see convergence in the

values ofI", ap, and X_, with decreasing step size. | find
I'=1+v, andag=1 andX_y=0. This means that space-
time is approximately flat on the future SSH, and very little
scalar field radiation is crossing X, however, oscillates
with periodic boundary conditions. The solution exists and ismore and more rapidly. These oscillations appear to be at
unique. We can now calculatg,, atw=—1, and hence the constant amplitude, and | do not see their eventual decay
linear approximation to the denominator'w—g near numerically. This is consistent with the fact the&1, so
w=—1. With these expressions in hand we write out thethat the decay is very slow.

a’=la (1—-a?)+a3x? (58)
0 2 0 0 0/-0
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In order to make the problem numerically well defined, in solution would not be isolated. The perturbations must there-
spite of the solution being singular, one would have to subfore break the discrete homotheticity, that is, the periodicity
tract the singular part, solving fdf in another boundary in 7. The coefficients of the linearized equations, however,
value problem(This caveat may apply also to Horne’s nu- are periodic, and therefore the general linear perturbation is a
merical results[13].) | have not attempted this nontrivial superposition of terms of the form
step, as | do not see an immediate need for quantitative re-
sults. Although the problem is not numerically well defined

%)

— )\iT "
as it stands, | am confident in the qualitative result that the 52(5’7)_241 Cien"aiz(Z,7), (64)
null data at the future SSH are regular, and nearly, but not
quite flat. where eachs;Z is periodic in 7 with period A (although

While all this explains in hindsight why the future SSH is, §Z is nob. Z is shorthand for 4,9,X. ,X_). The exponents
in some sense, regular, it does not explain why it is nearly\; and hence the5,Z must be allowed to be complex even
flat, that is, whyX_, is so small. | do not see a mechanism in for real 5Z. As the equations are real, they form complex
the field equations that would drive arbitrary datavat O to  conjugate pairs, corresponding to sine and cosine oscillations
very nearly flat space values. And in fact the SSH tends to bgh 7 with frequency Imk;. Because the ansatz already con-
less flat when | slightly perturtX, or X_ at w=0 (and tains all frequencies that are integer multiples of/a, and
adjusta accordingly. This indicates that the near-flatness atbecause values of, come in complex conjugate pairs, we
the future SSH is a property of the special DSS solutiomeed consider only € Im\;<m/A.
which is regular at the past SSKHncidentally, it is also an If the equation forsZ is of the form
argument against near-flatness being a numerical arjifact.

6Z ;=ASZ+BéoZ ,, (65)
IV. LINEARIZED PERTURBATIONS

AND CRITICAL EXPONENT the equation fors;Z is of the form

A. The linear eigenvalue problem 6Z=(A+N\iB)6Z+Bo6Z ;. (66)

Now we turn to the study of the linearized perturbationsThis indicates how we obtain the equations & from the
of the critical solution, specifically those which leave thelinearized equations fo6Z. In the following | denote the
perturbed solution regular at=0 and{=0. If such aregular components of5;Z by &a, §,g, and §;X... The equations
perturbation existed that was also periodicrinthe critical ~ for the periodic quantities;Z are then

1
5ix+,§:H§(1—a2)—a2xi} SiXs— (222X X_+1)5, Xz —aX. (1+2X2)sax et o[ X, 5g+9(5X= N 5Xx)

—(1+§6)X+,g5ig]][1i(1+§6)e“§°g]_1, (67)

89 ,=(1-a%sg—2agsa, (69)
3 2 2 2 3

8 =| 5+ 525X+ X2 1) | data(X, X +X_X.), (69)

3 1
sia,=—\sate (rigl Ea@(xi—x%)(siaJr ad(X, 86X, —X_8X_)— Eg—1a3(><2+—x2,)5ig

+(1+ &) E+§az(x2+x2—1) Sia+ad(X, X, +X_§X_) (70
0 2 2 + - i + G+ —Cin-Jf-

We now consider the boundary conditions for these equa- We now have three free functions;Y,, &gy and
tions. At {— —o we have one free functiof;Y,(7) (com-  §X_, at the boundaries. At some intermediate point the
pare Appendices A and)BAt the boundaryl=0, the de- three functionss;g, 5;X. , andé&;X_ will have to match. The
nominator of thed; X _ equation vanishes, because it is thefourth, §,a, will match automatically by virtue of the linear-
same as that of th&_ equation. We therefore have to im- ized constraint(70). We also have the free constaxt to
pose the vanishing of the numerator. Imposing the lineasolve for. Its presence is balanced by the fact that because of
constraint as well, we can freely specifiyg and 5, X, at linearity an overall factor in the perturbations is arbitrary and
=0, and calculate from themda and §;X_. Details are has to be fixed in some way. The are the eigenvalues in a
given in Appendix B. new hyperbolic boundary value problem, this time a linear
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one. One would therefore expect them to form a discrete setheir evolution where the solution “echos,” that is, where it
Details of the numerical method are given in Appendix E,is close to the critical solution. There the solution is well
and an error estimate in Appendix F. Because of the everapproximated by the critical solution plus linear perturba-
odd symmetry of the background, perturbations which haveions, as
the same symmetry decouple from perturbations with the .
opposite symmetry, and we can consider them separately. S
In the left half plane of\;, corresponding to modes that Z(é“’T):Z*(éyTH;l Ci(p)eN"8Z(¢,m). (74
grow towards the singularity= —o0, | have found one per-
turbation of the first type. In the following | refer to this The amplitudesC; of the perturbations depend in a compli-
mode byi=1. It is real, with\;=—2.674£0.009, corre- cated way on the initial data in general and hence on the
sponding to a critical exponent=0.374+0.001. | find no  parametep of a given one-parameter family of initial data.
perturbations of the second type in the left half plane. Theré\s t—0 but while the perturbations are still small, we can
is one perturbation, of the first type, ®t=0. It is the gauge neglect all perturbations but the growing one, and we have
mode 6Z=Z, ., corresponding to a translation of the back-
ground in. On the positive real axis | find perturbations of Z({,1)=Z,({,7)+Cy(p)MT6,Z(L, 7). (79
both types, and presumably there are more elsewhere in t

right half-plane k@y definition we obtain the precisely critical solution for

p=p,, and so we must have€,(p,)=0. Linearizing

roun Wi in
B. Critical scaling of the black hole mass C1(p) aroundp, , we obta

The derivation of the scaling of the black hole mass for _ 9GP
near-critical initial data which | present here was suggested 2(6N=2 (&) +(P=Py) ap €17012(4,7).
in [3], and first made explicit if16] for the CSS case. The (76)
DSS case requires a subtle generalization, and | find a new i
phenomenon: a “wiggle” in the mass scaling law. We define

In preparation, let us consider a family of Cauchy data at 1
constantt: namely, == (77)

1
Z(r)=2, InL,r) + e&lz( InL,T), (71 (as the notation suggests, this will turn out to be the critical
Fo To exponenk, and

where 7 is the parameter of the family. Heig, (£, 7) is the 14C,
critical solution that we have just constructed, and T (P)=YIN[ (P—Px )= ——(Px) |,
eM76,Z(¢,7) is the one linear perturbation mode that is € Jp
growing on small scales, that is, which has negative, is r(p)=rge™ P+l 7 (P (79

an arbitrary length scale and is a fixed small constant,

small enough so that the linear approximation is good iniyyheree is the same arbitrary small constant as in definition
tially. Inr/rq is the value the formal argumetitakes. Clearly (72). If we now fix 7=, (p) in the approximate solution

this family is periodic in7 with periodA. (76), we obtain ap-dependent family of Cauchy data,
What happens at late times when these data are evolved Hamely

t? For one sign ok, saye<0, we must find dispersion, for
the other a black hole. The key observat{dd] is that the r
data depend on only through the dimensionless combina-  Zp(F)=Z, Inr(p) T (P)

r
+6512(|nm,7'*(p)).

tion r/ry, while the evolution equations themselves have no (79)
scale. The entire solution evolved from these data scales with
ro as But this is of the form for which we know the black hole

mass. Therefore we have, for the mass of the black hole as a

rt function of p,
ZT(I’,I):f(r—,r—,T). (72) P

o e M(p)=r(p)e7 (P
Therefore we know, without having to rely on the linear =ro(p—p, ) Yem T HN(P=P )+ 7]+ &l Yin(p=pye) + 7]
approximation, that the black hole mass, which has dimen- 0 *
sion length, must be proportional tg (with at most a peri- =ro(p—p,)?eT HIYIN(P=p (80)
odic dependence on). More precisely, we have

where
M=rye*?, (73
° B

whereu(7) is an unknown periodic function of periakl. It T=vIn > %(p*) (81)

can be calculated numerically by evolving members of the

family Z . which span one period in. is a family-dependent constant, while and &,, and hence
Now we consider a generic solution. If the initial data areu= u+ &, are not family dependent. Let us first consider the

sufficiently close to criticality, there is a spacetime region inCSS case. Them and §, degenerate into constants. We
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recover the well-known exact scaling of the black hole massto the role the Kerr-Newman solution plays in generic, non-
The unknown, family-dependent, constantcorresponds to critical, collapse. The crucial difference is the presence of
an unknown overall factor in the mass. matter: A critical solution does not have a horizon, and there-
In the DSS case we find a “wiggle” overlaid on the scal- fore depends explicitly on the choice of matter. This reduces
ing law, unless the functiony(+¢,) vanishes identically. the importance of any one such solution. Two other differ-
The period of bothu and &, is nominallyA, buté, has only  ences are mainly of technical importance. While the Kerr-
even frequencies, and so dogs being based only on the Newman solutions are known in closed form, all critical so-
metric coefficientsa and g. The real period in7 of |ytions discovered so far are only known numerically.
(n+ &) is thereforeA/2, and hence the period of the wiggle Fyrthermore, CSS solutions, like stationary ones, effectively
in the directly measured parameter pgr{p,) iS  depend on one dimension fewer, but this simplification does
Al(2y)=4.61. not hold for the DSS ansatz: it only makes all fields periodic
The offset of the wiggle is the same constantthat al-  jn one coordinate. The labor involved in constructing the real
ready appears in the overall factor. Given the functionscalar field critical solution, which is DSS, is therefore much
u(7) [or equivalentlyu(7)], the black hole mass is therefore greater than for the other self-similar solutions found so far,
as much determined in the DSS case, namely up to ongll of which are CSS. There are three reasons for investing it.
family-dependent constant, as in the CSS casewénl has First, the real scalar field model is the first in which criti-
the same universal significance aslt would therefore be cal phenomena were observed, and has raised much interest,
interesting to determing.(7) from evolving Eq.(71) and to  probably as much because of the “echos” as because of the
test the expressio(80) against collapse simulations. critical mass scaling. Here we have explained the echos as a
natural generalization dtontinuou$ self-similarity.
Second, this investigation has predicted a new phenom-
enon, the “wiggle” in the mass scaling law, which had not
As mentioned already, there is a regular spherically sympeen seen in Choptuik’s pioneering work.
metric CSS solution for the free complex scalar field, thatis  Note addedAfter submission of this paper | learned of an
a complex scalar field with neither a mass term nor a couindependent prediction, together with a numerical confirma-
pling to an electromagnetic fieldl0]. Later it was discov- tion in collapse simulations, of the “wiggle” in the mass
ered that this solution has not one but three unstable modegaling[23].
[11], and that the critical solution for the free complex scalar  Finally, the real scalar field is a test bed of methods for
field is in fact the real DSS solution we have discussed hergealing with DSS which can now be applied to other DSS
(up to a global complex phagsg21]. critical solutions. The most interesting of these is probably
The action is, in loose notatiolR+|d®|>. Writing the  that of pure gravity in axisymmetr2].
complex scalar ® as ¢+iy, the action becomes  This raises the fundamental problem of angular momen-
R+ (d¢)*+ (a)?, or that of two real scalar fields. Any so- tum and electric charge in the initial data for gravitational
lution of the real scalar field model is therefore also a solucollapse. On the one hand, the resulting black hole can have
tion of the free complex scalar field model. angular momentum and charge. On the other, both must be
We now consider the real scalar DSS solution as a solusmaller than the mass. So what happens to the black hole
tion of the complex scalar model, by settinf=¢, and charge and angular momentum if one tries to fine-tune the
#=0. Its linear perturbations decouple into two kinds. Weblack hole mass to zero? Clearly the case of rotation is the
have already obtained the purely real perturbationgh  more interesting one, but it cannot be treated in spherical
o=0), and the accompanying metric perturbations. Purelysymmetry. Only in one case so far has critical collapse been
imaginary scalar field perturbations, widx»=0, must be considered in axisymmetf\2], but in vacuum and therefore
considered separately. They do not give rise to metric permwithout angular momentum.
turbations(to linear ordey because the stress tensor is the Another restriction of the matter models which have so
sum of a term quadratic igp and one quadratic igp. The  far been considered in the study of critical phenomena is that
first-order perturbation of this second term vanishes if themost of them, in marked difference from any realistic mac-
background value of is zero. The perturbation8y there-  roscopic matter, do not introduce a preferred length s¢ae.
fore obey the real free wave equation on the backgroundnits whereG=c=1, this is equivalent to the absence of
spacetimeZ,, . This also means that they decouple from thedimensionful parameters in the actipiThis guarantees the
real perturbation®¢. existence of an exactly self-similar solution. Even in the
Using the same numerical methods as for the real pertupresence of a preferred scale, however, a self-similar solution
bations, only with different field equations, | have checkedmay still be a good approximation towards the singularity, as
that all imaginary modesys are damped. With a little extra s?=r2+t?>—0. An example for this is adding a mass term
work | have thus confirmed perturbatively that the real DSSm?¢? is added to the scalar field action. Then the DSS so-
solution is an attractor of codimension one even in the fredution we have constructed here is a good approximation for

C. The free complex scalar field model

complex model. Details will be given elsewhd&2]. s<m™!, simply becausep is bounded whiled¢ is not. In
collapse simulations, it is found that the Choptuik solution is
V. CONCLUSIONS in fact the attractor for the massive scalar fiE&D]. It re-

mains to be investigated how other matter models introduc-

ing a scale react to the attempt to make small black holes. A
As | have argued in the Introduction, critical solutions of very recent example is the Einstein-Yang-Mills system,

the kind discussed here play a role in critical collapse similawhich has one intrinsic scale, and which shows both a mass

A. Critical solutions and matter models
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gap, and critical mass scaling, for different classes of initialdegrees of freedom in the boundary value problem. There-
data[24]. The critical solution for this system has now beenfore, one might obtain an infinity of new solutions, some, or
constructed 36]. A rather different, and interesting, one is no new solutions at all. If any new solutions exist, one would
the attempt to consider semiclassical Einstein equations, wittvonder next why it is only the one witk=0 that serves as

the new scale being the Planck len#b]. a universal attractor. If there is a family of such solutions
continuous with the Choptuik solution, that question would
B. Other self-similar scalar field solutions be even more acute. | leave these questions to future work.

A CSS solution(with k=0 assumed implicitly has also
been constructed for the free complex scalar fidld]. In

. - o this solution, only the metric and the scalar field modulus are
discretely self-simila(DSS. These conditions are suggested CSS. but the complex phase of the scalar fieldas for

by the universal attractor that Choptuik] found in critical some constani, so that the complex scalar field might be

collapse of a real scalar field, and they are justified by the X - ; ~
fact that the unique solution of the resulting eigenvalue probpﬁgisr:d?reiuessilx:gmrznS?}:zenSOt;t(')?Z ?e;tizglwli\tlr?t tf#sr-one
lem coincides with Choptuik’s attractor to numerical preci-p gy, . ) : .

sion [17]. | now review some related work on self-similar than with the CSS real scalar field models: There is a unique

scalar field solutions departing from one or another of thesgomtlon with a regular center and regular past SSH, and the
assumptions. null data on the future SSH are for nearly flat space. The

CSS real scalar field solutions have been studici@@h same qualitative picture was found for the CSS solution with

The solution fork=0 can be derived in closed form and was axion-dilaton mattef13]. It is remarkable that now three

apparently first published if27], then rediscovered in the different self-similar solutions are known which are nearly,
PP y first p " . but not quite, flat at the future SSH. The Roberts solution is
context of critical phenomena if28,29. CSS arises as a

degenerate case of our formalism wherg, andX.. are not clearly the limiting case, with a flat SSfut consequently a
9 oo 0, - scalar field that is no€®), and may be of help in finding an
only periodic in 7, but do not depend om at all. In our

notation, continuous self-similarity implies thét(7) in Eq. explanation.
(A2) is a constant, namely; = . (This is incompatible with
the even-odd symmetry | have assumed.

Brady [26] has shown that for alk in the CSS case, I have found exactly one unstable mode of the critical
boundedness at the past SSH is automatic, in contrast to tie®lution. The picture of an attractor of codimension one is
DSS case. As in the DSS case, continuation beyond the pastus confirmed perturbatively. The Lyapunov exponent of
SSH is not unique. Brady has considered the one-paramet&r= —2.674+0.009 gives rise to the valug=0.374+0.001
family of possible continuation§or each value ofc). Un-  of the critical exponent. This value agrees with the most
fortunately, it is not clear which of his continuations is the precise value obtained from collapse calculatif@ls which
analytic one. In the DSS case, | have investigated only thés given as 0.374. Allowing for complex scalar field pertur-
analytic continuation at the past SSH, because the past SSbhtions around the real Choptuik solution does not add any
is in the Cauchy development of regular data when we thinkunstable modes. The Choptuik solution is therefore an attrac-
of it as arising as an attractor in collapse simulations, andor of codimension one even for the complex scalar field.
therefore | believe it should be analytic. Of Brady’s results | It would be interesting to run collapse calculations for a
review here only the special cage-0, because it appears to one-parameter family of matter models, such aspkekp
be most closely related to our case. It is qualitatively differ-family [7] or the nonlinear- model[9], where the Lyapunov
ent fromx# 0, in that no CSS solution with a regular center exponents of the perturbations change continuously with the
exists, except for flat empty space. There is a one-parametparameter. One might thus be able to find parameter regions
family of solutions with a singular center=0. One branch where two equally strong attractors coexist, and new inter-
of r=0 is always timelike and has negatiglégawking mass, esting phenomena would arise. It would also be extremely
the other is either timelike with negative magslled sub- interesting if one could find a way of calculating or estimat-
critical solutions in[28]), or spacelike with positive mass, ing the number of unstable modes of a given self-similar
and in the latter case it is preceded by an apparent horizosolution other than by constructing the solution and all its
(supercritical solutions In either case both the past and the perturbations explicitly.
future SSH carry flat-space null data, and one can therefore Another point should be addressed in future theoretical
replace the negative mass part of the solution with flat spacerork. As | mentioned in the Introduction, the phase space
in both the past and future light cone of the singularity. Sub-icture of universality, although apparently correct in some
critical solutions thus pieced together are qualitatively likeaspects, is strictly speaking wrong because the same space-
the maximally extended Choptuik solution in that0 is a  time corresponds to many different trajectories in super-
regular center, except at the single point=0,t=0), which  space, according to the way it is sliced. At the very least one
is a naked singularity. Both the past and the future SSH arshould be able to derive a universal geometrical prescription
regular and flat, howevefln the Choptuik solution the past fixing the lapse and shift from Cauchy data in superspace,
SSH is not flat, and the future SSH is only nearly flat. such that the intuitive phase space flow is realized as a

What would happen if we allowed#0 in DSS, while  Hamiltonian flow. Furthermore, this Hamiltonian flow
still imposing regularity at the center and on the past SSH8hould admit a geometric interpretation as a scaling, or
Because of mode coupling, this would mean giving up the‘renormalization group,” flow. The evolution in the time
even-odd symmetry, and doubling tki@finite) number of variable 7 (at constant) does in fact go from one set of

In this paper, | have considered a scalar figldvhich is
(a) bounded on the entire spacetime=0), (b) real, and(c)

C. Perturbations, universality, and “renormalization”
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Cauchy data to the same, only changed in overall scale. It turns out to be more natural to expaKdandY instead of

Clearly the idea of approximate scale invariance is at theX, andX_. As discussed in Sec. Il, we imposg=1 and
core of renormalization group ideas and methods. Furthergy=1. Expanding the field equations, we find that the two
more, the calculation oy as given in Sec. IVB is identical (periodig functionsY;(%) and &,(#%) can be chosen freely.
with the calculation of the critical exponent governing the Their significance here is the following, parametrizes the
divergence of the correlation length given in any textbook orclass of spacetime coordinates we use, while a combination
critical phenomena in statistical mechanics, for exampleof the two contains free boundary data for the scalar figld
[30]. As far as | can see, however, the “critical phenomena’atr =0:3
analogy is not with critical phenomena in a system which is
described by a partition functidisuch as a system in thermal (r —= 9%
equilibrium B(gr zfquantum fie)d There is ne);ther a nonvan- e Sy (7)= Zﬂea(mt) . (A2)
ishing Hamiltonian, nor an inverse temperatyreor quan- =0
tum of action?, such that one could construct a weight onThe other nonvanishing expansion coefficients up to order
phase space. e¥in X, Y, a, andg are

The analogy seems to be rather with the application of
renormalization group methods to deterministic partial dif-
ferential equationsPDE’s) [31]. This takes up ideas of
Barenblatt'q 32] of generalizing a self-similar ansatz such as
f(r?/t) for a PDE such as a generalized diffusion equation to 1
t*f(r?/t). Here,a is a noninteger “anomalous dimension” X2=§e§0[Y1—(1+ &) Y4, (A4)
that cannot be determined by dimensional analysis. But the
factort® gives rise to terms proportional tein the equation 2
for f, and this equation will admit regular solutions only for Yy=— §Yf+ eto
certain values ofr: one has a nonlinear eigenvalue problem.

In the critical collapse case we see this twice. In our an
satz for the perturbations we clearly have an explicit facto
t*. But A has the same function in the background solution
There we expand all fields, which are periodicrinin terms
of €"*7Z,(¢), wherew=2x/A. In consequence we obtain o
terms proportional taw in the equations for the expansion
coefficientsZ,({). The CSS case corresponds to these terms a(l,)=ag(7)+ay(n)+tay(r) %+ --. (AB)
being absent. We may therefore consider the DSS ansatz as a
generalization of the CSS ansatz parallel to the anomaloudere we find that convenient fields to expand in are
dimension in Barenblatt's examples, and considea com- X, , X_ and, instead of, the quantity
plex anomalous dimension. These parallels certainly put the

1.,
32:_92:§Ylv (A3)

; (A5)

1
3X5— (14 €)X,

while the other coefficients vanish. These coefficients were

'calculated from ap=0po=1 and the evolution equations
‘alone, but they also obey the constraint order by order.
Regularity conditions at the boundad'y= 0 give rise to an

DE system. We again make a power-law ansatz of the form

investigation of critical gravitational collapse into a wider D=(1+&)et*tog. (A7)
context, and may yet give rise to new predictions or a sim- ) o )
plified theory. Its evolution equation is easily seen to be
_ _ a2
ACKNOWLEDGMENTS D =D(2-a%. (A8)

It is a pleasure to thank Pat Brady, Matt Choptuik, GaryThe equnsion cpeﬁicients can be palculated recursively, by
Gibbons, Jim Horne, Josdaria Marfn Garca, Alan Ren-  the solution of first-order ODE's, if we usk,(7) and
dall, and John Stewart for helpful discussions or suggestiongo(7) as the free parameters. Our coordinate conditih
This work was supported by the Ministry of Education andiS Simply

Science(Spain. Do=1 (A9)

APPENDIX A: BACKGROUND BOUNDARY CONDITIONS We note thatX_ drops out of the constrairiil9) to leading

. . ) order, which is
{=—o and{=0 are singular points of the equations. The

boundary conditions are therefore implemented by expand- 1
ing the field equations in powers ef around;= — and of ap=(1+¢p)ao X% o~ E) -
£ around{=0. The resulting equations are given here. Using

these expansions we can calculate Cauchy data for a vefjyen X, this is a nonlinear, inhomogeneous, first-order
large and a very small negative valueffthus avoiding the  opE for a,. The one integration constant is fixed uniquely
vanishing ofX.. at{= —o and the breakdown of the Cauchy py the requirement that the solution be periodic. The regu-

scheme at=0. - ~larity condition(25) gives us another ODE, this time linear,
The regularity conditions af— —o can be solved in  for x_ -

closed form. We expand in powers ef, as

(A10)

1
§+ag

a(l,7)=ag(7) +a(ret+ay(reX+.-.. (Al) 3This quantity was called(7) in [17].



708

1 1
X o+ (1+¢&) a3 Eerzﬁ,)—z}x0+(1+g(’,)x+0=0.
(Al1)
We can now calculate algebraically,
D,=2-aj3, (A12)
1 2 2,2 2
alziao[(l—ao)+a0(X+O+X_0)], (A13)

5
-~ +a?

X+ (1+ &) 5

. X 1+ (14 €)

3
—+Xio)

CARSTEN GUNDLACH

1 2
2a0a1X,0 _+X+0

55
i 1, 1

X175 —8Xso| 5+ X% |+ 5 X407 X0
+(1+ &) X! (A14)

For X_; we obtain again a linear ODE,

+2agX,0X+OX+1+ X+1 +(2_ag)XL0:0'
(A15)

2

To quadratic order, we have three algebraic expressions=0. In the\ plane this gives rise to a pole at= -1, see

and one more linear ODE, which we do not give h¢ie
need the previous equations to determ¥ng, which will be
needed in Eq(B6) below] We have used explicitly only the
zeroth order of the constraigl9), but the first and second
orders are satisfied identically as expected.

APPENDIX B: BOUNDARY CONDITIONS
FOR THE PERTURBATIONS

The perturbed boundary conditionséat: — in terms of
the free perturbatiod;Y(7) are

2
5i32:_5i92:§Y15iY1, (B1)

1
5ix2=§e§o[5ivi+(>\i—1—gé)&ivl], (B2)

6,Y3=—2Y25Y,+eb

1 !
§5iX2+

1 !
Exi—l—go) 5ix2}.
(B3)

At =0 the perturbed constrairf70) simplifies and no
longer containss; X _ :

5iaov,r+ )\iéia0=(1+ 56) 5ia.0

1 3, .,
5t 7a0(2X50—1)

1
+2a3X 408X 40— 5% ‘ag

X (X% 0=X%0) aigo] : (B4)

We can specifys; X, g and 8,9, freely and solve this equa-
tion for &;a, q.

One detail requires consideration. The average value of

the coefficient ofs;ay in Eq. (B4) is \j+ 1. When this van-
ishes, the equation has no solutiomith periodic boundary

Appendix E.[To calculate the average value of the coeffi-
cient, we note that the background constr&ir8), evaluated
at /=0 with the boundary conditiof24), reduces to

1 2 2y2
(Inag) ,=(1+ &) E(l_ao)"'aoxw . (B5)

As the left-hand side is the derivative of a periodic function,
the right-hand side has vanishing average.

The vanishing of the numerator of ti&X_ equation is an
ODE that can be solved fa¥ X _y; namely,

5X ot

Ni—(1+&p) X _o

1
S-a-adx
+(1+ €h){agX_o(1+2X5 ) iag
+[(1+ &) "X o= X_1]19y ' 810
+(2a5X X0+ 1) X, o}

=0. (B6)
This equation in turn has no solution if the coefficient of
8;X_o has vanishing average. This is the case iéquals the
average of (I g(’))(l—aé), which numerically has value
=—0.385. This gives rise to another pole.

We do not need to expand the perturbations away from
(=0, because in the discretizatid1) of the linearized
equations we do not need to evaluate ¢hderivatives of the
perturbations at=0.

APPENDIX C: PSEUDO-FOURIER METHOD

The discrete Fourier transform of tikecomplex numbers
f, is defined by

1N—l

%k:_nzo fneZwikn/N, (Cl)

conditiong, as discussed in Appendix C. This means that for
Ni=—1, there are no perturbations that are regular orand its inverse is
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NTL _ Clearly, forA=0 andf,=0, this is simply integration, with
fo= >, fre 2mkIN, (C2)  the integration constant fixed so that the integral has vanish-
k=0 ing zero-frequency component. 1{x) has a nonvanishing
The motivation of this definition is of course that tfig  average(zero-frequency partf,, then its principal function
represent the values of a smooth perio@iemplex function  has a partfox and is no longer periodic. In this casg
f(x) at N equidistant points over one period. The essentiaknforces periodicity by settind, equal to zero. Whemn

idea of pseudospectrghere pseudo-Fouriemethods is to  x0, however, even fofy#0, I, f solves the ODE
carry out algebraic operations pointwise on fe and inte-

gration and differentiation on thg,, switching from one to ()" N f=1, (C6)
the other with a fast Fourier transform algorithm. A detailed

description of pseudospectral methods can be fouri@3h with the integration constant chosen such thgt is itself

| give here only the technical information necessary tope_riodic. With_ the he_Ip of this definition we can write the
specify my numerical method. unigue periodic solutiori of

We shall need to define various operations on the Fourier f'+gf+h=0 (C7)
componentsf, which represent operations difx). To do
this in a consistent way, we have to start frordedinitionof  in closed form, namely as
f(x) in terms of thef,. We choose

f=—e"'o94 (e'%h). (C8)
N/2—1
f)=fo+ > (fee  @mkAXL | a2mikid)x) This is, of course, only the standard use of an integration
k=1 factor, written in Fourier components, and so that it obeys
N periodic boundary conditions. The expression diverges as
+fN,Zcos(Tx), (C3 1/g, as go—0, and indeed Eq(C7) has no solution with

periodic boundary conditions fog,=0. All the ODE’s we
where A is the period of f(x). This expression obeys ha\_/e t(_) solve_ are of the forC7) except the constraini9),
f(x,) = f, for x,=nA/N, but this requirement alone does not Which is nonlinear, of the form

uniquely define it. We can noderivehow any operation on —2a’'+ga+ha’=0 (C9)
the fictitious functionf (x) is represented as an operation on '

the f,, for example, interpolation of(x) to arbitrary values Fortunately, it can be reduced to the linear fai@v) by the
of x, differentiation or integration. Let us begin with differ- substitutionf=a 2.

entiation. The corresponding operaidris given by We also need to define an operation that doubleghile
representing the same functidiix), and its inverse. These
(Df)k: _ 2_7kak, O<k<N/2—1, operation; will be required _for de-aliasing—doubling the .
A before going to the,, carrying out the necessary algebraic
(Df)N/zIO, operations on the doublefg, and going back to thé,, then

halving thef, and thus throwing away high-frequency noise.
2m(k—=N) ; With our definition of f(x), doubling means splitting the
A fi. Ni2+1<k<N-1. (C4) high-frequency cosine. The doubling operat®rirom N to

2N components is
We see that on differentiation the high-frequency cosine,

(Df)=—

which takes values of 1 on thex,, is annihilated, because (B;‘)k=fk, O0<k=N/2—-1,
the high-frequency sine takes the value 0 onxheFor the . ~
purpose of integration we define a more general operator, (Bf)np=(1/2)f 0,

namelyl, given by R
' R (Bf),=0, N/2+1<k=3N/2—-1,

. o
I\ f)g=— R R
(hfo= A#0, (BT aniz= (12 Ty,

(1,1)0=0, A=0, (B =f,_n, 3N2+1<k=2N-1. (C10

The halving operatiors from N to N/2 components is
1sk=N/2—-1,

. 1 .
(WOe=— 771 fo ~ 2
N—2mk/IA (S =f,, O<k=N/4-1,

~ N ~ ~ I 2
(ka)NIZZWfN/b (Sf)N/4_fN/4+f3N/4!

(SH=Troinp, NA+1<k<N/2—1. (C1)

(Ixf)k:)\—zw(k—N)/Afk' N2+ 1<k<N-1. | stress once more that the definitionsf I, , B, and

(CH S follow uniquely from the definitio(C3). With our choice,
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D andl, are not the inverse of one another because of the froitfn Cne1tin

treatment of the high-frequency cosir@B is the identity frr=fn=(lns1=G)F|—5— ———| (D1
operator, whileBeS is a smoothing operator. Our choice of

definition is motivated by the requirement that none of theTo solve this system of algebraic equations to machine pre-
operations mix the real and imaginary part, thabis, I,f,  cision together with algebraic boundary conditions on two
Bf, andSf are all real iff is real. I require this because | sides, | use a standard relaxation algoritf84]. If | have to
typically encode two independent real functions as the reghtegrate these equations forwafthat is, with boundary
and imaginary parts of one complex function. conditions(“initial data” ) only on one sidg | use a second-

In a previous COdél?], | did not use one consistent defi- grder Runge-Kutta step as a first guess ﬂ:ﬁu:l: and then
nition of f(x) in the Fourier discretization. More seriously, solve the discretized equations to machine precision using
the discretization mixed real and imaginary parts in someJewton’s method. On the one hand, this is necessary be-
places even where the real and imaginary parts represent twW@use an explicit algorithm is unstable for these equations
unrelated real functions. | have therefore replaced it by thewen for very small time steps. On the other, | want the
one described above. This results in a small change in thequations to be discretized in the same way as in the relax-

numerical results for the same differential equations disation algorithm when | continue the solution frof0 to
cretized on the same grid, in particular a slightly changedarge (.

value ofA. Schematically F (f,¢) =N(f,¢)/D(f,£). As discussed in
the main text, the SSH announces itself by=0. As a
APPENDIX D: NUMERICAL METHODS boundary condition we impose thBt=0 at =0 for all 7.
FOR THE CRITICAL SOLUTION We then imposeN=0 as a second boundary condition at

{=0.¢=0 is itself the last grid point. We see from E@1)
| use Fourier transformation to transform-1 hyperbolic  thatF is never evaluated &=0. There is therefore no need
PDE's into an ODE system, and ODE boundary conditiongg treat the singular poinf=0 in a special way. If we want
X. are odd whilea, g, and &, are even inr to encode the  prime the relaxation algorithm, we need to expand the field
variables X.., g, and §, as a single complex one, as equations in powers aof. This is done in Appendix A.
§o+ig+X, +iX_. The discrete Fourier transform of this  The other set of boundary conditions are imposed at

function constitutes my independent variables. Let us assume= —«. We do this by expanding in powers of gxfsee
that the information contained in them is to correspond to azppendix A).

sampling ofX.., g, and&, at N points each. Then the total

number of comple_x variables is aldh or 2N.real variables. APPENDIX E: NUMERICAL TREATMENT

Typically | yse_Z\l— 128. Out of_ these ™ variables, | set the. OF THE PERTURBATIONS

one combination corresponding to the fundamental sine

mode of ¢, equal to zero, storing\ in its place. As men- | have studied the perturbations with two partially inde-

tioned in the main text, this fixes the translation invariance inpendent codes. One code assumesxhé real and that the
7 of the problem and balances the degrees of freedom againgerturbations have the same symmetr. (odd anda and
the constraints. In the analytic continuation problem theg even as the background. A second code allows for com-
complex variable function i +iG+ X, +iX_. Forthe lin-  plex\; and perturbations, and the perturbations either having
earized perturbations it is5,g+ 8, X, +i8,X_, plus the con- the same symmetry as the background, or the opposite sym-
stant\;, corresponding toR/2+ 1 real variables. The linear metry. The two kinds of perturbations decouple because of
perturbations are normalized by an additional condition athe background symmetry, and can be considered separately.
the right boundary, namely that the root-mean square of | used the following discretization of the linearized ver-
Xyo be 1. sion doéf/di=0F(f,{)/of6f of the ODE system

& andA are formally part of the dependent variables ofdf/d{=F(f,{):
the background problem, although with vanishifgleriva-
tive. In the perturbation problem they are supplied as exter-
nal fixed parameters, together with the background solution.
In each casea or 6a is reconstructed at each step from the
other three fields by the solution of the constraint. This so-The matrixdF(f,{)/df is extracted in Fourier components,
lution can be given in closed form in Fourier components, ady varying one Fourier component @éff at a time in the
explained in Appendix C. Previously, we have doubled thdinearized derivativesoF(f,{)/of 8f. Its coefficients are
number of Fourier components, transformed back to readvaluated on the background taken at the midpoint between
space, and separated the real and imaginary and the even aihdandf, ., andh={¢,,,— .. This scheme is implicitand
odd parts to obtain our four fields sampled &t Roints each. in fact stabl¢ and second-order accurate.
At the same time we have calculated the necessatgriva- For finding the eigenvalue&;, both codes generalize
tives. Now we calculate the necessary algebraic expressiondeas already used in similar calculatididd], using the lin-
pointwise in the N sampling points, put the result back earity of the equations. All possible linear perturbations com-
together in complex form, transform back, and halve thepatible with the boundary conditions at eithé=0 or
number of Fourier components. {=— are evolved together to a midpoint, sé&y —1. One

The ODE systemu f/d{=F(f,{) is discretized in a stan- obtains a complex square matri(mismatch at the mid-
dard way as point)/d(free parameters at the end pojntas a test, | have

h aF)1< h oF

5fn+1=(1—zﬁ 1+§E) Sf . (ED)
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varied the real and imaginary part of the free parameters ; ;4900
independently. The Cauchy-Riemann equatigvith respect

to the free parametersare obeyed without any numerical
error.

This matrix, sayA, depends or\;. If for a given\; a
linear perturbation exists which obeys all boundary condi-
tions at both end points, d&t 0, and this perturbation is the
eigenvector with eigenvalue zero. We therefore search for 9-00100 ¢
zeros of deA();) in the complex plane. Becaua¢ does not
appear in the equations, @€t ;) is holomorphic. Complex
conjugation ofA corresponds to a certain interchange of both 0.00010 ¢ 3
rows and columnsgthe interchange of positive and negative
frequencies in7), and therefore d&i(\;)=detA(\;)*. |
have checked both symmetries numerically. | find a relative
numerical error in the Schwarz reflection principle of 19

and in the Cauchy-Riemann equatigmsth respect to\;) of _
109, FIG. 3. Convergence of the solution frans=0 to the past SSH.

The horizontal axis gives the number of grid poik®§, 51, ...,
801). The vertical axis gives the difference between the numerical

. , A _ solution and the reference solution with 1601 points. The upper line
Contct;ur IPtegraI JA ./Ad)\;]—2’77|(:3|2 '}IP) Ito C.Orl:.m ;he shows the maximum error over all components and grid points,
nhumber of zeroes minus the number of poles within the CoNgpie the lower line shows the root-mean-square error. The upper

tour. Apart from the perturbations discussed in Sec. IV, | findIine coincides with the error i, as this is the component which

a simple pole ak;= —1, for modes with the same symmetry 5 the largest error. For comparison, note that the diagonal of the

as the background, and a simple poleiat —0.385 for  pox has slope 2, the expected convergence behavior.
modes with the opposite symmetry. Their origin is discussed

in Appendix B.
Once | have found a zero of def\;), | determine the
zero eigenvector, and hence the corresponding perturbati

0.01000

10 100 1000

It is sufficient to consider the strip<QIm\;<A/m. Be-
cause dei(\;) is holomorphic, we can use the well-known

should be independent of what is inside tttemplicatedl
routines that supply the algebraic boundary conditions and
He derivativeF (f,¢). Therefore it appears unlikely that the

field. (Numgncally | f|_nd th_e eigenvector by sm_gular yalue cause of the irregular convergence behavior is a program-
decomposition.To refine this result, and to provide an inde- ming error

pendent check, | use it as the starting point of a relaxation When a numerical error has the Richardson form, one

algorithm. 'T‘ this algorith_mzxi is one of the dependent vari_—_ obtains a sharp error estimate based on a theory of the nu-
?i)?ilr?;’ t?]';d r:tosrrglr%sfetnhcf II|Sn g::aggﬁﬂrggt%r?o?nﬁ:\z (i:r?]?)?g_'%erical solution process. Here | cqnnot_ use this thgory. Nev-
mented this algorithm only for real; , as | arﬁ mainly inter- ertheless, there cle_arly is sqmethmg like qua('jratllc_: conver-
ested in the unstable mode whicﬁ'is real gence with decreasing step size, a_nd so | fe_el Jus;_tlfleq to use
' ' the difference between the numerical solution withgrid-
points and the numerical solution withN2gridpoints as a
APPENDIX F: NUMERICAL ERROR ESTIMATES measure of the numerical error of the solution withgrid-

For an ODE discretization to second order such as E _omts. Adding a safgaty factor of 4, | tak(_a th'_s value as the
rror of the N solution, and the R solution itself as the

(D1) one would expect the solution to converge globally tobest value.

second order in the step size. | had incorrectly claimed to . .
o e : . Figure 3 plots maximum and root-mean-square measures
observe this iff17]. The real situation is more complicated: . . .
of convergence of the entire solution. As it happens, the

the root-mean-squared or maximum measure of convergence__. ; . )
show convergence that is quadratin the averageover a maxt|)r|num measure 'SI dofmmate((jj by t_rl;ederrgrAlnandbso_
wide range of step sizes. By quadratic on the average | meagfeu b:; ‘32'32 :;rgrerr)rgtr &ZA;455§'0%085 ove, | obtain
that the log-log plot of step size versus the difference of two Table Il ai th | f.th : téf N d
numerical solutions with different step sizes is a somewhat abie 1l gives the values of the parameters A, an
wiggly line, but with an average slope of two, as iIIustrated)‘2 for v_anousN. A2 is the gauge mpde corresponding to a
in Fig. 3. This result is puzzling, because one would expect ansiation of the backgrognd solutlon,. and we should find
much tighter result to hold, namely that the numerical solu- 2=0. Its absolute nume_,-rlcal value gives a bound on the
tion of the equations at a given step sizés equal to the error of . of iQ.009, while from the convergence & |
continuum solution plus a discretization error which itself isWOUId have estimated a much smal[er error200.0002. | .
a power series in even powers bfonly (the Richardson opt for the larger error . estimate, . and  obtain
form). This clearly does not hold here. | believe that theM1= —2-674:0.009, corresponding to a critical exponent
irregularity is due either to the presence of boundary condi? ~ — 1/x,=0.374+0.001.
tions, or in particular to the singular nature of the boundaries.

The fact that the numerical solution really obeys Hojl) APPENDIX G: CURVATURE AT THE FUTURE SSH
to machine precision is easily established, independently of
the (complicatedl relaxation algorithm that found the solu-  The Riemann tensor in spherical symmetry in general co-
tion in the first place. Furthermore the convergence behavioordinates has been calculated[85]. Substituting the form
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TABLE Il. Convergence ofA and\ with step size in{. A is the echoing period\, is the Lyapunov
exponent of the one growing mode. Its negative inverse is the critical expgnantis the exponent of the
translation gauge mode. It must be zero and serves as a check on the numerical error. Note that the numerical
grid (and number of stepss the same for the background as for the perturbations in each case.

Number of steps A N1 o

51 3.4321725669119 -2.6858281957399 -3.8648655101422D-02
101 3.4513015765429 -2.6700545097384 6.3598135051540D-02
201 3.4431664827331 -2.6741157762787 -2.4122047436405D-02
401 3.4446384162424 -2.6748914760819 -2.3339465009179D-02
801 3.4458770431665 -2.6738878803912 2.9009984141595D-02
1601 3.4453484479734 -2.6740958070987 -9.4268323369794D-03

(2) of the metric, it is straightforward to verify that the only to transform the terms in round brackets into algebraic ex-
appearance of any second derivativesiafr « with respect  pressions, and we transform the outer derivatives from coor-
tor andt in any component of the Riemann tensor is in thedinates ¢,t) to coordinates\,p) via

combination

0 _g 9 i_9 _r ca

a [ a, a. =S "o M ©3

—rir—| —rir—| . (G) o ) )

a aj . r The only derivative in the resulting expression that poten-

tially does not exist i<, ,. But it arises as
We now use the Einstein equations )
(G+Tw)(@X3) (G9
1 .
rﬂz §a2(xi_x§), and whileX_. ,, blows up as W+ 1) ! asw——1, the co-
a

efficient vanishes asn(+ 1), because of the coordinate con-

1 1 dition I'=G atw=—1. We conclude that the curvature re-

a S L o

Pl = Z(a?-1)+ —az(xi —X2) (G2) mains flmte alw_—_ 1 although not all second derivatives of
a 2 2 the metric are finite there.
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