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We compute the orderﬁtfg nonperturbative contributions to the inclusive differenBak X./ v decay rate.
They are parametrized by the expectation values of two local and four nonlocal dimension-six operators. We
use our results to estimate part of the theoretical uncertainties in the extraction of matrix eldnzamas ;
from the lepton spectrum in the inclusive semileptoBiadecay and find them to be very large. We also
compute the mg corrections to the moments of the hadronic invariant mass spectrum in this decay, and
combine them with the extracted values &fand \; to put an upper bound on the branching fraction
B(B—D** /). [S0556-282(97)03011-7

PACS numbeps): 12.39.Hg, 13.20.He

I. INTRODUCTION HQET matrix element in terms of the first observable and
substituting this into the theoretical formula for the second.
Over the last few years there has been much progress fanly if the resulting expression has a reasonably well con-
our understanding of the inclusive decays of hadrons convergent expansion in powers af does it make sense to use
taining a single heavy quark. Combining heavy quark effecl_he value of the HQET matrix element extracted from the
tive theory (HQET) with the operator product expansion first observable to predict the value of the second. In prac-
(OPE enabled one to show that the spectator model decalfce: One knows only a few terms in the perturbative expan-
rate forB— X./v is the leading term in a well-defined ex- Sion, and it is hard to assess how well the series converges.
pansion controlled by the small parametescp/mq , where Recently\ ; and the difference between the meson masses
mq is the heavy quark ma$4]. Nonperturbative corrections @nd the pole quark masses, have been extracted from the
to this leading approximation are suppressed by two powerd'€asured inclusive lepton spectrum_in semileptddice-

of mg and are parametrized by the matrix elements cays [8]: A\;=-0.19+0.10 GeV, A=0.39+0.11 GeV.
The quoted uncertainties are the statistical errors only. There
Ny=(H., h.(iD . )2h H.. 1 are reasons to think that_ systematic expenmen;al_errors are
1= {H=(w)]h,(iD )%, [H..(0)) @ not very large. The major theoretical uncertainties come
and from order a2 perturbative corrections, the assumption of

quark-hadron duality, and the higher orders in the heavy
quark expansion. For a very similar analysis $&8]. An

Hoo(v)> ' ) independent constraint chand\ ; can be obtained from the
inclusive hadron spectrum iB decayq9].

where h, is the quark field in the heavy quark effective  €ré we compute the terms of orderg/in the heavy
theory. |H..(v)) is the pseudoscalard=3) or vector quark expansion of the dlffere_ntlal deca_y rétes X/ v and
(dy=—1) heavy meson state in the infinite quark YS€ the results of our calculation to estimate part of the the-
mass limit [2—4], with normalization (H..(v)|H.(v'))= oretical uncertainties in the determination/®dfand\, from
(2m)%°5®)(p—p’). The scale-dependerib] matrix ele- inclusive B decays. There are two sources ofnd/correc-
ment A, can be obtained from the measurBd-B mass tions. First, the OPE has to be extended to include the local
splitting, A,(m,)=0.12 Ge\?. dimension-six operators. Second, the lower order corrections
The determination of quantities such)asand theb and ~ calculated in Refs[2-4] are expressed in terms of the ex-
c quark po|e masses from experiment is Compncated by th@ectation ValueS Of dimension'ﬁve Operators betWeen the
presence of ultraviolet renormalohsf the renormalons are PhysicalB states, rather than between the states of the effec-
present, the values of a HQET matrix element extracted froniive theory in the limitmy—o. Therefore they depend on
two different observables at a given orderdg may differ My beyond leading order. In Sec. Il we compute the contri-
by an amount of the order of the matrix element it4&F butions from the local dimension-six operators to both the
which prevents one from using the measured value of onéharged lepton spectrum and the hadronic spectrum, which
observable to improve the prediction for another. Whethe@'® experimentally accessible quantities. The mass depen-
this is the case can be established by expressing the unknowignce of the states is discussed in Sec. Ill. The complete
llmﬁ corrections are parametrized by the expectation values
of two local and four nonlocal operators. In Sec. IV we in-
1n the “large B," approximation\; does not have a renormalon vest_igate the influence Ofm@ corrections on the extraction
ambiguity in continuum regularizatiofi§] but this is likely tobe an  of A and\; from both leptonic and hadronic spectraBn
artifact of this approximation. decays. We also obtain an upper bound on the branching
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fraction B(B—D** /v). Our conclusions are presented in

I v
v
Sec. V. The Appendix contalns the derivation of the meson®
mass formulas to ordek? CD/mQ .
Il. LOCAL DIMENSION-SIX OPERATORS b b b cec b
The effective Hamiltonian density responsible for (a) (b)

b—c/v decays is

FIG. 1. (a) The relevant term in the operator product expansion.
Vep 4Gk &) Wavy lines denote the insertions of left-handed currefitsdoes

Hw="~ N N not contribute tob—c decay.
where J*=c_y*b_ is the left-handed quark current and — 1
J“=/ y¥v_is the left-handed lepton current. The differen- by"PL , y*PLb

tial decay rate is determined by the hadronic tensor Myt = G+10 —me

1 —
=—by"PL(myp—q+ilD+m,)
W= (2m)*% 64(paa- P, (B(0)3"T1Xo) Ao i
¢ Z (D?—=2(my—q)-iD+ %gaaﬁGaﬁ n

Ao

which can be expanded in terms of five form factors X y*P, b, (9)

X(Xo|3#|B(v)), ) X2,

WA= = gH" Wy + o' "Wo—i € ,5W3+ qq "W, where P =%1-1vs) is the left-handed projector,
+(g* 0"+ q"v ) Ws. (5) Ao=(mbv—q)2—m§+i0, D is the covariant derivative, and
we used ,D,—D,D,=igG,,. The fieldb(x) in Eq.(9) is
Then the differential semileptonic decay rate is given by related to the normal QCD field by bgcp(X)
=e '™v Xh(x). There are other contributions in the OPE of
5 two currents, e.g., the one in Fig(dl. However, these op-
2E/E,— 34 ) erators do not contribute to the decay rate once sandwiched
between thd meson states. For the diagram in Fig)lthis

di' 96T
do?dE,dE, mp |

W; 0%+ W,

5 5 is ensured byn. being much larger than the available energy
+Ws3q°(E,—E,)|0(E,)6(E,)6(q7) in the “brown muck,” which is of orderA ocp.
Our calculation of the form factor§; follows the method
X 6(4E,E,—q?). (6)  of Ref.[3]. We expand Eq(9) to third order inD. The term

with no derivatives is proportional to the conserved current
Herero is the SpeCtatOf model total decay rate in the limit Of b’y b, and thus its d|agona| matrix elements can be evalu-
zero charm mass, ated exactly in full QCD. All other contributions we express

5 in terms of the fielch, in the effective theory and reexpand

V. |2G2 my, 7 the resulting expressions in powers ofn/ Therefore we
0=Ver| *GE 19273° @) need the expression fan(x) in terms ofh,(x) only to order
1/mé:
and we have neglected the lepton mass.
We define the current correlatd*” by (U D)D, f
+ J— 4+ ...
b(X) 1 2 My mbz— 8—mg hU(X),
Ter——i [ dtxe BT (0940 B(v) (10
=—g"" T+ v 0" T,—i e Py 5T +9q"T, whereD, =D—v(v-D). We choose to work with Foldy-
“ Wouthuysen-type fields, because this ensures that they sat-
+(q“v’+q"v*)Ts. (8 isfy the usual equal-time commutation relatigi)].

To evaluate the expectation values of the heavy quark
One can easily see th&Y,=—(1/7)ImT,;. Away from the bilinears we need the equations of motion in the effective
physical cutT#” can be computed using the OPE. Then  theory to order IhZ [10,11):
analyticity arguments show that the smeared differential de-
cay rate is correctly reproduced by the OPE calculation, pro-
vided the width of the smearing function is large enough. iv-Dh,=
The only diagram which has a discontinuity across the
physical cut is shown in Fig.(&). The corresponding contri-
bution to the time-ordered product is X[Df(v D)+ (v- D)Df]+ -+ 1h,. (1)

[ [
2
JRS— — . +
2m, D 4m2 Pi(v-D)D, gm?
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By virtue of Eg.(11) there are no nonperturbative correc- +3 1

- . (3) pP1TOP2

tions to the form factorg; at order 1, [2]. The contribu- Ti=— 1oA 2 + A2
tions at order Ih? are expressed in terms of the matrix ele- o 0

ments (p1+3p2) (42 —q-v2—mi+myq-v)

X1 p1—p2t

(B(v)[h,(iD1)*h,[B(v)), 2ot 3p))
i R N LI
1 303m, (M,—q-v)(d°—q-v°)
B(v) b5 7,,G*"h,[B(v) ). (12
4py
= 3ad (M= a-0)(a’=q-v?), (16
Our calculation of these contributions reproduces the results
in Ref. [3]. The states in the matrix elements Ef2) have p1+3p2

1
an implicit dependence om,. At order 1m? this depen- TR = 3? 4p,+6p,—(py+ 3p2)—

dence can be neglected, in which case these matrix elements 6Aom;
may be replaced by, , defined in Egs(1) and (2). If the 2
form factors are to be calculated to ordem/ this replace- + W[Mpﬁ 6p2)(Mp—q-v)q-v—3p,0°]
ment is no longer valid. An expression for the matrix ele- 0
ments, Eq(12), in terms of\; , and the expectation values 8myp,
of nonlocal operators is given in Sec. Ill. T —a (My—g-v)(0°—q-v?), 17
The 1M contributions to the form factor§; from local
operators can be parametrized by two matrix elemepts, Pt 3p, 2(my—q-v) q-v
. i = v+ ——=— (p1+ —_——
andp, [12]. They are defined as T3 6m§A§ gq-v BAS (p11+3py) ~ 3p-
(H..(v)|h, o(iD)(iD ,)(iD p)h,[He(v)) 4py
g 3A4(mb q-v)(9?—q-v?), (18
= %pl(gaﬁ_vavﬁ)v,u,! (13)
p1t3p2  2p; 4(p1+3p2)
PTG TP = -t (my,—q- 1
(H..(0)[0,(iD ) (iD ) (iD ) ¥5ysh, [ H..(v)) &= 3m2A2 " A3 T amag (Memdv) (19
= %de2i€Va55UVUM. (14) (3)_ pl+3p2 2(p1+3p2)
Ts'=— 6mM2A 2 q-v— 3m,A2 q-v(M,—q-v)

The expectation value of any bilinear operator with three b0 0
derivatives is expressible in terms pf and p,: 2p,my,

4
o ST Al (M=) (@07, (20
{H=(0)IN,T(iD2)(ID ) (D g, [He(w)) Substituting the imaginary part of these form factors into
=%p1(gaﬁ—vavﬁ)v#Tr[P+F] Eqg. (6) we obtain the corrections to the triple-differential
. _ decay rate. Interesting quantities are the charged lepton spec-
— 15 0pp2i €,4550 "0, THP¥’ysP,I'], (15  trum and the hadronic spectrum. The former is obtained by
taking the imaginary part of form factoﬂ'é3), i=1,2,3, and
whereP =3(1+4%) and[ is any 4x4 matrix. integrating Eq(6) overg? andE,, . Using the rescaled lepton
After a rather lengthy calculation we obtain the contribu-energyy=2E_,/my we find the 1|/n correction to the lepton
tions from local dimension-six operators to the form factors:spectrum:

dr®’ 1, 8 ) ) s . 8 , 2 .
'9(1 —Y)|5(3p1H+1p1+9r°p,—3r°py) + Zp1y(3—2r)=8p1y“— Z(p1+3p2)y
dy 3 3 3
2(4p1+ 3r2p;+9r2p,)  2r(8py+9rp,+27rpy) N 2r(8p,+17rpy+4r2p;—9rp,+12r2p,)
1-y 3(1-y)* 3(1-y)°
. 2r%(3py+4rp;+9p,+12rpy)  8r(py+3rpy+3rpy)  40r3p, 51 )2(1—I’)4(1+r)2p1
[— — _r_ ,
(1-y)* (1-y)® 3(1-y)° Y 312

21

2They are related to the matrix elemep$ and p?s introduced in Ref[11] by p,=p3, p,=3pis.
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wherer = (m./m;)2. Note the contribution from thé function at the end point of the lepton spectrum. Fortiheu transition
such singular terms in the lepton spectrum appear already at ordér kit for b—c they do not appear until orderrﬂlg.
This is easily explained if one recalls that the most singular contributions to the lepton spectrum at a givemgydan e
obtained from the spectator model result by the “averaging” procedure of &efvhich involves differentiatingy times with
respect toy. For a massless final state quark the spectator model spectrum has thi ypafil —y) with f(1)#0, and thus
differentiation produces then(-1)st derivative of thes function 5"~ Y(1—y). For a massive quark in the final state the
spectator model spectrum and its first derivative vanish at the end psitit-r. Hence at order by the most singular
contribution is proportional t&"~3(1—y—r).

To obtain the contribution from local dimension-six operators to the hadronic spectrum we integréée @cpr E, and
express the result in terms of rescaled hadronic varia%(;es(mb—q-v)/mb and §0=(m§—2q-v+q2)/mt2,:

ar® sry, . - s . e . A
G dE :3_mO0(Eo_\/5—0)9(1"'50_2'50)\/Eg_so((P1+3P2)(_3+6E0+2E§_550)5(So_r)
0 b

_2{9(P1_P2)+6(P1_P2)§o+3(P1+3P2)§§_[3(7P1_3P2)+11(P1+3P2)§0]E0
+3[(3p1+5p2) — (p1+3p2)SolEG+8(p1+3p2) ES} 8" (So—1) — 4(E§—S0)
X[3(14Sp)pa—(1—350)(p1+3p2) Eg—2(p1+6p2) E518"(So—T)

+ 8Eo(E5—S0)pal 250— 3(1+50) Eg+4E5]16" (50— 1)). (22

The correction to the total rate is given by integrating Eq.We express the physical states through the states in the infi-

(21) or (22) over the remaining variables: nite mass limit of HQET using the Gell-Mann—Low theorem
(see, e.g., Refl14]). This theorem implies that, to first order
PO)= L0 [y (7788 + 247 8 5.+ 4glre in 1/imy, [B(v)) is given by
6m,
0 1
+36r2Inr) + p,(27— 72r + 2162— 2163+ 454 [B(v))= 1+iJ' d3xf dtL(x)—
+1082Inr)]. (23 0
i 3
The part of Eq.(23) that diverges logarithmically as—0 X<B°“(U) 'J d Xfodt‘C'(X) B”(U)> [B-:(v)),
agrees with the corresponding expression in RES]. There
is nothing wrong with the logarithmic divergence, since our (29
calculation is valid only for a charm mass significantly larger . o
than Agcp. It is the latter condition that allowed us to dis- whereV is the normalization volume and
card the diagram in Fig.(b). For a discussion of the correc- 1 1
tions to the total semileptonic decay rate from dimension-six _ T 2 —9 v
: : : . =5— +-—h,> kvh, .
operators with a light quark in the final state see R&8]. L 2my h,(iD.,)"h, 2m, h, 2 TG, (26)
IIl. EXPANSION OF THE STATES Utilizing Eq. (25), one can easily expand the matrix elements
] ] in Eqg. (24) to order 1m§. It is convenient to introduce the
Above we have computed then corrections to the in- notation
clusive differentiaB decay rate from the local dimension-six
operators in the OPE. However, there are other sources of _ 0
1/m3 corrections. At order hi2 the OPE yields the decay <Hoo(v) hv(iDl)zhvif d3xf dtLy(x) Hoc(v)> +H.c.
rate in terms of the two matrix elements o
— . Ti+dyT;
(B(v)|h,(iD,)h,|B(v)), ==,
b
1 —0g )
3 B(v) hUEO'MG“ h,|B(v) ), (24 —q o s [©
H.(v) hvz%vG“ h,i | d°x| dtL,(x)|H.(v))+H.c.
where|B(v)) is the physicaB meson state, rather than the
state of the effective theory in the infinite mass limit :75+dH7:1 27)
|B..(v)). Thus these matrix elements are mass dependent. At my

order 1m2 this distinction is irrelevant, but at higher orders
this mass dependence has to be taken into account explicitiyVe then find
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_— T,+37, wheremp andmg are defined asyeso= (Mp+ 3My)/4.
(B(v)[h,(iD,)*h,[B(v))=\1+ e The familiar relation of the HQET matrix elemeRs to
® the mass splitting betwedhiandB* mesons also needs to be
extended to include therhf contributions. Using Eq29) to
1 T;+37, L
_< B(v) . (29 express the quark mass through the meson mass\ameé
3 3m, find
Thus these order tf corrections to the inclusive
B— X,/ v decay rate are parametrized by the matrix ele-
ments7; — 7, of four nonlocal operators. k(Mg)No(My) A

This class of Ih3 corrections can be included in any My —My=Amy=2——"——| 1+

qguantity known at order mﬁ by using Eq.(28) to evaluate
the matrix elements of the dimension-five operators. In par-
ticular the corrections to the form factors and the differential T+ T,

rates in Ref[3] can be obtained in this way. - % o,
H H

g
hvEO'

G*h, B(v)> =Nt

wv

H

: (31

IV. APPLICATIONS
where x(mg) =[ as(Mg)/ as(my) 1340 takes account of the

One important application of our results is to studyscale dependence &f,. We can use th&-B* and D-D*
the influence of ng corrections on the extraction of the mass splittings to extract the numerical value of some of the
HQET matrix elements\,\; using the methods of Refs. HQET matrix elements:
[8,9].

In order to compare quantities obtained from an expan-
sion in the inverse quark mass with experiments it is neces-
sary to express the quark massas and my, through the Ao(My) = ,
physical meson massesg and mp and the HQET matrix 2[mg— x(mMc)Mp ]
elements. Some details of this calculation are given in the
Appendix. To order I3 we find the relation

2 2
Amgmg—Ampmg

B k(M) MBAME(Mp+ A) — MR Amp(mg+ A)

_T_ — S —
my=mq+ A rt duka(o) | patdup, S M-+ A— k(M) (mp-+ A)
noTR 2mq 4mg (32
T+ Tyt dy(T+ 7o) - _
B 4mé ' (29 In order to extrach ; andA from the experimentally mea-

sured lepton energy spectrum in tBe—X./ v decay it is
where my, is the hadron mass anmu,, is the heavy quark convenient to introduce the quantitifgj
mass. The differential and total decay rates are functions of
the ratio of quark masses which can be expressed in terms of
the spin-averaged meson masses

j E at dE J ar dE
_ /g UE/ T dE/
m, mp A mo\ A (Mg g ~J1sGev dE, Jar cevdE,
Mo Ty e\ ) 2ME\mp e T -
B — —|
B_ ® ® o P ® 15 cedE, 7 15 cedE, 7
A? mp| A3 mp (33
mg mg/ m3 mg
_ o whereE , is the lepton energy andl'/dE, is the complete
+ ANy 1 mg 3@ 4 Mg electron energy spectrum, which we obtain by combining the
26% mp mg m3 results of Ref[3] with our results. In the energy spectrum at
order 1mZ, taken from Ref.[3], the matrix elements of
p1—T—T[ M mg dimension-five _operators are gvaluatgd accgrdlng to Eqs.
= = T — | (30 (28). The resulting expression is combined with the contri-
4mg mp Mg bution from local dimension-six operators, E®1). Ex-

pressing all quark masses through the meson masses and
using their measured values, we obtain expressions for
R;,R, in terms of the HQET matrix elements. Combining
3These matrix elements are related to those introduced ifREf.  these with perturbative corrections and other contributions
asT=p3, L=5p5c. Ta=p%, and T,=3p3+5p3c .- (see Ref[8]) we find
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ANq A T,
Ry[GeV]=1.8059-0. 30& 03.5_—2 232; 396_—Z 04_—3 57—t 6.8~ 7.7 — 132 — 3.2~
mB mB mB mg mg
3 ag /T Vb 2 A
452 312 402~ 00850072 |+ | 1331020
my mg mB ™ mg/ | Veb Mg
A A
— ( 0.0041—0.004:) +1 0.0062 0.00&), (39
Mg Mg
A A2 A A AN p2 . T . T
R,=0.65810.315— - 068_—2 16% 494_—2 15— — 7.0~ 175" — 18_—3+23% 29 152
Mg mB Mg Mg Mg Mg mg
A

73 T, as A
—4.0_—3—4.9_—3—— 0.039+0.18— | +
mg mg 7 Mg

K A A
—— | 0.87—3.8—| —| 0.0073+0.005—| +
cb mB mB

0.0021+0.003—],
Mg

(39

where the first two lines contain the nonperturbative correcvalue obtained this way is rather uncertain. Taking=0.5
tions to order ng. The other terms are in order: the pertur- and fg=270 MeV for purposes of illustration, we fifid
bative « corrections, the contribution froB— X,/ v de- p;=0.13 Ge\?. No similar estimates exist for the other
cays, electroweak corrections, and finally a boost, since thdimension-six matrix elementg, vanishes in any nonrela-

B mesons do not decay from rest. This is to be comparedgvistic potential model, which may be taken as an indication
with the experimental values RP?*®=1.7831 GeV, that it is small relative to the other matrix elements. No es-
R$*P'=0.6159. Neglecting the EPB_correctlons but including timates that go beyond dimensional analysis are available for
statistical errors the valuesA=0.39+0.11 GeV and the time-ordered products.

A,=—0.19+0.10 Ge\* were found in Ref[8]. In order to ~_ The crosshatched region in Fig. 2 shows the range of
take the uncertainties from the higher order matrix elements, \; one obtains from setting;=0.13 Ge\? and p,=0

into account, we equate the expressionsRgp to the ex-  and varying the magnitude of the other matrix elements in

perimental values usingVyp/Vcp|=0.08, as=0.22, and  the range 040.5 GeVj3. The previously extracted values of
Egs. (32) to eliminate\, and p,. This yields the extracted JTM are not excluded by this choice pf ,.

values ofA, A, in the form This method of extracting\,\ ; is especially sensitive to
Ae FREPLRSM ) T T T, T, higher order corrections since the constraints obtained form
=T RTRT 01, 1, T, T, T, R, and R, give almost parallel bands in th&-\, plane.
M= (REPRS 01, 71,75, T3, Ta). (360  Thus small uncertainties in the theoretical expressions for
Ry, result in large uncertainties in the extracted values of
Dimensional analysis suggests that the higher order maA,\;. The same applies to the very similar analysis in Ref.
trix elements are all of ordeA%CD, which can be used to [18]. The rare decaB— Xsy provides a way to extract a
make a quantitative estimate of the uncertainties in the exvertical band in theA-\; plane, but at present the experi-
traction of A,\;. We vary the magnitude op,,7;—-7, in  mental data do not allow a quantitative analysi8|. Fur-
Egs. (36) independently in the range (8:5 GeV ), taking  thermore, as discussed in the Introduction, it is not clear
p1 to be positive, as indicated by the vacuum saturation apwhen HQET matrix elements extracted from different ob-
proximation, but making no assumption about the sign of theservables can be compared meaningf{ify].
other matrix elements. Using the central vaIuesFt@ffzpt we The second method for extracting information Aml
find thatA,\; can lie inside the shaded region in Fig. 2. For[9] was used to exclude some regions in th& ; plane. The
comparison we also display the VaMengl extracted in  first and second moments of the invariant mass spectrum of
Ref. [8] together with the ellipse showing the size of thethe hadrons in the final state of the inclusive decay
statistical error of the experimental data. Clearly the theoretB—X./v turn out to give independent constraints on
ical uncertainties dominate the accuracy to whigh; can  A,\;. Their definition involves the total decay rate at order
be extracted. 1/5%. It can be obtained by combining the total rate at order
The situation can be improved only if we have some in—1/m§ from Ref. [3] with the contributions from local
dependent information on some or all of the higher dimen-dimension-six operators, E§23), and using Eqs(28). Fi-
sion matrix elements. This requires either more experimental
input or theoretical estimates of these matrix elemepis.
can be estimated in the vacuum saturation approximation“A value for p, can also be obtained from small velocity sum
[15,16,11,12,17B p;= (27Tasl9)m5fé. The numerical rules[17] but this estimate suffers from large uncertainties as well.
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<SH_EZD>:EE

ag A g
0.051=+0.23—| 1+0.43—
T mB T
1 —
+0.26— (A?+3.9\;—1.2\))
Mg

4 1 _ _ _
1 +0.33=; (A*+6.6AN;— L.7AN,+7.0p;
] Mg

+3.50,+5.0;+ 2.5, +4.6T3+ 1.374)] ,

; (39)
-0.7 r N o /T o
oo b b e by v e e s b v b a
01 02 03 04 05 06 07 08 ((sp—m@)?)=mg 0-0053;s+0-038m: —
A [GeV] B
FIG. 2. Impact of It} corrections on the extraction of,\;. +0.065— (A~ 2.1\;) +0.14—
Shaded region: higher order matrix elements estimated by dimen- mg mg

sional analysis. Crosshatched regipp=0.13 GeV, p,=0. The
cross and ellipse show the values df\ ; extracted without bhy
corrections but including the experimental statistical error.

—1.07;—2.97;) |, (40)

nally Egs. (29) and (30) are used to eliminate the quark
masses. Using the measured values for the meson masses and
neglecting perturbative corrections we find, to third order inyhere perturbativees corrections have been included.
1/mg, Rather that repeating the analysis presented in [Réf.we

use these expressions to predict the values of the hadronic
e - moments using the HQET matrix elements extracted from

|Vep|2G2my A A2 A . ST
_ [Vepl"GFMp 0.3689—0.608&—0-34%_1-17%1 the lepton energy spectrum. The main reason for doing this is
mg mg mg

- 19270 that the experimental measurement of the necessary branch-
— — — ing fractions is not very precise. In particular ALEPH and
Ao A ANy AN p1 CLEO quote only an upper bound foB(B— D3/ v)
_2'757m__2_0'11m;_1'2153 +2'95W _2'27m__3 [20,21). We extract an upper bound on this branching frac-
B B B B B

tion from the theoretical prediction of the hadronic moments.
A lower bound for the first hadronic moment is given 19}

12762 -2 733—13+o 55%—3 84_29;—2 76‘%
Mg Mg Mg Mg Mg

37) (sy—m3)=a[(2.450 GeV?— (1.975 GeV?]

+b[(2.010 GeVy2—(1.975 GeV?]

Since none of the coefficients of the higher order matrix +¢[(1.869 GeV2— (1.975 GeV?], (41)
elements turn out to be abnormally large, dimensional analy- ’

sis indicates that the B corrections to the total rate should _ ) ) )
not exceed 2%. wherea, b, andc are the semileptonic branching fractions to

The hadronic moments are defined as D**, D*, andD relative to the total semileptonic branching
fraction. Using the measured ratio 0.41:0.59 for the decays to
D andD*, we can writeb,c as functions of the branching
(39 fractiona for D** ;

5 1

— n_— __ _ "23\n

((sp—mp)") FdeHdEH(SH mp) ds.dE,
b=0.591-a), c=0.411-a). (42

where sH=m§—2va-q+q2 and Ey=mg—v-q are the

hadronic analogues afy,E, defined in Sec. Il. Using the e takea+b+c=1, which is appropriate because we need
relation between quark and hadron masses one can relaly a lower bound on the hadronic moment. It is also im-
Sy ,Ey to sg,Eq and thus compute the moments using theplicitly assumed that the nonresonant semileptonic branching
expressions given in Ref9] together with Eq(22) and the  fraction below theD** mass is negligible. Similarly, for the
usual substitution, Eq$28). We find, to order ﬁg, second hadronic moment we take
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<(SH—W5)2>23[(2-450 GeV?—(1.975 GeVj?]?, involved. Since they have not been computed for the lepton
(43 spectrum, there is at present no way we can check if predic-
tions for the hadronic moments in terms of the HQET matrix
where small contributions from the ground state mesonglements extracted from the lepton spectrum satisfy this cri-
D,D* have been neglected. We obtain theoretical predierion.
ictions for the hadronic moments by substituting values getting these considerations aside, we can predict the
of p1,7,-7, and the corresponding values &fi, extracted \5jyes of the hadronic moments in terms/af; extracted
from the Ieptor_1 spectrum into EG39). As _before, W€ " from the lepton spectrum. The lower bounds for these mo-
allow the magnitudes 0f, and7,-7, to vary in the range ments depend on the branching fractioDtt* , which is not

3 . - . .
005 GeV " with p, being positive. Imposing the con- well known experimentally. If the higher order matrix ele-

Stfa'”t that the_ largest values of the hadronic moments o ments are estimated by dimensional analysis, the maximum
tained from this procedure be larger than the lower bounds

Egs. (41) and (43) we find the upper bound on the** Semileptonic branching fraction t©** consistent with the
braﬁching fraction: predicted range of the hadronic moments is 23%. This value
' is consistent with the ALEPH and CLEO measurements.

a<0.23. (44)

This value is compatible with the experimentally measured
values from ALEPH [20] [B(B—D;/v)=0.069
+0.015, B(B—D3/v)<0.1]] and from CLEO [21] We are grateful to Zoltan Ligeti and Mark Wise for help-
[B(B—D./v)=0.046+0.013, B(B—D%/v)<0.11]. Itis  ful discussions. This work was supported in part by the U.S.
also marginally consistent with the OPAL result Department of Energy under Grant No. DE-FG03-92-ER
a=0.34+-0.07 [22]. Unless the matrix elements of 40701. A.K. was also supported by the Schlumberger Foun-
dimension-six operators are even larger than we have aslation.

sumed, this implies that the branching fracta® 0.27 used

in [9] is inconsistent with the values df,\ ; extracted from

the lepton spectrum.
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APPENDIX: THE MASS FORMULA

For comparison with experiments it is necessary to ex-
press the pole quark masses and m, in terms of HQET

We have calculated ther contributions to various ob- Matrix elements and physical observables, e.g., the spin-
servables in the semileptonic decBy+X./v. They are pa- 2averaged meson massesng and mp, where
rametrized by the expectation values of two local and fourMmesor= (Mp+3my)/4. For this purpose one needs to know
nonlocal dimension-six operators. While the total rate isOW. quark masses are related to hadron masses at order
rather insensitive to the higher order correcti¢éhs2 %, the ~ 1/my. Our starting point is the identity

values of A,\; extracted from the lepton spectrum can be
affected substantially. The theoretical uncertainties in the
values ofA,\, are far larger than the statistical errors of the V (H..(v)|H|H(v))
experimental measurements if the values of the higher order My=7 (H..(v)[H(v)) H.c., (A1)
wo\U 1%

matrix elements are estimated using dimensional analysis.
While one linear combination ok and\, is still reasonably
well constrained, it is not possible to extract individual val-\where V is the normalization volume an@ is the full
ues forA and\; from the lepton spectrum only. The situa- Hamiltonian density including light degrees of freedom.
tion can be improved only if additional information on the This equation holds in the rest frame of the hadron. Then we
size of the dimension-six matrix elements is used. Unfortusplit 7 into the leading term and the terms suppressed by
nately no theoretical estimates are available for any of thespowers of 1m,, H=H,+%H,;, and use the fact that
matrix elements except;. The latter can be estimated in the |H..(v)) is an eigenstate offd®xH, with eigenvalue
vacuum saturation approximation, albeit with large uncerm,+A. The use of the Foldy-Wouthuysen-transformed
tainties. Alternatively one can use additional experimentafie|ds, Eq.(10), ensures that there is no implicit dependence
input, e.g., fromB— Xy decays, to further constraih and  on my, in h,. Also, there are no time derivatives in the
A [19] L HQET Lagrangian beyond leading order, as can be seen,

The values ofA,\; extracted from the lepton spectrum e.g., from Eqg. (82) of Ref. [10]. Therefore we have
can be used to make theoretical predictions for the moments; = — £,. Using the Gell-Mann—Low theorem, the general
of the hadronic invariant mass spectrum. This amounts texpression for the hadron mass reads
expressing one observable in terms of other observables, a
procedure that makes sense only if the perturbative series for —
this expression is reasonably well behaved. In order to deter-5if one starts from a similar identity with eigenstatestébn both
mine whether this is the case it is necessary to know at leasides of the matrix element, one obtains the same result after a
the next-to-leading ordewg corrections to all observables somewhat more cumbersome calculation.

V. CONCLUSIONS
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— V[(H.(0)| £, Texd i fd3x[° .dtL(x)]|H.(v))

my=my+A—

Expanding Eq(A2) to order 1m? we obtain the mass for-
mula

mH:mb+/T—(Hx(v)|/$|+£|||Hoc(v)>
—E<Hm(v) L.if d3xf1dt£.<x>

where[10]

3

Hw(v)> +H.c.

(A3)

1 — 1 —
Ly=— 4—mEhUiIDL(iv .D)iD  h,+ —ghv(iml)z(iv.D)hv

8m

]_ _
+8—nﬁhv(iv~D)(iDl)2hv, (A4)

2| (H..(v)|Texdi fd3/° .dt£y(x)][H.(v)) FHe.

(A2)

and z, is given in Eq.(26). Equation(A3) contains expecta-
tion values of both local and nonlocal operators. The local
part can be evaluated in terms of the matrix elements
N1, Ao, p1, andp,, while the nonlocal matrix elements can
be expressed through —7, defined in Eqs(27). In terms of
these matrix elements the meson mass is given by

— Atdyly  patdyps
My =M+ A= 2m, am?
T+ T+ du(Tx+7,)
- a2 : (AS5)
my,

in agreement with Ref§10,11].
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