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We compute the order 1/mb
3 nonperturbative contributions to the inclusive differentialB→Xcl n̄ decay rate.

They are parametrized by the expectation values of two local and four nonlocal dimension-six operators. We
use our results to estimate part of the theoretical uncertainties in the extraction of matrix elementsL̄ andl1

from the lepton spectrum in the inclusive semileptonicB decay and find them to be very large. We also
compute the 1/mb

3 corrections to the moments of the hadronic invariant mass spectrum in this decay, and
combine them with the extracted values ofL̄ and l1 to put an upper bound on the branching fraction
B(B→D** l n̄). @S0556-2821~97!03011-7#

PACS number~s!: 12.39.Hg, 13.20.He

I. INTRODUCTION

Over the last few years there has been much progress in
our understanding of the inclusive decays of hadrons con-
taining a single heavy quark. Combining heavy quark effec-
tive theory ~HQET! with the operator product expansion
~OPE! enabled one to show that the spectator model decay
rate forB→Xcl n is the leading term in a well-defined ex-
pansion controlled by the small parameterLQCD/mQ , where
mQ is the heavy quark mass@1#. Nonperturbative corrections
to this leading approximation are suppressed by two powers
of mQ and are parametrized by the matrix elements

l15^H`~v !uh̄v~ iD'!2hvuH`~v !& ~1!

and

l25
1

dH
KH`~v !Uh̄vg2smnG

mnhvUH`~v !L , ~2!

where hv is the quark field in the heavy quark effective
theory. uH`(v)& is the pseudoscalar (dP53) or vector
(dV521) heavy meson state in the infinite quark
mass limit @2–4#, with normalization ^H`(v)uH`(v8)&5
(2p)3v0d (3)(p2p8). The scale-dependent@5# matrix ele-
ment l2 can be obtained from the measuredB* -B mass
splitting, l2(mb).0.12 GeV2.

The determination of quantities such asl1 and theb and
c quark pole masses from experiment is complicated by the
presence of ultraviolet renormalons.1 If the renormalons are
present, the values of a HQET matrix element extracted from
two different observables at a given order inas may differ
by an amount of the order of the matrix element itself@7#,
which prevents one from using the measured value of one
observable to improve the prediction for another. Whether
this is the case can be established by expressing the unknown

HQET matrix element in terms of the first observable and
substituting this into the theoretical formula for the second.
Only if the resulting expression has a reasonably well con-
vergent expansion in powers ofas does it make sense to use
the value of the HQET matrix element extracted from the
first observable to predict the value of the second. In prac-
tice, one knows only a few terms in the perturbative expan-
sion, and it is hard to assess how well the series converges.

Recentlyl1 and the difference between the meson masses
and the pole quark masses,L̄, have been extracted from the
measured inclusive lepton spectrum in semileptonicB de-
cays @8#: l1520.1960.10 GeV2, L̄50.3960.11 GeV.
The quoted uncertainties are the statistical errors only. There
are reasons to think that systematic experimental errors are
not very large. The major theoretical uncertainties come
from order as

2 perturbative corrections, the assumption of
quark-hadron duality, and the higher orders in the heavy
quark expansion. For a very similar analysis see@18#. An
independent constraint onL̄ andl1 can be obtained from the
inclusive hadron spectrum inB decays@9#.

Here we compute the terms of order 1/mb
3 in the heavy

quark expansion of the differential decay rateB→Xcl n and
use the results of our calculation to estimate part of the the-
oretical uncertainties in the determination ofL̄ andl1 from
inclusiveB decays. There are two sources of 1/mb

3 correc-
tions. First, the OPE has to be extended to include the local
dimension-six operators. Second, the lower order corrections
calculated in Refs.@2–4# are expressed in terms of the ex-
pectation values of dimension-five operators between the
physicalB states, rather than between the states of the effec-
tive theory in the limitmb→`. Therefore they depend on
mb beyond leading order. In Sec. II we compute the contri-
butions from the local dimension-six operators to both the
charged lepton spectrum and the hadronic spectrum, which
are experimentally accessible quantities. The mass depen-
dence of the states is discussed in Sec. III. The complete
1/mb

3 corrections are parametrized by the expectation values
of two local and four nonlocal operators. In Sec. IV we in-
vestigate the influence of 1/mb

3 corrections on the extraction
of L̄ and l1 from both leptonic and hadronic spectra inB
decays. We also obtain an upper bound on the branching

1In the ‘‘largeb0’’ approximationl1 does not have a renormalon
ambiguity in continuum regularizations@6# but this is likely to be an
artifact of this approximation.
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fraction B(B→D** l n̄). Our conclusions are presented in
Sec. V. The Appendix contains the derivation of the meson
mass formulas to orderLQCD

3 /mQ
2 .

II. LOCAL DIMENSION-SIX OPERATORS

The effective Hamiltonian density responsible for
b→cl n̄ decays is

HW52Vcb

4GF

A2
JmJl m , ~3!

where Jm5 c̄Lg
mbL is the left-handed quark current and

Jl
m5 l̄ Lg

mn̄L is the left-handed lepton current. The differen-
tial decay rate is determined by the hadronic tensor

Wmn5~2p!3(
Xc

d4~pB2q2pXc!^B~v !uJn†uXc&

3^XcuJmuB~v !&, ~4!

which can be expanded in terms of five form factors

Wmn52gmnW11vmvnW22 i emnabvaqbW31qmqnW4

1~qmvn1qnvm!W5 . ~5!

Then the differential semileptonic decay rate is given by

dG

dq2dEl dEn
5
96G0

mb
5 FW1q

21W2S 2El En2
1

2
q2D

1W3q
2~El 2En!Gu~El !u~En!u~q2!

3u~4El En2q2!. ~6!

HereG0 is the spectator model total decay rate in the limit of
zero charm mass,

G05uVcbu2GF
2

mb
5

192p3 , ~7!

and we have neglected the lepton mass.
We define the current correlatorTmn by

Tmn52 i E d4xe2 iq•x^B~v !uT@Jn†~x!Jm~0!#uB~v !&

52gmnT11vmvnT22 i emnabvaqbT31qmqnT4

1~qmvn1qnvm!T5 . ~8!

One can easily see thatWi52(1/p)ImTi . Away from the
physical cutTmn can be computed using the OPE@1#. Then
analyticity arguments show that the smeared differential de-
cay rate is correctly reproduced by the OPE calculation, pro-
vided the width of the smearing function is large enough.

The only diagram which has a discontinuity across the
physical cut is shown in Fig. 1~a!. The corresponding contri-
bution to the time-ordered product is

b̄gnPL

1

mbv”2q”1 iD” 2mc

gmPLb

5
1

D0
b̄gnPL~mbv”2q”1 iD” 1mc!

3 (
n50

` SD222~mbv2q!• iD1 1
2gsabG

ab

D0
D n

3gmPLb, ~9!

where PL5 1
2(12g5) is the left-handed projector,

D05(mbv2q)22mc
21 i0,D is the covariant derivative, and

we usedDmDn2DnDm5 igGmn . The fieldb(x) in Eq. ~9! is
related to the normal QCD field by bQCD(x)
5e2 imbv•xb(x). There are other contributions in the OPE of
two currents, e.g., the one in Fig. 1~b!. However, these op-
erators do not contribute to the decay rate once sandwiched
between theB meson states. For the diagram in Fig. 1~b! this
is ensured bymc being much larger than the available energy
in the ‘‘brown muck,’’ which is of orderLQCD.

Our calculation of the form factorsTi follows the method
of Ref. @3#. We expand Eq.~9! to third order inD. The term
with no derivatives is proportional to the conserved current
b̄gmb, and thus its diagonal matrix elements can be evalu-
ated exactly in full QCD. All other contributions we express
in terms of the fieldhv in the effective theory and reexpand
the resulting expressions in powers of 1/mb . Therefore we
need the expression forb(x) in terms ofhv(x) only to order
1/mb

2 :

b~x!5S 11
iD”'

2mb
1

~v•D !D”'

4mb
2 2

D”'
2

8mb
2 1••• D hv~x!,

~10!

whereD'5D2v(v•D). We choose to work with Foldy-
Wouthuysen-type fields, because this ensures that they sat-
isfy the usual equal-time commutation relations@10#.

To evaluate the expectation values of the heavy quark
bilinears we need the equations of motion in the effective
theory to order 1/mb

2 @10,11#:

iv•Dhv5S 1

2mb
D”'

22
i

4mb
2D”'~v•D !D”'1

i

8mb
2

3@D”'
2~v•D !1~v•D !D”'

2#1••• Dhv . ~11!

FIG. 1. ~a! The relevant term in the operator product expansion.
Wavy lines denote the insertions of left-handed currents.~b! does
not contribute tob→c decay.
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By virtue of Eq. ~11! there are no nonperturbative correc-
tions to the form factorsTi at order 1/mb @2#. The contribu-
tions at order 1/mb

2 are expressed in terms of the matrix ele-
ments

^B~v !uh̄v~ iD'!2hvuB~v !&,

1

3 KB~v !Uh̄v g2smnG
mnhvUB~v !L . ~12!

Our calculation of these contributions reproduces the results
in Ref. @3#. The states in the matrix elements Eqs.~12! have
an implicit dependence onmb . At order 1/mb

2 this depen-
dence can be neglected, in which case these matrix elements
may be replaced byl1,2 defined in Eqs.~1! and ~2!. If the
form factors are to be calculated to order 1/mb

3 , this replace-
ment is no longer valid. An expression for the matrix ele-
ments, Eq.~12!, in terms ofl1,2 and the expectation values
of nonlocal operators is given in Sec. III.

The 1/mb
3 contributions to the form factorsTi from local

operators can be parametrized by two matrix elements,2 r1
andr2 @12#. They are defined as

^H`~v !uh̄v~ iD a!~ iDm!~ iD b!hvuH`~v !&

5 1
3 r1~gab2vavb!vm , ~13!

^H`~v !uh̄v~ iD a!~ iDm!~ iD b!gdg5hvuH`~v !&

5 1
6 dHr2i enabdv

nvm . ~14!

The expectation value of any bilinear operator with three
derivatives is expressible in terms ofr1 andr2:

^H`~v !uh̄vG~ iD a!~ iDm!~ iD b!hvuH`~v !&

5 1
6 r1~gab2vavb!vmTr@P1G#

2 1
12 dHr2i enabdv

nvmTr@P1gdg5P1G#, ~15!

whereP15 1
2(11v” ) andG is any 434 matrix.

After a rather lengthy calculation we obtain the contribu-
tions from local dimension-six operators to the form factors:

T1
~3!52

r113r2
12D0mb

2 1
1

2D0
2

3Fr12r21
~r113r2!~q

22q•v22mb
21mbq•v !

3mb
2 G

1
2~r113r2!

3D0
3mb

~mb2q•v !~q22q•v2!

2
4r1
3D0

4 ~mb2q•v !2~q22q•v2!, ~16!

T2
~3!5

r113r2
6D0mb

2 1
1

3D0
2F4r116r22~r113r2!

q•v
mb

G
1

2

3D0
3 @~4r116r2!~mb2q•v !q•v23r2q

2#

2
8mbr1
3D0

4 ~mb2q•v !~q22q•v2!, ~17!

T3
~3!5

r113r2
6mb

2D0
2 q•v1

2~mb2q•v !

3D0
3 F ~r113r2!

q•v
mb

23r2G
2
4r1
3D0

4 ~mb2q•v !~q22q•v2!, ~18!

T4
~3!5

r113r2
3mb

2D0
2 2

2r2
D0
3 1

4~r113r2!

3mbD0
3 ~mb2q•v !, ~19!

T5
~3!52

r113r2
6mb

2D0
2 q•v2

2~r113r2!

3mbD0
3 q•v~mb2q•v !

1
2r2mb

D0
3 1

4r1
3D0

4 ~mb2q•v !~q22q•v2!. ~20!

Substituting the imaginary part of these form factors into
Eq. ~6! we obtain the corrections to the triple-differential
decay rate. Interesting quantities are the charged lepton spec-
trum and the hadronic spectrum. The former is obtained by
taking the imaginary part of form factorsTi

(3) , i51,2,3, and
integrating Eq.~6! overq2 andEn . Using the rescaled lepton
energyy52El /mb we find the 1/mb

3 correction to the lepton
spectrum:

dG~3!

dy
5

G0

mb
3H u~12r2y!F83 ~3r11r 2r119r 2r223r 3r2!1

8

3
r1y~322r !28r1y

22
2

3
~r113r2!y

3

2
2~4r113r 2r119r 2r2!

12y
2
2r ~8r119rr1127rr2!

3~12y!2
1
2r ~8r1117rr114r 2r129rr2112r 2r2!

3~12y!3

1
2r 2~3r114rr119r2112rr2!

~12y!4
2
8r 2~r113rr113rr2!

~12y!5
1

40r 3r1
3~12y!6G2d~12r2y!

2~12r !4~11r !2r1
3r 2 J ,

~21!

2They are related to the matrix elementsrD
3 andrLS

3 introduced in Ref.@11# by r15rD
3 , r25

1
3rLS

3 .
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wherer5(mc /mb)
2. Note the contribution from thed function at the end point of the lepton spectrum. For theb→u transition

such singular terms in the lepton spectrum appear already at order 1/mb
2 , but for b→c they do not appear until order 1/mb

3 .
This is easily explained if one recalls that the most singular contributions to the lepton spectrum at a given order 1/mb

n can be
obtained from the spectator model result by the ‘‘averaging’’ procedure of Ref.@3#, which involves differentiatingn times with
respect toy. For a massless final state quark the spectator model spectrum has the formf (y)u(12y) with f (1)Þ0, and thus
differentiation produces the (n21)st derivative of thed function d (n21)(12y). For a massive quark in the final state the
spectator model spectrum and its first derivative vanish at the end pointy512r . Hence at order 1/mb

n the most singular
contribution is proportional tod (n23)(12y2r ).

To obtain the contribution from local dimension-six operators to the hadronic spectrum we integrate Eq.~6! overEn and
express the result in terms of rescaled hadronic variablesÊ05(mb2q•v)/mb and ŝ05(mb

222q•v1q2)/mb
2 :

dG~3!

dŝ0dÊ0
5
8G0

3mb
3 u~Ê02Aŝ0!u~11 ŝ022Ê0!AÊ0

22 ŝ0„~r113r2!~2316Ê012Ê0
225ŝ0!d~ ŝ02r !

22$9~r12r2!16~r12r2!ŝ013~r113r2!ŝ0
22@3~7r123r2!111~r113r2!ŝ0#Ê0

13@~3r115r2!2~r113r2!ŝ0#Ê0
218~r113r2!Ê0

3%d8~ ŝ02r !24~Ê0
22 ŝ0!

3@3~11 ŝ0!r22~123ŝ0!~r113r2!Ê022~r116r2!Ê0
2#d9~ ŝ02r !

1 8
3 Ê0~Ê0

22 ŝ0!r1@2ŝ023~11 ŝ0!Ê014Ê0
2#d-~ ŝ02r !…. ~22!

The correction to the total rate is given by integrating Eq.
~21! or ~22! over the remaining variables:

G~3!5
G0

6mb
3 @r1~77288r124r 228r 325r 4148lnr

136r 2lnr !1r2~27272r1216r 22216r 3145r 4

1108r 2lnr !#. ~23!

The part of Eq.~23! that diverges logarithmically asr→0
agrees with the corresponding expression in Ref.@13#. There
is nothing wrong with the logarithmic divergence, since our
calculation is valid only for a charm mass significantly larger
thanLQCD. It is the latter condition that allowed us to dis-
card the diagram in Fig. 1~b!. For a discussion of the correc-
tions to the total semileptonic decay rate from dimension-six
operators with a light quark in the final state see Ref.@13#.

III. EXPANSION OF THE STATES

Above we have computed the 1/mb
3 corrections to the in-

clusive differentialB decay rate from the local dimension-six
operators in the OPE. However, there are other sources of
1/mb

3 corrections. At order 1/mb
2 the OPE yields the decay

rate in terms of the two matrix elements

^B~v !uh̄v~ iD'!2hvuB~v !&,

1

3 KB~v !Uh̄v g2smnG
mnhvUB~v !L , ~24!

whereuB(v)& is the physicalB meson state, rather than the
state of the effective theory in the infinite mass limit
uB`(v)&. Thus these matrix elements are mass dependent. At
order 1/mb

2 this distinction is irrelevant, but at higher orders
this mass dependence has to be taken into account explicitly.

We express the physical states through the states in the infi-
nite mass limit of HQET using the Gell-Mann–Low theorem
~see, e.g., Ref.@14#!. This theorem implies that, to first order
in 1/mb , uB(v)& is given by

uB~v !&5F11 i E d3xE
2`

0

dtLI~x!2
1

V

3K B`~v !U i E d3xE
2`

0

dtLI~x!UB`~v !L G uB`~v !&,

~25!

whereV is the normalization volume and

LI5
1

2mb
h̄v~ iD'!2hv1

1

2mb
h̄v
g

2
smnG

mnhv . ~26!

Utilizing Eq. ~25!, one can easily expand the matrix elements
in Eq. ~24! to order 1/mb

3 . It is convenient to introduce the
notation

KH`~v !Uh̄v~ iD'!2hvi E d3xE
2`

0

dtLI~x!UH`~v !L 1H.c.

5
T11dHT2

mb
,

KH`~v !Uh̄v g2smnG
mnhvi E d3xE

2`

0

dtLI~x!UH`~v !L 1H.c.

5
T31dHT4

mb
. ~27!

We then find
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^B~v !uh̄v~ iD'!2hvuB~v !&5l11
T113T2
mb

,

1

3 KB~v !Uh̄v g2smnG
mnhvUB~v !L 5l21

T313T4
3mb

. ~28!

Thus these order 1/mb
3 corrections to the inclusive

B→Xcl n̄ decay rate are parametrized by the matrix ele-
mentsT12T4 of four nonlocal operators.3

This class of 1/mb
3 corrections can be included in any

quantity known at order 1/mb
2 by using Eq.~28! to evaluate

the matrix elements of the dimension-five operators. In par-
ticular the corrections to the form factors and the differential
rates in Ref.@3# can be obtained in this way.

IV. APPLICATIONS

One important application of our results is to study
the influence of 1/mb

3 corrections on the extraction of the
HQET matrix elementsL̄,l1 using the methods of Refs.
@8,9#.

In order to compare quantities obtained from an expan-
sion in the inverse quark mass with experiments it is neces-
sary to express the quark massesmc andmb through the
physical meson massesmB andmD and the HQET matrix
elements. Some details of this calculation are given in the
Appendix. To order 1/mb

3 we find the relation

mH5mQ1L̄2
l11dHl2~mQ!

2mQ
1

r11dHr2
4mQ

2

2
T11T31dH~T21T4!

4mQ
2 , ~29!

wheremH is the hadron mass andmQ is the heavy quark
mass. The differential and total decay rates are functions of
the ratio of quark masses which can be expressed in terms of
the spin-averaged meson masses

mc

mb
5
m̄D

m̄B

2
L̄

m̄B
S 12

m̄D

m̄B
D 1

l1

2m̄B
2S m̄B

m̄D

2
m̄D

m̄B
D

2
L̄2

m̄B
2S 12

m̄D

m̄B
D 2

L̄3

m̄B
3S 12

m̄D

m̄B
D

1
L̄l1

2m̄B
3S 11

m̄B

m̄D

23
m̄D

m̄B

1
m̄B
2

m̄D
2 D

2
r12T12T3

4m̄B
3 S m̄B

2

m̄D
2

2
m̄D

m̄B
D , ~30!

wherem̄D andm̄B are defined asm̄meson5(mP13mV)/4.
The familiar relation of the HQET matrix elementl2 to

the mass splitting betweenB andB* mesons also needs to be
extended to include the 1/mb

3 contributions. Using Eq.~29! to
express the quark mass through the meson mass andL̄, we
find

mH*2mH5DmH52
k~mQ!l2~mb!

mH
S 11

L̄

mH
D

2
r2
mH
2 1
T21T4
mH
2 , ~31!

where k(mQ)5@as(mQ)/as(mb)#
3/b0 takes account of the

scale dependence ofl2. We can use theB-B* andD-D*
mass splittings to extract the numerical value of some of the
HQET matrix elements:

l2~mb!5
DmBmB

22DmDmD
2

2@mB2k~mc!mD#
,

r22T22T45
k~mc!mB

2DmB~mD1L̄!2mD
2DmD~mB1L̄!

mB1L̄2k~mc!~mD1L̄!
.

~32!

In order to extractl1 andL̄ from the experimentally mea-
sured lepton energy spectrum in theB→Xcl n̄ decay it is
convenient to introduce the quantities@8#

R15

E
1.5 GeV

El
dG

dEl
dEl

E
1.5 GeV

dG

dEl
dEl

, R25

E
1.7 GeV

dG

dEl
dEl

E
1.5 GeV

dG

dEl
dEl

,

~33!

whereEl is the lepton energy anddG/dEl is the complete
electron energy spectrum, which we obtain by combining the
results of Ref.@3# with our results. In the energy spectrum at
order 1/mb

2 , taken from Ref.@3#, the matrix elements of
dimension-five operators are evaluated according to Eqs.
~28!. The resulting expression is combined with the contri-
bution from local dimension-six operators, Eq.~21!. Ex-
pressing all quark masses through the meson masses and
using their measured values, we obtain expressions for
R1 ,R2 in terms of the HQET matrix elements. Combining
these with perturbative corrections and other contributions
~see Ref.@8#! we find

3These matrix elements are related to those introduced in Ref.@11#
asT15rpp

3 ,T25 1
6rpG

3 ,T35rS
3 , and T45 1

3rA
31

1
6rpG

3 .
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R1@GeV]51.805920.309
L̄

m̄B

20.35
L̄2

m̄B
2

22.32
l1

m̄B
2

23.96
l2

m̄B
2

20.4
L̄3

m̄B
3

25.7
L̄l1

m̄B
3

26.8
L̄l2

m̄B
3

27.7
r1

m̄B
3

21.3
r2

m̄B
3

23.2
T1
m̄B
3

24.5
T2
m̄B
3

23.1
T3
m̄B
3

24.0
T4
m̄B
3

2
as

p S 0.03510.07
L̄

m̄B
D 1UVub

Vcb
U2S 1.33210.3

L̄

m̄B
D

2S 0.004120.004
L̄

m̄B
D 1S 0.006210.002

L̄

m̄B
D , ~34!

R250.658120.315
L̄

m̄B

20.68
L̄2

m̄B
2

21.65
l1

m̄B
2

24.94
l2

m̄B
2

21.5
L̄3

m̄B
3

27.1
L̄l1

m̄B
3

217.5
L̄l2

m̄B
3

21.8
r1

m̄B
3

12.3
r2

m̄B
3

22.9
T1
m̄B
3

21.5
T2
m̄B
3

24.0
T3
m̄B
3

24.9
T4
m̄B
3

2
as

p S 0.03910.18
L̄

m̄B
D 1UVub

Vcb
U2S 0.8723.8

L̄

m̄B
D 2S 0.007310.005

L̄

m̄B
D 1S 0.002110.003

L̄

m̄B
D ,

~35!

where the first two lines contain the nonperturbative correc-
tions to order 1/m̄B

3 . The other terms are in order: the pertur-
bative as corrections, the contribution fromB→Xul n de-
cays, electroweak corrections, and finally a boost, since the
B mesons do not decay from rest. This is to be compared
with the experimental values R1

expt51.7831 GeV,
R2
expt50.6159. Neglecting the 1/m̄B

3 corrections but including
statistical errors the valuesL̄50.3960.11 GeV and
l1520.1960.10 GeV2 were found in Ref.@8#. In order to
take the uncertainties from the higher order matrix elements
into account, we equate the expressions forR1,2 to the ex-
perimental values usinguVub /Vcbu50.08, as50.22, and
Eqs. ~32! to eliminatel2 and r2. This yields the extracted
values ofL̄,l1 in the form

L̄5 f L̄~R1
expt,R2

expt,r1 ,T1 ,T2 ,T3 ,T4!,
l15 f l1

~R1
expt,R2

expt,r1 ,T1 ,T2 ,T3 ,T4!. ~36!

Dimensional analysis suggests that the higher order ma-
trix elements are all of orderLQCD

3 , which can be used to
make a quantitative estimate of the uncertainties in the ex-
traction of L̄,l1. We vary the magnitude ofr1 ,T1–T4 in
Eqs. ~36! independently in the range 0–~0.5 GeV)3, taking
r1 to be positive, as indicated by the vacuum saturation ap-
proximation, but making no assumption about the sign of the
other matrix elements. Using the central values forR1,2

expt we
find thatL̄,l1 can lie inside the shaded region in Fig. 2. For
comparison we also display the values ofL̄,l1 extracted in
Ref. @8# together with the ellipse showing the size of the
statistical error of the experimental data. Clearly the theoret-
ical uncertainties dominate the accuracy to whichL̄,l1 can
be extracted.

The situation can be improved only if we have some in-
dependent information on some or all of the higher dimen-
sion matrix elements. This requires either more experimental
input or theoretical estimates of these matrix elements.r1
can be estimated in the vacuum saturation approximation
@15,16,11,12,17,8# r15(2pas/9)mBf B

2 . The numerical

value obtained this way is rather uncertain. Takingas50.5
and f B5270 MeV for purposes of illustration, we find4

r1.0.13 GeV3. No similar estimates exist for the other
dimension-six matrix elements.r2 vanishes in any nonrela-
tivistic potential model, which may be taken as an indication
that it is small relative to the other matrix elements. No es-
timates that go beyond dimensional analysis are available for
the time-ordered products.

The crosshatched region in Fig. 2 shows the range of
L̄,l1 one obtains from settingr150.13 GeV3 and r250
and varying the magnitude of the other matrix elements in
the range 0–~0.5 GeV! 3. The previously extracted values of
L̄,l1 are not excluded by this choice ofr1,2.

This method of extractingL̄,l1 is especially sensitive to
higher order corrections since the constraints obtained form
R1 and R2 give almost parallel bands in theL̄-l1 plane.
Thus small uncertainties in the theoretical expressions for
R1,2 result in large uncertainties in the extracted values of
L̄,l1. The same applies to the very similar analysis in Ref.
@18#. The rare decayB→Xsg provides a way to extract a
vertical band in theL̄-l1 plane, but at present the experi-
mental data do not allow a quantitative analysis@19#. Fur-
thermore, as discussed in the Introduction, it is not clear
when HQET matrix elements extracted from different ob-
servables can be compared meaningfully@7,9#.

The second method for extracting information onL̄,l1

@9# was used to exclude some regions in theL̄-l1 plane. The
first and second moments of the invariant mass spectrum of
the hadrons in the final state of the inclusive decay
B→Xcl n turn out to give independent constraints on
L̄,l1. Their definition involves the total decay rate at order
1/m̄B

3 . It can be obtained by combining the total rate at order
1/mb

2 from Ref. @3# with the contributions from local
dimension-six operators, Eq.~23!, and using Eqs.~28!. Fi-

4A value for r1 can also be obtained from small velocity sum
rules@17# but this estimate suffers from large uncertainties as well.
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nally Eqs. ~29! and ~30! are used to eliminate the quark
masses. Using the measured values for the meson masses and
neglecting perturbative corrections we find, to third order in
1/m̄B ,

G5
uVcbu2GF

2m̄B
5

192p3 F0.368920.6080
L̄

m̄B

20.349
L̄2

m̄B
2

21.175
l1

m̄B
2

22.757
l2

m̄B
2

20.11
L̄3

m̄B
3

21.21
L̄l1

m̄B
3

12.95
L̄l2

m̄B
3

22.27
r1

m̄B
3

12.76
r2

m̄B
3

22.73
T1
m̄B
3

10.55
T2
m̄B
3

23.84
T3
m̄B
3

22.76
T4
m̄B
3G .

~37!

Since none of the coefficients of the higher order matrix
elements turn out to be abnormally large, dimensional analy-
sis indicates that the 1/m̄B

3 corrections to the total rate should
not exceed 2%.

The hadronic moments are defined as

^~sH2m̄D
2 !n&5

1

GE dsHdEH~sH2m̄D
2 !n

dG

dsHdEH
, ~38!

where sH5mB
222mBv•q1q2 and EH5mB2v•q are the

hadronic analogues ofŝ0 ,Ê0 defined in Sec. II. Using the
relation between quark and hadron masses one can relate
sH ,EH to ŝ0 ,Ê0 and thus compute the moments using the
expressions given in Ref.@9# together with Eq.~22! and the
usual substitution, Eqs.~28!. We find, to order 1/m̄B

3 ,

^sH2m̄D
2 &5m̄B

2F0.051as

p
10.23

L

m̄B
S 110.43

as

p D
10.26

1

m̄B
3 ~L̄213.9l121.2l2!

10.33
1

m̄B
3 ~L̄316.6L̄l121.7L̄l217.0r1

13.5r215.0T112.5T214.6T311.3T4!G ,
~39!

^~sH2m̄D
2 !2&5m̄B

4F0.0053as

p
10.038

L̄

m̄B

as

p

10.065
1

m̄B
3 ~L̄222.1l1!10.14

1

m̄B
3

3~L̄312.2L̄l112.2L̄l226.0r111.7r2

21.0T122.9T2!G , ~40!

where perturbativeas corrections have been included.
Rather that repeating the analysis presented in Ref.@9#, we
use these expressions to predict the values of the hadronic
moments using the HQET matrix elements extracted from
the lepton energy spectrum. The main reason for doing this is
that the experimental measurement of the necessary branch-
ing fractions is not very precise. In particular ALEPH and
CLEO quote only an upper bound forB(B→D2* l n̄)
@20,21#. We extract an upper bound on this branching frac-
tion from the theoretical prediction of the hadronic moments.
A lower bound for the first hadronic moment is given by@9#

^sH2m̄D
2 &>a@~2.450 GeV!22~1.975 GeV!2#

1b@~2.010 GeV!22~1.975 GeV!2#

1c@~1.869 GeV!22~1.975 GeV!2#, ~41!

wherea, b, andc are the semileptonic branching fractions to
D** , D* , andD relative to the total semileptonic branching
fraction. Using the measured ratio 0.41:0.59 for the decays to
D andD* , we can writeb,c as functions of the branching
fractiona for D** :

b50.59~12a!, c50.41~12a!. ~42!

We takea1b1c51, which is appropriate because we need
only a lower bound on the hadronic moment. It is also im-
plicitly assumed that the nonresonant semileptonic branching
fraction below theD** mass is negligible. Similarly, for the
second hadronic moment we take

FIG. 2. Impact of 1/mb
3 corrections on the extraction ofL̄,l1.

Shaded region: higher order matrix elements estimated by dimen-
sional analysis. Crosshatched region:r150.13 GeV3, r250. The
cross and ellipse show the values ofL̄,l1 extracted without 1/mb

3

corrections but including the experimental statistical error.
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^~sH2m̄D
2 !2&>a@~2.450 GeV!22~1.975 GeV!2#2,

~43!

where small contributions from the ground state mesons
D,D* have been neglected. We obtain theoretical pred-
ictions for the hadronic moments by substituting values
of r1 ,T1–T4 and the corresponding values ofL̄,l1 extracted
from the lepton spectrum into Eq.~39!. As before, we
allow the magnitudes ofr1 andT1–T4 to vary in the range
0–~0.5 GeV! 3 with r1 being positive. Imposing the con-
straint that the largest values of the hadronic moments ob-
tained from this procedure be larger than the lower bounds
Eqs. ~41! and ~43! we find the upper bound on theD**
branching fraction:

a<0.23. ~44!

This value is compatible with the experimentally measured
values from ALEPH @20# @B(B→D1l n)50.069
60.015, B(B→D2* l n),0.11# and from CLEO @21#
@B(B→D1l n)50.04660.013, B(B→D2* l n),0.11#. It is
also marginally consistent with the OPAL result
a50.3460.07 @22#. Unless the matrix elements of
dimension-six operators are even larger than we have as-
sumed, this implies that the branching fractiona50.27 used
in @9# is inconsistent with the values ofL̄,l1 extracted from
the lepton spectrum.

V. CONCLUSIONS

We have calculated the 1/mb
3 contributions to various ob-

servables in the semileptonic decayB→Xcl n. They are pa-
rametrized by the expectation values of two local and four
nonlocal dimension-six operators. While the total rate is
rather insensitive to the higher order corrections~1–2 %!, the
values ofL̄,l1 extracted from the lepton spectrum can be
affected substantially. The theoretical uncertainties in the
values ofL̄,l1 are far larger than the statistical errors of the
experimental measurements if the values of the higher order
matrix elements are estimated using dimensional analysis.
While one linear combination ofL̄ andl1 is still reasonably
well constrained, it is not possible to extract individual val-
ues forL̄ andl1 from the lepton spectrum only. The situa-
tion can be improved only if additional information on the
size of the dimension-six matrix elements is used. Unfortu-
nately no theoretical estimates are available for any of these
matrix elements exceptr1. The latter can be estimated in the
vacuum saturation approximation, albeit with large uncer-
tainties. Alternatively one can use additional experimental
input, e.g., fromB→Xsg decays, to further constrainL̄ and
l1 @19#.

The values ofL̄,l1 extracted from the lepton spectrum
can be used to make theoretical predictions for the moments
of the hadronic invariant mass spectrum. This amounts to
expressing one observable in terms of other observables, a
procedure that makes sense only if the perturbative series for
this expression is reasonably well behaved. In order to deter-
mine whether this is the case it is necessary to know at least
the next-to-leading orderas corrections to all observables

involved. Since they have not been computed for the lepton
spectrum, there is at present no way we can check if predic-
tions for the hadronic moments in terms of the HQET matrix
elements extracted from the lepton spectrum satisfy this cri-
terion.

Setting these considerations aside, we can predict the
values of the hadronic moments in terms ofL̄,l1 extracted
from the lepton spectrum. The lower bounds for these mo-
ments depend on the branching fraction toD** , which is not
well known experimentally. If the higher order matrix ele-
ments are estimated by dimensional analysis, the maximum
semileptonic branching fraction toD** consistent with the
predicted range of the hadronic moments is 23%. This value
is consistent with the ALEPH and CLEO measurements.
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APPENDIX: THE MASS FORMULA

For comparison with experiments it is necessary to ex-
press the pole quark massesmc andmb in terms of HQET
matrix elements and physical observables, e.g., the spin-
averaged meson massesm̄B and m̄D , where
m̄meson5(mP13mV)/4. For this purpose one needs to know
how quark masses are related to hadron masses at order
1/mb

3 . Our starting point is the identity

mH5
V

2

^H`~v !uHuH~v !&

^H`~v !uH~v !&
1H.c., ~A1!

where V is the normalization volume andH is the full
Hamiltonian density including light degrees of freedom.5

This equation holds in the rest frame of the hadron. Then we
split H into the leading term and the terms suppressed by
powers of 1/mb , H5H01H1, and use the fact that
uH`(v)& is an eigenstate of*d3xH0 with eigenvalue
mb1L̄. The use of the Foldy-Wouthuysen-transformed
fields, Eq.~10!, ensures that there is no implicit dependence
on mb in hv . Also, there are no time derivatives in the
HQET Lagrangian beyond leading order, as can be seen,
e.g., from Eq. ~82! of Ref. @10#. Therefore we have
H152L1. Using the Gell-Mann–Low theorem, the general
expression for the hadron mass reads

5If one starts from a similar identity with eigenstates ofH on both
sides of the matrix element, one obtains the same result after a
somewhat more cumbersome calculation.
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mH5mb1L̄2
V

2F ^H`~v !uL1Texp@ i*d3x*2`
0 dtL1~x!#uH`~v !&

^H`~v !uTexp@ i*d3x*2`
0 dtL1~x!#uH`~v !&

1H.c.G . ~A2!

Expanding Eq.~A2! to order 1/mb
3 we obtain the mass for-

mula

mH5mb1L̄2^H`~v !uLI1LIIuH`~v !&

2F12 KH`~v !ULIi E d3xE
2`

0

dtLI~x!UH`~v !L 1H.c.G ,
~A3!

where@10#

LII52
1

4mb
2 h̄viD”'~ iv•D !iD”'hv1

1

8mb
2 h̄v~ iD”'!2~ iv•D !hv

1
1

8mb
2 h̄v~ iv•D !~ iD”'!2hv , ~A4!

andLI is given in Eq.~26!. Equation~A3! contains expecta-
tion values of both local and nonlocal operators. The local
part can be evaluated in terms of the matrix elements
l1 , l2 , r1, andr2, while the nonlocal matrix elements can
be expressed throughT1–T4 defined in Eqs.~27!. In terms of
these matrix elements the meson mass is given by

mH5mb1L̄2
l11dHl2

2mb
1

r11dHr2
4mb

2

2
T11T31dH~T21T4!

4mb
2 , ~A5!

in agreement with Refs.@10,11#.
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