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We study polarized-spin structure functions of the nucleon within the bosonized Nambu–Jona-Lasinio
model where the nucleon emerges as a chiral soliton. We present the electromagnetic polarized structure
functionsg1(x) andg2(x) for ep scattering and discuss various sum rules in the valence quark approximation.
This approximation is justified because in this model axial properties of the nucleon are dominated by their
valence quark contributions. We find that these structure functions are well localized in the interval
0<x<1. We compare the model predictions on the polarized structure functions with data from the E143
experiment by evolving them from the scale characteristic of the NJL model to the scale of the data. Addi-
tionally, a comparison is made with parametrized data at a momentum scale commensurate with the model
calculation.@S0556-2821~97!05611-7#

PACS number~s!: 12.39.Fe, 12.39.Ki

I. INTRODUCTION

Over the past decade, beginning with the measurement of
nucleon spin–polarized structure functiong1(x,Q

2) by the
European Muon Collaboration~EMC! @1# at CERN and most
recently with the spin-structure functiong2(x,Q

2) in the
E143 experiment@2# at SLAC, a wealth of information has
been gathered on the spin–polarized structure functions of
the nucleon and their corresponding sum rules~see, in addi-
tion, @3–8#!. Initially, the analysis of these experiments cast
doubt on the nonrelativistic quark model@9# interpretations
regarding the spin content of the proton. By now, it is firmly
established that the quark helicity of the nucleon is much
smaller than the predictions of that model, however, many
questions remain to be addressed concerning the spin struc-
ture. As a result there have been numerous investigations
within models for the nucleon in an effort to determine the
manner in which the nucleon spin is distributed among its
constituents. One option is to study the axial-vector current
matrix elements of the nucleon such aŝNuAm

i uN&
52DqiSm , which, for example, provide information on the
nucleon axial singlet charge

gA
05^NuA3

0uN&5~Du1Dd1Ds!5G1
p~Q2!1G1

n~Q2!.
~1!

HereDq are the axial charges of the quark constituents and
G1
N(Q2)5*0

1dxg1
N(x,Q2) is the first moment of the longitu-

dinal nucleon spin-structure functiong1
N(x,Q2). Of course, it

is more illuminating to directly compute the longitudinal and
transverse nucleon spin-structure functions,g1(x,Q

2) and
gT(x,Q

2)5g1(x,Q
2)1g2(x,Q

2), respectively, as functions
of the Bjorken variablex. We will calculate these structure
functions within the Nambu–Jona-Lasinio~NJL! @10# chiral
soliton model@11#.

Chiral soliton models are unique both in being the first
effective models of hadronic physics to shed light on the

so-called ‘‘proton-spin crisis’’ by predicting a singlet com-
bination in accord with the data@12#, and in predicting a
nontrivial strange quark content to the axial-vector current of
the nucleon@12–15#; about 10–30 % of the down quarks
~see@16,17# for reviews!. However, while the leading mo-
ments of these structure functions have been calculated
within chiral soliton models, from the Skyrme model@18,19#
and its various vector-meson extensions, to models contain-
ing explicit quark degrees of freedom such as the~NJL!
model @10#, the nucleon spin-structure functions themselves
have not been investigated in these models. Soliton model
calculations of structure functions were, however, performed
in Friedberg-Lee@20# and color-dielectric@21# models. In
addition, structure functions have extensively been studied
within the framework of effective quark models such as the
bag model@22#, and the center-of-mass bag model@23#.
These models are confining by construction but they neither
contain nonperturbative pseudoscalar fields nor are they
chirally symmetric.1 To this date it is fair to say that many of
the successes of low–energy effective models rely on the
incorporation of chiral symmetry and its spontaneous sym-
metry breaking~see, e.g.,@26#!. In this article we, therefore,
present our calculation of the polarized-spin structure func-
tions in the NJL chiral soliton model@27,26#. Since in par-
ticular, the static axial properties of the nucleon are domi-
nated by the valence quark contribution in this model it is
legitimate to focus on the valence quarks in this model.

At the outset it is important to note that a major difference
between the chiral soliton models and models previously em-
ployed to calculate structure functions is the form of the
nucleon wave function. In the latter the nucleon wave func-
tion is a product of Dirac spinors while in the former the
nucleon appears as a collectively excited~topologically! non-
trivial meson configuration.

As in the original bag model study@28# of structure func-
tions for localized field configurations, the structure func-
tions are most easily accessible when the current operator is

*Present address: Department of Physics and Astronomy, Univer-
sity of Oklahoma, 440 West Brooks, Norman, OK 73019.

1In the cloudy bag model the contribution of the pions to structure
functions has at most been treated perturbatively@24,25#.
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at most quadratic in the fundamental fields and the propaga-
tion of the interpolating field can be regarded as free. Al-
though the latter approximation is well justified in the
Bjorken limit the former condition is difficult to satisfy in
soliton models where mesons are fundamental fields~e.g.,
the Skyrme model@18,19#, the chiral quark model of Ref.
@29#, or the chiral bag model@30#!. Such model Lagrangians
typically possess all orders of the fundamental pion field. In
that case the current operator is not confined to quadratic
order and the calculation of the hadronic tensor@see Eq.~2!
below# requires drastic approximations. In this respect the
chirally invariant NJL model is preferred because it is en-
tirely defined in terms of quark degrees of freedom and for-
mally the current possesses the structure as in a noninteract-
ing model. This makes the evaluation of the hadronic tensor
feasible. Nevertheless, after bosonization the hadronic cur-
rents are uniquely defined functionals of the solitonic meson
fields.

The paper is organized as follows: In Sec. II we give a
brief discussion of the standard operator product expansion
~OPE! analysis to establish the connection between the ef-
fective models for the baryons at low energies and the quark-
parton model description. In Sec. III we briefly review the
NJL chiral soliton. In Sec. IV we extract the polarized struc-
ture functions from the hadronic tensor, Eq.~16! exploiting
the ‘‘valence quark approximation.’’ Section V displays the
results of the spin-polarized structure functions calculated in
the NJL chiral soliton model within this approximation and
compare this result with a recent low-renormalization point
parametrization@31#. In Sec. VI we use Jaffe’s prescription
@32# to impose proper support for the structure function
within the interval xP@0,1#. Subsequently, the structure
functions are evolved@33–35# from the scale characterizing
the NJL model to the scale associated with the experimental
data. Section VII serves to summarize these studies and to
propose further explorations. In Appendix A we list explicit
analytic expressions for the isoscalar and isovector polarized
structure functions. Appendix B summarizes details on the
evolution of the twist-three structure functionḡ2(x,Q

2).

II. DIS AND THE CHIRAL SOLITON

It has been a long-standing effort to establish the connec-
tion between the chiral soliton picture of the baryon, which
essentially views baryons as mesonic lumps and the quark-
parton model which regards baryons as composites of almost
noninteracting, pointlike quarks. While the former has been
quite successful in describing static properties of the
nucleon, the latter, being firmly established within the con-
text of deep-inelastic scattering~DIS!, has been employed
extensively to calculate the short-distance or perturbative
processes within QCD. In fact, this connection can be made
through the OPE.

The discussion begins with the hadronic tensor for
electron-nucleon scattering:

Wmn~q!5
1

4pE d4jeiq•j^Nu@Jm~j!,Jn
†~0!#uN&, ~2!

where Jm5 q̄ (j)gmQq(j) is the electromagnetic current,

Q5( 23 ,2
1
3 ) is the ~two-flavor! quark charge matrix, and

uN& refers to the nucleon state. In the DIS regime the OPE
enables one to express the product of these currents in terms
of the forward Compton scattering amplitudeTmn(q) of a
virtual photon from a nucleon

Tmn~q!5 i E d4jeiq•j^NuT~Jm~j!Jn
†~0!!uN&, ~3!

by an expansion on the light cone (j2→0) using a set of
renormalized local operators@36–38#. In the Bjorken limit
the influence of these operators is determined by the twist
t or the light-cone singularity of their coefficient functions.
Effectively, this becomes a power series in the inverse of the
Bjorken variablex52q2/2P•q, with Pm being the nucleon
momentum:

Tmn~q!5 (
n,i ,t

S 1xD
n

emn
i ~q,P,S!

3Ct,i
n
„Q2/m2,as~m2!…Ot,i

n ~m2!S 1

Q2D t/221

.

~4!

Here the index i runs over all scalar matrix elements
Ot,i
n (m2), with the same Lorentz structure~characterized by

the tensoremn
i ). Furthermore,Sm is the spin of the nucleon

(S2521,S•P50) andQ252q2.0. As is evident, higher
twist contributions are suppressed by powers of 1/Q2. The
coefficient functionsCt,i

n
„Q2/m2,as(m

2)… are target indepen-
dent and in principle include all QCD radiative corrections.
Their Q2 variation is determined from the solution of the
renormalization group equations and varies logarithmically
at largeQ2. On the other hand, the reduced matrix elements
Ot,i
n (m2) depend only on the renormalization scalem2 and

reflect the nonperturbative properties of the nucleon@39#.
The optical theorem states that the hadronic tensor is

given in terms of the imaginary part of the virtual Compton
scattering amplitude,Wmn5(1/2p)ImTmn . From the ana-
lytic properties ofTmn(q), together with Eq.~4!, an infinite
set of sum rules results for the form factorsWi(x,Q

2), which
are defined via the Lorentz-covariant decomposition
Wmn(q)5emn

i Wi(x,Q
2). These sum rules read

E
0

1

dxxn21Wi~y,Q
2!5(

t
Ct,i
n
„Q2/m2,as~m2!…Ot,i

n ~m2!

3S 1

Q2D t/221

. ~5!

In the impulse approximation~i.e., neglecting radiative cor-
rections! @36,40,41#, one can directly sum the OPE gaining
direct access to the structure functions in terms of the re-
duced matrix elementsOt,i

n (m2).
When calculating the renormalization scale-dependent

matrix elementsOt,i
n (m2) within QCD, m2 is an arbitrary

parameter adjusted to ensure rapid convergence of the per-
turbation series. However, given the difficulties of obtaining
a satisfactory description of the nucleon as a bound state in
theQ2 regime of DIS processes it is customary to calculate
these matrix elements in models at a low scalem2 and sub-
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sequently evolve these results to the relevant DIS momentum
region of the data employing, for example, the Altarelli-
Parisi evolution @33,34#. In this context, the scale
m2;LQCD

2 characterizes the nonperturbative regime where it
is possible to formulate a nucleon wave function from which
structure functions are computed.

Here we will utilize the NJL chiral soliton model to cal-
culate the spin-polarized nucleon structure functions at the
scalem2, subsequently evolving the structure functions ac-
cording to the Altarelli–Parisi scheme. This establishes the
connection between chiral soliton and the parton models. In
addition, we compare the structure functions calculated in
the NJL model to a parametrization of spin structure function
@31# at a scale commensurate with our model.

III. THE NUCLEON STATE IN THE NJL MODEL

The Lagrangian of the NJL model reads

L5 q̄~ i ]”2m0!q12GNJL(
i50

3 F S q̄t i

2
qD 21S q̄t i

2
ig5qD 2G .

~6!

Here q,m̂0, and GNJL denote the quark field, the current
quark mass, and a dimensionful coupling constant, respec-
tively. When integrating out the gluon fields from QCD a
current-current interaction remains, which is meditated by
the gluon propagator. Replacing this gluon propagator by a
local contact interaction and performing the appropriate
Fierz transformations yields the Lagrangian~6! in leading
order of 1/Nc @42#, whereNc refers to the number of color
degrees of freedom. It is hence apparent that the interaction
term in Eq.~6! is a remnant of the gluon fields. Hence, glu-
onic effects are included in the model described by the La-
grangian~6!.

Application of functional bosonization techniques@43# to
the Lagrangian~6! yields the mesonic action

A5TrLln~ iD !1
1

4GNJL
E d4xtr@m0~M1M†!2MM†#,

~7!

D5 i ]”2~M1M†!2g5~M2M†!. ~8!

The composite scalar (S) and pseudoscalar (P) meson fields
are contained inM5S1 iP and appear as quark-antiquark
bound states. The NJL model embodies the approximate chi-
ral symmetry of QCD and has to be understood as an effec-
tive ~nonrenormalizable! theory of the low-energy quark fla-
vor dynamics. For regularization, which is indicated by the
cutoff L, we will adopt the proper-time scheme@44#. The
free parameters of the model are the current quark mass
m0, the coupling constantGNJL , and the cutoffL. Upon
expandingA to quadratic order inM these parameters are
related to the pion massmp5135 MeV and pion decay con-
stantf p593 MeV. This leaves one undetermined parameter
which we choose to be the vacuum expectation value
m5^M &. For apparent reasonsm is called the constituent
quark mass. It is related tom0,GNJL , andL via the gap
equation, i.e., the equation of motion for the scalar fieldS
@43#. The occurrence of this vacuum expectation value re-

flects the spontaneous breaking of chiral symmetry and
causes the pseudoscalar fields to emerge as~would-be! Gold-
stone bosons.

As the NJL model soliton has exhaustively been discussed
in recent review articles@26,45#, we only present those fea-
tures which are relevant for the computation of the structure
functions in the valence quark approximation.

The chiral soliton is given by the hedgehog configuration
of the meson fields

MH~x!5mexp@ it•xQ~r !#. ~9!

In order to compute the functional trace in Eq.~7! for this
static configuration we express the Dirac operator~8! as
D5 ig0(] t2h), where

h5a•p1mexp@ ig5t• x̂Q~r !# ~10!

is the corresponding Dirac Hamiltonian. We denote the ei-
genvalues and eigenfunctions ofh by em andCm(x), respec-
tively. Explicit expressions for these wave functions are dis-
played in Appendix A. In the proper-time regularization
scheme the energy functional of the NJL model is found to
be @27,26#

E@Q#5
NC

2
ev@11sgn~ev!#1

NC

2 E
1/L2

` ds

A4ps3

3(
n

exp~2sen
2!1mp

2 f p
2 E d3r @12cosQ~r !#,

~11!

with NC53 being the number of color degrees of freedom.
The subscript ‘‘v ’’ denotes the valence quark level. This
state is the distinct level bound in the soliton background,
i.e.,2m,ev,m. The chiral angleQ(r ) is obtained by self-
consistently extremizingE@Q# @11#.

States possessing good spin and isospin quantum numbers
are generated by rotating the hedgehog field@19#:

M ~x,t !5A~ t !MH~x!A†~ t !, ~12!

which introduces the collective coordinatesA(t)PSU(2).
The action functional is expanded@27# in the angular veloci-
ties

2A†~ t !Ȧ~ t !5 it•V. ~13!

In particular, the valence quark wave function receives a
first-order perturbation

Cv~x,t !5e2 i evtA~ t !H Cv~x!1
1

2(
mÞv

Cm~x!
^mut•Vuv&

ev2em
J

5:e2 i evtA~ t !cv~x!. ~14!

Here cv(x) refers to the spatial part of the body-fixed va-
lence quark wave function with the rotational corrections in-
cluded. Nucleon statesuN& are obtained by canonical quan-
tization of the collective coordinatesA(t). By construction
these states live in the Hilbert space of a rigid rotator. The
eigenfunctions are WignerD functions
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^AuN&5
1

2p
DI3 ,2J3
1/2 ~A!, ~15!

with I 3 andJ3 being, respectively, the isospin and spin pro-
jection quantum numbers of the nucleon.

IV. POLARIZED STRUCTURE FUNCTIONS
IN THE NJL MODEL

The starting point for computing nucleon structure func-
tions is the hadronic tensor, Eq.~2!. The polarized structure
functions are extracted from its antisymmetric piece,
Wmn

(A)5(Wmn2Wnm)/2i . Lorentz invariance implies that the
antisymmetric portion, characterizing polarized lepton-
nucleon scattering, can be decomposed into the polarized
structure functions,g1(x,Q

2) andg2(x,Q
2):

Wmn
~A!~q!5 i emnls

qlMN

P•q H g1~x,Q2!Ss

1SSs2
q•S

q•p
PsDg2~x,Q2!J , ~16!

again,Pm refers to the nucleon momentum andQ252q2.
The tensors multiplying the structure functions in Eq.~16!
should be identified with the Lorentz tensorsemn

i in Eq. ~4!.
ContractingWmn

(A) with the longitudinalLL
mn and trans-

verseLT
mn projection operators@39#,

LL
mn5

2

bH 2P•qxSl1
1

q•SF ~q•S!22S P•qM D 2GqlJ Pte
mnlt,

~17!

LT
mn5

2

bH F S P•qM D 212P•qxGSl1~q•S!qlJ Pte
mnlt,

~18!

and choosing the pertinent polarization, yields the longitudi-
nal component

gL~x,Q
2!5g1~x,Q

2!, ~19!

as well as the transverse combination

gT~x,Q
2!5g1~x,Q

2!1g2~x,Q
2!. ~20!

Also, b524M $(P•q/M )212P•qx2(q•S)2%. In the
Bjorken limit, which corresponds to the kinematical regime

q05uqu2MNx with uqu→`, ~21!

the antisymmetric component of the hadronic tensor be-
comes@28#

Wmn
~A!~q!5E d4k

~2p!4
emrnsk

rsgn~k0!d~k2!E
2`

1`

dtei ~k01q0!t

3E d3x1E d3x2exp@2 i ~k1q!•~x12x2!#

3^Nu$C̄~x1 ,t !Q2gsg5C~x2,0!

1C̄~x2,0!Q2gsg5C~x1 ,t !%uN&, ~22!

where emrnsgsg5 is the antisymmetric combination of
gmgrgn . The matrix element between the nucleon states is
to be taken in the space of the collective coordinatesA(t)
@see Eqs.~12! and~15!# as the object in curly brackets is an
operator in this space. In deriving the expression~22! the
freecorrelation function for the intermediate quark fields has
been assumed2 after applying Wick’s theorem to the product
of quark currents in Eq.~2! @28#. The use of thefree corre-
lation function is justified because in the Bjorken limit~21!,
the intermediate quark fields carry very large momenta and
are hence not sensitive to typical soliton momenta. This pro-
cedure reduces the commutator@Jm(x1 ,t),Jn

†(x2,0)# of the
quark currents in the definition~2! to objects which are
merely bilinear in the quark fields. Consequently, in the
Bjorken limit ~21! the momentumk of the intermediate
quark state is highly off shell and hence is not sensitive to
momenta typical for the soliton configuration. Therefore, the
use of the free correlation function is a good approximation
in this kinematical regime. Accordingly, the intermediate
quark states are taken to be massless, cf. Eq.~22!.

Since the NJL model is originally defined in terms of
quark degrees of freedom, quark bilinears as in Eq.~22! can
be computed from the functional

^ q̄~x!Q2q~y!&5E D q̄Dq q̄~x!Q2q~y!expS i E d4x8LD
5

d

ida~x,y!
E D q̄Dq

3expS i E d4x8d4y8@d4~x82y8!L

1a~x8,y8! q̄~x8!Q2q~y8!# DU
a~x,y!50

.

~23!

The introduction of the bilocal sourcea(x,y) facilitates the
functional bosonization after which Eq.~23! takes the form

d

da~x,y!
TrLln@d4~x2y!D1a~x,y!Q2!] ua~x,y!50.

~24!

The operatorD is defined in Eq. ~8!. The correlation

^ q̄ (x)Q2q(y)& depends on the angle betweenx andy. Since
in general the functional~23! involves quark states of all

2Adopting a dressed correlation will cause corrections starting at
order twist-four in QCD@46#.
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angular momenta (l ), a technical difficulty arises because
this angular dependence has to be treated numerically. The
major purpose of the present paper is to demonstrate that
polarized structure functions can indeed be computed from a
chiral soliton. With this in mind we will adopt the valence
quark approximation where the quark configurations in Eq.
~23! are restricted to the valence quark level. Accordingly,
the valence quark wave function~14! is substituted into Eq.
~22!. Then, only quark orbital angular momenta up tol52
are relevant. From a physical point of view this approxima-
tion is justified for moderate constituent quark masses
(m'400 MeV) because in that parameter region the soliton
properties are dominated by their valence quark contribu-
tions @26,45#. In particular, this is the case for the axial prop-
erties of the nucleon.

In the next step the polarized structure functions,
g1(x,m

2) andgT(x,m
2), are extracted according to Eqs.~17!

and ~18!. In the remainder of this section we will omit ex-
plicit reference to the scalem2. We choose the frame such
that the nucleon is polarized along the positive-z and
positive-x directions in the longitudinal and transverse cases,
respectively. Note also that this implies the choiceq5qẑ.
When extracting the structure functions the integrations over
the time coordinate in Eq.~22! can readily be done yielding
the conservation of energy for forward and backward mov-
ing intermediate quarks. Carrying out the integrations over
k0 andk5uku gives for the structure functions,

g1~x!52NC

MN

p KN, 12 ẑU E dVkk
2$c̃v

†~p!~12a• k̂!

3g5Gc̃v~p!uk5q01ev
1c̃v

†~2p!~12a• k̂!

3g5Gc̃v~2p!uk5q02ev
%UN, 12ẑL , ~25!

gT~x!5g1~x!1g2~x!52NC

MN

p KN, 12x̂U E dVkk
2

3$c̃v
†~p!~a• k̂!g5Gc̃v~p!uk5q01ev

1c̃v
†~2p!~a• k̂!g5Gc̃v~2p!uk5q02ev

%UN, 12x̂L ,
~26!

where p5k1q and G5 5
1811

1
6D3it i with Di j

5 1
2tr@t iA(t)t jA

†# being the adjoint representation of the
collective rotation, cf. Eq.~12!. The second entry in the
states labels the spin orientation.NC appears as a multiplica-
tive factor because the functional trace~24! includes the
color trace as well. Furthermore, the Fourier transform of the
valence quark wave function

c̃v~p!5E d3x

4p
cv~x!exp~ ip•x! ~27!

has been introduced. Also, note that the wave functioncv
contains an implicit dependence on the collective coordinates
through the angular velocityV, cf. Eq. ~14!.

The dependence of the wave functionc̃v(6p) on the in-
tegration variablek̂ is only implicit. In the Bjorken limit the
integration variables may then be changed to@28#

k2dVk5pdpdF, p5upu, ~28!

whereF denotes the azimuth angle betweenq and p. The
lower bound for thep integral is adopted whenk andq are
antiparallel; p6

min5uMNx7evu for k52(q06ev), respec-

tively. Since the wave functionc̃(6p) acquires its dominant
support forp<MN the integrand is different from zero only
when q and k are antiparallel. We may, therefore, take
k̂52 ẑ. This is nothing but the light-cone description for
computing structure functions@41#. Although expected, this
result is nontrivial and will only come out in models which
have a current operator which, as in QCD, is formally iden-
tical to the one of noninteracting quarks. The valence quark
state possesses positive parity yieldingc̃(2p)5g0c̃(p).
With this we arrive at the expression for the isoscalar and
isovector parts of the polarized structure function in the va-
lence quark approximation:

g1,6
I50~x!52NC

5MN

18p KN, 12ẑU EMNux7u

`

pdpE
0

2p

dFc̃v
†~p7!

3~16a3!g
5c̃v~p7!UN, 12ẑL , ~29!

g1,6
I51~x!52NC

MN

6p KN, 12ẑUD3iE
MNux7u

`

pdpE
0

2p

dFc̃v
†~p7!

3t i~16a3!g
5c̃v~p7!UN, 12ẑL , ~30!

gT,6
I50~x!52NC

5MN

18p KN, 12x̂U EMNux7u

`

pdpE
0

2p

dFc̃v
†~p7!

3a3g
5c̃v~p7!UN, 12x̂L , ~31!

gT,6
I51~x!52NC

MN

6p KN, 12x̂UD3iE
MNux7u

`

pdpE
0

2p

dF

3c̃v
†~p7!t ia3g

5c̃v~p7!UN, 12x̂L , ~32!

wherex65x6ev /MN and cos(Qp
6)5MNx6 /p. The complete

structure functions are given by

g1~x!5g1,1
I50~x!1g1,1

I51~x!2~g1,2
I50~x!2g1,2

I51~x!! ~33!

gT~x!5gT,1
I50~x!1gT,1

I51~x!2~gT,2
I50~x!2gT,2

I51~x!!. ~34!

Note also, that we have made explicit the isoscalar (I50)
and isovector (I51) parts. The wave function implicitly de-
pends onx becausec̃v(p6)5c̃v(p,Qp

6 ,F) where the polar
angleQp

6 betweenp6 andq is fixed for a given value of the
Bjorken scaling variablex.

Turning to the evaluation of the nucleon matrix elements
defined above we first note that the Fourier transform of the
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wave function is easily obtained because the angular parts
are tensor spherical harmonics in both coordinate and mo-
mentum spaces. Hence, only the radial part requires numeri-
cal treatment. Performing straightforwardly the azimuthal in-
tegrations in Eqs.~29! and ~30! reveals that the surviving
isoscalar part of the longitudinal structure functiong1

I50 is
linear in the angular velocityV. It is this part which is as-
sociated with the proton-spin puzzle. Using the standard
quantization condition,V5J/a2, wherea2 is the moment of
inertia of the soliton and further noting that theẑ direction is
distinct, the required nucleon matrix elements are

^N, 12ẑuJzuN,
1
2ẑ&5 1

2. Thus, g1
I50 is identical for all nucleon

states. Choosing a symmetric ordering@54,55# for the non-
commuting operators,DiaJj→ 1

2$Dia ,Jj%, we find that the
nucleon matrix elements associated with the cranking portion
of the isovector piece,̂N,6 1

2ẑu$D3y ,Jx%uN,6
1
2ẑ&, vanish.

With this ordering we avoid the occurrence of PCAC~partial
conservation of axial-vector current!-violating pieces in the
axial-vector current. The surviving terms stem solely from
the classical part of the valence quark wave function
Cv(x) in combination with the collective Wigner-D function
D3z . Again, singling out theẑ direction, the nucleon matrix
elements become@19#

^N, 12 ẑuD3zuN,
1
2 ẑ&52 2

3 i 3 , ~35!

where i 356 1
2 is the nucleon isospin. For the transverse

structure function, the surviving piece of the isoscalar con-
tribution is again linear in the angular velocities. The trans-
versally polarized nucleon gives rise to the matrix elements,

^N, 12x̂uJxuN,
1
2x̂&5 1

2. Again, choosing symmetric ordering
for terms arising from the cranking contribution, the
nucleon matrix elements ^N, 12x̂u$D3y ,Jy%uN,

1
2x̂& and

^N, 12 x̂u$D33,Jy%uN,
1
2x̂& vanish. As in the longitudinal case,

there is a surviving isovector contribution stemming solely
from the classical part of the valence quark wave function
Cv(x) in combination with the collective Wigner-D function
D3x . Now, singling out thex̂ direction, the relevant nucleon
matrix elements become@19#

^N, 12 x̂uD3xuN,
1
2 x̂&52 2

3 i 3 . ~36!

Explicit expressions in terms of the valence quark wave
functions ~33! and ~34! for g1,6

I50(x),g1,6
I51(x),g2,6

I50(x), and
g,6
I51(x) are listed in Appendix A.
Using the expressions given in Appendix A it is straight-

forward to verify the Bjorken sum rule@47#

G1
p2G1

n5E
0

1

dx@g1
p~x!2g1

n~x!#5gA/6, ~37!

the Burkhardt-Cottingham sum rule@48#

G2
p5E

0

1

dxg2
p~x!50, ~38!

as well as the axial singlet charge

G1
p1G1

n5E
0

1

dx@g1
p~x!1g1

n~x!#5gA
0 , ~39!

in this model calculation when the moment of inertiaa2, as
well as the axial chargesgA

0 and gA , are confined to their
dominating valence quark pieces. We have used

gA52
NC

3 E d3r c̄ v
†~r!g3g5t3cv~r!, ~40!

gA
05

NC

av
2E d3r c̄ v

†~r!g3g5cv~r!, ~41!

to verify the Bjorken sum rule as well as the axial singlet
charge. This serves as an analytic check on our treatment.
Hereav

2 refers to the valence quark contribution to the mo-
ment of inertia, i.e.,av

25(1/2)(mÞvu^mut3uv&u2/(em2ev).
The restriction to the valence quark piece is required by con-
sistency with the Adler sum rule in the calculation of the
unpolarized structure functions in this approximation@49#.

V. NUMERICAL RESULTS

In this section we display the results of the spin–polarized
structure functions calculated from Eqs.~A13!–~A16! for
constituent quark masses ofm5400 MeV and 450 MeV. In
addition to checking the above mentioned sum rules, see
Eqs.~37!–~39!, we have numerically calculated the first mo-
ment ofg1

p(x,m2),3

G1
p5E

0

1

dxg1
p~x!, ~42!

and the Efremov-Teryaev-Leader~ETL! sum rule@52#

GELT5E
0

1

dxx@g1
p~x!12g2

n~x!#. ~43!

We summarize the results for the sum rules in Table I. When
comparing these results with the experimental data one ob-
serves two shortcomings, which are already known from
studies of the static properties in this model. First, the axial
chargegA'0.73 comes out too low as the experimental
value isgA51.25. It has recently been speculated that a dif-
ferent ordering of the collective operatorsDaiJj ~cf. Sec. IV!
may fill the gap@53,45#. However, since such an ordering
unfortunately gives rise to PCAC-violating contributions to
the axial-vector current@54#, and furthermore inconsistencies
with G parity may occur in the valence quark approximation
@55#, we will not pursue this issue any further at this time.
Second, the predicted axial singlet chargegA

0'0.6 is ap-
proximately twice as large as the number extracted

3Which, in this case, amounts to the Ellis-Jaffe sum rule@50# since
we have omitted the strange degrees of freedom. A careful treat-
ment of symmetry-breaking effects indicates that the role of the
strange quarks is less important than originally assumed@14,51#.
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from experiment4 0.2760.04@17#. This can be traced back to
the valence quark approximation as there are direct and in-
direct contributions togA

0 from both the polarized vacuum
and the valence quark level. Before canonical quantization of
the collective coordinates one finds a sum of valence and
vacuum pieces

gA
052~gv

01gvac
0 !V35

gv
01gvac

0

av
21avac

2 . ~44!

Numerically, the vacuum piece is negligible, i.e.,
gvac
0 /gv

0'2%. Canonical quantization subsequently involves
the moment of inertiaa25av

21avac
2 , which also has valence

and vacuum pieces. In this case, however, the vacuum part is
not so small:avac

2 /a2'25%. Hence, the full treatment of the
polarized vacuum will drastically improve the agreement
with the empirical value forgA

0 . On the other hand, our
model calculation nicely reproduces the Ellis–Jaffe sum rule
since the empirical value is 0.136. Note that this comparison
is legitimate since neither the derivation of this sum rule nor
our model implies strange quarks. While the vanishing
Burkhardt-Cottingham sum rule can be shown analytically in
this model, the small value for the Efremov-Teryaev-Leader
sum rule is a numerical prediction. Recently, it has been
demonstrated@23# that the ETL sum rule~43!, which is de-
rived within the parton model, neither vanishes in the center-
of-mass bag model nor is supported by the SLAC E143 data
@2#. This is also the case for our NJL-model calculation as
can be seen from Table I.

In Fig. 1 we display the spin-structure functions
g1
p(x,m2) and g2

p(x,m2) along with the twist-two piece

g2
WW(p)(x,m2) and twist-three pieceḡ2

p(x,m2). The actual
value form2 and the precise definition of the twist-two and
twist-three pieces@see Eqs.~48! and ~49!# will be given in
the following section in the context of the evolution proce-
dure. We observe that the structure functionsg2

p(x,m2) and
g2
WW(p)(x,m2) are well localized in the interval 0<x<1,
while for g1

p about 0.3% of the first moment,G1
p

5*0
1dxg1

p(x,m2) comes from the regionx.1. The polarized
structure functiong1

p(x,m2) exhibits a pronounced maximum
at x'0.3 which is smeared out when the constituent quark
mass increases. This can be understood as follows: In our
chiral soliton model the constituent mass serves as a cou-
pling constant of the quarks to the chiral field@see Eqs.~7!

and ~10!#. The valence quark becomes more strongly bound
as the constituent quark mass increases. In this case the
lower components of the valence quark wave function in-
crease and relativistic effects become more important result-
ing in a broadening of the maximum. With regard to the
Burkhardt-Cottingham sum rule the polarized structure func-
tion g2

p(x,m2) possesses a node. Apparently, this node ap-
pears at approximately the same value of the Bjorken vari-
able x as the maximum ofg1

p(x,m2). Note also that the
distinct twist contributions tog2

p(x,m2) by construction di-
verge as ln(x) asx→0 while their sum stays finite~see Sec.
VI for details!.

As the results displayed in Fig. 1 are the central issue of
our calculation it is of great interest to compare them with
the available data. As for all effective low-energy models of
the nucleon, the predicted results are at a lower scaleQ2 than
the experimental data. In order to carry out a sensible com-
parison either the model results have to be evolved upward
or the QCD renormalization group equations have to be used
to extract structure functions at a low-renormalization point.
For the combinationxg1(x) a parametrization of the empiri-
cal structure function is available at a low scale@31#.5 In that
study the experimental highQ2 data are evolved to the low-
renormalization pointm2, which is defined as the lowest
Q2 satisfying the positivity constraint between the polarized
and unpolarized structure functions. In a next-to-leading or-
der calculation those authors foundm250.34 GeV2 @31#. In
Fig. 2 we compare our results for two different constituent
quark masses with that parametrization. We observe that our
predictions reproduce gross features such as the position of
the maximum. This agreement is more pronounced the lower
the constituent quark is, i.e., the agreement improves as the
applicability of the valence quark approximation becomes
more justified. Unfortunately, such a parametrization is cur-
rently not available for the transverse structure function
gT(x) @or g2(x)#. In order to, nevertheless, be able to com-
pare our corresponding results with the~few! available data
we will apply leading-order evolution techniques to the
structure functions calculated in the valence quark approxi-
mation to the NJL-soliton model. This will be subject of the
following section.

4Note that this analysis assumes SU~3! flavor symmetry, which, of
course, is not manifest in our two-flavor model.

5These authors also provide a low-scale parametrization of quark
distribution functions. However, these refer to the distributions of
perturbatively interacting partons. Distributions for the NJL-model
constituent quarks could in principle be extracted from Eqs.~28!–
~31!. It is important to stress that these distributions may not be
compared to those of Ref.@31# because the associated quarks fields
are different in nature.

TABLE I. Sum rules calculated from Eqs.~38! and~39! as functions of the constituent quark massm in
the NJL-chiral soliton model.

m ~MeV! 400 450

Burkhardt-Cottingham: G2
p 0 0

Bjorken: G1
p2G1

n5gA/6 0.121 0.118
Ellis–Jaffe: G1

p 0.149 0.139
ETL: GETL 1.3831022 7.6531023

Axial singlet charge: G1
p1G1

n5gA
0 0.638 0.579
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VI. PROJECTION AND EVOLUTION

One notices that our baryon states are not momentum
eigenstates causing the structure functions~see Figs. 1 and 2!
not to vanish exactly forx.1 although the contributions for
x.1 are very small. This shortcoming is due to the localized
field configuration and thus the nucleon not being a repre-
sentation of the Poincare´ group which is common to the
low-energy effective models. The most feasible procedure to
cure this problem is to apply Jaffe’s prescription@32#,

f ~x!→ f̃ ~x!5
1

12x
f „2 ln~12x!…, ~45!

to project any structure functionf (x) onto the interval
@0,1#. In view of the kinematic regime of DIS this prescrip-
tion, which was derived in a Lorentz-invariant fashion within
the ~111!-dimensional bag model, is a reasonable approxi-
mation. It is important to note in the NJL model the un-
projected nucleon wave function@including the cranking

piece,6 see Eq.~14!# is anything but a product of Dirac
spinors. In this context, techniques such as Peierls-Yoccoz
@56# ~which do not completely enforce proper support@57#
0<x<1 nor restore Lorentz invariance, see@58#! appear to
be infeasible. Thus, given the manner in which the nucleon
arises in chiral soliton models, Jaffe’s projection technique is
quite well suited. It is also important to note that, by con-
struction, sum rules are not effected by this projection, i.e.,
*0

`dx f(x)5*0
1dx f̃ (x). Accordingly, the sum rules of the

previous section remain intact.
With regard to evolution of the spin-polarized structure

functions applying the OPE analysis of Sec. II, Jaffe and Ji
brought to light that, to leading order in 1/Q2, g1(x,Q

2)
receives only a leading order twist-two contribution, while
g2(x,Q

2) possesses contributions from both twist-two and
twist-three operators; the twist-three portion coming from
spin-dependent gluonic quark correlations@36,40# ~see also
@59,60#!. In theimpulse approximation@36,40,41# these lead-
ing contributions are given by

lim
Q2→`

E
0

1

dxxng1~x,Q
2!5

1

2(i O2,i
n , n50,2,4,. . . ,

~46!

lim
Q2→`

E
0

1

dxxng2~x,Q
2!52

n

2~n11!(i $O2,i
n 2O3,i

n %,

n52,4, . . . . ~47!

Note that there is no sum rule for the first moment,
G2(Q

2)5*0
1dxg2(x,Q

2) @36#. Some time ago, Wandzura
and Wilczek~WW! @61# proposed thatg2(x,Q

2) was given
in terms ofg1(x,Q

2),

g2
WW~x,Q2!52g1~x,Q

2!1E
x

1dy

y
g1~y,Q

2!, ~48!

6Which, in fact, yields the leading order to the Adler sum rule

F1
np2F1

n̄ p @49#, rather than being a correction.

FIG. 1. The valence quark approximation of
the polarized proton structure functions as a func-
tion of Bjorken x. Left panel:g1

p(x,m2) for two
constituent quark massesm. Right panel:
g2
p(x,m2) ~solid line!, g2

WW(p)(x,m2) ~long-

dashed line! and twist-three portionḡ2
p(x,m2)

~dashed line!. In this case we have used
m5400 MeV.

FIG. 2. The valence quark approximation to the nucleon struc-
ture functionxg1(x) in the NJL-soliton model compared to the
low-renormalization point result of Ref.@31#.
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which follows immediately from Eqs.~46! and ~47! by ne-
glecting the twist-three portion in the sum in Eq.~47!. One
may reformulate this argument to extract the twist-three
piece

ḡ2~x,Q
2!5g2~x,Q

2!2g2
WW~x,Q2!, ~49!

since,

E
0

1

dxxnḡ2~x,Q
2!5

n

2~n11!(i O3,i
n , n52,4, . . . .

~50!

In the NJL model as in the bag model there are no explicit
gluon degrees of freedom, however, in both models twist-
three contributions tog2(x,m

2) exist. In contrast with the
bag model where the bag boundary simulates the quark-
gluon and gluon-gluon correlations@23# in the NJL model,
the gluon degrees of freedom, having been ‘‘integrated’’ out,
leave correlations characterized by the four-point quark cou-
plingGNJL . This is the source of the twist-three contribution
to g2(x,m

2), which is shown in Fig. 1.
For g1(x,Q

2) and the twist-two pieceg2
WW(x,Q2) we ap-

ply the leading order@in aQCD(Q
2)# Altarelli-Parisi equa-

tions @33# to evolve the structure functions from the model
scalem2 to that of the experimentQ2, by iterating

g~x,t1dt !5g~x,t !1dt
dg~x,t !

dt
, ~51!

where t5 ln(Q2/LQCD
2 ). The explicit expression for the evo-

lution differential equation is given by the convolution inte-
gral,

dg~x,t !

dt
5

a~ t !

2p
g~x,t ! ^Pqq~x!

5
a~ t !

2p
CR~F !E

x

1dy

y
Pqq~y!gS xy ,t D , ~52!

where the quantityPqq(z)5@(11z2)/(12z2)#1 represents
the quark probability to emit a gluon such that the momen-
tum of the quark is reduced by the fractionz.
CR( f )5(nf

221)/2nf for nf flavors,
aQCD54p/@b ln(Q2/L2)# andb5(112 2

3nf). Employing the
‘‘ 1’’ prescription @34# yields

dg~x,t !

dt
5
2CR~ f !

9t H S x1
x2

2
12ln~12x! Dg~x,t !

1E
x

1

dyS 11y2

12y D F1y gS xy ,t D2g~x,t !G J .
~53!

As discussed in Sec. II the initial value for integrating the
differential equation is given by the scalem2 at which the
model is defined. It should be emphasized that this scale
essentially is a new parameter of the model. For a given
constituent quark mass we fitm2 to maximize the agreement
of the predictions with the experimental data on previously
@49# calculated unpolarized structure functions for

~anti!neutrino-proton scattering:F2
np2F2

n̄ p. For the constitu-
ent quark mass m5400 MeV we have obtained
m2'0.4 GeV2. One certainly wonders whether for such a
low scale the restriction to first order inaQCD is reliable.
There are two answers. First, the studies in this section aim
at showing that the required evolution indeed improves the
agreement with the experimental data and, second, in the bag
model it has recently been shown@62# that a second-order
evolution just increasesm2 without significantly changing
the evolved data. In Fig. 3 we compare the unevolved, pro-
jected, structure functiong1

p(x,m2) with the one evolved
from m250.4 GeV2 to Q253.0 GeV2. Also, the data from
the E143 Collaboration from SLAC@7# are given. Further-
more, in Fig. 3 we compare the projected, unevolved, struc-
ture functiong2

WW(p)(x,m2) as well as the one evolved to
Q255.0 GeV2 with the data from the recent E143 Collabo-
ration at SLAC@2#. As expected, we observe that the evolu-
tion pronounces the structure function at lowx; thereby im-
proving the agreement with the experimental data. This
change towards smallx is a general feature of the projection
and evolution process and presumably not very sensitive to
the prescription applied here. In particular, choosing an al-
ternative projection technique may easily be compensated by
an appropriate variation of the scalem2.

While the evolution of the structure functiong1(x,Q
2)

and the twist-two pieceg2
WW(x,Q2) from m2 to Q2 can be

performed straightforwardly using the ordinary Altarelli-
Parisi equations, this is not the case for the twist-three piece
ḡ2(x,Q

2). As the twist-three quark and quark-gluon opera-
tors mix, the number of independent operators contributing
to the twist-three piece increases withn, wheren refers to
the nth moment@60#. We apply an approximation~see Ap-
pendix B! suggested in@35# where it is demonstrated that in
Nc→` limit the quark operators of twist three decouple
from the evolution equation for the quark-gluon operators of
the same twist resulting in a unique evolution scheme. This
scheme is particularly suited for the NJL-chiral soliton
model, as the soliton picture for baryons is based on
Nc→` arguments.7

In Fig. 4 we compare the projected, unevolved, structure
function ḡ2

p(x,m2) evolved to Q255.0 GeV2 using the
scheme suggested in@35#. In addition, we reconstruct
g2
p(x,Q2) at Q253.0 GeV2 from g2

WW(p)(x,Q2) and

ḡ2(x,Q
2) and compare it with the recent SLAC data@2# for

g2
p(x,Q2). As is evident, our model calculation of

g2
p(x,Q2), built up from its twist-two and twist-three pieces,

agrees reasonably well with the data although the experimen-
tal errors are quite large.

VII. SUMMARY AND OUTLOOK

In this paper we have presented the calculation of the
polarized nucleon structure functionsg1(x,Q

2) and
g2(x,Q

2) within a model which is based on chiral symmetry
and its spontaneous breaking. Specifically, we have em-

7This scheme has also been employed by Song@23# in the center-
of-mass bag model.
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ployed the NJL-chiral soliton model which reasonably de-
scribes the static properties of the nucleon@26,45#. In this
model the current operator is formally identical to the one in
a noninteracting relativistic quark model. While the quark
fields become functionals of the chiral soliton upon
bosonization, this feature enables one to calculate the had-
ronic tensor. From this hadronic tensor we have then ex-
tracted the polarized structure functions within the valence
quark approximation. As the explicit occupation of the va-
lence quark level yields the major contribution~about 90%!
to the associated static quantities such as the axial charge,
this presumably is a justified approximation. When cranking
corrections are included this share may be reduced, depend-
ing on whether or not the full moment of inertia is substi-
tuted.

It needs to be stressed that in contrast with, e.g., bag mod-

els, the nucleon wave function arises as a collective excita-
tion of a nonperturbative meson field configuration. In par-
ticular, the incorporation of chiral symmetry leads to the
distinct feature that the pion field cannot be treated perturba-
tively. Because of the hedgehog structure of this field one
starts with grand spin symmetric quark wave functions rather
than direct products of spatial spinors and isospinors as in
the bag model. On top of these grand spin wave functions
one has to include cranking corrections to generate states
with the correct nucleon quantum numbers. Not only are
these corrections sizable but even more importantly one
would not be able to make any prediction on the flavor sin-
glet combination of the polarized structure functions without
them. The structure functions obtained in this manner are, of
course, characterized by the scale of the low-energy effective
model. We have confirmed this issue by obtaining a reason-

FIG. 3. The projection and evolution of the spin-polarized structure functions as a function of Bjorkenx. For the constituent quark mass
we choosem5400 MeV. Left panel:g1

p(x,Q2), unprojected~long-dashed line!, projected~dashed line!, and evolved fromm50.4 GeV2 to
Q253.0 GeV2 ~solid line!. Data are from@7#. Right panel:g2

WW(p)(x,Q2), unprojected~long-dashed line!, projected~dashed line!, and
evolved fromm50.4 GeV2 toQ255.0 GeV2 ~solid line!. Data are from@2,5#, where the diamonds, circles, and triangles correspond to the
4.5° E143, 7.0° E143, and SMC kinematics, respectively. Overlapping data have been shifted slightly inx. The statistical errors are
displayed.

FIG. 4. The evolution of ḡ2
p(x,Q2) ~pro-

jected! from m50.4 GeV2 ~long-dashed line! to
Q255.0 GeV2 ~solid line!. In addition, we
display the corresponding evolution for
g2
WW(p)(x,Q2) ~projected!. Right panel,

g2
p(x,Q2)5g2

WW(p)(x,Q2)1 ḡ2
p(x,Q2) evolved

from m250.4GeV2 to Q255.0 GeV2. Data and
statistical errors forg2

p(x,Q2) are displayed from
@2#, where the diamonds and circles correspond to
the 4.5° E143 and 7.0° E143 kinematics, respec-
tively. Overlapping data have been slightly
shifted inx.
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able agreement of the model predictions for the structure
functiong1 of the proton with the low-renormalization point
parametrization of Ref.@31#. In general, this scale of the
effective model essentially represents an intrinsic parameter
of a model. For the NJL-soliton model we have previously
determined this parameter from the behavior of the unpolar-
ized structure functions under the Altarelli-Parisi evolution
@49#. Applying the same procedure to the polarized structure
functions calculated in the NJL model yields good agreement
with the data extracted from experiment, although the error
bars ong1(x,Q

2) are still sizable. In particular, the good
agreement at lowx indicates that to some extend gluonic
effects are already incorporated in the model. This can be
understood by noting that the quark fields, which enter our
calculation, are constituent quarks. They differ from the cur-
rent quarks by a mesonic cloud which contains gluonic com-
ponents. Furthermore, the existence of gluonic effects in the
model would not be astonishing because we had already ob-
served from the nonvanishing twist-three part ofg2(x,Q

2),
which in the OPE is associated with the quark-gluon inter-
action, that the model contains the main features allocated to
the gluons.

There is a wide avenue for further studies in this model.
Of course, one would like to incorporate the effects of the
polarized vacuum, although one expects from the results on
the static axial properties that their direct contributions are
negligible. It may be more illuminating to include the strange
quarks within the valence quark approximation. This exten-
sion of the model seems to be demanded by the analysis of
the proton-spin puzzle. Technically, two changes will occur.
First, the collective matrix elements will be more compli-
cated than those in Eqs.~35! and ~36! because the nucleon
wave functions will be distorted SU~3!-D functions in the
presence of flavor symmetry breaking@63,16#. Furthermore,
the valence quark wave function~14! will contain an addi-
tional correction due to different nonstrange and strange con-
stituent quark masses@64#. When these corrections are in-
cluded, direct information will be obtained on the
contributions of the strange quarks to polarized nucleon
structure functions. In particular, the previously developed
generalization to three flavors@64# allows one to consistently
include the effects of flavor symmetry breaking.
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APPENDIX A: SPIN-POLARIZED STRUCTURE
FUNCTIONS

In this appendix we summarize the explicit expressions
for the structure functions, Eqs.~29!–~32!. The first step is to
construct the eigenfunctions of the single-particle Dirac
Hamiltonian~10! in coordinate space. As the hedgehog an-
satz ~9! connects coordinate space with isospace, these
eigenfunctions are also eigenstates of the grand spin operator

G5J1
t

2
5 l1

s

2
1

t

2
, ~A1!

which is the sum of the total spinJ and the isospint/2. The
spin itself is decomposed into orbital angular momentuml
and intrinsic spins/2. Denoting byM the grand spin projec-
tion quantum number, the tensor spherical harmonics which
are associated with the grand spin may be written as
Yl , jG,M( r̂). Note that these tensor spherical harmonics are two-
component spinors in both spin and isospin spaces. Given a
fixed profile functionQ(r ) the numerical diagonalization of
the Dirac Hamiltonian ~10! yields the radial functions
gm
(G,1,1)(r ), f m

(G,1,1)(r ), etc., in~cf. Ref. @65#!

Cm
~G,1 !~r!5S igm

~G,1;1!~r !YG,G11/2
G,M ~ r̂!

f m
~G,1;1!~r !YG11,G11/2

G,M ~ r̂!D
1S igm

~G,1;2!~r !YG,G21/2
G,M ~ r̂!

2 f m
~G,1;2!~r !YG21,G21/2

G,M ~ r̂!D , ~A2!

Cm
~G,2 !~r!5S igm

~G,2;1!~r !YG11,G11/2
G,M ~ r̂!

2 f m
~G,2;1!~r !YG,G11/2

G,M ~ r̂! D
1S igm

~G,2;2!~r !YG21,G21/2
G,M ~ r̂!

f m
~G,2;2!~r !YG,G21/2

G,M ~ r̂! D . ~A3!

The second superscript (6) denotes the intrinsic parity,
which also is a conserved quantum number.8 Note that for
theG50 channel, which contains the classical contribution
to the valence quark wave function in Eq.~14!,

Cv~r!5S igv~r !Y0,1/20,0 ~ r̂!

f v~r !Y1,1/20,0 ~ r̂!
D , ~A4!

only the components withj511/2 are allowed. In addition
to the classical piece~A4!, the complete valence quark wave
function ~14! also contains the cranking correction, which
dwells in the channel withG51 and negative intrinsic par-
ity.

The discretization (m) is accomplished by choosing suit-
able boundary conditions at a radial distance which is large
compared to the soliton extension@65,64#. This calculation
yields the energy eigenvaluesem , which enter the energy
functional ~11!. The soliton configuration is finally deter-
mined by self-consistently minimizing this energy func-
tional. In Ref.@66# the numerical procedure is described in
detail.

We continue by making explicit the Fourier transform
~27! of Eq. ~14!:

c̃v~p!5C̃v~p!1QmC̃m~p!. ~A5!

The leading order inNc valence quark contribution is just the
Fourier transform of Eq.~A5!,

8The total parity is given by the product of the intrinsic parity and
(2)G.
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C̃v~p!5 i S g̃v~p!Y0,1/20,0 ~ p̂!

f̃ v~p!Y1,1/20,0 ~ p̂!
D , ~A6!

and the cranking correction involves the Fourier transform of
spinor withG51 and negative intrinsic parity:

C̃m~p!52 i S g̃m
~1!~p!Y2,3/21,M ~ p̂!2 g̃m

~2!~p!Y0,1/21,M ~ p̂!

f̃ m
~1!~p!Y1,3/21,M ~ p̂!2 f̃ m

~2!~p!Y1,1/21,M ~ p̂!
D .

~A7!

Here Y l , j
G,M(p̂) are the Fourier transforms of the tensor

spherical harmonics associated with the grand spin operator
~A1!. The Fourier transform for the radial functions is de-
fined by

f̃m~p!5E
0

R

drr 2 j l~pr !fm~r !. ~A8!

Here the indexl of the Bessel function denotes the orbital
angular momentum of the associated tensor spherical har-
monic in Eqs.~A6! and~A7!. We have suppressed the grand
spin index on the transforms of the radial wave functions for

convenience. For purposes of notation we have introduced
the quantityQm which arises in analyzing the matrix ele-
ments@see Eq.~14!#:

^mut•Vuv&
ev2em

5QmH dM ,1

A2
~V11V2!2

dM ,21

A2
~V12V2!

2dM ,0V0J dGm,1
, ~A9!

where

Qm[
1

ev2em
E drr 2$gv~r !gm

~2!~r !1 f v~r ! f m
~2!~r !%.

~A10!

Defining the combinations

f̃ ~ i !~p!5Qm f̃ m
~ i !~p!, ~A11!

g̃ ~ i !~p!5Qm g̃m
~ i !~p!, i51,2, ~A12!

the isoscalar~vector! contributions to the spin-polarized
structure functions, Eqs.~29!–~32!, read

g1,6
I50~x,m2!52NC

5MN

36p E
MNux7u

`

pdpH g̃v~p! g̃ ~1!~p!
123cos2~Qp

6!

A8
2
1

2
g̃v~p! g̃ ~2!~p!7 g̃v~p! f̃ ~1!~p!

cos~Qp
6!

A2

7 g̃v~p! f̃ ~2!~p!
cos~Qp

6!

2
7 f̃ v~p! g̃ ~1!~p!

cos~Qp
6!

A2
7 f̃ v~p! g̃ ~2!~p!

cos~Qp
6!

2
2 f̃ v~p! f̃ ~1!~p!

11cos2~Qp
6!

A8

1 f̃ v~p! f̃ ~2!~p!
122cos2~Qp

6!

2 J , ~A13!

g1,6
I51~x,m2!52NC

MN

36pEMNux7u

`

pdp$ g̃v~p!262 g̃v~p! f̃ v~p!cos~Qp
6!2 f̃ v~p!2@122cos2~Qp

6!#%, ~A14!

gT,6
I50~x,m2!52NC

5MN

36p E
MNux7u

`

pdpH g̃v~p! g̃ ~1!~p!
3cos2~Qp

6!21

4A2
2
1

2
g̃v~p! g̃ ~2!~p!7 g̃v~p! f̃ ~1!~p!

cos2~Qp
6!23

4A2

1 f̃ v~p! f̃ ~2!~p!
cos2~Qp

6!

2 J , ~A15!

gT,6
I51~x,m2!52NC

MN

36pEMNux7u

`

pdp$ g̃v~p!22 f̃ v~p!2cos2~Qp
6!%, ~A16!

which we evaluate numerically. Note that in case of the neu-
tron the signs of the isovector pieces have to be reversed.
Note that the angleQp

6 is related to the integration variable
p via

cosQp
65

1

p
uMNx7evu. ~A17!

In Ref. @67# the structure functiong1 was calculated omitting

the cranking corrections. In the special case of the isovector
component these corrections drop out and we formally con-
firm the result displayed in Eq.~B.6! of Ref. @67#.

APPENDIX B: EVOLUTION OF ḡ2„x,µ
2
…

In theNc→` limit it has been shown@36# that one can
evolve the moments ofḡ2(x,m

2),
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M j~Q
2!5S as~Q

2!

as~m2! D
~g j21!/b

M j~m2! ~B1!

from the scalem2 to Q2, where the anomalous dimensions
are

g j2152NcS c~ j !1
1

2 j
1gE2

1

4D , ~B2!

with c(x)5(d/dx)lnG(x) and b5(11Nc22nf)/3. Nc and
nf are the number of colors and flavors, respectively. Given
the moments ofḡ2(x,m

2),

M j~m2!5E
0

1

dxxj21 ḡ2~x,m
2!, ~B3!

and expressingḡ2(x,m
2) in terms of the ln(x) and a power

series inx,

ḡ2~x,m
2!5a1~m2!ln~x!1 (

n50

`

an~m2!xn, ~B4!

one can alternatively express the momentsM j in terms of the
coefficientsan

M j~m2!5Ajnan~m2!. ~B5!

We calculate the momentsM j (m
2) from Eq.~B3! and evolve

them according to Eq.~B1!. Finally, inverting the matrix
Ajn , we obtain the evolved coefficientsan(Q

2) which in
turn yield ḡ2(x,Q

2) ~see Fig. 4!.
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