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Polarized nucleon structure functions within a chiral soliton model
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We study polarized-spin structure functions of the nucleon within the bosonized Nambu-Jona-Lasinio
model where the nucleon emerges as a chiral soliton. We present the electromagnetic polarized structure
functionsg;(x) andg,(x) for ep scattering and discuss various sum rules in the valence quark approximation.
This approximation is justified because in this model axial properties of the nucleon are dominated by their
valence quark contributions. We find that these structure functions are well localized in the interval
0=x=<1. We compare the model predictions on the polarized structure functions with data from the E143
experiment by evolving them from the scale characteristic of the NJL model to the scale of the data. Addi-
tionally, a comparison is made with parametrized data at a momentum scale commensurate with the model
calculation.[S0556-282(197)05611-1

PACS numbds): 12.39.Fe, 12.39.Ki

I. INTRODUCTION so-called “proton-spin crisis” by predicting a singlet com-
bination in accord with the datfl2], and in predicting a
Over the past decade, beginning with the measurement afontrivial strange quark content to the axial-vector current of

nucleon spin—polarized structure functigna(x,Q?) by the  the nucleon[12-15; about 10-30 % of the down quarks
European Muon CollaboratiofEMC) [1] at CERN and most  (see[16,17] for reviews. However, while the leading mo-
recently with the spin-structure functiog,(x,Q?) in the ments of these structure functions have been calculated
E143 experiment2] at SLAC, a wealth of information has within chiral soliton models, from the Skyrme modéB,19
been gathered on the spin—polarized structure functions aind its various vector-meson extensions, to models contain-
the nucleon and their corresponding sum rule=e, in addi- ing explicit quark degrees of freedom such as theL)
tion, [3-8]). Initially, the analysis of these experiments castmodel[10], the nucleon spin-structure functions themselves
doubt on the nonrelativistic quark modél] interpretations have not been investigated in these models. Soliton model
regarding the spin content of the proton. By now, it is firmly calculations of structure functions were, however, performed
established that the quark helicity of the nucleon is muchin Friedberg-Leg[20] and color-dielectrid21] models. In
smaller than the predictions of that model, however, manyddition, structure functions have extensively been studied
guestions remain to be addressed concerning the spin strugithin the framework of effective quark models such as the
ture. As a result there have been numerous investigatiorisag model[22], and the center-of-mass bag modéB].
within models for the nucleon in an effort to determine theThese models are confining by construction but they neither
manner in which the nucleon spin is distributed among itscontain nonperturbative pseudoscalar fields nor are they
constituents. One option is to study the axial-vector currenthirally symmetrict To this date it is fair to say that many of
matrix elements of the nucleon such a($\I|A'M|N> the successes of low—energy effective models rely on the
=2Aq;S,, which, for example, provide information on the incorporation of chiral symmetry and its spontaneous sym-

nucleon axial singlet charge metry breakingsee, e.g.[26]). In this article we, therefore,
present our calculation of the polarized-spin structure func-
93=(N|AJN)=(Au+Ad+As)=TP(QH)+T)(Q?. tions in the NJL chiral soliton mod¢R7,26. Since in par-

(1)  ticular, the static axial properties of the nucleon are domi-
nated by the valence quark contribution in this model it is
HereAq are the axial charges of the quark constituents angegitimate to focus on the valence quarks in this model.
I'Y(Q%)=[5dxd)(x,Q? is the first moment of the longitu- At the outset it is important to note that a major difference
dinal nucleon spin-structure functig)(x,Q?). Of course, it  between the chiral soliton models and models previously em-
is more illuminating to directly compute the longitudinal and ployed to calculate structure functions is the form of the
transverse nucleon spin-structure functiogg(x,Q?) and  nucleon wave function. In the latter the nucleon wave func-
g7(x,Q%) =01(x,Q%) +g,(x,Q?), respectively, as functions tion is a product of Dirac spinors while in the former the
of the Bjorken variablex. We will calculate these structure nucleon appears as a collectively excitezpologically) non-
functions within the Nambu—Jona-LasinidJL) [10] chiral  trivial meson configuration.
soliton model[11]. As in the original bag model stud8] of structure func-
Chiral soliton models are unique both in being the firsttions for localized field configurations, the structure func-
effective models of hadronic physics to shed light on thetions are most easily accessible when the current operator is

*Present address: Department of Physics and Astronomy, Univer-1in the cloudy bag model the contribution of the pions to structure
sity of Oklahoma, 440 West Brooks, Norman, OK 73019. functions has at most been treated perturbatiy24;25.
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at most quadratic in the fundamental fields and the propagaN) refers to the nucleon state. In the DIS regime the OPE
tion of the interpolating field can be regarded as free. Al-enables one to express the product of these currents in terms
though the latter approximation is well justified in the of the forward Compton scattering amplitude,,(q) of a
Bjorken limit the former condition is difficult to satisfy in virtual photon from a nucleon

soliton models where mesons are fundamental fi¢édg.,

the Skyrme mode[18,19, the chiral quark model of Ref. _ .

[29], or the chiral bag mod¢B0]). Such model Lagrangians Tw(q):'f di¢e' §<N|T(JM(§)JI(0))|N>, 3)
typically possess all orders of the fundamental pion field. In

that case the current operator is not confined to quadratiby an expansion on the light coné?-0) using a set of
order and the calculation of the hadronic tenjsme Eq.(2) renormalized local operatof86—38. In the Bjorken limit
below| requires drastic approximations. In this respect thethe influence of these operators is determined by the twist
chirally invariant NJL model is preferred because it is en-7 or the light-cone singularity of their coefficient functions.
tirely defined in terms of quark degrees of freedom and for-Effectively, this becomes a power series in the inverse of the
mally the current possesses the structure as in a noninteradjorken variablex=—q?/2P- q, with P, being the nucleon
ing model. This makes the evaluation of the hadronic tensomomentum:

feasible. Nevertheless, after bosonization the hadronic cur- .

rents are uniquely defined functionals of the solitonic meson 1\

fields. auely TW(Q):E (;) e'ﬂ,,(q,P,S)

ni,r
The paper is organized as follows: In Sec. Il we give a

brief discussion of the standard operator product expansion N rm2y .2 pon o L)
(OPB analysis to establish the connection between the ef- X C7i(Q %, ag(u?))O07 (1) o

fective models for the baryons at low energies and the quark-

parton model description. In Sec. Ill we briefly review the (4)

NJL chiral soliton. In Sec. IV we extract the polarized struc-

ture functions from the hadronic tensor, E@6) exploiting

the “valence quark approximation.” Section V displays the i . .

results of the spin-polarized structure functions calculated iﬁhg tensore'w). Furtherrr;oresf‘zls the SF"” Of, the nupleon

the NJL chiral soliton model within this approximation and (5'=—1S-P=0) andQ°=—-q">0. As is eV|dent,2 higher

compare this result with a recent low-renormalization point™Wist contributions are suppressed by powers @1/The

parametrizatiori31]. In Sec. VI we use Jaffe's prescription Coefficient function<C? ;(Q%/ u?,as(u?)) are target indepen-

[32] to impose proper support for the structure functiondent and in principle include all QCD radiative corrections.

within the interval XE[O,l]. Subsequent'y, the structure Their Q2 variation is determined from the solution of the

functions are evolvei33—35 from the scale characterizing fenormalization group equations and varies logarithmically

the NJL model to the scale associated with the experimentait largeQ®. On the other hand, the reduced matrix elements

data. Section VII serves to summarize these studies and @7;(#?) depend only on the renormalization scalé and

propose further explorations. In Appendix A we list explicit reflect the nonperturbative properties of the nuclgasi.

analytic expressions for the isoscalar and isovector polarized The optical theorem states that the hadronic tensor is

structure functions. Appendix B summarizes details on thegiven in terms of the imaginary part of the virtual Compton

evolution of the twist-three structure functign(x,Q2). scattering amplitudeW,,,=(1/27)ImT,,,. From the ana-

lytic properties ofT ,,(q), together with Eq(4), an infinite

set of sum rules results for the form factdts(x,Q?), which

are defined via the Lorentz-covariant decomposition
It has been a long-standing effort to establish the connecVVMV(q)ze'lLVWi(x,Qz). These sum rules read

tion between the chiral soliton picture of the baryon, which

essentially views baryons as mesonic lumps and the quark- {1 _ n "

parton model which regards baryons as composites of almostf0 dxxX"Wi(y,Q%) = ZT C1i(Q% u?, a(1?))OT (1?)

noninteracting, pointlike quarks. While the former has been

quite successful in describing static properties of the 1\ 721

nucleon, the latter, being firmly established within the con- @

text of deep-inelastic scatterin@IS), has been employed

extensively to calculate the short-distance or perturbativqen theimpu|5e approximatiomi_e_' neg|ecting radiative cor-

processes within QCD. In fact, this connection can be madgectiong [36,40,41, one can directly sum the OPE gaining

Here the indexi runs over all scalar matrix elements
OQ,i( w1?), with the same Lorentz structuteharacterized by

Il. DIS AND THE CHIRAL SOLITON

X

©)

through the OPE. _ _ _ direct access to the structure functions in terms of the re-
The discussion begins with the hadronic tensor forgyced matrix element®” (w2
1 - . TY ’ . .
electron-nucleon scattering: When calculating the renormalization scale-dependent

1 matrix elementsO”;(x?) within QCD, u? is an arbitrary
W, ,(q)= _J d*£eéN|[J,(£),3T(0)]IN), (20  parameter adjusted to ensure rapid convergence of the per-
v A M My ! . . . . - ..
turbation series. However, given the difficulties of obtaining
— _ _ a satisfactory description of the nucleon as a bound state in
where J,=q(§)v,Qa(§) is the electromagnetic current, the Q2 regime of DIS processes it is customary to calculate
0=(%,—-1%) is the (two-flavon quark charge matrix, and these matrix elements in models at a low sgafeand sub-
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sequently evolve these results to the relevant DIS momenturtects the spontaneous breaking of chiral symmetry and

region of the data employing, for example, the Altarelli- causes the pseudoscalar fields to emerdgwasld-be Gold-

Parisi evolution [33,34. In this context, the scale stone bosons.

,u2~A2QCD characterizes the nonperturbative regime where it As the NJL model soliton has exhaustively been discussed

is possible to formulate a nucleon wave function from whichin recent review article§26,45, we only present those fea-

structure functions are computed. tures which are relevant for the computation of the structure
Here we will utilize the NJL chiral soliton model to cal- functions in the valence quark approximation.

culate the spin-polarized nucleon structure functions at the The chiral soliton is given by the hedgehog configuration

scaleu?, subsequently evolving the structure functions ac-of the meson fields

cording to the Altarelli—Parisi scheme. This establishes the )

connection between chiral soliton and the parton models. In Mu(x)=mexgi 7 x0(r)]. ©)

addition, we compare the structure functions calculated iqn order to compute the functional trace in E@) for this

the NJL model to a parametrization of spin structure functionstatiC configuration we express the Dirac opera@y as
[31] at a scale commensurate with our model. 9 P P

D=ivyq(d;—h), where

Ill. THE NUCLEON STATE IN THE NJL MODEL h=a:p+mexdiys7 x0(r)] (10
The Lagrangian of the NJL model reads is the corresponding Dirac Hamiltonian. We denote the ei-
2

3 i i 2 genvalues and eigenfunctionstoby €, and¥ ,(x), respec-
L= q(iﬁ—mo)q+ZGNJL2 [( a=q| +| q=i 75q) } tively. Explicit expressions for these wave functions are dis-
=0 2 2 played in Appendix A. In the proper-time regularization
(6)  scheme the energy functional of the NJL model is found to
. be[27,26
Here g,m° and Gy;_denote the quark field, the current
guark mass, and a dimensionful coupling constant, respec- N¢ Nc (= ds

tively. When integrating out the gluon fields from QCD a E[@]=—"¢,[1+sgr€,) ]+ — —
current-current interaction remains, which is meditated by 2 2 Juntams®

the gluon propagator. Replacing this gluon propagator by a

local contact interaction and performing the appropriate X exp(—SEf)anfofo d3r[1—coBd(r)],

Fierz transformations yields the Lagrangié) in leading v

order of 1N, [42], whereN, refers to the number of color (11
degrees of freedom. It is hence apparent that the interaction

term in Eq.(6) is a remnant of the gluon fields. Hence, glu- With Nc=3 being the number of color degrees of freedom.
onic effects are included in the model described by the LaThe subscript %" denotes the valence quark level. This

grangian(6). state is the distinct level bound in the soliton background,
Application of functional bosonization techniqugs] to  i.e., —m<,<m. The chiral angléd(r) is obtained by self-
the Lagrangian(6) yields the mesonic action consistently extremizing[© ] [11].

States possessing good spin and isospin quantum numbers

1 are generated by rotating the hedgehog fia#:

A=TryIn(iD)+ 7= fd“xtr[mO(MJrMT)—MMT], g Y g gehog fietl
NIL R M (x,t)=A(t)M4(x)AT(1), (12
D=i/—(M+M")—ys(M=M"™). ®) which introduces the collective coordinatégt) e SU(2).

The action functional is expand¢@87] in the angular veloci-

The composite scalaiSj and pseudoscalaP) meson fields ties

are contained irM=S+iP and appear as quark-antiquark
bound states. The NJL model embodies the approximate chi-
ral symmetry of QCD and has to be understood as an effeqn particular, the valence quark wave function receives a
tive (nonrenormalizabletheory of the low-energy quark fla- first-order perturbation

vor dynamics. For regularization, which is indicated by the

cutoff A, we will adopt the proper-time schenjd4]. The _ 1

free parameters of the model are the current quark mass¥,(x,t)=e"'“'A(t){ ¥,(x)+ EE W (x
m°, the coupling constanGy;, , and the cutoffA. Upon s
expandingA to quadratic order irM these parameters are =:e 'SIA(t) i, (X). (14)
related to the pion masa,, =135 MeV and pion decay con-

stantf ,=93 MeV. This leaves one undetermined parameteHere ¢,(X) refers to the spatial part of the body-fixed va-
which we choose to be the vacuum expectation valudence quark wave function with the rotational corrections in-
m=(M). For apparent reasons is called the constituent cluded. Nucleon statd®) are obtained by canonical quan-
quark mass. It is related tm® Gy, , and A via the gap tization of the collective coordinates(t). By construction
equation, i.e., the equation of motion for the scalar figld these states live in the Hilbert space of a rigid rotator. The
[43]. The occurrence of this vacuum expectation value reeigenfunctions are Wigndd functions

2AT(DHAN) =i 7 Q. (13

)<M|T'ﬂ|v>

€, €,
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1 d*k too
(AIN)=——Di2_; (A), (15 Wela)= J oy EnanakS9ko) (k) f ~_ dtelkoraor
with 15 andJ; being, respectively, the isospin and spin pro- Xf d3xlf d3xexg —i(k+Qq)- (X;—Xz)]

jection quantum numbers of the nucleon.
X<N|{\I,(X1!t)sz(rys‘P(X21o)

IV. POLARIZED STRUCTURE FUNCTIONS — s o5
+W(x,,0 W (xq,1)HNY, 22
IN THE NJL MODEL (X2,0) Q%Y y°W (Xq,t)}|N) (22)

o5 : ; —
The starting point for computing nucleon structure func-"WN€ré €.,,0y”y> Iis the antisymmetric combination of

tions is the hadronic tensor, E®). The polarized structure Y»7,?Y»- The matrix element between the nucleon states is
functions are extracted from its antisymmetric piece,lC P€ taken in the space of the collective coordinai¢t

(A) _ _ . : : A '[see Egs(12) and(15)] as the object in curly brackets is an
W (W ; WV“)/?I' Lorentz invariance |mpl!es that the operator in this space. In deriving the expressigg) the
antisymmetric portion, characterizing polarized lepton-

: : .__free correlation function for the intermediate quark fields has
nucleon scattering, can be decomposed into the polariz 4 : o
structure functionsg,(x,Q?) andg,(x,Q?): “Been assuméaifter applying Wick's theorem to the product

of quark currents in Eq(2) [28]. The use of thdree corre-
lation function is justified because in the Bjorken linfit1),
Y g*My > o the intermediate quark fields carry very large momenta and
WMV(Q)_'GWMTq 9:(x,Q%)S are hence not sensitive to typical soliton momenta. This pro-
cedure reduces the commuta[orﬂ(xl,t),JI(xZ,O)] of the
s Ao . 2 quark currents in the definitioi2) to objects which are
S _ﬁp )92(X’Q )]’ (16) merely bilinear in the quark fields. Consequently, in the
Bjorken limit (21) the momentumk of the intermediate
quark state is highly off shell and hence is not sensitive to
momenta typical for the soliton configuration. Therefore, the
use of the free correlation function is a good approximation

A

+

again, P, refers to the nucleon momentum aqf=—g>.
The tensors multiplying the structure functions in Ef6)

should be identified with the Lorentz tensas, in Eq.(4).  in this kinematical regime. Accordingly, the intermediate
ContractingW/}) with the longitudinal A and trans-  quark states are taken to be massless, cf.(E2).
verseA#"” projection operatorg39], Since the NJL model is originally defined in terms of

guark degrees of freedom, quark bilinears as in(28) can
> 1 P.q\2 be computed from the functional

q
Af"=5[2P-qxs+—q_5[<q~8>2—(—M ) }qA]P,eM“,
17 <q(x)QZq(y)>=f Dquq(X)QZq(y)eXp(iJ d*x' £

, -
=——| DgD
+2P-qx sx+<q-s>qA]PTeW, |5a<x.y>f akq

(18 ><exp<if dix'd4y'[8*x'—y') L

, 2[|(P-q
=gl

and choosing the pertinent polarization, yields the longitudi-

nal component +01(X',Y')WX')QZCI(Y')]>
a(x,y)=0
9L(x,Q%)=01(x,Q%), (19 (23

The introduction of the bilocal source(x,y) facilitates the

as well as the transverse combination functional bosonization after which EQJ3) takes the form

é
2y 2 2
97(X,Q%) =9g1(X,Q%) +92(x,Q%). (20) mmm[ S (x—Y)D+ a(X,Y) Q]| aixy)=0-

(24)
Also, b=-4M{(P-g/M)?+2P-qx—(q-S)?}. In the _ _ _ _
Bjorken limit, which corresponds to the kinematical regime The operatorD is defined in Eg.(8). The correlation
{q(x)Q%q(y)) depends on the angle betweeandy. Since

Go=al—Mpx  with |g]—c 1) in general the functional23) involves quark states of all

the antisymmetric component of the hadronic tensor be- 2Adopting a dressed correlation will cause corrections starting at
comes[ 28] order twist-four in QCD{46].
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angular momental}, a technical difficulty arises because  The dependence of the wave functigp(=p) on the in-
this angular dependence has to be treated numerically. qugration variable is only implicit. In the Bjorken limit the

major purpose of the present paper is to demonstrate th?r]itegration variables may then be changed28]
polarized structure functions can indeed be computed from a

chiral soliton. With this in mind we will adopt the valence k?dQ=pdpdd, p=|p|, (28)
quark approximation where the quark configurations in Eq.

(23) are restricted to the valence quark level. Accordingly,where® denotes the azimuth angle betwegmnd p. The
the valence quark wave functidf4) is substituted into Eq. lower bound for thep integral is adopted whek andq are
(22). Then, only quark orbital angular momenta uplte2  antiparallel; p"=|M\x*¢,| for k=—(qgy*€,), respec-
are relevant. From a physical point of view this approxima-tively. Since the wave functiog( + p) acquires its dominant
tion is justified for moderate constituent quark massesypport forp<M the integrand is different from zero only
(m~400 MeV) because in that parameter region the solitolyhen q and k are antiparallel. We may, therefore, take
properties are dominated by their valence quark contnbuQZ_i_ This is nothing but the light-cone description for

tlotr_15[26f,:1hﬂ. In plartlcular, this is the case for the axial prop- computing structure functior€l1]. Although expected, this
erlies o the nucieon. result is nontrivial and will only come out in models which

In t2he r:jext stezp the ptolartlzgd strtagtur? Emf'ons'have a current operator which, as in QCD, is formally iden-
91(x, %) andgr(x, u%), are extracted according 10 EA$7) 00145 the one of noninteracting quarks. The valence quark

and (18). In the remainder of this section we will omit ex- » } R =
plicit reference to the scalg?. We choose the frame such StAle possesses positive parity yieldigg—p)=yoi(p).
that the nucleon is polarized along the positveand With this we arrive at the expression for the isoscalar and

positivex directions in the longitudinal and transverse cases!Sovector parts of the p(_)larlzed structure function in the va-
. N . A lence quark approximation:

respectively. Note also that this implies the choggeqz.

When extracting the structure functions the integrations over —o 5My 1.

the time coordinate in E22) can readily be done yielding 91 (X)=—Nc75—| N, 52

the conservation of energy for forward and backward mov-

o0 2m -
f ||od|0f0 doy!(ps)

My|xz

ing intermediate quarks. Carrying out the integrations over _ 1.
ko andk=|k| gives for the structure functions, X (1% a3) ¥, (p=) N,§Z>, (29)
My/ o 1. ~ - M 1. » 2 _
91(X>:‘NC?<N*E 2 [ oouc(ima-ak 9'1_+1(X)=—NC_N<N1—Z D5 [ pdp[ e i(po)
. 6m| 2 Mlxz| - Jo ’
XYLy (P)i=ggt e, T o~ P (1= a-K) — 1.
X7i(1xa3) Y, (p=) N.5z2/, (30
- 1.
XV Ty (~P)lk=g-e,} N,§z>, (25
v 1=0 5MN 1,\ % 2m ~4
gr-(X)=—=Ncg— N,Exf pdpf dd ¢, (ps)
MN 1}\ MN‘Xil 0
g71(X)=9g1(X) +go(X) = _Nc7<N,§X f dQk? _ 1.
X azy°ih,(ps) N,§X>, (32)

X LGP (@K YTy (P)i=gy+ o,

M 1 % 27
5 L 1. =1(x)=—N —N<N,—ADiJ dp| do
+ (=P (@ YT (—Plk=gy-e} N,§X>, Ir=00= " Negr |\ N 2Psi ],y 1 PP,
- - 1.
(29 XP}(p=) 75y (P) N,§x>, (32

where p=k+q and TI'=gl+gDg7n  with  Dj _ o
=3t riA(t)rjAT] being the adjoint representation of the wherex. =x-* o My and_ €00, ) =Myx../p. The complete
structure functions are given by

collective rotation, cf. Eq(12). The second entry in the

states labels the spin orientatidw appears as a multiplica- — =%+ o' =L(x)— (' =(x) — g' =1 33
tive factor because the functional tra¢24) includes the 9:00=01- 0049170~ (91,70 =03, (x) (33
color trace as well. Furthermore, the Fourier transform of the () — ¢1=0(x) + g!=3(x) — (g} ~%(x)— g+ "X(x)). (34)

valence quark wave function

Note also, that we have made explicit the isoscalar )

and isovectorl(=1) parts. The wave function implicitly de-
pends orx becausay, (p-)=,(p,0, ,®) where the polar
angle®§ betweerp.. andq is fixed for a given value of the
has been introduced. Also, note that the wave functign  Bjorken scaling variable.

contains an implicit dependence on the collective coordinates Turning to the evaluation of the nucleon matrix elements
through the angular velocit®, cf. Eq.(14). defined above we first note that the Fourier transform of the

3

- d=x )
bu(P)= f 2 Yu0exp(ip-x) (27)
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wave function is easily obtained because the angular parts 1

are tensor spherical harmonics in both coordinate and mo- FE*‘FQZJ dx[gh(x) +gi(x)]=gg. (39
mentum spaces. Hence, only the radial part requires numeri- 0

cal treatment. Performing straightforwardly the azimuthal in-, . . S
tegrations in Eqs(29) and (30) reveals that the surviving in this model c_alculatlon vghen the moment O_f inerdi3 as
isoscalar part of the longitudinal structure functigb:O is well as _the axial chargeg, gnd ga, are confined to their
linear in the angular velocit§. It is this part which is as- dominating valence quark pieces. We have used

sociated with the proton—spizn puzzle.2 Using the standard N

.quar?nzatlon con.d|t|onQ—J/a ,whe.rea is trle r-nom.ent-of ga=— ?Cf d3rﬂ(r)y3y5r3¢u(r), (40)
inertia of the soliton and further noting that thairection is

distinct, the required nucleon matrix elements are

(N,32|3,IN,32)=1. Thus, g}~ is identical for all nucleon O_ch 3. —F

states. Choosing a symmetric orderiffgt,55 for the non- gA_? dr 4o (1) Y354 (1), (41)
commuting operatorsD;,J;—3{Di,,J;}, we find that the

nucleon matrix elements associated with the cranking portiofo verify the Bjorken sum rule as well as the axial singlet
of the isovector piece(N,i%2|{D3y,JX}|N,t%2), vanish. charge. This serves as an analytic check on our treatment.
With this ordering we avoid the occurrence of PCArtial  Here o refers to the valence quark contribution to the mo-
conservation of axial-vector currgntiolating pieces in the ment of inertia, i-e-ya5=(1/2)2M¢u|<,u|73|U>|2/(€,L—éu)-
axial-vector current. The surviving terms stem solely fromThe restriction to the valence quark piece is required by con-
the classical part of the valence quark wave functionsistency with the Adler sum rule in the calculation of the
W¥,(x) in combination with the collective Wigned-function  unpolarized structure functions in this approximatjds).

D3,. Again, singling out the direction, the nucleon matrix

elements becomfl9] V. NUMERICAL RESULTS

(N %2| DN %2>: —2j, (35) In this sectiqn we display the results of the spin—polarized
' ' ' structure functions calculated from Eg&13)—(A16) for

. 1 . . constituent quark massesmof=400 MeV and 450 MeV. In

whereiz=2; is the nucleon isospin. For the transverse,giion to checking the above mentioned sum rules, see

st_ruc;ure_funcu_on,_ the Surviving piece of th_e_lsoscalar Con'Eqs,.(37)—(39), we have numerically calculated the first mo-
tribution is again linear in the angular velocities. The trans-ment ofgP(x, u2) 3
1 1 ’

versally polarized nucleon gives rise to the matrix elements,

(N,3x|J|N,2x)=3. Again, choosing symmetric ordering

1
for terms arising from the cranking contribution, the F‘l’:f dxgl(x), (42
nucleon matrix elements (N,3x|{Dsy,J,}|N,3x) and 0

(N,3x|{D33,Jy}|N, 3x) vanish. As in the longitudinal case, .. ihe Efremov-Teryaev-LeaddETL) sum rule[52]
there is a surviving isovector contribution stemming solely

from the classical part of the valence quark wave function 1
¥, (x) in combination with the collective Wigned-function Fgr= J dxx gh(x)+2g5(x)]. (43
0

D,, . Now, singling out thex direction, the relevant nucleon

matrix elements becon{d9] ] )
We summarize the results for the sum rules in Table I. When

comparing these results with the experimental data one ob-
serves two shortcomings, which are already known from
studies of the static properties in this model. First, the axial
Explicit expressions in terms of the valence quark wavechargeg,~0.73 comes out too low as the experimental

functions (33) and (34) for g9;-°(x),95="(x),95."(x), and  value isg,=1.25. It has recently been speculated that a dif-

(N,3X|DgyIN, 3%y = — 2. (36)

gf§1(>_<) are listed in Appen_dix A. S ~ ferent ordering of the collective operatddg;J; (cf. Sec. IV}
Using the expressions given in Appendix A it is straight-may fill the gap[53,45. However, since such an ordering
forward to verify the Bjorken sum rulpt7] unfortunately gives rise to PCAC-violating contributions to

the axial-vector currerjb4], and furthermore inconsistencies

b rn_ 1 o n _ with G parity may occur in the valence quark approximation

ri-ri= Jo dX[91(x) —g1(X)]=gal6, (37 [55], we will not pursue this issue any further at this time.
Second, the predicted axial singlet charge~0.6 is ap-

the Burkhardt-Cottingham sum rulég] proximately twice as large as the number extracted

I‘gz fldxgg(x)=0, (39 SWhich, in this case, amounts to the Ellis-Jaffe sum [&& since
0 we have omitted the strange degrees of freedom. A careful treat-
ment of symmetry-breaking effects indicates that the role of the
as well as the axial singlet charge strange quarks is less important than originally assufié¢b1].
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TABLE I. Sum rules calculated from Eq&38) and(39) as functions of the constituent quark massn
the NJL-chiral soliton model.

m (MeV) 400 450
Burkhardt-Cottingham: ry 0 0
Bjorken: [Y—T7=ga/6 0.121 0.118
Ellis—Jaffe: ry 0.149 0.139
ETL: Ter 1.38x 102 7.65<10°2
Axial singlet charge: rP+r10=g9% 0.638 0.579

from experimerft0.27+0.04[17]. This can be traced back to and(10)]. The valence quark becomes more strongly bound
the valence quark approximation as there are direct and iras the constituent quark mass increases. In this case the
direct contributions tay} from both the polarized vacuum lower components of the valence quark wave function in-
and the valence quark level. Before canonical quantization ofrease and relativistic effects become more important result-

the collective coordinates one finds a sum of valence an{!d in @ broadening of the maximum. With regard to the
vacuum pieces Burkhardt-Cottingham sum rule the polarized structure func-

tion gh(x,u?) possesses a node. Apparently, this node ap-
g0+ g° pears at approximately the same value of the Bjorken vari-
= (44)  able x as the maximum ofgf(x,«?). Note also that the
a,+ ayae distinct twist contributions tab(x,#?) by construction di-

verge as Inx) asx— 0 while their sum stays finitésee Sec.
Numerically, the vacuum piece is negligible, i.e., V| for details).
gSanSQZ%. Canonical quantization subsequently involves As the results displayed in Fig. 1 are the central issue of
the moment of inertia®= o+ a2, which also has valence our calculation it is of great interest to compare them with
and vacuum pieces. In this case, however, the vacuum part ibe available data. As for all effective low-energy models of
not so smalla2,/a?~25%. Hence, the full treatment of the the nucleon, the predicted results are at a lower Q3lthan
polarized vacuum will drastically improve the agreementthe experimental data. In order to carry out a sensible com-
with the empirical value forgg_ On the other hand, our parison either the model results have to be evolved upward
model calculation nicely reproduces the Ellis—Jaffe sum ruler the QCD renormalization group equations have to be used
since the empirical value is 0.136. Note that this comparisofi© extract structure functions at a low-renormalization point.
is legitimate since neither the derivation of this sum rule nof=or the combinatiorxg,(x) a parametrization of the empiri-
our model implies strange quarks. While the vanishingcal structure function is available at a low scE8d].° In that
Burkhardt-Cottingham sum rule can be shown analytically instudy the experimental higQ* data are evolved to the low-
this model, the small value for the Efremov-Teryaev-Leadefenormalization pointu?, which is defined as the lowest
sum rule is a numerical prediction. Recently, it has beerf?® satisfying the positivity constraint between the polarized
demonstratedi23] that the ETL sum rulé43), which is de- and unpolarized structure functions. In a next-to-leading or-
rived within the parton model, neither vanishes in the centerder calculation those authors foupd=0.34 GeV? [31]. In
of-mass bag model nor is supported by the SLAC E143 datkig. 2 we compare our results for two different constituent
[2]. This is also the case for our NJL-model calculation asquark masses with that parametrization. We observe that our
can be seen from Table I. predictions reproduce gross features such as the position of

In Fig. 1 we display the spin-structure functions the maximum. This agreement is more pronounced the lower

9P(x,u?) and gi(x,u?) along with the twist-two piece the constituent quarkis, i.e., the agreement improves as the
g\ZNW(p)(X,Mz) and twist-three piecegg(x,,uz). The actual apphcgbll!ty of the valence quark approxmayon_bec;omes
value for u2 and the precise definition of the twist-two and more justified. pnfortunately, such a parametrization is cur-
twist-three piece§see Eqs(48) and (49)] will be given in rently not available for the transverse structure function
the following section in the context of the evolution proce- gr(x) [or go(x)]. In grder to, Ineve_r;]heless, be _letl;la t?j com-
dure. We observe that the structure functigléx, u?) and pare our corresponding results with ttfew) available data

WW(p) . , , ) we will apply leading-order evolution techniques to the
g2 (x,u%) are well localized in the interval 9x<1, gy crure functions calculated in the valence quark approxi-
while for gf about 0.3% of the first momentI'}

1 . : mation to the NJL-soliton model. This will be subject of the
= [5dxdh(x, %) comes from the regior> 1. The polarized following section.

structure functiog(x, «?) exhibits a pronounced maximum
at x~0.3 which is smeared out when the constituent quark———
mass increases. This can be understood as follows: In ourPThese authors also provide a low-scale parametrization of quark
chiral soliton model the constituent mass serves as a Couistribution functions. However, these refer to the distributions of
pling constant of the quarks to the chiral figlsee Eqs(7)  perturbatively interacting partons. Distributions for the NJL-model
constituent quarks could in principle be extracted from Eg8)—
(31). It is important to stress that these distributions may not be
“Note that this analysis assumes(S)flavor symmetry, which, of compared to those of Rf31] because the associated quarks fields
course, is not manifest in our two-flavor model. are different in nature.

0a=2(0p+ Gpad Q3=
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VI. PROJECTION AND EVOLUTION piece’ see Eq.(14)] is anything but a product of Dirac

spinors. In this context, techniques such as Peierls-Yoccoz
r[]56] (which do not completely enforce proper suppidt]
0=<x=<1 nor restore Lorentz invariance, s8]) appear to

One notices that our baryon states are not momentu
eigenstates causing the structure functi@ee Figs. 1 and)2

not to vanish exactly fox>1 although the contributions for dbe infeasible. Thus, given the manner in which the nucleon

ﬁ;dl gcr)i f\ilgl?r/a?irggl;rg"fhizotrrt]zo:ﬂr‘;?e'osndggtt%é?fglffgéfegrises in chiral soliton models, Jaffe’s projection technique is
sentation of the Poincargroup which is common to the quite well suited. It is also important to note that, by con-

low-energy effective models. The most feasible procedure tgtructlon, sum rules are not effected by this projection, i.e.,

cure this problem is to apply Jaffe’s prescriptiB2], fg‘)d)_(f(x):f},.dx'?(x). Accordingly, the sum rules of the
previous section remain intact.

1 With regard to evolution of the spin-polarized structure
f(x)— T (X)=—Ff(=In(1—X)), (45  functions applying the OPE analysis of Sec. II, Jaffe and Ji
1-x brought to light that, to leading order inQ?#, g;(x,Q?)
receives only a leading order twist-two contribution, while
to project any structure functiori(x) onto the interval g,(x,Q?) possesses contributions from both twist-two and
[0,1]. In view of the kinematic regime of DIS this prescrip- twist-three operators; the twist-three portion coming from
tion, which was derived in a Lorentz-invariant fashion within spin-dependent gluonic quark correlatidi®6,4Q (see also
the (1+1)-dimensional bag model, is a reasonable approxi{59,60). In theimpulse approximatioh36,40,4] these lead-
mation. It is important to note in the NJL model the un-ing contributions are given by
projected nucleon wave functiofincluding the cranking

H ! 2 1 n
x2,(%) lim J olxx“gl(x,Q)=§2i 0%, n=024,...,

Q%—w
(46)
1
—— m =400 MeV -~ lim | dxx'gy(x,Q%)=— LE {0%,—03;}
- 7N ) ' 2(n+1)45 20 =8
ool — m=4a50Mev / \\‘ | Q==
——- =034 GeV*[32] n=24,.... (47

Note that there is no sum rule for the first moment,
I',(Q?)=[1dxg(x,Q% [36]. Some time ago, Wandzura
and Wilczek(WW) [61] proposed thaty,(x,Q?%) was given

in terms ofg;(x,Q?),

id
g\ZNW(XiQZ): _gl(X!Q2)+ J;( Vygl(y’Qz)i (48)

FIG. 2. The valence quark approximation to the nucleon struc- ) _ ) _
ture functionxg,(x) in the NJL-soliton model compared to the Which, in fact, yields the leading order to the Adler sum rule
low-renormalization point result of Reff31]. FiP—F /P [49], rather than being a correction.
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which follows immediately from Eqs46) and (47) by ne-  (antjneutrino-proton scatterings?— F2”7p. For the constitu-
glecting the twist-three portion in the sum in E47). One  gnt quark mass m=400 MeV we have obtained
may reformulate this argument to extract the tWist—threeM2%0_4 Ge\. One certainly wonders whether for such a

piece low scale the restriction to first order iagcp is reliable.
— o 2 WWre 2 There are two answers. First, the studies in this section aim
92(X%,Q%)=02(x,Q%) g2 (x,Q%), (49 at showing that the required evolution indeed improves the
since, agreement with the experimental data and, second, in the bag

model it has recently been showW82] that a second-order
1 L n evolution just increaseg? without significantly changing

f dxx"g,(x,Q%) = mE 03;, n=24,.... f[he evolved data. In Fig. 3 we compare the unevolved, pro-
0 ! - jected, structure functiorg?(x,u?) with the one evolved
50 From u?=0.4 GeV to Q?°=3.0 GeV . Also, the data from

In the NJL model as in the bag model there are no explicithe E143 Collaboration from SLAC7] are given. Further-
gluon degrees of freedom, however, in both models twistMore, in Fig. 3W"\>\’Ie compare the projected, unevolved, struc-
three contributions ta,(x, x«2) exist. In contrast with the ture functiong; ®(x,u?) as well as the one evolved to
bag model where the bag boundary simulates the quaerzZS.o GeV with the data from the recent E143 Collabo-
g|u0n and g|u0n_g|uon Corre|ati0[ig3] in the NJL model, ration at SLAC[Z] As expected, we observe that the evolu-
the gluon degrees of freedom, having been “integrated” outtion pronounces the structure function at lawthereby im-
leave correlations characterized by the four-point quark couProving the agreement with the experimental data. This
pling Gy, . This is the source of the twist-three contribution change towards smatlis a general feature of the projection
to g,(x, 2), which is shown in Fig. 1. and evolution process and presumably not very sensitive to

Forg;(x,Q?) and the twist-two piecgy’"V(x,Q%) we ap-  the prescription applied here. In particular, choosing an al-
ply the leading ordefin aoc(Q?)] Altarelli-Parisi equa- ternative projection technique may easily be compensated by

tions [33] to evolve the structure functions from the model @ appropriate variation of the scaié.

scaleu? to that of the experimer®?, by iterating While the evolution of the structure functiogy(x,Q?)
and the twist-two piecg} “(x,Q?) from u? to Q? can be
dg(x,t) performed straightforwardly using the ordinary Altarelli-

g(x,t+ ot)=g(x,t)+ 6t

dt (51 Parisi equations, this is not the case for the twist-three piece
g,(x,Q?). As the twist-three quark and quark-gluon opera-
Wheret=ln(Q2/AéCD). The explicit expression for the evo- tors mix, the number of independent operators contributing
lution differential equation is given by the convolution inte- to the twist-three piece increases with wheren refers to
gral, the nth moment[60]. We apply an approximatiosee Ap-
pendix B suggested in35] where it is demonstrated that in
dg(x,1) :ﬂ (X,1)®Py(X) N.—o limit the quark operators of twist three decouple
dt 27 9% qq from the evolution equation for the quark-gluon operators of
the same twist resulting in a unique evolution scheme. This
_ @C (F)JlQP (y)g(i t) (52) scheme is particularly suited for the NJL-chiral soliton
27 R xy y' ) model, as the soliton picture for baryons is based on
N.— o arguments.
where the quantityPqq(z) =[(1+2%)/(1-2%)], represents In Fig. 4 we compare the projected, unevolved, structure
the quark probability to emit a gluon such that the momens,tion 98%(x,12) evolved to Q2=5.0 Ge\? using the

tcl:mgf)of(nghel)/qztrj]ark is rf((e)(rjuced b?]’ the fr:;tigrlzs; scheme suggested if35]. In addition, we reconstruct
RUJ= ™ f f VOIS, gP(x,Q?) at Q2=3.0 Ge\? from g¥"®™(x,Q?) and
agcp=47/[ BIN(QY/A?)] and 8= (11— 3n¢). Employing the 92 'QZ) q Q it with th gzt SL(Aé:de{%]f
« 17 prescription [34] yields 0,(x,Q%) an compare it wi e recen g for
95(x,Q?). As is evident, our model calculation of
dg(x,t) 2Cg(f) g5(x,Q?), built up from its twist-two and twist-three pieces,
g 2Ll 2
a9t | X+ 2 +2In(1-x) |g(x,1) agrees reasonably well with the data although the experimen-

tal errors are quite large.
+f1d [l (X t) (x,t)
- _1 - XY
§ Yy yg y g
In this paper we have presented the calculation of the

As discussed in Sec. Il the initial value for integrating thepolarized nucleon structure functiong;(x,Q%) and
differential equation is given by the scale® at which the  g,(x,Q?) within a model which is based on chiral symmetry
model is defined. It should be emphasized that this scaland its spontaneous breaking. Specifically, we have em-
essentially is a new parameter of the model. For a given

constituent quark mass we fit> to maximize the agreement

of the predictions with the experimental data on previously "This scheme has also been employed by §@8jin the center-
[49] calculated unpolarized structure functions for of-mass bag model.

2

1+y?
1-y

] VIl. SUMMARY AND OUTLOOK
(53
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FIG. 3. The projection and evolution of the spin-polarized structure functions as a function of Bjorkenthe constituent quark mass
we choosen=400 MeV. Left panelgf(x,Q?), unprojectedlong-dashed ling projecteddashed ling and evolved fromu=0.4 Ge\? to
Q?=3.0 GeV (solid ling). Data are from7]. Right panel:g‘z"’w(p)(x,Qz), unprojected(long-dashed ling projected(dashed ling and
evolved fromu=0.4 GeV to Q?=5.0 GeV (solid line). Data are fronj2,5], where the diamonds, circles, and triangles correspond to the
4.5° E143, 7.0° E143, and SMC kinematics, respectively. Overlapping data have been shifted slightlhim statistical errors are
displayed.

ployed the NJL-chiral soliton model which reasonably de-els, the nucleon wave function arises as a collective excita-
scribes the static properties of the nucld@6,45. In this  tion of a nonperturbative meson field configuration. In par-
model the current operator is formally identical to the one inticular, the incorporation of chiral symmetry leads to the
a noninteracting relativistic quark model. While the quarkdistinct feature that the pion field cannot be treated perturba-
fields become functionals of the chiral soliton upontively. Because of the hedgehog structure of this field one
bosonization, this feature enables one to calculate the hadtarts with grand spin symmetric quark wave functions rather
ronic tensor. From this hadronic tensor we have then exthan direct products of spatial spinors and isospinors as in
tracted the polarized structure functions within the valencehe bag model. On top of these grand spin wave functions
guark approximation. As the explicit occupation of the va-one has to include cranking corrections to generate states
lence quark level yields the major contributiéebout 90%  with the correct nucleon quantum numbers. Not only are
to the associated static quantities such as the axial charg#ese corrections sizable but even more importantly one
this presumably is a justified approximation. When crankingwould not be able to make any prediction on the flavor sin-
corrections are included this share may be reduced, dependlet combination of the polarized structure functions without
ing on whether or not the full moment of inertia is substi- them. The structure functions obtained in this manner are, of
tuted. course, characterized by the scale of the low-energy effective
It needs to be stressed that in contrast with, e.g., bag modnodel. We have confirmed this issue by obtaining a reason-

125 150 -
10 - 125
_E’(X’Q,l) FIG. 4. The evolution ofgB(x,Q? (pro-
075 - gz,(,f’u) 1 jected from u=0.4 Ge\? (long-dashed lineto
- - &"(x,u') 0T Q?=5.0 GeV? (solid line. In addition, we
050 F TN -5 (X»Ql) display the corresponding evolution for
NS 8 050 \ gy (x,Q%  (projected. Right panel,
. ~ £ o 9806, Q) =g5"P(x,Q%) + gB(x,.Q%) evolved
" 4 from u?=0.4GeV to Q?>=5.0 Ge\’. Data and
' N\ /3 0.00 F statistical errors fogB(x,Q?) are displayed from
05 //’ S l‘{w [2], where the diamonds and circles correspond to
,,,,,, 5 the 4.5° E143 and 7.0° E143 kinematics, respec-
050 o . J_ tively. Overlapping data have been slightly
shifted inx.
075 . 075 :
o 0.10 100 on 0.10 100
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able agreement of the model predictions for the structurevhich is the sum of the total spihand the isospin/2. The
function g, of the proton with the low-renormalization point spin itself is decomposed into orbital angular momenfum
parametrization of Ref[31]. In general, this scale of the and intrinsic spino/2. Denoting byM the grand spin projec-
effective model essentially represents an intrinsic parameteion quantum number, the tensor spherical harmonics which
of a model. For the NJL-soliton model we have previouslyare associated with the grand spin may be written as
determined this parameter from the behavior of the unpolaryngM(f)_ Note that these tensor spherical harmonics are two-
ized structure functions under the Altarelli-Parisi evolution co';nponent spinors in both spin and isospin spaces. Given a
[49]. Applying the same procedure to the polarized structurgiyed profile function®(r) the numerical diagonalization of

functions calculated in the NJL model yields good agreemenfne Dirac Hamiltonian (10) yields the radial functions
with the data extracted from experiment, although the errob(e,+,1)(r) f(G’+’1)(r) etc., in(cf. Ref.[65])

bars ong;(x,Q?) are still sizable. In particular, the good
agreement at lowx indicates that to some extend gluonic ig(G’+;1)(r)yG'M (F)
effects are already incorporated in the model. This can be " G.G+1/2

+
understood by noting that the quark fields, which enter our v = DM 12(h)
calculation, are constituent quarks. They differ from the cur- '
rent quarks by a mesonic cloud which contains gluonic com- ig(G+2)(r))eM -
ponents. Furthermore, the existence of gluonic effects in the 19, (N YE6-1/2(1)
model would not be astonishing because we had already ob- T f&+Dp) )M ()| (A2)
served from the nonvanishing twist-three partgefx,Q?), . ’
which in the OPE is associated with the quark-gluon inter-
{ahcéi%rll,;k:zt the model contains the main features allocated to o igf'_;l)(r)ygiwl,eﬂ/z(h
uons. () = R

There is a wide avenue for further studies in this model. Y —fLG' '1)(f)ygjg+1/2(r)
Of course, one would like to incorporate the effects of the
polarized vacuum, although one expects from the results on ig(G’_;Z)(r)yg]—'\AlG—llz(F)
the static axial properties that their direct contributions are " K’ B ' " (A3)
negligible. It may be more illuminating to include the strange &2 (N VR 1a(r)

guarks within the valence quark approximation. This exten-

tsr;c;n ?(f)t?:'_ smﬁ]delu:;Zm?efgha?cgllem?vr\;gii:rz/ ?Sevarlllagéilusrqjhe second superscriptt() denotes the intrinsic parity,
P pin b j y: 9 ‘which also is a conserved quantum numbéfote that for

First, the collective matrix elements will be more compli- the G=0 channel, which contains the classical contribution
cated than those in Eg§35) and (36) because the nucleon B ' S
to the valence quark wave function in Ed4),

wave functions will be distorted SB)-D functions in the

presence of flavor symmetry breakif®g,16. Furthermore, . 300 ¢
the valence quark wave functigqii4) will contain an addi- _ 19,(r) Vo 1/2Ar) Ad)
tional correction due to different nonstrange and strange con- v f,(r))29,,(1) '

stituent quark massg$4]. When these corrections are in-

cluded, direct information will be obtained on the only the components with=+1/2 are allowed. In addition
contributions of the strange quarks to polarized nucleong the classical piecéA4), the complete valence quark wave
structure functions. In particular, the previously developedunction (14) also contains the cranking correction, which
generalization to three flavof64] allows one to consistently dwells in the channel witlS=1 and negative intrinsic par-
include the effects of flavor symmetry breaking. ity.
The discretization &) is accomplished by choosing suit-
ACKNOWLEDGMENTS able boundary conditions at a radial distance which is large
) _ compared to the soliton extensip@5,64. This calculation
This work.was supported in part by the Deutsche ForSyie|dS the energy eigenvaluas,, which enter the energy
chungsgemeinschafbFG) under Contract No. Re 856/2-2. fynctional (11). The soliton configuration is finally deter-
L.G. is grateful for helpful comments by G. R. Goldstein.  mined by self-consistently minimizing this energy func-
tional. In Ref.[66] the numerical procedure is described in
APPENDIX A: SPIN-POLARIZED STRUCTURE detail.
FUNCTIONS We continue by making explicit the Fourier transform

: . , . (27 of Eq. (1%):
In this appendix we summarize the explicit expressions

for the structure functions, Eq9)—(32). The first step is to ~ - 10 ¥ A5
construct the eigenfunctions of the single-particle Dirac V(P =T (P)+ QW u(p)- (AS)
Hamiltonian (10) in coordinate space. As the hedgehog an-re |eading order i, valence quark contribution is just the
satz (9) connects coordinate space with isospace, thesgq rier transform of Eq(A5)

eigenfunctions are also eigenstates of the grand spin operator ’

G=J+ g: i g+ %' (A1) (i‘l;ge total parity is given by the product of the intrinsic parity and
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9, (p))R0 (p) convenience. For purposes of notation we have introduced
NU p)= ( 0.1/2 ) (A6)  the quantityQ, which arises in analyzing the matrix ele-
T (PP

ments[see Eq.(14)]:
and the cranking correction involves the Fourier transform of (|7 Q|v)
spinor withG=1 and negative intrinsic parity:

1] oM. —
=QM[ 5 (0t 02)- = (-0

€, €,
¥ (p __.<§£L1)(p)y%j3,2(p) 9(2)(p)y(l)j'iﬁ/2(f)))
g TOEVYAPD - TR (pINAP)) ~Omoo( 96,1, (A9)
(A7
where

Here Y " (p) are the Fourier transforms of the tensor
spherical harmonics associated with the grand spin operator Q,=
M

209,(1g @ (r)+f,(Nf2(r)}.
(Al1). The Fourier transform for the radial functions is de- {9,(Ng, (N + (DT}

fined by (A10)
_ R Defining the combinations
¢ (p)=f drr2ji(pr) ¢, (r). (A8)
o : TOP=Q, T (p), (A1D)
Here the indeX of the Bessel function denotes the orbital a(i)(p)ZQﬂaﬂ)(p), i=12, (A12)

angular momentum of the associated tensor spherical har-
monic in Eqs.(A6) and(A7). We have suppressed the grandthe isoscalar(vectop contributions to the spin-polarized
spin index on the transforms of the radial wave functions forstructure functions, Eq$29)—(32), read

—0 L BMy (= 1—3co§(®§)_l~ - - cog0,)
g1 (%)= —Ne 5~ fM - pdp|g (P9 m(p)—J§ 59.() 9 (P) 79, (P) T (p) —=—
- - cog®;) _ cog®) _ cog®) _ 1+co(07)
T (2) p’— (1) P’ 2 p’_ (g ———— P
9,(p) F17(p) — f.(P)g 7 (p) 2 F.(P1 g7 (P) — fo(p)F(p) G
1—2cog(0,
+T,(pT@ p)%], (A13)
=1 2 My (= -~ 24 7 z - 7 2 -
01 (xu?)=—Negg | PAP{G,(P)*£20,(P)T,(p)cos®;) T, (p)*[1=2c0S(O;) ]}, (A14)
1=0(x,u?)=—N SM_NJW dpi g9,(p)g™( )M 1”( )g@(p)Fg,(p)TH( )M
gt = (X, u C36r J g PP 9o (PIO(P WG 9.(Pg?(P)Fgu (P TH(p NG
og(0
T T@(p )(—p)], (A15)
g7+ (%, %) cgemf P dp{g,(p)?~T,(p)%cos(®,)}, (A16)

which we evaluate numerically. Note that in case of the neuthe cranking corrections. In the special case of the isovector
tron the signs of the isovector pieces have to be reversed@omponent these corrections drop out and we formally con-
Note that the angl@rf is related to the integration variable firm the result displayed in EdB.6) of Ref. [67].
p via
CO@§:%|MNXI€U|- (A17) APPENDIX B: EVOLUTION OF g,(X,p?)
In the N.—oo limit it has been showf36] that one can
In Ref.[67] the structure functiog, was calculated omitting evolve the moments af ,(x, 2),
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M. (0?)= ag(Q?)\ (7i-v/b o ® and ex'pressin@(x,,uz) in terms of the Inf) and a power
i a(1?) LM series inx,
S
from the scaleu? to Q?, where the anomalous dimensions — -
are 9206 1H)=ay(pIn(0 + 2 an(phx",  (B4)
yi_1=2N ( W)+ i + ye— E) (B2) one can alternatively express the momeMtsin terms of the
! ¢ 2j 4) coefficientsa,,
with ¢(x)=(d/dx)In['(x) and b=(11IN.—2n¢)/3. Ne and_ M;(12)=Ajnan( ). (B5)
n; are the number of colors and flavors, respectively. Given
the moments oy 5(x, 2, We calculate the momenhd;(x?) from Eq.(B3) and evolve

them according to Eq(B1). Finally, inverting the matrix
Aj,, we obtain the evolved coefficients,(Q?) which in

1 [
2y — i1 2 oDt
M;(15) Jo BT ga(xs), B3 turn yield g,(x,Q?) (see Fig. 4
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