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The asymptotic behavior of Einstein-Rosen waves at null infinity in four dimensions is investigaa#d in
directions by exploiting the relation between the four-dimensional space-time and the three-dimensional sym-
metry reduction thereof. Somewhat surprisingly, the behavior in a generic directioetter than that in
directions orthogonal to the symmetry axis. The geometric origin of this difference can be understood most
clearly from the three-dimensional perspecti\@0556-282(197)01902-4
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I. INTRODUCTION | in generic directions in four dimensions is dictated by the
behavior of various fields dimelikeinfinity in three dimen-

Although the literature of Einstein-Rosen waves is quitesions. Since this three-dimensional timelike infinity is regu-
rich (see, e.g., the references listed in the companion papéar, the behavior in generic directions in four dimensions is
[1]) it appears that there is only one article that discusses theetter than what one might naively expect.
asymptotic behavior of these waves at infinity in four- The plan of the paper is as follows. In Sec. Il, we shall
dimensions: the paper by Stachig] written already in the ~Present the three-dimensional structure. In Sec. I, we will
sixties. Moreover, even in this work, Stachel deals solelyuse this structure to investigate four-dimensional null infin-
with the directionsorthogonalto the axis of symmetry, i.e., ity. The Appendix spells out the relation between three- and
to the 9/ 9z-Killing field. The purpose of this note is to ana- four-dimensional curvatures.
lyze the asymptotic structure @l directions.

Since these space-times admit a translational Killing field, Il. THREE-DIMENSIONAL DESCRIPTION
one would expect them not to be asymptotically flat. This is  Thjs section is divided into three parts. In the first, we
precisely what Stachel discovered in directions orthogonal t%riefly recall the symmetry reduction procedure and apply it
the symmetry axis. Somewhat surprisingly, however, we Wilky  optain  the three-dimensional equations governing
find that the falloff is much better in generic directions. In- ginstein-Rosen wavegFor details, segl].) This procedure
deed, if one restricts oneself to the “averaged” time- equces the task of finding a four-dimensional Einstein-
symmetric situatiorfwhich in particular occurs in the time Rosen wave to that of finding a solution to the wave equation
symmejcric case; for details, see Sec),ltine finds that, inall 5, three-dimensionaMlinkowski space. In the second part,
other directions, curvature peels normally and a regular nullye analyze the asymptotic behavior of these solutions to the
infinity, 1, exists. In fact, all radiation is concentrated along,yaye equation at timelike infinity of the three-dimensional
the two generators in which the null geodesics orthogonal tjinkowski space. In the third part, we combine the results of
the symmetry axis meét In other directions, there is curva- he first two to analyze the asymptotic behavior of the three-
ture but no radiation. If one goes beyond the “averaged”gimensional metric associated with Einstein-Rosen waves at
time symmetric case, the behavior is not as nicetay have jts timelike infinity. We show that this timelike infinity is
a logarithmic charactefi3,4]. That is, the metric does admit yeqgylar. Although this result is not needed directly for our
Bondi-type expansions but in terms of'In'r. Nonetheless, majn result, it is included because it complements the gen-

even this behavior is better than the one encountered in therg| analysis of three-dimensional null infinity presented in
directions orthogonal to the symmetry axis.

: , e : 1
The key idea behind our analysis is to exploit the relation
between four-dimensional Einstein-Rosen waves and the as- A. Symmetry reduction

iated three-dimensional metry on the manifold of or- . . . .
sociated three-dimensional geometry on the manifold of o Recall first that the metric of a vacuum space-time with

bits of the translational Killing field. Since the translational W mmuting. hvpersurf rthogonal like Killin
Killing field has been “factored out” in the passage to three 0 commuting, hypersurtace orthogonal spacefike 9
ectors can always be written locally ES|

dimensions, the three-dimensional space-time is asymptot¥
cally flat at.nulll mﬁmty[}] and, as we will see, alsp admits d=e2/d 2+ 2~V (—d2+dp?) + p2e 2Vdg?, (2.1
a regular timelike infinity. To analyze the behavior of the

four-dimensional metric, we can draw on this three-wherep andt (the “Weyl canonical coordinateg”are de-
dimensional information. We will find that the behavior at fined invariantly andy= (t,p), v= v(t,p). (Here, some of
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the field equations have been ugeBlinstein-Rosen waves in three dimensions, in terms of Cauchy data
have cylindrical symmetry; the Killing field/dz is transla- W= ¢(t=0xX,y), V1= (t=0X,y):

tional andd/d¢ is rotational and keeps a timelike axis fixed.

Then the coordinates used in E@.1) are unique up to a HExy) = f f o(X ,y ")dx'dy’

translationt—t+a. XY= o ot solt2—(x—x")2—(y—y’)?]?
The 3-manifold is obtained by quotienting the four- D

dimensional space-time by the orbits of #&z-Killing field f J' Wa(x",y")dx'dy

and is thus coordinatized by p, and ¢. The four-metric "2 sp[tP=(x=x")?=(y—y")*]"*

naturally induces a three-metider? on this manifold and the 2.9

four-dimensional Einstein’s equations can be expressed on

the 3-manifold as a system of coupled equations involvingyhereS is the disk

the induced three-metric and the norm of the Killing field

dldz, which, from the three-dimensional perspective can be (x—x")2+(y—y')?<t?

regarded as dscalaj matter field. It is well known(see

[1,6,7]), however, that the field equations 5|mpI|fy consider-in the initial Cauchy surfacésee, e.g.[8]). We will assume
ably if we rescale the induced three-metrilo® by  that the Cauchy data are axially symmetric and of compact
exp(2y), the square of the norm of the Killing field; i.e., in support.

terms of the three-metric, In the preceding papé¢i] [see Eq(2.23] we have shown

5 aqub_ 2y 5 ) 1o that on each null hypersurface=t— p=const the solution
do®=gapdX dx’=e""(—dt*+dp) +p°d¢°. (22 (2.9 can be expanded in the form

The four-dimensional vacuum equations are then equivalent

to the sefcf. Egs.(2.12—(2.15 in the preceding papéd]] - i fk(u))
. ’/’(va) \/;(fo(u)+k_l_p|(_ ' (21@
Y =y+p ty' =2y, (2.3
where the coefficients in this expansion are determined by
— '+ y+p y =2y2, (2.4  integrals over the Cauchy data. This is the behavioy ait
null infinity 1.
p Ly=24y, (2.5 Let us now investigate the behavior of the soluti@m®)
near timelike infinityi * of the three-dimensional Minkowski
and space. Setting
— g+ +p ' =0, (2.6) t=U+xp, «>1, (2.11

on the 3-manifold, where the dot and the prime denote dewe wish to findys for p—o with U and « fixed. For large
rivatives with respect td andp, respectively. The last equa- enoughp the region of integration is contained in the cone.
tion is the wave equation for the nonflat three-metfi@ as  Hence, we have to perform the derivative in E2}9) only in
well as for the flat metric obtained by setting=0. Thisisa the integrand. We obtain

key simplification for it implies that the equation satisfied by

the matter sourcé decouples from the Eq$2.3)—(2.5) sat- p+ U

isfied by the metric. Furthermore, these latter equations re2m¥(t,p)= (2= 1)p7 " f J Wop'dp'de’

duce simply to

_ 2(kU+p'cosp’) 1 U2—p'2 1]732
Y =p(P+4'?), (2.7 x|+ K2—1 p k=1 p?
y=2pg)’. 2.8 1 T
Y=2pdd 28 —/'[(K 1)p2]12f o Wip'dp'de
Thus, we can first solve for the axisymmetric wave equation
(2.6) for  on Minkowski spacand then solve Eq$2.7) and 2(kU+p'cosp’) 1 U%—p'2 11712
(2.8) for y—the only unknown metric coefficient—by X1+ K2—1 ;+ k-1 p?
guadratures[Note that Egs(2.7) and (2.8) are compatible
because their integrability condition is precisely E2.6).] (2.12

The integrand can again be expandegirt (ort™1), but the
leading term isp 1. By contrast, ahull infinity of the three-

In this subsection we will focus on the axisymmetric dimensional space-time) falls off only asp~Y? [see Eq.
wave equation in three-dimensional Minkowski space and2.10 and[1] for detaild. We will see that it is this differ-
analyze the behavior of its solutiogsnear timelike infinity  ence that makes the behavior of the four-metric along ge-
of Minkowski space(For behavior at null infinity, sefl].) neric directions better than that along directions orthogonal

We begin with an observation. The “method of descent” to the symmetry axis.
from the Kirchhoff formula in four dimensions gives the  The explicit expressions of the first few terms in the ex-
following representation of the solution of the wave equationpansion ofys is given by

B. Asymptotic behavior of scalar waves
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L Kk (2k’+1)U 1 » From the above consideration we know that a solution
= 2=~ ;er—KzT ;§+O(P )} with data of compact support is analytic for points within
and on the future light cone of the poitta,x=y=0,
J 1 kU 1 3 where the value oé is dictated by the support of the data.
+ (-1, " WP-1 ;2"‘ Olp ™) |, (213 Moreover the serie€.10 is also analytic inv=u+2p be-
cause of the converging expgnsionpiﬁl. Hence, after the
where inversion we have a solutiogy which is analytic on the

extended null cone. Therefore, it is analytic in a domain
which includes a neighborhood of .

The second remark concerns the asymptotic behavior of
¥, regarded as a solution to the wave equaiiofour dimen-
By expressingp in terms oft using Eq.(2.11), we may sions More precisely, let us set
rewrite Eq.(2.13 as a series it~ *:

L=fo Wo(p')p'dp, J=f0 Wi(pp'dp’. (214

F(t.xy,2)=(txy); (2.22
L «* 3k°U 1 4
b= -]~ 2T e gaton? F is independent of. How does this solution behave at null
infinity of four-dimensional Minkowski space? The null geo-
J K kU 1 3 desics in a surface=const are also null geodesics in
+ (K=t K2-1 e o). (219 4-space ané = ¢ along these curves. Now, a solution of the

four-dimensional wave equation is well behaved at null in-
The last formula is meaningful also fgr=0 in the limit  finity if it falls off as r~! (wherer is the standard radial

K—®: coordinaté. Since the fieldy falls off only asp~*2 at null
infinity in three dimension§l], the solutionF fails to define
-L J a finite radiation field at null infinity in these directions. For
- . -3
= t2 + t +O(t™). (2.19 null lines not contained inz=const surfaces, on the other

hand, the situation is entirely different. Because such null
The same result can be obtained from EXj9) directly. This  lines project ontdimelikelines inz=const surfaces, the fall-
concludes our discussion of the asymptotic behaviogyof off behavior ismuch betterand from Eq.(2.15 we obtain
near timelike infinityi . ther ! decay, necessary for the radiation field to exist. Thus,
We will conclude this subsection with three remarks.  in terms of a four-dimensional conformal rescaling, the res-
First, the explicit representatiof2.9) of the solution in  caled field ofF will be well defined on four-dimensional null
terms of Cauchy data allows us to make the interesting obinfinity except forthe two null generators determined by the
servation that the solution is actual@nalytic in its space- g/gz-Killing vector. We will see in Sec. Il that this behavior
time dependence for all points for which the data are withinis the key to the understanding of the asymptotics of four-
the past null cone. To show that all solutions with data ofdimensional axisymmetric space-times with a further
compact support are also analytic in a neighborhood of fu/gz-Killing vector.
ture timelike infinityi *, we have to use conformal rescaling  Finally, we wish to point out that the main results ob-
techniques. Let tained in this section continue to hold also for general data of
. ) ) ) compact support Wh_ich are not necessarily axisymmetric. In
do=—dt*+dx“+dy (217 particular, asymptotic forms like Eq2.13 and (2.15 hold
. . . . . where, however, the coefficients depend@®nThe assump-
be the metric of three-dimensional Minkowski space. Thetion of compact support can also be weakened to allow data
conformal factor which decay near spatial infinity sufficiently rapidly so that
Q=(t2—x2—y2)‘1 2.18 we still _ob_tain solutions smooth at n_uII and timelike infini-
ties. This is the case, for example, with the Weber-Wheeler-

defines, by the rescalinga?=02da?, again a flat space- Bonnor pulse discussed in the following section.

time
C. Asymptotic behavior of the metric

~2_0?2 2__ _ Aq32 2 2
do®=0%do*=—dt*+dx*+dy", (2.19 We now combine the results of the previous two subsec-

tions. Recall from Eq(2.2) that the three-dimensional metric

where the coordinatesx,y are defined by the relation@- do? has a single unknown coefficieng(t,p), which is de-

versior) termined by the solutiony(t,p) to the wave equation in
_ t X y Minkowski space(obtained simply by settingy=0). The
t=mz—y2 X= A y= e asymptotic behavior of(t,p), therefore, determines that of
y y 2.20 the three-metric.
' At null infinity |, the asymptotic behaviof2.10 of ¢

The three-dimensional scalar wave equation has the followimplies thaty has the forn{see Eq(2.32 in [1]]
ing behavior under this conformal rescaling: he(u)
k

= — ! ' 2_ S
V2y=0=V25=0, $=0"2 (2.20 Y="70 2f7xdu(f0(u)) gomm. (2.23
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We now wish to determine the metriciat. In the last sub- Eq. (A5)]. As one would suspect from the behavior of the
section we found the asymptotic form gfati™, more spe- metric coefficients, the curvature does not peel properly in
cifically, atp—oo (or t—oe with U=t—«p, k>1, fixed[see these null directions. Thus, although we have asymptotic
Egs.(2.1)—(2.16]. In order to get the asymptotic forms of flatness at null infinity of thehree-dimensionaspace-time

v, we first express the field equatiof®s7) and(2.8) for yin  [1], the four-metric fails to be asymptotically flat in null

terms ofU andp: directions perpendicular to the axis of rotati¢ire., along
B four-dimensional null lines whose projections approach null
Yu=2p4u(¥,= K 0), (2.249 infinity in three dimensions
_ 2 N In the rest of the section, we will discuss the falloff in the
Vo= PLY, T (1=K ] 2.25 remainingnull directions. We will find that, contrary to what
Substituting fory from Egs.(2.13 and(2.14), and integrat- ON€ might have expected at first, the asymptc_)tlc beh.avu_)r is
ing Egs.(2.24 and(2.25, we obtain muchbetter. I_f J=0, the space average of thg time derivative
¥, of ¢ vanishes at=0. In this case, we will say that the
L2 8xk%+1 24k(1+2x%)U e solution satisfies theaveraged time-symmetry condition.
Y= ak2-1)% p* K1 p° +0(p ") (Note that, by the wave equation, if this condition is satisfied
) initially, it is satisfied on allt=const slices subsequenily.
J 1  4c U 4 We will see that, in this case, the falloff in fact satisfies the
+ > 5| = —— 5+0(p™ %) |. (2.2 . S S
2(k“=1)|p= «k°—1p Bondi-Penros¢9,10] conditions and null infinity is smooth

in these directions. Even for a generic data, null infinity ex-
Note that we set the integration constant equal to zero. Thigts, put may have a “logarithmic behavior”; the confor-
is because we can go 0 along the centep=0. More  mally rescaled metric is continuous, but need not be differ-
precisely, since we required the regularity of the solution ajntjaple there. Note that even this behavior is better than the
p=0, we have to sey=0 there and, as a consequence of theyne in directions orthogonal to the symmetry axis. The rea-
field equations fory in (t,p) coordinategcf. Eq.(2.8], yat  gon in a nutshell, is that the falloff of various fields along a

p=0 canrrllo_t chané;e V\fth ti(;ne. oy b h generic null direction in 4 dimensions is dictated by the fall-
By techniques developed, e.g.,[B] it can be now shown off of that field along atimelike direction in the three-

rhséi:heofspagteggmneelifea}snﬁn?tmz(r)g]v\fmslmee 'lgg?';i'blggtiiﬂaaimensional treatment and, as we saw in Sec. ll, fields decay
yucity of ¢ Y more rapidly at the three-dimensional timelike infinity than

and the field equations imply that the metric “rescaled by X . .

inversion” is analytic ati *. In what follows, however, we at the three-_dmenspnal ngll infinity. L . .
will not use this result: the falloff propertie&.15 and To see thls point in detail, let us begin with the Einstein-
(2.26 of ¢ andy will suffice. Rosen metrigcf. Eq. (2.1)],

_ A2 2 2(y— 2 2 2,—2 2
I1l. NULL INFINITY IN FOUR DIMENSIONS ds?=e?’dZ2+e? "~ ¥(—dt?+dp?) +pe de?, (3.1

We can now return to the four-metri2.1) and analyze its _ _ .
behavior at null infinity. In the main part of this section, we wh(;re ‘ﬂ—tlﬁ(tlp),thi— yl(t’p)' IrL;/r\]/etpasrs Hfrom Coord'?ﬁtfs
will consider those Einstein-Rosen waves for which the(p_’ ¢) _0 SP e_ca cgo_ ::;es ?I ), SO ad d
Cauchy data forys in the three-dimensional picture are p—rsm_a,z—rcos9,¢—¢_, an mtrq uce flat-space retarde
(smooth anyi of compact support. In the four-dimensional ime U=t—r, we obtain Eq(3.1) in the form
picture, these solutions correspond palsesof Einstein-

Rosen waves.
ds?=—e?r~¥du2-2e27~¥dU dr
A. Formulation of the problem +(e2/—e2r=")cogHdr?

Let us begin by summarizing the behavior in the direc-

2(y=4) 2¢ci 2492
tions perpendicular to the axis of symmetry. In these direc- +(e cos'0+e*'sir’)r*do

tions, the falloff ofy is the same as in our three-dimensional + (627~ ¥ — 2% 2rsindcoshdr d @
treatment of null infinity{see Eq(2.23 in[1] or Eq.(2.10].
However, from the four-dimensional perspectivejs not a +r2sirffe 2'd ¢ (3.2

matter field but a metric coefficiefisee Eq.(2.1)] and the

1/\/p falloff of ¢ is too slow for null infinity to exist in the

sense of Penrog®]. What is the situation with respect to Since we are considering waves with initial data of compact
curvature? In the Appendix, we use the three-dimensionaupport in the 6, ¢) plane, we can use the results of Sec. Il
results to compute the four-dimensional Riemann tensor fodirectly. Recall that one approachies in three dimensions,
these space-times. We find that, in null directions perpenfixing U=t— kp,x=const>1 [cf. Eq. (2.11)]. In the four-
dicular to theg/dz-Killing field, the tensor decays only as dimensional picture, this corresponds precisely to approach-
1/\/5, the behavior that Stachel first discovered in his directing the null infinity of the flat metric defined by,r,8,¢
four-dimensional treatmer2]. [See the complex compo- coordinates, alon@= const, ¢=const,U=t—r=const, if
nents of the Riemann tensor with respect to the null tetradve setk= 1/sind. The expansions af andy, corresponding
given by his Eqs(A4)—(AB), or just “Rgq30, given in our  to Egs.(2.13 and(2.26), thus have the forms
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L[ +(2+sir120)U 1ot U=a2U,0) + 74U, 0)r t+72U,0r 2+,
V=00 2 cofo 13 re
= T+ o° + gt r L.
o9t " codar? 3| | : — — —
cosflr cosfre  ir 6=1°(U,0)+ (U, 0)r 1+ 72U, 6 2+---. (3.8
and The requirement$3.6) and (3.7) restrict the undetermined
1 L2sirk6 _ 1 242+sirf)U 1 1 functions 7,q,0, 7. From the leading terms ayy, 9y
Y= 71 cod0 (8+sm20)r—4— o020 5" (ﬁ” we first find thatg y= TOUtO. The required form ofi;; and
— in the leading terms implies qj27>=1,
+ E@ 1 4u 1 10 1 (3.4) ?g)%=sin20/sin270. This cgan be solved fgq andqg0 Téf(plic-
2 codg |r? cosord ré) ] '

itly; however, further we assumg= TOF 1 since the other

provided we stay away from=7/2, i.e., directions perpen- Cchoices just correspond to coordinate systems conne_cted by
dicular to the axis. Our task now is to cast the four-metric inPOOSts along the symmetry axit0,11. Then the require-
a Bondi form and show that the metric coefficients have thénent on the leading order term igy7~implies that also
standard falloff. o= 1. The falloff conditions(3.6) are. thus satisfied.

We will carry out this task in the next two subsections.  The conditions 959044=r"sifo+0(?) and gry
We will consider the cases=0, L#0, and J#0, L=0  =0O(r?) lead too®=r'=0. It remains only to satisfy the
separately; since we are interested only in the leading termgequirements3.7).
the cross terms-LJ are not relevaqt. The expansiof&?3 The conditionsgr+=0 [to order O(r—2)], g73=0 [to
and (3.4 show that the falloff ofy/ is slower than that of O( Y] and gg5us,=r’sird [to O(r?)] determine the
y- Hence, in the construction of the Bondi system, we can nctions al w2 .. 223, andolo? ... . More

focus primarily ony. specifically, the vanishing o7 to ~r 2 implies '

=2L/co, gr3=0 to ~r ' leads to 72=—(1/2)77'10—
+2Lsinflcos'd, and gy30,4=0 in order r” gives o'

If J=0, several simplifications occur. First, keeping jUStz—[L/cosﬂ +(1/2)rzﬂ/sin0—(1/2)7-2c0t0. To determine
the first term iny in the expansiori3.3) and substituting into . .0
the higher-order functions, 7, ando, we have, of course,

Eg.(3.2), we find the asymptotic form of the metric to read to consider also the functio in the metric(3.2). Calcula-

B. Averaged time-symmetric case;J=0

2L 1 tions then become lengthy. Nonetheless, they can be per-
ds?=—|1+ T7+ ... |dUu? formed and one can thus demonstrate the existence of the
cosfr . . . X )
Bondi expansion for averaged time-symmetric waves. This
2L 4L 1 establishes the existence of a smooth null infinity in all di-
21+ gppz oo |dU df—[@ 2t dr? rections except those perpendicular to the axis of the sym-
metry.
2L ) 1 — Now, in axisymmetric space-times, when a spacelike Kill-
+1+ m(00§9—5|n29)r—2 +-- '}f dé ing field with circular orbits exists, there is a reduction of the
) asymptotic symmetry group even if a “globall’ does not
8L i exist, i.e., even il does not admit spherical cross sections.
tlcogg T |singdrde Furthermore, in this case, the Bondi news function has a
) oL local meaning 12]. One can, therefore, try to find it in the
2 2 present case. In Bondi's coordinates the news function is
+_1+ cosgrz ' SirP g d” @5 given by c g, where the functionc(U,6) enters, for ex-

ample, the expansion af;;=r2sirf6+2cr+O(1). Startin
In order to bring the metric to Bondi's form, we will use the frorﬁ our metrFi)c (3.2 andé¢using the transfc(Jrr)natio(S.S)g
method developed inll] to analyze space-times with a with the functionsar, o, 7,q found above, we obtaic=0.

boost-rotation symmetry. What we need is a coordinate SySance thenews function vanishen fact, this could be an-

temU,r,0,¢= ¢ such that ticipated sincey~r 2 at |—we are here in the region in
- —1 _ —1 which the tails of cylindrical pulses decay, and there is no
Guu=1+0(r "), gur=1+0(""), radiation field at null infinity[13]. Thus, in these space-
times, the radiation field is all focused in the direction of the

— — 7 - — 72
9us=0(1), gge=r?+0(r), ggg=r7siro, two “singular generators” ofl singled out by the axigor,

(3.6 the d/9z-Killing field). Along these generators, the Bondi-
and, to all orders, Penrose radiation field diverges and asymptotic flatness is
o lost. In other directions, there is smooth curvature, but no
9rr=0rs=0, Ugolpy=""Sirr0. (3.7  flux of energy.

We conclude this subsection with a remark. In their analy-
Let us suppose the transformation leading to this form maysiswof isometries compatible with gravitational radiation,
be expanded in powers of : Bicak and Schmid{13] consider axisymmetric space-times,
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assume Bondi's expansion for allpe[0,27) and
0e(6y,6,) and conclude that cylindrical symmetry is not

permissible. This assertion may seem to contradict the con-
clusion we just reached for the time symmetric Einstein-

du?

[ 2] 1 Inr
ds?= —|1- +0| —
| cosfr r

, , 2Jsir?6 1 In?r —
Rosen waves. Note, however, that the interval of permitted —|1- —+o< szu dr

#’'s in the assertion of13] containsé= /2, i.e., the direc-
tions perpendicular to the axis of symmetry, while in the
present case, Bondi's expansion fails to hold in that direc
tion. Thus, there is in fact no contradiction. In fact, the re-
sults obtained in the present work are fully compatible with
those of[13]; Bicak and Schmidt conclude below their Eq.
(52) that, if the functionc= vanishes, the second Killing
vector field(in addition to the axial onecan generate either
a time translation or the translation along the axis of rotation

C. Case whenJ#0,L=0

In this case, Eq(3.3 tells us that the leading order be-
havior of ¢ is different: one obtainsy~J/rcosh. Conse-
quently, transformatiori3.8) does not now lead to a Bondi
system; in particular, it does not remove the “offending”
term ing,, ~r 1. Nevertheless, since the leading term in the
metric does not depend on time andQ¢r —1), typical for

cosd T re

rsingdudé+| O

[ Inr In’r 1

- +lad—+0ol— = | ldr2
T r r

In’r — —

—z rsinddrdé

In2r
T
(3.13

Bondi et al. [10] applied a similar procedure to the Weyl
metrics. In contrast to their result, however, we did not quite
succeed in bringing our metric to the standard Bondi form.
The reason is that, unlike the Weyl metric, in our case, the
leading “offending” terms—proportional to ~1—are ¢ de-

1
~[43-+0

— In’r
' +[1+0 r2de’+|1+0 -

”rzsinzﬂdﬂ.

static Weyl metrics, we can attempt to find the requiredpendent[ln the case of the transformation of the Weyl met-

Bondi system by mimicking the procedure adoptedif].
Let us assume a transformation of the form

U =U_+ a(r ,0_),
=0+ 74 O)r T+ -, (3.9

Keeping then just the first term ity in the expansion{3.3
with L=0, and writing the asymptotic form of the metric
analogously to Eq.3.5, we find that the crucial term
~r~Yin g,, will vanish if

4
—(m)?=27  + —cog9=0. (3.10

Solving in the leading order fotr, we obtain
Tr(r,6_)= 2JcoshInr + - - - (3.11

In this way we can achieve at leagt ~O(r ~2). However,
with the transformatiorn(3.9) there is no way to satisfy the
requiremenig, ;= O(1). We must admit a logarithmic term
also in the transformation of which, in turn, requires an-
other logarithmic term in the transformationdf By assum-
ing expansions i ~!In'r, we find, after some effort, that a
suitable transformation reads

— (2 —In’r
= —_— — 2gi —_—
U=U+ Cosgco§g)lnr (23%sir? ) —
— —nr
0:0+(2JSIHQ)T. (3.12

[Notice that in the leading order §2cosf)cos6=2Jcod is
in agreement with Eq(3.11).]

Now, transforming the metri€3.2), with s and y given
by Egs.(3.3) and(3.4) (with J#0,L=0), via Eq.(3.12, we
obtain the metric in the form

ric to Bondi’s form —cf.[10]—we havem=2minr+ ...,
m being the mass. Assuming=m(#6) in the Weyl metric
(and thus violating the field equation®ne can make sure
that | still exists, but the space-time is only “logarithmi-
cally” asymptotically flat] By introducingl=r"*, U=U,
0= 0, $= ¢, and rescaling the metri8.13 by the confor-
mal factorQ) =1, we obtain

2~ o\~
d'§2=02d52=—(1——=-I-i—O(I2InI))I2dU2
coy

2Jsifl~ — )\ o~ ~
I+0(12n?) | 2d U dI

+

+[—4J(sin@)lInl+0O(12n?) T du dl
+0(1)dI2+[4Jsing+0(1In?)1dI dg
+[1+0(IIn)]d 6>
+[1+0(n)]sirfad 42, (3.14

Thus, the metric is well behaved bs>0, i.e., atl=0 | does
exist. The metric is continuous dn However, it is not dif-
ferentiable. Thus, it appears that there is a key difference in
the asymptotic behavior in the averaged time-symmetric case
and in the general case. In the general chs@pears to have

a “logarithmic character”[3,4]. (A word of caution is in
order: It is possible that the differentiability can be improved
by continuing the transformatio3.12 into higher-order
terms)

To conclude, we wish to point out that, although we ob-
tained the asymptotic forms fo¢ and y [Egs. (3.3) and
(3.4)] assuming that the waves have Cauchy data of compact
(p,®) support, the forms themselves hold in more general
cases as well. An interesting example is provided by the
Weber-Wheeler-Bonnor time-symmetric pulse solution
[14,15. [The pulse is formed by a linear superposition of
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monochromatic waves with a cutoff in the frequency space 202/96/0206 and No. GAUK-230/1996 of the Czech Repub-
W(t,r)=2C[se 2Jy(wp)coswtdw, wherel, is the Bessel lic and the Charles University, and by the U.S.-Czech Sci-
function and the constaatis an approximate measure of the ence and Technology Grant No. 92067.

width of the pulse. It appearkl6] that no other integral

containing the Bessel function can be expressed in a closed APPENDIX A: RELATION BETWEEN RIEMANN

form, which apparently makes the Weber-Wheeler-Bonnor TENSORS IN THREE AND FOUR DIMENSIONS

pulse “unique” among nonsingular pulse-type solutions of

the wave equation ii2+1) dimensiong. In this case, we The Einstlein-Rogen n;etric(z.l) in  coordinates
have X°=u=t—p, X-=p, X*= ¢, X°>=z becomes
[(a2+ p2—t2)2+4a2t2]Y2+ a2+ p?— 2] 112 ds?=e?r" ¥ (—du?—2dudp)+ p?e 2’dp?+e?Vd 2.
= Al
v \/EC( (@%+p?—t%)?+4a%t? ' (AD

Assuming the expansia2.10 for ¢, we know thaty can be
a=const(3.15  Wwritten in the form(2.23, and in principle the Riemann
(Weyl) tensor of the vacuuniB+1)-dimensional space-time

and and its asymptotic behavior can be obtained from @d.).
However, it is possible to use directly the “reduction for-
1 ,[ 1 2p[(a%+p*—t?)?—4a’t?] mulas” for the calculation of the Riemann tensor of spaces
Y= EC a2 [(@+p2 =)+ 4a%7P which admit an Abeliqn iso-metry gqu{ﬁ]. In_the cpordi-
nates &*)=(u,p,®,z) in which the Killing trajectories or-
1 p?—a?—t? thogonal to the hypersurfacesz=const are just
+¥[(a2+p2—t2)2+4a2t2]1’2 . (3.16 u=constp=constg=const, the four-dimensional compo-

nents of the Riemann tensor are given by the relatjees
At t=0, the Cauchy data fog are y=C(a’+p?) Y2 and Eq.(2.3.4 of [7] where, however, the Riemann tensor with
¥ =0. Nevertheless, expressing the asymptotic formg of the opposite sign is us¢d
and y at U=t—r=const,d=const,¢=const, we find after

somewhat lengthy calculatiorier by UsingMATHEMATICA), “Raped=Rabeds  PRaanc=0,

that s and y have asymptoticallgxactlythe form(3.3) and

(3.4 with J=0 andL = —2Ca. Therefore, in the directions (DRga3p= ~VVj[ab, V=g’ (A2)
not perpendicular to the symmetry axis, these waves do ad-

mit a smoothl . where the ‘{” denotes the covariant derivative with respect

Similarly, the asymptotic forms ofy and y with J#0  to the metricg,, given by Eq.(A1) with z=const. The co-
may hold even though the Cauchy data are not of compadatariant derivatives/|,, are given in terms of the Christoffel
support. A simple prototype, discussed by Carmg&H], for ~ symbols listed by Stachg2] in his Eq.(A1) in the Appendix

example, has in (u,p, ¢,z) coordinates|In Stachel’s list of’s the follow-
ing symbols are missing: F;f’¢,= p - oy
1 f, 1 f2p? F3‘D’p=2(7,p—w,p), I?,=y,. Notice also that hisc®=z,

v=5_ =7 YT 82 (2= p?) fo=const. x*= ¢, while here we puk®=z. He treats waves with both

(3.17) polarizations so we must put hjg=0 when comparing his
' results with ourg.Using these,

This wave is singular &= p?, but it represents the late time " , , ,
behavior of the solution given by DR3050= — € Y uut+ 305,24 b+ 4+ (0= )

+ 7,u(¢,p_ 2¢,u)],

1 f(t)dt ~
“’_ELOWE r=t—p, (3.18

WR3y3= — (¢ ,,+ 31//,2p_ 2y 00 ,),
wheref(t)#0 only for 0<t<T; fo=[Jf(t’)dt’. With this

(4) —_ a29-2y,2 2 1,
wave we find ¢ and y to behave(at U=t—r=const, Razaz= =€ Tp 20w o= byt p (= Y0,
0= const,¢=const,r —«) according to Eqs3.3) and(3.4) @ 20 5
with J=fo/27. The falloff is now slower, but a “logarith- Ra0si= =€ N up T ¥ uth , = Vo o T ¥5,).  (A3)

mic” null infinity | does exist. _ .
y These are the nonvanishing componeffis,3,, in the co-

ordinates (,p, ¢,z). Transforming them back to the coordi-

nates ¢,p, ¢,z) we find—after projecting them on the ortho-
A.A. and J.B. would like to thank the Albert Einstein hormal tetrad used by Stachel—precisely his components

Institut for its kind hospitality. A.A. was supported in part by Rozo2, Ri212, R2szs, @andRypo1 given in his Eqs(A3). (They

the NSF Grants No. 93-96246 and No. 95-14240, by thdave the opposite signs because Stachel uses the signature

Eberly Research Fund of Penn State University, and by thes ———") _ .

Erwin Schralinger International Institute for Mathematical =~ The component®,,.q (formed from the metrig,,) can

Sciences. J.B. was supported in part by Grant Nos. GACRbe expressed in terms of o@2+1)-dimensional Riemann
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tensor given in Appendix A of1]. This is formed from the v =2e?/[2y 4 ,— ¢ — 202 =24t 20 (27 4= v ,)
three-metriay,,= €”g,,; hence, we use the behavior of the R ’ ' ' ' *
three-dimensional Riemann tensor under conformal rescal- +2¢ (v~ V0]

ings[see, e.g.}7], Eq.(2.4.6]. We find

V01: Vloz 262‘//( - w?p_ Zl;b,up_l— Zy,plvb,p)’

— 1
Rabjk=2€*"Rapjk— 5 *(9jaVojk— IktaVh)j)
abj abjk o j[aVb] [aVDb]j V11=492w(_lﬂ’pp_lﬂ?p+27’plﬁ’p),
(A4)
where V=26 2p p(4)2= 24 pih o) +2(h 4= 1 ,)]. .
A6

— 2 Im
Vie=22 (") Qi = 20— 20 (AS) By substituting these expressions into E8}3) and using the
Here the semicolon denotes the covariant derivative with reeomponentsR,;,.4 from Appendix A of[1], we findR,pjx —
spect to the three-metrig,;, (see Appendix A of1] for the  and thus also(“)Rabjk—in the coordinates ,p,¢,z). By
Christoffel symbols The nonvanishing quantitieg;, turn  transforming them tot(p,¢,z), we exactly recover Stach-
out to be el's expressions given in his EGA3).
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