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I. INTRODUCTION

Although the literature of Einstein-Rosen waves is quite
rich ~see, e.g., the references listed in the companion paper
@1#! it appears that there is only one article that discusses the
asymptotic behavior of these waves at infinity in four-
dimensions: the paper by Stachel@2# written already in the
sixties. Moreover, even in this work, Stachel deals solely
with the directionsorthogonalto the axis of symmetry, i.e.,
to the]/]z-Killing field. The purpose of this note is to ana-
lyze the asymptotic structure inall directions.

Since these space-times admit a translational Killing field,
one would expect them not to be asymptotically flat. This is
precisely what Stachel discovered in directions orthogonal to
the symmetry axis. Somewhat surprisingly, however, we will
find that the falloff is much better in generic directions. In-
deed, if one restricts oneself to the ‘‘averaged’’ time-
symmetric situation~which in particular occurs in the time
symmetric case; for details, see Sec. III!, one finds that, in all
other directions, curvature peels normally and a regular null
infinity, I , exists. In fact, all radiation is concentrated along
the two generators in which the null geodesics orthogonal to
the symmetry axis meetI . In other directions, there is curva-
ture but no radiation. If one goes beyond the ‘‘averaged’’
time symmetric case, the behavior is not as nice;I may have
a logarithmic character@3,4#. That is, the metric does admit
Bondi-type expansions but in terms ofr2 j lnir. Nonetheless,
even this behavior is better than the one encountered in the
directions orthogonal to the symmetry axis.

The key idea behind our analysis is to exploit the relation
between four-dimensional Einstein-Rosen waves and the as-
sociated three-dimensional geometry on the manifold of or-
bits of the translational Killing field. Since the translational
Killing field has been ‘‘factored out’’ in the passage to three
dimensions, the three-dimensional space-time is asymptoti-
cally flat at null infinity @1# and, as we will see, also admits
a regular timelike infinity. To analyze the behavior of the
four-dimensional metric, we can draw on this three-
dimensional information. We will find that the behavior at

I in generic directions in four dimensions is dictated by the
behavior of various fields attimelike infinity in three dimen-
sions. Since this three-dimensional timelike infinity is regu-
lar, the behavior in generic directions in four dimensions is
better than what one might naively expect.

The plan of the paper is as follows. In Sec. II, we shall
present the three-dimensional structure. In Sec. III, we will
use this structure to investigate four-dimensional null infin-
ity. The Appendix spells out the relation between three- and
four-dimensional curvatures.

II. THREE-DIMENSIONAL DESCRIPTION

This section is divided into three parts. In the first, we
briefly recall the symmetry reduction procedure and apply it
to obtain the three-dimensional equations governing
Einstein-Rosen waves.~For details, see@1#.! This procedure
reduces the task of finding a four-dimensional Einstein-
Rosen wave to that of finding a solution to the wave equation
on three-dimensionalMinkowskispace. In the second part,
we analyze the asymptotic behavior of these solutions to the
wave equation at timelike infinity of the three-dimensional
Minkowski space. In the third part, we combine the results of
the first two to analyze the asymptotic behavior of the three-
dimensional metric associated with Einstein-Rosen waves at
its timelike infinity. We show that this timelike infinity is
regular. Although this result is not needed directly for our
main result, it is included because it complements the gen-
eral analysis of three-dimensional null infinity presented in
@1#.

A. Symmetry reduction

Recall first that the metric of a vacuum space-time with
two commuting, hypersurface orthogonal spacelike Killing
vectors can always be written locally as@5#

ds25e2cdz21e2~g2c!~2dt21dr2!1r2e22cdf2, ~2.1!

wherer and t ~the ‘‘Weyl canonical coordinates’’! are de-
fined invariantly andc5c(t,r), g5g(t,r). ~Here, some of

PHYSICAL REVIEW D 15 JANUARY 1997VOLUME 55, NUMBER 2

550556-2821/97/55~2!/687~8!/$10.00 687 © 1997 The American Physical Society



the field equations have been used.! Einstein-Rosen waves
have cylindrical symmetry; the Killing field]/]z is transla-
tional and]/]f is rotational and keeps a timelike axis fixed.
Then the coordinates used in Eq.~2.1! are unique up to a
translationt°t1a.

The 3-manifold is obtained by quotienting the four-
dimensional space-time by the orbits of the]/]z-Killing field
and is thus coordinatized byt, r, andf. The four-metric
naturally induces a three-metricds̄2 on this manifold and the
four-dimensional Einstein’s equations can be expressed on
the 3-manifold as a system of coupled equations involving
the induced three-metric and the norm of the Killing field
]/]z, which, from the three-dimensional perspective can be
regarded as a~scalar! matter field. It is well known~see
@1,6,7#!, however, that the field equations simplify consider-
ably if we rescale the induced three-metricds̄2 by
exp(2c), the square of the norm of the Killing field; i.e., in
terms of the three-metric,

ds25gabdx
adxb5e2g~2dt21dr2!1r2df2. ~2.2!

The four-dimensional vacuum equations are then equivalent
to the set@cf. Eqs.~2.12!–~2.15! in the preceding paper@1##

g92g̈1r21g852ċ2, ~2.3!

2g91g̈1r21g852c82, ~2.4!

r21ġ52ċc8, ~2.5!

and

2c̈1c91r21c850, ~2.6!

on the 3-manifold, where the dot and the prime denote de-
rivatives with respect tot andr, respectively. The last equa-
tion is the wave equation for the nonflat three-metric~2.2! as
well as for the flat metric obtained by settingg50. This is a
key simplification for it implies that the equation satisfied by
the matter sourcec decouples from the Eqs.~2.3!–~2.5! sat-
isfied by the metric. Furthermore, these latter equations re-
duce simply to

g85r~ċ21c82!, ~2.7!

ġ52rċc8. ~2.8!

Thus, we can first solve for the axisymmetric wave equation
~2.6! for c on Minkowski spaceand then solve Eqs.~2.7! and
~2.8! for g—the only unknown metric coefficient—by
quadratures.@Note that Eqs.~2.7! and ~2.8! are compatible
because their integrability condition is precisely Eq.~2.6!.#

B. Asymptotic behavior of scalar waves

In this subsection we will focus on the axisymmetric
wave equation in three-dimensional Minkowski space and
analyze the behavior of its solutionsc near timelike infinity
of Minkowski space.~For behavior at null infinity, see@1#.!

We begin with an observation. The ‘‘method of descent’’
from the Kirchhoff formula in four dimensions gives the
following representation of the solution of the wave equation

in three dimensions, in terms of Cauchy data
C05c(t50,x,y),C15c ,t(t50,x,y):

c~ t,x,y!5
1

2p

]

]tE E
S~ t !

C0~x8,y8!dx8dy8

@ t22~x2x8!22~y2y8!2#1/2

1
1

2pE E
S~ t !

C1~x8,y8!dx8dy8

@ t22~x2x8!22~y2y8!2#1/2
,

~2.9!

whereS is the disk

~x2x8!21~y2y8!2<t2

in the initial Cauchy surface~see, e.g.,@8#!. We will assume
that the Cauchy data are axially symmetric and of compact
support.

In the preceding paper@1# @see Eq.~2.23!# we have shown
that on each null hypersurfaceu5t2r5const the solution
~2.9! can be expanded in the form

c~u,r!5
1

Ar
S f 0~u!1 (

k51

`
f k~u!

rk D , ~2.10!

where the coefficients in this expansion are determined by
integrals over the Cauchy data. This is the behavior ofc at
null infinity I .

Let us now investigate the behavior of the solution~2.9!
near timelike infinityi1 of the three-dimensional Minkowski
space. Setting

t5U1kr, k.1, ~2.11!

we wish to findc for r→` with U andk fixed. For large
enoughr the region of integration is contained in the cone.
Hence, we have to perform the derivative in Eq.~2.9! only in
the integrand. We obtain

2pc~ t,r!52
kr1U

@~k221!r2#3/2
E
0

`E
0

2p

C0r8dr8df8

3F11
2~kU1r8cosf8!

k221

1

r
1
U22r82

k221

1

r2G
23/2

1
1

@~k221!r2#1/2
E
0

`E
0

2p

C1r8dr8df8

3F11
2~kU1r8cosf8!

k221

1

r
1
U22r82

k221

1

r2G
21/2

.

~2.12!

The integrand can again be expanded inr21 ~or t21), but the
leading term isr21. By contrast, atnull infinity of the three-
dimensional space-time,c falls off only asr21/2 @see Eq.
~2.10! and @1# for details#. We will see that it is this differ-
ence that makes the behavior of the four-metric along ge-
neric directions better than that along directions orthogonal
to the symmetry axis.

The explicit expressions of the first few terms in the ex-
pansion ofc is given by
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c5
L

~k221!3/2F2
k

r2
1

~2k211!U

k221

1

r3
1O~r24!G

1
J

~k221!1/2F1r 2
kU

k221

1

r2
1O~r23!G , ~2.13!

where

L5E
0

`

C0~r8!r8dr8, J5E
0

`

C1~r8!r8dr8. ~2.14!

By expressingr in terms of t using Eq. ~2.11!, we may
rewrite Eq.~2.13! as a series int21:

c5
L

~k221!3/2F2
k3

t2
1
3k3U

k221

1

t3
1O~ t24!G

1
J

~k221!1/2Fkt 2
kU

k221

1

t2
1O~ t23!G . ~2.15!

The last formula is meaningful also forr50 in the limit
k→`:

c5
2L

t2
1
J

t
1O~ t23!. ~2.16!

The same result can be obtained from Eq.~2.9! directly. This
concludes our discussion of the asymptotic behavior ofc
near timelike infinityi6.

We will conclude this subsection with three remarks.
First, the explicit representation~2.9! of the solution in

terms of Cauchy data allows us to make the interesting ob-
servation that the solution is actuallyanalytic in its space-
time dependence for all points for which the data are within
the past null cone. To show that all solutions with data of
compact support are also analytic in a neighborhood of fu-
ture timelike infinity i1, we have to use conformal rescaling
techniques. Let

ds252dt21dx21dy2 ~2.17!

be the metric of three-dimensional Minkowski space. The
conformal factor

V5~ t22x22y2!21 ~2.18!

defines, by the rescalingds̃25V2ds2, again a flat space-
time

ds̃25V2ds252dt̃21dx̃21dỹ2, ~2.19!

where the coordinatest̃,x̃,ỹ are defined by the relations~in-
version!

t̃5
t

t22x22y2
, x̃5

x

t22x22y2
, ỹ5

y

t22x22y2
.

~2.20!

The three-dimensional scalar wave equation has the follow-
ing behavior under this conformal rescaling:

¹2c50⇒¹̃2c̃50, c̃5V21/2c. ~2.21!

From the above consideration we know that a solutionc
with data of compact support is analytic for points within
and on the future light cone of the pointt̃5a,x̃5 ỹ50,
where the value ofa is dictated by the support of the data.
Moreover the series~2.10! is also analytic inv5u12r be-
cause of the converging expansion inr21. Hence, after the
inversion we have a solutionc̃ which is analytic on the
extended null cone. Therefore, it is analytic in a domain
which includes a neighborhood ofi1.

The second remark concerns the asymptotic behavior of
c, regarded as a solution to the wave equationin four dimen-
sions. More precisely, let us set

F~ t,x,y,z!5c~ t,x,y!; ~2.22!

F is independent ofz. How does this solution behave at null
infinity of four-dimensional Minkowski space? The null geo-
desics in a surfacez5const are also null geodesics in
4-space andF5c along these curves. Now, a solution of the
four-dimensional wave equation is well behaved at null in-
finity if it falls off as r21 ~where r is the standard radial
coordinate!. Since the fieldc falls off only asr21/2 at null
infinity in three dimensions@1#, the solutionF fails to define
a finite radiation field at null infinity in these directions. For
null lines not contained inz5const surfaces, on the other
hand, the situation is entirely different. Because such null
lines project ontotimelikelines inz5const surfaces, the fall-
off behavior ismuch betterand from Eq.~2.15! we obtain
ther21 decay, necessary for the radiation field to exist. Thus,
in terms of a four-dimensional conformal rescaling, the res-
caled field ofF will be well defined on four-dimensional null
infinity except forthe two null generators determined by the
]/]z-Killing vector. We will see in Sec. III that this behavior
is the key to the understanding of the asymptotics of four-
dimensional axisymmetric space-times with a further
]/]z-Killing vector.

Finally, we wish to point out that the main results ob-
tained in this section continue to hold also for general data of
compact support which are not necessarily axisymmetric. In
particular, asymptotic forms like Eq.~2.13! and ~2.15! hold
where, however, the coefficients depend onf. The assump-
tion of compact support can also be weakened to allow data
which decay near spatial infinity sufficiently rapidly so that
we still obtain solutions smooth at null and timelike infini-
ties. This is the case, for example, with the Weber-Wheeler-
Bonnor pulse discussed in the following section.

C. Asymptotic behavior of the metric

We now combine the results of the previous two subsec-
tions. Recall from Eq.~2.2! that the three-dimensional metric
ds2 has a single unknown coefficient,g(t,r), which is de-
termined by the solutionc(t,r) to the wave equation in
Minkowski space~obtained simply by settingg50). The
asymptotic behavior ofc(t,r), therefore, determines that of
the three-metric.

At null infinity I , the asymptotic behavior~2.10! of c
implies thatg has the form@see Eq.~2.32! in @1##

g5g022E
2`

u

du„ ḟ 0~u!…22 (
k50

`
hk~u!

~k11!rk11 . ~2.23!
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We now wish to determine the metric ati1. In the last sub-
section we found the asymptotic form ofc at i1, more spe-
cifically, atr→` ~or t→` with U5t2kr, k.1, fixed@see
Eqs.~2.11!–~2.16!#. In order to get the asymptotic forms of
g, we first express the field equations~2.7! and~2.8! for g in
terms ofU andr:

g ,U52rc ,U~c ,r2kc ,U!, ~2.24!

g ,r5r@c ,r
2 1~12k2!c ,U

2 #. ~2.25!

Substituting forc from Eqs.~2.13! and~2.14!, and integrat-
ing Eqs.~2.24! and ~2.25!, we obtain

g5
L2

4~k221!4 F8k211

r4
2
24k~112k2!

k221

U

r5
1O~r26!G

1
J2

2~k221!2 F 1r2 2
4k

k221

U

r3
1O~r24!G . ~2.26!

Note that we set the integration constant equal to zero. This
is because we can go toi1 along the centerr50. More
precisely, since we required the regularity of the solution at
r50, we have to setg50 there and, as a consequence of the
field equations forg in (t,r) coordinates@cf. Eq. ~2.8!#, g at
r50 cannot change with time.

By techniques developed, e.g., in@5# it can be now shown
that the space-time has a smooth timelike infinity. The ana-
lyticity of c at timelike infinity shown in the last subsection
and the field equations imply that the metric ‘‘rescaled by
inversion’’ is analytic ati1. In what follows, however, we
will not use this result; the falloff properties~2.15! and
~2.26! of c andg will suffice.

III. NULL INFINITY IN FOUR DIMENSIONS

We can now return to the four-metric~2.1! and analyze its
behavior at null infinity. In the main part of this section, we
will consider those Einstein-Rosen waves for which the
Cauchy data forc in the three-dimensional picture are
~smooth and! of compact support. In the four-dimensional
picture, these solutions correspond topulsesof Einstein-
Rosen waves.

A. Formulation of the problem

Let us begin by summarizing the behavior in the direc-
tions perpendicular to the axis of symmetry. In these direc-
tions, the falloff ofc is the same as in our three-dimensional
treatment of null infinity@see Eq.~2.23! in @1# or Eq.~2.10!#.
However, from the four-dimensional perspective,c is not a
matter field but a metric coefficient@see Eq.~2.1!# and the
1/Ar falloff of c is too slow for null infinity to exist in the
sense of Penrose@9#. What is the situation with respect to
curvature? In the Appendix, we use the three-dimensional
results to compute the four-dimensional Riemann tensor for
these space-times. We find that, in null directions perpen-
dicular to the]/]z-Killing field, the tensor decays only as
1/Ar, the behavior that Stachel first discovered in his direct
four-dimensional treatment@2#. @See the complex compo-
nents of the Riemann tensor with respect to the null tetrad
given by his Eqs.~A4!–~A6!, or just (4)R3030, given in our

Eq. ~A5!#. As one would suspect from the behavior of the
metric coefficients, the curvature does not peel properly in
these null directions. Thus, although we have asymptotic
flatness at null infinity of thethree-dimensionalspace-time
@1#, the four-metric fails to be asymptotically flat in null
directions perpendicular to the axis of rotation~i.e., along
four-dimensional null lines whose projections approach null
infinity in three dimensions!.

In the rest of the section, we will discuss the falloff in the
remainingnull directions. We will find that, contrary to what
one might have expected at first, the asymptotic behavior is
muchbetter. If J50, the space average of the time derivative
C1 of c vanishes att50. In this case, we will say that the
solution satisfies theaveraged time-symmetry condition.
~Note that, by the wave equation, if this condition is satisfied
initially, it is satisfied on allt5const slices subsequently.!
We will see that, in this case, the falloff in fact satisfies the
Bondi-Penrose@9,10# conditions and null infinity is smooth
in these directions. Even for a generic data, null infinity ex-
ists, but may have a ‘‘logarithmic behavior’’; the confor-
mally rescaled metric is continuous, but need not be differ-
entiable there. Note that even this behavior is better than the
one in directions orthogonal to the symmetry axis. The rea-
son, in a nutshell, is that the falloff of various fields along a
generic null direction in 4 dimensions is dictated by the fall-
off of that field along atimelike direction in the three-
dimensional treatment and, as we saw in Sec. II, fields decay
more rapidly at the three-dimensional timelike infinity than
at the three-dimensional null infinity.

To see this point in detail, let us begin with the Einstein-
Rosen metric@cf. Eq. ~2.1!#,

ds25e2cdz21e2~g2c!~2dt21dr2!1r2e22cdf2, ~3.1!

wherec5c(t,r), g5g(t,r). If we pass from coordinates
(r,z,f) to spherical coordinates (r ,u,f), so that
r5rsinu,z5rcosu,f5f, and introduce flat-space retarded
time U5t2r , we obtain Eq.~3.1! in the form

ds252e2~g2c!dU222e2~g2c!dU dr

1~e2c2e2~g2c!!cos2u dr2

1~e2~g2c!cos2u1e2csin2u!r 2du2

1~e2~g2c!2e2c!2rsinucosu dr du

1r 2sin2ue22cdf2. ~3.2!

Since we are considering waves with initial data of compact
support in the (r,f) plane, we can use the results of Sec. II
directly. Recall that one approachesi1 in three dimensions,
fixing U5t2kr,k5const.1 @cf. Eq. ~2.11!#. In the four-
dimensional picture, this corresponds precisely to approach-
ing the null infinity of the flat metric defined byt,r ,u,f
coordinates, alongu5const,f5const,U5t2r5const, if
we setk51/sinu. The expansions ofc andg, corresponding
to Eqs.~2.13! and ~2.26!, thus have the forms
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c5
L

cos3u F2
1

r 2
1

~21sin2u!U

cos2u

1

r 3
1OS 1r 4D G

1
J

cosu F1r 2
U

cos2u

1

r 2
1OS 1r 3D G , ~3.3!

and

g5
1

4

L2sin2u

cos8u F ~81sin2u!
1

r 4
2
24~21sin2u!U

cos2u

1

r 5
1OS 1r 6D G

1
1

2

J2sin2u

cos4u F 1r 2 2
4U

cos2u

1

r 3
1OS 1r 4D G , ~3.4!

provided we stay away fromu5p/2, i.e., directions perpen-
dicular to the axis. Our task now is to cast the four-metric in
a Bondi form and show that the metric coefficients have the
standard falloff.

We will carry out this task in the next two subsections.
We will consider the casesJ50, LÞ0, and JÞ0, L50
separately; since we are interested only in the leading terms,
the cross terms;LJ are not relevant. The expansions~3.3!
and ~3.4! show that the falloff ofc is slower than that of
g. Hence, in the construction of the Bondi system, we can
focus primarily onc.

B. Averaged time-symmetric case;J50

If J50, several simplifications occur. First, keeping just
the first term inc in the expansion~3.3! and substituting into
Eq. ~3.2!, we find the asymptotic form of the metric to read

ds252F11
2L

cos3u

1

r 2
1••• GdU2

22F11
2L

cos3u

1

r 2
1••• GdU dr2F 4Lcosu

1

r 2
1••• Gdr2

1F11
2L

cos3u
~cos2u2sin2u!

1

r 2
1••• G r 2du2

1F 8L

cos2u
1••• Gsinu dr du

1F11
2L

cos3u

1

r 2
1••• G r 2sin2u df2. ~3.5!

In order to bring the metric to Bondi’s form, we will use the
method developed in@11# to analyze space-times with a
boost-rotation symmetry. What we need is a coordinate sys-
tem Ū, r̄ ,ū,f̄5f such that

gŪŪ511O~ r̄21!, gŪ r̄ 511O~ r̄21!,

gŪ ū 5O~1!, g ū ū 5 r̄ 21O~ r̄ !, gf̄f̄5 r̄ 2sin2ū,
~3.6!

and, to all orders,

g r̄ r̄ 5g r̄ ū 50, gū ūgf̄f̄5r̄4sin2ū. ~3.7!

Let us suppose the transformation leading to this form may
be expanded in powers ofr̄21:

U5p0~Ū,ū !1p1~Ū,ū ! r̄211p2~Ū,ū ! r̄221•••,

r5q~Ū,ū ! r̄1s0~Ū,ū !1s1~Ū,ū ! r̄211•••,

u5t0~Ū,ū !1t1~Ū,ū ! r̄211t2~Ū,ū ! r̄221•••. ~3.8!

The requirements~3.6! and ~3.7! restrict the undetermined
functionsp,q,s,t. From the leading terms ofgŪŪ , gŪ ū ,
we first find thatq,Ū5t

,Ū

0
50. The required form ofg ū ū and

gf̄f̄ in the leading terms implies (q)2t , ū
0

51,
(q)25sin2u/sin2t0. This can be solved forq and t0 explic-
itly; however, further we assumeq5t , ū

0
51 since the other

choices just correspond to coordinate systems connected by
boosts along the symmetry axis@10,11#. Then the require-
ment on the leading order term ingŪ r̄ implies that also
p
,Ū

0
51. The falloff conditions~3.6! are thus satisfied.

The conditions g ū ūgf̄f̄5 r̄ 4sin2ū1O(r̄2) and g r̄ ū
5O( r̄21) lead tos05t150. It remains only to satisfy the
requirements~3.7!.

The conditionsg r̄ r̄ 50 @to orderO( r̄22)#, g r̄ ū 50 @to
O( r̄21)# and g ū ūgf̄f̄5 r̄ 4sin2ū @to O( r̄ 2)# determine the
functions p1, p2, . . . , t2,t3 . . . , and s1,s2, . . . . More
specifically, the vanishing ofg r̄ r̄ to ; r̄22 implies p1

52L/cosū, g r̄ ū 50 to ; r̄21 leads to t252(1/2)p , ū
1

12Lsinū/cos2ū, and g ū ūgf̄f̄50 in order r̄ 2 gives s1

52@L/cosū 1(1/2)t , ū
2
]/sinū2(1/2)t2cotū. To determine

the higher-order functionsp, t, ands, we have, of course,
to consider also the functiong in the metric~3.2!. Calcula-
tions then become lengthy. Nonetheless, they can be per-
formed and one can thus demonstrate the existence of the
Bondi expansion for averaged time-symmetric waves. This
establishes the existence of a smooth null infinity in all di-
rections except those perpendicular to the axis of the sym-
metry.

Now, in axisymmetric space-times, when a spacelike Kill-
ing field with circular orbits exists, there is a reduction of the
asymptotic symmetry group even if a ‘‘global’’I does not
exist, i.e., even ifI does not admit spherical cross sections.
Furthermore, in this case, the Bondi news function has a
local meaning@12#. One can, therefore, try to find it in the
present case. In Bondi’s coordinates the news function is
given by c,Ū , where the functionc(Ū,ū) enters, for ex-
ample, the expansion ofgf̄f̄5 r̄ 2sin2ū12cr̄1O(1). Starting
from our metric ~3.2!, and using the transformation~3.8!
with the functionsp,s,t,q found above, we obtainc50.
Hence thenews function vanishes. In fact, this could be an-
ticipated sincec;r22 at I—we are here in the region in
which the tails of cylindrical pulses decay, and there is no
radiation field at null infinity @13#. Thus, in these space-
times, the radiation field is all focused in the direction of the
two ‘‘singular generators’’ ofI singled out by the axis~or,
the ]/]z-Killing field !. Along these generators, the Bondi-
Penrose radiation field diverges and asymptotic flatness is
lost. In other directions, there is smooth curvature, but no
flux of energy.

We conclude this subsection with a remark. In their analy-
sis of isometries compatible with gravitational radiation,
Bičák and Schmidt@13# consider axisymmetric space-times,
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assume Bondi’s expansion for allfP@0,2p) and
uP(u0 ,u1) and conclude that cylindrical symmetry is not
permissible. This assertion may seem to contradict the con-
clusion we just reached for the time symmetric Einstein-
Rosen waves. Note, however, that the interval of permitted
u ’s in the assertion of@13# containsu5p/2, i.e., the direc-
tions perpendicular to the axis of symmetry, while in the
present case, Bondi’s expansion fails to hold in that direc-
tion. Thus, there is in fact no contradiction. In fact, the re-
sults obtained in the present work are fully compatible with
those of@13#; Bičák and Schmidt conclude below their Eq.
~52! that, if the functionc5 vanishes, the second Killing
vector field~in addition to the axial one! can generate either
a time translation or the translation along the axis of rotation.

C. Case whenJÞ0,L50

In this case, Eq.~3.3! tells us that the leading order be-
havior of c is different: one obtainsc;J/rcosu. Conse-
quently, transformation~3.8! does not now lead to a Bondi
system; in particular, it does not remove the ‘‘offending’’
term ingrr;r21. Nevertheless, since the leading term in the
metric does not depend on time and isO(r21), typical for
static Weyl metrics, we can attempt to find the required
Bondi system by mimicking the procedure adopted in@10#.
Let us assume a transformation of the form

U5Ū1p~r ,ū !,

u5 ū1t1~ ū !r211•••. ~3.9!

Keeping then just the first term inc in the expansion~3.3!
with L50, and writing the asymptotic form of the metric
analogously to Eq.~3.5!, we find that the crucial term
;r21 in ḡrr will vanish if

2~p ,r !
222p ,r1

4J

r
cosu50. ~3.10!

Solving in the leading order forp, we obtain

p~r ,ū !52Jcosū lnr1•••. ~3.11!

In this way we can achieve at leastḡrr;O(r22). However,
with the transformation~3.9! there is no way to satisfy the
requirementḡr ū 5O(1). Wemust admit a logarithmic term
also in the transformation ofu which, in turn, requires an-
other logarithmic term in the transformation ofU. By assum-
ing expansions inr2 j lnir, we find, after some effort, that a
suitable transformation reads

U5Ū1S 2J

cosu
cos2ū D lnr2~2J2sin2ū !

ln2r

r
,

u5 ū1~2Jsinū !
lnr

r
. ~3.12!

@Notice that in the leading order (2J/cosu)cos2ū52Jcosū is
in agreement with Eq.~3.11!.#

Now, transforming the metric~3.2!, with c andg given
by Eqs.~3.3! and~3.4! ~with JÞ0,L50), via Eq.~3.12!, we
obtain the metric in the form

ds252F12
2J

cosū

1

r
1OS lnrr 2 D GdŪ2

2F12
2Jsin2ū

cosū

1

r
1OS ln2rr 2 D G2dŪ dr

1F4J lnrr 1OS ln2rr 2 D G rsinū dŪ dū1FOS 1r 2D Gdr2
2F4J 1r 1OS ln2rr 2 D G rsinū dr dū

1F11OS ln2rr D G r 2dū21F11OS ln2rr D G r 2sin2ū df2.

~3.13!

Bondi et al. @10# applied a similar procedure to the Weyl
metrics. In contrast to their result, however, we did not quite
succeed in bringing our metric to the standard Bondi form.
The reason is that, unlike the Weyl metric, in our case, the
leading ‘‘offending’’ terms—proportional tor21—areu de-
pendent.@In the case of the transformation of the Weyl met-
ric to Bondi’s form —cf. @10#—we havep52mlnr̄1 . . . ,
m being the mass. Assumingm5m(u) in the Weyl metric
~and thus violating the field equations!, one can make sure
that I still exists, but the space-time is only ‘‘logarithmi-
cally’’ asymptotically flat.# By introducing l̃5r21, Ũ5Ū,
ũ5u, f̃5f, and rescaling the metric~3.13! by the confor-
mal factorV5 l̃ , we obtain

ds̃25V2ds252S 12
2J

cosũ
l̃1O~ l̃ 2lnl̃ !D l̃ 2dŨ2

1S 12
2Jsin2ũ

cosũ
l̃1O~ l̃ 2ln2l̃ !D 2dŨ dl̃

1@24J~sinũ ! l̃ lnl̃1O~ l̃ 2ln2l̃ !# l̃ dŨ dl̃

1O~1!dl̃21@4Jsinũ1O~ l̃ ln2l̃ !#dl̃ dũ

1@11O~ l̃ ln2l̃ !#dũ2

1@11O~ l̃ ln2l̃ !#sin2ũ df̃2. ~3.14!

Thus, the metric is well behaved asl̃→0, i.e., atl̃50 I does
exist. The metric is continuous onI . However, it is not dif-
ferentiable. Thus, it appears that there is a key difference in
the asymptotic behavior in the averaged time-symmetric case
and in the general case. In the general case,I appears to have
a ‘‘logarithmic character’’@3,4#. ~A word of caution is in
order: It is possible that the differentiability can be improved
by continuing the transformation~3.12! into higher-order
terms.!

To conclude, we wish to point out that, although we ob-
tained the asymptotic forms forc and g @Eqs. ~3.3! and
~3.4!# assuming that the waves have Cauchy data of compact
(r,f) support, the forms themselves hold in more general
cases as well. An interesting example is provided by the
Weber-Wheeler-Bonnor time-symmetric pulse solution
@14,15#. @The pulse is formed by a linear superposition of
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monochromatic waves with a cutoff in the frequency space :
c(t,r )52C*0

`e2avJ0(vr)cosvt dv, whereJ0 is the Bessel
function and the constanta is an approximate measure of the
width of the pulse. It appears@16# that no other integral
containing the Bessel function can be expressed in a closed
form, which apparently makes the Weber-Wheeler-Bonnor
pulse ‘‘unique’’ among nonsingular pulse-type solutions of
the wave equation in~211! dimensions.# In this case, we
have

c5A2CH @~a21r22t2!214a2t2#1/21a21r22t2

~a21r22t2!214a2t2 J 1/2 ,
a5const ~3.15!

and

g5
1

2
C2H 1

a2
2
2r2@~a21r22t2!224a2t2#

@~a21r22t2!214a2t2#2

1
1

a2
r22a22t2

@~a21r22t2!214a2t2#1/2J . ~3.16!

At t50, the Cauchy data forc arec5C(a21r2)21/2 and
c ,t50. Nevertheless, expressing the asymptotic forms ofc
andg at U5t2r5const,u5const,f5const, we find after
somewhat lengthy calculations~or by usingMATHEMATICA !,
thatc andg have asymptoticallyexactlythe form~3.3! and
~3.4! with J50 andL522Ca. Therefore, in the directions
not perpendicular to the symmetry axis, these waves do ad-
mit a smoothI .

Similarly, the asymptotic forms ofc and g with JÞ0
may hold even though the Cauchy data are not of compact
support. A simple prototype, discussed by Carmeli@17#, for
example, has

c5
1

2p

f 0

At22r2
, g5

1

8p2

f 0
2r2

~ t22r2!
, f 05const.

~3.17!

This wave is singular att25r2, but it represents the late time
behavior of the solution given by

c5
1

2pE2`

t f ~ t8!dt8

@~ t2t8!22r2#1/2
, t5t2r, ~3.18!

where f (t)Þ0 only for 0,t,T; f 05*0
Tf (t8)dt8. With this

wave we find c and g to behave ~at U5t2r5const,
u5const,f5const,r→`) according to Eqs.~3.3! and~3.4!
with J5 f 0/2p. The falloff is now slower, but a ‘‘logarith-
mic’’ null infinity I does exist.
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APPENDIX A: RELATION BETWEEN RIEMANN
TENSORS IN THREE AND FOUR DIMENSIONS

The Einstein-Rosen metric ~2.1! in coordinates
x05u5t2r, x15r, x25f, x35z becomes

ds25e2~g2c!~2du222 du dr!1r2e22cdf21e2cdz2.
~A1!

Assuming the expansion~2.10! for c, we know thatg can be
written in the form ~2.23!, and in principle the Riemann
~Weyl! tensor of the vacuum~311!-dimensional space-time
and its asymptotic behavior can be obtained from Eq.~A1!.

However, it is possible to use directly the ‘‘reduction for-
mulas’’ for the calculation of the Riemann tensor of spaces
which admit an Abelian isometry group@7#. In the coordi-
nates (xm)5(u,r,f,z) in which the Killing trajectories or-
thogonal to the hypersurfacesz5const are just
u5const,r5const,f5const, the four-dimensional compo-
nents of the Riemann tensor are given by the relations@see
Eq. ~2.3.4! of @7# where, however, the Riemann tensor with
the opposite sign is used#

~4!Rabcd5R̄abcd,
~4!R3abc50,

~4!R3a3b52VVuuab , V5ec, ~A2!

where the ‘‘u ’’ denotes the covariant derivative with respect
to the metricḡab given by Eq.~A1! with z5const. The co-
variant derivativesViab are given in terms of the Christoffel
symbols listed by Stachel@2# in his Eq.~A1! in the Appendix
in (u,r,f,z) coordinates.@In Stachel’s list ofG ’s the follow-
ing symbols are missing: Grf

f 5r212c ,r ,
Grr

r 52(g ,r2c ,r), Grz
z 5c ,r . Notice also that hisx25z,

x35f, while here we putx35z. He treats waves with both
polarizations so we must put hisx50 when comparing his
results with ours.# Using these,

~4!R303052e2c@c ,uu13c ,u
2 22c ,uc ,r1c ,r

2 1g ,r~c ,u2c ,r!

1g ,u~c ,r22c ,u!#,

~4!R313152e2c~c ,rr13c ,r
2 22g ,rc ,r!,

~4!R323252e2c22gr2@2c ,uc ,r2c ,r
2 1r21~c ,r2c ,u!#,

~4!R303152e2c~c ,ur1c ,uc ,r2g ,rc ,r1c ,r
2 !. ~A3!

These are the nonvanishing components(4)R3a3b in the co-
ordinates (u,r,f,z). Transforming them back to the coordi-
nates (t,r,f,z) we find—after projecting them on the ortho-
normal tetrad used by Stachel—precisely his components
R0202, R1212, R2323, andR2021given in his Eqs.~A3!. ~They
have the opposite signs because Stachel uses the signature
1222.!

The componentsR̄abcd ~formed from the metricḡab) can
be expressed in terms of our~211!-dimensional Riemann
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tensor given in Appendix A of@1#. This is formed from the
three-metricgab5e2cḡab ; hence, we use the behavior of the
three-dimensional Riemann tensor under conformal rescal-
ings @see, e.g.,@7#, Eq. ~2.4.6!#. We find

R̄ab jk52e2cRab jk2
1

2
e24c~gj [aVb]k2gk[aVb] j !,

~A4!

where

Vik52e2c@~glmc ,lc ,m!gik22c ,ic ,k22c ; ik#. ~A5!

Here the semicolon denotes the covariant derivative with re-
spect to the three-metricgab ~see Appendix A of@1# for the
Christoffel symbols!. The nonvanishing quantitiesVik turn
out to be

V0052e2c@2c ,uc ,r2c ,r
2 22c ,u

2 22c ,uu12c ,u~2g ,u2g ,r!

12c ,r~g ,r2g ,u!#

V015V1052e2c~2c ,r
2 22c ,ur12g ,rc ,r!,

V1154e2c~2c ,rr2c ,r
2 12g ,rc ,r!,

V2252e2c22gr@r~c ,r
2 22c ,rc ,u!12~c ,u2c ,r!#.

~A6!

By substituting these expressions into Eq.~3.3! and using the
componentsRabcd from Appendix A of@1#, we findR̄ab jk —
and thus also(4)Rab jk—in the coordinates (u,r,f,z). By
transforming them to (t,r,f,z), we exactly recover Stach-
el’s expressions given in his Eq.~A3!.
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