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We calculate the two flavor equation of state for QCD on lattices with lattice spacir(@T) ! and find
that cutoff effects are substantially reduced compared to an earlier study asi(4T) . However, it is
likely that significant cutoff effects remain. We fit the lattice data to expected forms of the free energy density
for a second order phase transition at zero-quark mass, which allows us to extrapolate the equation of state to
m,=0 and to extract the speed of sound. We find that the equation of state depends weakly on the quark mass
for small quark mas4.S0556-282(97)06011-9

PACS numbds): 12.38.Gc, 11.15.Ha, 12.38.Mh

[. INTRODUCTION clude two degenerate quark flavors. However, the strange
quark is neglected, and we work at zero net baryon density.
It is generally believed that at high temperatures QCD While the approximations made in a lattice simulation are
undergoes either a phase transition or a fairly sharp crossoveontrollable in principle, with presently available computing
into a regime where hadrons “dissolve” into a quark-gluon power these approximations are severe. In particular, effects
plasma. Testing this scenario is a major goal of current andf the nonzero lattice spacing are large. For example, there
planned experiments in heavy ion collisions. Although theare large differences between the continuum Stefan-
fireball created in such a collision is at best in quasiequilib-Boltzmann law, which is presumably the limit of the QCD
rium, knowledge of the equilibrium equation of state for energy at very high temperatures, and the lattice version,
QCD is nonetheless very useful for constraining the paramebtained by summing over the Fourier modes with the free
eters of models of the quark-gluon plasidd. For this rea- particle action on the lattice. Also, with the Kogut-Susskind
son we have been carrying out a program of lattice simulaguarks that are usually used in high temperature QCD simu-
tions to determine this equation of state or energy andations, flavor symmetryisospin symmetry, more or less
pressure as a function of temperature. Our calculations inbadly broken. Instead of havinyfz—l light pseudoscalar
particles at low temperature, only one pion is an exact Gold-
stone boson corresponding to a symmetry not broken by lat-
*Present address: Fakiltdur Physik, Universita Bielefeld, tice artifacts. The breaking of flavor symmetry is expected to

D-33615, Bielefeld, Germany. be proportional toa? (a is the lattice spacing It can be
"Present address: Department of Physics, Washington Universityeduced by modifying the actidi2] or by simply decreasing
St. Louis, Missouri 63130. the lattice spacing.
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In this work we report on an extension of our equation of _ _ #In(Z)
state calculations to six time slicé8], which is a lattice (B = O =558, 7ama6/a: (8)
spacinga=1/(6T) instead of thea=1/(4T) used in our ear- st /&Myt
lier work [4]. In addition to decreasing the lattice spacing, The other second derivative of B JIn(2)laamy)?, in-
we improve the extrapolation of our results to smaller quark,olves a disconnected piece which is not calculated here.
mass by fitting our free energy to a form with either the  For |arge systems the free energy is proportional to the
theoretically predicted @) critical behavior or with the yolume, and the pressure becomes just
mean field behavior that is expected when we are not very
close to the critical point.

_ T
p= v'n(z)- 9

Il. THEORY
Then derivatives of the free energy are just derivatives of the

The methods for computing the energy and pressure argressure, and the pressure can be reconstructed by integrat-
standard5—-7], and we have discussed them in our earllering the free energy:
paper[4]. Here we summarize the equations necessary to
make this paper self-contained. pVv 5 3 6/g2 "
The energy, pressure, and interaction measure are defined = (6/9 ,amq)=2NSNtJCOId [{C(6/g",amy))
by
—(0(6/g'?,amg))symld(6/g'?) (10)

B dinZ
V=T am or
p dInZ PV NPT s M PP S
=== +(6/g°,amy) NSthcold[<¢¢(6/g Mga))
—T 4In(2) —(Yi(6lg2, m{@))s,mld(mia), (11)

|=E-3P= (1)

V dIn(a)’ where the “symmetric’ quantities subtract the divergent

, . zero-temperature pressure. The interaction measure can be
The _temperature and volume_are d_eterm_lned by the 'a_tt'cf’ound from simulations at a single value of gélamq) and
spacinga and the space and time dimensions of the latticéhe g function, which tells how these lattice couplings must

Ns andN: be changed to change the lattice spacing:
v=Nia®, IV L. A(6lg?)
?z_ 2NsNt Jlna [<D>_<D>sym]
1/T=N,a. 2
. _ 3, d@amg) —
We use the X1 plaquette(Wilson) action for the gauge “NGN— = [Py —(bh) syml.- (12
fields, and the conventional Kogut-Susskind quark action
with two flavors of quarks: In Ref.[4] we obtained the nonperturbatiy@ function for
couplings associated with thd,=4 and 6 crossovers. To
sz [dU(n,m]exp{(G/gz)Sng(nf/4)TrIn[amq+ D1}, briefly summarize, zero temperature spectrum data from the
literature are combined in a fit which givesn, andam, as

3) smooth functions of §? and am,. The p mass is used to
define the lattice spacing. In particular, we somewhat arbi-
Sy= IRe 2 TrUg(n,m,v). (4 tr_arily set thep mass to_ 7_70 MeV at all light quark masses.
nu<v Lines of constant physids.e., m,/m,=const), along which
_ ) ) L _ the lattice spacing varies, are determined in the bare coupling
I_n a Iatt|c_e simulation we compute_derlvatlv_es_ of th_e pafrt"space. The two components of the8 function,
fuon function. From thgse we can either explicitly or implic- 4(6/g2)/(Ina) and d(amy)/d(Ina), tell how the input param-
itly construct the partition function and from that the energy gters change along these lines of constant physics.
and pressure. In this work we make use of the quantities

1 9dIn(2) Ill. SIMULATIONS

<D>:W§NtW' (5)

For the equation of state, we have carried out simulations
using the hybrid molecular dynamié® algorithm [8]. The
1 dIn(Z2) calculation requires both asymmetric £226) and symmet-

(pih)= NN, gam.’ (6) ric (12% lattices as mentioned above. These are commonly

st 78y referred to as hot and cold lattices, respectively, and we will

1 42n(2) use this terminolpgy. This is somewhat misleading since the

(0% —(O)Y=—g— ———n >, 7) system may be in the cold phase, i.e., below the crossover,

ANSN, 4(6/g°) even on the hot lattices if the coupling is small enough. Each
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FIG. 1. Phase diagram for our simulations. The vertical solid FIG. 2. The plaquette expectation value as a function of the step
lines indicate approximate locations of the crossover. Crosses indsize squaredAt?, and the gauge coupling. Results are shown for
cate cold lattices, octagons hot lattices. am,=0.0125. Octagons denote hot latticesy6is given for each

_ o ) _ and squares denote cold lattices.
hot (cold) simulation is at least 1800800 time units long

after equilibration. As a rule, fewer trajectories were required ..\ oblas ta\t=0 [4]. Of course, this greatly increases
for the “cold” lattices to achieve the same level of statistical the computational cost 'Of the calcu’lation since at each time
accuracy bgcause the lattice volume was twice as Iarge_. O&ep the force term due to the quarks in the gauge field equa-
the hot lattices near the crossover region the SImUIatlonﬁons of motion requires the inverse of the quark matrix, and
were extended to more than 3000 units to overcome thgs it happensAt must be taken relatively small=(amq) t(;

Iar%%r ﬂgctuaﬂonsl.assoc:jated V}'('th the tr?]nsmodn_. be in the regime where the lowest order error dominates.
€ bare coupling and quark mass phase diagram Corrg, many inversions of the quark matrix are required for

sponding to our simulations is shown in Fig. 1. The verticaleaCh simulation. In Fig. 2 we show example results for the
bars denote the approximate location of the finite temperablaquette (00)) atam,=0.0125. Evidently, on the cold lat-
ture crossover formm,=0.0125 and 0.025. Note that, in- tices and for lower values of §7, the effects are worse. The

greasing the coupll_ng g7 is analogous to Increasing the step size errors are particularly troublesome for the plaquette
temperature, lowering the bare quark mass, also in-

creases the temperaturélhis statement depends on the

physical quantity used to define the lattice spacing. Again, 1.70
we usem,,.) Of course there are lines in this bare coupling
phase diagram on whiaim_/m, is fixed and only the physi-
cal temperature of the system varies. In particular, the bot-
tom of the graph, wheren,/m,=0, is the lineam,=0 and
corresponds approximately to the real world. In our simula-
tions the gauge coupling @ takes the values
5.35<6/g°<5.6 for quark mass am,=0.0125 and
5.37<6/g’<5.53 for amy;=0.025. Then along the line
6/g°=5.45, the quark mass varies in the range 1.60
0.0l<am,=0.1 and at @J2=5.53, 0.0125am,=<0.2. This

range of couplings and masses corresponds roughly to physi-

cal temperatures 125T <250 MeV (based on the mass

[4]) and mass ratios 03m,/m,<0.7. In units of the pseu-

docritical temperatureT., m_/T.,=1.94 and 2.69 for 1.55 f
am,=0.0125 and 0.025, respectively. Past lattice simula-
tions indicate thal./m,~0.2[9] orm,/T.~0.9 in the con-
tinuum limit. Thus our simulations correspond to rather

heavy pions. . FIG. 3. The plaquette expectation value as a function of the
TheR algorithm introduces lowest order errors in observ—gauge coupling aam,=0.0125. Octagons denote hot lattices,

ables that are proportional tht?, whereAt is the step size squares cold lattices. The area between the curves gives the pres-
used to numerically integrate the gauge field equations ofyre while the difference at each point is related to the interaction
motion through simulation timg8]. The errors are in general measure. The lines are from a fit including thé4Dsingular free
different on hot and cold lattices; thus, multiple simulationsenergy described in the textlashed lines are an extrapolation to

at each value of ? and am, are required to extrapolate am,=0).

1.65

<>
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FIG. 4. () as a function of &2 andam,. The difference in FIG. 5. The pressure obtained from integratifgy) with re-

the hot(octagon$ and cold(squaresvalues is related to the inter- spect toam, and constant &°. The values at zero quark mass
action measure{ ) on the hot lattices also serves as an order(burstg are obtained by settingy4)=0 on the hot lattices and
parameter for the system. Lines depict fits t6#0and mean field extrapolating(%b) to am,=0 on the cold lattices.

singular forms of the free energy plus analytic terms({id),

(yy), and their derivativesEqgs. (5)—(8)]. Only points with g am, decreases, the pressure smoothly increases. To ex-

am,=0.025 were included in the fits. The difference betwegd)O  rapolate the pressure from our smallest quark mass to zero
(dotted ling and mean field form&lashed lingis not discernible at quark mass requires a corresponding extrapolation of the
the quark masses where simulations were run. Extrapolations t91d and hot contributions to the integrand in Egjl). For
my=0, however, give different critical couplings. Solid lines cor- o poy |attices at both values ofgf/the extrapolation takes
respond to polynomial fits to the cold data and the correspondin%Iace in the hot phase, and so for this contribution we as-

extrapolation team;=0. — .

sume( ¢y)=0 atam,=0. For the cold lattices we extrapo-
since the difference of the plaguette on hot and cold lattice!@t® using the fit summarized in Table I. A simple linear
is quite small(even in the hot phaseas we will see in the extrapolation of the hot lattice data for the smallest two

. — quark masses gives a result within &.50f zero at
next section. At low temperature bothyy) and (L) ap- 6/g?=5.45 and 3.6 of zero at 64%=>5.53, perhaps due to

proac ntr ymmeti Vs, makig xiacion o moS o1 070 020 8 L S0 R e
' ing a zero intercept has a negligible effect on the pressure
extrapolation.
IV. RESULTS AND ANALYSIS As mentioned above, the pressure as a functiongf &t
. _ ) fixed quark mass is obtained by integratifig) with respect
The expectation values df) and(y) are shown in o 6/g%. In Fig. 6 we show the results farm,=0.025 and
Figs. 3 and 4. These values reflect the step size extrapol@.0125. Again, the pressure rises smoothly through the cross-
tions. In each figure, a small but noticeable inflection pOint i30ver_ The curves are similar except for an overall shift in
observable in the expectation values on the hot lattices ag/q2, theam,=0.0125 curve beginning its rise sooner since
6/9°~5.415 @m;=0.0125) and 5.445 am;=0.025). the smaller quark mass corresponds to higher temperature.
These couplings correspond to the pseudocritical temperashown where they can be compared are the points obtained
tures of the crossover. The expectation values are smooth @fpm the the quark mass integration. The values from the two
the cold lattices. Note that the values on the hot lattices aPdifferent approaches agree, indicating that the integration
proach their cold values at smallgh/and begin to separate method works well for the volumes studied.

as 64> (and thus the temperatyrés increased. The area  The interaction measure at each point is just the sum of

between the curves in Fig. 3 yielggT*. At large 642, the the T=0 subtracted values of th&1) and(¢) weighted
plaquette expectation values again approach each other sinﬁg the coupling and quark mass components of ghieinc-
p/T*—const asT -, as expected from the asymptotic free- ;o respectively{Eq. (12)]. The results foram,=0.0125
dom of QCD. The qualitative behavior ¢f) is consistent and 0.025 are shown in Fig. 7. At zero temperature the in-
with its expected role as an order parameter for a Spontan%raction measure is zero since we have normalizethd
ously broken chiral symmetry. A quantitative analysis andp to be zero aff =0. Through the transition, we expecto
extrapolation to zero quark mass is given later. . increase rapidly if the energy density increases rapidly, e.g.,
Next we turn to a discussion of the pressure. The integrajf the quarks and gluons deconfine, since the pressure must
tion of (¢4) with respect toam, at 6h2=5.45 and 5.53 rise smoothly(even for a discontinuous transitipto main-
yields the pressure as a functionarh, at fixed 642, shown tain mechanical equilibrium of the system. This behavior is
in Fig. 5. For largeam, the system is in the cold phase, andseen in Fig. 7. Again, at higher temperature due to
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TABLE I. Fit summary table.f,s is the nonsingular free energy up to an overall constant. Note

AB=6/g°—5.4.
Fit 6/g2 To Ho frs X/ Npg
0(4) 5.353 0.522 1.51 3.3293+2.30A 32+ 0.98\ 83

+amg(0.41+4.30 5 8.3A 57 990/91
MF 5.381 0.546 1.22 3.2213+0.50% 82— 0.221A 83

+am;(0.63+0.7A 5—0.6A 8%) 933/91
Cold 0.13AB+2.02A B2+ 3.195A B3+ —1.23A g* 130/52

+amy(1.04A B+0.723\ g2+ 5.50 53— 454 g%
+am(—1.340 —12A 8%+ 2150 8%+ 2.2A 8*)

asymptotic freedom, we expekto decrease to zero as both roughly 2—3. A similar situation exists for the ) pure
the energy density and pressure asymptotically approacgauge case where the ratio of the lightest glueball state to
their Stefan-Boltzman values, angd=3p, the equation of T, is greater than $10]. We also note that the energy den-
state for a relativistic free gas. sity of a relativistic gas of three light pions is insufficient to
The energy density constructed frdnandp is shown in  explain the observed energy density in the hadronic phase
Fig. 8. Here we include B as well. We also plot and  (e/T*=#?/30x3~1). Similarly, in SU2) pure gauge
3p, using the values of(J) and(?:,b} at the smallest step theory it has been noted that a gas of noninteracFing glueballs
size available at each point, without step size extrapolationg:annot account for the observed energy density below
The difference between the two gives an estimate of the stelg-1l-
size systematic error in our final results. Recall that step size N Fig. 9 we also compare thd;=6 equation of state
effects for larger masses were essentially eliminated by takwith an earlier result orN;=4 lattices and with the con-
ing At<am,. tinuum and lattice Stefan-Boltzmann laws. There is an ap-
In Fig. 9 we show the equation of state as a functionparent large finite size effect which is expected from the free
of the physical temperature. The quark mass depenlattice theory. At high temperature the energy density has
dence is largely removed by this partial resca"ngleveled off dramatically while the pressure is still increasing
{6/gz(a),anh(a)}a{T(6/gz,amq),amq}. Note that the at the Iargest value off that we simulated. Because of
physical quark mass, or more precisaly./m,, varies along ~ @symptotic freedoms and 3 should approach the Stefan-
each line of constargm, while m,/T=amyN, is held fixed. = Boltzmann result for the corresponding value Nf. But,
From the figure, we see a large increase in the energy densit{em Fig. 9, the approach to the free result is evidently quite
as T increases through the pseudocritical temperaturé'OW-
T.,~140 MeV (642 was defined aboye Just belowT,
e/T*~5 which is already substantial. Physically this means A. Extrapolation to my=0
the hadronic phase has a non-negligible energy density, ex-
cept that it is not clear what degrees of freedom are bein
excited since we have already mentioned that/T. is

The above results pertain to unphysical values of the
%uark mass. Indeed, we would like to obtain the equation of
state along a line of constant physics corresponding to the
real (two flavor world. This can be done by extrapolating to
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FIG. 6. The pressure obtained from integrat{hd) with respect 6/g

to 6/g? at constanamy. The values from the quark mass integra-
tions (fancy squarésare also shown for comparison. FIG. 7. The interaction measure-3p.
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FIG. 8. The energy density constructed from3p (upper two FIG. 9. The equation of state along lines of constagtT. The

curves. Also shown is ® (lower two curveg and results with no  octagons denoteam,=0.0125 results, squaresm,=0.025. The

step size extrapolation@quares The difference is the step size diamonds indicate an earlier result dh=4 lattices. Horizontal
systematic error in the equation of state. The data are folines correspond to Stefan-Boltzmann laws fr=4, 6, and the
am,=0.0125 only. The fancy squares denote 3 times the pressurgontinuum. The energy density increases rapidly near the crossover
as calculated from the integration 6f) with respect taam,. while the pressurdower curve for each symbptises smoothly.

f symmetry[15]. Here we wish to use this theoretical input to
guide extrapolation of the free energy to the physical light
quark mass, which is essentially the sameag=0. We fit

ﬁo both a scaling form for @) in three dimensions and to

the chiral limit,am,— 0. To this end we fit the derivatives o
the free energy density to an appropriate function gf @ind
am, and then seam,=0. The fit serves the dual purpose of

smoothing the data and allowing a parametrization of th he form for mean field theory. We expect the mean field

equation of state in terms of the bare quantities, from whic mtob q roximation when th tem is not ver
we can extract, e.g., the speed of sound. ormto be a good approximation when the System IS not very
near the critical point, and the difference between these two

If the QCD high temperature phase transition with two rms gives an estimate of the systematic errors in this ap-
flavors is a second order transition at zero quark mass drivefr?roachg Y P

by the restoration of chiral symmetfyt2], then the critical . — ] ]
part of the free energy should have a universal form, up to_ Since we calculate botfy/¢) and(J) (and their deriva-
the scale of the gauge coupling and quark nfdsj. The tives), we would like to treat them equally in fitting the free
free energy is the sum of an analytic piece and a scalin§nergy. Therefore we use a formulation of the scaling free
piece: energy which handles the energy and magnetization sym-
metrically. This has been discussed in Hd6], and so we
f=fa(6/g%,am,) +f4(t,h), (13)  just summarize it here.
The scaling ansatz, E¢L4), tells us that if we specify the
wheret=(T—T.)/To andh=H/H,. To andH, are conven-  singular free energy on the unit circle in thé plane, we
tionally determined by requiring ¢s4)(t=0h)=h° and  have specified it for alt,h. Thus the scaling part of the free

(Y)(t<0h=0)=(—1)~. (In the language of spin models, €nergy density can be written

{lﬂlﬂ)l is the magnetization and;!) is the energy. From f(t,h)=b(t,h)~9g(a(t,h)), (16)
invariance under a length rescaling by a fadipthe critical
part of the free energy should have the property whereb is the solution to

f(t,h)=b" % (bYtt,bYnh). (14) (bYtt)%+ (bYhh)?=1 (17)
This implies that the magnetization near the critical point jsand
de.termined by a universal scaling function, conventionally 0(t,h) =tan™ (b¥rh,bYt). (18)
written as

Hereg( ) is a universal function. In Ref16], g(6) for O(4)
M — F(t/ VB = f 15 is determined approximately by Monte Carlo simulation of
e ( )=1(). (19 the O4) spin model. For this formulation it is convenient to
modify the conventional normalizations bfandh, and use
The normalization conditions oh and h then require that t=(T—T.)/T, andh=H/H,, whereT, andH are chosen
f(0)=1 andf(x) — (—x)# asx— —c°. This condition, along  to fix g(#/2)=y,/d andg’(m)=—1. These are related to
with the known values o/, andy, [14], has been used to the conventional normalizations byH,=H{™* and
compare the behavior ifysi) with that expected from @) T0=T9H3’B.
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From simulation of the @) spin model an approximate L
g(#) for O(4) [16] has been obtained. For the mean field 5= pit using 0(4) scaling
case, the scaling function can be obtained from a numerical
reparametrization of the mean field magnetic equation of
state[13]

| T T T T

h/IM3=1+t/M?2. (19

e/T*, 3p/T*

Figure 4 shows(¢ ) calculated from fits to the mean
field and @4) scaling functions, plus polynomials ia
and 66°. We also include the pure polynomial fit to the cold
data, and both hot and cold data are shown for comparison.
The fits are summarized in Tabley? per degree of freedom
is poor for all of the fits. For the hot data, the mean field and
O(4) cases each havg?/Npe~1000/91 while the cold data
have y%/Npe~130/52. If we fit to the data without step size

extrapolations, the results improve somewhat, ' T(GeV)
X?INpe~650/91 for the hot data and 117/56 for the cold. A
fit to only <I’/I> over the same range givq§/NDF% 49/18. FIG. 10. Theam,=0 equation of state from a fit to the data that

includes the @) universal scaling function. Also shown are the
Sdata and the fit aam,=0.0125 for comparison. Again, there is only
a weak mass dependence. The “bump” just after the transition is

. - . . likely an artifact of the extrapolation. The solid lines correspond to
?y tf:g fts. M(I)(reoverli the 1;||ts to rgetan field E:r:j(_kl?scal_lnr?b the central value and a one standard deviation above and below this
unctions work equally well; our data cannot distinguish be-o, t (statistical errors only

tween the two scaling behaviors. However, it is interesting to
note that the respective extrapolationsng=0 are quite
different, and give critical temperaturdg.~140 and 150
MeV for the 4) and mean field cases, respectively. The
above indicates that the present lattice simulations may sti
be too far from the scaling region and smaller quark mass

Despite the highy?, examination of Fig. 4 shows that the
data are actually reproduced quite well by the fits. This i
remarkable given the large range afn, and 66 spanned

We then generate many parameter sets with this distribution

and calculate the equation of state for each one. The standard
ﬁieviation of the mean of this set is shown in the figure.

e In Fig. 11 we show the speed of sound squared calculated

oﬁom the Q4) fit. It rises rapidly through the transition region

are required to see the true scaling behavior. The correlat and then levels off near the free value of 1/3. This indicates
length in lattice units as given by the inverse pion miiss that the system is weakly interacting in this region. This

pion ando are degenerate at the critical poiof the present should be contrasted with—3p just after the crossover

simulations is only 2—3 which is less than the temporal SXWhich indicates significant interaction effects. Indeed, the
tent of the lattice, and so true dimensional reduction, which 9 ) ’

must occur for universality arguments to hold, has not beeﬁ:OUpllngs in the region are of order one, and we have already
achieved.

At amy=0, d(amy)/d(Ina)=0, and so the interaction L B
measure is determined solely from the plaquette. However, amq20.0125
most of our information about the critical behavior comes

from (), since the contribution of the scaling part of the
free energy to the plaquette is small compared with the ana-
Iytic part. Therefore in a crude approximation our procedure i

is using information abouty¢) to help determine the free -
energy, which in turn yields the plaquette @s,—0. © r
An extrapolation of the equation of state to,=0 is 02—
shown in Fig. 10. It is compared to tkeam,=0.0125 result
which reproduces the data reasonably well. The appearance
of the bump in the energy density just after the transition is
probably an artifact of the extrapolatigat m,=0, the cor-
responding region of 6F lies below the values of the cou- "
pling where we have done simulationgrom Fig. 10 we 0.0 ——
again see a weak dependence on the quark mass, which gives 0.10 0.15 0.20 025
us some reassurance in the extrapolation. The plus and minus T(GeV)
'?hnee fsot ﬁgxﬁrg sz\;/lat:gi?; S\r/]vc()awgomaﬁ(?(;v:;?igf fci:taltzJ:l‘e;ted N FIG. 11. The speed of sound squared from a fit tq the_ data that
— ) ! ! includes the @) universal scaling functiorc§ rises rapidly in the
(), and their derivatives with respect togb/[Eqs.(5)—  crossover region and then approaches the free gas result 1/3. The
(8)]. From the fit we obtain a set of parameters and the Cofow temperature result is probably not accur@tee text The solid

variances of these parameters which map onto a multidimenines correspond to the central value and a one standard deviation
sional Gaussian probability distribution for the parametersabove and below this resultatistical errors only
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seen that neither the energy density nor pressure is approadkxtrapolation to zero quark mass remains to be established.
ing its perturbative value. The low temperature part of theAt the very least, one may expect that the recently reported

curve is probably not accurate. The derivatives of the energfinite volume corrections lead to a greater sharpening of the

density and pressure are poorly known in this region sincerossover in energy density and speed of sound as the quark

the difference of 1) and( ) from their cold lattice values Mass is decreased. We have seen that small changes in the
is nearly zero. We have already mentioned tmat/ T, was extrapolation have a large effect on some but not _aII extrapo-
rather high in our simulations, and so it is not surprising thafated values: e.g., @) and mean-field extrapolations give
the expected dynamics of a dilute gas of relativistic pions igZe€ro-quark-mass critical temperatures that differ by 10 MeV.
not observable. In that case, we expect the hadron gas beld®n the other hand, expressed as a function of temperature in
the transition to have a nonzero speed of sound, which theBhysical units, the energy density and pressure away from
dips down at the transition. The statistical errors for thethe crossover show little dependence on quark mass, even in
speed of sound were calculated in the same manner dél€ zero-quark-mass limit.

scribed above for the equation of state. The methods used here require a subtraction of the zero
temperature plaquette andsy). As N, is increased, the
V. CONCLUSIONS plaguette subtraction rapidly becomes more difficult, since

the fractional difference in plaquette between the hot and
In this work we have pushed our calculation of the equag|g |attices decreases &‘{4. This suggests that, as for
tion of state for QCD including dynamical quarks to smallermany other quantities, an improved action which allows the
lattice spacing. We have also developed techniques for usingse of 4 larger lattice spacing, or smally, will be impor-
theoretical expectations for the scaling behavior to extrapog,nt for further progress. Results for pure gauge theory and
Iat_e numerical results to the physical quark mass. Our_simuf-Or four-flavor QCD have been reported by the Bielefeld
lation parameters were chosen to explore the equation Qfy5119]. Another important problem for future studies is

state over a range of temperature rather than.to work VerYemedying the breaking of flavor symmetry, so that the low
close to the crossover. Therefore, we can say little apout th mperature phase that is simulated really has three light
nature of the transition or crossover from this work. Still, OUr hions. For a start in this direction see RE].

results are consistent with the standard picture of a second
order phase transition at zero quark mass and a sharp cross-
over for small but nonzero masses.

We remark, however, that recent simulations with two This work was supported by NSF Grant Nos. NSF-
flavors of Kogut-Susskind quarks on lattices WNk=4 and  PHY93-09458, NSF-PHY96-01227, and NSF-PHY91-
at smaller quark masses than used in this study have reveal@8964, DOE Contract Nos. DE-AC02-76CH-0016, DE-
significant finite size effects that have cast doubt on earlieAC02-86ER-40253, DE-FG03-95ER-40906, DE-FGO05-
promising demonstrations of critical scalifgj7]. Other re- 85ER250000, and DE-FG05-92ER40742, and DOE Grant
cent simulations with two flavors of Wilson quarks and anNos. DE-2FG02-91ER-40628 and DE-FG02-91ER-40661.
improved gauge action to reduce cutoff effects also showCalculations were carried out on the following: the Intel
promising agreement with @) scaling, but a thorough in- Paragon at the San Diego Supercomputer Center, the Intel
vestigation of finite size effects remains to be dpb8]. So  Paragon at Indiana University, the IBM SP2 at the Cornell
for the moment the question of the order and universalityTheory Center, the IBM SP2 at the University of Utah, and
class of the transition remains open, and the validity of outhe workstation cluster at SCRI.
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