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Color-octet mechanism andJ/ ¢ polarization at CERN LEP
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Polarized heavy quarkonium productions 2l decays are considered. We find that polarizations of the
produced quarkonia are independent of that of the p&i®ptovided that one considers the energy distribution
or the total production rate. Produc@t’s via the color-octet and the color-singlet mechanisms are expected
to be 19% and 29% longitudinally polarized, respectively. The energy dependencey; gk)
= dFiSIdx/dFLg/dx is very sensitive to the production mechanism, and, therefore, the measurement of
7(X) expt Will be an independent probe of the color-octet mechan[$0556-282(97)04511-4

PACS numbses): 12.38.Bx, 12.39.Jh, 14.40.Lb

Since Braaten and Fleming put forward the idea of theoctetcc(®S{®)) intermediate state was shown to be dramati-
color-octet mechanisrfil] as a possible solution to the so- cally different from that of thel/ produced via the color-
called ¢’ puzzle at the Fermilab Tevatrdiz], there have sjnglet mechanism. Therefore, thay energy distribution in
been many activities applying this idea to other pro-the 70 decays could be another good test of the idea of the
cesses: heavy quarkoniutboth S- and P-wave charmo-  cojor-octet mechanism. In RdfL0], the present authors have
nium and bottomium production at the TevatrofB], in B qngjdered the angular distribution 8fy's in Z° decays,

d$c§y5[4]_, fixed target experiment&g], yp collisions[6], 54 one can find whether the color-octet mechanism is work-
e e annihilations at CLEQ7], andZ" decays at the CERN ing or not

e . X .
ee cplhder LEP [8_1Q|.' Polarized heavy quarkonium In this work, we suggest another observable, the polariza-
production was also considered as an independent check ﬁf

the color-octet mechanisfil,12. It is adopted in the cal- cglrl)r(-):)(‘:]t/e:tprﬁéé_hiiisprfsdﬂﬁesdh;;? EZe r%ﬂog':éngfihin? ;he
culations of they’ polarizations at the Tevatrdi 3]. A new ' 'S produ Vi W

way to regularize the ultraviolet or infrared divergences mghar?nels,CWS(ll))elel and cc(®s{)—J/y, have dis-
heavy quarkonium calculations was proposed in Red]. tinctively different polarizations. Théd/¢ produced by the
Also, some nonrelativistic QCHONRQCD) matrix elements color-octet mechanism is about 19% longitudinally polar-
relevant toS- and P-wave heavy quarkonium decays were ized, whereas)/¢ by the color-singlet mechanism is about
calculated on the latticEL5]. Some reviews of earlier litera- 29% longitudinally polarized.
tures can be found in Reff16]. When treating polarized quarkonium productions, one
In the color-singlet model, the promtys production rate  should take care of the soft proce®RQ(*>"*L;)—H. Re-
in Z° decays is dominated by charm quark fragmentatiortently, Braaten and Chen developed a method for treating
[17]. However, recent reports by the OPAL Collaborationthe polarized heavy quarkonium productifii] which we
[18] claim that they have observed an excess of events faise here. Beneke and Rothstein also pointed out that the
Z°-Y(n§)+X (for n=1,2,3, larger than the theoretical interference among differeriP, states occurs in a polarized
expectation by a factor of-10, compared to th@-quark  heavy quarkonium productidii2]. In general, one expresses
gggg:sgﬁtéot?]eco?gr'r?:]t/'mﬁﬂt]j' A,‘ sm(;lart_excgsé% \évas also the free particle amplitude, whet®Q makes a transition
Pro ¢ andy” production in €CaYS, into the physical quarkonium state, in a power series of the
although the experimental errors are quite Idr@. It turns . —. —
relative momentung of Q and Q in the QQ rest frame.

out that the color-octet gluon fragmentation suggested b)ﬁ- ; - ;
Braaten and Fleming could fix this discrepancy throughThen, one can find out what specific spectroscopic state of

Z°—qq+g followed by color-octet gluon fragmentation the QQ pair is initially produced in the hard process ampli-

into J/¢ with emission of soft gluon§8,9]. In Refs.[8, 9],  tude. Finally, one may consider the soft transition in which

the energy distribution of the producedys via the color- the initially producedQQ system transforms into the physi-
cal heavy quarkonium state in which one is interested. In the
case of heavy quarkonium production by the color-singlet

*Electronic address: swbaek@phya.snu.ac.kr mechanism, the soft process does not change any spectro-
TElectronic address: pko@phyc.snu.ac.kr scopic quantum numbers such as color and angular momen-
*Electronic address: jungil@phya.snu.ac.kr tum up to av? order correctionwhich contains relativistic
SElectronic address: hssong@physs.snu.ac.kr correction and doubl&1 transitions:
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J/y Jy

FIG. 2. Feynman diagrams for the color-octet mechanism for
Z°—qq+J/y with g=u,d,c,s,b.
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where | #7= —g#”+ Z#Z'IM2, and Z* is four-momentum

of Z°. P* and Q*" are vector and tensor polarization of a
FIG. 1. Feynman diagrams for the color-singlet mechanism forz® poson:
Z°— (co)(®sM) +ce.
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In Z" decay, the color-singlet production process mainly sz_§ [ R— (6)
comes from the Feynman diagram shown in Fig. 1, whereas Mz

the color-octet production process mainly comes from the . .

soft procesQE(gs(s)l;JJ/¢pas shown irln F>i/g 2. 1fwe con- Vhere a%=(k,~k;)" with k, and k, being the four-
. AP ) Co ’ t - * at LEP, th t
siderJ/y polarization, we should take into account the rela-n o oo o ande a andgy » are the vector and

. L the axial vector couplings betweenand Z° boson. We can
tion of the J/¢ polarization and the angular momentum of g

o _ _ ; : write the decay rate aZ° as
the initial QQ pair. If J/¢ is produced via the color-singlet

mechanism 1 v

38(1) 3/ 3S(1) , 2
QRS = J(*5) @ where[dp]= d3p/(2)32p° is the invariant phase space of
h larizati . ical . ¢ the produced heavy quarkonium with four-momentpip.
the polarization vector ad/ ¢ is identical to spin wave func- By the Lorentz covariance, the integratigid,(PS)H ,,

tion of the initially producedQ Q pair. The polarization vec- gives terms proportional tay,,, Z,Z,, Z.P,, Z,P.,
tor of the J/¢ produced via the color-octet mechanism PP, ande,,.sZ°p”. Here,el::aﬁzagﬁ is the only nonva-

through doubleEl transitions, nishing term after being contracted with the vector polariza-
o o tion term in p%”, and the result is proportional to cés,
QQ(S®)—QQ(3P®)— Jry(3SM), (3)  where#* is the angle between the initial electron beam and

the produced quarkonium directions. When they are con-
is the same as the spin polarization vector of the initiallytracted with the tensor polarization contributiongf”, only
producedQQ(SS(lg)), since theE1l transition conserves spin PuPy E'Ves a nonzero quantity, _prc_)por_nonal to
and the total anaular momenta of @35(8)) andd/y are 3 cogh*—1. In calculating the energy distribution or the
th Th gf in th " h 1| there i total decay rate, we integrate over the angfleby which all
€ same. ' herefore, in these two channels, there 1S no proBT the contributions from the polarization dependence van-
lem, even though we treat the polarization vector of the pro-

_ i ) ish. Thereforep4” can be safely replaced bjl“* in our
ducedJ/« and the spin wave function of th@Q pair to be

h Th v f involving th larizati t th calculations, effectively.
the same. The only factor involving the polarization of the - \yen one considers thl ¢ polarization, it is convenient

prqducedJ/zﬂ IS theﬂard'processes shoyvn In Flgs.. 1 and %0 define# to be the ratio of the production rat€&' () of the
which produce aQQ pair at a short distance. Since the |ongitudinal J/ ¢ to the total production ratelf=I", +Iy)
QQ(3S(18)) produced via the color-octet mechanism comesas follows:

from the gluon propagator, it seems to be strongly trans-

versely polarized. The quantitative number for the color- r r

octet-producedl/ s polarization can be obtained only after = ﬁot: I +T ®
the full calculations, which will be presented below along
with the numerical results. This ratio n can be determined experimentally from the mea-

Before presenting the results for tléy polarization at  surement of the angular distribution of the leptons in the
LEP, we first argue that the° polarization at LEP does not subsequent decay/—1"1~ [21]. Defining 6 to be the
affect thed/y polarization inZ° decays. Th&® produced at angle between the three momentumJfs in the Z° rest
LEP is polarized as a result of unequal vector and axial vecframe and the three-momentum of the daughter lesany
tor couplings between electron adfl boson. Therefore, the |7) in the rest frame ofi/y, the angular distribution of a
density matrixps” of Z% is given by[20] lepton in the decaying/ rest frame has the form
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TABLE |. Longitudinal production fractionn of quarkonium

N (x)
produced in thez® decay and the asymmetry of the angular *
distribution of the quarkonium decay in its rest frame. 0.4
nJ/w/nY aJ/zﬁ/aY 0.3
Fragmentatior(color singlej [21] 0.31/0.31 0.053/0.053 0.2
Color singlet(this work) 0.29/0.24 0.10/0.23 0.1
Color octet(this work) 0.19/0.22 0.36/0.28 o
Octettsinglet(this work) 0.21/0.22 0.31/0.28
. FIG. 4. Energy dependence of(x) in case ofZ°—Y+X:
dl'(J/y—171" S(x) in the solid curvezy (x) in the dashed curve, ang’,(x) in
Q=11 14 cogor @ et 71 () lrag(X)
d cos| e dotted curve.
where sistent with those mentioned in R¢22]. We have used the
following numerical values for the matrix elements of
1-3p NRQCD appearing in thd/y production rates from th&°
= (100 decays:
The unpolarized/ s corresponds tay=1/3, anda=0. (OI(’){"”(381)|0>=0.73 GeV, 1y

The polarizedl/ s production inZ° decays in the color-
singlet model was calculated in R¢21] using the fragmen-
tation approximation. In that paper, the authors showed that
the asymmetryr is rather small, i.e.;~5%. Also, « is inde-
pendent of the produced quarkonium mass sodtsaare the ~ We remark that bothry’” and ¥ are independent of these
same both ford/ andY production in their fragmentation NRQCD matrix elements, since they cancel in the numerator
approacH21]. and the denominator when we take the ratiozinOn the

In our work, we calculated all the Feynman diagramsother hand,a;.’ does depend on the numerical values of
without any fragmentation approximation in the color-singletNRQCD matrix elements in Eqg11l) and (12), each of
and color-octet contributions. We recover their results in thevhich is known only within a factor of-2. Therefore, the
limit of )\Em§/¢(v)/M§—>0- Our results shown in the Ap- definite test of the color-octet mechanism 28— J/ g+ X
pendix depend explicitly on the parameterand numerical will be a deviation of the measur(aa*rd“e"x"l’Jt from the singlet
values are shown in Table |. Note that are considerably prediction,ai/‘l’ or aé"/’, in the direction of a larger value of

different for Z°—J/y+X and Z°—~Y +X. Also, the frag- gy Deviation of thed/y polarizations(or @) from the
mentation approximation is not that accurate at Calcmat'ng:olor—singlet predictionoﬂ“”: 0.10) may be used as a probe
the'Y polarization in thez® decays because of a rather Iarggto check the color-octet mechanism in heavy quarkonium
mass ofY. «'s are enhanced compared to those calculated IBroductions, once a few thousand decaysiaf—|*1~ are

the fragmentation approximation. observed inz® decays. In the case @—Y +X, a" is not

When we compare the polarization &fy produced via g gengitive to the singlet and octet mechanismg,

the color-singlet and the color-octet mechanisms, we observe Y_ i i
that there is a considerable difference betwagr0.10 for 0.28 anda; =0.23, which are considerably larger than the

the singlet andag=0.36 for the octetcc contribution to predictiona}{ag: 0.053 based on the.fragmentation app'roach.
J/¢ production. Adding the singlet and the octet contribu- The energy dependence gx) (with x=2E,,/Mz) dif-

tions, we getx;’(’,‘fzosl, which is appreciably different from fers greatly depending on tliés production mechanisms, as

Ny g ) _we can see in Fig. 3 for the case &f/ and Fig. 4 for the
a1 "=0.10 oraj,g=0.053. These numerical values are con case ofY. TheJ/y’'s produced via the color-singlet mecha-

nism are almost unpolarized in almost the entire energy

n(x) range, while thel/¢’'s produced via the color-octet mecha-
nism are highly transversalespecially at high energy
Therefore, if we observe quarkonium of a particular energy
range, we can greatly increase the polarization sensitivity if
there are enough data. For example, if we observelthe
only in the range of 0.#x=<0.9, where most of the color-
singlet J/y is produced[8], 7y"¥=0.076 andzi'¥=0.30.
These values correspond &' ¥=0.72 anda?'¥=0.077. In
the same energy rangeg =0.12 andy] =0.28 for the case
of Y, which correspond tery =0.57 anda) =0.13, respec-

FIG. 3. Energy dependence ofp(x) in case of tively. We can also observ&s in the energy range
Z°= g+ X 7d%(x) in the solid curve,73'¥(x) in the dashed 0.3<x=<0.4, where most of color-octat's are produced8].

curve, andzpay(x) in the dotted curve. In this energy range, a color-singl&t is more transversal

(0|09%(3S,)|0y=0.015 GeV. (12)
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than a color-octeY, where 73 =0.28 andz) =0.12, corre- ACKNOWLEDGMENTS
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APPENDIX

In this appendix, we show the analytic formslofgy, andI';g) 1o, defined in Eq(8);

2 J/ 3 2 2
as(2m.) _ {OY(°S))) [1+n X+YXc—4N | [X5—2X+2+2N(2—X)+ 2\
8,t0t:ﬂ F(Z_)qq) #J‘ _ dX |n [ ( ) ]_2 X2_4)\ ,
18 m? 2% X—\X2— 4N X
(A1)
_2a%(2my) ez __(OVY(3sy)) [0 NS W= 4N\ [X—1+A(x—2)—\?]
8L"" 9 (2700 — =5 |, s e | M e X
1
+ o (1+)\)(1+)\—x)x/x2—4)\], (A2)
2 J/ 3 2
as(2m,) _ (O S) 1 XV1I—=X+N+V(X*—4N)(1—X
rmtzﬁ r(zacc)#f dx| 4\ In I W U (10)\3(x2+4)+)\2(—5x4+20x3
~ 243 m: 2K XV1=X+N—J(X?—4N)(1—x)
gz_gz
+8x2— 80X+ 80) + \ (9x5— 59 — 8x3+ 682 — 128+ 64) + 4x2(5x2— 4) + ﬁ [203(x2+4) + A 2(5x* — 60x°
\% A

24N (1-
/WZ_X)ZJ_S \/%

X {204 (x+2)(5x3— 38x%+ 60x — 40) + A 3( — 5x®+ 66x° — 286¢* + 8883 — 9922 + 96 — 480)

+24x2— 48X+ 48) + Ax?(— 9x3+ 732 — 76) + 34 (—x+1)]

+6N2(2x"—25x5+118¢°— 324x*+ 3843 — 3602+ 288 — 96) + A (— 5xB+ 76x” — 411x5+ 1168¢° — 1384*

2 .2
+ 1248 — 1456¢%+ 1024 — 256) — 4x%(x— 1)%(5x*— 323+ 72x?— 32+ 16) + 3‘2’+g’§ [20M4(x+2)(x3+ 182+ 12
\% A

—8)+ A3(5x8— 78>+ 274x*— 8403+ 384x2+ 448 — 224) + AN?(— 3"+ 45x® — 21 1x°+ 528+ — 5043

; (A3)

+44x% + 144 — 48) + Ax?(x— 1) (5x°— 73x*+ 328 — 712*+ 56k — 80)]} / [x?(2—x)8]

a?(2m;) __(0"Csy) (1 XVI=X+HA V=4 (L=X) | (-, 3 oy 3
7 P e M e Wi sy T ey (24)\ SR

— X% — 24X+ 28) + N2(— 3x8+ 24x5— 1284+ 64x3 — 1122 — 128+ 128) + AX?( — x>+ 3x*+ 56x°+ 60x>— 64) + 4x*

2_ 2
X (—5x%+4)+ §Z+g§ A[BA3(—x2—4)+8N%(4x*— 123+ Tx?+12) + Ax?(3x*— 523+ 176x°— 208+ 16)
A\ A

(X>—4N)(1—x)

4 2_
+X*(X+2)(x°—3x+6)] T x

/ [x3(x2—4N)(2—x)?]+8 [ 8N\5(x+2)(9x3—62x%+ 108 — 72)
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+8N4(3x8—25x5+ 76x* + 176x3 — 584x% + 912 — 480) + N 3(— 9x8+ 108" — 756x8+ 2936¢° — 8744 + 114243
—12096¢>+ 1075X — 4224 + 2\ ?(— 15x8+ 216¢" — 1114+ 352> — 3864x* + 19843 — 21 76¢* + 2304 — 768)
+Ax?(3x8—36x"+ 14K6— 1285 — 1264¢*+ 20483 — 16x°— 1280+ 512) + 4x*(x— 1) ?(3x* — 24x3+ 64x>

2 2
gv—9
—32x+16)+ g\2/+ g’; N[ —8NH(x+2)(x3—14x%+ 12x— 8) + 8\ 3(4x® — 37x°+ 108x* — 256¢3 + 184x%+ 16x — 32)
\% A

+ 2\ 2(3x8—88x"+ 748 — 2600° + 56 72* — 5728 + 160k* + 768 — 384) + AN x2(4x® — 53x°+ 231x* — 624x°

+844>(2—496x+96)+x4(—x+1)(x5—13x4+56x3—128(2+80x+16)]}/[3x2(x2—4)\)(2—x)6] , (A4)
with
4m?

4

The same formulas apply to thé case, with the substitution @h, for m., the corresponding change of couplimngg and
0a, and the corresponding long-range matrix elements.
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