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The electroweakO(a) contribution to the resonant singleW production in a general four-fermion process is
discussed with particular emphasis on a gauge-invariant decomposition into a QED-like and weak part. The
cross section in the vicinity of the resonance can be represented in terms of a convolution of a ‘‘hard’’
Breit-Wigner cross section, comprising the (mt ,MH)-dependent weak one-loop corrections, with a universal
radiator function. The numerical impact of the various contributions on theW line shape are discussed,
together with the concepts ofs-dependent and constant width approaches. Analytic formulas for theW decay
width are also provided including the one-loop electroweak and QCD corrections.@S0556-2821~97!00311-1#
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I. INTRODUCTION

Future experiments at the CERNe1e2 collider LEP and
the Fermilab Tevatron will access sectors of the minimal
standard model~MSM! @1# yet unchallenged: the Yang-Mills
structure of gauge boson self-couplings and mass generation
by the concept of spontaneous symmetry breaking@2#. With
LEP II operating above the threshold forW pair production,
for the first time a precise direct measurement of the triple
gauge boson coupling (g,Z)W1W2 can be performed, al-
lowing us to test the non-Abelian structure of the MSM@3#.
Moreover, our current knowledge of theW boson mass
~world average value@4#! ,

MW580.3360.15 GeV,

will be improved up to an uncertainty in the range of 30–50
MeV at LEP II @5# and 20–30 MeV at the Tevatron upgrade
@6#. Thus, in order to meet the precision of these future ex-
periments the knowledge of the observed cross sections be-
yond leading order perturbation theory is crucial.

TheW pair production cross section in the limit of stable
W bosons beyond leading order is already known@7#, but is
not sufficient at c.m. energies only a fewW boson decay
widths above the threshold. In the course of the calculation
of the corrections to the realistic scenario at LEP II with the
subsequent decay of theW bosons into fermions,
e1e2→W1W2→4 f , the following problems arise:~1! The
production and decay ofW bosons in the vicinity of the
threshold, where two strong energetically varying phenom-
ena occur: the resonant cross section atAs65MW (s6 : in-
variant masses of the outgoing fermion pairs! and its increase
at the thresholdAs52MW ; ~2! the consistent treatment of
unstable charged gauge bosons within perturbation theory,
which involves infrared singular interactions with real and
virtual photons.

At present, there exists no complete calculation of the
electroweakO(a) contribution to the off-shellW pair pro-
duction cross section: explicit results have been derived only
for parts of the photonic corrections. An overview of the
present knowledge of the off-shellW pair production beyond
leading order and the concessions to the consistency of the
theory in order to gain it is given in@7#.

The idea of this paper is to contribute to the description of
charged unstable gauge bosons beyond leading order pertur-
bation theory by studying the second problem separately and
discussing the electroweakO(a) contribution to the resonant
single W production in a four-fermion process,
i i 8→W1→ f f 8. It appears as part of thet-channelW pair
production process and its better understanding can show a
way to an improved description of the off-shellW pair pro-
duction. Moreover, it represents theW production process
via the Drell-Yan mechanism at the Tevatron and thus, in
view of the future improvedW mass measurement at hadron
colliders, requires a careful treatment beyond lowest order in
perturbation theory.

The discussion of the electroweak radiative corrections to
theW production in the vicinity of the resonance is guided
by the successful treatment of theZ line shape beyond lead-
ing order @8#, which has been precisely measured at LEP I
and the SLAC Linear Collider~SLC! @9#. In contrary to the
Z resonance the electroweak radiative corrections to the
resonantW production cannot be naturally subdivided into a
gauge invariant photonic and nonphotonic part. A separated
treatment is motivated by the following reasons: Usually, the
photon contribution depends on cuts imposed on the photon
phase space and thus is dependent on the experimental setup;
the enhancement of the fine structure constanta due to large
logarithms ln(s/m2) arising in connection with infrared~IR!
and collinear singularities requires either the consideration of
higher orders in perturbation theory or the performance of a
suitable resummation procedure; the interesting model-
specific contributions are contained in the nonphotonic sec-
tor. Therefore, in analogy to the description of theZ reso-
nance, we seek a consistent gauge invariant representation of
the resonantW production cross section of the inclusive pro-*Electronic address: dow@fnth09.fnal.gov
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cessi i 8→W1→ f f 8X with X5photons as a convolution in-
tegral of the form@10#

s~s!5
1

sEs054mf
2

s

ds8G~z!sw~s8!. ~1.1!

The shift of the invariant mass squareds85zs of the final
state fermions is due to initial state photon emission, which
is described by the universal radiator functionG(z). The
latter also takes into account the possibility of multiple soft
photon emission. The model-dependent ‘‘hard’’ cross section
sw(s) has a Breit-Wigner form. In next-to-leading-order per-
turbation theory sw(s) comprises the weak (mt ,MH)-
dependentO(a) contribution.

The paper is organized as follows: In Sec. III, after recall-
ing the Born cross section and the tree levelW width ~Sec.
II !, we concentrate on the gauge-invariant separation of the
electroweakO(a) contribution to theW production into a
QED-like and ~modified! weak contribution. Our starting
point is a thorough perturbative treatment of the one-loop
corrections to the lowest order matrix element. For checking
the cancellation of the unphysical gauge parameter depen-
dence the calculation is performed inRj gauge. The applica-
tion of the procedure developed in@11# in order to extract a
gauge invariant multiplicative factor to the Born cross sec-
tion from the IR-singular photon contribution leads to QED-
like form factors describing the initial state, final state, and
interference contribution, separately U~1! gauge invariant. In
the resonance region, the remaining interference term can be
absorbed into a modified weak contribution, which then also
factorizes. After performing an equivalent discussion of the
electroweakO(a) contribution to the partialW width ~see
Appendix B!, the numerator of the Breit-Wigner cross sec-
tion can be represented as a product ofW partial widths
describing theW production and decay, respectively. At the
end of Sec. III, after a detailed discussion of the QED-form
factors and the modified weak contribution, we present the
cross section including the electroweak radiative corrections
to theW production in the vicinity of the resonance in terms
of the convolution integral given by Eq.~1.1!. After a brief
summary~Sec. IV! we provide numerical results for the vari-
ous contributions in Eq.~1.1! accompanied by a numerical
discussion of theW decay width including one-loop elec-
troweak corrections and QCD corrections~Sec. V!.

In Appendix A, we discuss the aspect of gauge invariance
in the description of an unstable charged gauge boson be-
yond leading order from a more fundamental point of view.
The problem of a consistent description of an unstable par-
ticle together with a definition of mass and width, which
meets the requirement of gauge invariance order by order in
perturbation theory, already had to be solved in the context
of the precision measurements at theZ resonance. There, two
approaches have been discussed: theS-matrix theory in-
spired ansatz and the quantum field theoretical approach,
yielding a description with constant ands-dependent width,
respectively. The resulting prescriptions derived for theZ
resonance need to be tested with regard to consistency and
applicability to theW resonance, facing the additional diffi-
culty of having IR-singular interactions of theW boson with
virtual or real photons. At the end of Appendix A the corre-
sponding prescriptions for the case of a charged vector boson

resonance will be provided, especially, a transformation will
be derived, which connects both descriptions and enables the
consideration of ans-dependentW width in Eq. ~1.1! in an
easy way. In the remaining appendixes the explicit expres-
sions for the electroweakO(a) contribution to theW pro-
duction andW width are provided and some details of the
calculation are shown.

II. W PRODUCTION AND W WIDTH
IN LEADING ORDER

The decay width of aW boson into quarks or leptons in
leading order perturbation theory, which is graphically rep-
resented by the decay process in Fig. 1~with q25MW

2 ), is
given by @12#

GW→ f f 8
~0!

5
aMW

12sw
2 Nc

f uVf f 8u
2
1

MW
2

3A@MW
2 2~mf1mf 8!

2#@MW
2 2~mf2mf 8!

2#

3F12
mf
21mf 8

2

2MW
2 2

~mf
22mf 8

2
!2

2MW
4 G , ~2.1!

wherea and sw denote the fine structure constant and the
sine of the Weinberg angle, respectively. The quark mixing
is taken into account by the Kobayashi-Maskawa-matrix el-
ementsVi j @13# with Vi j5d i j for leptons.Nc

f denotes the
color factor withNc

f5 l ,q51,3. By using the leading order
relation for the Fermi constantGm ~measured in them de-
cay!,

MW
2 5

pa

A2Gmsw
2
, ~2.2!

the partialW width in the limit of massless decay products
turns to

ḠW→ f f 8
~0!

5
A2GmMW

3

12p
Nc
f uVf f 8u

2. ~2.3!

ThisGm representation has the advantage to being indepen-
dent of sw . The total width results from the summation of
the partial decay widths into all fermionic final states com-
patible with energy-momentum conservation:

GW
~0!5 (

~ f , f 8!

GW→ f f 8
~0! . ~2.4!

FIG. 1. W production in the four-fermion process at leading
order.
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The production of aW boson in a four-fermion process in
leading order perturbation theory is graphically represented
by the Feynman diagram shown in Fig. 1. We choose the
Mandelstam variables

s5q25~pf1pf 8!
25~pi1pi 8!

2,

t5~pf2pi !
25~pf 82pi 8!

252
s

2
~12cosu!,

u5~pf2pi 8!
25~pf 82pi !

2. ~2.5!

u denotes the scattering angle of the outgoing fermionf with
respect topW i . The differential cross section for this two-
particle scattering process can be written as

ds

dt
5

1

16ps2 ( uMu2~s,t ! ~2.6!

with the matrix element squared and averaged~summed!
over the initial ~and final! state spin and color degrees of
freedom. With the momentum assignment of Fig. 1 the Born-
matrix element of theW production in the limit of massless
external fermions yields

M~0!5 i
pa

2sw
2 Vii 8Vf f 8

ū f~pf ,sf !gm~12g5!v f 8~pf 8,sf 8! v̄ i 8~pi 8,si 8!g
m~12g5!ui~pi ,si !

s2MW
2 . ~2.7!

In the vicinity of the resonance the Dyson-resummed propa-
gator has to be used@Eq. ~A3!#, so that the differential Born
cross section of the resonantW production has the Breit-
Wigner form

ds~0!~s,t !

dt
5

pa2

sw
4s2

uVii 8u
2uVf f 8u

2
Nc
f

Nc
i F12 ; 14G

3
~s1t !2

@~s2MW
2 !21MW

2 ~GW
~0!!2#

. ~2.8!

The square brackets take into account that for the case of
incoming leptons the spin average yields only a factor 1/2,
since the neutrino is a purely left-handed particle, whereas
the average over quark spins leads to a factor 1/4. After
performing the integration over the Mandelstam variablet
(2s,t,0) the total cross section of the resonantW pro-
duction in leading order perturbation theory yields

s~0!~s!5
pa2

3 sw
4 uVii 8u

2uVf f 8u
2
Nc
f

Nc
i F12 ; 14G

3
s

@~s2MW
2 !21MW

2 ~GW
~0!!2#

, ~2.9!

which inGm representation is given by

s̄ ~0!~s!5
2Gm

2MW
4

3p
uVii 8u

2uVf f 8u
2
Nc
f

Nc
i F12 ; 14G

3
s

@~s2MW
2 !21MW

2 ~ ḠW
~0!!2#

. ~2.10!

III. ELECTROWEAK RADIATIVE CORRECTIONS
IN O„a… TO THE W PRODUCTION

As motivated in the Introduction, our aim is to provide a
consistent description of theW resonance beyond lowest or-
der perturbation theory in the form of a convolution integral
given by Eq.~1.1!. To this end, a gauge invariant separation
of the electroweak radiative corrections under consideration
into a QED-like and weak contribution is required.

The starting point is a perturbative treatment of theW
production in the four-fermion process inO(a3). The elec-
troweakO(a) contributions under consideration are sche-
matically represented by the Feynman diagrams depicted in
Figs. 2 and 3. The virtual electroweak contribution, shown in
Fig. 2, consists of vertex corrections due to photon andZ
boson exchange~diagram I,III!, self-energy insertions to the
external fermions~diagram II!, theWZ andWg box dia-
grams~diagram V!, and theW self-energy contribution~dia-
gram IV!. Since the calculation is performed inRj gauge, the
latter also involves Higgs and Faddeev-Popov ghosts. After
renormalization~here we work in the on-shell scheme@14#!
the virtual contribution can be described by means of a
gauge parameter (j i ,i5g,Z,W)-independent, UV finite but
IR singular, form factorF̂virt(s,t) ~a caret denotes renormal-
ized quantities! multiplying the Born cross section given by
Eq. ~2.8!. When taking into account the real soft photon
emission~photon momentumukW u,DE!As), shown in Fig.
3, which can also be done in form of a multiplicative IR-
singular factorFBR

s (s,t), the IR singularities cancel as ex-
pected@15#. Finally, theW production inO(a3) in a four-
fermion process can be described by

ds~011!~s,t !

dt
5
ds~0!~s,t !

dt
@112 ReF̂virt~s,t !1FBR

s ~s,t !#,

~3.1!

where the explicit expressions for the contributions to
F̂virt(s,t) andFBR

s (s,t) of Eqs.~3.2! and~3.21!, respectively,
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are provided in Appendix D. For the special choicej i51 the
electroweak one-loop corrections described byF̂virt(s,t) can
also be found in@14#. The remaining photon phase space
integration over the hard photon region is done in Appendix
E.

In the following, we concentrate on the virtual elec-
troweak contribution and discuss the photon contribution
Fg separately from the nonphotonic pure weak contribution
Fweak:

F̂virt~s,t !5~Fg1Fweak!~s,t !. ~3.2!

The virtual photon contribution comprises all Feynman dia-
grams in Fig. 2 involving a photon, where the photonic cor-
rection to theW self-energy is explicitly represented by the
first three diagrams of the subset IV. In contrary to theZ
production, these Feynman diagrams do not build a gauge-
invariant subset and thusFg(s,t) andFweak(s,t) are UV di-
vergent and gauge parameter dependent.

Since, finally, we are only interested in the cross section
in the vicinity of theW resonance, we have a closer look at
the resonance structure of the different contributions to the
virtual corrections depicted in Fig. 2. It turns out, that the
WZ box diagrams can be neglected as a nonresonant contri-
bution of higher order, so that in the vicinity of theW reso-
nance the pure weak contribution in next-to-leading order
evaluated ats5MW

2 ,

Fweak~MW
2 !5~Fweak

i 1Fweak
f !~MW

2 !, ~3.3!

is determined according to the prescription given in Appen-
dix A @Eq. ~A13!#. The resulting form factorsFweak

( i ; f ) (MW
2 )

describe the nonphotonic one-loop corrections to theW pro-
duction and decay, respectively, and are explicitly given by
Eq. ~D27!.

Far more involved is the calculation of the photonic form
factor Fg(s,t): the nonfactorizableWg box diagram is a
resonant contribution and has to be considered at the re-
quired level of accuracy, the arising IR singularities have to
cancel and logarithms of the form ln(s2MW

2 ), which diverge
for s→MW

2 ~on-shell singularities!, need to be regularized in
a gauge-invariant way, when approaching the resonance re-
gion. In order to obtain a separation of the one-loop correc-
tions into a QED-like and weak contribution, we first extract
gauge-invariant form factors, so-called Yennie-Frautschi-
Suura ~YFS! form factors F̃YFS

a (s), from the IR-singular
Feynman diagrams I,II, and V~Fig. 2!, so that the virtual
photon contribution can be written as

Fg~s,t !5 (
a5 initial,final,

interf

F̃YFS
a ~s!1Fg

finite~s,t !. ~3.4!

These YFS form factors together with the real photon con-
tribution build IR-finite gauge-invariant form factors
FQED
a (s,t), which are independent of the internal structure of

theW production and thus can be interpreted as QED-like
corrections. For that, the bremsstrahlung contribution, shown
in Fig. 3, needs also to be represented by a separately con-
served initial and final state current, which cannot be easily
obtained due to thegW1W2 coupling in diagram III. The
sum of the remaining IR-finite contributionFg

finite(s,t), a part
of the QED form factor describing the interference of the
initial and final state bremsstrahlungFQED

interf and the pure weak

partFweak
i , f represents a form factorF̃ weak

i , f , which is indepen-
dent of the external fermions and thus can be interpreted as a
modified weak contribution. For the sake of clearness, the
characteristics of the electroweak corrections inO(a) are
summarized and the different steps, which lead to a descrip-
tion of theW resonance given by Eq.~1.1!, are schematically
presented in Table I.

In the following, this briefly outlined method of finding a
gauge-invariant separation into QED-like and weak parts,
where even theO(a) contribution to theW production and
decay process are separately represented by gauge-invariant
form factors, is going to be performed in detail.

A. The definition of a QED form factor to the W production

In the context of a general treatment of IR singularities
occurring in QED, Yennie, Frautschi, and Suura@11# gave a
prescription on how to separate these singularities as a mul-
tiplicative gauge-invariant factor to the Born cross section.

FIG. 2. One-loop corrections to theW production in the four-
fermion process (F1: Higgs ghost,u1,ug: Faddeev-Popov ghosts;
the nonphotonic contribution to theW self-energy is symbolized by
the shaded loop; an explicit representation can be found in, e.g.,
@22#!.

FIG. 3. Real photon contribution inO(a) to theW production
in the four-fermion process.
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The basis of the perturbative treatment in the manner of YFS
is the observation that the singularities arise only in connec-
tion with soft photons emitted by external particles. The
cross section of this soft photon radiation~virtual or real! can
be described as the Born cross section and factors, which
only depend on the four-momenta of the external particles
and not on the internal structure of the process under consid-
eration. This enables the treatment of soft photon radiation,
especially the demonstration of the cancellation of the IR
singularities, to all orders in perturbation theory. In the fol-
lowing, the YFS method will be applied to the photonic one-
loop contributions to theW production and later on also to
theW width. By the example of the photon exchange be-

tween the final state fermions the extraction of the YFS form
factorFYFS(s,t) from the diagrams I, II, and V in Fig. 2 will
be illustrated. The IR and UV singularities arising in the
course of the calculation are made mathematically well de-
fined by introducing a fictitious photon massl and by di-
mensional regularization@16#, respectively. The external fer-
mions are considered in the massless approximation unless
they occur in singular logarithms of the form ln(s/m2),
where a finite fermion mass has been retained. The explicit
expressions for the IR-singular and IR-finite parts of the dia-
grams under consideration can be found in Appendix D 1.

The application of the Feynman rules of the electroweak
MSM leads to the following expression for the photonic final
state correction described by diagram I:

: iLm
I, f5 igwgm~1-g5!@F I, f

IR~s!1F I, f
finite~s!# Fgw5

e

2A2sw
G ~3.5!

TABLE I. Scheme to the extraction of a QED form factor to theW production~UV,j i , IR, OS denote the
UV divergence,j i dependence, IR singularity, and on-shell singularity, respectively;~subtr! refers to a
prescription concerning the on-shell singularities, which will be given in detail in Sec. III A.
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~3.6!

Following the prescription given by YFS, the numerator of the IR-singular Feynman integral in Eq.~3.6! sandwiched in
between the spinors describing the final state fermions can be written as

numerator5 ū~pf !ga@p” f2k” #gm~12g5!@p” f 81k” #gav~pf 8!5 ū~pf !@2pfa2gak” #gm~12g5!@2pf 8
a

1k”ga#v~pf 8!

5 ū~pf !gm~12g5!v~pf 8!~2pf2k!~2pf 81k!1 terms}sbakb , ~3.7!

where the following relations have been used:

k”gm5kmI1
1

2
@k” ,gm#5kmI2 isnmk

n

and

ū~pf !p” f5mf ū~pf !50, p” f 8v~pf 8!52mf 8v~pf 8!50.

The first term in Eq.~3.7! leads to the IR-singular contribution of diagram I, which will be part of the YFS form factor

F I, f
IR~s!5~ i4pa!QfQf 8E

D

~2pf2k!~2pf 81k!

DlDfD f 8
, ~3.8!

whereas the IR-finite ‘‘magnetic’’ part contributes toFg
finite(s,t) in Eq. ~3.4!.

The application of this procedure to the photonic self-energy insertions to the external final state fermions and to the
photonic box diagrams leads to the following IR-singular form factors:

: iLm
II, f5 igwgm~12g5!@F II, f

IR ~s!1F II, f
finite~s!# ~3.9!

with

F II, f
IR ~s!5

1

2
~ i4pa!HQf

2E
D

~2pf2k!2

DlDf
2 1Qf 8

2 E
D

~2pf 81k!2

DlDf 8
2 J ~3.10!
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and

: iBt~s,t !5 iM~0!~s!@FV, t
IR 1FV, t

finite#~s,t ! ~3.11!

with

FV, t
IR ~s,t !52~ i4pa!HQiQfE

D

~2pf2k!~2pi2k!

DlDfDi
1Qi 8Qf 8E

D

~2pf 81k!~2pi 81k!

DlDf 8Di 8
J . ~3.12!

The form factors describing the initial state vertex correc-
tionsF (I,II), i

IR,finite(s) can be derived from the final state ones by
the substitution

~Qf ,Qf 8,mf ,mf 8!→~Qi ,Qi 8,mi ,mi 8!, ~3.13!

which in the following will be abbreviated by
( f , f 8)→( i ,i 8). Theu-channel form factorsFV,u

IR,finite(s,u) de-

scribing the crossed box diagrams in Fig. 2 follow from
FV, t
IR,finite(s,t) by the substitutions

~ i , f !,~ i 8, f 8!→~ i , f 8!,~ i 8, f !, andt→u ~3.14!

and, additionally, by multiplying with a global minus sign.
The Born-matrix elementM(0) is given by Eq.~2.7!.

These IR-singular form factors are extracted from the vir-
tual photon contribution in such a way, that their sum has a
structure similar to that of the amplitude describing real
~soft! photon radiation

~3.15!

Thus, the U~1! gauge invariance of the YFS form factor is guaranteed by the existence of a conserved current. The initial and
final state contribution to the YFS form factor, however, distinguished by the corresponding charge quantum numbers
(Qi ,Qi 8 andQf ,Qf 8) arenot separately gauge invariant. Therefore, a ‘‘zero’’ will be added, so that the YFS form factor can
be written as a sum of two separately conserved U~1! currents, which describe the virtual photonic correction to theW
production and decay process, respectively:
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~3.16!

This, at first sight, arbitrary extension will receive its justifi-
cation from the structure of the real photon contribution and
its interpretation in the course of the corresponding discus-
sion of the photon contribution to theW width ~Appendix
B!. The explicit expressions for the gauge-invariant form
factors after the evaluation of the loop integral in Eq.~3.16!
can be found in Appendix D1. Before we deal with the real
photon contribution a closer inspection of the occurring mass
singularities ln(s/m2) and logarithms of the form
ln(s2MW

2 ) is needed. Since the occurrence of those singu-
larities is a pure QED phenomenon, they build a gauge-
invariant subset,

@FYFS
initial,final,interf1F I,~ f ,i !

finite 1FV,~ t,u!
finite 1F III #mass sing.

5
a

4p (
k5 i ,i 8, f , f 8

Qk
2 1

2
lnS s

mk
2D ~3.17!

and @b int of Eq. ~3.37!#

@FV,~ t,u!
finite 1F III1F IV#on-shell sing.5

1

2
b int~s,t !lnS MW

2

us2MW
2 u D ,
~3.18!

which can be assigned to the initial state, final state, and
interference YFS form factors according to their structure
and under the maintenance of gauge invariance. It has to be
mentioned that the sum of the IR-finite photon contributions
which are not included in the YFS form factors develops a
further QED-specific term

a

4p (
k5 i ,i 8, f , f 8

Qk
2 ,

which thus can be absorbed in a modified YFS form factor,
as well. Finally, the resulting modified YFS form factors in
Eq. ~3.4! are connected to the original ones@Eq. ~3.16!# as
follows:

F̃YFS
~ initial;final!5FYFS

~ initial;final!2@FYFS
~ initial,final!#mass sing.

1
a

4p (
k5~ i ,i 8!;~ f , f 8!

Qk
2F12lnS s

mk
2D 21G ,

F̃YFS
interf5FYFS

interf2@FYFS
interf#mass sing.1

1

2
b int~s,t !lnS MW

2

us2MW
2 u D .
~3.19!

It is this modification which guarantees, that the inclusive
cross section including the hard final state photons satisfies
the Kinoshita-Lee-Nauenberg~KLN ! theorem@17# and that
the occurrence of the on-shell singularities is restricted to the
initial state contribution.

The last step in extracting a QED-like form factor from
the electroweak radiative corrections to theW production is
to find a gauge-invariant separation of the real photon radia-
tion into initial and final state contribution. It turns out, that
diagram III in Fig. 3 can be divided into one part, which
develops the propagator structure of a initial state contribu-
tion and another one, which can be assigned to the final state
@18#:

~3.20!

Using this separation the contribution of the real soft photons
shown in Fig. 3 can be described by a multiplicative factor
being composed of separately conserved initial and final
state U~1! currents:
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~3.21!

There the impact of a photon radiated by a initial state fer-
mion to theW propagator has been taken into account, as
well. The explicit expression for the gauge-invariant form
factors FBR

a (s,t) after performing the photon phase space
integration in the soft photon limit can be found in Appendix
D3.

Finally, the QED-like form factors of theW production,
which correspond to the QED form factors describing the
next-to-leading order photonic corrections to theZ produc-
tion, are determined by the YFS- and bremsstrahlung form
factors derived above as follows:

FQED
a 52 ReF̃YFS

a 1FBR
a with a5 initial,final,interf.

~3.22!

Up to now, we only considered the radiation of soft photons,
since they develop IR singularities, which have to be can-
celled in the sum of the real and virtual contribution. In the
following, it will be shown that in Eq.~3.22! this cancella-
tion works. Moreover, the radiation of hard photons will be
considered by performing the integration over the remaining
photon phase space,kmin

0 5DE up to kmax
0 5MW/2, as de-

scribed in Appendix E. Since we are interested in the cross
section of theW production in the vicinity of the resonance,
those terms, which would vanish fors→MW

2 , have been
neglected. Furthermore, theW width will be introduced in
order to cope with the arising on-shell singular logarithms by
the replacement

s2MW
2→

R

DW5s2MW
2 1 iMWGW

~011! ,

which can be done without spoiling the U~1!-current conser-
vation as can be easily verified with Eq.~3.21!. The replace-
ment ofs (0)(s) with s̃ (0)(s) @Eq. ~2.9! with GW

(0)→GW
(011)#

in the vicinity of the resonance follows the prescription de-
veloped in Appendix A.

The initial state QED form factor.The gauge-invariant
QED-like contribution to the total cross section inO(a3) in
the vicinity of theW resonance, which has been extracted
from the virtual and real~soft! photonic initial state correc-
tion to theW production in the four-fermion process, yields
@Eqs.~D43!, ~D10! with Eq. ~3.13! andQi2Qi 851#

s i ,v1s
~011!~s!5s̃~0!~s!@11FQED

initial~s!#

5s̃~0!~s!H 11b i~s!F lnS 2DE

As U DW

DW22AsDEU D
1dp~s!G12dv1s

i ~s!J ~3.23!

with

b i~s!5
a

pHQi
2F lnS s

mi
2D 21G1Qi 8

2 F lnS s

mi 8
2 D 21G21J ,

~3.24!

dv1s
i ~s!5

a

4pHQi
2F32lnS s

mi
2D 1

p2

3
22G1Qi 8

2
@ i→ i 8#13

1
p2

12J , ~3.25!

and the phase-shift of the resonance

dp~s!5
~s2MW

2 !

MWGW
~011!FarctanS s2MW

2

MWGW
~011!D

1arctanS 2AsDE2s1MW
2

MWGW
~011! D G . ~3.26!

This represents the main contribution to the entire elec-
troweak one-loop corrections due to the occurrence of large
logarithms; for instance, ln (s/me

2)'24 for s5MW
2 . In the

case of theZ resonance a procedure has been developed for
coping with those large contributions@10#. The achieved de-
scription of the initial state photon contribution by the QED
form factor given by Eq.~3.23! now enables its application
to theW resonance also. For that purpose, the phase space
integration over the hard photons will be rewritten in accor-
dance with Eq.~E12! by usingz512k512(2k0/q0) as
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s i ,hard
~1! ~s!5s̃~0!~s!E

e

1

dk
uDWu2~12k!

uDW2sku2

3H b i~s!
1

k
1
1

2
b i~s!~k22!1

a

p

k

6J
5E

0

1

dzu~12z2e!s̃~0!~sz!H b i~s!

12z
1 d̃ h~s!J

~3.27!

with e52DE/As and d̃ h given by

d̃ h~s!5
a

p

12z

6
2
1

2
~11z!b i~s!. ~3.28!

As can easily be verified, the term}1/(12z) of Eq. ~3.27!
cancels theDE dependence of the soft QED form factor.
Thus, the cutoff parameterDE can be chosen to be so small
that it can be neglected in Eq.~3.23! as compared to theW
width. As a consequence, the initial state bremsstrahlung to
theW resonance can also be written in form of a convolution
integral,

s i ,s1h
~011!~s!5s i ,v1s

~011!1s i ,hard
~1! 5E

0

1

dzG~011!~z!s̃~0!~sz!,

~3.29!

with the radiator function at one-loop level

G~011!~z!5d~12z!1d~12z!@b i~s!ln~e!12dv1s
i ~s!#

1u~12z2e!Fb i~s!

12z
1 d̃ h~s!G . ~3.30!

This representation enables the consideration of the remain-
ing electroweak one-loop corrections and the effect of an
s-dependent width in a simple way. After performing the
summation of the logarithms connected to the soft photons to
all orders in perturbation theory~soft photon exponentiation!
the convolution integral in Eq.~3.29! reads

s i ,exp~s!5E
0

1

dzG~z!s̃~0!~sz!, ~3.31!

with the radiator function in the exponentiated version

G~z!5b i~12z!b i21~112dv1s
i !1 d̃ h. ~3.32!

The calculation of the initial state bremsstrahlung at the two-
loop level in the case of theZ resonance@10#, either per-
formed explicitly or by using the structure function method,
has shown that the soft photon exponentiation together with
the remaining one-loop contributions of the virtual and hard
photons represents the main part of the initial state brems-
strahlung. A renormalization group analysis@19# confirms
the method of the summation of the leading logarithms aris-
ing in connection with the emission of soft photons@see Eq.
~3.32!#.

The final state QED-form factor. The gauge invariant
QED form factor describing the soft photons radiated by the
final state fermions is given by@Eqs. ~D10!, ~D44!, and
Qf2Qf 851#

FQED
final ~s!5b f~s!lnS 2DE

As D 12dv1s
f ~s!, ~3.33!

where b f(s) and dv1s
f (s) again can be derived from the

corresponding initial state expressions@Eqs.~3.24!,~3.25!# by
applying the substitutions (i ,i 8)→( f , f 8). After taking into
account the radiation of hard photons the so-defined soft
photon contribution to the resonantW production cross sec-
tion fulfills the KLN theorem@17# provided that no con-
straints on the invariant mass of the final state fermion pair
will be imposed: the mass singularities cancel out and finally
a QED form factordQED

f remains multiplying the inclusive
total Born cross section

s f ,s1h
~011!~s!5s̃~0!~s!~11dQED

f !, ~3.34!

which has the form

dQED
f 5

a

pF38 ~Qf
21Qf 8

2
!1

7

3
1

p2

24G '
f , f 85n,l

0.0072.

~3.35!

Thus, as in theZ resonance case, this small effect of the final
state bremsstrahlung can be taken into account by attaching a
multiplicative factor to the convolution integral in Eq.~3.31!:

s̃~0!~s!→s̃~0!~s!~11dQED
f !.

The interference contribution. The interference of the ini-
tial and final state soft bremsstrahlung leads to the QED form
factor @Eqs.~D11!, ~D45! with Qi2Qi 85Qf2Qf 851#:

~3.36!

with

b int~s,t !5
a

pF ~QiQf1Qi 8Qf 8!lnS t2s2D2~QiQf 8

1Qi 8Qf !lnS u2s2 D12G ~3.37!

and

dv1s
interf~s,t !5

a

4pH ~QiQf1Qi 8Qf 8!F2
1

4
ln2S t2s2D

22SpS 11
s

t D1
1

2
lnS t2s2D G2~QiQf 81Qi 8Qf !

3@ t→u#262
7

6
p2J . ~3.38!
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Sp~z! denotes the Spence-function described in@20#. The in-
tegration over the scattering angle of the remnant of the IR-
singular logarithm in Eq.~3.36!,

s interf
~1! ~s!u ln.5E

21

1

dcosu
ds̃~0!~s,t !

dcosu
b int~s,t !

3 lnS 2DE

As
MW

2

uDW22AsDEu
D

5s̃~0!~s!
a

pS 2
1

3D @5~QiQf1Qi 8Qf 8!

14~Qi 8Qf1Qf 8Qi !#

3 lnS 2DE

As
MW

2

uDW22AsDEu
D , ~3.39!

leads to a contribution which will be completely compen-
sated by the hard photon contributionsh

interf(s) in Eq. ~E17!
evaluated ats5MW

2 . The remaining factordv1s
interf(s,t) to-

gether with the IR-finite parts of the box diagrams
FV,( t,u)
finite (s,t) @Eq. ~D12!#, where on-shell and mass singulari-

ties have been subtracted according to Eq.~3.19!, are inde-
pendent of the charge quantum numbers characterizing the
external fermions,

~dv1s
interf1FV,~ t,u!

finite !~s5MW
2 !52

a

4pFDMW
181

5

6
p2G

~3.40!

and, thus, can be absorbed into a modified weak contribution
to the differential Born cross section. This compensation of
the nonfactorizablet(u)-dependent remnants of the photonic
box diagram bydv1s

interf is essential to the factorization of the
numerator of the resonant cross section into partialW widths
describing theW production and decay, respectively.

B. The modified weak one-loop correction
to theW production

The IR-finite rest of the virtual photon contribution
Fg
finite(s,t) of Eq. ~3.4! consists of the remnants of the YFS

prescriptionF rem
g (s,t) and the IR-finite Feynman diagrams

III and IV:

Fg
finite~s,t !5F rem

g ~s,t !1~F III, f
g 1F III, i

g 1F IV
g !~s!usubtr

~3.41!

with

F rem
g ~s,t !5H (

j5I ,II
~F j , f

finite1F j ,i
finite!~s!

1~FV, t
finite1FV,u

finite!~s,t !J
subtr

, ~3.42!

where usubtr reminds of the subtraction of the mass and on-
shell singularities described by Eq.~3.19!. After taking into
account the remaining part of the interference QED form
factor dv1s

interf(s,t) from Eq. ~3.38!, as has already been dis-

cussed in Sec. III A, these photon contributions can be ab-
sorbed into a modified weak contribution to theW reso-
nance:

F̃weak~s5MW
2 !5~Fweak

i 1Fweak
f 1Fg

finite1dv1s
interf!~s5MW

2 !,
~3.43!

whereFweak
i , f denotes the pure weak contributions given by

Eq. ~D27!. With this UV-finite andj i-independent form fac-
tor the separation of the electroweak corrections to theW
resonance aimed for is completed.

Finally, it remains to check whetherF̃weak(MW
2 ) can be

represented as a sum of the modified weak corrections to the

W width: dG̃weak
f anddG̃weak

i . According to Eq.~B11! this is
equivalent to the verification of the identity

~Fg
finite1dv1s

interf!~s5MW
2 ![2 dG rem

g

with dG rem
g given by Eq.~B10!. In fact, by performing its

explicit calculation this identity is proven to be true and
F̃weak(MW

2 ) can be written as

~3.44!

By using this result and by following the prescription de-
rived in Appendix A, theW production cross section in the
vicinity of the resonance including~modified! weak one-loop
corrections has Breit-Wigner form

sw~s!5
6p

MW
2

~52Nc
i !

Nc
i2

sG̃W→ f f 8
~011! G̃W→ i i 8

~011!

@~s2MW
2 !21MW

2 ~GW
~011!!2#

,

~3.45!

where G̃ denotes the QED-subtractedW width defined by
Eq. ~B12!.

IV. SUMMARY

In order to match the requirements of future precision
experiments at LEP II and the Tevatron, the corresponding
cross sections for resonantW production have to be calcu-
lated beyond leading order perturbation theory. Having in
mind the successful treatment of the electroweakO(a) con-
tribution to theZ resonance@8#, we strove for the analogous
description of the resonantW production in a four-fermion
process at the required level of accuracy. After a thorough
perturbative discussion of the electroweakO(a) contribution
to theW production, we succeeded in extracting a gauge-
invariant QED-like form factor from the photon contribution.
We showed, that, when approaching theW resonance, the
occurrence of on-shell singularities is restricted to the initial
state contribution and can be ‘‘regularized’’ by introducing
the W width as a physical cutoff parameter in a gauge-
invariant way. The similar structure of the resulting initial
state QED form factor to that of theZ resonance allowed us
to apply the same technique to cope with the enhancement of
the electroweak coupling by large mass singular logarithms

6798 55DOREEN WACKEROTH AND WOLFGANG HOLLIK



~soft photon exponentiation!. By separating the electroweak
one-loop corrections to theW width into QED and weak
contribution, too, it turned out that the~modified! weak cor-
rections to the resonantW production cross section also fac-
torizes into QED-subtracted partialW widths.

In summary, we achieved a representation of the elec-
troweak radiative corrections to the W production cross sec-
tion in the vicinity of the resonance which is, in analogy to
deep inelastic hadronic scattering, a convolution of a process
specific ‘‘hard’’ cross sectionsw(s) @Eq. ~3.45!# with a uni-
versal radiator functionG(z) @Eq. ~3.32!# describing the ini-
tial state photon contribution, where the possibility of mul-
tiple soft photon emission has been taken into account

s~s!5E
0

1

dzG~z!sw~sz!~11dQED
f !. ~4.1!

dQED
f , defined by Eq.~3.35!, denotes the final state photon

contribution, which is free of large mass singular logarithms.
As a result of the comparative discussion of theS-matrix
inspired ansatz and the perturbative approach, a transforma-
tion of the parameters of the resonance@Eq. ~A27!# connects
the two descriptions.

V. NUMERICAL DISCUSSION

In the following the numerical relevance of the different
contributions to the electroweak radiative corrections and
their impact on the line shape of theW resonance will be
discussed. For the numerical evaluation the following set of
parameters has been used@9#, @13#

a51/137.0359895,Gm51.1663931025 GeV22,

as50.123, MZ591.1884 GeV,

md5mu50.0468 GeV, mc51.55 GeV,

ms50.17 GeV, mb54.7 GeV,

uVudu50.975, uVcsu50.974,

uVtbu50.999, uVusu5uVcdu50.222,

uVcbu5uVtsu50.044, uVubu5uVtdu50.007.

The masses of the light quarks are effective quark masses
in the sense, that they reproduce the correct hadronic vacuum
polarization given by the dispersion integral calculated in
@21# and have no further physical meaning. Using this set of
input parameters theW boson mass is determined via the
relation

MW
2 5

MZ
2

2 F11A12
4pa

A2Gm

1

MZ
2

1

12Dr G ~5.1!

as a function of the not precisely known or even unknown
parameters of the MSM:mt andMH . A detailed description
of Dr , which comprises the radiative corrections to the muon
decay, can be found in@22#, @23#.

TheW width is an important ingredient of the description
of the resonantW boson production. The numerical results

for the W width at leading orderḠW
(0) @Eq. ~2.4!# and at

next-to-leading orderḠW
(011) @Eq. ~5.2!# are summarized in

Table II. Besides the electroweakO(a) contribution calcu-
lated in Appendix B, the latter contains also the contribution

of virtual and real gluons, so thatḠW
(011) yields inGm rep-

resentation@Eq. ~2.3!#

ḠW
~011!5 (

~ f f 8!, fÞt

ḠW→ f f 8
~0! S 112RedG̃weak

f 2Dr1dQED
f

1
Nc
f21

2
dQCDD , ~5.2!

where the modified weak correction and the QED form fac-
tor are given by Eq.~B11! and Eq.~3.35!, respectively. The
QCD corrections are derived in the limit of massless decay
products@24#

dQCD5
as

p F111.40932S as

p D212.76706S as

p D 2G , ~5.3!

which for our case represents a sufficient approximation. In
the course of the calculation of theW width the Kobayashi-
Maskawa mixing has been neglected, but the final result has
been multiplied with the square of the corresponding physi-
cal matrix elementVi j . From a numerical point of view, this
procedure does not significantly differ from a consideration
of the Kobayashi-Maskawa matrix in the renormalization
procedure as has been pointed out in@25#. In order to illus-

trate the variation ofMW and ḠW
(011) with the electroweak

input parameters, they are given in Table II for different

values ofmt andMH . The ratio ḠW
(011)/MW illustrates the

very weak dependence of theW width onmt andMH : due to
the cancellation of large leading~quadratic! mt-dependent

contributions indG̃weak andDr , only a logarithmic depen-
dence onmt ~andMH) survives and thus the variation of

ḠW
(011) is mainly a consequence of the variation ofMW . Our

result obtained for theW width in next-to-leading order is in
very good agreement with the totalW width derived in@12#:
relative deviation<0.005%.

In the subsequent discussion of the line shape of theW
resonance, the top quark mass and theW boson mass are
chosen to be the central values of their current world average
~ @26# and @4#, respectively!

mt517569 GeV,

MW580.3360.15 GeV.

Using these input parameters the Higgs-boson mass and the
totalW width yield

MH5273 GeV⇒ ḠW
~0!52.0406 GeV

and

ḠW
~011!52.0887 GeV

compared to the measured value ofGW @13#
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GW52.0860.07 GeV.

The ‘‘hard’’ cross sectionsw(s). The effect of the~modi-
fied! weak one-loop correction described by Eq.~3.45! to the
W line shape is shown in Fig. 4 for the example of a pure
leptonic process:nee

1→nmm1. There is no noticeable im-
pact on the location of the maximum of the resonant cross
sections̄w(s) ~in Gm representation!:

smax5MW
2 A11g2, ~5.4!

where the abbreviationg5 ḠW
(011)/MW has been used, due to

the smallness ofg in the above equation (Dsmax50.6 MeV!.
The maximum of the cross section

s̄w,max5
6p

MW
2

52Nc
i

Nc
i2

G̃̄W→ f f 8
~011! G̃̄W→ i i 8

~011!

~ ḠW
~011!!2

S 11
1

4
g2D , ~5.5!

however, is reduced as compared to the peak value in leading
order perturbation theorys̄max

(0) (5 s̄w,max with G (011)

→G (0)). For the case of the leptonic process this reduction
yields

s̄w,max50.9347s̄max
~0!

and is mainly due to the QCD correction to the totalW width
given by Eq.~5.3!. Thus, when considering theW production
processnee

1→u d̄ the reduction of the maximum cross sec-
tion only amounts to

s̄w,max50.9729s̄max
~0! ,

since now the QED-subtracted partialW width G̃̄W→u d̄
(011) of

Eq. ~5.5! also includes the QCD contribution. Table III
shows the negligible small dependence of the peak value
s̄w,max on the top quark and Higgs-boson mass due to the
aforementioned cancellation of leading~quadratic!
mt-dependent contributions in the partialW width calculated
in theGm representation.

All further discussion is dedicated to the QED-like con-
tribution, especially to the initial state photon radiation. The
final state QED contribution described bydQED

f of Eq. ~3.35!
has a tiny effect on the peak value,dQED

f5m;0.0072 for leptons
anddQED

f5u;0.0069 for quarks, but has no impact on the peak
position of the resonant cross section. The leftovers of the
interference contribution have already been absorbed into the
‘‘hard’’ cross section as has been described in Sec. III A.

The initial state bremsstrahlung.The initial state brems-
strahlung, described by Eq.~3.23! ~soft photons! together
with Eq. ~E15! ~hard photons!, does not only carry the main
contribution to the reduction of the peak value, but is also
responsible for the distortion of the line shape, especially for

TABLE II. The totalW width ~andMW) in Gm representation
including the described radiative corrections

MH @GeV# 60 300 1000

mt5165 GeV

MW @GeV# 80.3648 80.2618 80.1647

ḠW
(0) @GeV# 2.0433 2.0354 2.0280

ḠW
(011) @GeV# 2.0911 2.0834 2.0759

ḠW
(011)/MW

0.0260 0.0260 0.0259

mt5175 GeV

80.4275 80.3228 80.2244
2.0481 2.0401 2.0326
2.0960 2.0882 2.0806
0.0261 0.0260 0.0259

mt5185 GeV

80.4927 80.3861 80.2862
2.0531 2.0449 2.0373
2.1012 2.0932 2.0854
0.0261 0.0260 0.0260

FIG. 4. The ‘‘hard’’ cross sec-

tion s̄w(s) of Eq. ~3.45! com-
pared to the Born cross section for
nee

1→nmm1.
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the shift in the peak position. The main effect to the reduc-
tion of the maximum can roughly be estimated by the factor

12b i5e~MW
2 !lnS MW

ḠW
~011!D 50.81

with b i5e(MW
2 ) given by Eq.~3.24!. For comparison, the

corresponding factor for the case of theZ resonance is given
by @22#

124
a

p
lnSMZ

me
D lnSMZ

GZ
D50.6.

The effect is much smaller, when the soft photon is emitted
by quarks

12b i5u~MW
2 !lnS MW

ḠW
~011!D 50.94,

where the numerical evaluation has been performed by using
the effective quark masses. They have no physical meaning,
but in a realistic hadronic scattering process they are rather
included in the parton distribution as parts of the interacting
hadrons, with which the parton cross section has to be con-
voluted in order to obtain an observable cross section@27#.

In Fig. 5 the impact of the initial state bremsstrahlung to
theW line shape in a pure leptonic processnee

1→nmm1 is
shown. The shift of the peak position due to the energy loss
in the resonantW propagator inO(a) amounts to

DMW5153 MeV,

which reduces to

DMW5142 MeV

after performing soft photon exponentiation as it is described
by Eq. ~3.31!. This shows, that the calculation performed in
O(a) overestimates theW boson mass by 11 MeV. Due to
the different charge structure for the case of quarks in the
initial state only a shift of the peak position by
DMW5114 MeV can be observed, which still amounts to
DMW5113 MeV after the resummation of the soft photon
contribution. Since these soft photons represent the main
contribution to the resonantW production, we expect no sig-
nificant contribution from hard photons at the two-loop level,
which has been confirmed by an explicit two-loop calcula-
tion in the case of theZ resonance@10#.

In summary, the electroweakO(a) contribution to the
resonantW production develops the same characteristics as

the corresponding corrections to theZ line shape. Figure 6
shows the total cross section of theW production in the
vicinity of the resonance as it is described by the convolution
integral of Eq.~4.1!, where thes dependence of theW width
has been considered by applying the transformations of Eq.
~A27!. The main impact of the discussed radiative correc-
tions on theW line shape can be summarized as follows:

The peak positionsmax of the resonant cross section@Eq.
~5.4!# is shifted about142 MeV (Z:196 MeV! ~constant
W width! and suffers an additional shift about227 MeV
(Z:234 MeV!, when assuming ans-dependent width; the
peak value of the resonant cross section is reduced by a
factor 0.82 (Z:;0.6! with respect tos̄max

(0) . For comparison,
the corresponding values in case of theZ resonance are also
provided@22# ~in brackets!.
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APPENDIX A: UNSTABLE PARTICLES
AND GAUGE INVARIANCE

In S-matrix theory an unstable particle, experimentally
seen as a resonance during the interaction of stable particles,
can be easily described when neglecting all singularities be-
sides a single complex pole close to the real energy axes with
a negative imaginary part@28#. Therefore theS matrix is
approximately of the form of a Breit-Wigner resonance

M~s!5
R

s2Mc
2 1F~s!, ~A1!

whereF(s) is an analytic function with no poles. The resi-
dueR of the complex poleMc

2 can be interpreted as a prod-
uct of coupling constants, with which the unstable particle
couples to the external particles@28#. The resonance in the
scattering amplitude arises in the vicinity ofs5Re(Mc

2), the
physical mass of the unstable particle, and the width of the
resonance is given by Im(Mc

2):

Mc
25Mphys

2 2 iM physG

or, e.g.,

Mc
25SMphys2 i

G

2 D 2. ~A2!

The S matrix given by Eq.~A1! is gauge invariant in the
physical region (s real ands.0) and thus—via analytic
continuation—also in the complex energy plane, which en-
ables its application in a gauge theory. The fact that the
complex poleMc , its residueR, and the nonresonant part
F(s) are separately gauge invariant has been used to find a
gauge-invariant description of theZ resonance at the re-
quired level of accuracy@29#.

From the quantum field theory point of view a resonance
in the scattering amplitude is caused by a pole in the propa-
gator of an unstable particle. In the vicinity of the resonance

TABLE III. The W width ḠW
(011) and the peak values̄w,max for

different top quark masses. Besides the top quark mass theW boson
massMW580.33 GeV has been used as an input parameter, so that
the Higgs-boson mass is determined by Eq.~5.1!.

mt @GeV# MH @GeV# ḠW
(011) @GeV# s̄w,max @nb#

166 124.19 2.0886 52.5449
175 273.32 2.0887 52.5451
184 549.30 2.0888 52.5452
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the resummed propagator has to be used, which is a formal
summation of a geometric series with the one-particle irre-

ducible~1PI! self-energy of the unstable particle as an argu-
ment ~Dyson resummation! @30#:

Dmn5
2 igmn

s2M0
21ST~s!

5
2 igmn

s2M0
21 i eF11S 2ST~s!

s2M0
21 i e D 1•••G . ~A3!

M0 denotes the unrenormalized bare mass andST(s) is the
transverse part of the~1PI! self-energy. Since the external
particles are considered to be massless as long as no singu-
larities occur, the longitudinal part of the propagator does not
contribute and will not be discussed. Veltman@31# showed
that theSmatrix constructed by using the Dyson-resummed
propagator and by assuming only transitions between stable
particles obeys the principles of unitarity and causality.
Thus, the field theoretical description of gauge boson reso-
nances is given by the following amplitude, after performing
a renormalization procedure:

M~s!5
V̂i~s!V̂f~s!

s2MR
21ŜT~s!

1B~s!. ~A4!

V̂i , f(s) denote the renormalized vertices, describing the pro-
duction and decay of the unstable particle,MR denotes the

renormalized mass, andŜT(s) the renormalized self-energy.
B(s) comprises the nonresonant contributions, e.g., box dia-
grams.

The S-matrix-theory-inspired construction of a gauge-
invariant amplitude using a Laurent expansion of Eq.~A4!
around the complex pole and afterwards performing a con-
sistent evaluation of the parameters of the resonance in the
coupling constantg results in a description with constant
width. Choosing the field theoretical ansatz and carrying out
a consistent treatment of the inverse of the propagator in Eq.
~A4! can lead to a scattering amplitude withs-dependent
width @32#. Analyzing theZ line shape in theS-matrix theory
approach yields aZ boson mass which is about 34 MeV
larger, atO(g2) accuracy, than the corresponding value ob-
tained in ans-dependent width prescription. Since these two
descriptions are connected by a transformation of the line
shape parameters@33# they are equivalent and, thus, the dif-
ference in theZ boson mass has no physical meaning.

FIG. 5. The effect of the initial state bremsstrahlung inO(a) described bys i ,s1h
(011)(s) of Eq. 3.29 and after soft photon exponentiation

@Eq. ~3.31!#.
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The future precise measurement of theW boson mass at
LEP II and at an upgrade of the Tevatron raises the same
questions for a charged gauge boson resonance. In the fol-
lowing, the applicability of the prescriptions, derived in the
context of theZ resonance, to a charged vector boson reso-
nance will be studied.
Mi i 8→ f f 8(s) with constant width.Following the treatment

given in @29#, which can be directly applied to theW reso-
nance, a gauge-invariant scattering amplitude and a defini-
tion of mass and width to the required level of accuracy can
be given

~i! O(g0) accuracy.At the one-loop level the physical
massMW is connected to the renormalized mass as

Re~Mc
2!5MW

2 5MR
22ReŜT~MR

2 ,g2!, ~A5!

which yields the equality of physical and renormalized mass
when using the on-shell renormalization condition

ReŜT(MR
2 ,g2)50 in order to determine the mass renormal-

ization constantdMW
2 [M0

22MR
2 . In leading order perturba-

tion theory theW width corresponds to the imaginary part of
the one-loop corrected renormalizedW self-energy:

MWGW
~0!5ImŜT~MW

2 ,g2!. ~A6!

Thus, theW resonance is described by

M~0!~s!5
R~g2!

s2MW
2 1 iMWGW

~0! 1O~g2! ~A7!

with

R~g2!5Vi~g!Vf~g!.

~ii ! O(g2) accuracy. In next-to-leading order Eq.~A5!
turns to

MW
2 5MR

22@12ReP̂T~MR
2 ,g2!#ReŜT~MR

2 ,g2!

2ReŜT~MR
2 ,g4!2ImŜT~MR

2 ,g2!ImP̂T~MR
2 ,g2!,

~A8!

where the following abbreviation has been used:

P̂T~s![
]ŜT~s!

]s
.

Taking the renormalized mass as the zero of the real part of
the inverse propagator, which corresponds to the field theo-
retical definition of a stable particle’s mass, this reduces to

MW
2 5MR

22ImŜT~MR
2 ,g2!ImP̂T~MR

2 ,g2!. ~A9!

Thus, one obtains a shifted renormalized mass with respect
to the physical mass. By considering a renormalization con-
dition, however, which reads at two-loop level

ReŜT~MR
2 ,g4!1ImŜT~MR

2 ,g2!ImP̂T~MR
2 ,g2!50,

~A10!

the equality of physical and renormalized mass is recovered
@29#. Then theW width in next-to-leading order yields

MWGW
~011!5@12ReP̂T~MW

2 ,g2!#ImŜT~MW
2 ,g2!

1ImŜT~MW
2 ,g4!. ~A11!

The calculation ofGW
(011) in the MSM and forj i51 can be

found in @12# and will be additionally performed in Appen-

FIG. 6. TheW production cross section in the vicinity of the resonance including the discussed electroweak radiative corrections@Eq.
~4.1!#.
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dix B for Rj gauge and in the limit of massless decay prod-
ucts. Finally, a gauge-invariant description of theW reso-
nance can be given, which completely takes into account the
electroweak radiative corrections up to orderO(g2),

M~011!~s!5
R~g2!1R~MW

2 ,g4!

s2MW
2 1 iMWGW

~011! 1O~g4!, ~A12!

with the residue in next-to-leading order

R~MW
2 ,g4!5V̂i~MW

2 ,g3!Vf~g!1Vi~g!V̂f~MW
2 ,g3!

2Vi~g!Vf~g!P̂T~MW
2 ,g2!. ~A13!

TheV̂i , f(MW
2 ,g3) denote the renormalized vertices including

one-loop corrections to the production and decay of aW
boson, respectively.
Mi i 8→ f f 8(s) with s-dependent width.Next we present the

results obtained by using the field theoretical ansatz and we
also discuss the equivalency of both approaches for a
charged gauge boson resonance. The latter cannot be readily
expected in the case of aW resonance, since the existence of
a transformation given by Bardinet al. @33# for the case of
the Z resonance is due to the linears dependence of the
imaginary part of theZ self-energy. Therefore a careful
study of thes dependence of theW self-energy is required.
After evaluating the real part of theW self-energy in Eq.
~A3! ~after renormalization! around s5MR

2 and using the

on-shell renormalization condition ReŜT(MR
2)50 the W

propagator is given by

DW
mn52 igmn

12ReP̂T~MR
2 !

s2MR
21 i ImŜT~s!@12ReP̂T~MR

2 !#
.

~A14!

Thus, following the argument of Wetzel@32# in the vicinity
of the resonance the residue of the complex pole in Eq.~A4!
in next-to-leading order is given by

R~011!~MW
2 !5V̂i~MW

2 ,g3!Vf~g!1Vi~g!V̂f~MW
2 ,g3!

1Vi~g!Vf~g!@12ReP̂T~MW
2 ,g2!#,

~A15!

whereMR5MW has been used. Since the inverseW propa-
gator is of orderg2 in the vicinity of the resonance, the
completeO(g4) contribution to the denominator has to be
taken into account. Thus, after using the definition of the
W width given by Eq.~A11!, the following definition for the
s-dependentW width can be given:

denominator5s2MW
2 1 iMWGW

~011!1 i Im@ŜT~s,g
2!

2ŜT~MW
2 ,g2!#

5:s2MW
2 1 iMWGW

~011!~s!. ~A16!

Contrary to theZ boson, where the imaginary part of the
derivative of the 1PI Z self-energy develops gauge-
dependent contributions only when@34#

jW<S MZ

2MW
D 2,

the corresponding quantity in theW boson case

ImP̂T(MW
2 ,g2) is gauge parameter dependent for each

gauge parameterj iÞ1 @Eq. ~D18!#. This is due to the exis-
tence of Feynman diagrams involving photons, which couple
to theW boson via the triple gauge boson coupling. The
one-loop contributions to theW self-energy are shown in
Fig. 7 for Rj gauge. However, when the Dyson-resummed
contribution

Im@ŜT~s,g
2!2ŜT~MW

2 ,g2!# ;
s→MW

2
~s2MW

2 !ImP̂T~MW
2 ,g2!

is treated perturbatively in order to cancel the gauge param-
eter dependent contributions to the imaginary part of the 1PI
vertex corrections inR(011)(MW

2 ), the Breit-Wigner reso-
nance formula with constant width from Eq.~A12! in com-
bination with the renormalization condition of orderO(g4)
given by Eq.~A10! is recovered.

In order to obtain the physical description of theW reso-
nance withs-dependent width, the following approximation
of thes dependence of the photon contribution to the imagi-
nary part of theW self-energy shown in Fig. 7 is useful
@ I (s): Eq. ~D17!#:

ImŜT
g~s!5~s2MW

2 !u~s2MW
2 !I ~s!

R> ~s2MW
2 !u~s2MW

2 !I ~MW
2 !:5~s2MW

2 !ImP̂T
g~MW

2 !.
~A17!

Since the derivative ImP̂T
g(MW

2 ) does not exist in a strict
mathematical sense due to the threshold ats5MW

2 , the
above equation has to be understood as a definition. The
fermion contribution to ImŜT(s), however, is linear ins in
the case of massless fermions, so that thes dependence can
be extracted as

FIG. 7. Feynman diagrams for the photonic one-loop correction to theW self-energy~the dashed and dotted lines denote a charged Higgs
ghostF6 and the Faddeev-Popov ghostsu6 or ug, respectively!.
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ImŜT~s,g
2!5

s

MW
2 ImŜT~MW

2 ,g2!

1~s2MW
2 !ImP̂T

g~MW
2 ,g2!. ~A18!

By using thiss dependence in theW propagator given by Eq.
~A14! and after undoing the resummation of

ImP̂T
g(MW

2 ,g2) theW propagator turns out to be

DW
mn52 igmn

12ReP̂T~MW
2 ,g2!2 i ImP̂T

g~MW
2 ,g2!1O~g4!

s2MW
2 1 i ~s/MW

2 !ImŜT~MW
2 !@12ReP̂T~MW

2 ,g2!2 i ImP̂T
g~MW

2 ,g2!#1O~g6!
, ~A19!

where the validity of Eq.~A18! at least up to orderg4 has
been assumed. In summary, the scattering amplitude con-
structed with the help of this propagator and a subsequent
consistent evaluation in the coupling constant of the numera-
tor and the denominator, which results in a gauge-invariant
description of a resonant producedW boson at the required
level of accuracy, will be given:

~i! O(g0) accuracy.

M~0!~s!5
R~0!

s2MW
2 1 i ~s/MW!GW

~0! 1O~g2! ~A20!

with

R~0!5Vi~g!Vf~g!

and the definition of theW width given by Eq.~A6!.
~ii ! O(g2) accuracy.By considering the renormalization

condition

ReŜT~MW
2 ,g4!1ImŜT~MW

2 ,g2!ImP̂T
g~MW

2 ,g2!50,
~A21!

which differs from Eq.~A10! by

MWGW
~0!ImP̂T

ferm~MW
2 ,g2!5~GW

~0!!2, ~A22!

the scattering amplitude is given by

M~011!~s!5
R~011!~MW

2 !

s2MW
2 1 i ~s/MW!GW

~011! 1O~g4!

~A23!

with

R~011!~MW
2 !5Vi~g!Vf~g!1V̂i~MW

2 ,g3!Vf~g!

1Vi~g!V̂f~MW
2 ,g3!2Vi~g!Vf~g!

3@ReP̂T~MW
2 ,g2!1 i ImP̂T

g~MW
2 ,g2!#.

~A24!

The next-to-leading orderW width GW
(011) is again defined

by Eq. ~A11!. R(011)(MW
2 ) differs fromR(MW

2 ,g4) of Eq.
~A13! concerning their imaginary parts by

Vi~g!Vf~g!ImP̂T
ferm~MW

2 ,g2!5Vi~g!Vf~g!
GW

~0!

MW
.

~A25!

It remains to check whether both descriptions are equiva-
lent. For that purpose Eq.~A23! will be rewritten as~with
g5GW

(011)/MW)

M~011!~s!5
R~011!~MW

2 !

s~11 ig!2MW
2

5
R~011!~MW

2 !@~12 ig!/~11g2!#

s2MW
2 ~12g2!1 iMW

2 ~12g2!g

5:
R̄~011!~MW

2 !

s2M̄W
2 1 iM̄ WḠW

~011!
. ~A26!

The evaluation of the numerator and denominator of the
above equation up to the order required for aO(g2) accuracy
easily verifies that exactly those terms arise in which the
s-dependent width description differs from the constant
width amplitude given by the Eqs.~A22!, ~A25!. Thus, a
transformation of the parameters of the resonance: residue,
position of the pole (→ mass!, and width, can be given
which connects both descriptions:

R~011!~MW
2 !→R̄~011!~MW

2 !5R~011!~MW
2 !

~12 ig!

~11g2!
,

MW→M̄W5MW~11g2!21/2,

GW
~011!→ ḠW

~011!5GW
~011!~11g2!21/2. ~A27!

Consequently, theW boson mass in the description with
s-dependent width is about;27 MeV smaller as compared
to the constant width approximation. With the help of these
transformations the effect of ans-dependent width can be
easily studied without the necessity to deal with the—with
regard to thes-dependence—complicated scattering ampli-
tude from Eq.~A23!, especially when a convolution integral
as is given by Eq.~1.1! has to be calculated.

In recent publications, either in connection with theW
pair production at LEP II@35# or with the radiativeW pro-
duction at the Tevatron@36#, several approaches to consider
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an s-dependent width in theW propagator in a gauge-
invariant way have been discussed. The prescription given
by Baur et al. @36# results from taking into account the
imaginary part of the virtual fermionic correction to the
gWW vertex. We checked that applying the transformation
we derived@Eq. ~A27!# in order to consider ans-dependent
width yields the same modification of the bremsstrahlung
amplitude as presented in@36#.

APPENDIX B: THE PARTIAL W WIDTH IN O„a2
…

The partialW width in O(a2) can be written as

GW→ f f 8
~011!

5GW→ f f 8
~0!

~112RedĜvirt1dGBR!, ~B1!

where GW→ f f 8
(0) denotes the partial width in leading order

given by Eq.~2.1!. dĜvirt anddGBR represent the virtual and
real contributions, respectively, calculated inRj gauge and
in the limit of massless decay products. The discussion of the
electroweakO(a) contribution to theW width performed in
Feynman ’t Hooft gauge and under consideration of massive
decay products can also be found in@12#. In the following
we concentrate on the gauge invariant separation into QED-
like and weak parts.

The Feynman-diagrams representing real photon emission
described by

dGBR5dGBR
s 1dGBR

h

are shown in Fig. 8. The softdGBR
s and harddGBR

h brems-

strahlung contribution can both be described by the same
form factors we have already derived for the final state pho-
ton emission in theW production process evaluated at
s5MW

2 : dGBR
s 5FBR

final(MW
2 ) is given by Eq. ~D44! and

dGBR
h is defined by Eq.~E22!.

dĜvirt comprises the renormalized vertex correction
@diagrams I, II, and III in Fig. 9 and the counterterm given by
Eq. ~C1!# and the wave function renormalization for theW
boson@diagram IV in Fig. 9 together with Eq.~C2!#. Again,
we discuss the photon and pure weak contribution sepa-
rately:

dĜvirt5Fweak
f ~MW

2 !1Fg
f ~MW

2 !. ~B2!

The pure weak contribution can be described by the same
form factor Fweak

f (MW
2 ) of Eq. ~D27!, which has been de-

rived from the weak corrections to theW decay process of
the resonantW production in the four-fermion process. In
contrary, the structure of the virtual photon contribution
Fg
f (MW

2 ) differs from that of theW resonance and requires a
separate discussion. For aW boson being on-shell all photo-
nic one-loop corrections in Fig. 9 develop IR singularities.
Thus, in order to gain a gauge-invariant separation into a

QED-like dQED
f and a~modified! weak partdG̃weak

f

GW→ f f 8
~011!

5GW→ f f 8
~0!

~112RedG̃weak
f 1dQED

f !, ~B3!

FIG. 8. Real photon corrections inO(a) to the partialW width.

FIG. 9. Electroweak one-loop corrections inO(a) to the partialW width ~again, the nonphotonic corrections to theW self-energy are
symbolized by the shaded loop!.
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the diagrams III and IV also have to be considered by the
YFS procedure. The application of the prescription given in
Sec. III A to the diagrams

diagram III:

iLm
III, f5 igwgm~12g5!@F III, f

IR 1F III, f
finite#~s5MW

2 ! ~B4!

with

F III, f
IR ~s5MW

2 !5~ i4pa!HQfE
D

~2pf2k!~k22q!

DlDf~k
222kq!

1Qf 8E
D

~2pf 81k!~k12q!

DlDf 8~k
212kq! J ~B5!

and

diagram IV: iLm
IV5 igwgm~12g5!

1

2
@F IV

IR1F IV
finite#~s5MW

2 !

~B6!

with

F IV
IR~s5MW

2 !5~ i4pa!E
D

~2q2k!2

Dl~k222kq!2
~B7!

together with the IR-singular parts extracted from diagrams
I,II @Eqs. ~3.8!, ~3.10! evaluated ats5MW

2 # yield a gauge
invariant YFS form factor multiplying the tree levelW
width, which is the same as for the final state photon contri-
bution to theW production

~B8!

The only difference is that thead hocaddition of a ‘‘zero’’ in
Eq. ~3.16! can now be traced back to the IR-singular contri-
butions of diagrams involving thegWW coupling, when the
W boson is considered to be on-shell. The explicit expres-
sions for F III, f

IR (MW
2 ),F IV

IR(MW
2 ), and the corresponding IR-

finite parts are given by Eqs.~D22!–~D26!. Consequently,
the QED-like form factor to theW width from Eq.~B3!

dQED
f 5FQED

final ~s5MW
2 !1dGBR

h

5
a

pF38 ~Qf
21Qf 8

2
!1

7

3
1

p2

24G ~B9!

is the same as for the final state QED contribution to the
W resonance given by Eq.~3.34!. This result can be com-
pared with the ‘‘QED-factor’’ for a leptonicW decay given
in @18#

dQ5
a

pF77242
p2

3 G ,
which has been derived by considering from the photonic
virtual contribution only the mass singular logarithms being
gauge invariant by themselves.

The IR-finite remnants of the YFS prescription in the case
of theW width yield

dG rem
g 5 (

j5I,II,III
F j , f
finiteusubtr~MW

2 !1
1

2
F IV
finite~MW

2 !

2
1

2

a

4pS 21
3

2
p2D

5
1

2

a

4pH 253 DMW
1
68

9
2
3

2
p21~jW21!aWJ

2
1

2
dZ2

W,g , ~B10!

which can be absorbed in a modified weak contribution

dG̃weak
f 5Fweak

f ~MW
2 !1dG rem

g . ~B11!

This completes the gauge-invariant separation of the elec-
troweak corrections inO(a) to the partialW width due to
Eq. ~B3!. Finally, a QED-subtracted partialW width can be
defined

G̃W→ f f 8
~011!

5GW→ f f 8
~0!

~112RedG̃weak
f !, ~B12!

which will appear in the residue of the Breit-Wigner form of
the resonantW production cross section.
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APPENDIX C: FEYNMAN RULES

In the following the Feynman rules, which differ from the ones in Feynman-’t Hooft gauge (j i51) are explicitly given. The
remaining Feynman-rules can be found in@14#.

:
2 i

q22MV
21 i eS gmn1

~jV21!qmqn

q22jVMV
2 D ,

:
i

q22j~W,Z!M ~W,Z!
2 1 i e

,

:
i

q22j~W,Z,g!M ~W,Z,g!
2 1 i e

,

:2 ie
MW

2sw
FjW;

jZ
cw
2 G .

As it has already been pointed out, a renormalization procedure needs to be performed in order to cope with the arising UV
divergences. Thus, after the multiplicative renormalization of the SU~2! gauge coupling constant and the gauge boson field
Wm

a , theWf f8-vertex counterterm yields@14#

:
ie

2A2sw
gm~12g5!~11dZ1

W2dZ2
W! ~C1!

and the renormalizedW self-energy is defined by

ŜT
W~s!5ST

W~s!1~s2MW
2 !dZ2

W2dMW
2 . ~C2!

The renormalization constants determined in the on-shell
renormalization scheme are given by@14,22#

dZ1
W52Pg~0!2

322sw
2

swcw

ST
gZ~0!

MZ
2 1

cw
2

sw
2 FdMZ

2

MZ
2 2

dMW
2

MW
2 G ,

dZ2
W52Pg~0!22

cw
sw

ST
gZ~0!

MZ
2 1

cw
2

sw
2 FdMZ

2

MZ
2 2

dMW
2

MW
2 G ,

~C3!

with

dM ~W,Z!
2 5ReST

~W,Z!~s5M ~W,Z!
2 !. ~C4!

Pg, ST
gZ denote the photon vacuum polarization and the

photon-Z mixing, respectively.
It should be mentioned, that we do not perform an ‘‘ex-

plicit’’ wave function renormalization for the external fermi-
ons, but rather take into account the modification due to their
self-interaction by the consideration of the one-loop contri-
butions shown in Fig. 2~diagram II!. Therefore no renormal-
ization constant for the fermion doubletdZL occurs in the
counter term for theWf f8 vertex.
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APPENDIX D: THE FORM FACTORS

In the following we provide the explicit expressions for
the different contributions to the form factor describing the
virtual electroweakO(a) contribution to theW production

processF̂virt(s,t) given by Eq.~3.2!. They are calculated in
Rj gauge, where, following@34#, the j i-dependent parts are
expressed in terms of the functionsa i ,v i j ,h i j . The latter are
described in Appendix F, where the explicit expressions for
the IR- and/or on-shell-singular scalar two-, three-, and four-
point integralsB0 ,C0 ,D0 can be found, too. In order to regu-
larize the arising IR singularities a fictive photon massl has
been used. After dimensional regularization the UV diver-
gences have been extracted in the form of the singular terms

Ds[D2 lnS s

m2D
and

Dm[D2 lnSm2

m2D
with D5@2/(42D)#2gE1 ln4p (gE : Euler constant!.

A. The form factor describing the photonic
one-loop corrections

The photonic form factorFg(s,t) of Eq. ~3.2! is com-
posed as

~D1!

with

F j
g~s!5~F j , f

g 1F j ,i
g !~s!,

FV
g~s,t !5~FV

t 1FV
u !~s,t !. ~D2!

In the following the explicit expressions for the different
contributions to the photonic form factor will be provided,
starting with the final state photonic vertex corrections. By
applying the substitution (f , f 8)→( i ,i 8) the corresponding
intial state contribution can be easily derived.

Diagram I.

F I, f
g ~s!5

a

4p
QfQf 8$22sC0~s,mf ,mf 8,l!12B0~pf

2 ,l,mf !

12B0~pf 8
2 ,l,mf 8!23B0~s,mf ,mf 8!

221~jg21!ag%. ~D3!

Performing the loop integration of Eq.~3.8! the IR-singular
contribution is given by

F I, f
IR~s!5

a

4p
QfQf 8$22sC0~s,mf ,mf 8,l!1B0~pf

2 ,l,mf !

1B0~pf 8
2 ,l,mf 8!2B0~s,mf ,mf 8!%

5
a

4p
QfQf 8H Ds12lnS s

mfmf 8
D

12lnS s

mfmf 8
D lnS l2

s D121
1

2
ln2S s

mf
2D

1
1

2
ln2S s

mf 8
2 D 1

4

3
p21 ipF2lnS sl2D21G J . ~D4!

Diagram II.

F II, f
g ~s!52

1

2

a

4pHQf
2FDs13lnS s

mf
2D 1412 lnS l2

s D
1~jg21!agG1Qf 8

2
@ f→ f 8#J . ~D5!

Computing the one-loop integral of Eq.~3.10! leads to

F II, f
IR ~s!52

1

2

a

4pHQf
2FDs13lnS s

mf
2D 1412 lnS l2

s D G
1Qf 8

2
@ f→ f 8#J . ~D6!

Diagram V.

FV
t ~s,t !5

a

4pHQiQfF22t~s2MW
2 !D0~s,t,mi ,mf ,MW ,l!

1
~s2MW

2 !

~s1t !2
f V,t~s,t !G1Qi 8Qf 8@~ i , f !→~ i 8, f 8!#J .

~D7!

In order to provide a complete representation of the one-loop
corrections, the nonresonant contributionf V,t(s,t), which is
negligible in the vicinity of the resonance, will be also ex-
plicitly given:

f V,t~s,t !52~s1t !@B0~s,l,MW!2B0~ t,mi ,mf !#2t~2t1s

1MW
2 !C0~1!1@~s1t !21t22sMW

2 #@C0~3!

1C0~4!#1t~s1MW
2 12t !@~s2MW

2 !D02C0~2!#

1~s1t !2@~jW21!hWg~s!1~g↔W!#. ~D8!

From Eq. ~3.12! the t-channel box contribution to the IR-
singular YFS form factor is given by
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FV, t
IR ~s,t !5

a

4p
$QiQf@22tC0~2!2B0~ t,mi ,mf !

1B0~pf
2 ,l,mf !1B0~pi

2 ,l,mi !#

1Qi 8Qf 8@~ i , f !→~ i 8, f 8!#%

5
a

4pHQiQfF lnS t2

mf
2mi

2D lnS l2

s D1
1

2
ln2S s

mf
2D

1
1

2
ln2S s

mi
2D 2

1

4
ln2S t2s2D1

p2

3
1Ds1

1

2
lnS t2s2D

12lnS s

mfmi
D121 ipG

1Qi 8Qf 8@~ f ,i !→~ f 8,i 8!#J . ~D9!

The application of the substitution described by Eq.~3.14!
leads to the correspondingu-channel form factors.

From these IR-singular photonic one-loop contributions
the following gauge-invariant YFS form factors of Eq.~3.16!
have been extracted:

FYFS
final~s!5~F I, f

IR1F II, f
IR !~s!1

a

4p HQf~Qf2Qf 8!

3F lnS s

mf
D lnS l2

s D1
1

2
ln2S s

mf
2D 1 lnS s

mf
2D

1Ds132
1

2S 12
3

2
p2D G2Qf 8~Qf2Qf 8!

3@ f→ f 8#2~Qf2Qf 8!
2F lnS l2

s D1
1

2
Ds1

1

2G J ,
~D10!

FYFS
interf~s,t !5~FV, t

IR 1FV,u
IR !~s,t !1

a

4pH 2Qi~Qf2Qf 8!

3F lnS s

mi
2D lnS l2

s D1
1

2
ln2S s

mi
2D

1 lnS s

mi
2D 1Ds132

1

2S 12
3

2
p2D G

1Qi 8~Qf2Qf 8!@ i→ i 8#2Qf~Qi2Qi 8!@ i→ f #

1Qf 8~Qi2Qi 8!@ i→ f 8#1~Qi2Qi 8!~Qf2Qf 8!

3F2lnS l2

s D1Ds11G J . ~D11!

The IR-finite remainders of the YFS prescription are deter-
mined by

F j , f
finite5F j , f

g 2F j , f
IR ,

FV,~ t,u!
finite 5FV

~ t,u!2FV,~ t,u!
IR . ~D12!

The remaining photonic Feynman diagrams shown in Fig.
2 are IR finite and, thus, are not considered by the YFS
prescription, but develop on-shell singularities in the vicinity
of theW resonance. In detail, they are described by the fol-
lowing form factors.

Diagram III.

F III, f
g ~s!5

a

4pHQfF2C0~s,mf ,l,MW!12B0~pf
2 ,l,mf !

1S 21
MW

2

s DB0~pf
2 ,mf 8,MW!2S 11

MW
2

s D
3B0~s,l,MW!1

1

2
$~jW21!@vWg~s!1aW#

1~g↔W!%G2Qf 8@ f→ f 8#J
5

a

4pHQfF3Ds12lnS s

mf
2D 1312lnS s

mf
2D lnS uDWu

MW
2 D

2
p2

3
1 f III, f~s!1

1

2
$~jW21!@vWg~s!1aW#

1~g↔W!%G2Qf 8@ f→ f 8#J , ~D13!

where f III, f(s) can be neglected in the resonance region
(w5MW

2 /s):

f III, f~s!5~12w!F11~11w!lnS uDWu
MW

2 D
22lnS s

mf
2D lnS uDWu

MW
2 D 1

p2

3 G
22wSp~12w!2wln2~w!1 ln~w!2 ipu~s2MW

2 !

3F12w212wlnS s

mf
2D G . ~D14!

Diagram IV. The renormalizedW self-energy contribu-
tion is described byF IV

g (s) of Eq. ~D1!, wheredZ2
W,g de-

notes the photon contribution to the wave function renormal-
ization of theW boson given by Eq.~C3!. The photon
contribution to theW self-energy reads

ST
W,g~s!5S 2

a

4p D H 73MW
2 DMW

1
5

3
MW

2 1
2

9
s

14sB0~s,l,MW!1
4

3
~s2MW

2 !B1~s,l,MW!

2~s2MW
2 !F ~jW21!S vWg~s!

1
1

2
~s2MW

2 !hWg~s! D1~g↔W!G J . ~D15!

In Appendix A also the imaginary part ofST
W,g(s) has been

carefully studied:

6810 55DOREEN WACKEROTH AND WOLFGANG HOLLIK



ImST
W,g~s!5~s2MW

2 !u~s2MW
2 !I ~s! ~D16!

with

I ~s!5
a

4pH 24pF11
1

6S 12
MW

2

s D 2G1ImF ~jW21!S vWg~s!

1
1

2
~s2MW

2 !hWg~s! D1~g↔W!G J , ~D17!

where vWg(s) and hWg(s) @Eq. ~F20!# develop imaginary
parts, when@34#

s>MW
2 , ~Ajg,W11!2MW

2 , 4jg,WMW
2 . ~D18!

Using Eq.~D15! the form factorF IV
g (s) defined by Eq.~D1!

yields

F IV
g ~s!5

a

4pH 103 DMW
1
68

9
24lnS uDWu

MW
2 D 2@~jW21!vWg~s!

1~g↔W!#1 f IV~s!J 2dZ2
W,g , ~D19!

where

f IV~s!5~12w!H 23 ~12w!lnS uDWu
MW

2 D 2
2

3

2F ~jW21!
1

2s
hWg~s!1~g↔W!G J

1 ipu~s2MW
2 !F23 DW

2

s2
24G ~D20!

again describes a contribution, which vanishes fors5MW
2 .

Due to Eq.~C3! the photon contribution to the renormaliza-
tion constant dZ2

W5dZ2
W,g1dZ2

W,weak is determined by
dMW

2 :

dZ2
W,g5

a

4pS cwswD 2F193 DMW
1
89

9 G . ~D21!

In the course of the extraction of a gauge-invariant YFS
form factor from the photonic one-loop corrections to the
W width, the IR-singular Feynman diagrams III and IV of
Fig. 9 also needed to be considered. In the following, we
provide the explicit expressions for the complete form factor

F j , f
g (MW

2 ) and the IR-singular partF j , f
IR extracted according

to the YFS prescription, now evaluated ats5MW
2 .

Diagram III.

F III, f
g ~MW

2 !5
a

4pHQfF3DMW
14lnSMW

mf
D12ln2SMW

mf
D13

14lnSMW

mf
D lnS l

MW
D1

1

2
@~jW21!„vWg~MW

2 !

1aW…1~g↔W!#G2Qf 8@ f→ f 8#J . ~D22!

Performing the loop integration in Eq.~B5! leads to

F III, f
IR ~MW

2 !5
a

4pHQfFDMW
12lnSMW

mf
D12ln2SMW

mf
D13

14lnSMW

mf
D lnS l

MW
D G2Qf 8@ f→ f 8#J .

~D23!

Diagram IV.

F IV
g ~MW

2 !52 lim
s→MW

2

ST
W,g~s!2ReST

W,g~MW
2 !

s2MW
2 2dZ2

W,g

52
]ST

W,g~s!

]s
U
s5M

W
2

2dZ2
W,g. ~D24!

Using Eq.~D15!, F IV
g (MW

2 ) is given by

F IV
g ~MW

2 !5
a

4pH 103 DMW
1
32

9
24lnS l

MW
D

2@~jW21!vWg~MW
2 !1~g↔W!#J 2dZ2

W,g .

~D25!

The explicit expression for Eq.~B7! reads

F IV
IR~MW

2 !52
a

4pH DMW
1414lnS l

MW
D J . ~D26!

B. The form factors describing the pure weak
one-loop corrections

The pure weak form factorFweak(s5MW
2 ) is given by Eq.

~3.3! with the final state contribution

~D27!
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Performing the substitution (f , f 8)→( i ,i 8) yields the corre-
sponding initial state form factorFweak

i (MW
2 ). In the follow-

ing we provide the explicit expressions for the different con-
tributions in Eq.~D27!.

Diagram I (Z-boson exchange).

F I, f
weak~s!5

a

4p
~v f1af !~v f 81af 8!H DMZ

2~2z13!ln~z!22z

2412~11z!2F ln~z!lnS z11

z D2SpS 2
1

zD G
2 ipF2z1312~11z!2lnS 11z

z D G1~jZ21!aZJ
~D28!

with z5MZ
2/s and the couplings v f5(I 3

f 22sw
2Qf)/

(2swcw), af5I 3
f /(2swcw).

Diagram II (Z- and W-boson exchange).

F II, f
weak~s!5F II, f

Z ~s!1F II, f
W ~s! ~D29!

with

F II, f
Z ~s!5

1

2

a

4p
@~v f1af !

21~v f 81af 8!
2#

3H 2DMZ
1
1

2
2~jZ21!aZJ , ~D30!

F II, f
W ~s!5

1

2

a

4p

1

sw
2 H 2DMW

1
1

2
2~jW21!aWJ .

~D31!

Diagram III (Z-boson exchange).

F III, f
weak~s!5

a

4p

cw
sw

~v f1af2v f 82af 8!H 12 ~41w1z!

3~DMZ
1DMW

!1~w2z!lnS MZ

MW
D2~w1z11!

3B0~s,MZ ,MW!12s~z1w1wz!

3C0~s,m~ f , f 8!50,MW ,MZ!141w1z

1
1

2
@~jW21!@vWZ~s!1aW#1~W→Z!#J .

~D32!

The scalar three-point integralC0 evaluated ats5MW
2 yields

C0~s5MW
2 ,0,MW ,MZ!52

1

MW
2 lnS x1

x121D lnS x2
x221D

~D33!

with

x1,25
MZ

2

2MW
2 S 16 iA4MW

2

MZ
2 21D .

Vertex counter part. The explicit expression for the
counter part to theWf f8 vertex @Eq. ~C1!# reads

dZ1
W2dZ2

W5
a

4p

1

sw
2 @22DMW

2~jW21!vW~0!#.

~D34!

Diagram IV.The contribution of the renormalizedW self-
energy to the weak form factorF IV, f

weak(MW
2 ) of Eq. ~D27! is

determined by

dZ2
W,weak5

a

4pH 2
4

3(f Qf
2Dmf

1F324S cwswD 2GDMW
1
2

3

2
2

sw
2 ~jW21!vW~0!J 1S cwswD 2

3FReST
Z~MZ

2!

MZ
2 2

ReST
W,weak~MW

2 !

MW
2 G ~D35!

and the derivative ofST
W,weak which is given by Eq.~D37!,

~D40!. Thej i dependence of theZ self-energy and the weak
one-loop correction to theW self-energy reads@(v,h) i , j
[
i5 j

(v,h) i#

ST
Z~s!5ST

Z~s!uj i511
a

4p
2
cw
2

sw
2 ~s2MZ

2!~jW21!

3FvW~s!1
1

2
~s2MZ

2!hW~s!G , ~D36!

ST
W,weak~s!5ST

W,weak~s!uj i511
a

4p

cw
2

sw
2 ~s2MW

2 !F ~jW21!

3S vWZ~s!1
1

2
~s2MW

2 !hWZ~s! D1~W↔Z!G ,
~D37!

so that, finally, thej i-dependent part of the weak form factor
yields

Fweak
f ~MW

2 !5Fweak
f ~MW

2 !uj i512
1

2

a

4p
~jW21!aW ,

~D38!

which cancels thejW dependence of the IR-finite photonic
correctiondG rem

g from Eq. ~3.44!.
For the sake of completeness the explicit expressions for

the Z self-energy and the nonphotonic contribution to the
W self-energy in Feynman–’t Hooft gauge will also be pro-
vided, although they are already given in@14#:
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ST
Z~s!uj i515

a

4pH (
fÞn

4

3
Nc
f F ~v f21af

2!S sDmf
1~2mf

21s!F~s,mf ,mf !2
s

3D2af
26mf

2@Dmf
1F~s,mf ,mf !#G

1(
f5n

8

3
af
2sFD2 lnS s

m2D1
5

3G1
1

cw
2sw

2 F @2~12cw
424cw

211!B2
012~22scw

422MW
2 cw

21MW
2 !B0#~s,MW ,MW!

1S 6cw422cw
21

1

2DA0~MW!2
2

3
scw

41~2B2
01MZ

2B0!~s,MZ ,Mh!1
1

4
@A0~Mh!1A0~MZ!#G J ~D39!

and

ST
W,weak~s!uj i515

a

4p

1

sw
2 H 13 (

f5e,m,t
F S s2

3

2
mf
2DDmf

1S s2
mf
2

2
2
mf
4

2sDF~s,0,mf !1
2

3
s2

mf
2

2 G
1 (

~q1 ,q2!
Nc
f F S 2B2

01
1

2
~s2m1

2 2m2
2 !B0D ~s,m1 ,m2!2

1

2
@A0~m1!1A0~m2!#G

1$2~8cw
211!B2

01@sw
4MZ

22cw
2 ~4s1MW

2 1MZ
2!#B0%~s,MZ ,MW!1S 2cw21

1

4DA0~MZ!

1S 2cw
21

7

2DA0~MW!22MW
2 12cw

2 SMW
2 2

1

3
sD1@2B2

01MW
2 B0#~s,MW ,Mh!1

1

4
A0~Mh!J

~D40!

with

B2
0~s,m1 ,m2!5

1

3F Sm1
2B01

1

2
~s1m1

22m2
2!B1D ~s,m1 ,m2!

1
1

2
A0~m2!1

m1
21m2

2

2
2
s

6G , ~D41!

A0~m!5m2~Dm11!. ~D42!

The functionF(s,m1 ,m2) can be found in@14#.

C. The form factor describing the soft photon radiation

Performing the photon phase space integration in Eq.
~3.21! leads to the following gauge-invariant form factors in
the soft photon limit:

FBR
initial~s!5

a

4pHQiQi 8F8lnS s

mi 8mi
D @LW1dp~s!#2 ln2S s

mi
2D

2 ln2S s

mi 8
2 D 2

4

3
p2G22Qi

2F2@LW1dp~s!#

2 lnS s

mi
2D G22Qi 8

2
@ i→ i 8#12Qi~Qi2Qi 8!

3F2lnS s

mi
2D @LW1dp~s!#2

1

2
ln2S s

mi
2D 2

p2

3 G
22Qi 8~Qi2Qi 8!@ i→ i 8#24 ~Qi2Qi 8!

2

3@LW1dp~s!21#J ~D43!

with

LW[ lnS 2DE

l U DW

DW22AsDEU D
anddp from Eq. ~3.26!,

FBR
final~s!5FBR

initial~s! with @~ i ,i 8!;LW ,dp#

→F ~ f , f 8!; lnS 2DE

l D ;0G ~D44!

and

FBR
interf~s,t !5

a

4pHQiQfF4lnS t2

mf
2mi

2DLW2 ln2S s

mf
2D

2 ln2S s

mi
2D 24 SpS 11

s

t D2
4

3
p2G

12Qi 8Qf 8@~ f ,i !→~ f 8,i 8!#22Qi 8Qf

3@~ i ,t !→~ i 8,u!#

22QiQf 8@~ f ,t !→~ f 8,u!#22Qi

3~Qf2Qf 8!F2lnS s

mi
2DLW2

1

2
ln2S s

mi
2D 2

p2

3 G
12Qi 8~Qf2Qf 8!@ i→ i 8#22Qf~Qi2Qi 8!

3@ i→ f #12Qf 8~Qi2Qi 8!@ i→ f 8#

18~Qi2Qi 8!~Qf2Qf 8!@LW21#J . ~D45!

55 6813ELECTROWEAK RADIATIVE CORRECTIONS TO . . .



APPENDIX E: THE HARD PHOTON CONTRIBUTION

The differential cross section for the process
i (pi) i 8(pi 8)→ f (pf) f 8(pf 8)g(k) reads in the c.m.s. system
@wheres5(q0)2 andq0 denote the c.m. energy#

dsh5
1

2s

1

~2p!5
d3pfd

3pf 8d
3k

8pf
0pf 8

0 k0
d~pi1pi 82pf2pf 82k!

3( uMBRu2, ~E1!

where the matrix elementMBR results from the application
of the MSM Feynman rules to the bremsstrahlung diagrams
shown in Fig. 3~now without any restriction on the photon
momentumk; DW5s2MW

2 )

MBR5 i
pa

2sw
2A4pa

1

DW
H ū fGm, f

r ~12g5!v f 8 v̄ i 8g
m~12g5!ui

2
DW

DW22kq
@ ū fgm~12g5!v f 8 v̄ i 8Gi

mr~12g5!ui #J
3er* ~k!, ~E2!

whereer denotes the photon polarization vector and

Gf
mr5Qf

~pf
r1grk” /2!gm

kpf
2Qf 8

gm~pf 8
r

1k”gr/2!

kpf 8

2
gmqr1kmgr2gmrk”

kq
,

Gi
mr5Qi

gm~pi
r2k”gr/2!

kpi
2Qi 8

~pi 8
r

2grk” /2!gm

kpi 8

2
gmqr2kmgr1gmrk”

kq
. ~E3!

The initial and final state currents are separately conserved:
krGf

mr5(Qf2Qf 821)gm50 and krGi
mr5(Qi2Qi 8

21)gm50. First, the Lorentz-invariant three-particle phase
space

I5E d3pfd
3pf 8d

3k

8pf
0pf 8

0 k0
d~pi1pi 82pf2pf 82k! ~E4!

will be thoroughly discussed. Under consideration of the en-
ergy momentum conservation described by thed function,
the phase space integration will be rewritten so that only the
photon phase space integration survives in order to gain the
photon spectra describing hard photon radiation. We follow
the procedure suggested in@37,38#, and choose the coordi-

nate system where the momentapW i and kW are in the~1,3!
plane, with the photon momentum along the third axis. The
spatial part of thed function constrains the momenta in such

a way, that in the c.m. system (qW 5pW i1pW i 850) the relation

upW f u5upW f 81kW u5pf
0 holds and the phase space integral can be

written as

I52pE
DE

v ukW uk0dk0

2 k0 E
21

1

dxE
pa

pbupW f 8upf 8
0 dpf 8

0

2 pf 8
0 E

0

2p

dF

3E
21

1 dz

2 pf
0 d~pi

01pi 8
0

2pf 8
0

2k02pf
0! ~E5!

with x5cos/(kW,pW i), z5cos/(kW,pW f8) and F denotes the azi-
muthal angle ofpf 8 with respect to the~1,3! plane. Since the
soft photon contribution has already been discussed sepa-
rately, the lower bound of photon phase space integration
can be chosen to beukW u5DE and no IR singularities occur.
Using

d@ f ~x!#5
d~x2x0!

u f 8~x!ux5x0

, ~E6!

where f (x) is an arbitrary function withf (x0)50 ~here
f (z)5pf

0):

d~pi
01pi 8

0
2pf 8

0
2k02pf

0!5U pf
0

ukW uupW f 8u
U
z5z0

d~z2z0!

with

2ukW uupW f 8uz05~q02k02pf 8
0

!22~k0!22~pf 8
0

!21mf 8
2

2mf
2 ,

the phase space integralI (s) can be written as

I5pE
DE

v dk0

2 E
21

1

dxE
pa

pbdpf 8
0

2 E
0

2p

dF. ~E7!

The requirement21<z0<1 leads to the following limits on
the pf 8

0 integration:

pa,b5
~q02k0!k6k0A~k22mf 8

2
!224mf 8

2 mf
2

2~k2mf 8
2

1mf
2!

, ~E8!

v5
~q0!22~mf1mf 8!

2

2q0
~E9!

with

k5q0~q022k0!1mf 8
2

2mf
2 .

Finally, after introducing a new variabley,

pf 8
0

5
k

2 ~q02k0!
1
k0pi

0

q0
y,

the starting point for obtaining the hard photon spectra is
reached~with pi

05q0/2):

sh~s!5
1

16s

1

~2p!4
E

DE

v dk0k0

2 E
21

1

dxE
ya

yb
dyE

0

2p

dF

3( uMBRu2. ~E10!
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The computation of the spin averaged squared matrix ele-
ment leads to the initial state, final state, and interference
contributions depending only on the scalar products of the
involved four-momenta, which have to be expressed in terms
of the integration variables, e.g.,

pi 8pf 85pi 8
0 pf 8

0
1upW i uupW f 8ucosw ~E11!

with

cosw5~xz1A12x2A12z2cosF!uz5z0
.

Finally, the performance of all integrations up to the one
over the photon energy yields the following hard photon
spectra~with k52k0/q0 andkm52DE/q0):

sh
initial~s!5s̃~0!~s!E

km

1

dkU DW

DW2skU
2 12k

2k

3H b i~s!@11~12k!2#1
a

p

k2

3 J , ~E12!

sh
final~s!5s̃~0!~s!E

km

1 dk

2kH b f~s!@11~12k!2#1
a

p

k2

3

1
a

p
~Qf

21Qf 8
2

!@11~12k!2# ln~12k!J , ~E13!

sh
interf~s!5s̃~0!~s!

a

pEkm
1 dk

k F DW

DW2sk
1

DW*

DW* 2skG
3
5

12
$3k2k222%. ~E14!

The final state hard photon spectrumsh
final(s) coincides with

the result obtained in@18#. From the photon spectra the total
cross sections describing hard photon radiation can be ob-
tained

sh
initial~s!5s̃~0!~s!b i~s!H lnS uDW22AsDEu

2AsDE D 1
s2MW

2

MWGW
~011!

3FarctanS MW

GW
~011!D

2arctanS 2AsDE2s1MW
2

MWGW
~011! D G J , ~E15!

sh
final~s!5s̃~0!~s!H b f~s!lnS As

2DED 1
a

pFQf
2S 2

3

4
lnS s

mf
2D

2
p2

6
1
11

8 D 1Qf 8
2

~ f→ f 8!1
5

6G J , ~E16!

sh
inter f~s!5s̃~0!~s!

a

p

1

3
@5~QiQf1Qi 8Qf 8!14~Qi 8Qf

1Qf 8Qi !# lnS 2DEAs
uDW22AsDEu

D . ~E17!

Since we are interested on the contribution in the vicinity of
theW resonance, terms}(s2MW

2 ) and}DE have been ne-
glected.

The parametrization of the three-particle phase space in
the course of the computation of the hard bremsstrahlung for
the case of theW width is less complicated, since the orien-
tation of the dreibein made of the three outgoing momenta
can be freely chosen: the solid angleV determines the ori-
entation of the photon momentum andF describes the rota-

tion of the (pW f ,pW f 8) system aroundkW . Thus, the hard photon
contribution to the partialW width ~in the c.m. system of the
W boson withq25MW

2 )

dGW→ f f 8
h

5
1

2MW

1

~2p!5
d3pfd

3pf 8d
3k

8pf
0pf 8

0 k0

3d~q2pf2pf 82k!( uMBR
finalu2, ~E18!

turns into@37#

GW→ f f 8
h

5
1

2MW

1

256p5E
DE

v

dk0E
0

4p

dVE
0

2p

dFE
x2

x1

dx

3( uMBR
finalu2, ~E19!

where v is given by Eq. ~E9! and the substitution
pf , f 856x1(MW2k0)/2) has been performed. The limits on
the x integrationx6 are given by

x65
1

2M̃
Hmf

22mf 8
2

2MW
~MW2k0!

6k0AS M̃2
~mf1mf 8!

2

2MW
D S M̃2

~mf2mf 8!
2

2MW
D J
~E20!

with M̃5MW/22k0. The matrix elementMBR
final reads (hm:

polarization vector of theW boson!

MBR
final5 i

A2pa

sw
ū fGm, f

r ~12g5!v f 8h
m~q!er* ~k!

~E21!

with Gm, f
r given by Eq.~E3!, which leads to the same hard

photon spectrum as for the case of final state bremsstrahlung
in the four-fermion process@see Eq.~E13!#:

GW→ f f 8
h

5GW→ f f 8
~0! E

km

1 dk

2kH b f~MW
2 !@11~12k!2#1

a

p

k2

3

1
a

p
~Qf

21Qf 8
2

!@11~12k!2# ln~12k!J
5:GW→ f f 8

~0! dGBR
h . ~E22!

Thus, the factordGBR
h coincides with the one which multi-

plies the Born cross section in Eq.~E16! evaluated at
s5MW

2 .
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APPENDIX F: INTEGRALS

In the following, the explicit expressions for some special
cases of scalar two-, three-, and four-point integrals and of
photon phase space integrals will be provided, which have
been derived in the course of the calculation of the photonic
corrections usually developing IR and/or on-shell singulari-
ties. The dimensional regularization enables the extraction of
the UV divergence occurring in the scalar and vectorial two-
point integralsB0,1 $*D[m42D*@dDk/(2p)D#%:

i

16p2 ~B0 ;pmB1!~p
2,m1 ,m2!

5m42DE dDk

~2p!D
~1;km!

@k22m1
2#@~k1p!22m2

2#
,

~F1!

so that they can be written as@22#

B0~p
2,m1 ,m2!

5D2E
0

1

dxln
x2p22x~p21m1

22m2
2!1m1

22 i e

m2 ,

~F2!

B1~p
2,m1 ,m2!5

1

2p2
@m1

2~Dm1
11!2m2

2~Dm2
11!

1~m2
22m1

22p2!B0~p
2,m1 ,m2!#. ~F3!

The following results for the scalar integrals have been
used@22,39#:

B0~p
2,l50,m!5Dm121Sm2

p2
21D lnS 12

p2

m2 2 i e D ,
~F4!

]B0~p
2,l,m!

]p2 U
p25m2

52
1

m2F lnS l

mD11G , ~F5!

C0~s,mf ,mf 8,l!5E
D54

1

@k22l2#@~k1pf 8!
22mf 8

2
#@~k2pf !

22mf
2#

52
1

sF lnS s

mfmf 8
D lnS l2

s D1
1

4
ln2S s

mf
2D 1

1

4
ln2S s

mf 8
2 D 1

2

3
p22 ip lnS l2

s D G , ~F6!

C0~s,MW ,mf ,l!5E
D54

1

@k22l2#@~k2pf !
22mf

2#@~k2q!22MW
2 #

5
1

sF lnS s

mf
2D logS 12

s

MW
2 2 i e D 2 SpS 12

MW
2

s D 2
1

2
ln2SMW

2

s D 2
p2

6 G , ~F7!

C0~s5MW
2 ,MW ,mf ,l!5

1

MW
2 F2lnSMW

mf
D lnS l

MW
D1 ln2SMW

mf
D G , ~F8!

C0~1![C0~ t,mf ,mi ,MW!5E
D54

1

@~k2pf !
22mf

2#@~k2pi !
22mi

2#@~k2q!22MW
2 #

52
1

t F SpS 11
t1 i e

MW
2 D 2

p2

6 G , ~F9!

C0~3;4![C0@s,MW ,~mf ;mi !,l#, ~F10!

C0~2![C0~ t,mf ,mi ,l!5E
D54

1

@k22l2#@~k2pf !
22mf

2#@~k2pi !
22mi

2#

52
1

2tF lnS t2

mf
2mi

2D lnS l2

s D2
1

4
ln2S t2s2D1

1

2
ln2S s

mf
2D 1

1

2
ln2S s

mi
2D 1

p2

3 G , ~F11!

D0~s,t,mf ,mi ,MW ,l!5E
D54

1

@k22l2#@~k2pf !
22mf

2#@~k2pi !
22mi

2#@~k2q!22MW
2 #

52
1

t

1

s2MW
2 F lnS t2

mf
2mi

2D lnS MWl

MW
2 2s2 i e D 1 ln2S mf

MW
D1 ln2S mi

MW
D1SpS 11

MW
2

t1 i e D 1
p2

3 G .
~F12!
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In addition, the following soft photon phase space integrations have been performed (*k[*@d3k/2(2p)3k0# and
DW5s2MW

2 is considered to be complex!:

E
k

DWu2pipj u
~DW22k0q0!~kpi !~kpj !

5
piÞpj

1

2~2p!2H 2lnS ~2pipj !
2

pi
2pj

2 D lnS 2DE

l

DW

DW22AsDED 2I xJ ~F13!

with

I x5 lnS ~2pipj !
2

pi
2pj

2 D lnS s

u2pipj u
D1

1

2
ln2S pi

2

u2pipj u
D

1
1

2
ln2S pj

2

u2pipj u
D 12SpS 12

s

2pipj
D1 ln2S s

u2pipj u
D

1H 2p2

3
;
p2

3 J , ~F14!

where the second term in the curly bracket has to be used,
when one of the momentapi ,pj is equal to the c.m. momen-
tum q.

E
k

DWp
2

~DW22k0q0!~kp!2

5
1

2~2p!2H 2lnS 2DE

l

DW

DW22AsDED 2 Ĩ xJ ~F15!

with

Ĩ x5 lnS sp2D1$0;2%, ~F16!

where again the second term in the curly bracket has to be
taken, whenp[q holds.

E
k

2pipj
~kpi !~kpj !

5
piÞpj

1

2~2p!2H 2lnS ~2pipj !
2

mi
2mj

2 D lnS 2DE

l D2I xJ ,
~F17!

E
k

p2

~kp!2
5

1

2~2p!2H 2lnS 2DE

l D2 Ĩ xJ . ~F18!

Finally, the functionsa i , v i j and h i j used in order to
describe thej i dependence of the form factors are defined as
@34#

v i j ~q
2![a i22b i j ~q

2!2q2h i j ~q
2! ~F19!

with

i

16p2a i5E
D

1

@k22mi
2#@k22j imi

2#
,

i

16p2b i j ~q
2!5tmnE

D

kmkn2gmnmj
2

@k22mi
2#@k22j imi

2#@~k1q!22mj
2#
,

i

16p2h i j ~q
2!5tmnE

D

1

@k22mi
2#@k22j imi

2#@~k1q!22mj
2#

3F2gmn1
~j j21!kmkn

@~k1q!22j jmj
2#G , ~F20!

where the abbreviationstmn5(gmn2qmqn/q2)/(D21) and
*D[m42D*@dDk/(2p)D# have been used.
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