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Electroweak radiative corrections to resonant charged gauge boson production
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The electroweald(«) contribution to the resonant singl# production in a general four-fermion process is
discussed with particular emphasis on a gauge-invariant decomposition into a QED-like and weak part. The
cross section in the vicinity of the resonance can be represented in terms of a convolution of a “hard”
Breit-Wigner cross section, comprising the(M,)-dependent weak one-loop corrections, with a universal
radiator function. The numerical impact of the various contributions onWthéine shape are discussed,
together with the concepts sfdependent and constant width approaches. Analytic formulas faNtdecay
width are also provided including the one-loop electroweak and QCD correct®ds556-282(197)00311-1

PACS numbsgs): 12.15.Lk, 13.10+q

I. INTRODUCTION At present, there exists no complete calculation of the
electroweakO(«) contribution to the off-shellW pair pro-

Future experiments at the CERN e~ collider LEP and  duction cross section: explicit results have been derived only
the Fermilab Tevatron will access sectors of the minimalfor parts of the photonic corrections. An overview of the
standard mod€lMSM) [1] yet unchallenged: the Yang-Mills present knowledge of the off-sh&\f pair production beyond
structure of gauge boson self-couplings and mass generatid@ading order and the concessions to the consistency of the
by the concept of spontaneous symmetry breakifigwith  theory in order to gain it is given ifi7].
LEP Il operating above the threshold f@f pair production, The idea of this paper is to contribute to the description of
for the first time a precise direct measurement of the triplecharged unstable gauge bosons beyond leading order pertur-
gauge boson coupling®yZ)W*W~ can be performed, al- bation theory by studying the second problem separately and
lowing us to test the non-Abelian structure of the M$8).  discussing the electrowe&X «) contribution to the resonant
Moreover, our current knowledge of thé&/ boson mass single W production in a four-fermion process,

(world average valu¢4]) , i’ —W*—ff’. It appears as part of thechannelW pair
production process and its better understanding can show a
M,y=80.33+0.15 GeV way to an improved description of the off-sh&ll pair pro-

duction. Moreover, it represents thW¥ production process
via the Drell-Yan mechanism at the Tevatron and thus, in
will be improved up to an uncertainty in the range of 30—~50view of the future improvedV mass measurement at hadron
MeV at LEP II[5] and 20—30 MeV at the Tevatron upgrade colliders, requires a careful treatment beyond lowest order in
[6]. Thus, in order to meet the precision of these future experturbation theory.
periments the knowledge of the observed cross sections be- The discussion of the electroweak radiative corrections to
yond leading order perturbation theory is crucial. the W production in the vicinity of the resonance is guided
The W pair production cross section in the limit of stable by the successful treatment of theine shape beyond lead-
W bosons beyond leading order is already knd®Wh butis  ing order[8], which has been precisely measured at LEP |
not sufficient at c.m. energies only a few boson decay and the SLAC Linear Collide(SLC) [9]. In contrary to the
widths above the threshold. In the course of the calculatiorz resonance the electroweak radiative corrections to the
of the corrections to the realistic scenario at LEP Il with theresonantV production cannot be naturally subdivided into a
subsequent decay of theNV bosons into fermions, gauge invariant photonic and nonphotonic part. A separated
e'e” —W'"W™ —4f, the following problems arisg1) The  treatment is motivated by the following reasons: Usually, the
production and decay o# bosons in the vicinity of the photon contribution depends on cuts imposed on the photon
threshold, where two strong energetically varying phenomphase space and thus is dependent on the experimental setup;
ena occur: the resonant cross sectior/at =M,y (s. : in- the enhancement of the fine structure constadtie to large
variant masses of the outgoing fermion ppasd its increase logarithms Ing/m?) arising in connection with infraredR)
at the threshold/s=2M,y; (2) the consistent treatment of and collinear singularities requires either the consideration of
unstable charged gauge bosons within perturbation theorhigher orders in perturbation theory or the performance of a
which involves infrared singular interactions with real andsuitable resummation procedure; the interesting model-
virtual photons. specific contributions are contained in the nonphotonic sec-
tor. Therefore, in analogy to the description of tAereso-
nance, we seek a consistent gauge invariant representation of
*Electronic address: dow@fnth09.fnal.gov the resonantV production cross section of the inclusive pro-
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cessii’—W' —ff’X with X=photons as a convolution in- i, p; £, pt
tegral of the form10]
1(s VA
a(s)z—f ds'G(z)a,(s'). (1.1
S J sy=4m?
i, py £, pr

The shift of the invariant mass squaret=zs of the final
state fermions is due to initial state photon emission, which o . .
is described by the universal radiator functi@(z). The FIG. 1. W production in the four-fermion process at leading
latter also takes into account the possibility of multiple soft°rder-

photon emission. The model-dependent “hard” cross section ) ] ] ) )

o4(S) has a Breit-Wigner form. In next-to-leading-order per- résonance will _be provided, espemally,. a.transformatlon will

turbation theory o,(s) comprises the weak nf;,My)- be derived, which connects both descriptions and enables the
w L]

dependenO(«) contribution. consideration of ars-depgndenw Wid_th in Eq. (1.1? i_n an
The paper is organized as follows: In Sec. Il after recall-€2Sy way. In the remaining appendixes the explicit expres-

ing the Born cross section and the tree lewélwidth (Sec.  Sions for the electroweal(«) contribution to thew pro-

Il), we concentrate on the gauge-invariant separation of th@uction andW width are provided and some details of the

electroweakO(a) contribution to theW production into a  calculation are shown.

QED-like and (modified weak contribution. Our starting

point is a thorough perturbative treatment of the one-loop Il. W PRODUCTION AND W WIDTH

corrections to the lowest order matrix element. For checking IN LEADING ORDER

the cancellation of the unphysical gauge parameter depen-

dence the calculation is performedi¥ gauge. The applica- leading order perturbation theory, which is graphically rep-

tion of the procedure developed [itl] in order to extract a A > 28
gauge invariant multiplicative factor to the Born cross sec€S€nted by the decay process in Figmith g°=My,), is

tion from the IR-singular photon contribution leads to QED-9iven by[12]

like form factors describing the initial state, final state, and

interference contribution, separatelylly gauge invariant. In o _ aM\zNNf|fo'
252 ¢

The decay width of &V boson into quarks or leptons in

the resonance region, the remaining interference term can be = W' 1
absorbed into a modified weak contribution, which then also

factorizes. After performing an equivalent discussion of the XM= (mg+mg )2 (MG~ (mg—my)?]
electroweakO(«) contribution to the partiaWw width (see

Appendix B, the numerator of the Breit-Wigner cross sec- x| 1- _
tion can be represented as a productVéfpartial widths 2M\2N 2M3\, '
describing théN production and decay, respectively. At the

end of Sec. lll, after a detailed discussion of the QED-formwhere o ands,, denote the fine structure constant and the
factors and the modified weak contribution, we present th&ine of the Weinberg angle, respectively. The quark mixing
cross section including the electroweak radiative correctionss taken into account by the Kobayashi-Maskawa-matrix el-
to theW production in the vicinity of the resonance in terms ementsV;; [13] with V=g for Ieptons.NL denotes the

of the convolution integral given by E(ﬁll) After a brief color factor with N£=|vq: 1,3. By using the |eading order

summary(Sec. IV) we provide numerical results for the vari- (gjation for the Fermi constar®,, (measured in the. de-
ous contributions in Eq(1.1) accompanied by a numerical cay),

discussion of theV decay width including one-loop elec-
troweak corrections and QCD correctiof®ec. V). o

In Appendix A, we discuss the aspect of gauge invariance M\ZNZ—, (2.2
in the description of an unstable charged gauge boson be- \/EG;LS&V
yond leading order from a more fundamental point of view.
The problem of a consistent description of an unstable parthe partialW width in the limit of massless decay products
ticle together with a definition of mass and width, which turns to
meets the requirement of gauge invariance order by order in
perturbation theory, already had to be solved in the context —0) \/EGMM\?;V

. _ f 2

of the precision measurements at theesonance. There, two LW = o Nel Vi |% 2.3
approaches have been discussed: $hmatrix theory in-
spired ansatz and the quantum field theoretical approaclt]-,hisG

yielding a description with constant arsedependent width, dent ofs,,. The total width results from the summation of

respectively. The resulting prescriptions derived _for the the partial decay widths into all fermionic final states com-
resonance need to be tested with regard to consistency a g

applicability to theW resonance, facing the additional diffi- B tible with energy-momentum conservation:

culty of having IR-singular interactions of th& boson with

virtual or real photons. At the end of Appendix A the corre- 1“{/3>: 2 Filelff’ . (2.9
sponding prescriptions for the case of a charged vector boson (f,£")

ves
My

2 2
mZ+m;, (mf—mg,)?

2.2

« representation has the advantage to being indepen-
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The production of &V boson in a four-fermion process in ¢ denotes the scattering angle of the outgoing fernfierith
leading order perturbation theory is graphically representeqjespect top;. The differential cross section for this two-

by the Feynman diagram shown in Fig. 1. We choose th%article scattering process can be written as
Mandelstam variables

do 1
S= 2= + 72= i+ P 21 = 2
a*=(ps+ps)°=(pi+piv) m WZ | M|?(s,t) (2.6)

s with the matrix element squared and averagsdmmed

t=(ps—pi)?=(py —pi)°=— 5 (1—cos), over the initial (and fina) state spin and color degrees of
freedom. With the momentum assignment of Fig. 1 the Born-
matrix element of th&V production in the limit of massless

u=(ps—pi")°=(ps—p;)> (2.5  external fermions yields
|
T U_ ,S 1- UVgfr 1, S¢r ?/ i, Sir H(1— U; i S
M(O):i_zviierfr #(Py f)yﬂ( Ys)vi(Psr,Str) 2|(p| ir) y*( Ys5)Ui(P; |). 2.7
2sy, s—My
|

In the vicinity of the resonance the Dyson-resummed propa- Ill. ELECTROWEAK RADIATIVE CORRECTIONS
gator has to be usddq. (A3)], so that the differential Born IN O(a) TO THE W PRODUCTION
cross section of the resonaW production has the Breit-

As motivated in the Introduction, our aim is to provide a
consistent description of thé&/ resonance beyond lowest or-
der perturbation theory in the form of a convolution integral
¢ given by Eq.(1.1). To this end, a gauge invariant separation
EE } E of the electroweak radiative corrections under consideration
N, 2 4 into a QED-like and weak contribution is required.

) The starting point is a perturbative treatment of ihe
% (s+t) 2.9 production in the four-fermion process ®(a>). The elec-

[(s—M3&)2+M3(T9)2] ' troweak O(«) contributions under consideration are sche-

matically represented by the Feynman diagrams depicted in

. Eigs. 2 and 3. The virtual electroweak contribution, shown in
The square brackets take into account that for the case qf . .
ig. 2, consists of vertex corrections due to photon @nd

incoming leptons the spin average yields only a factor 1/Zboson exchangéiagram 1,11l), self-energy insertions to the

since the neutrino is a purely left-handed particle, whereas . - L
the average over quark spins leads to a factor 1/4. Afte(raxternal fermiong(diagram 1), the WZ and Wy box dia

performing the integration over the Mandelstam variable grams(diagram V, and thew self-energy contributiofdia-

(—s<t<0) the total cross section of the reson&¥tpro- gram IV). S.ince the cglculation is performedy gauge, the
duction in leading order perturbation theory yields latter also involves Higgs and Faddeev-Popov ghosts. After
renormalization(here we work in the on-shell scherfi4])

the virtual contribution can be described by means of a
) ¢ gauge parameterg(,i= y,Z,W)-independent, UV finite but
aO(s)= 7T_a4|vii ,|2|fo,|2&[3; E} IR singular, form factoi;(s,t) (a caret denotes renormal-
3sy Ne[2'4 ized quantities multiplying the Born cross section given by

Eqg. (2.8. When taking into account the real soft photon

Wigner form

da'(o)(s,t) Ta? ) )
at :S4sz|Vn'| N2
W

X 5 S T IVET (2.9  emission(photon momentunik| <AE</s), shown in Fig.
[(s—=M) "+ My(T'w)?] 3, which can also be done in form of a multiplicative IR-
singular factorFg(s,t), the IR singularities cancel as ex-
which in G, representation is given by pected[15]. Finally, theW production inO(«?) in a four-
fermion process can be described by
_ G2M; N1 1 do®V(s,t) do¥(s;t .
a9(s)= 3“77 W|V”'|2|fo'|zﬁi[§;ﬂ dt( ' di )[1+2 ReF,in(s,t) + Far(s,t)],
3.1
S - . I
X (2.10 where the explicit expressions for the contributions to

[(s=M{+METRF)?] Fun(s,t) andF3g(s,t) of Egs.(3.2) and(3.21), respectively,
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¥,Z
mw M W M FIG. 3. Real photon contribution i®(«) to theW production

in the four-fermion process.

Y Y o’
W>A{‘§,b'< M >< >@< Far more involved is the calculation of the photonic form

factor F,(s,t): the nonfactorizableVy box diagram is a

— resonant contribution and has to be considered at the re-
v quired level of accuracy, the arising IR singularities have to
] cancel and logarithms of the form & M\ZN), which diverge

w - for s—>M\2N (on-shell singularities need to be regularized in
a gauge-invariant way, when approaching the resonance re-
FIG. 2. One-loop corrections to th&/ production in the four-  gion. In order to obtain a separation of the one-loop correc-
fermion proce§S<I>+I Higgs ghostu™,u”: Faddeev-Popov ghosts; ions into a QED-like and weak contribution, we first extract
the nonphotonic contribution to th& self-energy is symbolized by gauge-invariant form factors, so-called Yennie-Frautschi-

the shaded loop; licit tati be found in, e. ~ .
[23])3_ aded loop; an explict. representation can be fotnd in egSuura (YFS) form factors F§.4(s), from the IR-singular
Feynman diagrams 1,Il, and ¥Fig. 2), so that the virtual

are provided in Appendix D. For the special choige:1 the ~ Photon contribution can be written as

electroweak one-loop corrections describedy(s,t) can

also be found in14]. The remaining photon phase space Fust= Y Flg9+FM™(s). (3.9
integration over the hard photon region is done in Appendix a=inital final,
E.

In the following, we concentrate on the virtual elec- These YFS form factors together with the real photon con-
troweak contribution and discuss the photon contributiortribution build IR-finite gauge-invariant form factors
F, separately from the nonphotonic pure weak contributionF&ep(s,t), which are independent of the internal structure of
F weak: the W production and thus can be interpreted as QED-like

corrections. For that, the bremsstrahlung contribution, shown

IA:\,m(s,t)z(Fer Fuwea (Sit). (3.2  in Fig. 3, needs also to be represented by a separately con-

served initial and final state current, which cannot be easily
The virtual photon contribution comprises all Feynman dia-obtained due to the/W*W~ coupling in diagram lIl. The
grams in Fig. 2 involving a photon, where the photonic cor-sum of the remaining IR-finite contributid®l)""*(s,t), a part
rection to theW self-energy is explicitly represented by the of the QED form factor describing the interference of the
first three diagrams of the subset IV. In contrary to #he jnjtial and final state bremsstrahlufg<Y and the pure weak
production, these Feynman diagrams do not build a gaug%-artFi,f if

! ; ) Ll crepresents a form factdt!;' .. which is indepen-
invariant subset and thus,(s,t) andFuea(s,t) are UV di dent of the external fermions and thus can be interpreted as a
vergent and gauge parameter dependent.

Since. finally. we are only interested in the cross Sectionmodified weak contribution. For the sake of clearness, the
. >, Tihally, y characteristics of the electroweak correctionsGfia) are
in the vicinity of theW resonance, we have a closer look at

the resonance structure of the different contributions to th summarized and the different steps, which lead to a descrip-

. ; . P Sion of theW resonance given by E@l.1), are schematically
virtual corrections depicted in Fig. 2. It turns out, that the resented in Table .

WZ box diagrams can be neglected as a nonresonant contH— In the following, this briefly outlined method of finding a

bution of higher order, so th‘f"t n thg vicinity of the reso- auge-invariant separation into QED-like and weak parts,
nance the pure \éveak contribution in next-to-leading orde here even th®(«) contribution to theW production and
evaluated as=My, decay process are separately represented by gauge-invariant
form factors, is going to be performed in detail.

I:Weal(M\z/v) :(F\i/veak+ F\f/veak)(M\zN)1 3.3
is determined according to the prescription given in Appen- A. The definition of a QED form factor to the W production
dix A [Eq. (A13)]. The resulting form factor$:\(,5g2k(M\2N) In the context of a general treatment of IR singularities

describe the nonphotonic one-loop corrections towhpro-  occurring in QED, Yennie, Frautschi, and Su{iid] gave a
duction and decay, respectively, and are explicitly given byprescription on how to separate these singularities as a mul-
Eq. (D27). tiplicative gauge-invariant factor to the Born cross section.
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TABLE I. Scheme to the extraction of a QED form factor to Weproduction(UV,¢; , IR, OS denote the
UV divergence,&; dependence, IR singularity, and on-shell singularity, respectislybty refers to a

prescription concerning the on-shell singularities, which will be given in detail in Sec. Il A.

FSBR (31 t) F\ irl.(sa t)
F%R (37 t) F’Y (S’ t) F\\'cak (‘M%/)
Fig. 3: I,1I, 11 Fig. 2: I11I \Y 111V [...1V
UV, IR &;,IR,0s UV,&i 08 UV,
Fid (s) + FSE (s) | Byt (s) + Fys () | FINS (5,0 | Fiw () | Fuly (M)
N i N ! N || N e’
IR,0s IR IR UV,&;,(subtr.) UV,&;,(subtr.) UVi&i
+F"" (s:1) +HyEs" (s:1)
N s’ N e’
IR,0s IR ,0s
(Fomsd +FSEb)(s)  +  FSe" (s,0) Efme (s,1) Fyl (M)
DN il ————— (A=
os FSE%L lin. +5'1’J|1e;r UV, UVi€s

(FSEE +FOED )(s) (Fie + L) (M)

os

TR i (5,0)

ween the final state fermions the extraction of the YFS form
actor Fygg(s,t) from the diagrams |, I, and V in Fig. 2 will
be illustrated. The IR and UV singularities arising in the

The basis of the perturbative treatment in the manner of YF
is the observation that the singularities arise only in connec

tion with soft photons emitted by external particles. The. rse of the calculation are made mathematically well de-
cross section of this soft photon radiatiuirtual or rea) can fined by introducing a fictitious photon massand by di-

be described as the Born cross section and factors, whidhensional regularizatiofi6], respectively. The external fer-
only depend on the four-momenta of the external particlegnions are considered in the massless approximation unless
and not on the internal structure of the process under consighey occur in singular logarithms of the form &im?),
eration. This enables the treatment of soft photon radiationyhere a finite fermion mass has been retained. The explicit
especially the demonstration of the cancellation of the IRexpressions for the IR-singular and IRfinite parts of the dia-
singularities, to all orders in perturbation theory. In the fol-grams under consideration can be found in Appendix D 1.
lowing, the YFS method will be applied to the photonic one-  The application of the Feynman rules of the electroweak
loop contributions to th&V production and later on also to MSM leads to the following expression for the photonic final
the W width. By the example of the photon exchange be-state correction described by diagram I:

f,pr

e

2\/§sw

AL =ig,y,(1-ys) [FIR(s)+FINe(s)] [gw= (35

£, pe
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iNIlg=1 = (—gu) 4me QfQ,,/ YalBs— Klvu(l = vs)[Bp+ KI2®

= D [k? ~ N [k? — 2(kpy)} [k* + 2(kpy)] ° (3.6
N e S ~~ —" Ng g .
Dy Dy Dy ‘

Following the prescription given by YFS, the numerator of the IR-singular Feynman integral i{8.Bgsandwiched in
between the spinors describing the final state fermions can be written as

numerator= u(py) val Br—K17,.(1— ¥s)[ Br + K170 (Ps) = U(PH)[2Psa— YaK]¥,u(1— ¥5)[2D5 + Ky Tv(ps/)

= U(Pr) (1= ¥5)v(Pr)(2ps—K)(2pg +K) + termse 0Pk, @7
where the following relations have been used:
Ky,=k,I+ %[k,yﬂ]z k,—io,,K"
and
u(p)pr=meu(p)=0, Pru(pe)=—meo(ps)=0.
The first term in Eq(3.7) leads to the IR-singular contribution of diagram I, which will be part of the YFS form factor

—Kk)(2ps +K)
D,DD;/

2
FIR(8)=(i4ma)Q Qs f D( id 38

whereas the IR-finite “magnetic” part contributes E§""*(s,t) in Eq. (3.4).

The application of this procedure to the photonic self-energy insertions to the external final state fermions and to the
photonic box diagrams leads to the following IR-singular form factors:

t,pr f.pe

N =
+
B =

HANT=igyy, (1— o) [FIY(s) +FiMe(s)] 3.9

with

1
Flf?f<s>=§<i4m>[ Qf fD

(2p—k)? <2pff+k>2} 310

D,Df  “"Jo D,D?
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and
! f v f
I AN I AN
+ [iBY(s,t) =i MO(s)[F +FI(s,t) (3.11)
i —<—J\/\/\/\/\$V\/\/‘——<— S S PN VY.V, B
with
. (2ps—k)(2p;i—k) (2ps +K)(2pir +K)
IR — _ . +0., , .

The form factors describing the initial state vertex correc-scribing the crossed box diagrams in Fig. 2 follow from
tions F(Fi"¢(s) can be derived from the final state ones by F{"™"(s,t) by the substitutions

the substitution
(i,6),G",f")—(,f"),3i’,f), andt—u (3.19

(Q¢,Q¢r,mg, M) —(Q;,Qjr,my , M), (3.13

and, additionally, by multiplying with a global minus sign.
The Born-matrix element(©? is given by Eq.(2.7).
These IR-singular form factors are extracted from the vir-
tual photon contribution in such a way, that their sum has a
which in the following will be abbreviated by structure similar to that of the amplitude describing real
(f,f"Y—(i,i"). Theu-channel form factor§{fﬂ'“"e(s,u) de-  (soft) photon radiation

1. 1
FYRS(S,t) = 5(1471'0)’/; D_)‘

kP T p=0 2
Qi2pi— k),  Qu2pr+k),  Qs(2ps—k), Qr2prt+k,| (3.15
k2 — 2kp; k? + 2kp; k% — 2kpy k% + 2kpj:

Thus, the W1) gauge invariance of the YFS form factor is guaranteed by the existence of a conserved current. The initial and
final state contribution to the YFS form factor, however, distinguished by the corresponding charge quantum numbers
(Qi,Q;» andQs,Qs,) arenot separately gauge invariant. Therefore, a “zero” will be added, so that the YFS form factor can
be written as a sum of two separately conserved) durrents, which describe the virtual photonic correction to \tie
production and decay process, respectively:
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1. 1
FYFs(s,t) = 5(’&47‘!‘&) /D D_,\
kainitial =0
x| Qipi— k), + Qu2pr +k), 1(Qi—Qi)(2¢—k), n 1(Qi — Qi)(2¢+ k),
D; D 2 (k% — 2kq) 2 (k% + 2kq)
kpjpfinal=0 2
+ 1Qr-QmRe-k)p 1(@Qr-Qm(24+k), Cs2ps—k)o Qr(2ps+k),
2 (k? — 2kq) 2 (k% + 2kq) Dy Dy
=: FE (s)+ FYE (s) + FYE (s, ) - (3.16
|
This, at first sight, arbitrary extension will receive its justifi- FE(iniialfinal) _ = (initialfinal) __ = (inital final) | _
cation from the structure of the real photon contribution and vES VS VS mass sing
its interpretation in the course of the corresponding discus- a 1 ['s
sion of the photon contribution to the/ width (Appendix ., %(f " Qi|5In me -1
=(1,1"),(T,

B). The explicit expressions for the gauge-invariant form
factors after the evaluation of the loop integral in E816
can be found in Appendix D 1. Before we deal with the real
photon contribution a closer inspection of the occurring mass 2
singularities In/m?) and logarithms of the form  Fire=F Ve —[Fyrelmass singh ,B,m(s t)ln(| W |)
In(s— M\ZN) is needed. Since the occurrence of those singu- W
larities is a pure QED phenomenon, they build a gauge- (3.19
invariant subset,

It is this modification which guarantees, that the inclusive
cross section including the hard final state photons satisfies

|n|t|a| final,interf finite finite
[Fyr i T v T FinJmass sing. the Kinoshita-Lee-Nauenber@{LN) theorem[17] and that

a S the occurrence of the on-shell singularities is restricted to the
e E Qﬁiln( ) (3.17 initial state contribution.
Th=i,i’ 1,1/ The last step in extracting a QED-like form factor from

the electroweak radiative corrections to Weproduction is
and[ Bin; of Eq. (3.37] to find a gauge-invariant separation of the real photon radia-
tion into initial and final state contribution. It turns out, that

- 1 M3 i in Fi i i i
finite w diagram Il in Fig. 3 can be divided into one part, which
[Fv.itw+ Fint Fiv]on-shen sing Z,B,m(s,t)ln( |s—M3|/’ develops the propagator structure of a initial state contribu-
tion and another one, which can be assigned to the final state
(3.18 [18]:
which can be assigned to the initial state, final state, and
interference YFS form factors according to their structure 1
and under the maintenance of gauge invariance. It has to be 4iagram 11l (02— MZ][(q - k)? — MZ]
mentioned that the sum of the IR-finite photon contributions 1 1
which are not included in the YFS form factors develops a = [(q- k)2 = MZ][2kq]  [q° — ME|[2kq]
further QED-specific term —
«initial state —final state
=S (3.20
A K1 3.2
Adm i

which thus can be absorbed in a modified YFS form factorUsing this separation the contribution of the real soft photons
as well. Finally, the resulting modified YFS form factors in shown in Fig. 3 can be described by a multiplicative factor
Eq. (3.4 are connected to the original ong=q. (3.16] as  being composed of separately conserved initial and final
follows: state U1) currents:
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kapimual=o
, Bk | s- ME, Qi Quph  (Qi—Qui)g® )
Fpp(sit) = (-4mo) iFl<aE 2(2m)3K0 | (s — M, — 2kq) | kpi  kps kq
kPJ‘;inal =0
kg kp;s kpf’
= meal (3) + Ffmal (S) + leerf (S t) (32])

There the impact of a photon radiated by a initial state fer- (°+1>(s) FO(s)[1+ Finitial g)]
mion to theW propagator has been taken into account, as Tiv+s QED

well. The explicit expression for the gauge-invariant form AE‘ Aw ‘
factors F3(s,t) after performing the photon phase space =7 9(s)] 1+ Bi(s)| | 75 ‘A 2\/—AE’
integration in the soft photon limit can be found in Appendix w
D3.

Finally, the QED-like form factors of th&/ production, +68p(s) +26 +S(s)} (3.23
which correspond to the QED form factors describing the

next-to-leading order photonic corrections to theproduc-
tion, are determined by the YFS- and bremsstrahlung form Nith
factors derived above as follows:

Faep=2 ReF3r+ F3z with a=initial final,interf. al o [ S 2 S
QED YFS BR ’ ’ . = — ‘ — + Q7 — — ,
(323 ,8|(S) 77{ QI m(az 1 QI In HIZT 1 1
(3.29
Up to now, we only considered the radiation of soft photons,
since they develop IR singularities, which have to be can- 5
celled in the sum of the real and virtual contribution. In the S ™ 2. .,
following, it will be shown that in Eq(3.22 this cancella- Bursls =3 {Q' ( m; g2 QL=
tion works. Moreover, the radiation of hard photons will be 5
considered by performing the integration over the remaining n m (3.29
photon phase spac&’, =AE up to k%, =M/2, as de- 12" '
scribed in Appendix E. Since we are interested in the cross
section of thewW production in the vicinity of the resonance, d the bh hift of th
those terms, which would vanish f@—M3,, have been and the phase-shift of the resonance
neglected. Furthermore, th& width will be introduced in
order to cope with the arising on-shell singular logarithms by (s—M2) s—M2,
the replacement op(s)= W arctar(W
R 2\SAE—s+Mj
s—Ma—Ay=s—MZ+iMulo*Y, +arctar(#1)W (3.26
Mwl'w

which can be done without spoiling thg1)-current conser-
vation as can be easily verified with E@.21). The replace- This represents the main contribution to the entire elec-
ment of 0(s) with o(©(s) [Eq. (2.9) with T{Q—T{*Y]  troweak one-loop corrections due to the occurrence of large
in the vicinity of the resonance follows the prescription de-logarithms; for instance, Ins{m?2)~24 for s=M%,. In the
veloped in Appendix A. case of theZ resonance a procedure has been developed for
The initial state QED form factorThe gauge-invariant coping with those large contributiofi$0]. The achieved de-
QED-like contribution to the total cross section@{«®) in  scription of the initial state photon contribution by the QED
the vicinity of theW resonance, which has been extractedform factor given by Eq(3.23 now enables its application
from the virtual and reafsoft) photonic initial state correc- to the W resonance also. For that purpose, the phase space
tion to theW production in the four-fermion process, yields integration over the hard photons will be rewritten in accor-
[Egs.(D43), (D10) with Eq. (3.13 andQ,— Q; =1] dance with Eq(E12) by usingz=1—-k=1-(2k%q°) as
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1 - [Awl2(1—Kk) The final state QED-form factorThe gauge invariant
O-i(,h)aro(s)zo'(o)(S)J dkm QED form factor describing the soft photons radiated by the
€ w final state fermions is given byEgs. (D10), (D44), and
1 1 a Kk Qi— Qs =1]
X\ Bi(s) +5Bi(s)k=2)+ — &
2AE
Bi(s) ~ FoEn(S) = Bf(s)ln( % )+25f+s(s) (3.33
sza(l Z—¢€) (0)(32)[ +5h(s)} S

where B¢(s) and &, +S(s) again can be derived from the
(3.2 corresponding initial state expressidiEgs.(3.24),(3.25] by
. JUN applying the substitutionsi (i) — (f,f’). After taking into
with e=2AE/\s and’s, given by account the radiation of hard photons the so-defined soft
photon contribution to the resonawt production cross sec-
tion fulfills the KLN theorem[17] provided that no con-
straints on the invariant mass of the final state fermion pair
will be imposed: the mass singularities cancel out and finally
As can easily be verified, the terml/(1—2) of Eq. (3.27) a QED form factorﬁgED remains multiplying the inclusive
cancels theAE dependence of the soft QED form factor. total Born cross section
Thus, the cutoff parametétE can be chosen to be so small _
that it can be neglected in E(.23 as compared to the/ % (8)=09(s)(1+ hep), (3.34
width. As a consequence, the initial state bremsstrahlung to
the W resonance can also be written in form of a convolutionwhich has the form

N -

al-z
On(S)=————

6 (1+2)Bi(s). (3.28

integral, 7 o
s =v,
0+1) 0+1), (1 5QED (Qf+er)+3+24 ~ 0.0072.
+ +
olen(8) = oy Y+ |(h)ard_f dzG* M (2)0'%(s2), 335

(3.29 Thus, as in th& resonance case, this small effect of the final
state bremsstrahlung can be taken into account by attaching a

with the radiator function at one-loop level multiplicative factor to the convolution integral in E@.31):

G Y(2)=8(1-2)+ 8(1—2)[ Bi(s)In(€) +26, . «(9)] 70(5) = 7O(s)(1+ Shep).
+0(1-z—¢€) ij 5h(s)]. (3.30 The interference contributiorThe interference of the ini-
tial and final state soft bremsstrahlung leads to the QED form

factor[Egs.(D11), (D45) with Q;—Q; =Q;—Q;,=1]:
This representation enables the consideration of the remain-
ing electroweak one-loop corrections and the effect of an )
s-dependent width in a simple way. After performing the Fé‘i%rf) (5,8) = By (s,)In <2AEM—> +2 61l (5,8
summation of the logarithms connected to the soft photons to Ve 1Aw — 2/5AE]
all orders in perturbation theor(goft photon exponentiatipn -0 for s=MZ,, a5
the convolution integral in Eq.3.29 reads

(3.39

~ ith
cri,exp(s)=Jolde(z)cr<°)(sz), (3.31) i

t2
. ) o . , Bim(s,t) = [(Q Q¢+ Qi er)m( )—(Q Qs
with the radiator function in the exponentiated version
2

G(2)=Bi(1-2)% Y 1+28 ., )+  (3.32 +Qwa)ln(g +2 (3.37

The calculation of the initial state bremsstrahlung at the two-and
loop level in the case of th& resonancd10], either per-
formed explicitly or by using the structure function method, _jert _ 1, 2
has shown that the soft photon exponentiation together with dy+s(St)= (Q Qi+Qi Q)| — Zln 2
the remaining one-loop contributions of the virtual and hard 5
photons represents the main part of the initial state brems- —28[{ 1+§ 42N t )
strahlung. A renormalization group analy$E9] confirms 2\ s
7
x[tﬂu]—e—ng]. (3.39

—(QiQ¢ + Qi Qy)

the method of the summation of the leading logarithms aris-
ing in connection with the emission of soft photdisee Eq.

(3.32].
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Sp(z) denotes the Spence-function describef2@]. The in-  cussed in Sec. Il A, these photon contributions can be ab-
tegration over the scattering angle of the remnant of the IRsorbed into a modified weak contribution to tNeé reso-

singular logarithm in Eq(3.36), nance:
do®(s,t) Fueal S=MG) = (Fleact Fiveact Foy o+ Syet) (s=MG),
O-i(nltzsrf( S)|In.: f dCOSQWIBmt( 1) wea vea ° (3.43
SAE M2 whereF.f , denotes the pure weak contributions given by
W Eq. (D27). With this UV-finite andé;-independent form fac-
Js |[Aw— 2\/—AE| tor the separation of the electroweak corrections to\We
1 resonance aimed for is completed.
_’5(0)(3)3( _ _>[5(QiQf+Qi’Qf’) Finally, it remains to check whethd¥,..(M3) can be
w3 represented as a sum of the modified weak corrections to the
+4(Q; Qi+ Q1 Q)] W width: 6T {,ea@Nd 6T }eq. According to Eq(B11) this is
equivalent to the verification of the identity
2AE M2 (339) (Ffinlte 5Interf)(s M )=2 ST
\/_ |AW 2\/—AE| b% v+s W. rem
with 8I'7,,, given by Eq.(B10). In fact, by performing its

leads to a contribution which will be completely compen-
sated by the hard photon contributiet{""(s) in Eq. (E17)
evaluated ats=M3,. The remaining factors™®(s,t) to-
gether with the IR-finite parts of the box diagrams
F{','?'(‘fu)(s,t) [Eq. (D12)], where on-shell and mass singulari- £ (M%) = Flek (Mfy) + 8T %m + Flew (M%) + 6T %
ties have been subtracted according to 8419, are inde-
pendent of the charge quantum numbers characterizing the
external fermions,

epr|C|t calculation this identity is proven to be true and
Fuead M3) can be written as

=: .Cveak(‘wtzv) =: F\{veak(M&/)
5F'weak + 6F{veak .

il

(3.49
(snterty plinte y(s=M2)=— il Ay +8+ sz By using this result and by following the prescription de-
v+s V,(t,u) \u 4 w 6 . . . . . .
rived in Appendix A, theW production cross section in the

(3.40 vicinity of the resonance includingnodified weak one-loop
and, thus, can be absorbed into a modified weak (:ontributioﬁOrrectlons has Breit-Wigner form

to the differential Born cross section. This compensation of N T(0+1) FO+1)

the nonfactorizable(u) dependent remnants of the photonic oy(S) = 6_77 (5_'2 o) St wttr weii !

box diagram bys™e is essential to the factorization of the MG ND [ M@ MW TY)?T
numerator of the resonant cross section into pawlatlidths (3.49

describing theW production and decay, respectively. _
whereI" denotes the QED-subtractél width defined by
B. The modified weak one-loop correction Eq. (B12.

to the W production
. . I IV. SUMMARY
The IR-finite rest of the virtual photon contribution

Ff'”'te(s t) of Eq. (3.4) consists of the remnants of the YFS  In order to match the requirements of future precision
prescrlptlonF r(S,t) and the IR-finite Feynman diagrams experiments at LEP Il and the Tevatron, the corresponding

Il and 1V: cross sections for resonaw production have to be calcu-
lated beyond leading order perturbation theory. Having in
F“'nlte (s,t)=F (s, )+ (FJ ++FJ i+ FX)(S)|subtr mind the successful treatment of the electrow€dk:) con-

(3.4)  tribution to theZ resonancé¢8], we strove for the analogous
_ description of the resonaW production in a four-fermion
with process at the required level of accuracy. After a thorough
perturbative discussion of the electrowéaka) contribution
F7 (st)= 2 (Fflnlte+ Fflnlte)( s) to the W production, we succeeded in extracting a gauge-
invariant QED-like form factor from the photon contribution.
We showed, that, when approaching ¥ieresonance, the
+(|:f'“'te f'"'te)(s t) , (3.42  occurrence of on-shell singularities is restricted to the initial
subtr state contribution and can be ‘“regularized” by introducing
the W width as a physical cutoff parameter in a gauge-
where |y, reminds of the subtraction of the mass and on-invariant way. The similar structure of the resulting initial
shell singularities described by E(.19. After taking into  state QED form factor to that of th2 resonance allowed us
account the remaining part of the interference QED formto apply the same technique to cope with the enhancement of

factor 5;)”f;f(s t) from Eg. (3.389, as has already been dis- the electroweak coupling by large mass singular logarithms
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(soft photon exponentiationBy separating the electroweak o the W width at leading orderl“_§,8) [Eq. (2.4] and at
one-loop corrections to thg/ width into QED and weak

contribution, too, it turned out that tHenodified weak cor- . o
" J Table Il. Besides the electrowed(«) contribution calcu-

rections to the resonahll¥ production cross section also fac- lated in A dix B. the latt tai Iso th tributi
torizes into QED-subtracted parti@¥ widths. ated in Appendix b, the latler contains aiso the contribution

In summary, we achieved a representation of the elecof virtual and real gluons, so thatly* ) yields in G, rep-
troweak radiative corrections to the W production cross secresentatiofEq. (2.3)]
tion in the vicinity of the resonance which is, in analogy to
deep_ i_nelastic hadronic sc_attering, a convolutior_1 ofa Process ro+1)_ D T
specific “hard” cross sectiow,(s) [Eq. (3.45] with a uni- w W—ff/

next-to-leading ordel’_\(,f}”) [Eq. (5.2)] are summarized in

ff'),f
versal radiator functioiG(z) [Eqg. (3.32] describing the ini- am fﬂ
tial state photon contribution, where the possibility of mul- Ne—1
tiple soft photon emission has been taken into account + 2 dqco (5.2
1 e .
_ 1+ 4.1 where the modified weak correction and the QED form fac-
o(s) fo d42&(2)0(s2)(1+ dgen) @D torare given by Eq(B11) and Eq.(3.35, respectively. The

QCD corrections are derived in the limit of massless decay
5fQED, defined by Eq(3.39, denotes the final state photon products[24]

contribution, which is free of large mass singular logarithms.

As a result of the comparative discussion of tBenatrix ag ag ag)?
inspired ansatz and the perturbative approach, a transforma- 5QCD:? 1+1.4003 T —12.7670 ;) , (5.3
tion of the parameters of the resonafEg. (A27)] connects
the two descriptions. which for our case represents a sufficient approximation. In
the course of the calculation of th¥ width the Kobayashi-
V. NUMERICAL DISCUSSION Maskawa mixing has been neglected, but the final result has

been multiplied with the square of the corresponding physi-
o ' X cal matrix elemenV;; . From a numerical point of view, this

COI’lltI‘I.bUtIOI’]S to the .electroweak radiative correcuc_ms a”q)rocedure does not significantly differ from a consideration
their impact on the line shape of th& resonance will be ¢ the Kobayashi-Maskawa matrix in the renormalization

discussed. For the numerical evaluation the following set Obrocedure as has been pointed ouf28]. In order to illus-
parameters has been udé&q, [13]

In the following the numerical relevance of the different

trate the variation oMy, and I'{0* Y with the electroweak

a=1/137.0359895,G,, = 1.1663X 1075 GeVv 2, input parameters, they are given in Table Il for different
values ofm, and M. The ratioI'{Y" /M, illustrates the
as=0.123, Mz=91.1884 GeV, very weak dependence of th'é width onm; andM : due to

the cancellation of large leadin@uadrati¢ m,-dependent

myg=m,=0.0468 GeV, m.=1.55GeV, o .= T
d ¢ contributions indl" ., and Ar, only a logarithmic depen-

ms=0.17 GeV, m,=4.7 GeV, dence onm (and My) survives and thus the variation of
I'{*Y is mainly a consequence of the variation\df, . Our
|Vl =0.975, |V.{=0.974, result obtained for th&V width in next-to-leading order is in
very good agreement with the totél width derived in[12]:
[Vip| =0.999, |V o=V, =0.222, relative deviation<0.005%.
In the subsequent discussion of the line shape of\the
Vel =[ Vil =0.044, [Vyp| =[Vig| =0.007. resonance, the top quark mass and Wiiboson mass are

Th f the light K fecti K chosen to be the central values of their current world average
e masses of the light quarks are effective quar mass«ﬁ%] and[4], respectively

in the sense, that they reproduce the correct hadronic vacuu

polarization given by the dispersion integral calculated in m,=175=9 GeV,
[21] and have no further physical meaning. Using this set of
Lr;ﬁ)é;’:gpr)]arameters th&V boson mass is determined via the M,y=80.33+0.15 GeV.

Using these input parameters the Higgs-boson mass and the

Z total W width yield

Mi=7

(5.9

L \/1 Ama 11
V2G, Mz 1-Ar

as a function of the not precisely known or even unknown

parameters of the MSMm, andM, . A detailed description and

of Ar, which comprises the radiative corrections to the muon o

decay, can be found if22], [23]. r{d+*Y=2.0887 GeV

The W width is an important ingredient of the description
of the resonanW boson production. The numerical results compared to the measured valuelgf [13]

My =273 Ge\=T'{9'=2.0406 GeV
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TABLE Il. The total W width (andM,) in G, representation
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including the described radiative corrections

My [GeV] 60 300 1000
m,=165 GeV
Mw [GeV] 80.3648 80.2618 80.1647
F\(Af;) [GeV] 2.0433 2.0354 2.0280
F\(A(;H) [GeV] 2.0911 2.0834 2.0759
FT,S*”/MW 0.0260 0.0260 0.0259
m,=175 GeV
80.4275 80.3228 80.2244
2.0481 2.0401 2.0326
2.0960 2.0882 2.0806
0.0261 0.0260 0.0259
m,=185 GeV
80.4927 80.3861 80.2862
2.0531 2.0449 2.0373
2.1012 2.0932 2.0854
0.0261 0.0260 0.0260

I'y=2.08-0.07 GeV.

The “hard” cross sectiorr,,(s). The effect of the&modi-

fied) weak one-loop correction described by E8 45 to the
W line shape is shown in Fig. 4 for the example of a pur
leptonic processvee+—>vﬁ,u*. There is no noticeable im-

i p0+1) 1(0+1)
— b7 5-N, FW—»ff’rW—>ii’/1+1 2| 55
0w, max M\ZN NLZ (F—\(,8+l))2 \ 4')’ y .

however, is reduced as compared to the peak value in leading

order perturbation theoryo(%), (=0 max With T+
—T), For the case of the leptonic process this reduction

yields
Oy, ma=0.93410,

and is mainly due to the QCD correction to the tadawvidth
given by Eq.(5.3). Thus, when considering ttW production

processv.e™ —ud the reduction of the maximum cross sec-
tion only amounts to

O, ma= 097290

max?

since now the QED-subtracted partll width 'Fﬁiﬁ% of
Eq. (5.5 also includes the QCD contribution. Table Il

shows the negligible small dependence of the peak value

Ow max ON the top quark and Higgs-boson mass due to the

aforementioned cancellation of leading(quadrati¢

m,-dependent contributions in the parti&l width calculated

in the G, representation.

All further discussion is dedicated to the QED-like con-

tribution, especially to the initial state photon radiation. The
cfinal state QED contribution described b‘gED of Eq.(3.39

has a tiny effect on the peak vaIu%TEg~O.OO72 for leptons

pact on the location of the maximum of the resonant cros@nd 8ozt~ 0.0069 for quarks, but has no impact on the peak
sectiono,(s) (in G, representation

2
Smax=MwvV1+y5,

(5.9

position of the resonant cross section. The leftovers of the
interference contribution have already been absorbed into the
“hard” cross section as has been described in Sec. Il A.
The initial state bremsstrahlun@.he initial state brems-
strahlung, described by E@3.23 (soft photong together

where the abbreviatiomzﬂS*l)/MW has been used, due to with Eq. (E15 (hard photonk does not only carry the main
the smallness of in the above equationA(s;,,=0.6 MeV).
The maximum of the cross section

contribution to the reduction of the peak value, but is also
responsible for the distortion of the line shape, especially for

50 |

40

G (s) (nb)

20

10 |-

— — - —- Oy

)

FIG. 4. The “hard” cross sec-
tion o,(s) of Eq. (3.45 com-
pared to the Born cross section for

+ +
v — v, u.

80 81

s'2 (GeV)
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TABLE Ill. The W width T{0" Y and the peak value, nfor  the corresponding corrections to t#eline shape. Figure 6
different top quark masses. Besides the top quark mas&/theson ~ shows the total cross section of thE production in the
massM = 80.33 GeV has been used as an input parameter, so th&icinity of the resonance as it is described by the convolution

the Higgs-boson mass is determined by Eql). integral of Eq.(4.1), where thes dependence of thé/ width
— has been considered by applying the transformations of Eq.
m; [GeV] My [GeV] TP [Gev] Ty max [ND] (A27). The main impact of the discussed radiative correc-
tions on theW line shape can be summarized as follows:
166 124.19 2.0886 52.5449 The peak positiors,,,, Of the resonant cross sectipBq.
175 273.32 2.0887 52.5451 . : max
: : ‘ (5.4)] is shifted about+42 MeV (Z: 496 MeV) (constant
184 549.30 2.0888 52.5452

W width) and suffers an additional shift about27 MeV
(Z:—34 MeV), when assuming as-dependent width; the

the shift in the peak position. The main effect to the reducpeak value of the resonant cross section is reduced by a

. / . . ; 0 ;
tion of the maximum can roughly be estimated by the factofactor 0.82 g:~0.6) with respect too ), For comparison,
the corresponding values in case of theesonance are also

provided[22] (in brackets.

Mw

1-Bi—e(M@)In =D
1—‘W

) =0.81
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o MZ MZ
1—4;“’1 —In| —=—]=0.6. APPENDIX A: UNSTABLE PARTICLES

Me I'z AND GAUGE INVARIANCE
The effect is much smaller, when the soft photon is emitted |, 5-matrix theory an unstable particle, experimentally

by quarks seen as a resonance during the interaction of stable particles,
can be easily described when neglecting all singularities be-
1-Bi_y(M2)In M ~0.94 sides a single complex pole close to the real energy axes with

=W riory ' a negative imaginary paf28]. Therefore theS matrix is

approximately of the form of a Breit-Wigner resonance

where the numerical evaluation has been performed by using
the effective quark masses. They have no physical meaning,
but in a realistic hadronic scattering process they are rather
included in the parton distribution as parts of the interacting
hadrons, with which the parton cross section has to be corwhereF(s) is an analytic function with no poles. The resi-
voluted in order to obtain an observable cross sedt&m. dueR of the complex pold\/lg can be interpreted as a prod-

In Fig. 5 the impact of the initial state bremsstrahlung touct of coupling constants, with which the unstable particle
the W line shape in a pure leptonic proces®—v,u" is  couples to the external particlé88]. The resonance in the
shown. The shift of the peak position due to the energy l0s§cattering amplitude arises in the vicinity 9 Re(M2), the
in the resonan propagator inO(«) amounts to physical mass of the unstable particle, and the width of the

- - 2 .
AMy=+53 MeV, resonance is given by Iyg):

M(s)= +F(s), (A1)

2
s— Mg

2_np2 H
which reduces to ME=Mphys=IM pryd”
AMy=+42 MeV or, e.g.,
after performing soft photon exponentiation as it is described M2=| Mo i E 2 A2)
by Eq.(3.31. This shows, that the calculation performed in ¢ ™| Mphys™1 5] -

O(«) overestimates thg/ boson mass by 11 MeV. Due to
the different charge structure for the case of quarks in th8he S matrix given by Eq.(Al) is gauge invariant in the
initial state only a shift of the peak position by physical region ¢ real ands>0) and thus—via analytic
AMy,=+14 MeV can be observed, which still amounts to continuation—also in the complex energy plane, which en-
AM,=+13 MeV after the resummation of the soft photon ables its application in a gauge theory. The fact that the
contribution. Since these soft photons represent the maicomplex poleM., its residueR, and the nonresonant part
contribution to the resonaiV production, we expect no sig- F(s) are separately gauge invariant has been used to find a
nificant contribution from hard photons at the two-loop level,gauge-invariant description of the resonance at the re-
which has been confirmed by an explicit two-loop calcula-quired level of accurac}29].
tion in the case of th& resonancé¢l10]. From the quantum field theory point of view a resonance
In summary, the electroweal®(«) contribution to the in the scattering amplitude is caused by a pole in the propa-
resonantW production develops the same characteristics agator of an unstable particle. In the vicinity of the resonance
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FIG. 5. The effect of the initial state bremsstrahlungdfw) described bwf%ﬁﬁ)(s) of Eg. 3.29 and after soft photon exponentiation
[Eg. (3.3D].

the resummed propagator has to be used, which is a formalucible (1P]) self-energy of the unstable particle as an argu-
summation of a geometric series with the one-particle irrement(Dyson resummation30]:

QX
N’@W' = v Tt ./\,VQ,\/V. +
, —igm —igh ] ~3+(s)
o’ _S_M(2)+2T(S)_S—M(2)+i6[1 (S—M(z)-l—ie * } (A3)

M, denotes the unrenormalized bare mass Br€s) is the  renormalized mass, art(s) the renormalized self-energy.

transverse part of thelPl) self-energy. Since the external g(s) comprises the nonresonant contributions, e.g., box dia-
particles are considered to be massless as long as no singy=ms.

Iaritie_s occur, the_longitudina_l part of the propagator does not 1,4 S-matrix-theory-inspired construction of a gauge-
contribute and will not be discussed. Veltmgsi] showed invariant amplitude using a Laurent expansion of B&g)

that theS matrix constructed by using the Dyson-resummed ound the complex pole and afterwards performing a con-

; o r
propagator and by assuming only transitions between St.abgelstent evaluation of the parameters of the resonance in the
particles obeys the principles of unitarity and causality

Thus, the field theoretical description of gauge boson reso(—:oupllng constang results in a description with constant

nances is given by the following amplitude, after performingWldth. _Choosmg the field theqretlcal ansatz and carrying out
a renormalization procedure: a consistent treatment of the inverse of the propagator in Eq.

(A4) can lead to a scattering amplitude wishdependent
L width [32]. Analyzing theZ line shape in th&-matrix theory
Vi(s)Vi(s) approach yields & boson mass which is about 34 MeV
M(s)= s— M2+i (s) +B(s). (A4) larger, atO(g?) accuracy, than the corresponding value ob-
REST tained in ans-dependent width prescription. Since these two
descriptions are connected by a transformation of the line
\A/i,f(s) denote the renormalized vertices, describing the proshape parametef83] they are equivalent and, thus, the dif-
duction and decay of the unstable partidiér denotes the ference in théZ boson mass has no physical meaning.
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FIG. 6. TheW production cross section in the vicinity of the resonance including the discussed electroweak radiative coftegtions
(4.1].

The future precise measurement of #heboson mass at (i) O(g?) accuracy.In next-to-leading order Eq(A5)
LEP Il and at an upgrade of the Tevatron raises the sameirns to
guestions for a charged gauge boson resonance. In the fol- R R
lowing, the applicability of the prescriptions, derived in the M3=M3a—[1—ReI+(M3,g%)]Re+(M3,0?)
context of theZ resonance, to a charged vector boson reso- . . .
nance will be studied. —ReS1(M%,g%) —Im3(M&,g)ImII{(M%,g?),
Miir_¢:(S) with constant widthFollowing the treatment (A8B)
given in[29], which can be directly applied to th& reso-
nance, a gauge-invariant scattering amplitude and a definiyhere the following abbreviation has been used:
tion of mass and width to the required level of accuracy can

be given R I31(s)
Js

(i) O(g% accuracy.At the one-loop level the physical L+(s)
massM,y, is connected to the renormalized mass as

R Taking the renormalized mass as the zero of the real part of
RegM2)=Mi=MZ—Rex1(M3,9%), (A5)  the inverse propagator, which corresponds to the field theo-
retical definition of a stable particle’s mass, this reduces to
which yields the equality of physical and renormalized mass . -
when using the on-shell renormalization condition M&=Mz—Im3+(MZ.g%)ImlI(M%.g%).  (A9)

< 2 2N i -
ReZ 1(Mg,g)=0 in order to determine the mass renormal Thus, one obtains a shifted renormalized mass with respect

: : 2 _n12_pn2 H _ ; g : . .
ization constantMy,=Mj—Mg. In leading order perturba- , the physical mass. By considering a renormalization con-
tion theory theW width corresponds to the imaginary part of Giiion however. which reads at two-loop level

the one-loop corrected renormalizéd self-energy:
. R 1(M&,g%) +Im2r(ME,g?)ImlI1(MZ,g%) =0,
Mwl'W'=Im2+(M%,.g?). (AB) (A10)

Thus, theW resonance is described by the equality of physical and renormalized mass is recovered
’ [29]. Then theW width in next-to-leading order yields

R(9?)

MO(s)= .
s s—Ma+iMy {0

;+0(g?) (A7) Myl 9"V =[1-Relr(M2,,g%)]ImS+(M2,,0?)
+Im3(M2,,0%). (A11)
with
The calculation of'{$**) in the MSM and for& =1 can be
R(9%)=V;(g)V¢(Q). found in[12] and will be additionally performed in Appen-
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FIG. 7. Feynman diagrams for the photonic one-loop correction to\tiself-energy(the dashed and dotted lines denote a charged Higgs

ghost® = and the Faddeev-Popov ghosits or u?, respectively.

dix B for R, gauge and in the limit of massless decay prod-

ucts. Finally, a gauge-invariant description of t#é reso-

nance can be given, which completely takes into account the

electroweak radiative corrections up to ord@fg?),
R(9%)+R(M{,,g%)
s—Ma+iM, [Py

MO+D(g) = +0(g%, (A12)

with the residue in next-to-leading order
R(M.09 =Vi(M{y,0%)VH(9) + Vi(9)Vi(M,.0%)

—Vi(9)V1(9)TT1(M2,,?). (A13)

denominator s— M2, +iM IOt +ilm[S1(s,9?)
~21(My.07)]

=:5—MZ+iM IO Y (s). (A16)

Contrary to theZ boson, where the imaginary part of the
derivative of the 1PIZ self-energy develops gauge-
dependent contributions only wh¢g4]

M, |2
2My)

Ews

TheVi'f(M\zN,ge’) denote the renormalized vertices inClUding the Corresponding quantity in thewW boson case

one-loop corrections to the production and decay diVa
boson, respectively.

M _¢¢:(S) with s-dependent widthiNext we present the
results obtained by using the field theoretical ansatz and

also discuss the equivalency of both approaches for
charged gauge boson resonance. The latter cannot be rea@
expected in the case o\ resonance, since the existence of

a transformation given by Bardiet al. [33] for the case of

the Z resonance is due to the lineardependence of the
imaginary part of theZ self-energy. Therefore a careful

study of thes dependence of th&/ self-energy is required.
After evaluating the real part of th&/ self-energy in Eq.
(A3) (after renormalization around s=M§ and using the
on-shell renormalization condition Be(MZ)=0 the W
propagator is given by

1-Rell(M3)

s—M2+ilm3(s)[1-Rel(M3)]
(A14)

D{=—ig""

Thus, following the argument of WetzE32] in the vicinity
of the resonance the residue of the complex pole in(&4)
in next-to-leading order is given by

ROTI(ME) =Vi(ME,03)Vi(9) +Vi(9) V(M 6°)
+Vi(Q)Vi(@)[1-RelTr(M,¢))],
(A15)

whereMz=M,, has been used. Since the inveW§epropa-

ImﬁT(MS\,,gz) is gauge parameter dependent for each
gauge parametef; # 1 [Eqg. (D18)]. This is due to the exis-
tence of Feynman diagrams involving photons, which couple

W the W boson via the triple gauge boson coupling. The

ane—loop contributions to th&/ self-energy are shown in

Yg. 7 for R, gauge. However, when the Dyson-resummed
contribution

Im[3+(5,0%) =2 +(My.0%)]_~ , (5= M§)ImIl(M§,.g?)

My

is treated perturbatively in order to cancel the gauge param-
eter dependent contributions to the imaginary part of the 1PI
vertex corrections irR°*1(M3), the Breit-Wigner reso-
nance formula with constant width from EGA12) in com-
bination with the renormalization condition of ordé{(g*)
given by Eq.(A10) is recovered.

In order to obtain the physical description of téreso-
nance withs-dependent width, the following approximation
of the s dependence of the photon contribution to the imagi-
nary part of theW self-energy shown in Fig. 7 is useful

[I(s): Eq. (D17)]:

Im23(s) = (s— M) 6(s— M{I (s)

R(s—M{) 8(s— M) (M§):=(s= M) ImITH(M§).
(A17)

Since the derivative Iﬂﬁ%(M\zN) does not exist in a strict

) : - - 2
gator is of orderg? in the vicinity of the resonance, the Mathematical sense due to the thresholdsatMy,, the

completeO(g*) contribution to the denominator has to be above equation has to lze understood as a definition. The
taken into account. Thus, after using the definition of thefermion contribution to Ix1(s), however, is linear irs in

W width given by Eq.(A11), the following definition for the
s-dependenW width can be given:

the case of massless fermions, so thatglependence can
be extracted as
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2 S < By using thiss dependence in thé/ propagator given by Eq.
2 2 2 y using thiss dep propagator given by Eq
Im2r(s,99 W\,lsz(MW’g ) (A14) and after undoing the resummation of

+(s—M2)ImIIAM2,,g2). (A18)  ImII¥(MZ,g?) theW propagator turns out to be

1—RdI-(M2,,g2) —ilmII%(M2,,g%)+O(g*
D{/=—ig"” 2 PR T(ng) = Ti Wg-) A(g)z : (AL9)
s—M&+i(s/M2)ImS ((M3)[1—Rell(MZ,,g2) —iImII¥(M3,,g%)]+O(g®)

where the validity of Eq(A18) at least up to ordeg* has . ro
been assumed. In summary, the scattering amplitude con- Vi(g)Vf(g)ImeTerm(M\Z,\,,gz)zvi(g)vf(g)M—.
structed with the help of this propagator and a subsequent w (A25)

consistent evaluation in the coupling constant of the numera-
tor and the denominator, which results in a gauge-invariant
description of a resonant produc®d boson at the required
level of accuracy, will be given:

(i) O(g°) accuracy.

It remains to check whether both descriptions are equiva-

lent. For that purpose EqA23) will be rewritten as(with
=r{ im

Y=lw w)

RO ROTD(MZ)
0)(g)= 2 MO ()= ——— —
M= oz Vim0 (A20) s(1+iy)—M%
with ~ROTIMB[(L—in)/(1+97)]
s=MH1-Y)+iIMH1—»)y
R(0>:Vi(g)vf(g) HCHD(M\ZN)
= ——. (A26)
and the definition of th&V width given by Eq.(A6). s—M3+iMy o+
(i) O(g?) accuracy.By considering the renormalization
condition The evaluation of the numerator and denominator of the
R R R above equation up to the order required f@@y?) accuracy
Re1(M3,,gY +Im2(M3,,g2)ImII%(ME,,g%) =0, easily verifies that exactly those terms arise in which the
(A21) s-dependent width description differs from the constant
width amplitude given by the EqgA22), (A25). Thus, a
which differs from Eq.(A10) by transformation of the parameters of the resonance: residue,
position of the pole {+ masg, and width, can be given
erwnmﬁfTerm(M\zN gz):(m\c;))z (A22) which connects both descriptions:
the scattering amplitude is given by R(°+1)(M\2,V)—>H°“)(M\2N)= R(OH)(M‘%\’)SILQ’
R(O+l)(M2 )
MO (s)= _ L +0(g* —
O Mg riemy gD Y My—My=My(1+y%) "2,
(A23)
with P Y-TH V=T (1+2)" Y2 (A27)
(0+1) p 12\ —\/. (2 A3 Consequently, thaV boson mass in the description with
R (Miy)=Vi(@)Vi(9) +Vi(Miy,g7)Vi(9) s-dependent width is about 27 MeV smaller as compared
SVA(AVA(M2 a3 =V () to the constant width approximation. With the help of these
(VM. g7) = Vi(@)Vi(g) transformations the effect of asrdependent width can be
><[Re1:IT(M2 gz)+ilmf[¥(M2 991 easily studied without the necessity to deal with the—with

regard to thes-dependence—complicated scattering ampli-
(A24)  tude from Eq.(A23), especially when a convolution integral
as is given by Eq(1.1) has to be calculated.
The next-to-leading ordew width (9™ Y is again defined In recent publications, either in connection with tié
by Eq. (A11). RO*Y(MZ) differs from R(M3,,g% of Eq.  pair production at LEP I[35] or with the radiativeW pro-
(A13) concerning their imaginary parts by duction at the Tevatrof36], several approaches to consider
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FIG. 8. Real photon corrections {@(«) to the partialwW width.

an s-dependent width in theV propagator in a gauge- strahlung contribution can both be described by the same
invariant way have been discussed. The prescription giveform factors we have already derived for the final state pho-
by Baur et al. [36] results from taking into account the ton emission in theW production process evaluated at
imaginary part of the virtual fermionic correction to the s=MZ2,: ST'S;=FMa(M2) is given by Eq.(D44) and
yWW vertex. We checked that applying the transformationﬂ‘*E‘;R is defined by Eq(E22).

we derivedEq. (A27)] in order to consider as-dependent
width yields the same modification of the bremsstrahlun
amplitude as presented jB6].

ol comprises the renormalized vertex correction
E{diagrams [, I, and lll in Fig. 9 and the counterterm given by
Eqg. (C1] and the wave function renormalization for tki¢
boson[diagram IV in Fig. 9 together with EqC2)]. Again,
APPENDIX B: THE PARTIAL W WIDTH IN O(a?) we discuss the photon and pure weak contribution sepa-

The partialW width in O(a?) can be written as rately:

(0+1) _ (0) I
Pw_ip =Tt (1+2R&T g+ 6lgr),  (BL) O = Fleal M%) + F (M) (B2)
f(M3).

where FS,SLff, denotes the partial width in leading order

given by Eq.(2.1). 6T ;; and 81" gg represent the virtual and The pure weak contribution can be described by the same
real contributions, respectively, calculatedRp gauge and form factorFfNeal(M\zN) of Eg. (D27), which has been de-
in the limit of massless decay products. The discussion of theved from the weak corrections to th& decay process of
electroweakO(«) contribution to theW width performed in  the resonanWW production in the four-fermion process. In
Feynman 't Hooft gauge and under consideration of massiveontrary, the structure of the virtual photon contribution
decay products can also be found([it2]. In the following  F'(M{) differs from that of théW resonance and requires a
we concentrate on the gauge invariant separation into QEDseparate discussion. Folé boson being on-shell all photo-
like and weak parts. nic one-loop corrections in Fig. 9 develop IR singularities.
The Feynman-diagrams representing real photon emissiophus, in order to gain a gauge-invariant separation into a

described by QED-like 6% and a(modified weak partoT ey
6T gr= 0T 3g+ 0T Br

(0+1) _ (0 T f f
are shown in Fig. 8. The sofil'§5 and hardsT !} brems- Py o =Twg (14 2Rl yeqct Sgep), (B3
I I 111
Y. Z, W Y.z
A/v\/\é%z vvv{ N\/\é A/\% «\A?L/<

v

FIG. 9. Electroweak one-loop corrections@{ «) to the partialWW width (again, the nonphotonic corrections to feself-energy are
symbolized by the shaded lopp
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the diagrams IIl and IV also have to be considered by the v R it )
YFS procedure. The application of the prescription given indiagram IV: iA /=igyy,(1— 75) [FI§+FV™©l(s=M3)
Sec. Il A to the diagrams

(B6)
diagram llI:
ini with
Ay =igwy, (1= ys)[FIf (+FIIFI(s=M{) (B4
. _1\2
with B(s=M3)=(i4ma) f BT g
D, (k?*—2kq)?
[IT AN W/ — T f b D)\Df(kz_qu) ' ' '
together with the IR-singular parts extracted from diagrams
(2psr +k)(k+20) LIl [Egs. (3.8), (3.10 evaluated as=M3] yield a gauge
+Qp b D, D¢/ (k?+2kq) (BS) invariant YFS form factor multiplying the tree levaV
width, which is the same as for the final state photon contri-
and bution to theW production
fmal (s -— M ) (i41ra) / _l—
YFS w D D)‘
kpjgi"al =0 2

Qs - Q) (2a+k),|
(k2 + 2kq) (B9)

Qs K)o  QrQprt+k), 1(Qs—Q)(2g—k),

1
| T(k2—2kpy) T (k24 2kpp) 2 (k2 —2kq) 2

The only difference is that thed hocaddition of a “zero” in e irite,
Eq. (3.16 can now be traced back to the IR-singular contri- Ol fem= S |subt|(MW)+ F' (M)
butions of diagrams involving theWW coupling, when the =

W boson is considered to be on-shell. The explicit expres- 1 a 3,
sions for Fif (M{),F (M), and the corresponding IR- TS a2t )
finite parts are given by Eq$D22)—(D26). Consequently,
the QED-like form factor to th&V width from Eq.(B3) loa 25A N 68 2, 1
f . i =243t g ™ Tlewm Daw
6oep=Fgen(s=M TR i 1
2 —552‘2"’*7, (B10)

24 (B9)

o 5 7
:;g(QfJFQp)JF +52

which can be absorbed in a modified weak contribution
is the same as for the final state QED contribution to the

W resonance given by Eq3.34). This result can be com- ST Ef M2+ 8T B11
pared with the “QED-factor” for a leptoni&V decay given wealc~ Fweail Miy) rem (B1Y)
in [18]
This completes the gauge-invariant separation of the elec-
al77 w2 troweak corrections ifO(«) to the partialW width due to
00==|5;" —} Eq. (B3). Finally, a QED-subtracted partigV/ width can be
m24 3 defined
which has been derived by considering from the photonic =(0+1) _
virtual contribution only the mass singular logarithms being Twoiir= W—*ff’(1+2R95F weak) (B12)

gauge invariant by themselves.
The IR-finite remnants of the YFS prescription in the casewhich will appear in the residue of the Breit-Wigner form of
of the W width yield the resonanWV production cross section.
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APPENDIX C: FEYNMAN RULES

In the following the Feynman rules, which differ from the ones in Feynman-'t Hooft gag|gel() are explicitly given. The
remaining Feynman-rules can be found irf].

I PO C:Veg SL:

?izyva : 2 . g g 2 ’
QP>—Mi+ie 9*— &MY
[ TAVAVAVAVAVAVAY
o0 . i
. 2 . 1
PO, - = EwzMinz tie
TR .
@ orsssssatancisnccsavovsons & 7 ! 2 . y
A" = &w.zpMiw,zytl€
ot v, u?
n _,.-"".‘.
""" ":..‘_._‘ . ieMW ¢ &z
. —ies— éwi | -
- v, v, 0’ 2Sw Cw

As it has already been pointed out, a renormalization procedure needs to be performed in order to cope with the arising UV
divergences. Thus, after the multiplicative renormalization of thé2pgauge coupling constant and the gauge boson field
Wﬁ, the Wff’-vertex counterterm yieldgl 4]

+ e W W
-mm(l— ¥s)(1+ 62y = 6Z3) (C1
|
and the renormalizew/ self-energy is defined by with
3M(9)=3F(9)+(s—M{)6Z7'- M. (C2) M2y 2 =ReEMD(s=M2,, ;). (Ca)

The renormalization constants determined in the on-shell

renormalization scheme are given [i,22] 5 o
I17, 3% denote the photon vacuum polarization and the

photonZ mixing, respectively.

57V= —I17(0)— 3-2s;, 27(0) +ﬁ M B My It should be mentioned, that we do not perform an “ex-
1 SwCuw M% ng M§ M\ZN ' plicit” wave function renormalization for the external fermi-
ons, but rather take into account the modification due to their
self-interaction by the consideration of the one-loop contri-
s2%= _I1%(0)— 2c_W 374(0) +C3V oM2 - oM, butions shown in Fig. 2diagram I). Therefore no renormal-
2= Sw M2 gva M2 M2 | ization constant for the fermion doubléZ, occurs in the

(C3) counter term for thaVff’ vertex.
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APPENDIX D: THE FORM FACTORS

(44
FRR(s)=— {—25Cy(s,ms,msr,\) +Bo(pZ,\,m
In the following we provide the explicit expressions for 1i(S) 47TQfo { Co(S:My MMy 1)+ Bo( P 2

the different contributions to the form factor describing the

2
virtual electroweakO(«) contribution to theW production +Bo(pf, N, mgr) —Bo(s,me,my)}

processﬁvm(s,t) given by Eq.(3.2). They are calculated in o s
R; gauge, where, following34], the &-dependent parts are = 2, QQrj Ast2In P——
expressed in terms of the functioas,v;; , 7;; . The latter are
described in Appendix F, where the explicit expressions for s A2
the IR- and/or on-shell-singular scalar two-, three-, and four- +2In o )In( S +2+ —In (m )
point integralsB,,C,,D, can be found, too. In order to regu- [
larize the arising IR singularities a fictive photon maskas 1 s 4 s
been used. After dimensional regularization the UV diver- +5In?| — | + s 7% +i7| 2In 2 . (D4)
: ; 2 3
gences have been extracted in the form of the singular terms f’
S Diagram II.
A=A—-In|—
)7
1l « A2
and |:,{f(s)=—§4—[Qf Ast3in| | +4+21n S)
Ap=A—In 2 +(E,~Da,|+Q5[f—f'];. (D5)

with A=[2/(4—D)]— yg+Ind= (yg: Euler constant
Computing the one-loop integral of E(B.10 leads to

A. The form factor describing the photonic

one-loop corrections 1 a s A2
IR _ 2
The photonic form factoF (s,t) of Eg. (3.2) is com- Fii(s)=- EE{ Qf| As+3In m? +4+21n ?”
posed as
+Qf,[f_>f']]. (D6)
W,y
Ey(s,t)= > Fl(s)- Er7(s) - R;f (M) — 862 +F(s,t)
j=LIm S Vw Diagram V.
=:FR,(s)
(DY)
W|th (S t) rQ Q{ 2t(s_M\2N)DO(Sat1mI vmf vMW1)\)
FY(s)=(F?,+F,)(s) (5= M)
j LTRSS +wa(5 )|+ Qi Qe [(1,F)— (", )]
FU(s,t)=(Fy+F)(st). (D2) (O7)

In the following the explicit expressions for the different n order to provide a complete representation of the one-loop
contributions to the photonlc form factor will be prOVIded Correc“ons the nonresonant Contnbutmt(s t) which is
Startlng with the final state photonlc vertex corrections. Byneg||g|b|e in the V|C|n|ty of the resonance, will be also ex-
applying the substitutionf(f’)—(i,i") the corresponding piicitly given:
intial state contribution can be easily derived.

Diagram |.

fyi(s,t)=2(s+1)[Bo(s,A,My) —Bo(t,m;,m¢) ] —t(2t+s
Fii(s)= %Qfo'{_ZSCo(S,mf .M, \) +2Bo(pF N, my) +M32)Co(1)+[(s+1)2+12—sMZ ][ Co(3)
+Co(4)]+t(s+MZ+20)[(s—MZ)Do—Co(2)]

(D3) +H(sH0[(Ew—1) nwy(S) + (Y= W)]. (D8)

+280(pf2’ N,Mgr) —3Bg(s,mg,mg)
—2+(£,~1)a).

Performing the loop integration of E3.8) the IR-singular From Eq.(3.12 the t-channel box contribution to the IR-
contribution is given by singular YFS form factor is given by
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R a The remaining photonic Feynman diagrams shown in Fig.
FV,t(Svt):E{QiQf[_ZtCO(Z)_BO(t-mi ,M¢) 2 are IR finite and, thus, are not considered by the YFS
prescription, but develop on-shell singularities in the vicinity
+Bo(p? ,\,m¢) + Bo(pZ A, m))] of the W resonance. In detail, they are described by the fol-
) ) lowing form factors.
+Qi Qe[ (i,f)—(i", )]} Diagram lIl.
t? A1 s
2 QQfIn In[ < |+ 3In?| — Fr 2C N, M)+ 2Bo(p2 A,
mf m? s/ 2 \mg i, f(S)— Qf o(s,m¢, w) ol PF N, my)
1I NI 1I ManEs A 1I t? M2, M2,
BT B R T R P + 2+?)Bo<p$,mfr,Mw)— 1+?)
+2In +2+im 1
mem; XBo(s,A,My) + 5{(§W_ L)[vw,(S)+ aw]
+Qi,er[(f,i)ﬂ(f’,i’)]}- (D9) +(7<—>W)}}—Qf/[f—>f']]
The application of the substitution described by E14 _a S S |Aw]
leads to the correspondingchannel form factors. = 27| Q| 38sH2In m? +3+2In m? In M2,
From these IR-singular photonic one-loop contributions 5 L
the following gauge-invariant YFS form factors of E§.16 T < B
have been extracted: 3 T T s(9)+ {(6w= Dlvwy(S) T aw]
Fi(s) = (FIT+FIRO(9) + ‘Qf(of Q) Fyo W= Qelf=1 ])’ (D13
s A2\ 1 o[ s s wherefm ¢(s) can be neglected in the resonance region
X|In E)M(? +§In (m_f +1In —fz) (w= Mwls)
1,3 f =(1 L+ (1+wyin| 2w
+As+3_§<1_§ﬂ-2) — Qi (Q:—Qs) i, 1(8)=(1=w)| 1+(1+w)ln >
2
A2\ 1 1 S |Aw]
' - +—=
X[f—f']—(Q¢—Qy)? In(? 50+ 2'”( 'n( VAR
(D10) —2wSp(1—w) —wIn?(w) + In(w) — i m(s— M3
a X 1—w2+2wln(i) (D14)
FYFs (8.0 = (FU RV (s.0)+ 71 ~Qi(Qr=Qy) m |
A2\ 1 s Diagram IV. The renormalizedV self-energy contribu-
X|In| — In( + Eln2< 2) tion is described by}, (s) of Eq. (D1), where 625" de-
i S i notes the photon contribution to the wave function renormal-
1 3 ization of the W boson given by Eq(C3). The photon
+In| — | +Ast+3— —( 1- —772) contribution to thew self-energy reads
: 2 2
T AN a7 5 2
FQUQEQUI-TT-QUQ-QII= ] ¥t = - | T, S s

+Qi (Qi—Qi)[Ii—=f']+(Qi— Qi (Qt—Qs/)

4
+4sBy(S,\,Myy) + §(S—M\2,\,)Bl(s,)\,MW)

X|2In

)\2
)+A +1 (D11)

—(s—M? -1 s
The IR-finite remainders of the YFS prescription are deter- ( W)[(gw )(UWV( )
mined by

1
+§(S—M\2N)77wy(8) +(7<—>W)”- (D19

finte_ -y _ IR
Fir =Fli=Fpr

finite In Appendix A also the imaginary part éf¥v'7(s) has been
FUen=FU" =FQ - (D12 carefully studied:
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Im2Y7(s)=(s— M%) 8(s—M3)1(s) (D16)

with

2

2
1-Mw
S

+Im

a 1
|(S)=E(—47T 1+€ (éw_l)(UWy(S)

1
+ 5 (5= M) 7y(9) (D17)

+(7<—>W)”,

where vy, (s) and nw,(s) [Eq. (F20] develop imaginary
parts, wher{34]

s=M3,,

(VE,wt1)2M,

Using Eq.(D15) the form factorF},(s) defined by Eq(D1)
yields

. 46, wMy,. (D18

10 68

e g @ |Aw]
W)= 71 5 Am, T g —4In MZ, —[(Ew—Dvwy(s)

+(y>W) ]+ f.v(s)] —6z%, (D19)
where
f(s)=(1 )[2<1 )l (—TMW') 2
s)=(1-w)iz(1-w)n -
'V 3 M3, 3
1
~ [ (Ew= D) 5o mwy(S) +(y=W) ]
W
+imo(s—M3) 374 (D20)

again describes a contribution, which vanishesseM3,.

Due to Eq.(C3) the photon contribution to the renormaliza-

tion constant §ZY'= 5727+ 573" is determined by
oM :

2f19 89
? MW+§ .

vazi ﬁ
o0z, 477( Sw) (D21

In the course of the extraction of a gauge-invariant YFS
form factor from the photonic one-loop corrections to the
W width, the IR-singular Feynman diagrams Il and IV of

6811

F7¢{(M%) and the IR-singular par| extracted according
to the YFS prescription, now evaluatedsat M\ZN.

Diagram III.
M M
)+2I 2( W
il mg

1 2
51w DEw,(ME)

+3

Fi (M) = 3Ay,,+4In

ol

—Qf,[f—>f’]] .

“lo

+4In

+taw)+(yoW)] (D22)

Performing the loop integration in E¢B5) leads to

M
W3

My
AMW+2In o +2In(

Fit (M&) = {Qf

f my

ol |-t}

(D23)

+4In

Diagram IV.

3T(s) ~RET(MG)

—8z23"
s—Mg, 2

FRMG) =~
SHM\ZN
_3Y(s)

_ s7Wy
75 0Z5"7.

— M2
S—MW

(D24)

Using Eq.(D15), F{ (M w) is given by

ol

—[(dw— 1)va(M5v)+(7HW)]} —6Z3".

(D25)

Y a2 a |10 32
FV(MW =713 3, g

The explicit expression for E4B7) reads

o
v ] (D26)

B. The form factors describing the pure weak
one-loop corrections

IR/ g2 a
FIV(MW): - E[AMW+4+4In

Fig. 9 also needed to be considered. In the following, we The pure weak form factdf,e(S= MW) is given by Eq.
provide the explicit expressions for the complete form factor(3.3) with the final state contribution

F weak (A/[ 12V ) =

}veak
Z it

y=11.1I

(M3 +6Z)Y -2 - -3

W eak

Js

1 aE weak
L ( )lszM&, - -2];62;4/, "

(-

_Fweak (M )

(D27)
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Performing the substitutionf(f')—(i,i’) yields the corre-

sponding initial state form factd¥! .,(M3,). In the follow-

ing we provide the explicit expressions for the different con-

tributions in Eq.(D27).
Diagram | (Z-boson exchange)

Wea%s)_ Ay.—(2z+3)In(z) -2z

vita Vet Qs
1_r(f (v +ag)

(z+1 1
In(2)In T) —SF{ - E)

+(§z_1)az]

(D29)

—4+2(1+2)?

—im

1+z
2z+ 3+2(1+z)zln<—

with z=M2/s and the couplings v;=(1t—2s2Qy)/

(25uCu), a=15/(25C).
Diagram Il (Z- and W-boson exchange)

FY.“efak(S) Fiii(s)+F)i(s) (D29)
with
A 1 2 2
Fll,f(s)zi 7_r[(Ueraf) +(vtag)’]
1
X _AMZ+§_(§Z_1)CVZ : (D30)
o 1
Fiti(s)= 24n ~Am, T 5w Daw.
(D31
Diagram Ill (Z-boson exchange)
weal a Cy 1
RNt (s)= g7 5, (vitavp—an) 3 (4+w+2)
X (Ap+ Ay ) +(w=2)l (MZ (W+z+1)
w—2)In| — | —(w+z
Mz T S My My
X Bg(s,Mz,My)+2s(z+w+wz)
XCO(S,m(fyf/):O,Mw,MZ)+4+W+Z
1
+5[(§w—1)[vwz(S)+aw]+(WHZ)]]-
(D32

The scalar three-point integrél, evaluated as=M \2,\, yields

n n
M2 I x—1) | xp—1

(D33

Co(s=M3,0,M\y,Mz)=—

with
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M2 IVES
Xlzm\%—vl_l W 1].

z

Vertex counter part The explicit expression for the
counter part to th&Vff’ vertex[Eq. (C1)] reads

2A My~ (w—1Dow(0)].
(D34

a 1
o7y’ 0Z3'= 4~ g[—

Diagram IV.The contribution of the renormalizadf self-
energy to the weak form fact(ﬁ‘l’\v,e’?‘ﬁ(M\z,\,) of Eq. (D27) is
determined by

4 Cy\ 2 2
Wweak_a _ _w .
Y43 47T[ 3EQAmf+ 4(%) Ayt 3
2 ea-Dow(0) |+ |
b= 1o Cw
sz oW w Sy
ReEF(MS)  ReEP™(M{) .
M2 M2, (B35)

and the derivative o Y""** which is given by Eq(D37),
(D40). The ¢; dependence of the self-energy and the weak
one-loop correction to thé&V self-energy reads(v,7); ;

2wl

2

SHO=3H0) -1+ 472 (5 ME 6w 1)

1 2
E(S_Mz) nw(S) |, (D36)

X Uw(5)+

2

Sy = XYM s) [ gt o - 2(5 M >[<§W—1>

X

1
vwAS)+ E(S_ M3) ﬂwz(s)) +(W<—>Z)},
(D37)

so that, finally, thet;-dependent part of the weak form factor
yields

f 2 f 2 1la
Fweal{MW): Fweal{(MW)|§i:1_ E E(fw_ 1)a'W:
(D38)

which cancels the&,, dependence of the IR-finite photonic
correctionsI'’,,, from Eq. (3.44.

For the sake of completeness the explicit expressions for
the Z self-energy and the nonphotonic contribution to the
W self-energy in Feynman—'t Hooft gauge will also be pro-
vided, although they are already given[it¥]:
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E$(3)|§i=1 (Uf+af)

iz

5
+ —

A—l >
S —n? 3

1
+ —_—
CuSi

1 2 1
+ ( 6Cy—2C5+ E)AO(MW)_ §SC€V+(_ B3+MZBo)(s,Mz,M,)+ Z[AO(M 1;)+A0(Mz)]”

and

a 1|1 3
Sl -1 4Ws@[§f [ 5t an s
=eu,T

sA, +(2m +s)F(s,m;,m;) — 3

2 2
S——— —) F(s,0,m;)+ 3S~ —}

6813

FemMi A, + F(s,mf,mf)]}

[—(12c) —4c2+1)BI+2(—2sc} —2M2,c2+M3)Bol(s,My,My)

(D39

2 4
mg Mg M

2 2s 2

+ > Nf{(232+ ~(s—m? - Z)Bo>(s,m+,m)—%[Ao(m+)+A0(m)]}

(9+,9-)

+{—(8c2+1)BS+[sitM

+

with

1 1
B3(s,m;,my) = [(mlBo‘F =(s+mi— m%)31>(3,m1,m2)

1 mi+ms s
+5A(Mg) + —5— -

5 5" (D41)

Ag(m)=m?(A,+1). (D42
The functionF(s,m;,m,) can be found irf14].

C. The form factor describing the soft photon radiation

Performing the photon phase space integration in Eq.
(3.21) leads to the following gauge-invariant form factors in Fié‘g?ff(s,t)_

the soft photon limit:

i M;

8In(
m.

initial o S
Fer ()= {QQu )[ﬁw+5p(5)]—ln (_2)

S 4
—n? — | - =72
(mﬁ) 3

—In(%”—zqﬁ[mi']+2Qi<Qi—Qi,>

—2Q?[2[£W+ 55(5)]

2

2In< )[LW+5p(s)] _Inz(mi?)_%

—2Qi(Qi—Qi)[i—i'1-4(Qi—Q;)?

X[ Lyt 8(8)— 1]} (D43

2_c2(4s+M2,+M2)1Bo}(s, Mz, My) +

—CZ+Z)A (My) —2M2 +2¢2
W 2 0 W W W

22+ = | Ag(My)

1
4

3

1 1
M~ —s) +[ B2+ M{EBol(5. My M)+ ZAo(M ﬁ]

(D40)

with

EWE In

20E[ Ay \)
N |Aw—2\SAE|

and 6, from Eq. (3.26),

Fﬂnal(s) Flnltlal(s) with [(i,i )»CW' p]

. 2AE\
—>[(f,f ),|H<T>,O}

(D44)

and

t2
4In(
fml

—In? —Sz -4 s;{1+§
m; t

+2 Qi Qp [(f,i)—=(f",i")]—2Q; Q¢
X[(i,t)—(",u)]
—2QiQ¢ [(f,t)—(f",u)]—2Q;

SENTE:

+2Qi (Qt—Q¢)[i—i"1-2Q¢(Q;— Qi)
X[i—=f]+2Q¢(Qi—Qi)[i—f"]

m

rQQf 7| Lw—1In (iz)
f

4
o2

3

X(Q¢— Q)

+8(Qi_Qi’)(Qf_Qf’)[EW_l]]- (D45)
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APPENDIX E: THE HARD PHOTON CONTRIBUTION

|K|KOdK® pblpfflpfrdpfr
The differential cross section for the process =2 LE 2K0 f f 2p° fo do
i(p))i’(pi)—f(ps)f'(ps) y(k) reads in the c.m.s. system v
[wheres=(q°)? andq® denote the c.m. energy 1 dz
XJ 2—56(10. +pi, =P —K—pp) (E5)

1 1 dspfdspfdeK
dO'h:_

o(pi+pir—Ps— P —k)

5 N N
2s (2m)° 8pfp;K° with x=cos/ (k,p), z=cos/ (k,p;) and ® denotes the azi-
S muthal angle op; with respect to th€1,3) plane. Since the
xz | Mggrl?, (ED soft photon contribution has already been discussed sepa-

rately, the lower bound of photon phase space integration

where the matrix elemenigg results from the application can be chosen to bl =AE and no IR singularities occur.

of the MSM Feynman rules to the bremsstrahlung diagrams Ysing
shown in Fig. 3(now without any restriction on the photon S(X—Xq)
momentumk; Ay=s—M3) Nf(x)]= o0 (E6)
X XO
1 (— _
MBRziW—OZZ\Mwa— usGh (1= ys)vp v y*(1— ys)U; where f(x) is an arbitrary function withf(xg)=0 (here
28w Aw t(2)=p)):
_AA—Zk[uf‘yM(l ’}/S)UfIU ’Glup(l 75)u] 0 0 0 0 0 p?
q o(py+p;— Py —K —pi)= W o(z—2p)
X e (K), (E2) Pl =g
wheree, denotes the photon polarization vector and with
TP — (0 10_ 02 (02 _ 02 2 _ 2
- (pP+ yPKI2) y* YH(pl,+kyP12) 2|k||psr|2o=(9° =k’ —p;,)* = (K°)*=(p;,)*+mg, —mg,
! ' kpy " kpy/ the phase space integrdls) can be written as

fyﬂqp+ k//«»yp_ gMPk

B ST e

PP =Ky (Pf =YKy

GHP=Q; . The requirement- 1<zy,<1 leads to the following limits on
' ' N ' kp;/ the p?, integration:
HOP — kM 4P+ gHPK
JraTeyre R (E3) (9°— K% k= KO\/(k—2m?,)2— 4 m?,m?
kg Pab= 2 2 . (E9
‘ 2(k—mg, +mg)
The initial and final state currents are separately conserved:
k,GfP=(Qi—Qp—1)y*=0 and  Kk,Gf*=(Q;—Qi . (9%)%—(mg+mg)? (E9
—1)y*=0. First, the Lorentz-invariant three-particle phase 2q°
space
with

l_f d3pfd3pf,d3k

8p2p0, K0 o(pitpir—pi—pPr—k)  (E4) Kk=0°(q°— 2k%) +mZ, —m?.

will be thoroughly discussed. Under consideration of the en- Finally, after introducing a new variablg

ergy momentum conservation described by théunction,

the phase space integration will be rewritten so that only the pO,: K 5 g' Y,

photon phase space integration survives in order to gain the " 2(9°-k )

photon spectra describing hard photon radiation. We follow

the procedure suggested [i87,38, and choose the coordi- the starting pomt for obtaining the hard photon spectra is

7 Z 0
nate system where the momergaandk are in the(1,3 reachedwith p, q’/2):

plane, with the photon momentum along the third axis. The 1 1 © dKkOKO (1 Y o
spatial part of the5 function constrains the momenta in such on(s)= 1o (ZT)‘J Tf dxf dyf dd
a way, that in the c.m. systeng€ p; + p;»=0) the relation AE e 0

o¢| = |ps: + k| = p? holds and the phase space integral can be <
l/\rl)rfi|tte|np;s P P P ° X2 | Ml (B10
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The computation of the spin averaged squared matrix eleSince we are interested on the contribution in the vicinity of
ment leads to the initial state, final state, and interferenceéhe W resonance, terms(s—M3,) and<AE have been ne-
contributions depending only on the scalar products of thejlected.

involved four-momenta, which have to be expressed in terms The parametrization of the three-particle phase space in

of the integration variables, e.g., the course of the computation of the hard bremsstrahlung for
6 0 co- the case of th&V width is less complicated, since the orien-
PirPs =Py Py, + [ pil|prr|cosp (E1D tation of the dreibein made of the three outgoing momenta
. can be freely chosen: the solid angkdetermines the ori-
with entation of the photon momentum afiddescribes the rota-
cosp=(xz+\1-x?1~2%cosb)|,— . tion of the (;,pr) system around. Thus, the hard photon

contribution to the partialV width (in the c.m. system of the

H 2__ 2
Finally, the performance of all integrations up to the one'V PosON withg™=My,)

over the photon energy yields the following hard photon 1 1 d®d%p; d

spectra(with k=2k%q°® andk,=2AE/q°): dry,_ = Sy 27" BT
fI
~ 1 Aw [21-k
a_lnltlaI(S)ZO_(O)(s)J dk W
" | Aw—SK 2k X 8(0-pr—pr—KS M, (E19

2

X Bi(S)[1+(1—k)2]+%k§], (E12  turns into[37]

1 1 w 41 2 xt
k2 r ,=——J dkOJ dnf d(I)f dx
flnal(s) 0_ (S)J 2k| Bf(s)[1+(1 k)2]+ . W— ff ZMW 2567T5 AE 0 0 X_

@ xE | Mfnah2, (E19
+;(Q?+Q%)[H(l—kﬂln(l—k)}, (E13
where o is given by Eg. (E9) and the substitution
pr.i ==X+ (My—k%/2) has been performed. The limits on
the x integrationx.. are given by

Aw Ay
K|Aw— sk Ay, —sk

|nterf( S) O_(O)( S) J

5 2 l mf mf/ M k
X1—2{3k—k —2}. (E14) Xt—m My (Myw—k")
The final state hard photon spectrurf{'(s) coincides with o = (mFm)? = (mi—my)?
the result obtained ifil8]. From the photon spectra the total *k (M _T)( _T)
cross sections describing hard photon radiation can be ob- w w
tained (E20
mital,  _~(0) |Aw—2VSAE]| s—Mg, with M =M,,/2—K°. The matrix elementVM2' reads ¢
o (S)=a 7 (s)Bi(s)y In 2 JSAE My 0" D polarization vector of th&V boson
w
V2ma—
M final _
“ arcta,{r(o_gvl)) MEF=1 = —U/G}, (1= yvp (@) ef (K)
w

(E21)

, (E15) with G, ¢ given by Eq.(E3), which Ie'ads to the same hard
photon spectrum as for the case of final state bremsstrahlung
in the four-fermion processee Eq.(E13]:

2\SAE—s+M3,
—arcta W

ai?(s) =o' (S)[Bf(s)m( s ngZ(—ﬁm(iz) h 0 td a k?
20B)  m 47\ mg Fwﬂfffzri/v)ﬂfflj Zk(ﬁf M1+ (1 k)2]+—§
—W—2+—1+ 2 (f f’+§] E16
6 T8 A=Y (F19 +%(Q$+Qf,)[1+(1—k)2]|n(1—k)
(9= 5(5) " S[5(QQr+ Q) +4(QQ; =Tl 0T e, (E22

(E17) plies the Born cross section in EQE16) evaluated at

Thus, the factorsT'f}; coincides with the one which multi-
2AEVs
s=M3,.

! i I - - .
+Qf QI)] n( |AW—2\/§AE|
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APPENDIX F: INTEGRALS Bo( p2,m1,m2)
In the following, the explicit expressions for some special 1 x2p2—x(p2+mi—md)+mi—ie
cases of scalar two-, three-, and four-point integrals and of =A— | dxin > ,
0 M

photon phase space integrals will be provided, which have
been derived in the course of the calculation of the photonic (F2)
corrections usually developing IR and/or on-shell singulari-
ties. The dimensional regularization enables the extraction of
the UV divergence occurring in the scalar and vectorial two-

1
By(p%,my,my) = Ez[mi(Aml‘*‘l)—mg(AmZ*‘l)
point integralsB ; { fp=w* P [[d°k/(27)P]}:

+(m3—mi—p?)Bo(p%my,my)]. (F3)

The following results for the scalar integrals have been

i
162 (BoiP.B1)(P%.my,my) used[22,39;
. m2 2
_ 4o 9% (1iku) Bo(P2A=0m)=A,+2+ —2—1)In(1—p—2—ie),
) @mP Ie=mA(k+p)?—mZ]’ P m
(F4)
F1
(FD dBo(p?,\,m) | )\)+1 5)
— = (N = ,
so that they can be written &82] Ip p2=mz ML M
|
Cof \) f !
S,m ,m y =
o p=a[K>—NZ][(k+ps)2—m?, ][ (k— p)?—m?]
_1|s|)\2 1|2s 1|2s 22_|>\2 6
= gnmfmf’ ﬂ?'f'zn m—%+zn m—f2’+§7T I’JTn? , ( )
Co(s,M \) f !
Sl lm! =
oW p=a[K2=N2][(k—pp)2—mZ][(k—q)*—MG]
1 (s s M&| 1 ,(MG) =2
—g{ln(m—fz)bg(l—WV—IE)— S[{l—?)—ilﬂ (? —F, (F?)

M| [ A My
2|n(wf> In(M—W) +1n2 W)}, (F8)

1
CO(S:M\ZNIMW1mf 1)\):M_2
W

B 1 1 t+ie w2
CO“):CO("mf'mi'Mw):fo=4[<k—pf>2—m%][<k—pi>2—m?][<k—q>2—Mév]:_? SAttwz ") Y
C0(3;4)EC0[51MW1(mf;mi)l)\]! (FlO)
_ B 1
00(2)=C°(t'mf’m"”‘f04[k2—x2][<k—pf>2—m$][<k—pi>2—m$]
1 t2 (v) 1 z(tz 1,[s N e
——ilnmln?—zln ?4‘5“’1 m—$+—ln m—i2+?, (Fll)
B 1
DO(S"”‘“’“"MW’”‘fo=4[k2—x2][(k—pf>2—m?][(k—pi>2—m?][<k—q>2—M6v]
_ 1 1 t? W mg m; [{ IVI\ZN w?
__fs—M\ZN[In(mfmiz)m(M\zN—s—ie)+In2(m +1n? My, +5p 1+ |+ 3|

(F12
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In addition, the following soft photon phase space integrations have been perforfped [@3k/2(27)%k°] and
Ayw=s— M\ZN is considered to be complgx

f Awl2pipj| I N ((2pip,->2)m 20E Ay | F13
(Aw—2k%°) (kpy) (kpy) . 2(27)7| ’p? N Ay-2ysAE)
|
with f p? 1 [2| (ZAE) T] F18
7= ARALL —Ix(-
| =|n((2pipj)2)|n( S )+1ln2( pi2 ) (k) 2(2m) l »
X pip; 12pipl) 27 | [2pipy
2 Finally, the functionsa;, v;; and »;; used in order to
E 2| P __S o S describe the&; dependence of the form factors are defined as
+ =In +2Sp 1 +1In
27 \[2pipj| 2p;p; |2pip;] [34]
N s F14
33 (F14 vy =i~ 2By () —Pmy(qd)  (F19

where the second term in the curly bracket has to be used,
when one of the momentg ,p; is equal to the c.m. momen- with

tum g.
Awp? i _J 1
fk<AW—2k°q°><kp>2 167" %~ JofkZ—m? Ik~ gm?]’
i Y (ZAE Aw T, (F15 i K,k 2
= n - l v~ GupM;
2(2m)* N Ay—2VsAE] —— Bii (02 =tf”f e EeE 2 :
l w=21s 16772'8"(q ) p[K?—m7 ][k = &m7][(k+q)?—m:]
with
T =|n(3)+{o-2} (F16) | ( 2)—tf”f !
e 1672 71T o [k M= EmPTL(k+ )P~ m7]
where again the second term in the curly bracket has to be (&§—Dk,k, (F20
_ x|2g,,+ | F20
taken, wherp=q holds. 9y [(ct)2—&m?]
f 2pipp 1 IZIn((Zpipj)z)ln(ZAE>—l }
k(kpi)(kpj)pi;&pjz(zw)zl mem? A ’ where the abbreviationg*’=(g**—q*q*/q?)/(D—1) and

(F17  [p=wu* Pf[d°k/(27)P] have been used.
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