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CPT violation and the standard model
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Spontaneou€ PT breaking arising in string theory has been suggested as a possible observable experimen-
tal signature in neutral-meson systems. We provide a theoretical framework for the treatment of low-energy
effects of spontaneoUSPT violation and the attendant partial Lorentz breaking. The analysis is within the
context of conventional relativistic quantum mechanics and quantum field theory in four dimensions. We use
the framework to develop @ P T-violating extension to the minimal standard model that could serve as a basis
for establishing quantitativ€ PT bounds.
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I. INTRODUCTION a general methodology that is compatible with desirable fea-
tures like microscopic causality while being sufficiently de-
Among the symmetries of the minimal standard model istailed to permit explicit calculations.
invariance unde€PT. Indeed,CPT invariance holds under We suppose that underlying the effective four-
mild technical assumptions for any local relativistic point- dimensional action is a complete fundamental theory that is
particle field theoryf1-5]. Numerous experiments have con- based on conventional quantum phydit§] and is dynami-
firmed this resul{6], including in particular high-precision cally CPT and Poincarénvariant. The fundamental theory is
tests using neutral-kaon interferomef{ry,8]. The simulta- assumed to undergo spontane@RT and Lorentz breaking.
neous existence of a general theoretical prod® BfT invari-  In a Poincareobserver frame in the low-energy effective ac-
ance in particle physics and accurate experimental test#on, this process is taken to fix the form of a@PT- and
makesCPT violation an attractive candidate signature for Lorentz-violating terms.
nonparticle physics such as string thegy1Q]. Since interferometric tests @ P T violation are so sensi-
The assumptions needed to prove BT theorem are tive, we focus specifically o€ PT violation and the associ-
invalid for strings, which are extended objects. Moreover,ated Lorentz-breaking issues in a low-energy effective theory
since the critical string dimensionality is larger than four, it without gravity[21]. For the most part, effects from deriva-
is plausible that higher-dimensional Lorentz breaking wouldtive couplings and possibl€ P T-preserving but Lorentz-
be incorporated in a realistic model. In fact, a mechanism ibreaking terms in the action are disregarded, and any
known in string theory that can cause spontang®BS vio-  CPT-violating terms are taken to be small enough to avoid
lation [9] with accompanying partial Lorentz-symmetry issues with standard experimental tests of Lorentz symmetry.
breaking[11]. The effect can be traced to string interactionsA partial justification for the latter assumption is that the
that are absent in conventional four-dimensional renormalizabsence of signals foEPT violation in the neutral-kaon
able gauge theory. Under suitable circumstances, these intesystem provides one of the best bounds on Lorentz invari-
actions can cause instabilities in Lorentz-tensor potentialsance.
thereby inducing spontaneo@ T and Lorentz breaking. If Our focus on the low-energy effective model bypasses
in a realistic theory the spontaned® T and partial Lorentz  various important theoretical issues regarding the structure of
violation extend to the four-dimensional spacetime, detectthe underlying fundamental theory and its behavior at scales
able effects might occur in interferometric experiments withabove electroweak unification, including the origin and
neutral kaong9,10], neutralBy or Bg mesons[10,12, or  (renormalization-groupstability of the suppression &P T
neutralD mesong[10,13. For example, the quantities pa- breaking and the issue of mode fluctuations around Lorentz-
rametrizing indirecC P T violation in these systems could be tensor expectation values. Since these topics involve the Lor-
nonzero. There may also be implications for baryogenesisntz structure of the fundamental theory, they are likely to be
[14]. related to the difficult hierarchy problems associated with
In the present paper, our goal is to develop within ancompactification and the cosmological constant.
effective-theory approach a plausibBP T-violating exten- The ideas underlying our theoretical framework are de-
sion of the minimal standard model that provides a theoretiscribed in Sec. Il. A simple model is used to illustrate con-
cal basis for establishing quantitative boundsGiAT invari-  cepts associated witG PT and Lorentz breaking, including
ance. The idea is to incorporate notions of spontaneouthe possibility of eliminating som& P T-violating effects
CPT and Lorentz breaking while maintaining the usualthrough field redefinitions. The associated relativistic quan-
gauge structure and properties like renormalizability. Totum mechanics is discussed in Sec. Ill. Section IV contains a
achieve this, we first establish a conceptual framework and tieatment of some issues in quantum field theory. A
procedure for treating spontaned@® T and Lorentz viola- CPT-violating extension of the minimal standard model is
tion in the context of conventional quantum theory. We seekprovided in Sec. V, and the physically observable subset of
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55 CPT VIOLATION AND THE STANDARD MODEL 6761

CPT-breaking terms is established. We summarize in Secably by at least one power of/M relative to the scale of the
VI. Some of the more technical results are presented in theffective theory.
appendixes. A hierarchy of possible terms id’ thus emerges, labeled
by k=0,1,2... . Omitting Lorentz indices for simplicity, the
leading terms wittk<2 have the schematic form
Il. BASICS

\ _
A. Effective model for spontaneousCP T violation L'D MK (Ty-yT(ig)yp+H.c. 2

We begin our considerations with a simple model within
which many of the basic features of spontaneGu&T vio-
lation can be examined. The model involves a single massiv
Dirac field ¢(x) in four dimensions with Lagrangian density

In this expression, the parameteris a dimensionless cou-
8Iing constant, i(9)¥ representk four-derivatives acting in
some combination on the fermion fields, ahdrepresents
some gamma-matrix structure. Terms wkk3 and with
L=Lo— L', (1) more quadratic fermion factors alsp appear, but these are
further suppressed. Note that contributions of the f@&n
arise in string theory10]. Note also that naive power count-
where L, is the usual free-field Dirac Lagrangian for a fer- ing indicates the dominant terms wiks<1 are renormaliz-
mion ¢ of mass m, and where £’ contains extra able.
CPT-violating terms to be described below. For the present Fork=0, the above considerations indicate that the domi-
discussion, we follow an approach in which tBeP, T and nant terms of the form(2) must have expectationéT)
Lorentz properties ofy are assumed to be conventionally ~m?/M. In the present work, we focus primarily on this
determined by the free-field theosly and are used to estab- relatively simple case. Most of the general features arising
lish the corresponding properties 6f [22]. This method is from CPT and Lorentz violation together with some of our
intrinsically perturbative, which is particularly appropriate more specific results remain valid when terms with other
here since an{ P T-violating effects must be small. In Sec. values ofk are considered, but it remains an open issue to
Il C, we consider the possibility of alternative definitions of investigate the detailed properties of terms witk 1 and
C, P, T and Lorentz properties that could encompass the fulexpectationsT)~m or those withk=2 and expectations

structure ofL. (T)~M. Both these could in principle contribute leading
We are interested in possible forms®f that could arise  effects in the low-energy effective action.
as effective contributions from spontanedD®T violation Each contribution taZ’ from an expression of the form

in a more complete theory. To our knowledge, string theory(2) is a fermion bilinear involving a %4 spinor matrixI".
forms the only class ofgauge theories in four or more Regardless of the complexity and number of the ten3ors
dimensions that are quantum consistent, dynamically Poinnducing the breakind, can be decomposed as a linear com-
careinvariant, and known to admit an explicit mechanism bination of the usual 16 basis elements of the gamma-matrix
[9] for spontaneou€ P T violation triggered by interactions algebra. Only the subset of these that produce
in the Lagrangian. However, to keep the treatment as gener@él P T-violating bilinears are of interest for our present pur-
as possible we assume only that the spontan€fe$ vio- poses, and they permit us to provide explicit and relatively
lation arises from nonzero expectation values acquired bgimple expressions for the possilild® T-violating contribu-
one or more Lorentz tensofB, so £’ is taken to be an tionstoLl’.
effective four-dimensional Lagrangian obtained from an un- For the cas&k=0 of interest here, we find two possible
derlying theory involving Poincasmvariant interactions of types ofCP T-violating term:
ywith T. The discussion that follows is independent of any — —
specifics of string theory and should therefore be relevant to Lo=a, iy, Ly=b,ysy"y. 3
a nonstring model with spontaneoG#® T violation, if such a
model is eventually formulated.

Even applying the stringent requirement of dynamical
Poincareinvariance, an unbroken realistic theory can in prin-

For completeness, we provide here also the terms appearing
for the casek=1, where we find three types of relevant
contribution:

ciple include terms with derivatives, powers of tensor fields, cl=ticya,p,  Li=3 dYysd i,
and powers of various terms quadratic in fermion fields. L
However, anyCP T-breaking term that is to be part of a Lo=73ie] ho™"d.y, (4)

four-dimensional effective theory must have mass dimension -

four. In the effective Lagrangian, each combination of fieldswhereAd,B=Ad,B—(4,A)B. In all these expressions, the
and derivatives of dimension greater than four therefore musjuantitiesa,,, b,,, c%, d“ andej;, must be real as conse-
have a corresponding weighting factor of a negative poweguences of their origins in spontaneous symmetry breaking
—k of at least one mass scalethat is large compared to the and of the presumed hermiticity of the underlying theory.
scalem of the effective theory. In a realistic theory with the They are combinations of coupling constants, tensor expec-
string scenarioM might be the Planck mass or perhaps atations, mass parameters, and coefficients arising from the
smaller mass scale associated with compactification and unilecomposition of".

fication. Moreover, since the expectatigfi® of the tensors In keeping with their interpretation as effective coupling
T are assumed to be Lorentz and possiBIP T violating,  constants arising from a scenario with spontaneous symme-
any terms that survive ifi’ after the spontaneous symmetry try breaking,a,, b,, ¢ d® andej, are invariant under
breaking must on physical grounds be suppressed, presurG-PT transformations. Together with the standard
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CPT-transformation properties ascribed#pthis invariance rotations. Note also that the presence of @ T-violating
causes the terms in Eq®) and(4) to breakCPT [23]. As  terms in the Dirac equation destroys the usual symmetriz-
discussed above, in the remainder of this work we restrichbility property of®*”. The antisymmetric pa®#"! is
ourselves largely to the expressions in E3).

Allowing both kinds of term in Eq(3) to appear inl’ Olwl=@ur_@rr
produces a model Lagrangian of the form

1— - — — — =- % dal iy, o byl —alkj=blkjgl, (10
L=5 gy op—a gy y—bgysy*y—miy. (5
The variational procedure generates a modified Dirac equa\\'yh'Ch. Is no longer a tot_al divergence. The conventlon_al con-
tion: struction of a symmetric energy-momentum tensor, mvoly-
ing a subtraction of this antisymmetric part from the canoni-
(iy*d,—a,y*—b,ysy*—m)y=0. (6)  cal energy-momentum tensor, would affect the conserved
energy and momentum and is therefore presumably inappli-
Associated with this Dirac-type equation is a modified cable in the present case. The implications of this for a more
Klein-Gordon equation. Proceeding with the usual squaringomplete low-energy effective theory that includes gravity
procedure, in which the Dirac-equation operator with oppo+emain to be explored.
site mass sign is applied to the Dirac equation from the left, Next, consider the effect of Lorentz transformations, i.e.,

leads to the Klein-Gordon-type expression rotations and boosts. Conventional Lorentz transformations
) ) to o _ in special relativity relate observations made in two inertial
[(i0—a)*=b*—m"+2iys0""b,(19,—a,) |(x)=0. frames with differing orientations and velocities. These

(7)  transformations can be implemented as coordinate changes,
This equation is second order in derivatives. but unlike theand we call them observer Lorentz transformations. It is also

que . ; N . é)ossible to consider transformations that relate the properties
usual Klein-Gordon case it contains off-diagonal terms in th

spinor space. These may be eliminated by repeating th%f two particles with differing spin orientation or momentum

squaring procedure, this time applying the operator in(x Within a specific oriented inertial frame. We call these par-
d g procedure, pplying the op . _ticle Lorentz transformations. For free particles under usual
with opposite sign for the off-diagonal piece. The result is a

fourth-order equation satisfied by each spinor component O(fircumstances, the two kinds of transformation dafe-
. q o oy P . P versely related. However, this equivalence fails for particles
any solution to the modified Dirac equation:

under the action of a background field.

{[(i9—a)%—b2—m?]2+4b%(i9—a)? The reader is warned to avoid confusing observer Lorentz
transformationgwhich involve coordinate changesr par-
—4[b“(i¢9ﬂ—a#)]2}z,b(x)=0. (8) ticle Lorentz transformationévhich involve boosts on par-

ticles or localized fields butot on background fieldswith a

third type of Lorentz transformation that within a specified

_ ) ) inertial frame boosts all particles and fields simultaneously,
_Consider next the continuous symmetries of the modejncuding background ones. The latter are sometimes called

with Lagrangian(5). For definiteness, we begin with an (jnversg active Lorentz transformations. For the case of con-

analysis in a given oriented inertial frame in which values ofyentional free particles, they coincide with particle Lorentz

the quantitiesa, andb,, are assumed to have been specifiedransformations. We have chosen to avoid applying the terms

The effects of rotations and boosts are considered later.  gctive and passive here because they are insufficient to dis-

The CPT-violating terms in Eq(5) leave unaffected the tinguish the three kinds of transformation and because in any
usual global W1) gauge invariance, which has conservedcase their interpretation varies in the literature.
current j#=y*. Charge is therefore conserved in the The distinction between observer and particle transforma-
model. These terms also leave unaffected the usual breakingns is relevant for the present model, where the
of the chiral U1) currentj£ = yysy* ¢ due to the mass term. CPT-violating terms can be regarded as arising from con-
In what follows, we denote the volume integrals of the cur-stant background fielda, andb,. The point is that these
rent densitieg# andj£ by J* andJ¥, respectively. eight quantities transform as two four-vectors under observer

The model is also invariant under translations provided-orentz transformations and as eight scalars under particle
the tensor expectations are assumed constant, i.e., provide@rentz transformations, whereas they are coupled to cur-
the possibility ofC P T-breaking soliton-type solutions in the rents that transform as four-vectors under both types of trans-
underlying theory is disregarded. This leads to a conservetprmation. This means that observer Lorentz symmetry is
canonical energy-momentum tengof’ given by still an invariance of the model, but the particle Lorentz
group is(partly) broken.

Physical situations with features like this can readily be
identified. For example, an electron with momentum perpen-
dicular to a uniform background magnetic field moves in a
and a corresponding conserved four-momenttn These circle. Suppose in the same observer frame we instanta-
expressions have the same form as in the free theory. Notaegously increase the magnitude of the electron momentum
however, that constancy of the energy and momentum doesithout changing its direction, causing the electron to move
not necessarily imply conventional behavior under boosts oin a circle of larger radius. Thignstantaneoysarticle boost

B. Continuous symmetries

1 — -
®‘“’z§i¢y"c7”zﬁ, 7,0#"=0, 9
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leaves the background field unaffected. However, if instead’ his current is conserved at the level of the underlying

an observer boost perpendicular to the magnetic field is apheory with spontaneous symmetry breaking, but in the ef-

plied, the electron no longer moves in a circle. This isfective low-energy theory where the spontaneous breaking

viewed in the new inertial frame as & B drift caused by appears as an explicit symmetry violation the conservation

the presence of an electric field. In this example, the backproperty is destroyed. In the latter case, the corresponding

ground magnetic field transforms into a different electromagLlorentz charges*” obey

netic field under observer boosts kily definition is un-

changed by patrticle boosts, in analogy to the transformation dM#? Lo o] 1]

of a, andb, in the CPT-violating model. R TR (12
From the viewpoint of this example, the unconventional

aspect of theCPT-violating model is merely that the con-  Gjyen explicit values oé,, andb,, in some inertial frame,

stant fieldsa,, andb, are a global feature of the model. They £q (12) can be used directly to determine which Lorentz

cannot be regarded as arising from localized eXpe”me”t%ymmetries are violated. Note that if eithey or b, van-

conditions, which would cause them to transform under Parishes, the Lorentz group is broken to the little group of the

ticle Lorentz transformations as four-vectors rather than agn-ero four-vector. This means that teegest Lorentz-
scalars. The behavior af, andb,, as background fields and gymmetry subgroup that can remain as an invariance of the
hence as scalars urjder. partlcle Lorentz transformatlons IS dodel Lagrangiar(5) is SO3), E(2), or SA2,1). Sincea
consequence of t_helr origin as nonzero expectation values gf 4 represent two four-vectors in four-dimensional sgace—
Lorentz tensors in the underlying theory. These I-()rentz‘[ime,l;hey can define a two-dimensional plane. Transforma-

tensor expectations break those parts of the particle Lorenig, g inyolving the two orthogonal dimensions have no effect
group that cannot be implemented as unitary transformations,, nis plane. This means that themallest Lorentz-
on the vacuum. This is in parallel with other situations in-

: X symmetry subgroup that can remain is a compact or noncom-
volving spontaneous symmetry breaking, such as ones COMYact UL).

monly encountered in the treatment of internal symmetries. In a realistic low-energy effective theorg, P T-violating

The preservation of observer Lorentz symmetry is an iMygrms \would break the particle Lorentz group in a manner
portant feature of the model. It is a consequence of observeg sied to the breaking given by E€L2). Since no zeroth-
Lorentz invariance of the underlying fundamental theory.Order CPT violation has been observed in experiments,
This symmetry s unaff_ected b_y t_he appearance (.)f tenso&PT—vioIating effects in the string scenario are expected to
expectation values_ by virtue of Its |mpl_ementa_\t|on via coor-,q suppressed by at least one power of the Planck mass rela-
dinate transformations. As an illustration of its use in thetive to the scale of the effective theory. However, the inter-
effective model, we show that it permits a further classifica-esting and involved issue of exactly h6w small t’he magni-
tion of Ifypes ofCPT—yloIanng teern a(_:rcr:)rdlr]lcg to the ?b' tudes ofa, andb,, (or their equivalents in a realistic moglel
iervgr forent; prclxlpker.ues . ana IMf. us, for examfp € must be to satisfy current experimental constraints lies be-
I bMI'IIf u_ture"tlfme IKe In ?]r_1e _|ner|t_|a rgme, It Imust t}e_ utu_rel yond the scope of the present work. We confine our remarks
';|me| eimna ;ames._ T 'r? Implies that a caﬁs 0 |n|ert|a here to noting that the partial breaking of particle Lorentz
rames can be found in whidh, =b(1,0,0,0), where calcu- j,yariance discussed above generates an effective boost de-
lations are potentially simplified. A similar argument for the pendence in th€ PT-breaking parameters. This could pro-

lightlike or spacelike cases shows that B@T-violating ;e 5 definite experimental signature for our framework if
physics of the four components 0, can in each case be ¢ pr yjglation were detected at some future date.
reduced to knowledge of its Lorentz type and a single num-

ber specifying its magnitude. Inertial frames within this ideal
class are determined by the little grouplgf, which can in
turn be used to simplifypartially) the form ofa,, . For the discussions in the previous subsections, we
The reader is cautioned that the class of inertial framesadopted a practical approach to the definitionG® T and
selected in this way may be distinct from experimentallyLorentz transformations. It involves treating, P, T and
relevant inertial frames such as, for example, those definedorentz properties off as being defined via the free-field
using the microwave background radiation and interpretingheory £, and subsequently using them to establish the sym-
the dipole component in terms of the motion of the Earth.metry properties of.’. This approach requires caution, how-
The point is that, given an inertial frame, the process ofever, because in principle alternative definitions of the sym-
spontaneous Lorentz violation in the underlying theory ismetry transformations could exist that would leave the full
assumed to produce some valuesagfandb,, . In this spe-  theory £ invariant.
cific inertial frame, there is no reasam priori why these Consider first an apparent@PT- and Lorentz-violating
values should take the ideal form described above. One igodel formed witha,, only, defined in a given inertial frame
merely assured of the existence of some frame in which thgy the Lagrangian
ideal form can be attained.

C. Field redefinitions

The currentJ*** for particle Lorentz transformations LLp1= Lol ¥]— Lol ¢]. (13
takes the usual form when expressed in terms of the energy-
momentum tensor: Introducing in this frame a field redefinition of by a

spacetime-dependent phase,

J)\MV:X[M®7\V]+%;{,)/)\,O_/_LV}$. (ll) X=ex;1ia-x):,//, (14)
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the Lagrangian expressed in terms of the new field isquivalent to the original one under a field redefinitionypon
L[ y=exp(ia-X)x]=Lo[ x]. This shows that the model is of the form discussed above for the ungauged model.
equivalent to a conventional free Dirac theory, in which To summarize, in the gauged theory t8d>T-breaking
there is noCPT or Lorentz breaking, and thereby provides term £, can be interpreted as a background gauge choice and
an example of redefining symmetry transformations to maineliminated via a field redefinition as in the ungauged case.
tain invariancg 24. ] We note in passing that related issues arise for certain non-
The connection between the Poincayenerators in the linear gauge choicef25] and in the context of efforts to
two forms of the theory can be found explicitly by substitut- interpret the photon as a Nambu-Goldstone boson arising
ing =4y x] in the Poincaregenerators for’[ ] and ex-  from (unphysical spontaneous Lorentz breakif@6—-32. In
tracting the combinations needed to reproduce the usuaypical models of the latter type, a four-vector bilinear con-
Poincaregenerators for x]. We find that the charge and densatd 4y, ) plays a role having some similarities to that
chiral currentsj* and j£ take the same functional forms in of a,.
both theories but that the form of the canonical energy- The model(5) involves only a single fermion field. All
momentum tensor changes, CPT-violating effects can also be removed from certain
1 theories describing more than one fermion field in which
wv_ T Vo each fermion has a term of the forfi} . For example, this is
© 2'XY TXTRXYX A9 possible if there is no fermionﬂimixing and each such
) ) ) CPT-violating term involves the same value af , or if the
producing a corresponding change in the Lorentz currenfermions have no interactions or mixings that acquire
JM. This means that in the original theosif /] we could  gpacetime-dependence upon performing the field redefini-
introduce modified Poincareurrents ®“” and J*** that  tions. However, in generic multifermion theories witP T
have corresponding conserved charges generating an unbrgolation involving fermion-bilinear terms, it is impossible to
ken Poincarelgebra. These currents are given as functionalgliminate all CPT-breaking effects through field redefini-
of by tions. Nonetheless, since Lagrangian terms that spontane-
~ - ously breakCPT necessarily involve paired fermion fields,
O =0r —a’jr, JMwr=Jwr—xlkglih o (16)  atleast one of the quantities, can be removed. This means
that only differences between values af are observable.

Iy ) Examples appear in the context of 6 T-violating exten-
depends critically on the existence of the conserved currention of the standard model discussed in Sec. V.

j*. In the model5) with botha, andb,, terms, the compo-
nent £, can be eliminated by a field redefinition as before
but there is no similar transformation removidg because
conservation of the chiral currej# is violated by the mass.  In this section, we discuss some aspects of relativistic
In the massless limit of this model the chiral current is con-quantum mechanics based on K@), with ¢ regarded as a

served, and we can eliminate bah) andb,, via the field four-component wave function. The results obtained provide
redefinition further insight into the nature of th€ PT-violating terms

and are precursors to the quantum field theory. The analo-
x=expia-x—ib-xys)y. (17 gous treatment in the context of the standard model involves
several fermion fields, for whicl® P T-violating terms of the
For the situation withm+ 0, however, this redefinition would form L} cannot be altogether eliminated. We therefore ex-
introduce spacetime-dependent mass parameters. plicitly include the quantitya, in the following analysis,
The term £ in Eq. (3) is reminiscent of a local (1)  even though it could be eliminated by a field redefinition for
coupling, although there is no local(l invariance in the the simple one-fermion case. In fact, the reinterpretation of
theory (5). It is natural and relevant to our later consider- negative-energy solutions causes the explicit effects,ao
ations of the standard model to ask how the above discussidse more involved than might otherwise be expected.
of field redefinitions is affected if the (@) invariance of the The modified Dirac equatiof6) can be solved by assum-
original theory is gauged. Then, the terfij has the same ing the usual plane-wave dependence,
form as a coupling to a constant background electromagnetic _ R
potential. At the classical level, this would be expected to z//(x)=e*'MX”W()\). (18
have no effect since it is pure gauge. However, a conven- _
tional quantum-field gauge transformation involving b@th In this equationw(\) is a four-component spinor satisfying
and the electromagnetic potentid), cannot eliminatea,, .
since the theory is invariant under such transformations. In- (N v —a,y*—b,ysy*—mw(N)=0. (19
stead, the electromagnetic field can be taken as the sum of a
Classica'c_number background fleldllu and a quantum f|e|d For a nontrivial §0|uti0n to eXiSt, the determinant of the ma-
A, , whereupona, can be regarded as contributing to antrix acting onw(\) in this equation must vanish. This means
effective A,,. Conventional classical gauge transformationsthat )\ME()\O,{), where[33] )\0:)\0({), must satisfy the
can be performed on thenumber potentiald, , while leav-  requirement
ing the quantum fieldgy and A, unaffected. This changes
the Lagrangian but should not change the physics. In fact[(\ —a)?—b?~m?]?+4b*(\ —a)?~4[b*(\ ,—a,)]*=0.
the resulting gauge-transformed Lagrangian is unitarily (20

lll. RELATIVISTIC QUANTUM MECHANICS
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This condition can also be obtained directly from Eg).and  positive-energy one, it leaves a hole appearing to be a par-
the assumptior18). ticle with opposite energy, momentum, spin, and charge to
The dispersion relatior(20) is a quartic equation for that of the negative-energy state. In the present model, how-

A°(X). Although the Euler reducing cubic has a relatively €ver, when a negative-energy state moving in a
elegant form, in part because Eg0) contains no term cubic CPT-violating background with parametees, and b, is
in \°, the algebraic solutions to this equation are not particu€xcited to a positive-energy one, it leaves a hole appearing to
larly transparent. Even without examining the analytical re-Pe a particle with opposite values as before but moving in a
sults, however, certain features of the solutions can be estaf-P T-violating background with parametersa, andb,, in-
lished. One is that all four roots must be real, due tostead. This is because the teff is odd under charge con-
Hermiticity of the quantum-mechanical Hamiltonian jugation. The same effect can be seen explicitly by construct-
ing the charge-conjugate Dirac equation for the model. We
— ﬁlﬂ_ c 00 T 0. u 0. u 0 find
Hy=i —-=(=iy"y-V+a,y y“=b,ysy v +my)y. _
1) (iy*d,+a,y*—b,ysy*—m)y°=0, (23

Another stems from the invariance of the quartic under thevhere as usual’=Cy" and C is the charge-conjugation
interchange X, —a,)— —(\,—a,), which implies that to ~matrix. _ _ o
each solution\’ (X) there corresponds a second solution The e|geonfuncit|ons correspondlng (o the twq pegatwe e
)\9():) given by genvalues\~ ,,(\) can be reinterpreted as positive-energy,
reversed-momentum wave functions in the usual way. We
N (X)= —\O (= X +28) + 280, (22 introduce momentum-space spinafs)(p), v(?(p) via the
definitions

This equation and the invariance of the quartic under the
interchangeb,,— —b,, show that, unlike the conventional
Dirac case, the magnitudes of the eigenenergies of the four (@)  (a) (@) =
roots all differ generically as a direct consequence of the Prox)=exp+ip,” - x)u (p), (24
CPT-violating terms[34]. .

Another qualitatively different feature of the presentWhere the four-momenta are given by
model is that under certain conditions the roxo%):) of the () =(a) = (@) 2y _ 0 o
dispersion relation can display cusps. For a conventional dis- P =(E;".P), E 7(P)=N}()(P),
persion relation, the energy is a smooth function of each () r=(a) = (), 2\ _ 10 .
three-momentum component for both timelike and spacelike P, =(E,.P), ESS(P)=—AZ(o(—P).
four-momenta, while there is a cusp at the origin for the (@) & (@) & ) )
lightlike case. By examining discontinuities in the deriva- 1€ general forms ofi*’(p) andv'®(p) are given in Ap-

. 07y pendix A. The relation between the spinorandv is deter-
tives of the roots\*(\) with respect to the components of mined by the charge-conjugation matrix and the charge-

X, we have demonstrated that the criterion for cusps to aPconjugate Dirac equatiof23). For examplep®(p,a, ,b,)
- 1 /1, ) /1,

pear in the present model with>>0 is thatb,, be timelike. «p (B, —a, b,), where the dependence @), and b
’ MmNl 12

The derivation is most straightforward using observer Lorp4q peen explicitly restored for clarity. The symmegg) of

entz invariance to select one of the canonical frames listed ifhe dispersion relation then connects the two sets of energies
Appendix B, for which exact solutions to the dispersion re-

lations can be found. The presence of cusps appears to have
no directly observable consequences, in part because their E2Y(p)=E?(5+2&) — 2a°. (26)
size is governed by the magnitude lof , which is highly Y !
suppressed in a realistic situation.

The assumption that th@P T-violating quantitiesa,, and

b, are small relative to the scate of the low-energy theory

PO (x)=exp(—ip{ - x)u(p),

(29

The exact eigenenergies for the various canonical cases are
provided in Appendix B, while Appendix C contains explicit

implies the dispersion relatiof20) must have two positive- solutions for th'e age(n)s@nors( |)n Ehe special caseD. .

o - ) The four spinorsu'®(5), v'*(p) are orthogonal. Their
valued roots A ,)(A) and two negative-valued roots nomalization can be freely chosen, although imposing the
A% (X), wherea=1,2. Since these roots are eigenvaluescondition (4°)°= ¢ provides a partial constraint. Our choice
of the time-translation operator, the corresponding wavéeads to orthonormality conditions given by
functions can be termed positive- and negative-energy states,

respectively. Useful approximate solutions kﬂ:(a)(i) that ()t mvp (@) my — saa! Eff‘)

are valid to second order for arbitrary smal] andb,, are U u e I(p) = 0% ——,
given in Eq.(62) of Appendix A. Some exact solutions valid

for various important special cases are provided in Appendix E(e)

B. o (B (p) =5 ——,

Within conventional relativistic quantum mechanics,
negative-energy states are deemed to be filled, forming the / /
Dirac sea. When a negative-energy state is excited to a  u@'(p)o @ )(—p)=0, v @T(—pu®)(p)=0. (27)
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Note, however, that the Lorentz breaking precludes a simplé follows that the velocity is related to the energy and mo-
generalization of the orthonormality relations involving the mentum by
Dirac-conjugate spinora™ () and v () instead of the

Hermitian-conjugate spinora(®*(g) and v¥'(p). Equa- (p-4)
tion (27) produces the completeness relation. ym=E-a° ymy=p—4a-b° 5=’ (32
2 m
2 Wu(“)(ﬁ)c@u(”‘”(ﬁ) where y=1/\/1-v? as usual. These are just the usual
=1 |E(P) special-relativistic results shifted bggmal) amounts con-
m trolled by the CPT-violating terms. Note that four-
+ —E(“)(—ﬁ) v(“)(—ﬁ)®v(“)T(—ﬁ) =1. (28 momentum conservation shows that the wave-packet veloc-
v

ity is constant, as usual.

Even in conventional Dirac quantum mechanics, the
above notion of velocity involves subtleties associated with
the presence of negative-energy solutions. For example, the
velocity operator doesiot commute with the usual Dirac
Hamiltonian. In the preser@ P T-violating model, additional
subtleties arise. For example, it follows from the properties

_ iw/(ﬁ’)[pfj(“/)’% pfﬂ”‘—Za" o_f the rqots of the dispersiop relatig@0) or from the above
2m discussion that for the special case of timelikgthe veloc-
) ity near the origin is not in one-to-one correspondence with
+io’”(p;(v" )— pﬁi)—ZySby)]u(“)(ﬁ). (299  the conserved momentum. Perhaps of more interest is that in
the general case the velocity operator in the energy basis has

The general solution to the modified Dirac equati®  additional off-diagonal components, even in the positive-
can be written as a superposition of the four spinat¥, energy sector. For the example above, these oscillate trans-
(@) verse to —4) with relatively large period of ordeb, *.

They provide time-independent corrections to the velocity
d3p 2 Im (@ R eigenvalues, but only at ordeg. The implications of these
‘ﬁ(x):f 277 21 [W bia(B)e”Pu *ul®(p) features for possible bounds br are therefore likely to be
il limited but remain to be explored.
A related approach to the notion of velocity is to take the
' (30 derivative of the energy with respect to the momentum. For

the special casb=0, this definition produces the same re-
where b( )(ﬁ) d? )(|5) are the usual complex weights for sult as above and moreover can be obtained without the ex-

the momentum expansion. We remind the reader that in thiBlICit wave function. It therefore provides a relatively simple

expression tha,, andb,, dependence of the energies and themethm_:i of investigating yelocny—related issues. .Fo_r example,

spinors is understood. causality of. the model is relateq to th'e restriction pf Fhe
In the above expressions, the four-momenta are eigenvafl"ouP velocity to b_elow the velocity of light. If causality is

ues of the translation operators and hence are conservégtisfied, the criterion

guantities. They therefore represent canonical energy and

momentum rather than kinetic energy and momentum. A dis- .

tinction of this type occurs in many physical systems, such as lvl|= %1’ <1 (33)

a charged particle moving in an electromagnetic field. In the

present case this means, for example, that the canonical four-

momenta arenot related to velocity as are the usual kinetic ShO_UId be °bey¢d for_ _eaqh=1,2,3. _Observer _Lorentz In-
four-momenta in special relativity. The actual reIationshipva”ance makes it sufficient to examine the various canonical

can be explored by using the velocity operator, given in rela£ases: Calculgting with 'the gxpressions in Appendix B, we
P y 9 y op g > find that the criterior{33) is satisfied for all values df,, and

.. . . _): - :. . — O . ) ) ) . -
tl\ﬂsnchyanrt]umH mglcha_nlczlbyT—r]dx/dt I[H.x] 7| v ’ b, . This supports the notion that causality is maintained.
whereH s the Hamiltonian(21). The expectation value o Although the Lorentz breaking does affect quantum wave

this operator for a given wave packet is the vector-curren ; ; Y - i
integral and gives thégroup velocity of the packet. E%g?%?;ﬁ;;t apparently is mild enough to avoid superiu
As an explicit example, consider the special case0, Our treatment in this section of the relativistic quantum
for which the eigenenergies and eigenspinors are provided ifechanics of a single fermion in the presence of
Appendixes B and C, respectively. Suppose a wave packet @ p T-violating terms could be further developed to allow for
energyE and momentunp is constructed as a superposition jnteractions with conventional applied fields, along the lines
of positive-energy spin-up solutions. A short calculation pro-of the usual Dirac theory. In detail, this lies outside the scope
duces of the present work. We remark, however, that standard
o e = Green-function methods should be applicable. In particular,
<5>:<(|p—a|—b ) (P—4) (3 e can introduce a generalized Feynman propagator
(E-a% |p-4&|/" Se(x—x") satisfying

We remark in passing that another useful result is the modi
fied Gordon identity

u@(p") y*u@(p)

m o 0@y () s
+ 2t Al (PP % (@(p)
v
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(iy*d,—a,y"—b,ysy*—m)Se(x—x")=5*(x—x") dcGp & [ m
— a)l, T = .
(34 Pu=| Gy 2, [E(‘” P4/ B(a(B)D(a)(P)
and obeying the usual Feynman boundary conditions. It has m
integral representation + =@ p(vcffd(Tm(ﬁ)d(a)(ﬁ) . (39
dp .,
SF(X—X’)=f ik Ip-(x=x7) The reader can verify that the opera®j, generates space-
Cr time translations by determining the commutation relation
1 with the field 4. I[P, ,(X)]=d,¥(X).
, (39 The creation and annihilation operators can be written in
PLY =8,y =b, sy —m terms of the fields as

whereCg is the direct analogue of the usual Feynman con- (@)

tour in p, space, passing below the two negative-energy b(a>(ﬁ):J dx ePu XUT(B) YO (x),
poles and above the positive-energy ones. Appendix D con-

tains some remarks about this propagator, including a closed-

! R ip® T
form integration for the case=0. d(Ta)(p)Zf d* e P T (5) Y0(X). (40)
IV. QUANTUM FIELD THEORY The vacuum stat) of the Hilbert space obeys
In this section, we discuss a few aspects of the quantum b()(P)[0)=0, d,)(P)[0)=0. (41)

field theory associated with the model Lagrangi&h As in ) ) R i
the usual Dirac case, direct canonical quantization is unsafcting on [0), the creation operatorb,,(p) and d,(p)
isfactory, and the quantization condition is found instead byProduce particles and antiparticles with four-momenta
imposing positivity of the conserved energy. p{®* and p{®*  respectively. The reinterpretatiof25),
Promoting the Fourier coefficients in the expans{@8d)  which is based on the usual heuristic arguments in relativistic
to operators on a Hilbert space, we can obtain from (Ey. quantum mechanics, therefore makes sense in the field-
an expression for the normal-ordered conserved enBggy theoretic framework. As expected, the usual fourfold degen-
=[d®x:@°%:. This expression is positive definite for eracy of the eigenstates of the Hamiltonian for a given three-
a%<m, provided the following nonvanishing anticommuta- momentum is broken by thé& P T-violating terms.

tion relations are imposed: The above expressions can be used to establish various
results for the field theory with nonzem, andb,. For
E(@ example, the(time-dependent commutation relation be-
{b<a)(ﬁ),bzar)(ﬁ’)}=(277)3 % Saar O3(P—P'), tween the conserved charges and the quantum operators

M#?= [d3x:J%": obtained from the operator form of the

(@) currents(11), is found to be

{d(a)(ﬁ)adzrar)(ﬁ')}:(277)3 % 5aa’é\3(ﬁ_ﬁ,)' i[p%,M.uV]:_g%[ﬂupv}_gAO(a[MJV]+b[ng])' (42)

(36) . . .
whereJ*= [d>x:j*: andJE= [d°x:j£: are integrals of the

For simplicity, the dependence @ andb,, is suppressed in charge and chiral currents. The=0 component of this
these and subsequent equations. The corresponding equ@fuation is the quantum-field analogue of EtR).

time field anticommutators are given by The generalizations of the equal-time anticommutation re-
lations (37) to unequal times must be solutions to the modi-
(0 (,%) llfl(t )} =8, 8%(X—%") fied Dirac equation in each variable and must reduce to the
J 1 1 ’ J 1

usual results in the limit wheraﬂ and bM vanish. The cor-
. vt e oy e et rect expressions can in principle be derived by evolving for-
{¢5(6.2), (X} = {4 (1.X), g (t.X)}=0, 3D \yard in time one of the two fields in each anticommutator of

L . Eq. (37). We write
where the spinor indicegk are explicitly shown.

Using these expressions, the normal-ordered conserved {w(x),ﬁxl)}:is(x_x,),
charge becomes e
2 { (), p(X")={p(x), (X"} =0, (43
& m + = "
Q:f (2m)3 ;1 E@ B(a) (P)P(a)(P) where
d* . ,
m . S(x—x’)=f > p4 g ip-(x=x")
~ @ Al (P)dio(P) |- (39) c (2m)
U 1

- . X . 44
Similarly, the normal-ordered conserved four-momentum is puY“—a, Y —b,ysy*—m (44)
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In this expressionC is the analogue of the usual closed The construction of the in and out fields and the definition
contour inp, space encircling all the poles in the anticlock- of the S matrix can be implemented in the normal manner.
wise direction. Some comments about this anticommutatofhe Lehmann-Symanzik-ZimmermaiioSZ) reduction pro-
function are given in Appendix E, along with a closed-form cedure forS-matrix elements generates expressions involv-
integration forb=0. For this case, we have checked explic-ing vacuum expectation values of time-ordered products of
itly that the anticommutator&!3) are detemined by the inte- the interacting fields, as usual, but with external-leg factors
gral (44). for fermions involving the modified Dirac operatory“d,

The anticommutatore43) are relevant to the causal struc- —a,y*—b,ysy*—m) or its conjugate i(y“d,+a,y"
ture of the quantum theory. In particular, for the chse0 1 b.ysy*+m). . .
the results in Appendix E can be used to show that the anti- 1he canonical Dyson formalism for the perturbation se-

vanishes: in fields can be applied without encountering difficulties.

Standard expressions emerge, including the vacuum bubbles.
— o Wick’s theorem holds, reducing the time-ordered products
{#a(X), ¥5(x")}=0, (x—=x")*<0. (45) into normal-ordered products and pair contractions of in
fields. For fermion in fields, the vacuum expectation value of
Observables constructed out of bilinear products of field opa pairwise contraction can be shown explicitly to be the gen-
erators and separated by a spacelike interval therefore corgralized Feynman propagator introduced in the previous sec-
mute. This means that the quantum field theory with timeliketion: (O] T#(X) (x’)|0)=iSg(x—x"). In a momentum-
b, preserves microscopic causality in all associated observepace Feynman diagram, the corresponding propagator is
frames. The breaking of Lorentz invariance and the distor-
tions relative to conventional propagation are apparently S B 1
mild enough to exclude superluminal signals, in agreement F(P)= pu.Y“—a, Y —b,ysy*—m’
with the result from relativistic quantum mechanics. The re-
sult might be anticipated since observer Lorentz invarianc8’he momentum-space Feynman rules require this modified
holds and the particle Lorentz breaking involves only localpropagator for internal fermion lines and modified spinors on
terms in the Lagrangian. A direct analytical proof of micro- external fermion lines, but are otherwise unchanged from
scopic causality in the quantum field theory for the cases ofthose of a conventional theory. For example, translational
lightlike or spacelikéb,, would be of interest but is hampered invariance insures that energy and momentum are conserved

(46)

by the complexity of the integrdl4). in any process and so the standard four-momenguitmc-
We next turn to issues associated with interacting fieldions emerge.
theory. For the most part, since tP T-violating terms in Since theCP T-violating terms are renormalizable by na-

the model Lagrangian can be treated exactly, any added coive power counting, we anticipate no difficulties with the
ventional interactions can be handled with standard methodsisual renormalization program. Details of loop calculations
In what follows, we suppose that the Dirac fermion in thelie beyond the scope of the present work and remain an in-
model has interactions with one or more other fields that ar¢éeresting open issue. We remark in passing that the form
of a type acceptable within a conventional approach, and wéD3) of the propagator given in Appendix D shows tlagt
discuss effects fron€ P T-violating terms. cancels around all closed fermion loops in analogy with Fur-
Essentially all the standard assumptions underlying treatry’s theorem.
ments of conventional interacting field theories can reason- We also expect the unitarity of th® matrix to be unaf-
ably be made in the present context. Thus, for example, thiected by CPT-violating terms. Since a complete Hilbert-
property of observer Lorentz invariance ensures that consispace solution exists in the pure fermion case, there are no
tent quantization can be established in all observer framekidden or inaccessible states that could generate nonunitarity
once it is established in a given frame. Much of the usuabf the type appearing in the first stage of Gupta-Bleuler
analysis is performed in a given observer frame, which in thejuantization of quantum electrodynamics, for example.
present context means that the valuea giindb, are fixed. ~ Moreover, the interaction Hamiltonian is Hermitian. In any
Distinct effects are to be expected only in calculations forevent, any nonunitarity appearing in a realistic model based
which particle Lorentz covariance plays an essential role. Foon a unitary fundamental theory would presumably be a sig-
the most part, matters proceed in a straightforward manner aal that the domain of validity of the effective low-energy
the level of the general framework of interacting field theory.theory is being breached.
One exception we have found is the explicit derivation of the In determining physically relevant quantities such as cross
Kallen-Lehmann spectral representation for the vacuum exsections or transition rates, kinematic factors appear. For the
pectation value of the field anticommutator, which normallymost part, these are straightforward to obtain. A subtlety
takes advantage of botGPT and particle Lorentz covari- arises in the calculation of a physical cross section because
ance[35-38. The spectral representation could be used tdhe standard definition involves the notion of incident flux
investigate microscopic causality of the interacting theorydefined in terms of incoming particle velocity. Since the
although the conventional local interactions we considenelocity-momentum relation has corrections involviag
seem unlikely to introduce difficulties in this regard. In any andb,, [cf. Eq. (32)], there are corresponding small modifi-
case, it remains an open issue to obtain the spectral represarations to the kinematic factors in standard cross-section for-
tation in the present case, where additional four-vectors apmulas expressed in terms of conserved momenta. In a real-
pear in the theory. istic case, these are unobservable because they are
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suppre.sse(.j. This .should_ _ be. contrast.ed with  the Egggn: — (@) sasla¥*Le— (aR) ,a8RaY*Rg . (49)
CPT-violating corrections arising in an amplitude from the

modified fermion propagator, which are also suppressed buthe constant flavor-space matricesg are Hermitian. The
might be detected in interferometric experiments usingoresence of the/ factor allows fields of only one handed-

neutral-meson oscillatior{4.0]. ness to appear in a given term while maintaining gauge in-
variance. This contrasts with conventional Yukawa cou-
V. STANDARD-MODEL EXTENSION plings, in which fields of both handedness appear and

invariance is ensured by the presence of the Higgs doublet.

In this section, we consider the possibility of generalizing  After spontaneous symmetry breaking, the mass eigen-
the minimal standard model by addi@P T-violating terms  states(denoted with carejsare constructed with standard
within a self-consistent framework of the type described inunitary transformations
the previous sections. Sin€=P T violation has not been ob- . .
served in nature, ang PT-violating constants appearing in  »(a=(U)as?s, lta=(UDaslle, Ira=(UR)aslrs-
an extension of the minimal standard model must be small. (50
In what follows, we assume that these constants are singlet
under the unbroken gauge group, but as before behave und®
particle Lorentz transformations as tensors with an odd num-

e CPT-violating term in Eq.(49) becomes

ber of Lorentz indices. Our primary goal is to obtain an Lighor= —(A,0) wasPia¥* Vg — (A1) uasl La¥"l s
explicit and realistic model foC P T-violating interactions — .

that could serve as a basis for establishing quantitative —(aR) wasl rRAY*I R8> (51
CPT bounds.

The discussion in the previous sections is limited towhere each matrix of constards, is obtained from the cor-
CPT-breaking fermion bilinears. However, other types offéspondinga, via unitary rotation with the corresponding
terms violatingCPT in the Lagrangian could in principle matrixU: a,=U"a,U.
originate from spontaneous symmetry breaking. We adopt Not all the couplingsa, are observable. The freedom to
here a general approach, investigating possib|éedef|ne fields allows some couplings to be eliminated, in
CPT-violating extensions to the minimal standard modela@nalogy to the discussion of Sec. Il C for the model Lagrang-
such that the S(B)xSU(2)xU(1) gauge structure is main- 1an. Consider, for example, general field redefinitions of the
tained. To preserve naive power-counting renormalizabilityorm
at the level of the unbroken gauge group, we restrict atten- - ~ Lo ~ [

: N e A= (V) aste,  1ia= (VD) agl [na=(VE) gl
tion to terms involving field operators of mass dimension “LA L/ABYLB»  TLA L/ABILB:  'RA R/AB'RB>
four or less. The simultaneous requirements of gauge invari- (52

ance, suitable mass dimensionality, @B T violation allow where the matrice¥(x*) are unitary in generation space and

relatively few new terms in the actidi39). ._._have the formV=exp(H x*) with H, Hermitian. Then, in
Any Lagrangian term must be formed from combinations -

of covariant derivatives and fields for leptons, quarks, gaug&ach kinetic term of the generic forgy“d,, ¢, the redefi-
bosons, and Higgs bosons. We consider first allowedition (52) generates an appare@® T-violating term of the

CPT-violating Lagrangian extensions involving fermions. form _Eyu exp(H,x")H exp(_iHVXV)E. A suitable choice

Inspection shows that the only possibilities satisfying theys y might therefore reMmove@PT-vioIating term involv-

above criteria are pure fermion-bilinear terms without de'ing a, from Eq. (51). The matricesV must be chosen to
" . .

rivatives[40]. In the present context involving many fermi- |g4ye unaffected the Yukawa couplings and the conventional
ons, the analysis given in the previous sections of such terms,nqerivative couplings defining the neutrino fields as weak

requires some generaliza;ion. Since (SUinvariance pre- igenstates. It can be shown thdt must be a diagonal ma-
cludes quark-lepton couplings, we can treat the lepton anﬁ,ix of phases, with/'R=V'L andVEz(U'L)TUEV'L. The free-

guark sectors separately as usual. : ! ! L
- . ... dom therefore exists to redefine the fields so as to eliminate,
Consider first the lepton sector. Denote the left- and right- he three di el f iolati .
handed lepton multiplets by §ay,t et ree diagonal e ements o BT—Vlo ating m_atnx _
in the neutrino sector. Note that the existence of this choice
obviates possible theoretical issues arising from the combi-
. Ra=(pr, (47)  hation of massless fields at zero temperature and small nega-
tive energy shifts induced b@ P T-breaking termg$41].
Thus, omitting tildes and carets, the general
where CPT-violating extension of the lepton sector of the minimal
standard model has the form

LA:

la),

1 1
¢R55(1+ ’)/5)1//1 wLEE(l_')@)lpv (48) ECPT—

1 _
lepton— — (8,) uABVA > (14 vs)y*vg—(a) uasla¥"le

as usual, and wherd=1,2,3 labels the lepton flavot;, _(bI)MABI_A'yS'Y'ulB- (53)
=(e,u,7), va=(ve,v,,v;). Then, the most general set of

CPT-violating lepton bilinears consistent with gauge invari- where we have used E48) to replace left- and right-
ance is handed couplings with vector and axial vector couplings, and
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where @,) ,aa=0. Note that Eq(53) includes terms break- Omitting tildes and carets, the gene@P T-violating ex-
ing individual lepton numbers, although total lepton numbertension of the quark sector of the minimal standard model is
remains conserved. Flavor-changing transitions therefore exherefore

ist in principle but are unobservable if tH@P T-violating cpr

couplings are sufficiently suppressed. For example, a frac-  Lauan= — (u) .asUa¥*Ug— (DY) LaUAYs Y*Ug
tional suppression of order 16 or smaller might occur in — —
the string scenarifl10]. —(aq) uapday*ds—(bg) uagdaysy“ds, (59)

Consider next the quark sector. The (S8lUsymmetry en- _ . .
sures that all three quark colors of any given flavor mustVneré @u),1:=0. Again, these terms include small flavor-
have the sameCPT-violating current coupling. We can changing effects that are unobservable if the suppression is
therefore disregard the color space in what follows, and gufficiently small, such as that of fractional order toor
construction analogous to that for the lepton sector can bgmaller possible in the string scenario. In contrast, the diag-

applied. Denote the left- and right-handed components of th8”al contributions might be detected in interferometric ex-
quark fiélds by periments that measure the phenomenological parameters

6p for indirect CPT violation in oscillations of neutralR

mesons, wher® is one ofK, D, By, or B;. Each quantity
» Ua=(Ua)r, Da=(da)r, (54 6, is proportional to the difference between the diagonal
L elements of the effective Hamiltonian governing the time

where A=1,2,3 labels the quark flavorsia=(u,c,t), da evolution of the corresponding-P system. Explicit expres-
=(d,s,b). Then, at the unbroken-symmetry level, the mostSions fordp in terms of quantities closely related to those in
generalC P T-violating coupling is Eq. (59) have been given in Ref10].
The two equations(53) and (59 represent allowed
£CPT_ _(a O, v"On—(a U v U CPT-violating extensions of the ferm|qn sector of the mini-
auark™ ~ ( Q)“AB%Y Qs~(Au)uasla?*Us mal standard model. Next, we briefly consider other
—(ap) 4asDa¥*Ds. (55) CPT-violating terms without fermions.
The only CPT-violating term involving the Higgs field

As before, the constant flavor-space matriags, p are Her- and satisfying our criteria is a derivative coupling of the

Ua

Qa= da

mitian. form
After spontaneous symmetry breaking the mass eigen- cPT . ‘
states are obtained with the standard unitary transformations Lyiiggs=ik*¢'D ,¢+H.C., (60)
U a=(UNaglie, Ura=(UR)AsURrE, wherek” is a CPT-violating constantD , is the covariant
) R derivative, andp is the usual S(2)-doublet Higgs field. Let
dLA_(Ud)ABaLB dra= (Ud)ABaRB (56) us proceed under the assumption that no self-consistency is-
- L 1 - R .

sues arise for a scalar field that bred®® T and Lorentz
invariance, so that standard methods apply. Then,(&0).

represents a contribution to the Hig@%- sector of the
model. Disregarding possibl€ P T-preserving but Lorentz

The CP T-violating expressior{55) becomes

CPT_ _ (3 = = I
Lauarn= ~ (@) wasULaY*Ure — (Aar) uaediay“deL breaking contributions to the static potential, it can be shown
R - R = . that the term(60) produces astable modification of the
— (aur) uABURAY*UrB~ (4R) uaBdRAY URE- standard symmetry-breaking pattern to include an expecta-

(57) tion value for the22 field with magnitude proportional to

k, . Several kinds of effect ensue but if, as expected, the
As in the lepton sector, each constant ma&jxis obtained quantitiesk* are sufficiently small then it can be shown that
from the corresponding,, via the appropriate unitary rota- the results are either unobservable or produce additional con-

tion. tributions to the fermion-bilinear terms already considered.
Again, field redefinitions can be used to eliminate some It is also possible to findC P T-violating terms satisfying
CPT violation. Consider field redefinitions of the form our criteria and involving only the gauge fields. They are of
the form

GLA:(VE)ABGLBr GRA:(Vg)ABORB, cPT )
L :kgKEK)\’uVTr(G)\GMDJF gG)\GMGy)

gauge

dia=(VD)asdis: dra=(VR)apdre. (58) + Ko, €M TI(W\W,,, + W, W,W,)

where as before the matricé=exp(H x“) are unitary in +k1,<e"W”BABW+ Ko,.B*, (61

generation space. In this case, invariance of the Yukawa and

nonderivative couplings, including the Cabbibo-Kobayashi-wherek,,, ks, ki, andkg, are CP T-violating constants.
Maskawa mixings, requires the effect of the matrideso Here,G,, W,, B, are the(matrix-valued SU(3), SU(2),

reduce to multiplication by a single phase. For example, weJ(1) gauge bosons, respectively, agd,,, W,,, B,, are
can choose this phase so that the conditiam, ),1;  the corresponding field strengths. The first three of these
=(ayr) 411 holds. This removes th€ PT-breaking vector terms can be shown to leave unaffected the symmetry-

coupling from theu-quark sector. breaking pattern, and we expect only unobservable effects



55 CPT VIOLATION AND THE STANDARD MODEL 6771

for sufficiently smallC P T-violating constant§42]. The field Within the framework developed, we have constructed a
entering the term with coupling,, is of dimension one. It CPT-violating generalization of the minimal standard model
appears to produce a linear instability in the theory because that could be used in establishing quantitat@P T bounds.

involves the photon, in which case it cannot emerge from arhe criteria of gauge invariance and power-counting renor-

fundamental theory with a stable ground state. malizability constrain the extension to a relatively simple
form, involving the extra terms given in Eq&3), (59), (60),
VI. SUMMARY and (61). It has been previously been suggest®d0] that

the properties of neutral-meson systeR13, whereP is one

f K, D, By, or Bg, are well suited to interferometric tests
of spontaneou€ P T violation, with the experimentally mea-
surable parameters fandirec) CPT violation being explic-

. : o itly related to certain diagonal elements of the quark-sector
ant, with solutions exhibiting spontaneoc@# T and Lorentz CPT-breaking matrices given in E59). Investigating the

breaking. The effective low-energy field theory then remainsCurrent experimental  constraints on the other
translationally invariant and covariant under changes of ObCPT-vioIating parameters introduced here is an interesting

server inertial frame, but violateSPT and partially breaks open topic and could lead to additional signals@®T vio-
covariance under particle boosts. {ation

Our focus has primarily been on Lagrangian terms tha
involve CP T-violating fermion bilinears, which are relevant
for experiments boundin@ P T in meson interferometry. In
principle, these terms can be treated exactly because they are
guadratic. We have investigated the relativistic quantum me- \We thank Robert Bluhm for discussion. This work was
chanics and the quantum field theory of a model for a Diragupported in part by the United States Department of Energy
fermion involvingCPT violation. The analysis suggests that under Grant No. DE-FG02-91ER40661.
effective field theories with spontaneoG#$ T breaking have
desirable properties like microscopic causality and renormal-
izability. The existence of consistent theories of this type is APPENDIX A: EIGENSPINORS
reasonable since they are analogous to conventional field OF THE DIRAC EQUATION
theories in a nonvanishing background. Additional interac-
tions appear minimally affected by tf@PT violation, and Treating the CPT-violating parametersa, and b, as
the effects are largely restricted to modifications on fermiorsmall relative tom, the four rootskg(a)()(), a=1,2, of the
lines. dispersion relatior{20) are given to second order by

In this paper, we have developed a framework for treatin
spontaneousC PT and Lorentz breaking in the context of
conventional effective field theory. The underlying action is
assumed to be consistent and fully? T and Poincarénvari-
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N o(N)= t{m2+(>(—a*)2+ 2(—1)°[bi(X—a)+b?m?+ (b- (X —a))?F 2bgb- (X —a) Vm?+ (X —&)?]*/2

- -

2bob- (N —a) |

2 o A—
+p2+p2F———— | 4a,. (AL)
Vm?+(N—a)?

This equation produces exact solutions to the dispersion re- (Eff‘)—ao+m+5- F)[(P—4)- G—by]

lation in any of the special cases for whithb-(X—a) X(@ = - . (A3)
=0. The eigenenergies of the four spinarf€)(p), v(®(p) (Ey)—ag+m)?—b?

defined in Eq.(24) can be obtained by combining EGAL)

with Eqg. (25). The analogous quantit)ﬂﬁ“) for the second equation i#A2)

In the general case, the four spinor eigensolutions can b / . :
written in the Pauli-Dirac representation as €an be found by replacing all subscriptsby v in Eq. (A3)

and implementing the substitutiorsg,——a,, b,——b,

@ wherever these quantities explicitly appear. The quantities

U@ () =N <¢) ¢(@ and y( are two-component spinors satisfying the ei-
u | X(@ep@ ) genvalue equations

XE,Q)X(H)) k’(a).&d)(a): 7]Efz)(j)(cr), ,;l()a)_ &X(a): 775105))((@’
()

v(@(p)= ij”( (A2) ! (A4)

In the first of these equationy(®) is an arbitrary spinor with [£{?12=[7{12. Here, the vectox{*) and the scalar
normalization factor and(ff“) is a spinor matrix defined by 775“) are given by
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R =2[(py,—a,)b*+mby](p—a)
—[(py—a)?+b?+m?+2m(E\* —ay)1b,
7y =2(E{" ~ag)b?~2bob- (5 - 4&)
—(E{”—ao+m)[(py~a)*~b?~m?].
(A5)

The analogous quantities with subscriptgre given by the
same substitutions as before.

APPENDIX B: EXACT EIGENENERGIES
FOR CANONICAL CASES

For the case wherb, is timelike, observer Lorentz in-

DON COLLADAY AND V.

ALAN KOSTELECKY

Ef=[m?+(p—4)?

+(—1)2Vm?6%+ (b- (p—a))?+ b2] 2+ ay,

EL=[m?+(p+4d)?

—(- 1)“2\/m252+(6.(|3+ a))2+ b2]H2—a,.
(B2)

Finally, for the lightlike casé,b*= 0 the exact eigenval-
ues of the dispersion relation after reinterpretation are

EL=[m?+(5—&~(~1)*0)’]"*+ag+(~1)by,

variance can be used to select a canonical frame in which  gl® =[m?+ (5+ &+ (—1)*b)?]¥?—a,—(—1)“by.

b=0. In this frame, we find the exact eigenenergies after

reinterpretation are

E(=[m?+ (|p— 4]+ (—1)*bp)*]"*+ay,

(B3)

These last expressions hold in all observer frames.

E{=[m?+(|p+4|—(—1)%bp)?]*?—a,,  (B1) APPENDIX C: EXPLICIT SOLUTION FOR b6=0

wherea=1,2 as usual. For the special case=0, the eigenenergies are given by
For the case of spacelike,, an observer frame can be Eqg. (B1) and the eigenspinors can be written in a relatively

chosen in whichb®=0. After reinterpretation the exact simple form. Introducing momentum-space spinors via Eq.

eigenenergies become (24), we find in the Pauli-Dirac basis the expressions

(a)(R_ 3
(@(p) (E&a)(Eﬁa)_aﬁm) 1= 1)“Iﬁ¢ él(pba)
u'® p)= @ -\~ —d]7 Yo (a) _)—é s
2m(E," —ayp) E&a)_ao_’_m ¢ (p—a)
—(—-1)%p+a|+
Ef}a)(Ef/Dz)_’_ao_’_m) 1/2 ( ) |p a| bO ¢(a)(ﬁ+§.)
v (p)= @ E,”+ao+m , (CD
2m(E," +ay) #@(p+38)

wherea=1,2 as usual and where we have chosen the norrpalization of the spinors so {2 Eysatisfied. In Eq(C1), the
two two-component spinorg(®)(X) are the eigenvectors @f- A with eigenvalues- (—1). If the spherical-polar angles that
X\ subtends are specified &8 ¢), then the spinor:ab(“)():) are given explicitly by

6 0
COSE —smie

dYN={ . | ¢P= p (C2)
in— e'? —
3|n2e 0052

Note that the structure of the P T-violating terms forces the spino(€1) and their generalizations in Appendix A to involve
helicity-type states. In the limit of vanishif@P T violation, the solutiongC1) reduce to standard Dirac spinors in the helicity
basis.

APPENDIX D: PROPAGATOR FUNCTIONS

It can be shown that the generalized Feynman propagator determined b§8&gand (35) has the form

Se(x—x")=(iY"dy—a,y* —byysy* + m)(i y*d,—a, y*+ b, ysy*+m)(iy*d,—a,y"+b,ysy’—m)Ag(x—x), o
D1

where
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d* . 1
A :f e Py , D2
M=o @m*® " [(p- a7 br mAr ab%(p-a)’ 40" (p,—a,) |’ ©2
with Cr the same contour in thg, plane as that in Eq35).
Direct integration for the special cabe=0 gives
Se(x—x")=e X (jykg +byysy®+m)(— 92— mP—b3+2iboysy Y ) Ap(x—X'), (D3)
where
A .1 sinbgr [ 2iKo(myr2=t3), 2>t D4
FXX)= 162 Thyr | aH@(mVE=17), 12<t?, (b4

wherer is the radial spherical-polar coordinate. In this expressignjs a modified Bessel function artd?) is a Hankel
function of the second kind. The res(23) reduces to the standard one in the limjt=b,=0. Note that the propagator is

singular on the light cone, as usual.

APPENDIX E: ANTICOMMUTATOR FUNCTIONS

The anticommutator functioB(x—x’) defined in Eq.(44) can be shown to be given by

S(x=x")=(iyY*d\—ayy* —byysy* +m)(iy*d,—a,y*+b,ysy*+m)(iy"d,~a,y"+b,ysy"'—~mA(x—x"), (EI

where
iA(y):f dll_pe*ip-y 1 (E2)
c (2m)* [(p—a)*—b*—m*]*+4b*(p—a)°—4[b*(p,—a,)]*’
with C being the contour of Eq44) in the py plane.
For the special case=0, direct integration gives
S(x—x")=e" X (jykg, +bgysy®+m)(— P —mP—bi+2iboys Y0¥ a) A(x—X'), (E3)
where
2__¢2
. 1 sinbor Jo(Mmyte—r9), t>r,
|A(x—x’)=—8— b 0, —r<t<r, (E4
™ b | g my=rY), t<-r,

wherer is the radial spherical-polar coordinate ahgdis a Bessel function. The expressi@8B) reduces to the standard result

in the limit a,=by=0.
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