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SpontaneousCPT breaking arising in string theory has been suggested as a possible observable experimen-
tal signature in neutral-meson systems. We provide a theoretical framework for the treatment of low-energy
effects of spontaneousCPT violation and the attendant partial Lorentz breaking. The analysis is within the
context of conventional relativistic quantum mechanics and quantum field theory in four dimensions. We use
the framework to develop aCPT-violating extension to the minimal standard model that could serve as a basis
for establishing quantitativeCPT bounds.
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I. INTRODUCTION

Among the symmetries of the minimal standard model is
invariance underCPT. Indeed,CPT invariance holds under
mild technical assumptions for any local relativistic point-
particle field theory@1–5#. Numerous experiments have con-
firmed this result@6#, including in particular high-precision
tests using neutral-kaon interferometry@7,8#. The simulta-
neous existence of a general theoretical proof ofCPT invari-
ance in particle physics and accurate experimental tests
makesCPT violation an attractive candidate signature for
nonparticle physics such as string theory@9,10#.

The assumptions needed to prove theCPT theorem are
invalid for strings, which are extended objects. Moreover,
since the critical string dimensionality is larger than four, it
is plausible that higher-dimensional Lorentz breaking would
be incorporated in a realistic model. In fact, a mechanism is
known in string theory that can cause spontaneousCPT vio-
lation @9# with accompanying partial Lorentz-symmetry
breaking@11#. The effect can be traced to string interactions
that are absent in conventional four-dimensional renormaliz-
able gauge theory. Under suitable circumstances, these inter-
actions can cause instabilities in Lorentz-tensor potentials,
thereby inducing spontaneousCPT and Lorentz breaking. If
in a realistic theory the spontaneousCPT and partial Lorentz
violation extend to the four-dimensional spacetime, detect-
able effects might occur in interferometric experiments with
neutral kaons@9,10#, neutralBd or Bs mesons@10,12#, or
neutralD mesons@10,13#. For example, the quantities pa-
rametrizing indirectCPT violation in these systems could be
nonzero. There may also be implications for baryogenesis
@14#.

In the present paper, our goal is to develop within an
effective-theory approach a plausibleCPT-violating exten-
sion of the minimal standard model that provides a theoreti-
cal basis for establishing quantitative bounds onCPT invari-
ance. The idea is to incorporate notions of spontaneous
CPT and Lorentz breaking while maintaining the usual
gauge structure and properties like renormalizability. To
achieve this, we first establish a conceptual framework and a
procedure for treating spontaneousCPT and Lorentz viola-
tion in the context of conventional quantum theory. We seek

a general methodology that is compatible with desirable fea-
tures like microscopic causality while being sufficiently de-
tailed to permit explicit calculations.

We suppose that underlying the effective four-
dimensional action is a complete fundamental theory that is
based on conventional quantum physics@15# and is dynami-
callyCPT and Poincare´ invariant. The fundamental theory is
assumed to undergo spontaneousCPTand Lorentz breaking.
In a Poincare´-observer frame in the low-energy effective ac-
tion, this process is taken to fix the form of anyCPT- and
Lorentz-violating terms.

Since interferometric tests ofCPT violation are so sensi-
tive, we focus specifically onCPT violation and the associ-
ated Lorentz-breaking issues in a low-energy effective theory
without gravity @21#. For the most part, effects from deriva-
tive couplings and possibleCPT-preserving but Lorentz-
breaking terms in the action are disregarded, and any
CPT-violating terms are taken to be small enough to avoid
issues with standard experimental tests of Lorentz symmetry.
A partial justification for the latter assumption is that the
absence of signals forCPT violation in the neutral-kaon
system provides one of the best bounds on Lorentz invari-
ance.

Our focus on the low-energy effective model bypasses
various important theoretical issues regarding the structure of
the underlying fundamental theory and its behavior at scales
above electroweak unification, including the origin and
~renormalization-group! stability of the suppression ofCPT
breaking and the issue of mode fluctuations around Lorentz-
tensor expectation values. Since these topics involve the Lor-
entz structure of the fundamental theory, they are likely to be
related to the difficult hierarchy problems associated with
compactification and the cosmological constant.

The ideas underlying our theoretical framework are de-
scribed in Sec. II. A simple model is used to illustrate con-
cepts associated withCPT and Lorentz breaking, including
the possibility of eliminating someCPT-violating effects
through field redefinitions. The associated relativistic quan-
tum mechanics is discussed in Sec. III. Section IV contains a
treatment of some issues in quantum field theory. A
CPT-violating extension of the minimal standard model is
provided in Sec. V, and the physically observable subset of
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CPT-breaking terms is established. We summarize in Sec.
VI. Some of the more technical results are presented in the
appendixes.

II. BASICS

A. Effective model for spontaneousCPT violation

We begin our considerations with a simple model within
which many of the basic features of spontaneousCPT vio-
lation can be examined. The model involves a single massive
Dirac fieldc(x) in four dimensions with Lagrangian density

L5L02L8, ~1!

whereL0 is the usual free-field Dirac Lagrangian for a fer-
mion c of mass m, and where L8 contains extra
CPT-violating terms to be described below. For the present
discussion, we follow an approach in which theC, P, T and
Lorentz properties ofc are assumed to be conventionally
determined by the free-field theoryL0 and are used to estab-
lish the corresponding properties ofL8 @22#. This method is
intrinsically perturbative, which is particularly appropriate
here since anyCPT-violating effects must be small. In Sec.
II C, we consider the possibility of alternative definitions of
C, P, T and Lorentz properties that could encompass the full
structure ofL.

We are interested in possible forms ofL8 that could arise
as effective contributions from spontaneousCPT violation
in a more complete theory. To our knowledge, string theory
forms the only class of~gauge! theories in four or more
dimensions that are quantum consistent, dynamically Poin-
caré invariant, and known to admit an explicit mechanism
@9# for spontaneousCPT violation triggered by interactions
in the Lagrangian. However, to keep the treatment as general
as possible we assume only that the spontaneousCPT vio-
lation arises from nonzero expectation values acquired by
one or more Lorentz tensorsT, so L8 is taken to be an
effective four-dimensional Lagrangian obtained from an un-
derlying theory involving Poincare´-invariant interactions of
c with T. The discussion that follows is independent of any
specifics of string theory and should therefore be relevant to
a nonstring model with spontaneousCPT violation, if such a
model is eventually formulated.

Even applying the stringent requirement of dynamical
Poincare´ invariance, an unbroken realistic theory can in prin-
ciple include terms with derivatives, powers of tensor fields,
and powers of various terms quadratic in fermion fields.
However, anyCPT-breaking term that is to be part of a
four-dimensional effective theory must have mass dimension
four. In the effective Lagrangian, each combination of fields
and derivatives of dimension greater than four therefore must
have a corresponding weighting factor of a negative power
2k of at least one mass scaleM that is large compared to the
scalem of the effective theory. In a realistic theory with the
string scenario,M might be the Planck mass or perhaps a
smaller mass scale associated with compactification and uni-
fication. Moreover, since the expectations^T& of the tensors
T are assumed to be Lorentz and possiblyCPT violating,
any terms that survive inL8 after the spontaneous symmetry
breaking must on physical grounds be suppressed, presum-

ably by at least one power ofm/M relative to the scale of the
effective theory.

A hierarchy of possible terms inL8 thus emerges, labeled
by k50,1,2,... . Omitting Lorentz indices for simplicity, the
leading terms withk<2 have the schematic form

L8.
l

Mk ^T&•c̄G~ i ]!kc1H.c. ~2!

In this expression, the parameterl is a dimensionless cou-
pling constant, (i ])k representsk four-derivatives acting in
some combination on the fermion fields, andG represents
some gamma-matrix structure. Terms withk>3 and with
more quadratic fermion factors also appear, but these are
further suppressed. Note that contributions of the form~2!
arise in string theory@10#. Note also that naive power count-
ing indicates the dominant terms withk<1 are renormaliz-
able.

For k50, the above considerations indicate that the domi-
nant terms of the form~2! must have expectationŝT&
;m2/M . In the present work, we focus primarily on this
relatively simple case. Most of the general features arising
from CPT and Lorentz violation together with some of our
more specific results remain valid when terms with other
values ofk are considered, but it remains an open issue to
investigate the detailed properties of terms withk51 and
expectationŝ T&;m or those withk52 and expectations
^T&;M . Both these could in principle contribute leading
effects in the low-energy effective action.

Each contribution toL8 from an expression of the form
~2! is a fermion bilinear involving a 434 spinor matrixG.
Regardless of the complexity and number of the tensorsT
inducing the breaking,G can be decomposed as a linear com-
bination of the usual 16 basis elements of the gamma-matrix
algebra. Only the subset of these that produce
CPT-violating bilinears are of interest for our present pur-
poses, and they permit us to provide explicit and relatively
simple expressions for the possibleCPT-violating contribu-
tions toL8.

For the casek50 of interest here, we find two possible
types ofCPT-violating term:

La8[amc̄gmc, Lb8[bmc̄g5g
mc. ~3!

For completeness, we provide here also the terms appearing
for the casek51, where we find three types of relevant
contribution:

Lc8[ 1
2 ic

ac̄]Jac, Ld8[ 1
2 d

ac̄g5]
J

ac,

Le8[ 1
2 iemn

a c̄smn]Jac, ~4!

whereA]JmB[A]mB2(]mA)B. In all these expressions, the
quantitiesam , bm , c

a, da, andemn
a must be real as conse-

quences of their origins in spontaneous symmetry breaking
and of the presumed hermiticity of the underlying theory.
They are combinations of coupling constants, tensor expec-
tations, mass parameters, and coefficients arising from the
decomposition ofG.

In keeping with their interpretation as effective coupling
constants arising from a scenario with spontaneous symme-
try breaking,am , bm , c

a, da, andemn
a are invariant under

CPT transformations. Together with the standard
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CPT-transformation properties ascribed toc, this invariance
causes the terms in Eqs.~3! and ~4! to breakCPT @23#. As
discussed above, in the remainder of this work we restrict
ourselves largely to the expressions in Eq.~3!.

Allowing both kinds of term in Eq.~3! to appear inL8
produces a model Lagrangian of the form

L5
1

2
i c̄gm]Jmc2amc̄gmc2bmc̄g5g

mc2mc̄c. ~5!

The variational procedure generates a modified Dirac equa-
tion:

~ igm]m2amgm2bmg5g
m2m!c50. ~6!

Associated with this Dirac-type equation is a modified
Klein-Gordon equation. Proceeding with the usual squaring
procedure, in which the Dirac-equation operator with oppo-
site mass sign is applied to the Dirac equation from the left,
leads to the Klein-Gordon-type expression

@~ i ]2a!22b22m212ig5s
mnbm~ i ]n2an!#c~x!50.

~7!

This equation is second order in derivatives, but unlike the
usual Klein-Gordon case it contains off-diagonal terms in the
spinor space. These may be eliminated by repeating the
squaring procedure, this time applying the operator in Eq.~7!
with opposite sign for the off-diagonal piece. The result is a
fourth-order equation satisfied by each spinor component of
any solution to the modified Dirac equation:

$@~ i ]2a!22b22m2#214b2~ i ]2a!2

24@bm~ i ]m2am!#2%c~x!50. ~8!

B. Continuous symmetries

Consider next the continuous symmetries of the model
with Lagrangian~5!. For definiteness, we begin with an
analysis in a given oriented inertial frame in which values of
the quantitiesam andbm are assumed to have been specified.
The effects of rotations and boosts are considered later.

TheCPT-violating terms in Eq.~5! leave unaffected the
usual global U~1! gauge invariance, which has conserved
current j m5c̄gmc. Charge is therefore conserved in the
model. These terms also leave unaffected the usual breaking
of the chiral U~1! currentj 5

m5c̄g5g
mc due to the mass term.

In what follows, we denote the volume integrals of the cur-
rent densitiesj m and j 5

m by Jm andJ5
m , respectively.

The model is also invariant under translations provided
the tensor expectations are assumed constant, i.e., provided
the possibility ofCPT-breaking soliton-type solutions in the
underlying theory is disregarded. This leads to a conserved
canonical energy-momentum tensorQmn given by

Qmn5
1

2
i c̄gm]Jnc, ]mQmn50, ~9!

and a corresponding conserved four-momentumPm. These
expressions have the same form as in the free theory. Note,
however, that constancy of the energy and momentum does
not necessarily imply conventional behavior under boosts or

rotations. Note also that the presence of theCPT-violating
terms in the Dirac equation destroys the usual symmetriz-
ability property ofQmn. The antisymmetric partQ@mn# is

Q@mn#[Qmn2Qnm

52
1

4
]a@c̄$ga,smn%c#2a[m j n]2b[m j 5

n] , ~10!

which is no longer a total divergence. The conventional con-
struction of a symmetric energy-momentum tensor, involv-
ing a subtraction of this antisymmetric part from the canoni-
cal energy-momentum tensor, would affect the conserved
energy and momentum and is therefore presumably inappli-
cable in the present case. The implications of this for a more
complete low-energy effective theory that includes gravity
remain to be explored.

Next, consider the effect of Lorentz transformations, i.e.,
rotations and boosts. Conventional Lorentz transformations
in special relativity relate observations made in two inertial
frames with differing orientations and velocities. These
transformations can be implemented as coordinate changes,
and we call them observer Lorentz transformations. It is also
possible to consider transformations that relate the properties
of two particles with differing spin orientation or momentum
within a specific oriented inertial frame. We call these par-
ticle Lorentz transformations. For free particles under usual
circumstances, the two kinds of transformation are~in-
versely! related. However, this equivalence fails for particles
under the action of a background field.

The reader is warned to avoid confusing observer Lorentz
transformations~which involve coordinate changes! or par-
ticle Lorentz transformations~which involve boosts on par-
ticles or localized fields butnot on background fields! with a
third type of Lorentz transformation that within a specified
inertial frame boosts all particles and fields simultaneously,
including background ones. The latter are sometimes called
~inverse! active Lorentz transformations. For the case of con-
ventional free particles, they coincide with particle Lorentz
transformations. We have chosen to avoid applying the terms
active and passive here because they are insufficient to dis-
tinguish the three kinds of transformation and because in any
case their interpretation varies in the literature.

The distinction between observer and particle transforma-
tions is relevant for the present model, where the
CPT-violating terms can be regarded as arising from con-
stant background fieldsam andbm . The point is that these
eight quantities transform as two four-vectors under observer
Lorentz transformations and as eight scalars under particle
Lorentz transformations, whereas they are coupled to cur-
rents that transform as four-vectors under both types of trans-
formation. This means that observer Lorentz symmetry is
still an invariance of the model, but the particle Lorentz
group is~partly! broken.

Physical situations with features like this can readily be
identified. For example, an electron with momentum perpen-
dicular to a uniform background magnetic field moves in a
circle. Suppose in the same observer frame we instanta-
neously increase the magnitude of the electron momentum
without changing its direction, causing the electron to move
in a circle of larger radius. This~instantaneous! particle boost
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leaves the background field unaffected. However, if instead
an observer boost perpendicular to the magnetic field is ap-
plied, the electron no longer moves in a circle. This is
viewed in the new inertial frame as anE3B drift caused by
the presence of an electric field. In this example, the back-
ground magnetic field transforms into a different electromag-
netic field under observer boosts but~by definition! is un-
changed by particle boosts, in analogy to the transformation
of am andbm in theCPT-violating model.

From the viewpoint of this example, the unconventional
aspect of theCPT-violating model is merely that the con-
stant fieldsam andbm are a global feature of the model. They
cannot be regarded as arising from localized experimental
conditions, which would cause them to transform under par-
ticle Lorentz transformations as four-vectors rather than as
scalars. The behavior ofam andbm as background fields and
hence as scalars under particle Lorentz transformations is a
consequence of their origin as nonzero expectation values of
Lorentz tensors in the underlying theory. These Lorentz-
tensor expectations break those parts of the particle Lorentz
group that cannot be implemented as unitary transformations
on the vacuum. This is in parallel with other situations in-
volving spontaneous symmetry breaking, such as ones com-
monly encountered in the treatment of internal symmetries.

The preservation of observer Lorentz symmetry is an im-
portant feature of the model. It is a consequence of observer
Lorentz invariance of the underlying fundamental theory.
This symmetry is unaffected by the appearance of tensor
expectation values by virtue of its implementation via coor-
dinate transformations. As an illustration of its use in the
effective model, we show that it permits a further classifica-
tion of types ofCPT-violating term according to the ob-
server Lorentz properties ofam andbm . Thus, for example,
if bm is future timelike in one inertial frame, it must be future
timelike in all frames. This implies that a class of inertial
frames can be found in whichbm5b(1,0,0,0), where calcu-
lations are potentially simplified. A similar argument for the
lightlike or spacelike cases shows that theCPT-violating
physics of the four components ofbm can in each case be
reduced to knowledge of its Lorentz type and a single num-
ber specifying its magnitude. Inertial frames within this ideal
class are determined by the little group ofbm , which can in
turn be used to simplify~partially! the form ofam .

The reader is cautioned that the class of inertial frames
selected in this way may be distinct from experimentally
relevant inertial frames such as, for example, those defined
using the microwave background radiation and interpreting
the dipole component in terms of the motion of the Earth.
The point is that, given an inertial frame, the process of
spontaneous Lorentz violation in the underlying theory is
assumed to produce some values ofam andbm . In this spe-
cific inertial frame, there is no reasona priori why these
values should take the ideal form described above. One is
merely assured of the existence of some frame in which the
ideal form can be attained.

The currentJlmn for particle Lorentz transformations
takes the usual form when expressed in terms of the energy-
momentum tensor:

Jlmn5x[mQln]1 1
4 c̄$gl,smn%c. ~11!

This current is conserved at the level of the underlying
theory with spontaneous symmetry breaking, but in the ef-
fective low-energy theory where the spontaneous breaking
appears as an explicit symmetry violation the conservation
property is destroyed. In the latter case, the corresponding
Lorentz chargesMmn obey

dMmn

dt
52a[mJn]2b[mJ5

n] . ~12!

Given explicit values ofam andbm in some inertial frame,
Eq. ~12! can be used directly to determine which Lorentz
symmetries are violated. Note that if eitheram or bm van-
ishes, the Lorentz group is broken to the little group of the
nonzero four-vector. This means that thelargest Lorentz-
symmetry subgroup that can remain as an invariance of the
model Lagrangian~5! is SO~3!, E~2!, or SO~2,1!. Sinceam
andbm represent two four-vectors in four-dimensional space-
time, they can define a two-dimensional plane. Transforma-
tions involving the two orthogonal dimensions have no effect
on this plane. This means that thesmallest Lorentz-
symmetry subgroup that can remain is a compact or noncom-
pact U~1!.

In a realistic low-energy effective theory,CPT-violating
terms would break the particle Lorentz group in a manner
related to the breaking given by Eq.~12!. Since no zeroth-
order CPT violation has been observed in experiments,
CPT-violating effects in the string scenario are expected to
be suppressed by at least one power of the Planck mass rela-
tive to the scale of the effective theory. However, the inter-
esting and involved issue of exactly how small the magni-
tudes ofam andbm ~or their equivalents in a realistic model!
must be to satisfy current experimental constraints lies be-
yond the scope of the present work. We confine our remarks
here to noting that the partial breaking of particle Lorentz
invariance discussed above generates an effective boost de-
pendence in theCPT-breaking parameters. This could pro-
vide a definite experimental signature for our framework if
CPT violation were detected at some future date.

C. Field redefinitions

For the discussions in the previous subsections, we
adopted a practical approach to the definition ofCPT and
Lorentz transformations. It involves treatingC, P, T and
Lorentz properties ofc as being defined via the free-field
theoryL0 and subsequently using them to establish the sym-
metry properties ofL8. This approach requires caution, how-
ever, because in principle alternative definitions of the sym-
metry transformations could exist that would leave the full
theoryL invariant.

Consider first an apparentlyCPT- and Lorentz-violating
model formed witham only, defined in a given inertial frame
by the Lagrangian

L@c#5L0@c#2La8@c#. ~13!

Introducing in this frame a field redefinition ofc by a
spacetime-dependent phase,

x5exp~ ia•x!c, ~14!
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the Lagrangian expressed in terms of the new field is
L@c5exp(2ia•x)x#[L0@x#. This shows that the model is
equivalent to a conventional free Dirac theory, in which
there is noCPT or Lorentz breaking, and thereby provides
an example of redefining symmetry transformations to main-
tain invariance@24#.

The connection between the Poincare´ generators in the
two forms of the theory can be found explicitly by substitut-
ing c5c@x# in the Poincare´ generators forL@c# and ex-
tracting the combinations needed to reproduce the usual
Poincare´ generators forL0@x#. We find that the charge and
chiral currentsj m and j 5

m take the same functional forms in
both theories but that the form of the canonical energy-
momentum tensor changes,

Qmn5
1

2
i x̄gm]Jnx1anx̄gmx, ~15!

producing a corresponding change in the Lorentz current
Jlmn. This means that in the original theoryL@c# we could
introduce modified Poincare´ currents Q̃mn and J̃ lmn that
have corresponding conserved charges generating an unbro-
ken Poincare´ algebra. These currents are given as functionals
of c by

Q̃mn5Qmn2an j m, J̃ lmn5Jlmn2x[man] j l. ~16!

The existence of this connection between the two theories
depends critically on the existence of the conserved current
j m. In the model~5! with botham andbm terms, the compo-
nentLa8 can be eliminated by a field redefinition as before
but there is no similar transformation removingLb8 because
conservation of the chiral currentj 5

m is violated by the mass.
In the massless limit of this model the chiral current is con-
served, and we can eliminate botham and bm via the field
redefinition

x5exp~ ia•x2 ib•xy5!c. ~17!

For the situation withmÞ0, however, this redefinition would
introduce spacetime-dependent mass parameters.

The termLa8 in Eq. ~3! is reminiscent of a local U~1!
coupling, although there is no local U~1! invariance in the
theory ~5!. It is natural and relevant to our later consider-
ations of the standard model to ask how the above discussion
of field redefinitions is affected if the U~1! invariance of the
original theory is gauged. Then, the termLa8 has the same
form as a coupling to a constant background electromagnetic
potential. At the classical level, this would be expected to
have no effect since it is pure gauge. However, a conven-
tional quantum-field gauge transformation involving bothc
and the electromagnetic potentialAm cannot eliminateam ,
since the theory is invariant under such transformations. In-
stead, the electromagnetic field can be taken as the sum of a
classicalc-number background fieldAm and a quantum field
Am , whereuponam can be regarded as contributing to an
effectiveAm . Conventional classical gauge transformations
can be performed on thec-number potentialAm , while leav-
ing the quantum fieldsc andAm unaffected. This changes
the Lagrangian but should not change the physics. In fact,
the resulting gauge-transformed Lagrangian is unitarily

equivalent to the original one under a field redefinition onc
of the form discussed above for the ungauged model.

To summarize, in the gauged theory theCPT-breaking
termLa8 can be interpreted as a background gauge choice and
eliminated via a field redefinition as in the ungauged case.
We note in passing that related issues arise for certain non-
linear gauge choices@25# and in the context of efforts to
interpret the photon as a Nambu-Goldstone boson arising
from ~unphysical! spontaneous Lorentz breaking@26–32#. In
typical models of the latter type, a four-vector bilinear con-
densatê c̄gmc& plays a role having some similarities to that
of am .

The model~5! involves only a single fermion field. All
CPT-violating effects can also be removed from certain
theories describing more than one fermion field in which
each fermion has a term of the formLa8 . For example, this is
possible if there is no fermion mixing and each such
CPT-violating term involves the same value ofam , or if the
fermions have no interactions or mixings that acquire
spacetime-dependence upon performing the field redefini-
tions. However, in generic multifermion theories withCPT
violation involving fermion-bilinear terms, it is impossible to
eliminate all CPT-breaking effects through field redefini-
tions. Nonetheless, since Lagrangian terms that spontane-
ously breakCPT necessarily involve paired fermion fields,
at least one of the quantitiesam can be removed. This means
that only differences between values ofam are observable.
Examples appear in the context of theCPT-violating exten-
sion of the standard model discussed in Sec. V.

III. RELATIVISTIC QUANTUM MECHANICS

In this section, we discuss some aspects of relativistic
quantum mechanics based on Eq.~6!, with c regarded as a
four-component wave function. The results obtained provide
further insight into the nature of theCPT-violating terms
and are precursors to the quantum field theory. The analo-
gous treatment in the context of the standard model involves
several fermion fields, for whichCPT-violating terms of the
form La8 cannot be altogether eliminated. We therefore ex-
plicitly include the quantityam in the following analysis,
even though it could be eliminated by a field redefinition for
the simple one-fermion case. In fact, the reinterpretation of
negative-energy solutions causes the explicit effects ofam to
be more involved than might otherwise be expected.

The modified Dirac equation~6! can be solved by assum-
ing the usual plane-wave dependence,

c~x!5e2 ilmx
m
w~lW !. ~18!

In this equation,w(lW ) is a four-component spinor satisfying

~lmgm2amgm2bmg5g
m2m!w~lW !50. ~19!

For a nontrivial solution to exist, the determinant of the ma-
trix acting onw(lW ) in this equation must vanish. This means
that lm[(l0,lW ), where @33# l05l0(lW ), must satisfy the
requirement

@~l2a!22b22m2#214b2~l2a!224@bm~lm2am!#250.
~20!
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This condition can also be obtained directly from Eq.~8! and
the assumption~18!.

The dispersion relation~20! is a quartic equation for
l0(lW ). Although the Euler reducing cubic has a relatively
elegant form, in part because Eq.~20! contains no term cubic
in l0, the algebraic solutions to this equation are not particu-
larly transparent. Even without examining the analytical re-
sults, however, certain features of the solutions can be estab-
lished. One is that all four roots must be real, due to
Hermiticity of the quantum-mechanical Hamiltonian

Hc[ i
]c

]t
5~2 ig0gW •¹W 1amg0gm2bmg5g

0gm1mg0!c.

~21!

Another stems from the invariance of the quartic under the
interchange (lm2am)→2(lm2am), which implies that to
each solutionl1

0 (lW ) there corresponds a second solution

l2
0 (lW ) given by

l2
0 ~lW !52l1

0 ~2lW 12aW !12a0. ~22!

This equation and the invariance of the quartic under the
interchangebm→2bm show that, unlike the conventional
Dirac case, the magnitudes of the eigenenergies of the four
roots all differ generically as a direct consequence of the
CPT-violating terms@34#.

Another qualitatively different feature of the present
model is that under certain conditions the rootsl0(lW ) of the
dispersion relation can display cusps. For a conventional dis-
persion relation, the energy is a smooth function of each
three-momentum component for both timelike and spacelike
four-momenta, while there is a cusp at the origin for the
lightlike case. By examining discontinuities in the deriva-
tives of the rootsl0(lW ) with respect to the components of
lW , we have demonstrated that the criterion for cusps to ap-
pear in the present model withm2.0 is thatbm be timelike.
The derivation is most straightforward using observer Lor-
entz invariance to select one of the canonical frames listed in
Appendix B, for which exact solutions to the dispersion re-
lations can be found. The presence of cusps appears to have
no directly observable consequences, in part because their
size is governed by the magnitude ofbm , which is highly
suppressed in a realistic situation.

The assumption that theCPT-violating quantitiesam and
bm are small relative to the scalem of the low-energy theory
implies the dispersion relation~20! must have two positive-
valued roots l1(a)

0 (lW ) and two negative-valued roots

l2(a)
0 (lW ), wherea51,2. Since these roots are eigenvalues

of the time-translation operator, the corresponding wave
functions can be termed positive- and negative-energy states,
respectively. Useful approximate solutions forl6(a)

0 (lW ) that
are valid to second order for arbitrary smallam andbm are
given in Eq.~62! of Appendix A. Some exact solutions valid
for various important special cases are provided in Appendix
B.

Within conventional relativistic quantum mechanics,
negative-energy states are deemed to be filled, forming the
Dirac sea. When a negative-energy state is excited to a

positive-energy one, it leaves a hole appearing to be a par-
ticle with opposite energy, momentum, spin, and charge to
that of the negative-energy state. In the present model, how-
ever, when a negative-energy state moving in a
CPT-violating background with parametersam and bm is
excited to a positive-energy one, it leaves a hole appearing to
be a particle with opposite values as before but moving in a
CPT-violating background with parameters2am andbm in-
stead. This is because the termLa8 is odd under charge con-
jugation. The same effect can be seen explicitly by construct-
ing the charge-conjugate Dirac equation for the model. We
find

~ igm]m1amgm2bmg5g
m2m!cc50, ~23!

where as usualcc[Cc̄T and C is the charge-conjugation
matrix.

The eigenfunctions corresponding to the two negative ei-
genvaluesl2(a)

0 (lW ) can be reinterpreted as positive-energy,
reversed-momentum wave functions in the usual way. We
introduce momentum-space spinorsu(a)(pW ), v (a)(pW ) via the
definitions

c~a!~x!5exp~2 ipu
~a!
•x!u~a!~pW !,

c~a!~x!5exp~1 ipv
~a!
•x!v ~a!~pW !, ~24!

where the four-momenta are given by

pu
~a![~Eu

~a! ,pW !, Eu
~a!~pW !5l1~a!

0 ~pW !,

pv
~a![~Ev

~a! ,pW !, Ev
~a!~pW !52l2~a!

0 ~2pW !. ~25!

The general forms ofu(a)(pW ) andv (a)(pW ) are given in Ap-
pendix A. The relation between the spinorsu andv is deter-
mined by the charge-conjugation matrix and the charge-
conjugate Dirac equation~23!. For example,u(2)(pW ,am ,bm)
}v (1)c(pW ,2am ,bm), where the dependence onam and bm
has been explicitly restored for clarity. The symmetry~22! of
the dispersion relation then connects the two sets of energies
by

Ev
~2,1!~pW !5Eu

~1,2!~pW 12aW !22a0. ~26!

The exact eigenenergies for the various canonical cases are
provided in Appendix B, while Appendix C contains explicit
solutions for the eigenspinors in the special casebW 50.

The four spinorsu(a)(pW ), v (a)(pW ) are orthogonal. Their
normalization can be freely chosen, although imposing the
condition (cc)c5c provides a partial constraint. Our choice
leads to orthonormality conditions given by

u~a!†~pW !u~a8!~pW !5daa8
Eu

~a!

m
,

v ~a!†~pW !v ~a8!~pW !5daa8
Ev

~a!

m
,

u~a!†~pW !v ~a8!~2pW !50, v ~a!†~2pW !u~a8!~pW !50. ~27!
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Note, however, that the Lorentz breaking precludes a simple
generalization of the orthonormality relations involving the
Dirac-conjugate spinorsū(a)(pW ) and v̄ (a)(pW ) instead of the
Hermitian-conjugate spinorsu(a)†(pW ) and v (a)†(pW ). Equa-
tion ~27! produces the completeness relation.

(
a51

2 F m

Eu
~a!~pW !

u~a!~pW ! ^u~a!†~pW !

1
m

Ev
~a!~2pW !

v ~a!~2pW ! ^v ~a!†~2pW !G5I . ~28!

We remark in passing that another useful result is the modi-
fied Gordon identity

ū~a8!~pW 8!gmu~a!~pW !

5
1

2m
ūa8~pW 8!@pu8

~a8!m1pu
~a!m22am

1 ismn~pun8
~a8!2pun

~a!22g5bn!#u~a!~pW !. ~29!

The general solution to the modified Dirac equation~6!
can be written as a superposition of the four spinorsu(a),
v (a):

c~x!5E d3p

~2p!3 (
a51

2 F m

Eu
~a! b~a!~pW !e2 ipu

~a!
•xu~a!~pW !

1
m

Ev
~a! d~a!

* ~pW !eipv
~a!

•xv ~a!~pW !G , ~30!

whereb(a)(pW ), d(a)* (pW ) are the usual complex weights for
the momentum expansion. We remind the reader that in this
expression theam andbm dependence of the energies and the
spinors is understood.

In the above expressions, the four-momenta are eigenval-
ues of the translation operators and hence are conserved
quantities. They therefore represent canonical energy and
momentum rather than kinetic energy and momentum. A dis-
tinction of this type occurs in many physical systems, such as
a charged particle moving in an electromagnetic field. In the
present case this means, for example, that the canonical four-
momenta arenot related to velocity as are the usual kinetic
four-momenta in special relativity. The actual relationship
can be explored by using the velocity operator, given in rela-
tivistic quantum mechanics byvW [dxW /dt5 i @H,xW #5g0gW ,
whereH is the Hamiltonian~21!. The expectation value of
this operator for a given wave packet is the vector-current
integral and gives the~group! velocity of the packet.

As an explicit example, consider the special casebW 50,
for which the eigenenergies and eigenspinors are provided in
Appendixes B and C, respectively. Suppose a wave packet of
energyE and momentumpW is constructed as a superposition
of positive-energy spin-up solutions. A short calculation pro-
duces

^vW &5 K ~ upW 2aW u2b0!

~E2a0!

~pW 2aW !

upW 2aW u L . ~31!

It follows that the velocity is related to the energy and mo-
mentum by

gm5E2a0, gmvW 5pW 2aW 2b0
~pW 2aW !

upW 2aW u
, ~32!

where g51/A12v2 as usual. These are just the usual
special-relativistic results shifted by~small! amounts con-
trolled by the CPT-violating terms. Note that four-
momentum conservation shows that the wave-packet veloc-
ity is constant, as usual.

Even in conventional Dirac quantum mechanics, the
above notion of velocity involves subtleties associated with
the presence of negative-energy solutions. For example, the
velocity operator doesnot commute with the usual Dirac
Hamiltonian. In the presentCPT-violating model, additional
subtleties arise. For example, it follows from the properties
of the roots of the dispersion relation~20! or from the above
discussion that for the special case of timelikebm the veloc-
ity near the origin is not in one-to-one correspondence with
the conserved momentum. Perhaps of more interest is that in
the general case the velocity operator in the energy basis has
additional off-diagonal components, even in the positive-
energy sector. For the example above, these oscillate trans-
verse to (pW 2aW ) with relatively large period of orderb0

21.
They provide time-independent corrections to the velocity
eigenvalues, but only at orderb0

2. The implications of these
features for possible bounds onbm are therefore likely to be
limited but remain to be explored.

A related approach to the notion of velocity is to take the
derivative of the energy with respect to the momentum. For
the special casebW 50, this definition produces the same re-
sult as above and moreover can be obtained without the ex-
plicit wave function. It therefore provides a relatively simple
method of investigating velocity-related issues. For example,
causality of the model is related to the restriction of the
group velocity to below the velocity of light. If causality is
satisfied, the criterion

uv j u[U ]E

]pjU,1 ~33!

should be obeyed for eachj51,2,3. Observer Lorentz in-
variance makes it sufficient to examine the various canonical
cases. Calculating with the expressions in Appendix B, we
find that the criterion~33! is satisfied for all values ofam and
bm . This supports the notion that causality is maintained.
Although the Lorentz breaking does affect quantum wave
propagation, it apparently is mild enough to avoid superlu-
minal signals.

Our treatment in this section of the relativistic quantum
mechanics of a single fermion in the presence of
CPT-violating terms could be further developed to allow for
interactions with conventional applied fields, along the lines
of the usual Dirac theory. In detail, this lies outside the scope
of the present work. We remark, however, that standard
Green-function methods should be applicable. In particular,
we can introduce a generalized Feynman propagator
SF(x2x8) satisfying
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~ igm]m2amgm2bmg5g
m2m!SF~x2x8!5d4~x2x8!

~34!

and obeying the usual Feynman boundary conditions. It has
integral representation

SF~x2x8!5E
CF

d4p

~2p!4
e2 ip•~x2x8!

3
1

pmgm2amgm2bmg5g
m2m

, ~35!

whereCF is the direct analogue of the usual Feynman con-
tour in p0 space, passing below the two negative-energy
poles and above the positive-energy ones. Appendix D con-
tains some remarks about this propagator, including a closed-
form integration for the casebW 50.

IV. QUANTUM FIELD THEORY

In this section, we discuss a few aspects of the quantum
field theory associated with the model Lagrangian~5!. As in
the usual Dirac case, direct canonical quantization is unsat-
isfactory, and the quantization condition is found instead by
imposing positivity of the conserved energy.

Promoting the Fourier coefficients in the expansion~30!
to operators on a Hilbert space, we can obtain from Eq.~9!
an expression for the normal-ordered conserved energyP0
5*d3x:Q0

0:. This expression is positive definite for
a0,m, provided the following nonvanishing anticommuta-
tion relations are imposed:

$b~a!~pW !,b
~a8!

†
~pW 8!%5~2p!3

Eu
~a!

m
daa8d

3~pW 2pW 8!,

$d~a!~pW !,d
~a8!

†
~pW 8!%5~2p!3

Ev
~a!

m
daa8d

3~pW 2pW 8!.

~36!

For simplicity, the dependence onam andbm is suppressed in
these and subsequent equations. The corresponding equal-
time field anticommutators are given by

$c j~ t,xW !,ck
†~ t,xW8!%5d jkd

3~xW2xW8!,

$c j~ t,xW !,ck~ t,xW8!%5$c j
†~ t,xW !,ck

†~ t,xW8!%50, ~37!

where the spinor indicesj ,k are explicitly shown.
Using these expressions, the normal-ordered conserved

charge becomes

Q5E d3p

~2p!3 (
a51

2 F m

Eu
~a! b~a!

† ~pW !b~a!~pW !

2
m

Ev
~a! d~a!

† ~pW !d~a!~pW !G . ~38!

Similarly, the normal-ordered conserved four-momentum is

Pm5E d3p

~2p!3 (
a51

2 F m

Eu
~a! pum

~a!b~a!
† ~pW !b~a!~pW !

1
m

Ev
~a! pvm

~a!d~a!
† ~pW !d~a!~pW !G . ~39!

The reader can verify that the operatorPm generates space-
time translations by determining the commutation relation
with the fieldc: i @Pm ,c(x)#5]mc(x).

The creation and annihilation operators can be written in
terms of the fields as

b~a!~pW !5E d3x eipu
~a!

•xū~a!~pW !g0c~x!,

d~a!
† ~pW !5E d3x e2 ipv

~a!
•xv̄ ~a!~pW !g0c~x!. ~40!

The vacuum stateu0& of the Hilbert space obeys

b~a!~pW !u0&50, d~a!~pW !u0&50. ~41!

Acting on u0&, the creation operatorsb(a)
† (pW ) and d(a)

† (pW )
produce particles and antiparticles with four-momenta
pu
(a)m and pv

(a)m , respectively. The reinterpretation~25!,
which is based on the usual heuristic arguments in relativistic
quantum mechanics, therefore makes sense in the field-
theoretic framework. As expected, the usual fourfold degen-
eracy of the eigenstates of the Hamiltonian for a given three-
momentum is broken by theCPT-violating terms.

The above expressions can be used to establish various
results for the field theory with nonzeroam and bm . For
example, the~time-dependent! commutation relation be-
tween the conserved chargesPm and the quantum operators
Mmn5*d3x:J0mn:, obtained from the operator form of the
currents~11!, is found to be

i @Pl,Mmn#52gl[mPn]2gl0~a[mJn]1b[mJ5
n] !, ~42!

whereJm5*d3x: j m: andJ5
m5*d3x: j 5

m : are integrals of the
charge and chiral currents. Thel50 component of this
equation is the quantum-field analogue of Eq.~12!.

The generalizations of the equal-time anticommutation re-
lations ~37! to unequal times must be solutions to the modi-
fied Dirac equation in each variable and must reduce to the
usual results in the limit wheream andbm vanish. The cor-
rect expressions can in principle be derived by evolving for-
ward in time one of the two fields in each anticommutator of
Eq. ~37!. We write

$c~x!,c̄~x8!%5 iS~x2x8!,

$c~x!,c~x8!%5$c̄~x!,c̄~x8!%50, ~43!

where

S~x2x8!5E
C

d4p

~2p!4
e2 ip•~x2x8!

3
1

pmgm2amgm2bmg5g
m2m

. ~44!

55 6767CPT VIOLATION AND THE STANDARD MODEL



In this expression,C is the analogue of the usual closed
contour inp0 space encircling all the poles in the anticlock-
wise direction. Some comments about this anticommutator
function are given in Appendix E, along with a closed-form
integration forbW 50. For this case, we have checked explic-
itly that the anticommutators~43! are detemined by the inte-
gral ~44!.

The anticommutators~43! are relevant to the causal struc-
ture of the quantum theory. In particular, for the casebW 50
the results in Appendix E can be used to show that the anti-
commutator of two fields separated by a spacelike interval
vanishes:

$ca~x!,c̄b~x8!%50, ~x2x8!2,0. ~45!

Observables constructed out of bilinear products of field op-
erators and separated by a spacelike interval therefore com-
mute. This means that the quantum field theory with timelike
bm preserves microscopic causality in all associated observer
frames. The breaking of Lorentz invariance and the distor-
tions relative to conventional propagation are apparently
mild enough to exclude superluminal signals, in agreement
with the result from relativistic quantum mechanics. The re-
sult might be anticipated since observer Lorentz invariance
holds and the particle Lorentz breaking involves only local
terms in the Lagrangian. A direct analytical proof of micro-
scopic causality in the quantum field theory for the cases of
lightlike or spacelikebm would be of interest but is hampered
by the complexity of the integral~44!.

We next turn to issues associated with interacting field
theory. For the most part, since theCPT-violating terms in
the model Lagrangian can be treated exactly, any added con-
ventional interactions can be handled with standard methods.
In what follows, we suppose that the Dirac fermion in the
model has interactions with one or more other fields that are
of a type acceptable within a conventional approach, and we
discuss effects fromCPT-violating terms.

Essentially all the standard assumptions underlying treat-
ments of conventional interacting field theories can reason-
ably be made in the present context. Thus, for example, the
property of observer Lorentz invariance ensures that consis-
tent quantization can be established in all observer frames
once it is established in a given frame. Much of the usual
analysis is performed in a given observer frame, which in the
present context means that the values ofam andbm are fixed.
Distinct effects are to be expected only in calculations for
which particle Lorentz covariance plays an essential role. For
the most part, matters proceed in a straightforward manner at
the level of the general framework of interacting field theory.
One exception we have found is the explicit derivation of the
Källén-Lehmann spectral representation for the vacuum ex-
pectation value of the field anticommutator, which normally
takes advantage of bothCPT and particle Lorentz covari-
ance@35–38#. The spectral representation could be used to
investigate microscopic causality of the interacting theory,
although the conventional local interactions we consider
seem unlikely to introduce difficulties in this regard. In any
case, it remains an open issue to obtain the spectral represen-
tation in the present case, where additional four-vectors ap-
pear in the theory.

The construction of the in and out fields and the definition
of the S matrix can be implemented in the normal manner.
The Lehmann-Symanzik-Zimmermann~LSZ! reduction pro-
cedure forS-matrix elements generates expressions involv-
ing vacuum expectation values of time-ordered products of
the interacting fields, as usual, but with external-leg factors
for fermions involving the modified Dirac operator (igm]m

2amgm2bmg5g
m2m) or its conjugate (igm]Qm1amgm

1bmg5g
m1m).

The canonical Dyson formalism for the perturbation se-
ries of time-ordered products of interacting fields in terms of
in fields can be applied without encountering difficulties.
Standard expressions emerge, including the vacuum bubbles.
Wick’s theorem holds, reducing the time-ordered products
into normal-ordered products and pair contractions of in
fields. For fermion in fields, the vacuum expectation value of
a pairwise contraction can be shown explicitly to be the gen-
eralized Feynman propagator introduced in the previous sec-
tion: ^0uTc(x)c̄(x8)u0&5 iSF(x2x8). In a momentum-
space Feynman diagram, the corresponding propagator is

SF~p!5
1

pmgm2amgm2bmg5g
m2m

. ~46!

The momentum-space Feynman rules require this modified
propagator for internal fermion lines and modified spinors on
external fermion lines, but are otherwise unchanged from
those of a conventional theory. For example, translational
invariance insures that energy and momentum are conserved
in any process and so the standard four-momentumd func-
tions emerge.

Since theCPT-violating terms are renormalizable by na-
ive power counting, we anticipate no difficulties with the
usual renormalization program. Details of loop calculations
lie beyond the scope of the present work and remain an in-
teresting open issue. We remark in passing that the form
~D3! of the propagator given in Appendix D shows thatam
cancels around all closed fermion loops in analogy with Fur-
ry’s theorem.

We also expect the unitarity of theS matrix to be unaf-
fected byCPT-violating terms. Since a complete Hilbert-
space solution exists in the pure fermion case, there are no
hidden or inaccessible states that could generate nonunitarity
of the type appearing in the first stage of Gupta-Bleuler
quantization of quantum electrodynamics, for example.
Moreover, the interaction Hamiltonian is Hermitian. In any
event, any nonunitarity appearing in a realistic model based
on a unitary fundamental theory would presumably be a sig-
nal that the domain of validity of the effective low-energy
theory is being breached.

In determining physically relevant quantities such as cross
sections or transition rates, kinematic factors appear. For the
most part, these are straightforward to obtain. A subtlety
arises in the calculation of a physical cross section because
the standard definition involves the notion of incident flux
defined in terms of incoming particle velocity. Since the
velocity-momentum relation has corrections involvingam
andbm @cf. Eq. ~32!#, there are corresponding small modifi-
cations to the kinematic factors in standard cross-section for-
mulas expressed in terms of conserved momenta. In a real-
istic case, these are unobservable because they are
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suppressed. This should be contrasted with the
CPT-violating corrections arising in an amplitude from the
modified fermion propagator, which are also suppressed but
might be detected in interferometric experiments using
neutral-meson oscillations@10#.

V. STANDARD-MODEL EXTENSION

In this section, we consider the possibility of generalizing
the minimal standard model by addingCPT-violating terms
within a self-consistent framework of the type described in
the previous sections. SinceCPT violation has not been ob-
served in nature, anyCPT-violating constants appearing in
an extension of the minimal standard model must be small.
In what follows, we assume that these constants are singlets
under the unbroken gauge group, but as before behave under
particle Lorentz transformations as tensors with an odd num-
ber of Lorentz indices. Our primary goal is to obtain an
explicit and realistic model forCPT-violating interactions
that could serve as a basis for establishing quantitative
CPT bounds.

The discussion in the previous sections is limited to
CPT-breaking fermion bilinears. However, other types of
terms violatingCPT in the Lagrangian could in principle
originate from spontaneous symmetry breaking. We adopt
here a general approach, investigating possible
CPT-violating extensions to the minimal standard model
such that the SU~3!3SU~2!3U~1! gauge structure is main-
tained. To preserve naive power-counting renormalizability
at the level of the unbroken gauge group, we restrict atten-
tion to terms involving field operators of mass dimension
four or less. The simultaneous requirements of gauge invari-
ance, suitable mass dimensionality, andCPT violation allow
relatively few new terms in the action@39#.

Any Lagrangian term must be formed from combinations
of covariant derivatives and fields for leptons, quarks, gauge
bosons, and Higgs bosons. We consider first allowed
CPT-violating Lagrangian extensions involving fermions.
Inspection shows that the only possibilities satisfying the
above criteria are pure fermion-bilinear terms without de-
rivatives @40#. In the present context involving many fermi-
ons, the analysis given in the previous sections of such terms
requires some generalization. Since SU~3! invariance pre-
cludes quark-lepton couplings, we can treat the lepton and
quark sectors separately as usual.

Consider first the lepton sector. Denote the left- and right-
handed lepton multiplets by

LA5S nA
l A

D
L

, RA5~ l A!R , ~47!

where

cR[
1

2
~11g5!c, cL[

1

2
~12g5!c, ~48!

as usual, and whereA51,2,3 labels the lepton flavor:l A
[(e,m,t), nA[(ne ,nm ,nt). Then, the most general set of
CPT-violating lepton bilinears consistent with gauge invari-
ance is

LleptonCPT 52~aL!mABL̄AgmLB2~aR!mABR̄AgmRB . ~49!

The constant flavor-space matricesaL,R are Hermitian. The
presence of thegm factor allows fields of only one handed-
ness to appear in a given term while maintaining gauge in-
variance. This contrasts with conventional Yukawa cou-
plings, in which fields of both handedness appear and
invariance is ensured by the presence of the Higgs doublet.

After spontaneous symmetry breaking, the mass eigen-
states~denoted with carets! are constructed with standard
unitary transformations

nLA5~UL
n !ABn̂LB , l LA5~UL

l !ABl̂ LB , l RA5~UR
l !ABl̂ RB .

~50!

TheCPT-violating term in Eq.~49! becomes

LleptonCPT 52~ ânL!mABn̂̄LAgmn̂LB2~ âlL !mABl̂̄ LAgm l̂ LB

2~ âlR!mABl̂̄ RAg
m l̂ RB , ~51!

where each matrix of constantsâm is obtained from the cor-
respondingam via unitary rotation with the corresponding
matrix U: âm5U†amU.

Not all the couplingsâm are observable. The freedom to
redefine fields allows some couplings to be eliminated, in
analogy to the discussion of Sec. II C for the model Lagrang-
ian. Consider, for example, general field redefinitions of the
form

ñLA5~VL
n !ABn̂LB , l̃ LA5~VL

l !ABl̂ LB , l̃ RA5~VR
l !ABl̂ RB ,

~52!

where the matricesV(xm) are unitary in generation space and
have the formV5exp(iHmx

m) with Hm Hermitian. Then, in

each kinetic term of the generic formi c̄̂gm]mĉ, the redefi-
nition ~52! generates an apparentCPT-violating term of the

form 2 c̃̄gm exp(iHlx
l)Hm exp(2iHnx

n)c̃. A suitable choice
of Hm might therefore remove aCPT-violating term involv-
ing âm from Eq. ~51!. The matricesV must be chosen to
leave unaffected the Yukawa couplings and the conventional
nonderivative couplings defining the neutrino fields as weak
eigenstates. It can be shown thatVL

l must be a diagonal ma-
trix of phases, withVR

l 5VL
l andVL

n5(UL
l )†UL

nVL
l . The free-

dom therefore exists to redefine the fields so as to eliminate,
say, the three diagonal elements of theCPT-violating matrix
in the neutrino sector. Note that the existence of this choice
obviates possible theoretical issues arising from the combi-
nation of massless fields at zero temperature and small nega-
tive energy shifts induced byCPT-breaking terms@41#.

Thus, omitting tildes and carets, the general
CPT-violating extension of the lepton sector of the minimal
standard model has the form

LleptonCPT 52~an!mABn̄A
1

2
~11g5!g

mnB2~al !mABl̄ Agml B

2~bl !mABl̄ Ag5g
ml B , ~53!

where we have used Eq.~48! to replace left- and right-
handed couplings with vector and axial vector couplings, and
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where (an)mAA50. Note that Eq.~53! includes terms break-
ing individual lepton numbers, although total lepton number
remains conserved. Flavor-changing transitions therefore ex-
ist in principle but are unobservable if theCPT-violating
couplings are sufficiently suppressed. For example, a frac-
tional suppression of order 10217 or smaller might occur in
the string scenario@10#.

Consider next the quark sector. The SU~3! symmetry en-
sures that all three quark colors of any given flavor must
have the sameCPT-violating current coupling. We can
therefore disregard the color space in what follows, and a
construction analogous to that for the lepton sector can be
applied. Denote the left- and right-handed components of the
quark fields by

QA5S uAdAD L , UA5~uA!R , DA5~dA!R , ~54!

where A51,2,3 labels the quark flavors:uA[(u,c,t), dA
[(d,s,b). Then, at the unbroken-symmetry level, the most
generalCPT-violating coupling is

LquarkCPT52~aQ!mABQ̄AgmQB2~aU!mABŪAgmUB

2~aD!mABD̄AgmDB . ~55!

As before, the constant flavor-space matricesaQ,U,D are Her-
mitian.

After spontaneous symmetry breaking the mass eigen-
states are obtained with the standard unitary transformations

uLA5~UL
u!ABûLB , uRA5~UR

u !ABûRB ,

dLA5~UL
d!ABd̂LB , dRA5~UR

d !ABd̂RB . ~56!

TheCPT-violating expression~55! becomes

LquarkCPT52~ âuL!mABû̄LAgmûLB2~ âdL!mABd̂̄LAgmd̂BL

2~ âuR!mABû̄RAg
mûRB2~ âdR!mABd̂̄RAg

md̂RB .

~57!

As in the lepton sector, each constant matrixâm is obtained
from the correspondingam via the appropriate unitary rota-
tion.

Again, field redefinitions can be used to eliminate some
CPT violation. Consider field redefinitions of the form

ũLA5~VL
u!ABûLB , ũRA5~VR

u !ABûRB ,

d̃LA5~VL
d!ABd̂LB , d̃RA5~VR

d !ABd̂RB , ~58!

where as before the matricesV5exp(iHmx
m) are unitary in

generation space. In this case, invariance of the Yukawa and
nonderivative couplings, including the Cabbibo-Kobayashi-
Maskawa mixings, requires the effect of the matricesV to
reduce to multiplication by a single phase. For example, we
can choose this phase so that the condition (auL)m11
5(auR)m11 holds. This removes theCPT-breaking vector
coupling from theu-quark sector.

Omitting tildes and carets, the generalCPT-violating ex-
tension of the quark sector of the minimal standard model is
therefore

LquarkCPT52~au!mABūAgmuB2~bu!mABūAg5g
muB

2~ad!mABd̄AgmdB2~bd!mABd̄Ag5g
mdB , ~59!

where (au)m11[0. Again, these terms include small flavor-
changing effects that are unobservable if the suppression is
sufficiently small, such as that of fractional order 10217 or
smaller possible in the string scenario. In contrast, the diag-
onal contributions might be detected in interferometric ex-
periments that measure the phenomenological parameters
dP for indirect CPT violation in oscillations of neutral-P
mesons, whereP is one ofK, D, Bd , or Bs . Each quantity
dP is proportional to the difference between the diagonal
elements of the effective Hamiltonian governing the time
evolution of the correspondingP- P̄ system. Explicit expres-
sions fordP in terms of quantities closely related to those in
Eq. ~59! have been given in Ref.@10#.

The two equations~53! and ~59! represent allowed
CPT-violating extensions of the fermion sector of the mini-
mal standard model. Next, we briefly consider other
CPT-violating terms without fermions.

The onlyCPT-violating term involving the Higgs field
and satisfying our criteria is a derivative coupling of the
form

LHiggsCPT5 ikmf†Dmf1H.c., ~60!

wherekm is a CPT-violating constant,Dm is the covariant
derivative, andf is the usual SU~2!-doublet Higgs field. Let
us proceed under the assumption that no self-consistency is-
sues arise for a scalar field that breaksCPT and Lorentz
invariance, so that standard methods apply. Then, Eq.~60!
represents a contribution to the Higgs-Zm

0 sector of the
model. Disregarding possibleCPT-preserving but Lorentz
breaking contributions to the static potential, it can be shown
that the term~60! produces a~stable! modification of the
standard symmetry-breaking pattern to include an expecta-
tion value for theZm

0 field with magnitude proportional to
km . Several kinds of effect ensue but if, as expected, the
quantitieskm are sufficiently small then it can be shown that
the results are either unobservable or produce additional con-
tributions to the fermion-bilinear terms already considered.

It is also possible to findCPT-violating terms satisfying
our criteria and involving only the gauge fields. They are of
the form

LgaugeCPT5k3keklmnTr(GlGmn1 2
3GlGmGn)

1k2keklmnTr(WlWmn1 2
3WlWmWn)

1k1keklmnBlBmn1k0kB
k, ~61!

wherek3k , k2k , k1k , andk0k areCPT-violating constants.
Here,Gm , Wm , Bm are the~matrix-valued! SU~3!, SU~2!,
U~1! gauge bosons, respectively, andGmn , Wmn , Bmn are
the corresponding field strengths. The first three of these
terms can be shown to leave unaffected the symmetry-
breaking pattern, and we expect only unobservable effects
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for sufficiently smallCPT-violating constants@42#. The field
entering the term with couplingk0k is of dimension one. It
appears to produce a linear instability in the theory because it
involves the photon, in which case it cannot emerge from a
fundamental theory with a stable ground state.

VI. SUMMARY

In this paper, we have developed a framework for treating
spontaneousCPT and Lorentz breaking in the context of
conventional effective field theory. The underlying action is
assumed to be consistent and fullyCPT and Poincare´ invari-
ant, with solutions exhibiting spontaneousCPT and Lorentz
breaking. The effective low-energy field theory then remains
translationally invariant and covariant under changes of ob-
server inertial frame, but violatesCPT and partially breaks
covariance under particle boosts.

Our focus has primarily been on Lagrangian terms that
involveCPT-violating fermion bilinears, which are relevant
for experiments boundingCPT in meson interferometry. In
principle, these terms can be treated exactly because they are
quadratic. We have investigated the relativistic quantum me-
chanics and the quantum field theory of a model for a Dirac
fermion involvingCPT violation. The analysis suggests that
effective field theories with spontaneousCPT breaking have
desirable properties like microscopic causality and renormal-
izability. The existence of consistent theories of this type is
reasonable since they are analogous to conventional field
theories in a nonvanishing background. Additional interac-
tions appear minimally affected by theCPT violation, and
the effects are largely restricted to modifications on fermion
lines.

Within the framework developed, we have constructed a
CPT-violating generalization of the minimal standard model
that could be used in establishing quantitativeCPT bounds.
The criteria of gauge invariance and power-counting renor-
malizability constrain the extension to a relatively simple
form, involving the extra terms given in Eqs.~53!, ~59!, ~60!,
and ~61!. It has been previously been suggested@9,10# that
the properties of neutral-meson systemsPP̄, whereP is one
of K, D, Bd , or Bs , are well suited to interferometric tests
of spontaneousCPT violation, with the experimentally mea-
surable parameters for~indirect! CPT violation being explic-
itly related to certain diagonal elements of the quark-sector
CPT-breaking matrices given in Eq.~59!. Investigating the
current experimental constraints on the other
CPT-violating parameters introduced here is an interesting
open topic and could lead to additional signals forCPT vio-
lation.
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APPENDIX A: EIGENSPINORS
OF THE DIRAC EQUATION

Treating theCPT-violating parametersam and bm as
small relative tom, the four rootsl6(a)

0 (lW ), a51,2, of the
dispersion relation~20! are given to second order by

l6~a!
0 ~lW !56$m21~lW 2aW !212~21!a@b0

2~lW 2aW !21bW 2m21„bW •~lW 2aW !…272b0bW •~lW 2aW !Am21~lW 2aW !2#1/2

1b0
21bW 27

2b0bW •~lW 2aW !

Am21~lW 2aW !2
J 1/2

1a0 . ~A1!

This equation produces exact solutions to the dispersion re-
lation in any of the special cases for whichb0bW •(lW 2aW )
50. The eigenenergies of the four spinorsu(a)(pW ), v (a)(pW )
defined in Eq.~24! can be obtained by combining Eq.~A1!
with Eq. ~25!.

In the general case, the four spinor eigensolutions can be
written in the Pauli-Dirac representation as

u~a!~pW !5Nu
~a!S f~a!

Xu
~a!f~a!D ,

v ~a!~pW !5Nv
~a!SXv

~a!x~a!

x~a! D . ~A2!

In the first of these equations,Nu
(a) is an arbitrary spinor

normalization factor andXu
(a) is a spinor matrix defined by

Xu
~a!5

~Eu
~a!2a01m1bW •sW !@~pW 2aW !•sW 2b0#

~Eu
~a!2a01m!22bW 2

. ~A3!

The analogous quantityXv
(a) for the second equation in~A2!

can be found by replacing all subscriptsu by v in Eq. ~A3!
and implementing the substitutionsam→2am , bm→2bm
wherever these quantities explicitly appear. The quantities
f (a) andx (a) are two-component spinors satisfying the ei-
genvalue equations

kW u
~a!
•sW f~a!5hu

~a!f~a!, kW v
~a!
•sW x~a!5hv

~a!x~a!,
~A4!

with @kW u
(a)#25@hu

(a)#2. Here, the vectorkW u
(a) and the scalar

hu
(a) are given by
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kW u
~a!52@~pum2am!bm1mb0#~pW 2aW !

2@~pu2a!21b21m212m~Eu
~a!2a0!#bW ,

hu
~a!52~Eu

~a!2a0!bW
222b0bW •~pW 2aW !

2~Eu
~a!2a01m!@~pu2a!22b22m2#.

~A5!

The analogous quantities with subscriptsv are given by the
same substitutions as before.

APPENDIX B: EXACT EIGENENERGIES
FOR CANONICAL CASES

For the case wherebm is timelike, observer Lorentz in-
variance can be used to select a canonical frame in which
bW 50. In this frame, we find the exact eigenenergies after
reinterpretation are

Eu
~a!5@m21„upW 2aW u1~21!ab0…

2#1/21a0 ,

Ev
~a!5@m21„upW 1aW u2~21!ab0…

2#1/22a0 , ~B1!

wherea51,2 as usual.
For the case of spacelikebm , an observer frame can be

chosen in whichb050. After reinterpretation the exact
eigenenergies become

Eu
~a!5@m21~pW 2aW !2

1~21!a2Am2bW 21„bW •~pW 2aW !…21bW 2#1/21a0 ,

Ev
~a!5@m21~pW 1aW !2

2~21!a2Am2bW 21„bW •~pW 1aW !…21bW 2#1/22a0 .

~B2!

Finally, for the lightlike casebmb
m50 the exact eigenval-

ues of the dispersion relation after reinterpretation are

Eu
~a!5@m21„pW 2aW 2~21!abW …2#1/21a01~21!ab0 ,

Ev
~a!5@m21„pW 1aW 1~21!abW …2#1/22a02~21!ab0 .

~B3!

These last expressions hold in all observer frames.

APPENDIX C: EXPLICIT SOLUTION FOR b¢ 50

For the special casebW 50, the eigenenergies are given by
Eq. ~B1! and the eigenspinors can be written in a relatively
simple form. Introducing momentum-space spinors via Eq.
~24!, we find in the Pauli-Dirac basis the expressions

u~a!~pW !5S Eu
~a!~Eu

~a!2a01m!

2m~Eu
~a!2a0!

D 1/2S f~a!~pW 2aW !

2~21!aupW 2aW u2b0
Eu

~a!2a01m
f~a!~pW 2aW !D ,

v ~a!~pW !5S Ev
~a!~Ev

~a!1a01m!

2m~Ev
~a!1a0!

D 1/2S 2~21!aupW 1aW u1b0
Ev

~a!1a01m
f~a!~pW 1aW !

f~a!~pW 1aW !
D , ~C1!

wherea51,2 as usual and where we have chosen the normalization of the spinors so that Eq.~27! is satisfied. In Eq.~C1!, the
two two-component spinorsf (a)(lW ) are the eigenvectors ofsW •l̂ with eigenvalues2(21)a. If the spherical-polar angles that
lW subtends are specified as~u,f!, then the spinorsf (a)(lW ) are given explicitly by

f~1!~lW !5S cos
u

2

sin
u

2
eif
D , f~2!~lW !5S 2sin

u

2
e2 if

cos
u

2

D . ~C2!

Note that the structure of theCPT-violating terms forces the spinors~C1! and their generalizations in Appendix A to involve
helicity-type states. In the limit of vanishingCPT violation, the solutions~C1! reduce to standard Dirac spinors in the helicity
basis.

APPENDIX D: PROPAGATOR FUNCTIONS

It can be shown that the generalized Feynman propagator determined by Eqs.~34! and ~35! has the form

SF~x2x8!5~ igl]l2algl2blg5g
l1m!~ igm]m2amgm1bmg5g

m1m!~ ign]n2angn1bng5g
n2m!DF~x2x8!,

~D1!

where
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DF~y!5E
CF

d4p

~2p!4
e2 ip•y

1

@~p2a!22b22m2#214b2~p2a!224@bm~pm2am!#2
, ~D2!

with CF the same contour in thep0 plane as that in Eq.~35!.
Direct integration for the special casebW 50 gives

SF~x2x8!5e2 ia•~x2x8!~ igm]m1b0g5g
01m!~2]22m22b0

212ib0g5g
0g j] j !DF~x2x8!, ~D3!

where

DF~x2x8!5
1

16p2

sin b0r

b0r
H 2iK 0~mAr 22t2!,

pH0
~2!~mAt22r 2!,

r 2.t2,
r 2,t2, ~D4!

where r is the radial spherical-polar coordinate. In this expression,K0 is a modified Bessel function andH0
(2) is a Hankel

function of the second kind. The result~D3! reduces to the standard one in the limitam5b050. Note that the propagator is
singular on the light cone, as usual.

APPENDIX E: ANTICOMMUTATOR FUNCTIONS

The anticommutator functionS(x2x8) defined in Eq.~44! can be shown to be given by

S~x2x8!5~ igl]l2algl2blg5g
l1m!~ igm]m2amgm1bmg5g

m1m!~ ign]n2angn1bng5g
n2m!D~x2x8!, ~E1!

where

iD~y!5E
C

d4p

~2p!4
e2 ip•y

1

@~p2a!22b22m2#214b2~p2a!224@bm~pm2am!#2
, ~E2!

with C being the contour of Eq.~44! in the p0 plane.
For the special casebW 50, direct integration gives

S~x2x8!5e2 ia•~x2x8!~ igm]m1b0g5g
01m!~2]22m22b0

212ib0g5g
0g j] j !D~x2x8!, ~E3!

where

iD~x2x8!52
1

8p

sin b0r

b0r H J0~mAt22r 2!,
0,

2J0~mAt22r 2!,

t.r ,
2r,t,r
t,2r ,

, ~E4!

wherer is the radial spherical-polar coordinate andJ0 is a Bessel function. The expression~E3! reduces to the standard result
in the limit am5b050.
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Kosteleckýand R. Potting, inGamma Ray-Neutrino Cosmol-
ogy and Planck Scale Physics, edited by D. B. Cline~World
Scientific, Singapore, 1993!.
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