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We examine the quantum corrections to the static energy for Higgs winding configurations in order to
ascertain whether such corrections may stabilize solitons in the standard model. We evaluate the effective
action for winding configurations in Weinberg-Salam theory without U~1!-gauge fields or fermions. For a
configuration whose sizea!m21, wherem5max$mW ,mH%, mW is theW mass, andmH is the Higgs-boson
mass, the static energy goes likeg22mW

2 a@11b0g
2ln(1/ma)#c0 /b0 in the semiclassical limit. Hereg is the

SU~2!-gauge coupling constant andb0 ,c0 are positive numbers determined by renormalization-group tech-
niques. We discuss the limitations of this result for extremely small configurations and conclude that quantum
fluctuations do not stabilize winding configurations where we have confidence in SU~2!-Higgs theory as a
renormalizable field theory.@S0556-2821~97!01011-4#

PACS number~s!: 11.15.2q, 12.15.Lk, 12.39.Dc

I. INTRODUCTION

The Higgs sector in the standard model is a linears
model. Such a theory exhibits configurations of nontrivial
winding, though they are not stable. In the standard model,
winding configurations shrink to some small size and then
unwind via a Higgs zero when allowed to evolve by the
Euler-Lagrange equations. These winding configurations can
be stabilized if one introduces four-derivative Higgs self-
interaction terms which are not present in the standard model
@1,2#. The motivation typically cited for introducing such
terms is that one may treat the Higgs sector of the Lagrang-
ian as an effective field theory of some more fundamental
theory which only manifests itself explicitly at some high
energy scale. The stabilized configurations have phenomeno-
logical consequences in electroweak processes and provide
an arena for testing nonperturbative aspects of field theory
and the standard model. The presence of gauge fields leads to
the instability of these solitons@2#, and their decay, whether
induced or by quantum tunnelling, is associated with fermion
number violation@2,3#. In turn, such a mechanism for ferm-
ion number violation may have an effect on the early Uni-
verse and electroweak baryogenesis@4#.

Unfortunately, the procedure just described for stabiliza-
tion is inconsistent. First, treating the Higgs sector as an
effective theory requires the inclusion of all higher-
derivative terms of a given dimension rather than just a few.
Moreover, using an effective field theory to stabilize solitons
creates difficulties. Effective field theories are equivalent to
derivative expansions. Solitons that are stabilized by intro-
ducing the leading-order terms in a derivative expansion im-
ply that the following orders in the expansion will contribute
equally as the leading orders. Truncating the derivative ex-
pansion, then, is not legitimate.

We will take a different approach; we wish to see whether
just the quantum fluctuations of arenormalizableSU~2!-
Higgs theory can stabilize winding configurations. We will

take the Higgs sector to be that found in the standard model.
Consider just the mode associated with the size of a given
winding configuration. That mode may be parametrized by
the quantitya, the spatial size of the object~which must be
positive!. The potential for that degree of freedom goes like
a1a3 and energetically favors configurations of zero size.
Classically, the degree of freedom will evolve towards
a50 while losing its energy to radiative modes. Now let us
quantize this mode. Even though the system would favor
being ata50, that would also imply the momentum conju-
gate to that degree of freedom would also be zero. Heisen-
berg uncertainty would puff out the expectation value of the
size degree of freedom. Note that the size of the soliton will
be proportional to Planck’s constant to some power. The
mechanism described is analogous to that which stabilizes
the atom, which is classically unstable. Of course, there are
other modes that couple into our situation, making the analy-
sis more complex. Work has been done@5# that investigates
quantizing breathing modes ins models such as the Higgs
sector of the standard model.

In this paper, we identify the quantum effects on the en-
ergy of static winding configurations by evaluating the effec-
tive action. If quantum effects stabilize solitons, that effect
should be reflected by some extremum in the effective ac-
tion. If we take the weak gauge-coupling limit,g2→0, we
shall see that an analytic expression is available for the ef-
fective action that is a controlled approximation in the re-
gime where we have confidence in SU~2!-Higgs theory as a
renormalizable field theory. The weak coupling limit is
equivalent to the semiclassical limit when fields are scaled
properly. When Planck’s constant is small, we need only
focus on small field configurations. This observation follows
from the scenario described above for stabilizing winding
configurations by quantum fluctuations: the size of a stabi-
lized object will be proportional to Planck’s constant, and
therefore, will be small if it exists.

Evaluating corrections to energies via the effective action
is not a new approach. It has been a focus of investigation in
effective meson theories@6,7# and other areas@8#. Although,
they elucidate important effects, such as bosonic and fermi-*Electronic address: ithron@mit.edu
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onic backreaction as well as valence fermion effects, these
studies treat the effective action to one-loop order only. We
will see that there is a difficulty with simultaneously exam-
ining small configurations and neglecting higher-loop ef-
fects.

We begin by spelling out the action and types of configu-
rations under consideration. When configuration sizes are
small, we can employ renormalization-group techniques to
ascertain the asymptotic behavior of the one-particle irreduc-
ible Green’s functions which, in turn, allows us to determine
the leading-order size dependence of the effective action. We
will find our results to be reliable until the size of our con-
figuration becomes extremely small, on the order of the in-
verse momentum of the Landau pole associated with the
Higgs sector. Thus our results are valid when the size of our
configuration is not on the order of the cutoff necessary to
avoid a trivial renormalized Higgs self-coupling. We con-
clude that the quantum corrections to the energy are not suf-
ficient to stabilize Higgs winding configurations where we
have confidence in SU~2!-Higgs as a renormalizable field
theory.

II. THE EFFECTIVE ACTION

Consider the Weinberg-Salam theory of electroweak in-
teractions, neglecting the U~1!-gauge fields and fermions.
Our field variables form the set$Am(x),f(x)% where the
gauge fieldAm(x)5saAma(x)/2 is in the adjoint representa-
tion of SU~2! ($sa% are the Pauli matrices!, and the Higgs
field f(x) is in the fundamental representation of SU~2!. The
classical action we consider is

S5S01SGF,

S05E d4xH 2
1

4
Fa

mnFmn
a 1~Dmf!†~Dmf!

2
g2a

2 F ~f1f0!
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where we have chosen theRj gauge and

Dmf5S ]m2
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2
saAmaDf,

Fmn
a 5]mAn

a2]nAm
a1geabcAmbAnc .

We have shiftedf(x) by a vacuum configurationf0, some
constant SU~2! doublet satisfying the relationship
f0
†f05mW

2 /g2. The parametermW is the mass of the gauge
field and a5(mH /mW)

2 wheremH is the physical Higgs
boson mass. The Feynman rules derived from Eq.~2.1! are
familiar. In this analysis, we restrict ourselves to the semi-
classical limit, which is equivalent to takingg2→0 while
holdingmW ,mH ~and, thus, alsoa) fixed.

We wish to determine the effects of quantum fluctuations
on Higgs winding configurations. We will evaluate the effec-
tive action,G@Am

a ,f#, where

Am
a ~x!50,

f~x!5@U~x!21#f0 , ~2.2!

and whereU(x)PSU(2) is a static configuration such that
U(x)→1 as uxu→` with characteristic size,a. We require
the fieldU(x) to be a configuration of unit winding number

w@U#5
1

24p2E d3xe i jkTr@~U†] iU !~U†] jU !~U†]kU !#51.

From conventional perturbation theory, we know that

G@f#5(
n
E d4p1

~2p!4
•••

d4pn
~2p!4

~2p!4d4S (
i
pi D

3G~n!~$pi%!f̂~p1!•••f̂~pn!, ~2.3!

where G (n)($pi%) are the one-particle irreducible Green’s
functions withn externalf ’s. We define the fieldf̂(p) as
the Fourier transform off(x). For the configuration~2.2!,
we get

f̂~p!52pd~p0!E d3xe2 ip•xf~x!.

The static energy for the state whose expectation value of the
operator associated with the Higgs field isf(x) will be the
quantityE in the expression

G@f#52E dtE.

Normally, the effective action~2.3! cannot be evaluated ex-
actly. However, because we are investigating the semiclassi-
cal limit, we are only interested in a configuration whose
size,a, is small. We find that under such a circumstance, we
may use the Callan-Symanzik equation for our theory to
evaluate the leading-order size dependence of the one-
particle irreducible Green’s functions in Eq.~2.3! and thus
evaluate the quantum corrections to the static energy.

III. ASYMPTOTIC BEHAVIOR

In this section we identify the scaling dependence of the
one-particle irreducible Green’s functions,G (n)($pi%), when
the characteristic size of the Higgs winding configuration,
a, is small with respect to both mass scales of the theory. Let

FIG. 1. One-loop contribution to the scalar field anomalous di-
mension.

6726 55ARTHUR LUE



m5max$mW,mH%. We implement the condition of small,
static background configurations by requiring the field
f̂(p) to have support only forp050 andupu@m which im-

plies 0,m2!2p2. Under this circumstance, the asymptotic
dependence ofG (n) will be determined by the Callan-
Symanzik equation@9#

F ]

]s
2bg~g

2,a!
]

]g2
2ba~g2,a!

]

]a
1ng~g2,a!1~n24!GG~n!~$esp̃i%,g

2,a,m!50, ~3.1!

wheres5 ln(1/ma) and2 p̃i
2;m2. Herebg ,ba are theb functions forg2 anda, respectively, that determine the running

couplings. The functiong(g2,a) is the anomalous dimension of the scalar fieldf(x).
The solution to Eq.~3.1! may be determined by the method of characteristics. We find that

Gasymp
~n! 5~ma!n24G~n!

„$ p̃i%,ḡ
2~s,g2,a!,ā~s,g2,a!,m…expF2nE

0

s

dsg„s,ḡ2~s,g2,a!,ā~s,g2,a!…G , ~3.2!

where the running coupling constantsḡ2,ā are defined such
that

dḡ2

ds
5bg~ ḡ

2,ā !,
dā

ds
5ba~ ḡ2,ā !

and ḡ2(s50)5g2,ā(s50)5a. We will evaluate Eq.~3.2!
using one-loopb functions and scalar anomalous dimension.

The one-loopb functions may be easily obtained from the
literature. For a single scalar Higgs doublet, we find@10#

bg~g
2,a!52b0g

4, ~3.3!

ba~g2,a!5g2~Aa21Ba1C!, ~3.4!

where b0543/48p2,A53/4p2,B51/3p2,C59/64p2. The
one-loop anomalous dimension may be evaluated using just
the graph in Fig. 1.

g~g2,a!52
1

2
c0g

2, ~3.5!

where c053@11(j21)/4#/16p2. Becausej is positive or
zero,c0>9/64p2. Inserting these expressions into Eq.~3.2!,
we find that

Gasymp
~n! 5~ma!n24G~n!~$ p̃i%,ḡ

2,ā !~11b0g
2s!nc0/2b0.

Whenn.4, the one-loopn-point diagrams give the leading
terms for the prefactor

G~n!~$ p̃i%,g
2,a!;m42ngnFn~Aa!, ~3.6!

whereFn is a polynomial inAa of ordern. Whenn<4, the
renormalizedG (n) is dominated by the classical contribution

G~2!~ p̃,g2,a!;m2,

G~3!~$ p̃i%,g
2,a!;mWga,

G~4!~$ p̃i%,g
2,a!;g2a. ~3.7!

We are now prepared to insert these asymptotic formulas
into Eq. ~2.3!. So long asā/a is not too large, the leading-

order size dependence of the effective action comes from the
two-point one-particle irreducible Green’s function. All other
terms are suppressed by powers ofa and other factors. The
leading-order contribution to the effective action from quan-
tum fluctuations yields

G@f#5E d4p

~2p!4
f†~p!f~p!p2F11

1

2
b0g

2lnS 2p2

m2 D Gc0 /b0
~3.8!

implying a scale dependence

G@f#;2E dt
mW
2 a

g2 F11b0g
2lnS 1

maD G
c0 /b0

. ~3.9!

One can recover the classical result from Eq.~3.9! by setting
the g2 inside the brackets to zero. Note that when
b0g

2ln(1/ma);1, the quantum corrections to the energy are
as significant as the classical contribution. Nevertheless, the
static energy that corresponds to this effective action is a
monotonically increasing function of the size,a, such that
E(a50)50.1 This would imply that Higgs winding configu-
rations would shrink to zero size and unwind via a Higgs
zero, just as in the classical scenario.

Let us take a closer look at our expression for the leading
contribution to the effective action~3.8!. Expanding in pow-
ers ofg2 we get

1Note that the expressions~3.8! and ~3.9! are dependent on the
gauge fixing parameter, j, through the exponent
c0 /b059@11(j21)/4#/43. The effective action will generally de-
pend onj when the background configuration is not an extremum
of the effective action@11#. The effective action need only be
gauge-parameter independent whendG/df50, when the field con-
figuration is some solution to the quantum-corrected equations of
motion. Our observation that the static energy has no extrema for
small-sized configurations is not altered by different choices ofj.
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G@f#5E d4p

~2p!4
f†~p!f~p!p2

1
c0
2
g2E d4p

~2p!4
f†~p!f~p!p2lnS 2p2

m2 D1•••.

The first term is the contribution from the classical action.
The next term is the leading-order contribution from one-
loop one-particle irreducible graphs. Note that it depends
only onc0. In fact, the dominant one-loop contribution to the
effective action comes from the graph in Fig. 1. The scale
dependence of the static energy will go like

E5
mW
2 a

g2 FA1Bg2ln
1

ma
1Cg4S ln 1

maD
2

1••• G ,
~3.10!

whereA,B,C are numbers. Again the first term is the classi-
cal energy, the second is the one-loop energy, and the rest of
the terms in the expansion~3.10! correspond to higher-loop
energies order by order. We can see by comparing Eq.~3.9!
with Eq. ~3.10! that loop contributions to the effective action
beyond one loop can only be neglected when
b0g

2ln(1/ma)!1. However, that is precisely the condition
where the one-loop contribution can be neglected relative to
the classical action. Thus, drawing conclusions concerning
solitons based on one-loop results may be difficult. When
dealing with small configurations, one still needs to include
higher-loop contributions, even in the semiclassical limit.

IV. LIMITATIONS

We expect expression~3.9! to be valid so long as we can
neglect high-loop contributions to theb functions~3.3! and
~3.4!, the anomalous dimension~3.5!, and the renormalized
Green’s functions~3.6! and ~3.7!. Higher loop contributions
to these quantitities will be negligible if the running cou-
plings associated with the gauge coupling,ḡ2, and that asso-
ciated with the scalar self-coupling,ḡ2ā, are small. The first
criterion is relatively easy to adhere to, since the gauge cou-
pling is asymptotically free and will run to zero with increas-
ingly small-sized configurations, subject toḡ2ā being small.
Recall also, we require thatā/a not be too large so that we
may neglect all but the two-point contribution to the effec-
tive action. All these criteria for the validity of Eq.~3.9!
hinge on howā runs with smaller and smaller sized configu-
rations. From Eq.~3.4! we can ascertain the dependence of
ā on the configuration size. Inserting the appropriate expres-
sion for ḡ2, we find

ā~s,g2,a!5
1

2A H 2B1DtanFarctan2Aa1B

D

1
D

2b0
ln~11b0g

2s!G J , ~4.1!

whereD5A4AC2B2.0. Thus we see thatā has a Landau
singularity when the argument of the tangent isp/2. Thus,
expression~3.9! is certain to break down for a configuration
of some size approaching the inverse momentum associated
with this singularity. However, if the argument of the tangent

is not very close top/2, thenā will not be numerically very
different from the renormalizeda, implying that ḡ2ā is
small if g2a is small. Thus, our constraint on the size,a, will
be that

arctan
2Aa1B

D
1

D

2b0
ln~11b0g

2s!,
p

2
.

This implies that

b0g
2s,expF2b0D S p

2
2arctan

2Aa1B

D D G21[ f ~a!.

The function,f (a) is plotted in Fig. 2. Thus, our expression
~3.9! is valid for configurations whose size,a, satisfies

m21e2 f ~a!/b0g
2
!a!m21 ~4.2!

wheng2,g2a!1. Recall from our discussion at the end of
the last section that the quantum corrections to the energy
will be as significant as the classical contribution when
b0g

2s;1. Now we can see from our condition
b0g

2s, f (a) and Fig. 2 that there exists someamax such that
if a,amax, the energy~3.9! will be both reliable and sig-
nificantly different than the classical result. Whena.amax
the quantum corrections are bound to be small where our
result is valid.

When the size of the configuration is near the inverse
momentum associated with the Landau pole, higher-loop
contributions to theb andg functions become important and
potentially change the size dependence of the energy. How-
ever, if we take the presence of this singularity as a cue that
a finite momentum cutoff is necessary to maintain a non-
trivial Higgs self-coupling@12#, then we can conclude that
our expression for the static energy~3.9! is valid so long as
the size of the configuration is not so small as to be on the
order of a lattice size associated with a finite momentum
cutoff. Thus, quantum fluctuations do not stabilize winding

FIG. 2. The functionf (a) is plotted vsa5mH
2/m2. The scale

of the Landau pole may be extracted from this curve using the
identity f (a)5b0g

2ln(LLandau/m). The criterion for the validity of
our expression for the quantum-corrected energy is that
a.1/LLandauor, alternatively,a.m21exp@2f(a)/b0g

2#.
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configurations where we have confidence in SU~2!-Higgs
theory as a renormalizable field theory.

V. CONCLUDING REMARKS

We evaluate the quantum corrections to the static energy
for a Higgs winding configuration in the semiclassical limit.
We ascertain the leading-order contributions to the static en-
ergy which is relevant to soliton stabilization by treating the
effective action for small-sized configurations. Moreover, we
perform this calculation in such a way that avoids the diffi-
culties in neglecting higher-loop contributions to the effec-
tive action. By solving the Callan-Symanzik equation for our
theory, we find the leading-order size dependence of the en-
ergy including quantum corrections. We also use
renormalization-group techniques to determine the limita-
tions on our expression.

We find that bosonic quantum fluctuations do not stabilize
Higgs winding configurations in a standard model type
SU~2!-Higgs theory. Classically, a configuration of sizea
would have static energy which goes likemW

2 a/g2. These
winding configurations will shrink to zero size and eventu-
ally unwind via a Higgs zero. Including quantum fluctua-

tions, whena!m[max$mW,mH%, the corrected energy goes
like g22mW

2 a@11b0g
2ln(1/ma)#c0 /b0, whereb0 ,c0 are posi-

tive numbers. The corrected energy still goes to zero as the
sizea goes to zero. When the configuration shrinks to a size
a;m21exp@2f(mH

2/mW
2 )/b0g

2# our result becomes invalid
and we run into the Landau pole associated with the Higgs
sector. Taking this pole to be an indication that a finite mo-
mentum cutoff is necessary for a nontrivial Higgs self-
coupling, we find that bosonic quantum fluctuations do not
stabilize Higgs winding configurations where we have con-
fidence in SU~2!-Higgs theory as a renormalizable field
theory.
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