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Pion decay constant and thep-meson mass at finite temperature in hidden local symmetry
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We study the temperature dependence of the pion decay constaptraadon mass in the hidden local
symmetry model at one loop. Using the standard imaginary time formalism, we include the thermal effect of
the p meson as well as that of the pion. We show that the pion gives a dominant contribution to the pion decay
constant and the-meson contribution slightly decreases the critical temperature. gfimeson pole mass
increases a§74/m§ at low temperature, dominated by the pion-loop effect. At high temperature, although the
pion-loop effect decreases tpaneson mass, theloop contribution overcomes the pion-loop contribution and
the p-meson mass increases with temperature. We also show that the conventional paadmstable as the
temperature increasds$0556-282(197)03911-9

PACS numbsgs): 11.10.Wx, 11.30.Rd, 12.38.Aw, 12.39.Fe

[. INTRODUCTION convenient to use the effective Lagrangian of the pion and

the p meson. There are several models which include the

One of the most remarkable features of QCD at low enpion andp meson, among which we study the hidden local
ergy is that the approximate chiral symmetry is spontanesymmetry model[9]. For the parameter choice=2 this

ously broken and the approximate Nambu-GoldstGie) model successfully predicts the following phenomenological
boson appears. The pion is regarded as the NG boson and tfaets [10]: the p-coupling universalityg,,,=g [11]; the
resultant low energy theorems successfully reproduce thkawarabayashi-Suzuki-Riazuddin-FayyazuddiKSRF) re-

low energy physics of pions. In hot and/or dense matterjation (I1) mg:zgiﬂ_ﬂ_fﬁ_ [12]; and thep-meson dominance

however, the quark condensate melts at some critical poingf the electromagnetic form factor of the pian, =0 [11].
and chiral symmetry is restored. This chiral phase trans't'orMoreover, we obtain the KSRR) relation g,=2 fqugpww

Flassg))een widely studiedor recent reviews, see, e.g., Refs. [12] as a “low energy theorem” of hidden local symmetry
e . L JlS], which was first proved at the tree lej&H4| and then at
Several experiments such as the BNL Relativistic Heav any loop ordef15]. One-loop corrections to the above pre-
lon Collider(RHIC) are planned to measure the effects in hot . . " d.' din the Land Svst i
and/or dense matter. One of the interesting quantities in h Ictions were studied in the Landau gal{gﬁ]. ystematic -
oop expansion such as chiral perturbation was studied in

and/or dense matter is the changepaheson mass. In Refs. X )
[2, 4] it was proposed that themeson mass scaled like the Ref-[17], where the expansion was done by regardingsthe

pion decay constant in hot and/or dense matter, and vanish&@€son as a light particle.
at the chiral phase transition point. The low temperature N this paper we study the temperature dependence of the
theorem for thep meson was obtained by using current al- Pion decay constant and themeson mass by using the hid-
gebra[5], which showed that the-meson mass was stable in den local symmetry model at one loop. It is also interesting
the low temperature region. The thermal pion effect to theo see the temperature dependence of the paramevehnich
p-meson mass was studied by using effective thediggs is related to the above successful phenomenological predic-
and it was shown that the-meson mass slightly increased tions. One-loop calculations will be done by using the stan-
with temperature. On the other hand, the thermal effect oflard imaginary time formalisrhl8]. The renormalization is
nucleons was shown to give a negative contributj@h done in the low energy limit as shown in R¢L6].
However, the thermal effects of themeson itself was not This paper is organized as follows. In Sec. I, we briefly
included in these analysis. In R¢8] the thermal effects of review the hidden local symmetry, and introduceRynlike
heavier mesons to the quark condensate were included intpauge-fixing term and the corresponding ghost Lagrangian.
the chiral perturbation analysis by using the dilute gas apin Sec. I, we show the temperature dependence of the pion
proximation. Thep meson seems to give a non-negligible decay constant at finite temperature. The temperature depen-
effect near the critical temperature. Then, it is interesting tadence of the parameter is also studied. Section IV is de-
see the thermal effect of the meson, especially to the voted to study the temperature dependence ofptheeson
p-meson mass, by including it systematically. mass by using the on-shell-like renormalization condition.
To include the thermab-meson effect systematically it is Finally, a summary and discussion are given in Sec. V. To
avoid complexity, the polarization tensors at finite tempera-
ture and complicated functions are summarized in Appen-
*Electronic address: mharada@npac.syr.edu dixes A and B, respectively. We also study theneson
"Electronic address: ashibata@mail.kek.jp propagator at finite temperature in Appendix C.
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Il. HIDDEN LOCAL SYMMETRY wherea is a constant, and,,, anda,, are the covariantized

Let us start with the [SUN) XSUN)Rlgope oUTEr-Cartan one-formgaj
X[SUN)y]iocar “linear” model [10]. We introduce two SU

(N)-matrix valued variableg, (x) and ég(x), which trans- D, & - & —D, & &L
form as @, = - 5 - ,
ELROO— & g =) & r(GR, . (1) . ,
- D,é-&tDuER €
where N(x) €[SUN)vliocar and g1 e [SUN)L lgiova = R )

These variables are parametrized as

) _ Normalizing the kinetic term of, we find[20]
& r(x)=el oW ogTimlty

[m(x)=73(X)Ta,0(X)=0%(X)T,], 2 f2=af2. (6)

where 7 and o are the pion and thﬁ‘ “compe?s_ator” For the parameter choiae=2 at the tree level, this model
(woul.d—be Nambu-Goldstone fieldo be absprbed into predicts the following phenomenological fadis0]: (1)
the hidden gauge bosdthe p meson, respectively, and , g,..=g (universality of the p coupling [11]; (2) m?

. . . pTmT ’ P
and f, are the corresponding decay constants in the chiral=

= e , - . =2g%__f2 (KSRF Il) [12], and (3) g,.,=0 (p-meson
symmetric limit. The covariant derivatives are defined by dorr?ilﬁance of the electromagnetic foﬁ% factor gf the pion

[11].

D é1=0d,8 —1gV, & +i& Ly, Moreover, independently of the parameterthis model
predicts the KSRF relatiofL2] (version )

D,u.‘fRE 0;/.§R_ IgVM§R+ [ gRR,u,y (3) 2

gp: 2 frrgpﬂ'ﬂ' (7)
whereg is the gauge-coupling constant of the hidden local
symmetry,V,, (EVZTa) the hidden gauge boson fielthep  as a “low energy theorem” of hidden local symme{rd/3],
meson, and£,, and R, denote the external fields gauging which was first proved at the tree lev@4] and then at any
the[ SU(N)  Igiobar @nd[ SU(N)rgiobai: r€Spectively. The La- loop order{15].
grangian of [SU(N)_ X SU(N)g]giobar< [SUN)v]iocar “lin- In this paper, to consider loop effects of hidden local sym-
ear” model is given by [9,10] metry, we introduce aR.-gauge-like[21] gauge-fixing and

a Faddeev-Popov ghost Lagrangian corresponding to the hid-
=12t (@, )?]+af2tr(a,)?]— 3tV,,V*"], (49  den local gauge boson. These are giver| 18]

1 i
EG;:Jer: - E tl’[(&”VM)] + E ag ffrtr[5ﬁvlu( fL_ §I+ gR_ g;)]
1 2,264 t t\2 1 t t1)2
+1—6 aa“g fTr tr[(éL—éLJrfR—éR) ]_N (tr[gL_gL"_fR_gR])

+itr]

1
E[Za”DMC+ 5 aagfo(Cé +£[C+Cept £RC)

} : ®

where o denotes a gauge parameter abdlenotes a ghost [16,17. Here, following Ref[16], we use theZ factors de-
field. In this paper we choose the Landau gauage0. In this  fined by
gauge the would-be Nambu-Goldsto{iéG) bosone is still
massless, no other vector-scalar interactions are created, and
the ghost field couples only to the hidden local gauge field.

The renormalization is done by introducing counterterms

gO:Zgg! VO;L:Z%/IZV;L '
me= quleﬂ', oo= Z(lr/ZO',

fro=ZY% ., f,0=2J%,. 9
The massive Yang-Mills approa¢h9] gives a Lagrangian of the mo S o0 Fo te
same form if we take the unitary gauge of hidden local symmetry.

This is equivalent to the hidden local gauge method at the tree levelWe renormalize the theory at zero temperature; then,
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FIG. 1. Feynman diagrams contributing to the one-particle-
irreducible part of the axial-vector current two-point function.

the corrections from the thermal piop, meson, and so
on are calculated to be finite.

0 I 5‘0 ‘ 1(;0 I 11‘50 . 2(‘)0 - 250
Ill. TEMPERATURE DEPENDENCE T (MeV)

OF DECAY CONSTANTS
FIG. 2. The temperature dependence of the pion decay constant.

In this section we study the temperature dependences afhe solid line denotes the total contributidin(T) in Eq. (14) and
the decay constants of the pion and We also study the the dotted line denotes tira,—c limit [Eq. (15)].
temperature dependence of the paramaterhich is related
to the successful phenomenological predictions of hidden lo- There exist three 1P| diagrams which contribut&tg’ at
cal symmetry. the one-loop level(a) =+ p loop, (b) 7w+ o loop, and(c) =
To define the pion decay constant at finite temperaturesad-pole, which are shown in Fig. 1. These diagrams include
we consider a Green function for the axial-vector currentyitraviolet divergences, which are renormalizedzyin Eq.
AL (9). By taking a suitable subtraction scheme at zero tempera-
ture, all the divergences including finite corrections in the
5abG""(Po,P; T)=F.T.(0|ALAL|O)+. (100 low energy limit are absorbed intd, [15,16. Then the loop
diagrams generate only the temperature-dependent part. By
Since the axial-vector current is conserved, we can decomssing standard imaginary time formaligrh8] we obtain
pose this Green function into longitudinal and transverse

i . N a |5 1
ieces: "
P GR(Po.P=0)=5 2 |5 12~ 3+ 50z (1a=3),
G'(Po, P T) =PF G ur+PL"Ga, (11)
izat ned i GO (s 5=0)= N 2|
where polarization tensor®, and P; are defined in Eq. AL(Po,P=0)= 5 == I,
(A1). It is natural to define the pion decay constant at finite
temperature through the longitudinal component in the low Nl-a
energy limif [22]: G (po.p=0)= 5 2 (13
2 — H 2
fa(T)= —pIImOGAL(pO,p—O). (12 where the functions, andJ", are defined in Appendix B. If
0*}

we saw diagrams naively, we might think the diagréch

There are two types of contributions to this Green function inglc\)/:; gtgr? eg??;ggrgo;?gg::%t;?ﬁb':gg;%irz’ /Sérczh I\(lj :\afjram
our model:(i) the pion exchange diagrams aid the con- .

= . . . ertheless, we see from E(.3) that the terms proportional to
tf”‘Ct or pne-partlc_le irreducibldP) diagrams. The contribu- al, are canceled among the three diagrams. The total contri-
tion (i) is proportional top,, or p, at one loop. At most only

one of theA4-m coupling can be corrected at one loop, bution s given by

which is not generally proportional to the four-momentum 1 a

p.- The other coupling is the tree-level one and proportional ffT(T)= ffr— 52 I2—aJ§+ e (|4—J‘1‘) . (19
to p,. When we act with the projection operatey ,, , the P

term proportional tg,, vanishes. Because of current conser-
vation, we have the same kinds of contributions from 1PI
diagrams: Those are roughly proportionaitg, instead of
p.- Then we will calculate only the 1PI diagrams.

When we taken,— co limit in the above expression, only the
I, term remains:

I
EUR— 2-D3=i2-N71 a9

2To perform the complete renormalization at one loop, we need’\’hICh is consistent with the result given by Gasser and
higher order counterternid7]. However, for the quantities we are Leutwyler [23]. .
studying in this paper, the counterterms induced fidrfactors in -~ We ShOW the temperature dependencé gfT) by a solid
Eq. (9) are enough to renormalize the divergences. Then we do ndine in Fig. 2, where we usé,=93 MeV, m, =770 MeV,
explicitly introduce such higher order counterterms here. a=2, andN=2. (We use same values for numerical analysis

3Even when we use the transverse part instead of the longitudin&€low) The chiral perturbation prediction, Ed15), is
part to definef (T) in Eq. (12), we obtain the same result: shown by a dotted line in Fig. 2. Figure 2 shows that the pion
G 41(Po,P=0)=G 4.(po.,p=0). loop gives a dominant contribution and tipgemeson loop



55 PION DECAY CONSTANT AND THEp-MESON MASS AT . .. 6719

4 ki3 A . a(T)
Vo b ¥ ek haan A e ’ 3

P T o

(@ ®) © @

FIG. 3. Feynman diagrams for the one-particle-irreducible part
of the vector current two-point function.

generates a small correction. The situation is similar to the
quark condensate in chiral perturbation analy8is

We should notice that the term proportionallipcorre- L
sponds to a part of two-loop order effects in ordinary chiral 0 50 100 150 200 250
perturbation theory. The two-loop order effects are divided T (MeV)
into two types of diagrams: One is a two-loop diagram
which includesO(p?) vertices only and the other is a one-

. . . 4 .
loop diagram which includes only or@(p) vertex. In chi- There are four diagrams which contribute to the 1PI part
ral perturbatlon theor_y th®(p™) vertices are parametrized of G& at one loop, which are shown in Fig. 3. We note that
by /4, and/", [24], which are saturated by the effect of the we do not have ar tadpole contribution, since there is no
meson(25]. Then thel , term generated by themeson may o-o-V-V-type vertex at the tree level. These four diagrams

be a good approximation to tr(e(p“) contribution in chiral lead to the temperature dependence given by
perturbation theory.

FIG. 4. The temperature dependence of the paranaeter

Next, we study the temperature dependencé,of Simi- 1 [a2+8a+3
lar to the case of ., we start with a Green function for the f2(T)=f2— 2| l,—J2+ Iz (1,— 3.
vector current: P
(18)
8abGY"(Po,B; T)=F.T.(0[V5V;|0)+ . (16) The parametera at finite temperature is given by

a(T)=f2(T)/f(T) [see Eq(6)]. Using the temperature de-
There are three types of contributioris: 1PI diagrams(ii) pendence of . andf, given in Egs(14) and(18), we obtain
the o-exchange diagrams, affiid ) the p-exchange diagrams. the temperature dependence of the paranseter
We have no strict definition of .(T) like f_(T) in Eqg.(12),

since o is not a physical particle. The is a would-be a(f)y =~ N 1 (a=1)(a—3) 1-a% ,
Nambu-Goldstone boson which is absorbed inie meson. m_lJr 2 w2f2 N 12a lo+ a J1

In the Landau gauge, the-exchange contribution is sepa-

rately conservefi,as we can show easily by using the 1-a? 4

propagator(C10. From the conservation of whole current, N 3amp7 (I4=37)|. (19)

the sum of 1Pl and-exchange diagrams is conserved. Then,
it is reasonable to definkg,(T) like Eq.(12) through only the  we show the temperature dependence of the pararadter

1PI ando-exchange diagrams: Fig. 4, where we tak@(0)=2. The parametea does not
change very much against the temperature, a€l) =2 for

f2(T)=— lim G{i"™ ) (p,,p=0;T). (170  a wide range of temperature. It was shol8] that at zero

Po—0 temperature one-loop effects did not generate the direet

vertex if and only if we took a parameter choiae=2. The
As discussed below Eq12) for f_(T), it is enough to cal- fact thata(T)=2 for a wide range may suggest that the
culate the 1PI diagrams to determine the temperature depeauccessful phenomenological predictions of hidden local
dence off (T). symmetry discussed in Sec. Il hold at finite temperature in a
good approximation. We should note that if we take 1
from the beginning the parametardoes not change with

“At the tree level, the-y mixing is proportional tag,, . One-loop temperature. Together with the fact that paramatés not

effects at finite temperature violate this structure, and generally the

p-y mixing is decomposed into four independent polarizations: A 2 £
H,ﬁ‘§= PE L+ PEIL 0 + PEID o+ PRYIL,p . Where the po- P=“= ? =‘ "= =©=
larization tensors are given in EGA1). In the low momentum limit T K

we can Measily SDSW thatll ¢ vani(ihes. ;‘SincePDWva @ ® ©
:PDuaPT :PL;LQPT =O, PT,u.aPT :7PT/L’ and o] C

PLuoPl"=—P[, ., the p-meson-exchange diagrams generate only Q < )

the terms proportional t®, ,, andP+,,, to the vector-current two- <

point function. These polarization tensors vanish if they are multi- @ ©

plied by p#. This implies that the contribution from themeson-

exchange diagrams vanishes if it is multiplied ¥, and then both FIG. 5. Feynman diagrams contributing to theneson self-
the p-meson-exchange diagrams am@xchange plus 1PI diagrams energy: (a) = loop, (b) o loop, (c) p loop, (d) p tadpole, ande)
conserve separately. ghost loop.
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renormalized for the parameter cho&e 1, this implies that The one-loop diagrams contributing themeson self-
in the “vector limit” [26] the thermal effects of the meson  energy are shown in Fig. 5. In RdfL6], the finite term of
do not induce deviation frolm=1. ZVZS was determined but each finite term&f andZ, was
not determined separately. We introduce the paranzefer
IV. TEMPERATURE DEPENDENCE expressing this finite term as
OF THE p-MESON MASS
In this section we study the temperature dependence of g®> [51-a® (1 )
the p-meson mass. As we show in Appendix C, fhando 4v—1= 75z | =5 |2~ "M 5 +2),
propagators are separated from each other in the Landau )
gauge, and thg propagator takes easy form:
2
Pruv Pl 7z 1= 3 |_ 87a (E——mmz-f' E’ - E} (21)
Dl”/_ - p2_m§+HT_ p2_mi+HL' (20 g (47T)2 | 24 € P 6 2
It is reasonable to define themeson mass by using the
longitudinal parf Adding all the contributions we obtain
|
HpT=0= s 9 g5 32 T 5+11a2 5 2 g T 5 8n(=5
pL(PiT= )—Ewm,,z_z 55 24 o N8~ 15 dIn(=9)
(4— 6)%(12+ 206+ 52) 5 (1— 5)3(1+ 105+ 52)
n In(1-96), (22)
64— 05y6 -5
where § is defined bys= pzlmi. By requiring thatm, becomes the pole mass,
Rell, (p?=m;;T=0)=0, (23
this finite partz is determined as
99 11 11y37
7= —— - a?— —\/— : (24)

8 72 4

The temperature dependence of the self-energy op tiieson obtained from the thermal pion amdheson is calculated
by using the standard imaginary time formalisfh8]. The temperature-dependent pacdI(pg,p;T)=I1(py,p;T)
—TII(py,p; T=0) are given by

ReAIT'Y 0;T)= Ng o G,,
L (Po.P )—5;21—2
Ng?1
(b) A_0T)e — 2
REAHpL(pOIp_OrT)_ 2 2 12 G
o o« o Ng[—(4m-pH(mi+p) _, —4mi+Omipi+py , 1 ¢
ReAHpL(po,DZO,T)ZE_z an? F3+ 12mﬁ F3— 3m? F3
. (M2+pg)(m>—pj)? Loy (M3+po)(m2—pg)?
m2 1 3m4 1
P P
2 2 2
Po _(m po)(]-]m po) Po
+ 3m2 [ m K4—4K6+m Gy,
P P P
N g? 1
RATT!(pg,p=0:T)= 5 = | —2J— 7 (,4_31)}
p 2 3mp
(e . ) N g 1
ReAIL(Po.p=0T)=—5 & G2, (25

Shiomi and Hatsudg7] used a similar form, where they started from the Steukelberg formalism.
8t should be noticed that the transverse polarization agrees with the longitudinal one in the low momentum

IT,7(Po,p=0;T) =11, (Po,p=0:T).

limit:
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where the functions=, G, H, I, J, andK are defined in V. SUMMARY AND DISCUSSION
Appendix B.

Let us first consider the low temperature regibsm, . In this paper we studied the temperature dependence of

The functionsF, H, andJ are suppressed by ™'T, and tEe prl]on delcay constant and thgneson mass b_y |r|1|clgd|nr]g]
give a negligible contribution. Noting that in the low energyt 1€ thermal pion ang-meson effects systematlc_:a y In the
limit (po—0), Gy I,=(m2/6)T2, we find that the contri- hidden local symmetry model. The thermal pion gives a

bution to thep-meson propergator at low energy is of order dominant contribution tdf -(T), and thep meson gives a
T2 small correction. The low temperature limit of our result is

consistent with the chiral perturbation predictif28]. The
inclusion of thep meson may be a good approximation to the
O(p* contribution to chiral perturbation analysis.

We also studied the temperature dependence of the pa-
Sincea=2, the low energy mass parameter decreases agametera, which is related to the successful phenomenologi-

2

= . N 9 2 2
ATl(po=0p=0;T)~ 5 75 (>~ 1)T2 (26

2 ~ .. .
T°. However, on the mass shell of themeson,po~m,,  ¢a| predictions of hidden local symmetry. We showed that
G, terms in(b), (c), and(e) are canceled and the parametem was stable as the temperature increased,
N g2 a2 a(T)=2. This may suggest that the phenomenological pre-

G,. (27) dictions of hidden local symmetry hold at finite temperature
in a good approximation. Our result shows that the parameter

Moreover, sinceG,~(— 774/15)T4/m§, the p-meson mass @ does not change at all if we take=1 from the beginning.
increases as ¥ at low temperature dominated by a pion- This implies that in the “vector limit”[26] the thermal ef-
loop effect. fects of thep meson do not induce deviation froa=1.

Next we study the temperature dependence of the pole We calculated the temperature dependence of the mass of
mass at slightly higher temperature by fully using expressiorihe p meson. We showed that the low energy mass parameter
(25). The pole mass is defined as decreased &g in the low temperature region. However, the

— L p-meson pole mass increasesTds dominated by the pion-
M, —m,+Rell, (po=M,,p=0;T)=0. (28) loop effect, which is consistent with the result by current

We show the temperature dependence of the pole mass bfzIPEbra analyfs,iE.S]. In t.he high temperature region the pion
solid line in Fig. 6. ForT>170 MeV there is no solution of JIVES & negative contribution, while tieloop gives a large

Eq. (28) below 1540 MeV when we include all the contribu- positive correction, and _the-meson mass incr_eases with
tions. Then the solid line terminates Bt 170 MeV. Higher ~{emperature. The correction _from the pion loop in our model
order loop effects may be needed to study such a high tenfloes not seem to agree with a previous analj8isat a
perature region. UntiT=170 MeV the mass of the meson slightly higher temperature. The difference between the re-
increases with temperature. The dotted line denotes the pofélt of our model and that of previous models comes from
mass when we include only the pion loop, where for consisthe fact that there is no pion tadpole contribution at one loop

All(po=m, ,.p=0T)~5 — 75

tency we replace in Eq. (24) with in our model. The tadpole diagram gives a relatively large
positive contribution to the-meson mass in the previous
11 models. Instead, in our model, tlemeson gives a positive
z=—— a°. (29 > ' ’ : o
72 contribution, and it overcomes the pion-loop contribution.

Although each correction to themeson mass is small, it is
interesting to point out that the-loop contribution is larger
than the pion-loop contribution foF=50 MeV. Our analy-
sis implies that the inclusion of the meson itself is impor-
tant to study the temperature dependence of gimeson
M mass near the critical temperature.
800 . . . . . In the high temperature region a one-loop approximation
790 | might be too crude to study the temperature dependences.
780 | Although we can expect that the qualitative structure does
mor not change, it seems to be interesting to include the higher
760r 1 order effect, for example, by using temperature-dependent
i 1 renormalization group analysj&7].
::Z Finally we make a comment on the correction to the
so0 | p-meson mass from the-# loop. In this paper we did not
7ol include anomalous interaction terms such ag-m, since
700 , . , , , they areO(p*) terms in a chiral counting rulgl7] and are
° oo (‘ﬁlv) 20 20 300 expected to give higher order effects. Ther loop correc-
tion to thep-meson self-energy i©(p®), while thep-meson
FIG. 6. The temperature dependence of the pole mass gf the l00p generates th@©(p*) correction. Apparently theo-
meson. The dotted line denotes the pole mass derived from th@0p does not generate any correction to the low energy mass
pion-loop contribution only, while the solid line denotes that from parameter. To the pole mass, there is a suppression factor
the total contribution. (9/4w)* for the w-7 loop correction compared with the

Figure 6 shows that in the high temperature region the pion
loop correction decreases thaneson mass, while theloop
gives a large positive correction, and as a resuligHmeeson
mass increases slightly with temperature.
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p-loop correction; then, we expect that the correction is

small.
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APPENDIX A: POLARIZATION TENSORS

At finite temperature, the polarization tensor is no longer
restricted to be Lorentz covariant, but only3D covariant.
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HT:

po ]
H+ II
2 [z %

APPENDIX B: FUNCTIONS

Here we list the functions used in this paper.
The functions used in the expressiond pfandf ;. in Egs.

414) and(18) are defined as

n—-1
n(T)= . dk mzhﬁn,

- o yn—l
In=fo dy =7 =(n—11L(n),

eY

Then the polarization tensors can be expressed by four inde-

pendent symmetric @3) tensors. Here we list the polariza-

tion tensors at finite temperatuf2g,29:

2 = P100=Pr0i=Prio=0,
Pr.,=90 -(5--—pl—l321)g- = Pi P
K T B A PTij:5ij_W1
P.Py
PL/.LVE_(g,uV _62_) PT/.LV
_(g pﬂpo) p ( popy)
©0 p2 |p>|2 Ov p2 '
1 pﬂpo) ( popV”
P v - v v ’
Cu \/§|[-))| (g,u.o p p p,u Jdor— p
P.Py
PD,uV g? ’ (Al)

wherep*=(pg,p) is the four-momentum.
The following formulas are convenient:

PL,ua'PfV: - PL,uV! (AZ)
l:)T,Au,ozl:)'!l)fvz - PT/,LV’
PcuaP& =3 (PL."+Pp."),

av__ v
PD/.LaPD - PD/.L )

PL,uaP'[I}W: PC,uaP'aI'/V: PD,u,aP'CI'”}: PD;szﬁV:O'
Pu pop”)
PeaaP®’= = PpaP&=— —— | gt— 2|
Cua® L Dua® C ‘/?|p,| 0 p

w=k*+m’. (B1)

We also define the functions in themeson propagator as

F3(Po; -T—de - o

3(p0!mp1 )_ 0 Pew/T_lw(4w2_pS)’
k"t 4k?

Gn(po;T)= dkP—w—m

k”‘1 p%
1K 1
e’T—1 w (m)—p5)?—4k*pg’

1(pom T)= fdkP

“ knt 1
Kn(po;mp;'r)zfO dkP KT (mi_pg)z_

4k?p3’
(B2)

whereP denotes the principal part.

APPENDIX C: p AND o PROPAGATORS

We introduced arR;-like gauge-fixing tern(8) for elimi-
nating the tree-levep-o- mixing existing in the Lagrangian
(4). Generally, a new-o mixing is generated by one-loop
effects. At zero temperature one-loop corrections do not gen-
erate any corrections to the o mixing when we use the

For the transversal tenspr,I1#"(p)=0 we can decompose Landau gauge. Here we calculate ther mixing at finite

it into

H,uv(p): PLMVHL(p)+ PT/.LVHT(p)! (AS)

wherell, andIl; are given by

2

p
Ipl?

I, = oo, (A4)

temperature. There are three diagrams contributing tp-ine
mixing at one loop in the Landau gaug&) = loop, (b) =
tadpole, andc) o tadpole, which are shown in Fig. 7. These
diagrams give corrections to theo mixing given by

a+1
FL(popiT)=| [Na- 1+ o] S8,

Pp:

(CD
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z r o and
p—i o [ O - - - -
e e o Prav | Puyul 1o — pzDin] P llct Poy, Il .
@ (®) © A | I, Iy — (I1¢)%/2— p?F2D I,

(Co)
FIG. 7. Diagrams contributing to the o mixing at one loop in
the Landau gauge. In the R, gauge, the inverse free propagator of thee-

son is given b
wherel, is defined in Eq(B1). It is remarkable to see that 'S gV y

all the contributions are proportional to the four-momentum 2 2
-1 2 o P Tam,p.p,
p'u‘. .. . . D0 ,LLV:_(PL,LLV+ PT,uv)(p _mp)+ 2
When p-o mixing is proportional to the four-momentum, p
the inverse-propagator matrix fgrand o, in general, takes (C7)
the form given by

D;! iFp,
ALt = ~
(p,v) _IFp,u D—l

mv

wherea is the gauge parameter. The inverse full propagator
is defined byD ,;=D;*,,~II,,,, where thep-meson self-

(€2 energyI1#” is expanded by four independent polarization
tensors listed in EqAL):

Here’IS;1 and 5;1 are inverseo and p propagators before

diagonalization. The inversg propagatorD;V1 is projected

to four polarizations by the polarization tensor given in Eq. i . .
(AL): By using these quantities, four components of the inverse

propagator in Eq(C3) are given by

I14"= P4+ PPV, + PA'TL,c+ PE'TLp . (C8)

D, t=Pr, I+ Py, 00 + P, e+ Pp,, . (C3) _ o
. . . HTZ_(p _mp+HpT)!
After some calculations we obtain thes propagator matrix

A ipoBip,C [ =—(p2—m2+11,,),
AL, =| —ipoB (C4 5
(p,v) !
_|p|C DMV HC:_HpCv
where ~  p?—am?
e - Mp=——"-1Ip. (C9)
D [Ty~ (I1)?/2] “
I T — (T1e)?/2— p?F2D 11, If we take the Landau gauge= 0, thep-o propagator matrix
- - ~ reduces to a simple form:
_ D, Fpllc/v2Z—poll ]
P,y — (TIg)%/2— p?F?D,I1, ]’ A=D,, B=C=0,
D, F[pollc/v2—pll] Pr,, P,
=~ - (C5) D,,= ” L (C10

- pO[ﬁLﬁD_ (ﬁc)2/2— szZB(rﬁL] ’
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