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We study the temperature dependence of the pion decay constant andr-meson mass in the hidden local
symmetry model at one loop. Using the standard imaginary time formalism, we include the thermal effect of
ther meson as well as that of the pion. We show that the pion gives a dominant contribution to the pion decay
constant and ther-meson contribution slightly decreases the critical temperature. Ther-meson pole mass
increases asT4/mr

2 at low temperature, dominated by the pion-loop effect. At high temperature, although the
pion-loop effect decreases ther-meson mass, ther-loop contribution overcomes the pion-loop contribution and
ther-meson mass increases with temperature. We also show that the conventional parametera is stable as the
temperature increases.@S0556-2821~97!03911-8#

PACS number~s!: 11.10.Wx, 11.30.Rd, 12.38.Aw, 12.39.Fe

I. INTRODUCTION

One of the most remarkable features of QCD at low en-
ergy is that the approximate chiral symmetry is spontane-
ously broken and the approximate Nambu-Goldstone~NG!
boson appears. The pion is regarded as the NG boson and the
resultant low energy theorems successfully reproduce the
low energy physics of pions. In hot and/or dense matter,
however, the quark condensate melts at some critical point,
and chiral symmetry is restored. This chiral phase transition
has been widely studied~for recent reviews, see, e.g., Refs.
@1–3#!.

Several experiments such as the BNL Relativistic Heavy
Ion Collider~RHIC! are planned to measure the effects in hot
and/or dense matter. One of the interesting quantities in hot
and/or dense matter is the change ofr-meson mass. In Refs.
@2, 4# it was proposed that ther-meson mass scaled like the
pion decay constant in hot and/or dense matter, and vanished
at the chiral phase transition point. The low temperature
theorem for ther meson was obtained by using current al-
gebra@5#, which showed that ther-meson mass was stable in
the low temperature region. The thermal pion effect to the
r-meson mass was studied by using effective theories@6#,
and it was shown that ther-meson mass slightly increased
with temperature. On the other hand, the thermal effect of
nucleons was shown to give a negative contribution@7#.
However, the thermal effects of ther meson itself was not
included in these analysis. In Ref.@8# the thermal effects of
heavier mesons to the quark condensate were included into
the chiral perturbation analysis by using the dilute gas ap-
proximation. Ther meson seems to give a non-negligible
effect near the critical temperature. Then, it is interesting to
see the thermal effect of ther meson, especially to the
r-meson mass, by including it systematically.

To include the thermalr-meson effect systematically it is

convenient to use the effective Lagrangian of the pion and
the r meson. There are several models which include the
pion andr meson, among which we study the hidden local
symmetry model@9#. For the parameter choicea52 this
model successfully predicts the following phenomenological
facts @10#: the r-coupling universalitygrpp5g @11#; the
Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin~KSRF! re-
lation ~II ! mr

252grpp
2 f p

2 @12#; and ther-meson dominance
of the electromagnetic form factor of the pion,ggpp50 @11#.
Moreover, we obtain the KSRF~I! relation gr52 f p

2grpp

@12# as a ‘‘low energy theorem’’ of hidden local symmetry
@13#, which was first proved at the tree level@14# and then at
any loop order@15#. One-loop corrections to the above pre-
dictions were studied in the Landau gauge@16#. Systematic
loop expansion such as chiral perturbation was studied in
Ref. @17#, where the expansion was done by regarding ther
meson as a light particle.

In this paper we study the temperature dependence of the
pion decay constant and ther-meson mass by using the hid-
den local symmetry model at one loop. It is also interesting
to see the temperature dependence of the parametera, which
is related to the above successful phenomenological predic-
tions. One-loop calculations will be done by using the stan-
dard imaginary time formalism@18#. The renormalization is
done in the low energy limit as shown in Ref.@16#.

This paper is organized as follows. In Sec. II, we briefly
review the hidden local symmetry, and introduce anRj-like
gauge-fixing term and the corresponding ghost Lagrangian.
In Sec. III, we show the temperature dependence of the pion
decay constant at finite temperature. The temperature depen-
dence of the parametera is also studied. Section IV is de-
voted to study the temperature dependence of ther-meson
mass by using the on-shell-like renormalization condition.
Finally, a summary and discussion are given in Sec. V. To
avoid complexity, the polarization tensors at finite tempera-
ture and complicated functions are summarized in Appen-
dixes A and B, respectively. We also study ther-meson
propagator at finite temperature in Appendix C.
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II. HIDDEN LOCAL SYMMETRY

Let us start with the @SU(N)L3SU(N)R#global
3@SU(N)V# local ‘‘linear’’ model @10#. We introduce two SU
(N)-matrix valued variablesjL(x) and jR(x), which trans-
form as

jL,R~x!→jL,R8 ~x!5h~x!jL,R~x!gR,L
† , ~1!

where h(x)P@SU(N)V# local and gL,RP@SU(N)L,R#global.
These variables are parametrized as

jL,R~x![eis~x!/ fse7 ip~x!/ fp,

@p~x![pa~x!Ta ,s~x![sa~x!Ta#, ~2!

where p and s are the pion and the ‘‘compensator’’
~would-be Nambu-Goldstone field! to be ‘‘absorbed’’ into
the hidden gauge boson~the r meson!, respectively, andfp

and f s are the corresponding decay constants in the chiral-
symmetric limit. The covariant derivatives are defined by

DmjL[]mjL2 igVmjL1 i jLLm ,

DmjR[]mjR2 igVmjR1 i jRRm , ~3!

whereg is the gauge-coupling constant of the hidden local
symmetry,Vm ([Vm

aTa) the hidden gauge boson field~ther
meson!, andLm andRm denote the external fields gauging
the @SU(N)L#global and@SU(N)R#global, respectively. The La-
grangian of @SU(N)L3SU(N)R#global3@SU(N)V# local ‘‘lin-
ear’’ model is given by1 @9,10#

L5 f p
2 tr@~ âm'!2#1a fp

2 tr@~ âmi!
2#2 1

2 tr@VmnV
mn#, ~4!

wherea is a constant, andâm' andâmi are the covariantized
Maurer-Cartan one-forms@14#:

âm'[
DmjL•jL

†2DmjR•jR
†

2i
,

âmi[
DmjL•jL

†1DmjR•jR
†

2i
. ~5!

Normalizing the kinetic term ofs, we find @20#

f s
25a fp

2 . ~6!

For the parameter choicea52 at the tree level, this model
predicts the following phenomenological facts@10#: ~1!
grpp5g ~universality of the r coupling! @11#; ~2! mr

2

52grpp
2 f p

2 ~KSRF II! @12#, and ~3! ggpp50 ~r-meson
dominance of the electromagnetic form factor of the pion!
@11#.

Moreover, independently of the parametera, this model
predicts the KSRF relation@12# ~version I!

gr52 f p
2grpp ~7!

as a ‘‘low energy theorem’’ of hidden local symmetry@13#,
which was first proved at the tree level@14# and then at any
loop order@15#.

In this paper, to consider loop effects of hidden local sym-
metry, we introduce anRj-gauge-like@21# gauge-fixing and
a Faddeev-Popov ghost Lagrangian corresponding to the hid-
den local gauge boson. These are given by@16#

LGF1FP52
1

a
tr@~]mVm!#1

i

2
ag fp

2 tr@]mVm~jL2jL
†1jR2jR

† !#

1
1

16
aa2g2f p

4 H tr@~jL2jL
†1jR2jR

† !2#2
1

N
~ tr@jL2jL

†1jR2jR
† # !2J

1 i trF C̄H 2]mDmC1
1

2
aag2f p

2 ~CjL1jL
†C1CjR1jR

†C!J G , ~8!

wherea denotes a gauge parameter andC denotes a ghost
field. In this paper we choose the Landau gaugea50. In this
gauge the would-be Nambu-Goldstone~NG! bosons is still
massless, no other vector-scalar interactions are created, and
the ghost field couples only to the hidden local gauge field.

The renormalization is done by introducing counterterms

@16,17#. Here, following Ref.@16#, we use theZ factors de-
fined by

g05Zgg, V0m5ZV
1/2Vm ,

p05Zp
1/2p, s05Zs

1/2s,

fp05Zp
1/2f p , f s05Zs

1/2f s . ~9!

We renormalize the theory at zero temperature; then,

1The massive Yang-Mills approach@19# gives a Lagrangian of the
same form if we take the unitary gauge of hidden local symmetry.
This is equivalent to the hidden local gauge method at the tree level.
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the corrections from the thermal pion,r meson, and so
on are calculated to be finite.2

III. TEMPERATURE DEPENDENCE
OF DECAY CONSTANTS

In this section we study the temperature dependences of
the decay constants of the pion ands. We also study the
temperature dependence of the parametera, which is related
to the successful phenomenological predictions of hidden lo-
cal symmetry.

To define the pion decay constant at finite temperature,
we consider a Green function for the axial-vector current
Aa

m :

dabGA
mn~p0 ,pW ;T![F.T.^0uAa

mAb
nu0&T . ~10!

Since the axial-vector current is conserved, we can decom-
pose this Green function into longitudinal and transverse
pieces:

GA
mn~p0 ,pW ;T!5PT

mnGAT1PL
mnGAL , ~11!

where polarization tensorsPL and PT are defined in Eq.
~A1!. It is natural to define the pion decay constant at finite
temperature through the longitudinal component in the low
energy limit3 @22#:

f p
2 ~T![2 lim

p0→0
GAL~p0 ,pW 50!. ~12!

There are two types of contributions to this Green function in
our model:~i! the pion exchange diagrams and~ii ! the con-
tact or one-particle irreducible~1PI! diagrams. The contribu-
tion ~i! is proportional topm or pn at one loop. At most only
one of theAa

m-p coupling can be corrected at one loop,
which is not generally proportional to the four-momentum
pm . The other coupling is the tree-level one and proportional
to pm . When we act with the projection operatorPLmn , the
term proportional topm vanishes. Because of current conser-
vation, we have the same kinds of contributions from 1PI
diagrams: Those are roughly proportional togmn instead of
pm . Then we will calculate only the 1PI diagrams.

There exist three 1PI diagrams which contribute toGA
mn at

the one-loop level:~a! p1r loop, ~b! p1s loop, and~c! p
tad-pole, which are shown in Fig. 1. These diagrams include
ultraviolet divergences, which are renormalized byZp in Eq.
~9!. By taking a suitable subtraction scheme at zero tempera-
ture, all the divergences including finite corrections in the
low energy limit are absorbed intoZp @15,16#. Then the loop
diagrams generate only the temperature-dependent part. By
using standard imaginary time formalism@18# we obtain

GAL
~a!~p0 ,pW 50!5

N

2

a

p2 F56 I 22J1
21

1

3mr
2 ~ I 42J1

4!G ,
GAL

~b!~p0 ,pW 50!5
N

2

a

6p2 I 2 ,

GAL
~c! ~p0 ,pW 50!5

N

2

12a

p2 I 2 , ~13!

where the functionsI n andJm
n are defined in Appendix B. If

we saw diagrams naively, we might think the diagram~c!
gives the dominant contribution. However, each diagram
does generate the dominant contributionI 25(p2/6)T2. Nev-
ertheless, we see from Eq.~13! that the terms proportional to
aI2 are canceled among the three diagrams. The total contri-
bution is given by

fp
2 ~T!5 f p

22
N

2

1

p2 F I 22aJ1
21

a

3mr
2 ~ I 42J1

4!G . ~14!

When we takemr→` limit in the above expression, only the
I 2 term remains:

f p
2 ~T! ——→

mp→`
f p
22 N

2
I 2
p2 5 f p

22 N
12

T2, ~15!

which is consistent with the result given by Gasser and
Leutwyler @23#.

We show the temperature dependence offp(T) by a solid
line in Fig. 2, where we usefp593 MeV, mr5770 MeV,
a52, andN52. ~We use same values for numerical analysis
below.! The chiral perturbation prediction, Eq.~15!, is
shown by a dotted line in Fig. 2. Figure 2 shows that the pion
loop gives a dominant contribution and ther-meson loop

2To perform the complete renormalization at one loop, we need
higher order counterterms@17#. However, for the quantities we are
studying in this paper, the counterterms induced fromZ factors in
Eq. ~9! are enough to renormalize the divergences. Then we do not
explicitly introduce such higher order counterterms here.
3Even when we use the transverse part instead of the longitudinal

part to define f p(T) in Eq. ~12!, we obtain the same result:
GAT(p0 ,pW 50)5GAL(p0 ,pW 50).

FIG. 1. Feynman diagrams contributing to the one-particle-
irreducible part of the axial-vector current two-point function.

FIG. 2. The temperature dependence of the pion decay constant.
The solid line denotes the total contribution,f p(T) in Eq. ~14! and
the dotted line denotes themr→` limit @Eq. ~15!#.
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generates a small correction. The situation is similar to the
quark condensate in chiral perturbation analysis@8#.

We should notice that the term proportional toI 4 corre-
sponds to a part of two-loop order effects in ordinary chiral
perturbation theory. The two-loop order effects are divided
into two types of diagrams: One is a two-loop diagram
which includesO(p2) vertices only and the other is a one-
loop diagram which includes only oneO(p4) vertex. In chi-
ral perturbation theory theO(p4) vertices are parametrized
by l 1 andl 2 @24#, which are saturated by the effect of ther
meson@25#. Then theI 4 term generated by ther meson may
be a good approximation to theO(p4) contribution in chiral
perturbation theory.

Next, we study the temperature dependence off s . Simi-
lar to the case off p , we start with a Green function for the
vector current:

dabGV
mn~p0 ,pW ;T![F.T.^0uVamVbnu0&T . ~16!

There are three types of contributions:~i! 1PI diagrams,~ii !
thes-exchange diagrams, and~iii ! ther-exchange diagrams.
We have no strict definition off s(T) like f p(T) in Eq. ~12!,
since s is not a physical particle. Thes is a would-be
Nambu-Goldstone boson which is absorbed into ar meson.
In the Landau gauge, ther-exchange contribution is sepa-
rately conserved,4 as we can show easily by using ther
propagator~C10!. From the conservation of whole current,
the sum of 1PI ands-exchange diagrams is conserved. Then,
it is reasonable to definef s(T) like Eq. ~12! through only the
1PI ands-exchange diagrams:

f s
2~T![2 lim

p0→0
GVL

~1PI1s!~p0 ,pW 50;T!. ~17!

As discussed below Eq.~12! for f p(T), it is enough to cal-
culate the 1PI diagrams to determine the temperature depen-
dence off s(T).

There are four diagrams which contribute to the 1PI part
of GV

mn at one loop, which are shown in Fig. 3. We note that
we do not have as tadpole contribution, since there is no
s-s-V-V-type vertex at the tree level. These four diagrams
lead to the temperature dependence given by

f s
2~T!5 f s

22
N

2

1

p2 Fa218a13

12
I 22J1

21
1

3mr
2 ~ I 42J1

4!G .
~18!

The parametera at finite temperature is given by
a(T)5 f s

2(T)/ f p
2 (T) @see Eq.~6!#. Using the temperature de-

pendence off p and f s given in Eqs.~14! and~18!, we obtain
the temperature dependence of the parametera:

a~T!

a~0!
511

N

2

1

p2f p
2 F2

~a21!~a23!

12a
I 21

12a2

a
J1
2

2
12a2

3amr
2 ~ I 42J1

4!G . ~19!

We show the temperature dependence of the parametera in
Fig. 4, where we takea(0)52. The parametera does not
change very much against the temperature, i.e.,a(T).2 for
a wide range of temperature. It was shown@16# that at zero
temperature one-loop effects did not generate the directgpp
vertex if and only if we took a parameter choicea52. The
fact that a(T).2 for a wide range may suggest that the
successful phenomenological predictions of hidden local
symmetry discussed in Sec. II hold at finite temperature in a
good approximation. We should note that if we takea51
from the beginning the parametera does not change with
temperature. Together with the fact that parametera is not4At the tree level, ther-g mixing is proportional togmn . One-loop

effects at finite temperature violate this structure, and generally the
r-g mixing is decomposed into four independent polarizations:
PrV

mn5PT
mnPrVT1PL

mnPrVL1PC
mnPrVC1PD

mnPrVD , where the po-
larization tensors are given in Eq.~A1!. In the low momentum limit
we can easily show thatPrVC vanishes. SincePDmaPL

an

5PDmaPT
an5PLmaPT

an50, PTmaPT
an52PTm

n , and
PLmaPL

an52PLm
n , the r-meson-exchange diagrams generate only

the terms proportional toPLmn andPTmn to the vector-current two-
point function. These polarization tensors vanish if they are multi-
plied by pm. This implies that the contribution from ther-meson-
exchange diagrams vanishes if it is multiplied bypm, and then both
ther-meson-exchange diagrams ands-exchange plus 1PI diagrams
conserve separately.

FIG. 3. Feynman diagrams for the one-particle-irreducible part
of the vector current two-point function.

FIG. 4. The temperature dependence of the parametera.

FIG. 5. Feynman diagrams contributing to ther-meson self-
energy: ~a! p loop, ~b! s loop, ~c! r loop, ~d! r tadpole, and~e!
ghost loop.
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renormalized for the parameter choicea51, this implies that
in the ‘‘vector limit’’ @26# the thermal effects of ther meson
do not induce deviation froma51.

IV. TEMPERATURE DEPENDENCE
OF THE r-MESON MASS

In this section we study the temperature dependence of
the r-meson mass. As we show in Appendix C, ther ands
propagators are separated from each other in the Landau
gauge, and ther propagator takes easy form:5

Dmn52
PTmn

p22mr
21PT

2
PLmn

p22mr
21PL

. ~20!

It is reasonable to define ther-meson mass by using the
longitudinal part.6

The one-loop diagrams contributing ther-meson self-
energy are shown in Fig. 5. In Ref.@16#, the finite term of
ZVZg

2 was determined but each finite term ofZV andZg was
not determined separately. We introduce the parameterz for
expressing this finite term as

ZV215
g2

~4p!2 F512a2

12 H 1ē 2 lnmr
21

5

6J 1zG ,

Zg215
g2

~4p!2 F2
872a2

24 H 1ē 2 lnmr
21

5

6 J 2
z

2G . ~21!

Adding all the contributions we obtain

PrL~p;T50!5
N

2

g2

~4p!2
mr
2Fzd2

37

4
2

1

6d
2
71

24
d1

11a2

72
d1

d~12d2!

12
ln~2d!2

a2

12
d ln~2d!

1
~42d!2~12120d1d2!

6A42dAd
tan21A d

42d
2

~12d!3~1110d1d2!

6d2
ln~12d!, ~22!

whered is defined byd[p2/mr
2 . By requiring thatmr becomes the pole mass,

RePrL~p
25mr

2 ;T50!50, ~23!

this finite partz is determined as

z5
99

8
2
11

72
a22

11A3p

4
. ~24!

The temperature dependence of the self-energy of ther meson obtained from the thermal pion andr meson is calculated
by using the standard imaginary time formalism@18#. The temperature-dependent partsDP(p0 ,pW ;T)[P(p0 ,pW ;T)
2P(p0 ,pW ;T50) are given by

ReDPrL
~a!~p0 ,pW 50;T!5

N

2

g2

p2

a2

12
G2 ,

ReDPrL
~b!~p0 ,pW 50;T!5

N

2

g2

p2

1

12
G2 ,

ReDPrL
~c!~p0 ,pW 50;T!5

N

2

g2

p2 F2~4mr
22p0

2!~mr
21p0

2!

4mr
2 F3

21
24mr

419mr
2p0

21p0
4

12mr
4 F3

42
1

3mr
2 F3

6

1
~mr

21p0
2!~mr

22p0
2!2

mr
2 H1

21
~mr

21p0
2!~mr

22p0
2!2

3mr
4 H1

4

1
p0
2

3mr
2 H 2~mr

22p0
2!~11mr

21p0
2!

mr
2 K424K61

p0
2

4mr
2 G2J ,

ReDPrL
~d!~p0 ,pW 50;T!5

N

2

g2

p2 F22J1
22

1

3mr
2 ~ I 42J1

4!G ,
ReDPrL

~e!~p0 ,pW 50;T!52
N

2

g2

p2

1

6
G2 , ~25!

5Shiomi and Hatsuda@7# used a similar form, where they started from the Steukelberg formalism.
6It should be noticed that the transverse polarization agrees with the longitudinal one in the low momentum limit:

PrT(p0 ,pW 50;T)5PrL(p0 ,pW 50;T).
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where the functionsF, G, H, I , J, andK are defined in
Appendix B.

Let us first consider the low temperature regionT!mr .
The functionsF, H, andJ are suppressed bye2mr /T, and
give a negligible contribution. Noting that in the low energy
limit ( p0→0), G2→I 25(p2/6)T2, we find that the contri-
bution to ther-meson propergator at low energy is of order
T2:

DP~p050,pW 50;T!'
N

2

g2

72
~a221!T2. ~26!

Since a.2, the low energy mass parameter decreases as
T2. However, on the mass shell of ther meson,p0'mr ,
G2 terms in~b!, ~c!, and~e! are canceled and

DP~p05mr ,pW 50;T!'
N

2

g2

p2

a2

12
G2 . ~27!

Moreover, sinceG2'(2 p4/15)T4/mr
2, the r-meson mass

increases as T4 at low temperature dominated by a pion-
loop effect.

Next we study the temperature dependence of the pole
mass at slightly higher temperature by fully using expression
~25!. The pole mass is defined as

M r
22mr

21RePrL~p05M r ,pW 50;T!50. ~28!

We show the temperature dependence of the pole mass by a
solid line in Fig. 6. ForT.170 MeV there is no solution of
Eq. ~28! below 1540 MeV when we include all the contribu-
tions. Then the solid line terminates atT.170 MeV. Higher
order loop effects may be needed to study such a high tem-
perature region. UntilT.170 MeV the mass of ther meson
increases with temperature. The dotted line denotes the pole
mass when we include only the pion loop, where for consis-
tency we replacez in Eq. ~24! with

z52
11

72
a2. ~29!

Figure 6 shows that in the high temperature region the pion-
loop correction decreases ther-meson mass, while ther loop
gives a large positive correction, and as a result ther-meson
mass increases slightly with temperature.

V. SUMMARY AND DISCUSSION

In this paper we studied the temperature dependence of
the pion decay constant and ther-meson mass by including
the thermal pion andr-meson effects systematically in the
hidden local symmetry model. The thermal pion gives a
dominant contribution tofp(T), and ther meson gives a
small correction. The low temperature limit of our result is
consistent with the chiral perturbation prediction@23#. The
inclusion of ther meson may be a good approximation to the
O(p4) contribution to chiral perturbation analysis.

We also studied the temperature dependence of the pa-
rametera, which is related to the successful phenomenologi-
cal predictions of hidden local symmetry. We showed that
the parametera was stable as the temperature increased,
a(T).2. This may suggest that the phenomenological pre-
dictions of hidden local symmetry hold at finite temperature
in a good approximation. Our result shows that the parameter
a does not change at all if we takea51 from the beginning.
This implies that in the ‘‘vector limit’’@26# the thermal ef-
fects of ther meson do not induce deviation froma51.

We calculated the temperature dependence of the mass of
ther meson. We showed that the low energy mass parameter
decreased asT2 in the low temperature region. However, the
r-meson pole mass increases asT4, dominated by the pion-
loop effect, which is consistent with the result by current
algebra analysis@5#. In the high temperature region the pion
gives a negative contribution, while ther loop gives a large
positive correction, and ther-meson mass increases with
temperature. The correction from the pion loop in our model
does not seem to agree with a previous analysis@6# at a
slightly higher temperature. The difference between the re-
sult of our model and that of previous models comes from
the fact that there is no pion tadpole contribution at one loop
in our model. The tadpole diagram gives a relatively large
positive contribution to ther-meson mass in the previous
models. Instead, in our model, ther meson gives a positive
contribution, and it overcomes the pion-loop contribution.
Although each correction to ther-meson mass is small, it is
interesting to point out that ther-loop contribution is larger
than the pion-loop contribution forT>50 MeV. Our analy-
sis implies that the inclusion of ther meson itself is impor-
tant to study the temperature dependence of ther-meson
mass near the critical temperature.

In the high temperature region a one-loop approximation
might be too crude to study the temperature dependences.
Although we can expect that the qualitative structure does
not change, it seems to be interesting to include the higher
order effect, for example, by using temperature-dependent
renormalization group analysis@27#.

Finally we make a comment on the correction to the
r-meson mass from thev-p loop. In this paper we did not
include anomalous interaction terms such asv-r-p, since
they areO(p4) terms in a chiral counting rule@17# and are
expected to give higher order effects. Thev-p loop correc-
tion to ther-meson self-energy isO(p8), while ther-meson
loop generates theO(p4) correction. Apparently thev-p
loop does not generate any correction to the low energy mass
parameter. To the pole mass, there is a suppression factor
(g/4p)4 for the v-p loop correction compared with the

FIG. 6. The temperature dependence of the pole mass of ther
meson. The dotted line denotes the pole mass derived from the
pion-loop contribution only, while the solid line denotes that from
the total contribution.
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r-loop correction; then, we expect that the correction is
small.
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APPENDIX A: POLARIZATION TENSORS

At finite temperature, the polarization tensor is no longer
restricted to be Lorentz covariant, but only O~3! covariant.
Then the polarization tensors can be expressed by four inde-
pendent symmetric O~3! tensors. Here we list the polariza-
tion tensors at finite temperature@28,29#:

PTmn5gm i S d i j2
pW i pW j

upW u2 Dgjn5H PT005PT0i5PTi050,

PTi j5d i j2
pW i pW j

upW u2
,

PLmn[2S gmn2
pmpn

p2 D2PTmn

5S gm02
pmp0
p2 D p2

upW u2 S g0n2
p0pn

p2 D ,
PCmn[

1

&upW u
F S gm02

pmp0
p2 D pn1pmS g0n2

p0pn

p2 D G ,
PDmn[

pmpn

p2
, ~A1!

wherepm5(p0 ,pW ) is the four-momentum.
The following formulas are convenient:

PLmaPL
an52PLm

n, ~A2!

PTmaPT
an52PTm

n,

PCmaPC
an5 1

2 ~PLm
n1PDm

n!,

PDmaPD
an5PDm

n,

PLmaPT
an5PCmaPT

an5PDmaPT
an5PDmaPL

an50,

PCmaPL
an52PDmaPC

an52
pm

&upW u
S g0n2

p0p
n

p2 D .
For the transversal tensorpmPmn(p)50 we can decompose
it into

Pmn~p!5PLmnPL~p!1PTmnPT~p!, ~A3!

wherePL andPT are given by

PL5
p2

upW u2
P00, ~A4!

PT52
1

2 H P j
j1

p0
2

upW u2
P00J .

APPENDIX B: FUNCTIONS

Here we list the functions used in this paper.
The functions used in the expressions offp and f s in Eqs.

~14! and ~18! are defined as

I n~T![E
0

`

dk
kn21

ek/T21
5 Ĩ nT

n,

Ĩ n5E
0

`

dy
yn21

ey21
5~n21!! z~n!,

Ĩ 25
p2

6
, Ĩ 45

p4

15
, Ĩ 65

8p6

63
,

Jm
n ~mr ;T![E

0

`

dk
1

ev/T21

kn

vm , n,m integers,

v[Ak21mr
2. ~B1!

We also define the functions in ther-meson propagator as

F3
n~p0 ;mr ;T![E

0

`

dkP
1

ev/T21

4kn

v~4v22p0
2!
,

Gn~p0 ;T![E
0

`

dkP
kn21

ek/T21

4k2

4k22p0
2

5I n~T!1E
0

`

dkP
kn21

ek/T21

p0
2

4k22p0
2 ,

H1
n~p0 ;mr ;T![E

0

`

dkP
1

ev/T21

kn

v

1

~mr
22p0

2!224k2p0
2 ,

Kn~p0 ;mr ;T![E
0

`

dkP
kn21

ek/T21

1

~mr
22p0

2!224k2p0
2 ,

~B2!

whereP denotes the principal part.

APPENDIX C: r AND s PROPAGATORS

We introduced anRj-like gauge-fixing term~8! for elimi-
nating the tree-levelr-s mixing existing in the Lagrangian
~4!. Generally, a newr-s mixing is generated by one-loop
effects. At zero temperature one-loop corrections do not gen-
erate any corrections to ther-s mixing when we use the
Landau gauge. Here we calculate ther-s mixing at finite
temperature. There are three diagrams contributing to ther-s
mixing at one loop in the Landau gauge:~a! p loop, ~b! p
tadpole, and~c! s tadpole, which are shown in Fig. 7. These
diagrams give corrections to ther-s mixing given by

Fm~p0 ,pW ;T!5F SN~a21!1
1

ND ~a11!g

8p2f s
I 2Gpm ,

~C1!
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whereI 2 is defined in Eq.~B1!. It is remarkable to see that
all the contributions are proportional to the four-momentum
pm .

Whenr-s mixing is proportional to the four-momentum,
the inverse-propagator matrix forr ands, in general, takes
the form given by

D~m,n!
21 5S D̃s

21 iFpn

2 iFpm D̃mn
21 D . ~C2!

Here D̃s
21 and D̃mn

21 are inverses andr propagators before
diagonalization. The inverser propagatorD̃mn

21 is projected
to four polarizations by the polarization tensor given in Eq.
~A1!:

D̃mn
21[PTmnP̃T1PLmnP̃L1PCmnP̃C1PDmnP̃D . ~C3!

After some calculations we obtain ther-s propagator matrix

D~m,n!
21 5S A ip0B ipjC

2 ip0B
Dmn

2 ipiC
D , ~C4!

where

A5
D̃s@P̃LP̃D2~P̃C!2/2#

P̃LP̃D2~P̃C!2/22p2F2D̃sP̃L

,

B5
D̃sF@ p̄P̃C /&2p0P̃L#

p̄@P̃LP̃D2~P̃C!2/22p2F2D̃sP̃L#
,

C5
D̃sF@p0P̃C /&2 p̄P̃L#

p0@P̃LP̃D2~P̃C!2/22p2F2D̃sP̃L#
, ~C5!

and

Dmn5
PTmn

P̃T

1
PLmn@P̃D2p2D̃sF

2#1PCmnP̃C1PDmnP̃L

P̃LP̃D2~P̃C!2/22p2F2D̃sP̃L

.

~C6!

In theRj gauge, the inverse free propagator of ther me-
son is given by

D0
21

mn52~PLmn1PTmn!~p22mr
2!1

p22amr
2

a

pmpn

p2
,

~C7!

wherea is the gauge parameter. The inverse full propagator
is defined byDmn

215D0
21

mn2Pmn , where ther-meson self-
energyPr

mn is expanded by four independent polarization
tensors listed in Eq.~A1!:

Pr
mn5PT

mnPrT1PL
mnPrL1PC

mnPrC1PD
mnPrD . ~C8!

By using these quantities, four components of the inverser
propagator in Eq.~C3! are given by

P̃T52~p22mr
21PrT!,

P̃L52~p22mr
21PrL!,

P̃C52PrC ,

P̃D5
p22amr

2

a
2PrD . ~C9!

If we take the Landau gaugea50, ther-s propagator matrix
reduces to a simple form:

A5D̃s , B5C50,

Dmn52
PTmn

p22mr
21PrT

2
PLmn

p22mr
21PrL

. ~C10!
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