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Jiřı́ Bičák
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Gravitational waves with a space-translation Killing field are considered. Because of the symmetry, the
four-dimensional Einstein vacuum equations are equivalent to the three-dimensional Einstein equations with
certain matter sources. This interplay between four- and three-dimensional general relativity can be exploited
effectively to analyze issues pertaining to four dimensions in terms of the three-dimensional structures. An
example is provided by the asymptotic structure at null infinity: While these space-times fail to be asymptoti-
cally flat in four dimensions, they can admit a regular completion at null infinity in three dimensions. This
completion is used to analyze the asymptotic symmetries, introduce the analogue of the four-dimensional
Bondi energy momentum, and write down a flux formula. The analysis is also of interest from a purely
three-dimensional perspective because it pertains to a diffeomorphism-invariant three-dimensional field theory
with local degrees of freedom, i.e., to a midisuperspace. Furthermore, because of certain peculiarities of three
dimensions, the description of null infinity has a number of features that are quite surprising because they do
not arise in the Bondi-Penrose description in four dimensions.@S0556-2821~97!01802-X#

PACS number~s!: 04.20.Ha, 04.30.Nk, 04.60.Kz

I. INTRODUCTION

Einstein-Rosen waves are among the simplest nonstation-
ary solutions to the vacuum Einstein equations~see, e.g.,
@1#!. Not surprisingly, therefore, they have been used in a
number of different contexts: investigation of energy loss
due to gravity waves@2#, asymptotic structure of radiative
space-times@3#, quasilocal mass@4#, the issue of time in
canonical gravity@5#, and quantum gravity in a simplified
but field theoretically interesting context of midisuperspaces
@5,6#. These solutions admit two Killing fields, both hyper-
surface orthogonal, of which one is rotational]/]f, and the
other translational]/]z, along the axis of symmetry.~In cer-
tain applications, the orbits of the Killing field]/]z are com-
pactified, i.e., are taken to be circles. Our analysis will allow
this possibility.! When the hypersurface orthogonality condi-
tion is removed, we obtain the cylindrical gravitational
waves with two polarization modes. These have also been
used to explore a number of issues, ranging from the study of
Hamiltonian densities@7# and numerical analysis of interact-
ing pulses@8# to the issue of cosmic censorship@9#.

The presence of a translational Killing field, however,
makes the analysis of the asymptotic structure of these
space-times quite difficult: they fail to be asymptotically flat
either at spatial or null infinity. Consequently, one cannot use
the standard techniques to define asymptotic symmetries or
construct the analogues of the Arnowitt-Deser-Misner
~ADM ! or Bondi energy momenta. Therefore, until recently,
conserved quantities for these space-times—such as theC
energy@2,7#—were constructed by exploiting the local field
equations, without direct reference to asymptotics. It is nota
priori clear, therefore, that the quantities have the physical
interpretation that has been ascribed to them.

What is of physical interest are the values of conserved
quantitiesper unit lengthalong the axis of symmetry, i.e.,
along the integral curves of]/]z; because of the translational
symmetry, the total conserved quantities in such a space-time
would be clearly infinite. A natural strategy then is to go to
the manifold of orbits of the]/]z-Killing field. Since this
three-dimensional space-time does not have a translational
symmetry, one would expect it to be asymptotically flat in an
appropriate sense. Hence, it should be possible to analyze its
asymptotic structure unambiguously. In this paper, we will
adopt this approach to explore the symmetries and physical
fields at null infinity. A similar analysis of spatial infinity
was performed recently@10# in the context of the phase space
formulation of general relativity. Somewhat surprisingly, it
turned out that theC energy isnot the generator of the time
translation which is a unit at infinity; it does not, therefore,
represent the Hamiltonian, or the physical energy~per unitz
length! in the space-time. The physical Hamiltonian turns out
to be a nonpolynomialfunction of theC energy. In the
present paper, we will see that the same is true of the ana-
logue of Bondi energy at null infinity.

Thus, the purpose of this paper is to develop a framework
to discuss the asymptotic structure at null infinity for three-
dimensional space-times. The underlying theory is general
relativity coupled to matter fields satisfying appropriate fall-
off conditions. The conditions on matter are satisfied, in par-
ticular, by the fields that arise from a symmetry reduction of
a large class of four-dimensional vacuum space-times admit-
ting a space translation Killing field]/]z. Therefore, we will,
in particular, provide a framework for analyzing the behavior
of the gravitational field near null infinity of such space-
times. Note that these specific applications of our framework
are themselves generalizations of cylindrical waves since
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they need not admit an axial Killing field]/]f. Our analysis
is also useful in a completely different context; that of quan-
tum gravity. This class of space-times also provides interest-
ing midisuperspace for quantum gravity and our results set
the stage for its asymptotic quantization and the correspond-
ing S-matrix theory.

The plan of the paper is as follows. In Sec. II, we will
analyze the asymptotic structure of the Einstein-Rosen waves
from a three-dimensional perspective. This analysis will mo-
tivate our general definition of asymptotic flatness in Sec. III
and also provide an intuitive understanding of the main re-
sults. In Sec. III, we introduce the notion of asymptotic flat-
ness at null infinity in three space-time dimensions and ana-
lyze the structure of asymptotic fields. In Sec. IV, we discuss
asymptotic symmetries and in Sec. V, conserved quantities.
While the general methods adopted are suggested by the
standard Bondi-Penrose treatment of null infinity in four-
dimensional general relativity, there are a number of sur-
prises as well. First, in three dimensions, the physical metric
gab is flat outside sources. Consequently, there are physically
interesting solutions to the constraints which lead to space-
times which are flat near spatial infinityi 0; the energy mo-
mentum ati 0 is coded, not in local fields such as the curva-
ture, but in a globally defined deficit angle. This simplifies
the task of specifying boundary conditions as one approaches
i 0 along null infinity I . On the other hand, there are also a
number of new complications. In four dimensions, the sta-
tionary and the radiative space-times satisfy the same bound-
ary conditions at null infinity. This is not the case in three
dimensions. Hence, while dealing with radiative solutions,
we cannot draw on our intuition from the stationary case.
Second, in four dimensions, up to a supertranslation
freedom—which corresponds to termsO(1/r )—there is a
fixed Minkowskian metric at infinity. In three dimensions,
this is not the case; the Minkowski metrichab to which a
physical metric approaches varies even in the leading order,
depending on the radiative content of the physical space-
time. Consequently, the symmetry group is larger than what
one might expect from one’s experience in four dimensions.
Furthermore, while one can canonically single out the trans-
lational subgroup of the Bondi-Matzner-Sachs~BMS! group
in four dimensions, now the task becomes subtle; in many
ways it is analogous to the task of singling out a preferred
Poincare´ subgroup of the BMS group. This in turn makes the
task of defining the analogue of Bondi energy much more
difficult. These differences make the analysis nontrivial and
hence interesting.

Some detailed calculations are relegated to the Appen-
dixes. Using Bondi-type coordinates, the asymptotic behav-
ior of curvature tensors of Einstein-Rosen waves is analyzed
in the three-dimensional framework in Appendix A. Appen-
dix B considers static cylindrical solutions whose asymptot-
ics, as mentioned above, is quite different from that of the
radiative space-times analyzed in the main body of the paper.

It should be emphasized that while part of the motivation
for our results comes from the symmetry reduction of four-
dimensional general relativity, the main analysis itself refers
to three-dimensional gravity coupled toarbitrary matter
fields ~satisfying suitable falloff conditions! which need not
arise from a symmetry reduction. Nonetheless, the frame-
work has numerous applications to the four-dimensional

theory. For example, in the accompanying paper@11#, we
will use the results of this paper to study the behavior of
Einstein-Rosen waves at null infinity of thefour-dimensional
space-times.

In this paper, the symbolI will generally stand forI1 or
I2. In the few cases where a specific choice has to be made,
our discussion will refer toI1.

II. EINSTEIN-ROSEN WAVES:
ASYMPTOTICS IN THREE DIMENSIONS

This section is divided into three parts. In the first, we
recall the symmetry reduction procedure and apply it to ob-
tain the three-dimensional equations governing Einstein-
Rosen waves.~See, e.g.,@1# for a similar reduction for sta-
tionary space-times.! This procedure reduces the task of
finding a four-dimensional Einstein-Rosen wave to that of
finding a solution to the wave equation on three-dimensional
Minkowskispace. In the second part, we analyze the asymp-
totic behavior~at null infinity! of these solutions to the wave
equation. In the third part, we combine the results of the first
two to analyze the asymptotic behavior of space-time met-
rics. We will find that there is a large class of Einstein-Rosen
waves which admits a smooth null infinityI as well as a
smooth timelike infinityi6. ~As one might expect, the space-
like infinity i 0 has a conical defect.! These waves provide an
important class of examples of the more general framework
presented in Sec. III.

A. Symmetry reduction

Let us begin with a slightly more general context, that of
vacuum space-times which admit a spacelike, hypersurface
orthogonal Killing vector]/]z. These space-times can be
described conveniently in coordinates adapted to the symme-
try:

ds25V2~x!dz21ḡab~x!dxadxb, a,b, . . .50,1,2, ~2.1!

wherex[xa and ḡab is a three-metric metric with Lorentz
signature. As in the more familiar case of static space-times
@1#, the field equations are

R̄ab2V21¹̄a¹̄bV50 ~2.2!

and

ḡab¹̄a¹̄bV50, ~2.3!

where ¹̄ and R̄ab are the derivative operator and the Ricci
tensor ofḡab . These equations can be simplified if one uses
a metric in the three-space which is rescaled by the norm of
the Killing vector and writes the norm of the Killing vector
as an exponential@12,1#. Then, Eqs.~2.1!–~2.3! become

ds25e2c~x!dz21e22c~x!gab~x!dxadxb, ~2.4!

Rab22¹ac¹bc50, ~2.5!

and

gab¹a¹bc50, ~2.6!
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where¹ denotes the derivative with respect to the metric
gab .

These equations can be reinterpreted purely in a three-
dimensional context. To see this, consider Einstein’s equa-
tions in three dimensions with a scalar fieldF as source:

Rab2
1
2Rgab58pGTab

58pG@¹aF¹bF2 1
2 ~¹cF¹cF!gab#,

~2.7!

gab¹aF¹bF50. ~2.8!

Since the trace of Eq.~2.7! gives R58pG¹cF¹cF, Eq.
~2.7! is equivalent to

Rab58pG¹aF¹bF. ~2.9!

Now, with F5c/A4pG we obtain Eqs.~2.5! and ~2.6!.
Thus, the four-dimensional vacuum gravity is equivalent to
the three-dimensional gravity coupled to a scalar field. Recall
that in three dimensions, there is no gravitational radiation.
Hence, the local degrees of freedom are all contained in the
scalar field. One therefore expects that the Cauchy data for
the scalar field will suffice to determine the solution. For data
which fall off appropriately, we thus expect the three-
dimensional Lorentzian geometry to be asymptotically flat in
the sense of Penrose@13#, i.e., to admit a two-dimensional
boundary representing null infinity.

Let us now turn to the Einstein-Rosen waves by assuming
that there is further spacelike, hypersurface orthogonal Kill-
ing vector]/]f which commutes with]/]z. Then, as is well
known, the equations simplify drastically. Hence, a complete
global analysis can be carried out easily. Recall first that the
metric of a vacuum space-time with two commuting, hyper-
surface orthogonal spacelike Killing vectors can always be
written locally as@14#

ds25e2cdz21e2~g2c!~2dt21dr2!1r2e22cdf2, ~2.10!

wherer and t ~the ‘‘Weyl canonical coordinates’’! are de-
fined invariantly andc5c(t,r), g5g(t,r). ~Here, some of
the field equations have been used.! Hence, the three-metric
g is given by

ds25gabdx
adxb5e2g~2dt21dr2!1r2df2. ~2.11!

Let us now assume that]/]f is a rotational field in the
three-space which keeps a timelike axis fixed. Then the co-
ordinates used in Eq.~2.10! are unique up to a translation
t→t1a. ~Note, incidentally, that ‘‘trapped circles’’ are ex-
cluded by the field equations@9#.!

The field equations~2.5! and ~2.6! now become

Rtt5g 92g̈1r21g852ċ2, ~2.12!

Rrr52g 91g̈1r21g852c82, ~2.13!

Rtr5r21ġ52ċc8, ~2.14!

and

2c̈1c91r21c850, ~2.15!

where the overdot and the prime denote derivatives with re-
spect tot andr, respectively. The last equation is the wave
equation for the nonflat three-metric~2.11! as well as for the
flat metric obtained by settingg50. This is a key simplifi-
cation for it implies that the equation satisfied by the matter
sourcec decouples from Eqs.~2.12!–~2.14! satisfied by the
metric. These equations reduce simply to

g85r~ċ21c82!, ~2.16!

ġ52rċc8. ~2.17!

Thus, we can first solve for the axisymmetric wave equation
~2.15! for c on Minkowski space and then solve Eqs.~2.16!
and ~2.17! for g—the only unknown metric coefficient—by
quadratures.@Note that Eqs.~2.16! and~2.17! are compatible
because their integrability condition is precisely Eq.~2.15!.#

B. Asymptotic behavior of scalar waves

In this subsection we will focus on the axisymmetric
wave equation in three-dimensional Minkowski space and
analyze the asymptotic behavior of its solutionsc.

We begin with an observation. The ‘‘method of descent’’
from the Kirchhoff formula in four dimensions gives the
following representation of the solution of the wave equation
in three dimensions, in terms of Cauchy data
C05c(t50,x,y),C15c ,t(t50,x,y):

c~ t,x,y!5
1

2p

]

]tE E
S~ t !

C0~x8,y8!dx8dy8

@ t22~x2x8!22~y2y8!2#1/2

1
1

2pE E
S~ t !

C1~x8,y8!dx8dy8

@ t22~x2x8!22~y2y8!2#1/2
,

~2.18!

whereS is the disk

~x2x8!21~y2y8!2<t2 ~2.19!

in the initial Cauchy surface~see, e.g.,@15#!. We will assume
that the Cauchy data are axially symmetric and of compact
support.

Let us first investigate the behavior of the solution at fu-
ture null infinity I . Let r,f be polar coordinates in the plane
and introduce the retarded time coordinate

u5t2r ~2.20!

to explore the falloff along the constantu null hypersurfaces.
Because of axisymmetry, we may puty50 without loss of
generality. The integration region becomes

~r2x8!21y82<~u1r!2. ~2.21!

Let us rewrite the integrands of Eq.~2.18! as
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C~x8,y8!dx8dy8

@2r~u1x8!1u22x822y82#1/2

5
1

~2r!1/2
C~x8,y8!dx8dy8

~u1x8!1/2 S 11
u22x822y82

2~u1x8!

1

r D 21/2

.

~2.22!

For larger, Eq. ~2.22! admits a power series expansion in
r21 which converges absolutely and uniformly. Hence, we
can exchange the integration in Eq.~2.18! with the summa-
tion and we can also perform the differentiation]/]u term
by term. Therefore, on each null hypersurfaceu5const one
can obtain an expansion of the form

c~u,r!5
1

Ar
S f 0~u!1 (

k51

`
f k~u!

rk D . ~2.23!

The coefficients in this expansion are determined by inte-
grals over the Cauchy data. These functions are particularly
interesting foru so large that the support of the data is com-
pletely in the interior of the past cone. One finds

f 0~u!5
1

2A2p
E
0

`E
0

2p

r8dr8df8F2
1

2

C0

~u1r8cosf8!3/2

1
C1

~u1r8cosf8!1/2G . ~2.24!

Note that the coefficient is analytic inu21/2, and atu@r0,
r0 being the radius of the disk in which the data are nonzero,
we obtain

f 0~u!5
k0
u3/2

1
k1
u1/2

1•••, ~2.25!

wherek0 ,k1 are constants which are determined by the data.
If the solution happens to be time symmetric, so thatC1
vanishes, we findf 0;u23/2 for largeu. This concludes our
discussion of the asymptotic behavior alongu5const sur-
faces.

Finally, we wish to point out that the main results ob-
tained in this section continue to hold also for general data of
compact support which are not necessarily axisymmetric. In
particular, one obtains an expansion such as Eq.~2.23! where
the coefficients now depend on bothu andf, and asymptotic
forms such as Eq.~2.25!. The assumption of compact sup-
port can also be weakened to allow data which decay near
spatial infinity sufficiently rapidly so that we still obtain so-
lutions smooth at null infinity.~This is, in particular, the case
for the Weber-Wheeler pulse considered in the accompany-
ing paper@11#.!

C. Asymptotic behavior of the metric

We now combine the results of the previous two subsec-
tions. Recall from Eq.~2.11! that the three-dimensional met-
ric gab has a single unknown coefficientg(t,r) which is
determined by the solutionc(t,r) to the wave equation in
Minkowski space~obtained simply by settingg50). The
asymptotic behavior ofc(t,r), therefore, determines that of
the metricgab .

Let us begin by expressinggab in Bondi-type coordinates
(u5t2r,r,f). Then, Eq.~2.11! yields

ds25e2g~2du222dudr!1r2df2; ~2.26!

the Einstein equations take the form

g ,u52rc ,u~c ,r2c ,u!, ~2.27!

g ,r5r~c ,r!2 , ~2.28!

and the wave equation onc becomes

22c ,ur1c ,rr1r21~c ,r2c ,u!50. ~2.29!

The asymptotic form ofc(t,r) is given by the expansion
~2.23!. Since we can differentiate Eq.~2.23! term by term,
the field equations~2.27! and ~2.28! imply

g ,u522@ ḟ 0~u!#21 (
k51

`
gk~u!

rk
, ~2.30!

g ,r5 (
k50

`
hk~u!

rk12 , ~2.31!

where the functionsf k ,hk are products of the functions
f 0 , f k , ḟ 0 , ḟ k . Integrating Eq.~2.31! and fixing the arbitrary
function ofu in the result using Eq.~2.30!, we obtain

g5g022E
2`

u

@ ḟ 0~u!#2du2 (
k51

`
hk~u!

~k11!rk11. ~2.32!

Thus,g also admits an expansion inr21 where the coeffi-
cients depend smoothly onu.

It is now straightforward to show that the space-time ad-
mits a smooth future null infinity I . Setting
r̃5r21,ũ5u,f̃5f, and rescalinggab by a conformal fac-
tor V5 r̃, we obtain

ds̃25V2ds25e2g̃~2 r̃ 2dũ 212dũdr̃ !1df̃2, ~2.33!

where g̃(ũ,r̃)5g(u,r̃ 21). Because of Eq.~2.32!, g̃ has a
smooth extension throughr̃50. Therefore,g̃ab is smooth
across the surfacer̃50. This surface is the future null infin-
ity I .

Using the expansion~2.23! of c near null infinity, various
curvature tensors can be expanded in powers ofr21. More
precisely, a suitable null triad can be chosen which is parallel
propagated alongu5const,f5const curves. The resulting
triad components of the Riemann tensor and the Bach tensor
are given in Appendix A. The~conformally invariant! Bach
tensor is finitebut nonvanishingat null infinity. This is to be
contrasted with the Bondi-Penrose description of null infinity
in asymptotically flat, four-dimensional space-times, where
the ~conformally invariant! Weyl tensor vanishes. In this
sense, while in the standard four-dimensional treatments the
metric is conformally flat at null infinity, in a three-
dimensional treatment, it will not be so in general. This is
one of the new complications that one encounters.

To understand the meaning of the constantg0 let us con-
sider the solution on the Cauchy surfacet50. Equation
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~2.16! implies that we can determineg by a r integration
from the center. If we insist on regularity atr50, we have

g~ t50,r!5E
0

r

r~ċ21c82!dr. ~2.34!

Hence, for data of compact support,g0 is a positive constant
whose value is determined by the initial data forc:

g05g~ t50,r5`!5E
0

`

r~ċ21c82!dr. ~2.35!

This way the constantg0 in Eq. ~2.32! is uniquely deter-
mined for solutions which are regular atr50. Its value is
given by the total energy of the scalar fieldc computed
using the Minkowski metric~obtained fromgab by setting
g50).

On a constantt surface, for a point outside the support of
the data, we haveg5g0, a constant. Hence, outside the sup-
port of the data, the three-metric on the Cauchy surface is
flat. For any nontrivial data, however,g0 is strictly positive,
whence the metric has a ‘‘conical singularity’’ at spatial in-
finity: the metric there is given by

ds25e2g0~2dt21dr2!1r2df2. ~2.36!

Notice that a conical singularity can also be seen near null
infinity in this physical metric because the change of the
proper circumference of a circle with proper radial distance
is different from the case of asymptotically Minkowskian
space.

Finally, using Eq.~2.32!, we find that, as one approaches
I ~i.e., r→`, u5const!, we have

g~u,`!5g022E
2`

u

@ ḟ 0~u!#2du. ~2.37!

Now, a detailed examination@11# of the behavior of the sca-
lar field c near timelike infinity i1 reveals that the space-
time is smooth ati1 and thatg vanishes there. Hence, we
obtain the simple result

g052E
2`

1`

@ ḟ 0~u!#2du. ~2.38!

Thus, there, is a precise sense in which the conical singular-
ity, present at spacelike infinity, is ‘‘radiated out’’ and a
smooth~in fact, analytic! timelike infinity ‘‘remains.’’ We
will see that, modulo some important subtleties, Eq.~2.37!
plays the role of the Bondi mass-loss formula@16#.

III. NULL INFINITY IN THREE DIMENSIONS:
GENERAL FRAMEWORK

In this section, we will develop a general framework to
analyze the asymptotic structure of the gravitational and mat-
ter fields at null infinity in three dimensions along the lines
introduced by Penrose in four dimensions. As a special case,
when the matter field is chosen to be the massless Klein-
Gordon field, we will recover a three-dimensional descrip-
tion of null infinity of generalized cylindrical waves~i.e., of

four-dimensional vacuum space-times with one space trans-
lation!. It turns out that the choice of the fall-off conditions
on matter fields is rather subtle in three dimensions. Fortu-
nately, the analysis of the Einstein-Rosen waves presented in
Sec. II provides guidelines that restrict the available choices
quite effectively.

In Sec. III A, we specify the boundary conditions and
discuss some of their immediate consequences. In Sec. III B,
we extract the important asymptotic fields and discuss the
equations they satisfy at null infinity. Section III C contains
an example which, so to say, lies at the opposite extreme
from the Einstein-Rosen waves: the simplest solution corre-
sponding to a static point particle in three-dimensions. This
example is tailored to bring out certain subtleties which in
turn play an important role in the subsequent sections.

A. Boundary conditions

A three-dimensional space-time (M ,gab) will be said to
be asymptotically flat at null infinityif there exists a mani-
fold M̃ with boundary I which is topologically S13R,
equipped with a smooth metricg̃ab such that~i! there is a
diffeomorphism betweenM̃2I andM ~with which we will
identify the interior ofM̃ andM ), ~ii ! there exists a smooth
functionV on M̃ such that, atI , we haveV50, ¹aVÞ0,
and onM , we haveg̃ab5V2gab , ~iii ! if Tab denotes the
stress-energy of matter fields on the physical space-time
(M ,gab), thenVTab admits a smooth limit toI which is
trace-free, and the limit toI of V21Tabñ

aṼb vanishes, where
Ṽa is any smooth vector field onM̃ which is tangential to
I and ña5g̃ab¹̃bV, and ~iv! if V is so chosen that
¹̃a¹̃aV50 on I , then the vector fieldña is complete onI .

Conditions ~i!, ~ii !, and ~iv! are the familiar ones from
four dimensions and have the following implications. First,
sinceV vanishes atI , points ofI can be thought of as lying
at infinity with respect to the physical metric. Second, since
the gradient ofV is nonzero atI , V ‘‘falls off as 1/r.’’
Finally, we know thatI has the topologyS13R and condi-
tion ~iv! ensures that it is as ‘‘complete in theR direction’’
as it is in Minkowski space.

The subtle part is the fall-off conditions on stress energy;
these aresubstantially weakerthan those in the standard
four-dimensional treatment. For instance, in four dimensions,
if we use Maxwell fields as sources, then because of confor-
mal invariance, ifFab solves Maxwell’s equations on the
physical space-time (M ,gab), thenF̃ab :5Fab satisfies them
on the completed space-time (M̃ ,g̃ab). Hence,F̃ab admits a
smooth limit to I . This immediately implies thatV22Tab
also admits a smooth limit, whereTab is the stress-energy
tensor ofFab in the physical space-time. In the case of a
scalar field source, the falloff is effectively the same al-
though the argument is more subtle~see p. 41 in@17#!. In
three dimensions, on the other hand, we are asking only that
VTab admit a limit~although, as noted above, the asymptotic
falloff of V is the same in three and four dimensions!. This is
because a stronger condition will have ruled out the cylindri-
cal waves discussed in Sec. II. To see this, consider smooth
scalar fieldsc with initial data of compact support. Then, if
we setc̃5V21/2c, we have the identity

g̃ab¹̃a¹̃bc̃2 1
8 R̃c̃5V2 5/2~gab¹a¹bc2 1

8 Rc!,
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whereR and R̃ are the scalar curvatures ofgab and g̃ab ,
respectively. Hence,c̃ is well behaved onI which implies
that

2VTab[2V2~¹̃ac̃ !~ ¹̃bc̃ !12Vc̃ñ~a¹̃bc̃1 1
2 c̃2ñañb

2 1
2 g̃ab@V2¹̃mc̃¹̃mc̃1Vc̃ñm¹̃mc̃1ñmñmc̃2#

~3.1!

admits a well-defined, nonzero limit atI satisfying the con-
ditions of our definition. Hence, stronger falloff requirements
on Tab would have made the framework uninteresting. We
will see that this weak fall-off is responsible for a number of
surprises in the three-dimensional theory. Could we have im-
posed even weaker falloff conditions? The requirement of
smoothness ong̃ab , V, andVTab can be substantially weak-
ened: All our analysis will go through ifg̃ab andV are only
C3, andVTab only C

1 at I . On the other hand, we will see
that the condition on the trace ofVTab is necessary to endow
I with interesting structure. We will see that the vanishing of
the limit of V21Tabñ

aṼb is necessary to ensure that the en-
ergy and supermomentum fluxes of matter across~finite
patches of! I are finite.

Let us now examine the structure available at the bound-
ary I .

As in four dimensions, it is convenient to work entirely
with the tilde fields which are smooth atI . Let us set

L̃ab5V~Rab2
1
4 Rgab!5:VSab

and lower and raise its indices withg̃ab and its inverse.
L̃ab carries the same information as the stress-energy tensor
Tab of matter and our conditions onTab ensure thatL̃ab is
smooth atI . Set

f̄5V21ñaña .

Then, using the expressionRabcd52(Sa[cgd]b2Sb[cgd]a) of
the Riemann tensor in three dimensions, the formula express-
ing the relation between curvature tensors ofgab and g̃ab
reduces to

VS̃ab1¹̃añb2
1
2 f̄ g̃ab5L̃ab , ~3.2!

whereS̃ab5(R̃ab2
1
4 R̃g̃ab). This is the basic field equation

in the tilde variables. Since all other fields which feature in it
are known to be smooth atI , it follows that f̄ is also smooth.
This implies, in particular, thatña is null. Sinceña5¹̃aV is
the normal field toI , we conclude thatI is a null surface.

Next, we note that there is a considerable freedom in the
choice of the conformal factor V. Indeed, if
(M̃ ,g̃ab5V2gab) is an allowable completion, so is
(M̃ ,V82gab) where V85vV for any smooth, nowhere-
vanishing functionv on M̃ . Now, under the conformal trans-
formationV°V85vV, we have

¹̃a8ñ8a>v21¹̃añ
a13v22Lñv,

where, from now on,> will stand for ‘‘equals at the points
of I to.’’ Hence, by using an appropriatev, we can always
makeñ8a divergence-free. Such a choice will be referred to

as adivergence-free conformal frame. This frame is, how-
ever, not unique. The restricted gauge freedom is given by

V°vV,where Lñv>0. ~3.3!

Now, condition ~iv! in our definition requires that, in any
divergence-free conformal frame, the vector fieldña be com-
plete onI . Suppose it is so in one divergence-free conformal
frame V. Let V8 correspond to another divergence-free
frame. Then,V85vV, with v smooth, nowhere vanishing
and satisfyingLñv>0. The last equation implies thatñ8a is
complete onI if and only if ña is complete there. Hence, we
need to verify ~iv! in just one divergence-free conformal
frame.In what follows, we will work only in divergence-free
conformal frames.

Next, taking the trace of Eq.~3.1! and using the fact that
L̃ vanishes onI we conclude that, in any divergence-free
frame, f̄ vanishes onI , whence

f̃ :5V21 f̄

admits a smooth limit there. The fieldf̃ will play an impor-
tant role. Finally, it is easy to check that in any divergence-
free conformal frame, we have

ñ b¹̃bña>0 and L̃abñ
b>0. ~3.4!

Thus, in particular, as in four dimensions,I is ruled by null
geodesics. The spaceB of orbits of ña—the ‘‘base space’’ of
I—is diffeomorphic toS1. The second equation and the
trace-free character ofL̃ab imply that,on I, L̃ab has the form

L̃ab>L̃ ~añb) with L̃añ
a>0 , ~3.5!

for some smooth co-vector fieldL̃a . Hence, the pullback to
I of L̃ab vanishes which in turn implies, via Eq.~3.1!, that
the pullback toI of ¹̃añb also vanishes. Hence, if we denote
by q̃ab the pullback ofg̃ab , we have

Lñq̃ab>0. ~3.6!

SinceI is null, it follows that

q̃abñ
b>0 . ~3.7!

Thus,q̃ab is the pullback toI of a positive definite metric on
the manifold of orbitsB of the vector fieldña. By construc-
tion, B is a one-dimensional manifold with topology ofS1.
Hence, there exists a one-formm̃a on I such that

q̃ab5m̃am̃b . ~3.8!

@In cylindrical waves,m̃a is the pullback toI of ¹̃af and
ña equals exp(22g̃)(]/]u) on I .# Under a conformal rescaling
V°vV ~from one divergence-free frame to another!, we
have

m̃a°vm̃a ña°v21ña. ~3.9!

The pairs (m̃a ,ñ
a) @or, equivalently, (q̃ab ,ñ

a)] are the kine-
matical fields which are ‘‘universal’’ toI : In any asymptoti-
cally flat space-time, we obtain the same collection of pairs.
This situation is analogous to that in four dimensions where
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pairs (q̃ab ,ñ
a) constitute the universal kinematic structure.

However, whereas the four-metric evaluatedat I has no dy-
namical content, in the present case, the three-metricat I
does carry dynamical content and varies from one space-time
to another.

B. Asymptotic fields

The pairs (q̃ab ,ñ
a) on I represent the leading or the ‘‘ze-

roth order’’ structure atI . The next, in the hierarchy, is an
intrinsic derivative operator. LetK̃b be a smooth co-vector
field on M̃ , andK̃b , its pullback toI . Define:

D̃aK̃b :5¹̃aK̃b, ~3.10!

where the underbar on right-hand side denotes the pullback
to I . @SinceK̃b5K̃b8 if and only if K̃b85K̃b1h̃ñb1VW̃b for

some smoothh̃ andW̃b , D̃ is a well-defined operator if and
only if the pullback toI of ¹̃a(h̃ñb1VW̃b) vanishes. It is
easy to check that it does.# In four dimensions, the two ra-
diative degrees of freedom of the gravitational field are
coded in this intrinsic derivative operator@18#. In three di-
mensions, on the other hand, there is no ‘‘pure’’ gravitational
radiation. Hence, one would expect that the derivative opera-
tor D̃ has no invariant physical content. This is indeed the
case.

To see this, note first that given any vector fieldṼa tan-
gential toI we have

ṼaD̃aq̃ab>0 and ṼaD̃añ
b>ṼaL̃a

b ,

where, in the second equation, we have used Eq.~3.6!. Now,
for a zero rest mass scalar field~i.e., for four-dimensional

Einstein-Rosen waves!, L̃ab>
1
2 c̃2ñañb , whence

ṼaD̃añ
a>0. Hence, the difference between any two permis-

sible derivative operators onI is given by

~D̃a82D̃a!K̃b>C̃ab
c K̃c with C̃ab

c 5S̃abñ
c ,

where K̃b is any covector field onI and S̃ab , a symmetric
tensor field on I , transverse toña, S̃abñ

a>0. Thus,
S̃ab>gm̃am̃b for some functiong on I . Now, if we make a
conformal transformationV°V85(11v1V)V the deriva-
tive operator D̃ changes through: (D̃a82D̃a)Kb

5v1m̃am̃bñ
cKc , even though the transformation leaves

m̃a and ñ
a invariant. Thus, as in four dimensions, the ‘‘trace

part’’ of S̃ab is ‘‘pure gauge.’’ Now, in four dimensions, the
degrees of freedom of the gravitational field reside in the
trace-free part ofS̃ab @18#. For the three-dimensional de-
scription of Einstein-Rosen waves, by contrast, sinceS̃ab is
itself pure trace, the trace-free part vanishes identically, re-
flecting the absence of pure gravitational degrees of freedom.

In four dimensions, the Bondi news—which dictate the
fluxes of energy momentum carried away by gravity
waves—is coded in the curvature ofD̃. By contrast, in the
general three-dimensional case~i.e., without restriction on
the form of matter sources!, we can always make the curva-
ture vanish by going to an appropriate conformal frame. To
see this, recall first that, sinceI is two dimensional, the full

curvature of any connection is determined by a scalar. For
connections under consideration, we have 2D̃ [aD̃b]Kc

5R̃ẽabm̃cñ
dKd , whereẽab is the obvious alternating tensor

on I . ~Thus,ẽab52l̃ [am̃b] , wherel̃ a is a null co-vector field
on I satisfying l̃ añ

a51.! Under conformal rescalings
V°V85(11v1V)V, we have R̃°R̃85

R̃1Lñv1. Thus, by choosing an appropriatev1, we can al-
ways setR̃850. There is no invariant physical information
in the curvature of the derivative operatorD̃ intrinsic to I .

Let us, therefore, examine the curvature of the full three-
dimensional connection¹̃. Using Eq.~3.2! and the Bianchi
identity of the rescaled metricg̃ab , we have

2S̃abñ
a1¹̃b~V f̃ !5¹̃aL̃ab2¹̃bL̃, ~3.11!

whereL̃5g̃abL̃ab . The Bianchi identity for the physical met-
ric gab implies that the right-hand side of Eq.~3.11! is given
by 2V21L̃abñ

a. Hence, combining the two, we have

2S̃abñ
a1V¹̃bf̃1 f̃ ñb52V21L̃abñ

a. ~3.12!

These, together with Eq.~3.1!, are the basic equations that
govern the asymptotic dynamics.

Our assumptions on the stress-energy tensor imply that
V21L̃abñ

aṼb vanishes onI for any vectorṼa tangential to
I . Equation~3.12! now impliesS̃abñ

aṼb>0. Hence, the pull-
backSab to I of S̃ab has the form

Sab5Sm̃am̃b .

Similarly, sinceL̃ab is trace-free onI and sinceL̃abñ
b van-

ishes there@cf. Eqs. ~3.4! and ~3.5!#, the pullbackLab of
V21Lab to I exists and has the form

Lab5Lm̃am̃b .

The field

B̃:5S2L ~3.13!

will play an important role in what follows.
The Bach tensorB̃abc—vanishing of which is a necessary

and sufficient condition for conformal flatness in three
dimensions—is given by

B̃abc52¹̃ [bS̃c]a52V21~¹̃ [bL̃c]a2V21ñmg̃a[bL̃c]m!.
~3.14!

Thus, the Bach tensor is nonzero only in the presence of
matter. Note that, in general, it does not vanish even atI .
This is in striking contrast with the situation in four dimen-
sions where the Weyl tensor of the rescaled metricdoesvan-
ish atI . We will see that the fact that in three dimensions we
do not have conformal flatness evenat I makes the discus-
sion of asymptotic symmetries much more difficult. Trans-
vecting the Bach tensor withña and pulling the result back to
I , we obtain

ñaB̃abc>2LñSbc>2LñLbc2~ lim
°I

V22ñmñnL̃mn!q̃bc .

~3.15!
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Since the last term in this equation has the form of the flux of
‘‘matter energy’’ acrossI @it equals 2(Lñc̃)2 in the case of
Einstein-Rosen waves, cf. Eq.~3.1!#, it is tempting to inter-
pret this equation as the analogue of the local Bondi conser-
vation law onI in four dimensions. Let us rewrite this equa-
tion in a more convenient form:

D̃ [a~S2L !m̃b]5
1

2
lim
°I

@V22~Lmnñ
mñn!ẽab#. ~3.16!

Then, it is tempting to regard the one-formB̃m̃a
>(S2L)m̃a as the analogue of the four-dimensional ‘‘Bondi
mass aspect.’’ Let us, therefore, study its conformal proper-
ties. Under a rescalingV°V85vV, we have

B̃m̃a°B̃8m̃a85@v21B̃2v22m̃am̃bD̃aD̃bv

1 3
2 v23~m̃aD̃av!2#m̃a , ~3.17!

where m̃a is a vector field tangential toI satisfying
m̃am̃a51. Note that the transformation law involves only the
values ofv on I; unlike in the transformation law forR̃,
discussed above, the fieldv1 ~which measures the first de-
rivative of v off I ) never enters. This transformation law
will play an important role in the next two sections.

Finally, we note an identity which enables us to express,
at I , the quantityB̃ constructed from the curvatures ofg̃ab
andgab in terms of the metric coefficients. To see this, recall
first that the derivative operatorD̃ within I is obtained by
‘‘pulling back’’ the space-time derivative operator¹̃ to I .
Hence one can express the curvatureR̃ of D̃ in terms of the
curvatureS̃ab of ¹̃. Using the Bianchi identity~3.10! to ex-
press some of the components ofS̃ab in terms of matter
fields, we obtain

B̃>S2L> f̃2R̃. ~3.18!

Thus, in a conformal frame in whichR̃ is zero, the analogue
B̃ of the Bondi-mass aspect can be computed directly from
the metric coefficientf̃5V22g̃abñ

añb. For the Einstein-
Rosen waves, for example, it is straightforward to check that
the completion given in Sec. II satisfies the conditionR̃50
and by inspectionf̃ is given by exp(22g̃). Thus, in practice,
Eq. ~3.18! often provides an easy way to calculateB̃. Finally,
note that, under conformal rescalingsV°(11v1V)V, both
f̃ and R̃ transform nontrivially. However, the combination
f̃2R̃ remains unchanged.

C. Point particle

In this subsection, we will consider the simplest point-
particle solution to three-dimensional gravity and, using the
results obtained in the last two subsections, study its behav-
ior at null infinity.

In an obvious coordinate system adapted to the world line
of the point particle, the physical space-time metricgab is
given by @19#

ds252dt21r28GM~dr21r 2df2!,

where 2`,t,`,0,r,`, and 0<f,2p. The particle
has massM and ‘‘resides’’ at the origin. Since the stress-
energy tensor vanishes everywhere outside ther50 world
line ~which is excised from the space-time!, the metric is flat
outside the origin. We can transform it in a manifestly flat
form by setting

r5
r a

a
,f̄5uauf, where a5124GM.

„Note thatf̄ now ranges in@0,2puau).… In terms of these
coordinates, the metric is given by

ds252dt21dr21r2df̄2. ~3.19!

Although the metric is manifestly flat, it fails to be globally
Minkowskian because of the range off̄; there is a conical
singularity at the origin and the resulting deficit angle mea-
sures the mass.

It is straightforward to conformally complete this space-
time to satisfy our definition of asymptotic flatness. Setting
u5t2r andV51/r, the rescaled metricg̃ab is given by

ds̃2:5V2ds252V2du212dudV1df̄2. ~3.20!

It is trivial to check that the completion satisfies all our con-
ditions and that the conformal frame is divergence-free. The
kinematic fields are given byña[]/]u and m̃a5D̃af̄. By
inspection f̃51 and a simple calculation shows thatR̃50.
Thus,B̃51/2; it carries no information about mass. This in-
formation is hidden in the deficit angle: Integratingm̃a on the
base spaceB, we have

R
B
m̃adS

a52pa52p~124GM!.

In four dimensions, one often insists that the conformal
frame be such that the metric on the base space be a unit
two-sphere metric. These are the Bondi conformal frames.
The obvious analogue in three dimensions is to ask that the
frame be such that the length of the base space be equal to
2p, the length of a unit circle.~Although this restriction is
very weak, it seems to be the only viable analogue of the
Bondi restriction in four dimensions.! The completion we
gave above does not satisfy this condition. However, it is
trivial to rectify this situation through a~constant! conformal
rescaling. SetV85(1/a)V. Then,

ds̃8252V82du21
2

a
dudV81df2, ~3.21!

wheref5(1/uau)f̄ ranges over@0,2p); the base spaceB is
a circle of length 2p as required. Since we have performed a
constantrescaling, we haveR̃850. However,f̃ does change:
f̃ 85a2. Thus, in the ‘‘Bondi-type’’ frame, mass resides in
B̃: SinceB̃5 1

2a
2 in this frame, the mass is given by

M5
1

4G
~12 A2B̃!. ~3.22!
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Thus, our expectation of the last subsection thatB̃ would be
the analogue of the Bondi-mass aspect is correct. However,
to arrive at this interpretation, we must use a properly nor-
malized~‘‘Bondi-like’’ ! conformal frame. This point will be
important in Sec. V.

We will conclude this discussion with two remarks.
The metric considered in this subsection is stationary and

so it is appropriate to compare the situation we encountered
with that in four-dimensional stationary space-times. In both
cases, the stationary Killing field selects a preferred rest
frame at I ~which, in our example, is given by the time
translation]/]u). However, in four dimensions, one can find
asymptoticKilling fields corresponding to space translations
as well. In the present case, on the other hand, due to the
conical singularity, globally defined space-translation vector
fields fail to existeven asymptotically~unlessM50 in which
case the deficit angle vanishes!. For example, we can intro-
duce Cartesian coordinatest,x̄,ȳ corresponding tot,r,f̄.
Then,X̄a[]/] x̄ andȲa[]/] ȳ are local Killing fields. How-
ever, the chart itself fails to be globally defined and so do the
vector fields. Another strategy is suggested by what happens
in Minkowski space-time. In any of its standard completions
space translations are represented by the vector fields
(cosf)ña and (sinf)ña on I . In the ‘‘Bondi-like’’ conformal
frame introduced above these vector fields are globally de-
fined at null infinity of our point-particle space-time as well.
However, now they fail to be Killing fields even asymptoti-
cally.

The second remark is that the stationary space-time we
considered here is a very special solution. Generic stationary
solutions in three-dimensional general relativity have a loga-
rithmic behavior near infinity and, therefore, fail to satisfy
our definition of asymptotic flatness at null infinity.@See Ap-
pendix B. Our point-particle solution corresponds essentially
to the special caseC50 in Eqs. ~B2! and ~B3!.# This is
another key difference between three and four dimensions.

IV. ASYMPTOTIC SYMMETRIES

In four dimensions, the asymptotic symmetry group at
null infinity is given by the BMS group@13,16,17,20#. Its
structure is the same as that of the Poincare´ group in that it is
a semidirect product of an Abelian group with the Lorentz
group. The Abelian group, however, isinfinite dimensional;
it is the additive group of functions on a two-sphere~the base
space ofI ) with conformal weight11. It is called the group
of supertranslations. The four-dimensional group of transla-
tions can be invariantly singled out. However, unless addi-
tional conditions are imposed~neari 0 or i1), the BMS group
does not admit a preferred Lorentz or Poincare´ subgroup.
This enlargement from the ten-dimensional Poincare´ group
to the infinite-dimensional BMS group is brought about be-
cause, in the presence of gravitational radiation, one cannot
single out a preferred Minkowski metric even at infinity; one
can only single out a family of Minkowskian metrics and
they are related by super translations.

In this section, we will examine the asymptotic symmetry
group in three dimensions. One’s first impulse is to expect
that the situation would be completely analogous to that in
four dimensions since the ‘‘universal structure’’ available at
I in the two cases is essentially the same. It turns out, how-
ever, that because the space-time metric is dynamical even at

infinity—i.e., because in general the physical metric does not
approach a Minkowskian metric even to the leading order—
the group of asymptotic symmetries is now enlarged even
further. Furthermore, now it is not possible to single out even
the group of translations without additional conditions.

This section is divided into two parts. The first discusses
the asymptotic symmetry group and the second introduces
additional conditions to single out translations.

A. Asymptotic symmetry group

Let us begin by recalling the universal structure, i.e., the
structure at infinity that is common to all asymptotically flat
space-times. As usual, the asymptotic symmetries will then
be required to preserve this structure.

Given any space-time satisfying our definition of asymp-
totic flatness andany conformal completion thereof, its null
infinity I is a two-manifold, topologicallyS13R. It is ruled
by a ~divergence-free! null vector field ña and its intrinsic,
degenerate metricq̃ab satisfies

q̃abṼ
b>0 if and only if Ṽb}ñb, ~4.1!

whereṼb is an arbitrary vector field onI . The ‘‘base space’’
B of I , i.e., the space of integral curves ofña on I , has the
topology ofS1. As in four dimensions, the intrinsic metric
q̃ab on I is the pullback toI of a metric q̄ab on B; that is,
Lñq̃ab50. Next, we have the conformal freedom given in
Eq. ~3.3!. Thus, I is equipped with an equivalence class of
pairs (q̃ab ,ñ

a) satisfying Eqs.~4.1! and~3.6!, where two are
considered as equivalent if they differ by a conformal rescal-
ing: (q̃ab ,ñ

a)'(v2q̃ab ,v
21ña), with Lñv50. This struc-

ture is completely analogous to that at null infinity of four-
dimensional asymptotically flat space-times.

As we already saw, in three dimensions, a further simpli-
fication occurs: in any conformal frame,I admits a unique
covector fieldm̃a such thatq̃ab5m̃am̃b . Hence, in the uni-
versal structure, we can replaceq̃ab by m̃a . Thus, I is
equipped with equivalence classes of pairs (m̃a ,ñ

a), satisfy-
ing

m̃añ
a>0 and Lñm̃a>0, ~4.2!

where (m̃a ,ñ
a)'(vm̃a ,v

21ña) for any nowhere-vanishing
smooth functionv on I satisfyingLñv50. Note that the
second of Eqs.~4.2! implies thatm̃a is the pullback toI of a
covector fieldm̄a on the base spaceB.

The asymptotic symmetry groupG is the subgroup of the
diffeomorphism group ofI which preserves this structure.
An infinitesimal asymptotic symmetry is, therefore, a vector
field j̃a on I satisfying

L j̃m̃a>ãm̃a and L j̃ ñ
a>2ãña, ~4.3!

for some smooth functionã ~which depends onj̃a) satisfy-
ing Lñã>0. Equations~4.3! ensure that the one-parameter
family of diffeomorphisms generated byj̃a preserves the
‘‘ruling’’ of I by the integral curves of its null normal, its
divergence-free character, and maps pair (m̃a ,ñ

a) to an
equivalent one, thereby preserving each equivalence class. It
is easy to check that vector fields satisfying Eqs.~4.3! form a
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Lie algebra which we will denote byLG. This is the Lie
algebra of infinitesimal asymptotic symmetries.

To unravel the structure ofLG, we will proceed as in four
dimensions. LetLS denote the subspace ofLG spanned by
vector fields of the typej̃a>h̃ña. Elements ofLS will be
called infinitesimalsupertranslations. Equations~4.3! imply

Lñh̃>0, Lh̃ ñm̃a50, and Lh̃ ñña50 . ~4.4!

Thus, for any supertranslation,h̃ is the pullback toI of h̄ on
the base spaceB and the action of the supertranslation leaves
each pair (m̃a ,ñ

a) individually invariant. Furthermore, given
any j̃aPLG and anyh̃ñaPLS, we have

@ j̃,h̃ñ#a5~L j̃ h̃2ã !ña. ~4.5!

Thus,LS is a Lie ideal ofLG.
To unravel the structure ofLG, let us examine the quo-

tient LG/LS. Let @ j̃a# denote the element of the quotient
defined byj̃a; @ j̃a# is thus an equivalence class of vector
fields on I satisfying Eqs.~4.3!, where two are regarded as
equivalent if they differ by a supertranslation. The second of
Eqs.~4.3! implies that everyj̃a in LG admits an unambigu-
ous projectionj̄a to the base spaceB. The equivalence rela-
tion implies that all vector fieldsj̃a in @ j̃a# project to the
same fieldj̄a onB and that@ j̃a# is completely characterized
by j̄a. What conditions doesj̄a have to satisfy? The only
restriction comes from the first equation in Eqs.~4.3!: j̄a

must satisfyL j̄ m̄a5ām̄a for someā on B. However, since
B is one dimensional, this is no restriction at all. Thus,j̄a

can beany smooth vector field on the circleB. LG/LS is
thus the Lie algebra of all smooth diffeomorphisms onS1.
@In four dimensions, by contrast, the first of Eqs~4.3! is very
restrictive since the base space is a two-sphere;j̄a has to be
a conformal Killing field on (S2,q̄ab). The Lie algebra of
these conformal Killing fields is just six dimensional and is
isomorphic to the Lie algebra of the Lorentz group in four
dimensions.#

These results imply that the groupG of asymptotic sym-
metries has the structure of a semidirect product. The normal
subgroupS is the Abelian group of supertranslations. Given
a conformal frame, each infinitesimal supertranslation
j̃a5h̃ña is characterized by a functionh̃. If we change the
conformal frame, g̃ab°g̃ab8 5v2g̃ab , we have
ña°ñ8a5v21ña and henceh̃°h̃85vh̃. Thus, each super-
translation is characterized by a conformally weighted func-
tion on the circleB; the supertranslation subgroupS is iso-
morphic with the additive group of smooth functions on a
circle with a unit conformal weight. The quotientG/S of G
by the supertranslation subgroupS is the group Diff(S1) of
diffeomorphisms on a circle. In the semidirect product,
Diff( S1) acts in the obvious way on the additive group of
conformally weighted functions onS1.

We will conclude this subsection with some remarks.
~1! In the light of the above discussion, let us reexamine

the conditions on the stress-energy tensor in our definition of
asymptotic flatness. In Sec. III A we pointed out that the
conditions are considerably weaker than those normally im-
posed in four dimensions and argued that imposition of

stronger conditions would deprive the framework of interest-
ing examples. Could we have imposed even weaker condi-
tions? Note that, ifVTab fails to admit a well-defined limit
to I , we could not even have concluded thatI is a null hy-
persurface@see Eq.~3.2!#. What about the condition on the
trace? In the absence of this condition, the pullback ofL̃ab to
I would not have vanished. This then would have implied
Lñq̃ab>(4/3)L̃q̃abÞ0. Consequently, the asymptotic sym-
metry group would have borne little resemblance to the BMS
group@13,16,17,20# that arises in four dimensions. Thus, the
specific conditions we used in the definition strike a balance:
they are weak enough to admit interesting examples and yet
strong enough to yield interesting structure atI .

~2! The semidirect product structure of the asymptotic
symmetry group is the same as that of the BMS group. The
supertranslation group is also the natural analogue of the
supertranslation subgroup of the BMS group. The quotient,
however, is quite different: while it is the Lorentz group in
the four-dimensional case, it is now aninfinite-dimensional
group, Diff(S1). Recall, however, that in the corresponding
analysis in four dimensions, the base space ofI is a two-
sphere.S2 admits a unique conformal structure and the Lor-
entz group arises as its conformal group. In the present case,
the base spaceB is topologicallyS1 and the quotient ofG by
the supertranslation subgroup is the conformal group ofS1.
~Recall that j̄a has to satisfy L j̄ q̄ab52āq̄ab since
q̄ab5m̄am̄b .) It just happens that, sinceS1 is one dimen-
sional, everydiffeomorphism ofS1 maps q̄ab to a confor-
mally related metric. This is the origin of the enlargement.

~3! Can one understand this enlargement from a more
intuitive standpoint? Recall that the symmetry group is en-
larged when the boundary conditions are weakened. Thus, it
is the weaker conditions on the falloff of stress energy—and
hence on the curvature of the physical metric—that is re-
sponsible for the enlargement of the group. This can be seen
in the explicit asymptotic form of the metric of Einstein-
Rosen waves that we encountered in Sec. II C,

ds25e2g~2du222dudr!1r2df2, ~4.6!

whereg>g(u) is a dynamical field onI , sensitive to the
radiation. Ifg50, we obtain Minkowski space. The radiative
space-times that result wheng50 thus differ from the
radiation-free Minkowski space already to theleadingorder
at null infinity. In four dimensions, by contrast, the leading
order behavior of the physical metric has no dynamical con-
tent; the components of the metric carrying physical infor-
mation fall as 1/r . It is this difference that is responsible for
the tremendous enlargement of the asymptotic symmetry
group.

Let us analyze this point further. Suppose, in four dimen-
sions, we consider metrics whose form is suggested by Eq.
~4.6!:

ds25e2g~2du222dudr!1r 2dS2, ~4.7!

whereg5g(u,r ,u,f) has a well-defined limit asr tends to
infinity along constantu,u,f curves, anddS2 denotes the
two-sphere metric. Now, the situation is similar to that en-
countered in the Einstein-Rosen waves: metrics with differ-
ent radiative content differ already to leading order. None-
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theless, settingV51/r , it is easy to carry out a conformal
completion of this metric and verify that it admits a smooth
I . However, the problem is that thecurvature of this metric
fails to fall off sufficiently rapidly for the stress-energy tensor
to have the falloff normally required in four dimensions.
Hence, this metric fails to be asymptotically flat in the usual
four-dimensional sense. In three dimensions, on the other
hand, to obtain an interesting framework, we are forced to
admit the analogous metrics~4.6!.

B. Translations

In four dimensions, one can single out translations from
the BMS group in a number of ways. Somewhat surprisingly,
it turns out that every one of those techniques fails in thre
dimensions. We will first illustrate this point and then show
that one can introduce additional conditions to single out
translations. As one might expect from our discussion of Sec.
III C, the situation is subtle even after introduction of the
stronger conditions.

Among various characterizations of the translation sub-
group of the BMS group, the one that is conceptually sim-
plest and aesthetically most pleasing is given by group
theory @20#: Translations form the unique four-dimensional
normal subgroup of the BMS group. In three dimensions,
however, the asymptotic symmetry group is much larger; the
quotient ofG by supertranslations is now Diff(S1)—the full
diffeomorphism group of a circle—rather than the~finite-
dimensional! Lorentz group. Consequently,G does not admit
any finite-dimensional normal subgroup. Thus, the most ob-
vious four-dimensional strategy is not applicable.

In four dimensions, another method of singling out trans-
lations is to use the notion of ‘‘conformal-Killing transport’’
@21#. The conformal-Killing data at any point ofI corre-
sponding to translations are integrable because the Weyl ten-
sor ~of the tilde metric! vanishes there identically. In three
dimensions, the analogous condition would be vanishing of
the Bach tensor. Unfortunately, as we saw in Sec. III B, in
the presence of matter fields the Bach tensor fails to vanish at
I . ~The explicit expression of the Bach tensor in the case of
Einstein-Rosen waves is given in Appendix A.! This in turn
makes the conformal-Killing transport of data that would
have corresponded to translations nonintegrable onI and the
strategy fails.

Finally, a third method of selecting translations in four
dimensions is to go to a Bondi conformal frame, i.e., one in
which the metricq̄ab on the base space is the unit two-sphere
metric and consider the four-parameter family of supertrans-
lations j̃a5h̃ña, where h̃ is any linear combination of the
l 50,1 spherical harmonics. There is only a three-parameter
family of Bondi frames and the conformal factor that relates
them is highly constrained. As a result, ifh̃ is a linear com-
bination of the l 50,1 spherical harmonics in one Bondi
frame, it is so inall Bondi frames@20#. The construction thus
selects precisely a four-parameter subgroup of the super-
translation groupS. This strategy fails in three dimensions
because the base space is nowS1 and the notion of a ‘‘unit
S1 metric’’ fails to have the rigidity that the unit two-sphere
metrics enjoy. Indeed, as we already remarked in Sec. III C,
the only nontrivial analogue of the Bondi frame condition is
to require that the conformal frame be such that the length of

the base spaceB be 2p and there is aninfinite-dimensional
freedom in the choice of such frames. Consequently, we can-
not select a three-dimensional space of translations in this
manner.

Thus, to select translations, we need to impose additional
conditions. To be viable, they should select the standard,
three-dimensional translation group in Minkowski space-
time. However, as we saw in the point-particle space-time,
asymptotic space translations do not exist globally nearI if
MÞ0. ~This is also the case for Einstein-Rosen waves.!
Hence, one would expect that, when the total~ADM-type!
mass is nonzero, the conditions should select only a time
translation. Thus, the conditions have to be subtle enough to
achieve both these goals at once. Fortunately, such condi-
tions do exist and are, furthermore, satisfied by a large class
of examples.

A space-time (M ,gab) will be said to bestrongly asymp-
totically flat at null infinity if it satisfies the boundary condi-
tions of Sec. III.A. and admits a conformal completion in
which

B̃[S2L[
1

2
f̃2R̃ →

k

2
>0

as one approachesi 0along I , ~4.8!

wherek is a constant. Note that if the space-time is axisym-
metric, B̃ automatically approaches a constant: ifV is cho-
sen to be rotationally symmetric,B̃ would also be rotation-
ally symmetric everywhere onI and hence, in particular, its
limit to i 0 alongI will be angle independent as required.~We
will see in Sec. V that the positivity ofk ensures that the
ADM-type energy is well defined.! Thus, the additional con-
dition is satisfied in a large class of examples, including the
Einstein-Rosen waves and our point-particle space-time.

Note that if the last condition is satisfied in a given con-
formal frame, we can rescale the conformal factor by acon-
stantand obtain another conformal frame in which it is also
satisfied. We can eliminate this trivial freedom by a normal-
ization condition. A conformal frame will be said to be of
Bondi-typeif B̃ satisfies Eq.~4.8! and if rB m̃adS

a52p. A
natural question is the following: How many Bondi-type
conformal frames does a strongly asymptotically flat space-
time admit? We will show that Minkowski space admits pre-
cisely a two-parameter family of them and the freedom cor-
responds precisely to that of choosing a unit timelike vector
~i.e., a rest frame!. This is completely analogous to the free-
dom in the choice of Bondi frames in four dimensions. If the
ADM-type mass is nonzero, however, the Bondi-type frame
will turn out to be generically unique~unlike Bondi frames
in four dimensions!.

To establish these results, let us fix a strongly asymptoti-
cally flat space-time and two Bondi-type completions thereof
in which B̃ tends, respectively, tok/2 and k8/2 for some
constantsk and k8. ~In Minkowski space-time, it turns out
that k5k851.! Let us suppose that the two conformal
frames are related byV5aV8, i.e., g̃ab5a2g̃ ab8 Then, the
transformation property~3.17! of B̃ implies

k8

2
5
k

2
a21a]̃2a2

1

2
~ ]̃a!2, ~4.9!
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where ]̃[m̃aD̃a[]/]f. The question now is: How many
~smooth! solutions does Eq.~4.9! admit? The equation is
nonlinear and rather complicated. However, if we take its]̃
derivative we are left with a linear equation:

]̃@~ ]̃2a!1ka#50 . ~4.10!

This has regular solutions only ifk5n2 for an integern
„recall that, in a Bondi frame, the range off on B is in
@0,2p)…. Similarly, interchanging the role of primed and
unprimed frames, we conclude thatk85n82 for some integer
n8. Finally, the fact that the length ofB in both conformal
frames is 2p implies thatn85n. Thus, unlessk5k85n2,
Eq. ~4.9! does not admit a regular solution. Thus, unless
k5n2, the Bondi-type conformal frame is, in fact, unique. In
this generic case, we have a preferred time translation sub-
group of G generated byj̃a5ña. In the point-particle ex-
ample, this is precisely the time translation selected by the
rest frame of the particle. In Einstein-Rosen waves, it turns
out to be the one selected by the total Hamiltonian of the
system@10#.

If k5n2, the reduced equation~4.10! clearly admits a
two-parameter family of solutions: In terms of the angular
coordinatef on B ~with m̃a5D̃af), these are given by

a5A1Bcosnf1Csinnf with 2A21B21C2521 .
~4.11!

It is straightforward to check that they also satisfy the full
equation~4.9!.

In the obvious completion of Minkowski space-time~ob-
tained by settingM50 in the point-particle example or
c50 in Einstein-Rosen waves!, we have f̃51 and R̃50,
whenceB̃51/2. This corresponds to the casen51. Thus,
Minkowski space-time does admit Bondi-type conformal
frames and the constantk is precisely 1 ~i.e., we cannot
obtain any other value by going from one Bondi-type frame
to another!. There is precisely a two-parameter family of
Bondi-type frames related by a conformal factora of Eq.
~4.11! ~with n51). Fix any one of these and consider the
three-parameter family of supertranslations of the formh̃ña

where

h̃5~a1bcosf1csinf!. ~4.12!

Using Eq.~4.11! ~with n51), one can check that this three-
dimensional space of these supertranslations is left invariant
if we replace one Bondi-type frame by another. Following
the ~third! strategy~mentioned above! used in four dimen-
sions, one can call this the translation subgroup of the as-
ymptotic symmetry group. This label is indeed appropriate:
It is easy to check that the restrictions toI of any transla-
tional Killing field of Minkowski space has precisely this
form. Thus, ifn51, the procedure does select for us a three-
dimensional translation subgroup ofG.

It turns out, however, that ifn51, the deficit angle at
spatial infinity vanishes and we, therefore, have zero ADM-
type energy. By three-dimensional positive energy theorem
@10#, the only physically interesting space-time in which this
can occur is the Minkowski space-time. Ifk.1, we have a
surplus angle at spatial infinity and the ADM-type energy is

now negative. We will, therefore, ignore then.1 cases from
now on ~although they do display interesting mathematical
structures; see Appendix B!.

To summarize, strongly asymptotically flat space-times
generically admit a preferred Bondi-type frame and a pre-
ferred time translation. In the exceptional cases, where
k5n2, we obtain a three-parameter family of Bondi-type
frames. However, the only physically interesting exceptional
case is Minkowski space-time wheren51.

V. CONSERVED QUANTITIES

This section is divided into two parts. In the first, we
introduce the notion of energy at a retarded instant of time
and of fluxes of energy and, in the second, we discuss super-
momenta. Again, while the general ideas are similar to those
introduced by Bondi, Sachs, and Penrose in four dimensions,
there are also some important differences.

Perhaps, the most striking difference is the following.
Consider generic, strongly asymptotically flat space-times.
As we saw, in this case, there is a preferred Bondi-type
frame and a preferred translation subgroup of the asymptotic
symmetry group. However, as the example of Einstein-
Rosen waves illustrates, because the space-time metric is dy-
namical even at infinity, the vector fieldña ~or a constant
multiple thereof! in the Bondi-type frame isnot the extension
to I of a unit time translation in the space-time. If the initial
data of the scalar field are of compact support, space-time is
flat in a neighborhood ofi 0 and a constant multiple of
ña—namely, exp(g̃0)ñ

a—coincides with the extension toI of
the unit time translation neari 0. However, in the region of
I with nontrivial radiation, the restriction of the unit time
translation is given by exp@g̃(u)#ña; the rescaling involved is
u dependent whence the vector field is not even a supertrans-
lation. Energy, on the other hand, is associated with unit time
translations. Hence, energy at null infinity is not directly as-
sociated with any component of supermomentum and a new
strategy is needed to define it.

A. Energy

The strategy we will adopt is to capture the notion of
energy through the appropriate deficit angle. We will first
begin with motivation, then write down the general expres-
sion of energy, and finally verify that it has the expected
physical properties.

Let us begin with an axisymmetric, strongly asymptoti-
cally flat space-time and consider its Bondi-type completion
with an axisymmetric conformal factor. ~Thus,
rB m̃adS

a52p.! Fix a cross sectionC0 of I to which the
rotational Killing field is tangential. Because of axi symme-
try of the construction, the fieldB̃ is constant onC0, say
B̃uC05k0/2. If this were a cross section ofI of the point-
particle space-time, it follows from our discussion of Sec.
III C @cf. Eq. ~3.22!# that we would associate with it energy

E5
1

4G
~12Ak0!. ~5.1!

~Thus, in particular, ifk051 as in Minkowski space-time,
we would haveE50.!
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By inspection, we can generalize this expression to arbi-
trary cross sections of null infinity of general—i.e.,
nonaxisymmetric—space-times. Given any strongly asymp-
totically flat space-time, a Bondi-type conformal frame and a
cross-sectionC of I , we will set

E@C#:5
1

8pG R
C
~12A2B̃!m̃adS

a. ~5.2!

The appearance of the square root is rather unusual and
seems at first alarming: the formula would not be meaningful
if B̃ were to become negative. Note, however, that, by as-
sumption of strong asymptotic flatness, the limitk/2 of B̃ to
i 0 is positive. Furthermore, sinceLñB̃5 lim°IV

22L̃cdñ
cñd

and since the right-hand side is positive definite if the matter
sources satisfy local-energy conditions,B̃ remains positive
on I . Thus,E@C# is bounded above by 1/4G which is also
the upper bound of the total Hamiltonian at spatial infinity
@10#.

Let us now verify various properties of this quantity
which provide a strong support in favor of its interpretation
as energy.

First, let us suppose that we are in Minkowski space-time.
Then, inanyBondi-type frame, we haveB̃51/2 everywhere
on I . Hence, on any cross section, the energy vanishes.

Next, let us consider the point-mass space-time with posi-
tiveM . Then, from Sec. IV B we know that there is a unique
Bondi-type frame and in this frame, 2B̃5(124GM)2

whence, onany cross-sectionC, we obtainE@C#5M . This
is, of course, not surprising since our general definition was
motivated by the point-mass example. However, the result is
not trivial because we are now allowing arbitrary cross sec-
tions, not necessarily tangential to the rotational Killing field.

Consider Einstein-Rosen waves. In the nontrivial case
when the scalar fieldc is nonzero, the Bondi-type frame is
unique. In this frame, 2B̃5exp@22g̃(u)#. Hence,

E@C#5
1

8pG R
C
~12e2 g̃ ~u!!df.

In the limit to i 0 @or, in the past of the support ofc̃(u) on
I #, we haveE°(1/4G)@12exp(2g̃0)#. This ispreciselythe
value of the total Hamiltonian at spatial infinity—the genera-
tor of unit time translations neari 0. This result is highly
nontrivial because the Hamiltonian is defined@10# through
entirelydifferent techniques using the symplectic framework
based on Cauchy slices. In the limit toi1, we know from
Sec. II C thatg̃(u) tends to zero. Hence,E@C# tends to zero.
This behavior ofE@C# is also physically correct because
i1 is regular in these space-times. We wish to emphasize that
these two constraints—agreement with the known expres-
sions both ati 0 and i1 of Einstein-Rosen waves—on the
viable expression of energy are strong. Hence, the fact that
there exists ageneralexpression forE@C# involving only
fields definedlocally on the cross sectionC which reduces to
the correct limits at both ends ofI of the Einstein-Rosen
waves is quite nontrivial.

What about the flux of energy? If a cross sectionC1 is in
the future of a cross-sectionC2, from Eqs.~3.16! and ~5.2!,
we have

E@C1#2E@C2#5
1

8pGED
D̃ [a~12A2B̃!m̃b]dS

ab

52
1

16pGED
~2B̃!21/2lim

°I
~V22L̃mnñ

mñn!

3 ẽabdS
ab, ~5.3!

whereD is the portion ofI bounded byC1 andC2. @The
limit in the integrand is well defined because of our condi-
tions on the stress-energy tensor. For the Einstein-Rosen

waves, it is (Lñ c̃)2; see Eq.~3.1!.# If the matter sources
satisfy local energy conditions, the integrand in the second
expression is positive definite. Thus,E@C1#<E@C2#, the
equality holding if and only if there is no flux of matter
through the regionD. As one would expect, radiation
through I carries positive energy. The appearance of
1/A2B̃ in the integrand is not alarming because, as remarked
above, for the class of space-times under consideration,B̃ is
guaranteed to be positive onI in Bondi-type frames.

In the case when the source is a zero rest-mass scalar
field, we can make the energy flux more explicit:
lim°I(V

22L̃mnñ
mñ n)52(Lñc̃)2. Hence, for Einstein-

Rosen waves, Eq.~5.3! reduces to

E@C1#2E@C2#52
1

8pGED
eg̃ ~u!~Lñ c̃ !2ẽabdS

ab. ~5.4!

In the limit in which the cut@C2# tends toi
0, E@C2# reduces

to the gravitational Hamiltonian@10#. Hence, on any cut,
E@C# is given by the difference between the total Hamil-
tonian and the energy that is radiated out up until that cut.
Finally, note that, because of the appearance of exp@g̃(u)# in
the integrand, this expression of energy flux is more compli-
cated than the flux formula~2.37! for g(u), i.e., the flux
formula for Thorne’sC energy@2#. This is, however, to be
expected: Even at spatial infinity, the total Hamiltonian is
(1/4G)@12exp(2g̃0)# while theC energy is just (1/4G)g̃0.
In the weak field limit the two agree. But in strong fields,
they are quite different. In particular, the total Hamiltonian
andE@C# are bounded above by 1/4G while theC energy is
unbounded above.

We saw that, in the case of Einstein-Rosen waves, our
expression~5.2! of energy reduces to the total Hamiltonian
in the limit as the cross section approachesi 0. We expect that
this result holds much more generally: It should hold in any
space-time which is strongly asymptotically flat at null infin-
ity and also satisfies the boundary conditions at spatial infin-
ity needed in the Hamiltonian formulation@10#. That is,
broadly speaking, we expect the agreement to hold if the
space-time is sufficiently well behaved to have a well-
defined total Hamiltonianand a well-defined limit of Eq.
~5.2! to i 0. It is easy to provide strong plausibility arguments
for this conjecture since both quantities measure the deficit
angle ati 0. However, more detailed analysis are needed to
establish this result conclusively.
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B. Supermomentum

We will conclude the main paper by introducing a notion
of supermomentum. For reasons indicated in the beginning
of this section, however, these quantities are not related to
the energy in a simple way. They are given primarily for
completeness. As in four dimensions@18#, in a suitable
Hamiltonian formulation based on null infinity, they may be
the generators of canonical transformations induced by su-
pertranslations.

Recall first that, in four dimensions, supermomentum
arises as a linear map from the space of supertranslations to
real translations and is expressible in any conformal frame.
The basic fields that enter are constructed from the asymp-
totic curvature of the rescaled metric~and matter sources!.
However, in order to ‘‘remove irrelevant conformal factor
terms,’’ one also has to introduce a kinematic field@17# with
appropriate conformal properties. The situation in three di-
mensions is rather similar.

Let us begin by introducing the analoguer̃ of the kine-
matical field. Setr̃51/2 in any Bondi-type conformal frame
and transform it to any other frame via the following law: if
V5aV8, then

r̃85a2r̃1a]̃2a2 1
2 ~ ]̃a!2, ~5.5!

where, as before,]̃[m̃aD̃a . Hence, the fieldr̃2B̃ trans-
forms rather simply: (r̃82B̃8)5a2( r̃2B̃) @see Eq.~3.17!#.
As in four dimensions, the fieldr serves two purposes: it
removes the unwanted, inhomogeneous terms in the transfor-
mation properties ofB̃ and it removes the ‘‘purely kinemati-
cal’’ part of B̃ in the Bondi-type frames.

We can now define the supermomentum. Fix any confor-
mal completion of the physical space-time~not necessarily
of a Bondi-type!. The value of the supermomentum on a
supertranslationT̃ña, evaluated at a cross-sectionC of I will
be

PT̃@C#5
1

8pG R
C
~ r̃2B̃!T̃m̃adS

a. ~5.6!

Under a conformal transformation,V°V85a21V, we
haveT̃85a21T̃ and m̃a85a21m̃a . Hence, the one-form in-
tegrand remains unchanged. Thus, as needed, the expression
of supermomentum is conformally invariant; i.e., it is well
defined.

Let us note its basic properties. First, by inspection, the
map defined by the supermomentumP from supertransla-
tions to real translations is linear. Second, in Minkowski
space-time,r̃5B̃ in any conformal frame. Hence, the value
of supermomentum vanishes identically onanycross section.
Finally, sinceLñr̃50, we have

Lñ@~ r̃2B̃!T̃m̃a#52 lim
°I

~V22L̃mnñ
mñn!T̃m̃a . ~5.7!

Therefore, as in the case of energy, the flux of the component
of the supermomentum along any timelike supertranslation
~i.e., one in whichT̃.0) is positive.

VI. DISCUSSION

In this paper, we developed the general framework to ana-
lyze the asymptotic structure of space-time at null infinity in
three space-time dimensions. We did not have to restrict our-
selves to any specific type of matter fields. However, if the
matter sources are chosen to be a triplet of scalar fields con-
stituting a nonlinear@SO~2,1!# s model, the space-times un-
der considerations can be thought of as arising from symme-
try reduction of four-dimensional generalized cylindrical
waves, i.e., vacuum solutions to the four-dimensional Ein-
stein equations with one space-translation isometry. If the
source consists of a single zero rest-mass scalar field, the
translation Killing field in four dimensions is hypersurface
orthogonal. Finally, if there is, in addition, a rotational Kill-
ing field, the space-times are symmetry reductions of the
four-dimensional Einstein-Rosen waves.

The general strategy we adopted was to follow the proce-
dures developed by Bondi and Penrose in four dimensions.
However, we found that due to several peculiarities associ-
ated with three dimensions, those procedures have to be
modified significantly. A number of unexpected difficulties
arise and the final framework has several surprising features.
This is in contrast with the situation in higher dimensions
where the framework is likely to be very similar to that in
four dimensions.

The new features can be summarized as follows. First, in
three dimensions, the space-time metric is flat in any open
region where stress energy vanishes and thus we are forced
to consider gravity coupled with matter. To accommodate
physically interesting cases, we have to allow matter fields
such that the falloff of the stress-energy tensor at null infinity
is significantly weaker than that in four dimensions. This, in
turn, means that the metric is dynamical even at infinity; it
does not approach a Minkowskian metric even in leading
order. In fact, physically interesting information, such as the
energy and energy fluxes, is coded in these leading order,
dynamical terms. As a result, the asymptotic symmetry
groupG is enlarged quite significantly. Like the BMS group
in four dimensions, it admits an infinite-dimensional normal
subgroupS of supertranslations. The structure of this sub-
group is completely analogous to that of its counterpart in
four dimensions. However, the quotientG/S is significantly
larger. While in four dimensions the quotient is the six-
dimensional Lorentz group, now it is the infinite-dimensional
group Diff(S1) of diffeomorphisms of a circle. Furthermore,
whereas the BMS group admits a preferred~four-
dimensional! group of translations,G does not. To select
translations, one has to impose additional conditions, which
in some ways are analogous to the conditions needed in four
dimensions to extract a preferred Poincare´ subgroup of the
BMS group. We imposed these by demanding that there
should exist a conformal frame in which the fieldB̃ tends to
a constant as one approachesi 0 along I . This condition is
automatically satisfied in axisymmetric space-times. We saw
that, in a generic situation, it selects a unique conformal
frame~up to constant rescalings which can be removed by a
normalization condition! and we can then select a preferred
time translation inS. If the past limit of theI energy is zero,
it selects a two-parameter family of frames—the analogues
of Bondi frames in four dimensions. In this case, we can
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select a three-dimensional subgroup of translations fromS.
Finally, given any cross sectionC of I , we associated with it
energy E@C# as well as a supermomentumPT̃@C#. The
former is a scalar and has several properties that one would
expect energy to have. The latter is a linear map from the
space of supertranslations to real translations and may arise,
in an appropriate Hamiltonian formulation based onI , as the
generator of canonical transformations corresponding to
supertranslations.

These results refer to three-dimensional general relativity
coupled to arbitrary matter fields. However, as noted above,
if the matter fields are chosen appropriately, we can regard
the three-dimensional system as arising from a symmetry
reduction of four-dimensional vacuum general relativity by a
space-translation Killing field.~One can also consider four-
dimensional general relativity coupled to suitable matter.
Then, one acquires additional matter fields in three dimen-
sions.! In this case, the energyE@C# ~or the supermomentum
PT̃@C#) associated with a cross sectionC of three-
dimensional null infinity represents the energy~or super-
momenmtum! per unit length~along the symmetry axis! in
four dimensions. Thus, the three-dimensional results have
direct applications to four-dimensional general relativity as
well. In addition, as we will see in the companion paper@11#,
the analysis of the asymptotic behavior of fields in three
dimensions can also be used to shed light on the structure of
null infinity in four-dimensions.

There are a number of technical issues that remain open.
First, as indicated in Sec. V A it is desirable to find the
precise conditions under which the past limit ofE@C# yields
the total Hamiltonian@10#. A second important issue is that
of positivity of E@C#. For the total Hamiltonian, this was
established@10# using a suitable modification of Witten’s
spinorial argument in four dimensions. Can this argument be
further modified to show positivity ofE@C#? If space-time
admits a regulari1, the limit of E@C# as C tends to i1

vanishes. Since the flux is positive, this implies thatE@C# is
positive on every cross section. However, in the general case,
it is not a priori clear that in the Bondi-type frame,B̃ will
not exceed 1/2 makingE@C# negative on some cross section.
Next, in the case when the matter fields admit initial data of
compact support, space-time is flat neari 0. In this case, it
should be possible to select a preferred one-parameter sub-
group of rotations inG and define angular momentum. Fi-
nally, in the case wheni1 is regular, one would expect that,
as in Minkowski space, there exists a two-parameter family
of Bondi-type conformal frames in whichB̃ tends to a con-
stant ati1. It is not a priori clear whether the Bondi-type
frame selected by the behavior ofB̃ at i 0 is included in the
family selected ati1. If the space-time is axisymmetric, the
answer is in the affirmative. It would be interesting to inves-
tigate what happens in the general case.

The present framework provides a natural point of depar-
ture for constructing anS-matrix theory both classically and,
especially, quantum mechanically. Three-dimensional quan-
tum gravity without matter fields can be solved exactly but
the solution is trivial in the asymptotically flat case. When
we bring in matter, we have a genuine field theory which is
diffeomorphism invariant. If the matter fields are suitably
restricted, the theories are equivalent to the reduction of four-

dimensional general relativity~or of ten-dimensional string
theories!. Quantization of such theories should shed consid-
erable light on the conceptual problems of nonperturbative
quantum gravity. As a first step towards quantization, one
might use ideas from the asymptotic quantization scheme
introduced in four dimensions@22#. Since the Lorentz sub-
groups are now replaced by the Diff(S1) subgroups ofG and
since Diff(S1) admits interesting representations~with non-
zero central charges!, the asymptotic quantum states would
now have interesting, nontrivial sectors. Second, this quanti-
zation would also lead to ‘‘fuzzing’’ of space-time points
along the lines of Ref.@23#. To see this, recall first that the
light cone of each space-time point gives rise to a ‘‘cut’’ of
I ~which, in general, is quite complicated!. Thus, givenI and
these light cone cuts, one can ‘‘recover’’ space-time points in
an operational way. Now, in a number of cases with scalar
field sources—including of course the Einstein-Rosen
waves—one expects the initial-value problem based onI to
be well posed and the classicalSmatrix to be well behaved.
In such cases, it should be possible to express the light cone
cuts onI directly in terms of the data of the scalar field on
I . Now, in the quantum theory, the scalar field onI is pro-
moted to an operator-valued distribution and, given any
quantum state, one only has a probability distribution for the
scalar field to assume various values. This immediately im-
plies that one would also have only probability distributions
for light cone cuts, i.e., for points of space-time. This ap-
proach may well lead one to a noncommutative picture of
space-time geometry.
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APPENDIX A: RIEMANN AND BACH TENSORS

In this appendix we will provide the behavior of the Rie-
mann and Bach tensors at null infinity in the~211!-
dimensional description of Einstein-Rosen waves.

Assume the metric to be given in Bondi-type coordinates
(x0,x1,x2)5(u,r,f) as in Eq.~2.26!. The Christoffel sym-
bols are

G00
0 52g ,u2g ,r , G22

0 5re22g,

G00
1 5g ,r2g ,u , G01

1 5g ,r ,G11
1 52g ,r ,

G22
1 52re22g, G12

2 5r21. ~A1!

The Riemann tensor (Rjkl
i 5G j l ,k

i 2•••) reads

R01015e2g~g ,rr22g ,ur!, R02025r~g ,r2g ,u!,

R02125rg ,r , R121252rg ,r . ~A2!
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In a general~211!-dimensional space-time the Riemann ten-
sor has the form

Ri jkl52~Si [kgjl ]2Sj [kgil ] !, ~A3!

where

Sik5Rik2
1
4gikR. ~A4!

It has six independent components given by the symmetric
tensorSik . In the case of the rotation symmetry only the
following components are nonvanishing:

S005
1
2g ,rr2g ,ur1r21~g ,r2g ,u!,

S015S105
1
2g ,rr2g ,ur1r21g ,r ,

S1152r21g ,r ,

S225r2e22g~ 1
2g ,rr2g ,ur!. ~A5!

The role of the Weyl tensor in three dimensions is played by
the conformally invariant Bach tensor~see, e.g.,@1#!:

Bi jk5Sik; j2Si j ;k . ~A6!

The Bach tensor satisfiesBi jk52Bik j andB[ i jk ]cykl50, and
it thus has five independent components. In the rotation-
symmetric case the Bach tensor writes (d5g ,r22g ,u)

B0015
1
2 ~d ,u2d ,r! ,r1~d1g ,u!~d ,r1r22!2r21d ,r ,

B10152 1
2d ,rr1~d12g ,u!~d ,r1r22!2r21d ,r ,

B2025r2e22g~B0012B101!, B21252r2e22gB101.
~A7!

Let us choose the real null triad

l i5~0,e22g,0!, ni5~1,2 1
2 ,0!, mi5~0,0,r21!.

~A8!

It is easy to see that it is parallel propagated along
u5const,f5const, and it satisfies

l in
i521, mim

i51,l i l
i5 l im

i5nin
i5nim

i50.
~A9!

Further, let us introduce six real triad components of the
Riemann tensor or, equivalently, of the tensorSik given by
Eq. ~A4! as

S15Ri jkl l
imj l kml5Sikl

i l k,

S25Ri jkl l
inj l kml5Sikl

imk,

S35Ri jkl ~
1
2 l

inj l knl2minjmkl l !5Sikm
imk,

S45
1
2Ri jkl l

inj l knl5Sikl
ink,

S55Ri jkl n
i l jnkml5Sikn

imk,

S65Ri jklm
injmknl5Sikn

ink. ~A10!

Under the rotation symmetry we find

S152r21g ,re
24g, S250,

S35S45e22g~ 1
2g ,rr2g ,ur!, S550

S65r21~g ,r2g ,u!. ~A11!

Assume now the scalar field admits an expansion~2.23!. The
field equations~2.27! and ~2.28! imply

g ,u522 ḟ 0
22

1

2
f 0 ḟ 0

1

r
1•••,

g ,r5
1

4
f 0
2 1

r2
1•••. ~A12!

The Riemann tensor~A11! has then the asymptotic form

S15
1

2
e24g` f 0

2 1

r3
1OS 1r4D ,

S35S45
1

2
e22g` f 0 ḟ 0

1

r2
1OS 1r3D ,

S652 ḟ 0
2 1

r
1OS 1r2D , ~A13!

whereg`5 limr→`g(u,r).
Finally, define the five real triad components~scalars! of

the Bach tensor:

B15Bi jk l
injmk, B25Bi jk l

i l jmk, B35Bi jkn
injmk,

B45Bi jkm
imj l k, B55Bi jkm

imjnk. ~A14!

Under the rotation symmetry we find only the last two sca-
lars nonvanishing. Their asymptotic behavior is

B452
1

4
e24g`@6~ f 0f 1!1̇ f 0

3 ḟ 0#
1

r4
1OS 1r5D ,

B55
1

2
e22g`@ f 0 f̈ 023 ḟ 0

214 f 0 ḟ 0
3#
1

r2
1OS 1r3D . ~A15!

Now, the Bach tensor is conformally invariant and it is of
interest to see precisely its form at null infinity in the un-
physical space-time. Puttingr̃5r21, ũ5u, f̃5f, and using
againV5 r̃ as in Eq.~2.33!, we introduce the null triad in
the unphysical space byl̃5V22l ,ñ5n,m̃5V21m, so that
in the coordinates (ũ,r̃,f̃) we have

l̃ i5~0,2e22g̃,0!, ñi5~1,12 r̃2,0!, m̃i5~0,0,1!.
~A16!

~Note that the vectorñi is null everywhere. OutsideI , it is
not related in any simple way to the vector field
ña:5g̃ab¹̃V used in the main text.!
Using thenB̃i jk5Bi jk we arrive at the following form of

the Bach tensor at null infinityI :
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B̃45B̃i jkm̃
im̃j l̃ k52 1

4e
24g̃0@6~ f̃ 0 f̃ 1! , ũ1 f̃ 0

3 f̃ 0,ũ#1O~ r̃ !,

B̃55B̃i jkm̃
im̃j ñk5 1

2e
22g̃0@ f̃ 0 f̃ 0,ũ ũ23 f̃ 0,ũ

2 14 f̃ 0 f̃ 0,ũ
3 #

1O~ r̃ !, ~A17!

where g̃05g̃(ũ,r̃50)5g` , f̃ 0(ũ)5 f 0(u), f̃ 1(ũ)5 f 1(u).
Hence, the Bach tensor is finite and nonvanishing at null
infinity in general.

APPENDIX B: ASYMPTOTICS FOR STATIC CYLINDERS
IN THREE DIMENSIONS

Starting from the four-dimensional Einstein-Rosen metric,

ds25e2g22c~2dt21dr2!1e2cdz21r2e22cdf2, ~B1!

Marder@24# gives four-dimensional static solution represent-
ing the field outside a static cylinder in the form

c52C~12C!21lnr2~12C!lnD, ~B2!

g5C2~12C!22lnr2~122C!lnD, ~B3!

whereC andD are constants which can be determined, by
matching the solution to an interior one, in terms of mass and
pressure distribution inside the cylinder. For massM per unit
length of the cylinder small, Levi-Civita` and others suggest
thatC52M ; Thorne’sC energy@2# leads to the same results
as long as the internal pressure of the cylinder is much
smaller than its energy density.

The simplest models of the static cylinders employ thin
shells. By studying the exterior and flat interior metric of an
infinite static cylindrical shell, Stachel@25# found the con-
stantsC andD to be related to the internal structure of the
cylinder in a simple way. Denoting the radius of the shell by
r0, and introducing Stachel’s notation,a and A1, for the
constants determining the external metric, we find Marder’s
constantsC andD to be given by

C5
a

a21
,

lnD5
12a

11a
~a2lnr01 lnA1!, ~B4!

so that

g5a2ln
r

r0
2 lnA1, ~B5!

c5aln
r

r0
1b. ~B6!

An additive constantb in c can be removed by a rescaling
r→jr̃,t→j t̃,z→j21z̃,c→c̃1 lnj,g→g̃, j5const, which
leaves the metric~B1! invariant.

Let Sab be the surface stress-energy tensor of the shell.
Then, Stachel’s equations~1.7a!–~1.7c! determine the sur-
face energy density,s5St

t and the surface pressures,
pz52Sz

z , pf52Sf
f in terms of the constantsa andA1 as

follows:

s5
12A1

r0
,

pz5
A1~a21!221

r0
, pf5

a2A1

r0
. ~B7!

The dominant energy condition,s>0, upzu,upfu<s, re-
quires

12A1>0, 2F12A1

A1 G1/2,a<0. ~B8!

Choosinga50, 0,A1,1, we obtain the cylinders with

s5
12A1

r0
52pz, pf50, ~B9!

generating the exterior fields as straight cosmic strings: lo-
cally flat but conical, with a positive deficit angle given by
2p(12A1). Curiously, if we admit a negative mass density
such that

A1511n, n51,2, . . . , ~B10!

and thus

s52
n

r0
52pz , ~B11!

the exterior space is some covering space of a part of
Minkowski space. Indeed, it is easy to see that with
g52 ln(11n), c5const, the metric~B1! can be converted
to a flat metric withf̄P@0,2p(n11)#. The holonomy group
of such a space is the same as that of a part of Minkowski
space so that vectors transported parallelly around closed
curves coincide with the original@cf. also @27# and @28#
which find no ‘‘gravitational Aharonov-Bohm effect’’ in the
cases corresponding toA1 given by Eq. ~B10!#. The Lie
algebra of Killing fields does not differ from that of a part of
Minkowski space. However, the geometry~determined by
the metric itself, rather than by the connection! is different.
With the original coordinatefP@0,2p) it reads~after res-
caling t)

ds252dt21
1

~n11!2
dr21r2df21dz2.

Considering surfacest5const,z5const, and comparing the
proper lengths, 2pr1 and 2pr2, of the two circles with radii
r1 and r2, with their proper ‘‘orthogonal distance,’’
(n11)21(r22r1), the result differs from that in Minkowski
space. This~anti!conical character of space-time can be ob-
served also at infinity after performing an inversion using
Cartesian coordinates@cf. Eqs. ~2.19! of @11##. This, of
course, is true for any~anti!conical space withA1Þ1.

In any case, the asymptotic gravitational field describing
static cylinders is determined by two parameters, rather than
one, describing the asymptotic field of cylindrical waves
considered in the main text.~Relatively recently, Bondi@26#
examined quasistatically changing cylindrical systems and
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concluded that there is no conservation of these parameters
because of gravitational induction transferring energy paral-
lel to the axis.!

The ~211!-dimensional metric corresponding to Eq.~B1!
is @cf. Eq. ~2.11!#

ds25e2g~2dt21dr2!1r2df2. ~B12!

Introducingu5t2r and writingg in the form

g5a2lnr1B, a2>0, B constants, ~B13!

we get

ds25r2a
2
e2B~2du222dudr!1r2df2. ~B14!

Now, we go over to the unphysical three-dimensional space-
time with coordinates

ũ5u, r̃5r2a
221, f̃5f ~B15!

by a conformal transformation with the conformal factor

V5 r̃ 21/~2a221!. ~B16!

The metric of the unphysical space-time then reads

ds̃25V2ds25e2B@2 r̃2~a221!/~2a221!dũ2

22~2a221!21dũdr̃ #1df̃2. ~B17!

Assumea2, 1
2 . This includes cases when mass per unit

length of the cylinder is small because then constantC!1
and 0,a25C2(12C)22!1. Transformation~B15! shows
that r→` implies r̃→0, and Eq.~B16! implies V50 at
r̃50. The metric~B17! becomes degenerate here. The con-
formal completion of the space-time with a givena2, 1

2 can
thus be constructed, with infinity being atV50. However,
Eq. ~B16! yields¹V50 at r̃50. Therefore, the asymptotics
for static cylinders is completely different from a standard
conformal completion of an asymptotically flat space-time.
In special cases of locally flat but conical space-times, the
asymptotics in~311!-dimensional context is analyzed in
@29#.
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