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Gravitational waves with a space-translation Killing field are considered. Because of the symmetry, the
four-dimensional Einstein vacuum equations are equivalent to the three-dimensional Einstein equations with
certain matter sources. This interplay between four- and three-dimensional general relativity can be exploited
effectively to analyze issues pertaining to four dimensions in terms of the three-dimensional structures. An
example is provided by the asymptotic structure at null infinity: While these space-times fail to be asymptoti-
cally flat in four dimensions, they can admit a regular completion at null infinity in three dimensions. This
completion is used to analyze the asymptotic symmetries, introduce the analogue of the four-dimensional
Bondi energy momentum, and write down a flux formula. The analysis is also of interest from a purely
three-dimensional perspective because it pertains to a diffeomorphism-invariant three-dimensional field theory
with local degrees of freedom, i.e., to a midisuperspace. Furthermore, because of certain peculiarities of three
dimensions, the description of null infinity has a number of features that are quite surprising because they do
not arise in the Bondi-Penrose description in four dimensipB8556-282(97)01802-X]

PACS numbg(s): 04.20.Ha, 04.30.Nk, 04.60.Kz

[. INTRODUCTION What is of physical interest are the values of conserved
quantitiesper unit lengthalong the axis of symmetry, i.e.,

Einstein-Rosen waves are among the simplest nonstatio@long the integral curves @f 9z; because of the translational
ary solutions to the vacuum Einstein equatidsee, e.g., symmetry, the total conserved quantities in such a space-time
[1]). Not surprisingly, therefore, they have been used in avould be clearly infinite. A natural strategy then is to go to
number of different contexts: investigation of energy lossthe manifold of orbits of thes/dz-Killing field. Since this
due to gravity waves$2], asymptotic structure of radiative three-dimensional space-time does not have a translational
space-timedq 3], quasilocal mas$4], the issue of time in symmetry, one would expect it to be asymptotically flat in an
canonical gravity[5], and quantum gravity in a simplified appropriate sense. Hence, it should be possible to analyze its
but field theoretically interesting context of midisuperspacessymptotic structure unambiguously. In this paper, we will
[5,6]. These solutions admit two Killing fields, both hyper- adopt this approach to explore the symmetries and physical
surface orthogonal, of which one is rotatioddb ¢, and the fields at null infinity. A similar analysis of spatial infinity
other translationad/ 9z, along the axis of symmetryln cer-  was performed recentfj10] in the context of the phase space
tain applications, the orbits of the Killing fieldf 9z are com-  formulation of general relativity. Somewhat surprisingly, it
pactified, i.e., are taken to be circles. Our analysis will allowturned out that th€ energy isnot the generator of the time
this possibility) When the hypersurface orthogonality condi- translation which is a unit at infinity; it does not, therefore,
tion is removed, we obtain the cylindrical gravitational represent the Hamiltonian, or the physical enefmgr unitz
waves withtwo polarization modes. These have also beerlength in the space-time. The physical Hamiltonian turns out
used to explore a number of issues, ranging from the study db be a nonpolynomialfunction of the C energy. In the
Hamiltonian densitie§7] and numerical analysis of interact- present paper, we will see that the same is true of the ana-
ing pulsed 8] to the issue of cosmic censorsii). logue of Bondi energy at null infinity.

The presence of a translational Killing field, however, Thus, the purpose of this paper is to develop a framewaork
makes the analysis of the asymptotic structure of theséo discuss the asymptotic structure at null infinity for three-
space-times quite difficult: they fail to be asymptotically flat dimensional space-times. The underlying theory is general
either at spatial or null infinity. Consequently, one cannot useelativity coupled to matter fields satisfying appropriate fall-
the standard techniques to define asymptotic symmetries @ff conditions. The conditions on matter are satisfied, in par-
construct the analogues of the Arnowitt-Deser-Misnerticular, by the fields that arise from a symmetry reduction of
(ADM) or Bondi energy momenta. Therefore, until recently,a large class of four-dimensional vacuum space-times admit-
conserved quantities for these space-times—such a€ the ting a space translation Killing fiel@/ 9z. Therefore, we will,
energy[2,7]—were constructed by exploiting the local field in particular, provide a framework for analyzing the behavior
equations, without direct reference to asymptotics. It isanot of the gravitational field near null infinity of such space-
priori clear, therefore, that the quantities have the physicalimes. Note that these specific applications of our framework
interpretation that has been ascribed to them. are themselves generalizations of cylindrical waves since
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they need not admit an axial Killing fielé! 9¢. Our analysis  theory. For example, in the accompanying pafikt], we

is also useful in a completely different context; that of quan-will use the results of this paper to study the behavior of

tum gravity. This class of space-times also provides interestEinstein-Rosen waves at null infinity of tiieur-dimensional

ing midisuperspace for quantum gravity and our results segpace-times.

the stage for its asymptotic quantization and the correspond- In this paper, the symbdl will generally stand for * or

ing S-matrix theory. I ~. In the few cases where a specific choice has to be made,
The plan of the paper is as follows. In Sec. II, we will our discussion will refer 0.

analyze the asymptotic structure of the Einstein-Rosen waves

from a three-dimensional perspective. This analysis will mo- [l. EINSTEIN-ROSEN WAVES:

tivate our general definition of asymptotic flatness in Sec. IlI ASYMPTOTICS IN THREE DIMENSIONS

and also provide an intuitive understanding of the main re- . . . .
b 9 This section is divided into three parts. In the first, we

sults. In Sec. lll, we introduce the notion of asymptotic flat- . .
ness at null infinity in three space-time dimensions and an%r_?ecall the symmetry reduction procedure and apply it to ob-

lyze the structure of asymptotic fields. In Sec. 1V, we discus ain the threeédlmensm;allc equa_tlo_?s g%vertr_ungf Emtstem-
asymptotic symmetries and in Sec. V, conserved quantitie ~osen waves(See, e.g.[1] for a similar reduction for sta-

While the general methods adopted are suggested by t g)g_ary s%ace-(;ilme)sjhis lpIrchetdL_JreRreduceS thet taﬁ’]kt()ff
standard Bondi-Penrose treatment of null infinity in four- Inding a four-dimensional tinsteéin-rosen wave to that o

dimensional general relativity, there are a number of surfinding a solution to the wave equation on three-dimensional
prises as well. First, in three dimensions, the physical metri inkowskispace. In the second part, we analyze the asymp-

0.5 is flat outside sources. Consequently, there are physicall tic behavior(at null infinity) of these solutions to the wave

interesting solutions to the constraints which lead to spacet—qu?t'on' IT thettr:urd part, \tN? C%mg'ne thefresults (:f the flrstt
times which are flat near spatial infinit{; the energy mo- Wo o analyze the asymplolic behavior of space-ime met-
mentum afi® is coded. not in local fields such as the curva-"cs: We will find that there is a large class of Einstein-Rosen

ture, but in a globally defined deficit angle. This simplifieswaves which admits a smooth null infinily as well as a

the task of specifying boundary conditions as one approach O.Oth t_im(_e(l)ike infinity 5 (As one might expect, the space-
i% along null infinity |. On the other hand, there are also a, <€ infinity i~ has a conical defegtThese waves provide an

number of new complications. In four dimensions, the sta/Mportant class of examples of the more general framework

tionary and the radiative space-times satisfy the same boun&)_resented in Sec. 1il.
ary conditions at null infinity. This is not the case in three .
dimensions. Hence, while dealing with radiative solutions, A. Symmetry reduction

we cannot draw on our intuition from the stationary case. | et us begin with a slightly more general context, that of
Second, in four dimensions, up to a supertranslationacuum space-times which admit a spacelike, hypersurface
freedom—which corresponds to tern®(1/r)—there is a  orthogonal Killing vectord/dz. These space-times can be

fixed Minkowskian metric at infinity. In three dimensions, described conveniently in coordinates adapted to the symme-
this is not the case; the Minkowski metrig,, to which a  {ry:

physical metric approaches varies even in the leading order,

depending on the radiative content of the physical spaceds’=V?(x)dZ2+g,,(x)dx@dx?, a,b,...=0,1,2, (2.1

time. Consequently, the symmetry group is larger than what .

one might expect from one’s experience in four dimensionswherex=x® and g, is a three-metric metric with Lorentz

Furthermore, while one can canonically single out the transsignature. As in the more familiar case of static space-times

lational subgroup of the Bondi-Matzner-SadB8vIS) group  [1], the field equations are

in four dimensions, now the task becomes subtle; in many _ -

ways it is analogous to the task of singling out a preferred Rap—V 1V,V,V=0 (2.2

Poincaresubgroup of the BMS group. This in turn makes the

task of defining the analogue of Bondi energy much moreand

difficult. These differences make the analysis nontrivial and p—

hence interesting. 9%V, V,v=0, 2.3
Some detailed calculations are relegated to the Appen- -

dixes. Using Bondi-type coordinates, the asymptotic behavwhereV and R, are the derivative operator and the Ricci

ior of curvature tensors of Einstein-Rosen waves is analyzetensor ofg,,. These equations can be simplified if one uses

in the three-dimensional framework in Appendix A. Appen-a metric in the three-space which is rescaled by the norm of

dix B considers static cylindrical solutions whose asymptot-the Killing vector and writes the norm of the Killing vector

ics, as mentioned above, is quite different from that of theas an exponentidfl2,1]. Then, Eqs(2.1)—(2.3) become

radiative space-times analyzed in the main body of the paper.

It should be emphasized that while part of the motivation ds?=e?Mdz2+e 2/Mg, (x)dx2dx®, (2.4
for our results comes from the symmetry reduction of four-
dimensional general relativity, the main analysis itself refers Rap— 2V 4V, =0, (2.5

to three-dimensional gravity coupled tarbitrary matter

fields (satisfying suitable falloff conditionswhich need not and

arise from a symmetry reduction. Nonetheless, the frame-

work has numerous applications to the four-dimensional gV, V=0, (2.6
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where V denotes the derivative with respect to the metricwhere the overdot and the prime denote derivatives with re-

Oab - spect tot andp, respectively. The last equation is the wave
These equations can be reinterpreted purely in a threeequation for the nonflat three-met(i2.11) as well as for the

dimensional context. To see this, consider Einstein’s equaflat metric obtained by setting=0. This is a key simplifi-

tions in three dimensions with a scalar figldas source: cation for it implies that the equation satisfied by the matter
L sourceys decouples from Eqg2.12—(2.14) satisfied by the
Rab— 2RGap=87GTyp metric. These equations reduce simply to
=87G[V, PV, P— 3 (VPVD)g,p],
2.7 Y =p(P+y'?), (2.16
g2V, dV,d=0. (2.8) : -
e y=2pyy. (217

Since the trace of Eq2.7) gives R=87GV°DdV d, Eq.

(2.7) is equivalent to Thus, we can first solve for the axisymmetric wave equation
_ (2.15 for ¢ on Minkowski space and then solve E¢2.16)
Rap=87GV.PVy®. 29 and (2.17) for y—the only unknown metric coefficient—by

; _ : dratureg.Note that Eqs(2.16) and(2.17) are compatible
Now, with ®=y/\47G we obtain Egs.(2.5 and (2.6). 44& INC = anat ;
Thus, the four-dimensional vacuum gravity is equivalent to?€cause their integrability condition is precisely E2.15 ]

the three-dimensional gravity coupled to a scalar field. Recall

that in three dimensions, there is no gravitational radiation. B. Asymptotic behavior of scalar waves
Hence, the local degrees of freedom are all contained in the . . . . .
scalar field. One therefore expects that the Cauchy data for In this Sl.Jbse.Ct'on we .W'" f(_)cus on the axisymmetric
the scalar field will suffice to determine the solution. For dataV2Ve €duation in thrge-dmensmnql M|nkoyvsk| space and
which fall off appropriately, we thus expect the three- analyze the asymptotic behavior of its solutiofis

dimensional Lorentzian geometry to be asymptotically flat in]c Wetr&)eg'ér) V‘r’::]h f?nfobselrvqtlo?. Thg_ method of _desc?rr:t
the sense of Penrog$é&3], i.e., to admit a two-dimensional rom the Kirchhoft Tormula n four dimensions gives the
following representation of the solution of the wave equation

boundary representing null infinity. in  th di . in t f Cauchv dat
Let us now turn to the Einstein-Rosen waves by assumin ree —dimensions, in terms of - Lauchy data

that there is further spacelike, hypersurface orthogonal Kill-Y 0= #(t=0xX,y),¥1=¢,(t=0x,y):
ing vectord/ d¢ which commutes wittd/ 9z. Then, as is well 1 9 Wo(x',y")dx' dy’
known, the equations simplify drastically. Hence, a complete ¢(t,x,y)= e Ef f [ A

™ Skt —

. . . ¥ (X_Xr)2_(y_yr)2]1/2
global analysis can be carried out easily. Recall first that the
metric of a vacuum space-_time yvjth two commuting, hyper- 1 Vo (x,y)dx'dy’
surface orthogonal spacelike Killing vectors can always be + 5= 5 7 AVETFE

i 27 [t*=(X=X")"=(y—y")]
written locally as[14] S0
(2.18

ds?’=e?/dZ2+ 2"V (—dt®+dp?) + p?e 2de¢?  (2.10
wherep andt (the “Weyl canonical coordinateg’are de- WhereSis the disk
fined invariantly and/= ¢(t,p), vy= y(t,p). (Here, some of
the field equations have been ugddence, the three-metric (x—x")2+(y—y')?<t? (2.19
g is given by
do?=g,,dxedxP=e2?(— dt2+ dp?) + p2d 2. (2.11 inthe initial Cauchy surfactsee, e.g[15]). We will assume

that the Cauchy data are axially symmetric and of compact
Let us now assume that/d¢ is a rotational field in the support.
three-space which keeps a timelike axis fixed. Then the co- Let us first investigate the behavior of the solution at fu-
ordinates used in E¢2.10 are unigue up to a translation ture null infinity I. Let p, ¢ be polar coordinates in the plane
t—t+a. (Note, incidentally, that “trapped circles” are ex- and introduce the retarded time coordinate
cluded by the field equatiori9].)

The field equation$2.5 and(2.6) now become u=t—p (2.20

Ru=7"=%+p ty'=2¢%, (212
to explore the falloff along the constaminull hypersurfaces.
R,=—vy"+y+ p ly'=2y'2 (2.13 Because of axisymmetry, we may pyt0 without loss of
generality. The integration region becomes
Rtp=p717=2¢¢,1 (214)
—x")2+y"?<(u+p)?. 2.2
and (p=x")+y’“<(u+p) (2.21

— g+ +p Ly =0, (2.19  Let us rewrite the integrands of E(.18 as
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P(x',y)dx' dy’ Let us begin by expressing,, in Bondi-type coordinates

[2p(U+x )+ ul—x"2—y 2] (u=t—p,p,d). Then, Eq.(2.1)) yields
1 \P(X,,y,)dxldy, u2_X12_y12 1 —-1/2 d(TzzeZy(_dUZ_2dUdp)+p2d¢2; (22@

S (2p)"* (urx)? 2u+x") p) the Einstein equations take the form

(2.22
7,u:2p'p,u(w,p_ (/f,u)i (2.27)
For largep, Eq. (2.22 admits a power series expansion in

p~* which converges absolutely and uniformly. Hence, we Yp=p(¥,)% (2.28

can exchange the integration in .18 with the summa- )
tion and we can also perform the differentiatiofyu term ~ and the wave equation o becomes
by term. Therefore, on each null hypersurface const one

-1 —
can obtain an expansion of the form 2t te (=0 =0. (2.29
1 = f(U) The asymptotic form of(t,p) is given by the expansion
(u,p)=—| folu)+ >, Lk_ ] (2.23  (2.23. Since we can differentiate Eq2.23 term by term,
\/; k=1 P the field equation$2.27) and(2.28 imply

The coefficients in this expansion are determined by inte- . “ge(u)

grals over the Cauchy data. These functions are particularly Yu= —2[fo(u)]?+ 2 — (2.30
interesting foru so large that the support of the data is com- k=1 P
pletely in the interior of the past cone. One finds

©

hy(u)
() 1 focfzw o' des 1 ¥, %ngozlr, (2.3)
u)= TS T T3P
° 2\2mJ)o Jo prdpide 2 (u+p’'cosp’)%?

where the functionsf, ,h, are products of the functions
fo.fx.fo.fx. Integrating Eq(2.31) and fixing the arbitrary

vy
* (LH—p’COSg{)’)l;Z} (2.24 function ofu in the result using Eq.2.30, we obtain
Note that the coefficient is analytic im Y2, and atus p,, u o he(u)
. . o . 2 k
po being the radius of the disk in which the data are nonzero, y=v—2| [fo(w]?du—2> ke T (232
we obtain o0 =1 (k+1)p
ke ki Thus, y also admits an expansion pi ! where the coeffi-
fo(lU)=-—=p+—p+---, (2.25  cients depend smoothly an
o It is now straightforward to show that the space-time ad-
wherek,,k, are constants which are determined by the dataMts & smooth future  null infinity 1. Setting

A . . R S — H
If the solution happens to be time symmetric, so that P=p U=U,¢=¢, and rescaling,, by a conformal fac-

vanishes, we findy~u~%2 for largeu. This concludes our tor =p, we obtain

discussion of the asymptotic behavior alone const sur- - -~ _ ~

faces. ymp § do?=02do?=e?7(—p 2du?+ 2dudp) +d¢?, (2.33
Finally, we wish to point out that the main results ob- ~ ~_1 -

tained in this section continue to hold also for general data oYvhereig/(i],tp) _.Y(U’tf] ). B_egau_?ﬁ Ofqu(,Z_"?’z).’ Y hastﬁ

compact support which are not necessarily axisymmetric. (pmooth extension roug}_i— - | NEretore,gap 1S smoott

particular, one obtains an expansion such agE43 where across the surfage= 0. This surface is the future null infin-

the coefficients now depend on batland ¢, and asymptotic ity l. _ o .

forms such as Eq2.25. The assumption of compact sup- Using the expansiofR.23 of  near null infinity, various

port can also be weakened to allow data which decay neaﬁurvgtulre tensprs Ican ItI)e _expanded irr1] powerﬁh’_dfh More el
spatial infinity sufficiently rapidly so that we still obtain so- Precisely, a suitable null triad can be chosen which is paralle

lutions smooth at null infinity(This is, in particular, the case Propagated along=const, ¢=const curves. The resulting

for the Weber-Wheeler pulse considered in the accompan)}—riad components of the Riemann tensor and the Bach tensor
ing paper11].) are given in Appendix A. Théconformally invariant Bach

tensor is finitebut nonvanishingt null infinity. This is to be
contrasted with the Bondi-Penrose description of null infinity
in asymptotically flat, four-dimensional space-times, where
We now combine the results of the previous two subsecthe (conformally invariant Weyl tensor vanishes. In this
tions. Recall from Eq(2.11) that the three-dimensional met- sense, while in the standard four-dimensional treatments the
ric gap has a single unknown coefficient(t,p) which is  metric is conformally flatat null infinity, in a three-
determined by the solutiogi(t,p) to the wave equation in dimensional treatment, it will not be so in general. This is
Minkowski space(obtained simply by settingg=0). The  one of the new complications that one encounters.
asymptotic behavior ofi(t,p), therefore, determines that of ~ To understand the meaning of the constagtet us con-
the metricg,y, . sider the solution on the Cauchy surfate0. Equation

C. Asymptotic behavior of the metric
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(2.16 implies that we can determing by a p integration  four-dimensional vacuum space-times with one space trans-
from the center. If we insist on regularity at=0, we have lation). It turns out that the choice of the fall-off conditions
on matter fields is rather subtle in three dimensions. Fortu-

B (P s nately, the analysis of the Einstein-Rosen waves presented in
Y(t=0,0)= 0 p(p=+4')dp. (234 gec. I provides guidelines that restrict the available choices
quite effectively.
Hence, for data of compact support, is a positive constant I Sec. Il A, we specify the boundary conditions and
whose value is determined by the initial data fiar discuss some of their immediate consequences. In Sec. Il B,

we extract the important asymptotic fields and discuss the
o equations they satisfy at null infinity. Section Il C contains
yO='y(t=0,p=00)=f p(2+4'?)dp. (2.35  an example which, so to say, lies at the opposite extreme
0 from the Einstein-Rosen waves: the simplest solution corre-
sponding to a static point particle in three-dimensions. This
example is tailored to bring out certain subtleties which in
turn play an important role in the subsequent sections.

This way the constany, in Eg. (2.32 is uniquely deter-
mined for solutions which are regular at=0. Its value is
given by the total energy of the scalar field computed
using) the Minkowski metriqobtained fromg,, by setting A. Boundary conditions
vy=0). - : : ; i

On a constant surface, for a point outside the support of A three-dimensional space-timé/l(gap) will be said to
the data, we have= yo, a constant. Hence, outside the sup-be asymptotically flat at null infinityf there exists a mani-
port of the data, the three-metric on the Cauchy surface i€0ld M with boundary I which is topologically S'XR,
flat. For any nontrivial data, howevey, is strictly positive, equped W!th a smooth metrgay, such_that(Q there IS a
whence the metric has a “conical singularity” at spatial in- diffeomorphism betweeM —I andM (with which we will
finity: the metric there is given by identify the interior ofM andM)), (ii) there exists a smooth
function Q) on M such that, at, we haveQ)=0, V,Q+#0,
and onM, we haveq,,=02g,,, (iii) if T,, denotes the

Notice that a conical singularity can also be seen near nuﬁtress-energy of matter _f|elds on the_physmal s_pac_e-tlme
T : : . M,Qap), then QT,, admits a smooth limit td which is
infinity in this physical metric because the change of the - e ~aTh .

proper circumference of a circle with proper radial distancel:@ce-free and the limit tol of 1~“T,,n"V" vanishes, where

is different from the case of asymptotically Minkowskian V* is any smooth vector field oM which is tangential to

do?=e?"(—dt?+dp?) + p2d p>. (2.36

space. | and n2=5"V,Q, and (iv) if Q is so chosen that
Finally, using Eq.(2.32, we find that, as one approaches V2V _,Q =0 onl, then the vector fielth® is complete orl.
| (i.e., p—o0, u=consj}, we have Conditions (i), (ii), and (iv) are the familiar ones from

four dimensions and have the following implications. First,
since() vanishes at, points ofl can be thought of as lying
at infinity with respect to the physical metric. Second, since
the gradient ofQ) is nonzero atl, Q) “falls off as 1/p.”
Now, a detailed examinatidri 1] of the behavior of the sca- Finally, we know that has the topologys! X R and condi-

lar field ¢ near timelike infinityi * reveals that the space- tion (iv) ensures that it is as “‘complete in tHedirection”
time is smooth at* and thaty vanishes there. Hence, we as it is in Minkowski space.

obtain the simple result The subtle part is the fall-off conditions on stress energy;
these aresubstantially weakethan those in the standard
four-dimensional treatment. For instance, in four dimensions,
if we use Maxwell fields as sources, then because of confor-
mal invariance, ifF,, solves Maxwell's equations on the
Thus, there, is a precise sense in which the conical singulaphysical space-timeM,gap), thenF,,: =F,;, satisfies them
ity, present at spacelike infinity, is “radiated out” and a on the completed space-tim#(g,,). Hence F,;, admits a
smooth(in fact, analytig timelike infinity “remains.” We  smooth limit to|. This immediately implies thaf) 2T,

will see that, modulo some important subtleties, E437  a1s0 admits a smooth limit, whefE,, is the stress-energy

u

v(u,w)=7o—2f

[fo(u)]?du. (2.37

vo=2 [ ThotwFdu 233

plays the role of the Bondi mass-loss form{d). tensor ofF,, in the physical space-time. In the case of a
scalar field source, the falloff is effectively the same al-
[II. NULL INFINITY IN THREE DIMENSIONS: though the argument is more subteee p. 41 iN17]). In
GENERAL FRAMEWORK three dimensions, on the other hand, we are asking only that

QOT,, admit a limit(although, as noted above, the asymptotic
In this section, we will develop a general framework to falloff of () is the same in three and four dimensiprihis is

analyze the asymptotic structure of the gravitational and matbecause a stronger condition will have ruled out the cylindri-
ter fields at null infinity in three dimensions along the linescal waves discussed in Sec. Il. To see this, consider smooth
introduced by Penrose in four dimensions. As a special casecalar fieldsy with initial data of compact support. Then, if
when the matter field is chosen to be the massless Kleinve sety=Q "2y, we have the identity
Gordon field, we will recover a three-dimensional descrip- L
tion of null infinity of generalized cylindrical waves.e., of 9V Vo— 2Ry=Q" ¥2(g2®V, V, y— i Ry),
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whereR and R are the scalar curvatures of, andg,p,

respectively. Henceznﬁ is well behaved o which implies
that

20T 25=204V .0 (Vpih) + 2Q YR .V b+ 3 Y2RMy
- %Eab[QZ%’ m;/;%' mz[;'f_ in/;ﬁm%’ mh‘r/;_i_ﬁmﬁm:/-}z]
(3.1

admits a well-defined, nonzero limit atsatisfying the con-

ditions of our definition. Hence, stronger falloff requirements
on T,, would have made the framework uninteresting. We
will see that this weak fall-off is responsible for a number of

surprises in the three-dimensional theory. Could we have i

posed even weaker falloff conditions? The requirement o
smoothness 0g,;,, {1, andQT,, can be substantially weak- ~

ened: All our analysis will go through T,, andQ are only
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as adivergence-free conformal fram&his frame is, how-
ever, not unique. The restricted gauge freedom is given by

O—w,where Lzw=0. (3.3

Now, condition(iv) in our definition requires that, in any
divergence-free conformal frame, the vector fiefdboe com-
plete onl. Suppose it is so in one divergence-free conformal
frame . Let ()’ correspond to another divergence-free
frame. Then)' = w(}, with » smooth, nowhere vanishing
and satisfyingCzw=0. The last equation implies that? is
complete orl if and only if n® is complete there. Hence, we
need to verify(iv) in just one divergence-free conformal
frame.In what follows, we will work only in divergence-free
Fonformal frames.

Next, taking the trace of Eq3.1) and using the fact that

L vanishes onl we conclude that, in any divergence-free

C3, andQT,, only C! atl. On the other hand, we will see frame,f vanishes ori, whence

that the condition on the trace &fT ., is necessary to endow
| with interesting structure. We will see that the vanishing of

the limit of Q‘lTab'ﬁavb is necessary to ensure that the en-

ergy and supermomentum fluxes of matter acr{fsste
patches of | are finite.

f=0"1f

admits a smooth limit there. The fiefdwill play an impor-
tant role. Finally, it is easy to check that in any divergence-
free conformal frame, we have

Let us now examine the structure available at the bound-

ary l.

As in four dimensions, it is convenient to work entirely

with the tilde fields which are smooth htLet us set
Lab:Q(Rab_ 41_1 Rgab) = :Qsab

and lower and raise its indices wifl,, and its inverse.

L, carries the same information as the stress-energy tensor

T.p Of matter and our conditions oh,;, ensure that 4, is
smooth atl. Set

f=0"hn, .

Then, using the expressidypcq= 2(Sa;cldjb— Spicddja) Of

the Riemann tensor in three dimensions, the formula express-

ing the relation between curvature tensorsggf, and g,
reduces to
QSab""ve;l;]vb_%f’(jab: Lab, (3.2

wheregabz(ﬁab—%ﬁﬁab). This is the basic field equation

APV A,=0 and L,nP=0. (3.4

Thus, in particular, as in four dimensiorisis ruled by null
geodesics. The spadof orbits ofn®—the “base space” of
|—is diffeomorphic EpSl. The second equation and the
trace-free character af,, imply that,on I, L, has the form

(3.5

for some smooth co-vector fieﬁa. Hence, the pullback to
| of L,, vanishes which in turn implies, via E3.1), that

the pullback td of AV‘aﬁb also vanishes. Hence, if we denote
by G, the pullback ofg,,, we have

Labzt(a'ﬁb) with LA=0,

L70ap=0. (3.9
Sincel is null, it follows that
Gapn °=0. (3.7

Thus,q,y, is the pullback td of a positive definite metric on

in the tilde variables. Since all other fields which feature in itthe manifold of orbits3 of the vector fieldh. By construc-

are known to be smooth &t it follows thatf is also gmooth.
This implies, in particular, thai? is null. Sincen,=V ,Q is
the normal field td, we conclude that is a null surface

Next, we note that there is a considerable freedom in the

choice of the conformal factor ). Indeed, if

(M,ﬁab=ngab) is an allowable completion, so is
(M,Q'2g,,) where O)'=wQ for any smooth, nowhere-
vanishing functiorw on M. Now, under the conformal trans-
formation(+— Q' = (), we have

Vin'e=w 1V, n%+30 Lo,

where, from now onz will stand for “equals at the points
of | to.” Hence, by using an appropriaég we can always

tion, B is a one-dimensional manifold with topology &t.
Hence, there exists a one-form, on | such that
aab: Fr‘L':\Ff:'b . (3.9
[In cylindrical waves,m, is the pullback tol of §a¢ and
n? equals expf 2y)(d/au) onl.] Under a conformal rescaling
Q—w) (from one divergence-free frame to anothewe
have

My~ wm, N3—o N2 (3.9
The pairs fn,,n?) [or, equivalently, §,,,n%)] are the kine-
matical fields which are “universal” td: In any asymptoti-
cally flat space-time, we obtain the same collection of pairs.

maken'? divergence-free. Such a choice will be referred toThis situation is analogous to that in four dimensions where
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pairs @.p.n") constitute the universal kinematic structure. curvature of any connection is determined by a scalar. For
However, whereas the four-metric evaluated has no dy- connections under consideration, we hav® Dy K,
namical content, !n the present case, the three-matric  =Ré,mendKy, wheree,, is the obvious alternating tensor
?Oogigte;]rg)r/. dynamical content and varies from one space-timg, | (Thu-s,"e'%bz g,l[gﬁ‘b] , wherel, is a null co-vector figld
on | satisfying 1,n®=1.) Under conformal _rescalings

Q—-0"=(1+0,0)Q, we have R—R'=
R+ Lzw,. Thus, by choosing an appropriaig, we can al-

The pairs {ap,N%) on| represent the leading or the “ze- \yays setR’=0. There is no invariant physical information
roth order” structure at. The next, in the hierarchy, is an j, the curvature of the derivative operarintrinsic to.
intrinsic derivative operator. Let, be a smooth co-vector | et ys, therefore, examine the curvature of the full three-
field on M, andK,, its pullback tol. Define: dimensional connectioR . Using Eq.(3.2 and the Bianchi

SaRb : :%’a’kb' (3.10 identity of the rescaled metrig,,, we have

B. Asymptotic fields

Aa — a
where the underbar on right-hand side denotes the pullback 2SapM™+ V(1) =VZap= Vel (313
to |. [SinceK,=Kj if and only if Kj=Kp+hnp+QW, for - whereL =G2®L,, . The Bianchi identity for the physical met-
some smoott andW,, D is a well-defined operator if and C an implies that the right-hand side of E€@.11) is given
only if the pullback tol of V(hA,+QW,) vanishes. It is DbY 20~ *Layn® Hence, combining the two, we have
easy to check that it dogdn four dimensions, the two ra-
diative degrees of freedom of the gravitational field are

codeq in this intrinsic derivative op.erathS]. Ir], threg d'.' These, together with Eq3.1), are the basic equations that
mensions, on the other hand, there is no “pure” gravitational . .
overn the asymptotic dynamics.

radiation. Hence, one would expect that the derivative operag-l : .
= Our assumptions on the stress-energy tensor imply that

tor D has no invariant physical content. This is indeed the . _,~ —.~ . = .
pny Q" 1L,,n3VvP vanishes or for any vectorV? tangential to

2§abﬁa+ ng?‘f'?ﬁb: ZQ_ltabﬁa. (312

case. ! L o
To see this, note first that given any vector figititan- - Equation(3.12) now impliesS,;i®V°=0. Hence, the pull-
gential tol we have back Sy, to | of Sy, has the form

vasaaabzo and VasaﬁbEVaEg , §ab:§mimb .
Similarly, sincel ., is trace-free orl and sincel ,,n® van-

where, in the second equation, we have used E6). Now, ishes therdcf. E
- ; . . Egs. (3.4 and (3.5], the pullbackL,,, of
for a zero rest mass scalar ﬁeﬂde., for four-dimensional QL to exists and has the form —

Einstein-Rosen  waviés La,=1¢%M.n,,  whence

V3D, n?=0. Hence, the difference between any two permis- Lap=Lmymy.
sible derivative operators dnis given by )

The field

(Dé_ Da)KbECgch with Cgbzzabﬁc, E:§—E (313)

whereKj, is any covector field on andX,,, a symmetric i play an important role in what follows.

tensor field onl, transverse ton®, X,,n*=0. Thus, The Bach tensoB,,—Vvanishing of which is a necessary
2ap=gMm,my, for some functiong on|. Now, if we make a and sufficient condition for conformal flatness in three
conformal transformatiofil— Q' = (1+ 0,Q){ the deriva-  dimensions—is given by
tive operator D changes through: O,—D,)Ky _ o o _
= w,MM,N K¢, even though the transformation leaves  Bape=2V[pSqa=2Q '(Viplga— Q@ M Gapplym)-
m, and Tt invariant Thus, as in four dimensions, the “trace 3
art” of 3, is “pure gauge.” Now, in four dimensions, the . :
Segrees gfb free%clm gof t%]e gravitational field reside in theThus’ the Bach tensor is nonzero only in the presence of

) . matter. Note that, in general, it does not vanish eveh. at
trace-free part off,;, [18]. For the three-dimensional de- This is in striking contrast with the situation in four dimen-

scription of Einstein-Rosen waves, by contrast, sBggis  gjons where the Weyl tensor of the rescaled metdesvan-

itself pure trace, the trace-free part vanishes identically, resp at1. We will see that the fact that in three dimensions we

flecting the absence of pure gravitational degrees of freedomyq, ot have conformal flatness evanl makes the discus-
In four dimensions, the Bondi news—which dictate thegjon of asymptotic symmetries much more difficult. Trans-

fluxes of energy momentum carried away by gravityecting the Bach tensor wiffi* and pulling the result back to
waves—is coded in the curvature Bf. By contrast, in the | e obtain

general three-dimensional cafee., without restriction on
the form of matter sourcgswe can always make the curva-  [{aB,, = — £=S, .= — LzLpo— (lIMQ A" ;) Goe.
ture vanish by going to an appropriate conformal frame. To - - >l

see this, recall first that, sindeis two dimensional, the full (3.15
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Since the last term in this equation has the form of the flux ofvhere —o<t<<e,0<r<c, and Os¢<27. The particle
“matter energy” across [it equals 2({x)? in the case of has masdM and “resides” at the origin. Since the stress-
Einstein-Rosen waves, cf. E(8.1)], it is tempting to inter- energy tensor vanishes everywhere outsiderth® world
pret this equation as the analogue of the local Bondi consetine (which is excised from the space-timeéhe metric is flat
vation law onl in four dimensions. Let us rewrite this equa- outside the origin. We can transform it in a manifestly flat
tion in a more convenient form: form by setting

~ re
D[a(S— L)mb]:—llm[ﬂ 2(I-mnnmwn)eab] (316) pP= ; |a|¢) where a=1—4GM.

it 2,
(Note that¢ now ranges if0,2m|al).) In terms of these

Then, it is tempting to regard the one-forBm, coordinates, the metric is given by

=(S—L)m, as the analogue of the four-dimensional “Bondi
mass aspect.” Let us, therefore, study its conformal proper-

2_ 442 24 24 42
ties. Under a rescalin@—Q’ = wQ, we have do”=—dt™+dp”+pde”. (3.19

Although the metric is manifestly flat, it fails to be globally

B R/ =T, 1R _ , —2ma~bN
Bmy—B'm, =0 "B= o "m'm’DaDyw Minkowskian because of the range ¢f there is a conical

+32 0 3(MPD y0) 2]y, (3.17)  Singularity at the origin and the resulting deficit angle mea-
sures the mass.
where ™ is a vector field tangential td satisfying It is straightforward to conformally complete this space-

MM, =1. Note that the transformation law involves only the time to satisfy our definition of asymptotlc flatness. Setting

values ofw on I; unlike in the transformation law foR, u=t—p and1=1/p, the rescaled metrig,; is given by
discussed above, the field; (which measures the first de-
rivative of w off I) never enters. This transformation law
will play an important role in the next two sections.

Finally, we note an identity which enables us to express,

atl, the quantltyB constructed from the curvatures 9f,
andg,y, in terms of the metric coefficients. To see this, recall

first that the derivative operat@ within | is obtained by
“pulling back” the space-time derivative operat&r to I.

Hence one can express the curvatRref D in terms of the
curvatureSab of V. Using the Bianchi identity3.10 to ex-

press some of the components S;b in terms of matter _
fields, we obtain j;za MdS=27a=27(1-4GM).

do2: = 02dg?= — Q2du?+2dudQ +d¢2  (3.20

It is trivial to check that the completion satisfies all our con-
ditions and that the conformal frame is dlvergence -free. The
kinematic fields are given bp?=4d/9u and m,= Da¢. By
inspectionf=1 and a simple calculation shows tHat0.
Thus,B=1/2; it carries no information about mass. This in-
formation is hidden in the deficit angle: Integratimg on the
base spac#, we have

BE§_EE f-R. (3.18 In four dimensions, one often insists that the conformal

frame be such that the metric on the base space be a unit
Thus, in a conformal frame in whicR is zero, the analogue o -sphere metric. These are the Bondi conformal frames.
B of the Bondi-mass aspect can be computed directly fromyhe obvious analogue in three dimensions is to ask that the
the metric coefficientf = ~2g,,n"N°. For the Einstein- frame be such that the length of the base space be equal to
Rosen waves, for example, it is straightforward to check thag =, the length of a unit circle(Although this restriction is
the completion given in Sec. Il satisfies the conditRs0  very weak, it seems to be the only viable analogue of the
and by inspectiorf is given by expt-27). Thus, in practice, Bondi restriction in four dimensionsThe completion we
Eq. (3.18 often provides an easy way to caIcuIﬁeFinally, gave above.doe_s not sgtisfy this condition. However, it is
note that, under conformal rescalings>(1+ w;Q)Q, both trivial Fo rectify 'EhIS situation through éconstant conformal
f andR transform nontrivially. However, the combination rescaling. Sef)’=(1/a)Q2. Then,
T—R remains unchanged. 2
do'?=—-Q'2du’+ —dudQ’ +d¢?, (3.29
C. Point particle “

In this subsection, we will consider the simplest point—where¢:(1/|a|)¢7ranges ovef0,27); the base spach is
particle solution to three-dimensional gravity and, using thea circle of length 2r as required. Since we have performed a
results obtained in the last two subsections, study its beha‘bonstanlrescalmg we havk’ =0. Howeverf does change:

ior at null infinity. f'=a? Thus |n the “Bondi-type” frame, mass resides in
In an obvious coordinate system adapted to the world Imt—*é SinceB= a2 in this frame. the mass is given by
2 ’

of the point particle, the physical space-time metjg, is
given by[19]
——G(l— \V2B). (3.22

do?=—dt?+r 8M(dr2+r2d¢?),
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Thus, our expectation of the last subsection Batould be  infinity—i.e., because in general the physical metric does not
the analogue of the Bondi-mass aspect is correct. Howeveapproach a Minkowskian metric even to the leading order—
to arrive at this interpretation, we must use a properly northe group of asymptotic symmetries is now enlarged even
malized(“Bondi-like” ) conformal frame. This point will be further. Furthermore, now it is not possible to single out even
important in Sec. V. the group of translations without additional conditions.
We will conclude this discussion with two remarks. This section is divided into two parts. The first discusses
The metric considered in this subsection is stationary anghe asymptotic symmetry group and the second introduces

so it is appropriate to compare the situation we encounteregdditional conditions to single out translations.
with that in four-dimensional stationary space-times. In both

cases, the stationary Killing field selects a preferred rest
frame atl (which, in our example, is given by the time
translationd/ du). However, in four dimensions, one can find  Let us begin by recalling the universal structure, i.e., the
asymptoticKilling fields corresponding to space translations structure at infinity that is common to all asymptotically flat
as well. In the present case, on the other hand, due to thepace-times. As usual, the asymptotic symmetries will then
conical singularity, globally defined space-translation vectotbe required to preserve this structure.

A. Asymptotic symmetry group

fields fail to existeven asymptoticallgunlessM =0 in which Given any space-time satisfying our definition of asymp-
case the deficit angle vanisheFor example, we can intro- totic flatness an@ny conformal completion thereof, its null
duce Cartesian coordinatésx,y corresponding tat,p, . infinity 1 is a two-manifold, topologicall)81>< R. It is ruled

Then,X2= g/ 9x andY2=d/dy arelocal Killing fields. How-  bY a(divergenceire)snull vector fieldn® and its intrinsic,
ever, the chart itself fails to be globally defined and so do thélegenerate metrig,, satisfies
vector fields. Another strategy is suggested by what happens
in Minkowski space-time. In any of its standard completions
space translations are represented by the vector fields ~ ) )
(cosp)® and (sinp)® on I. In the “Bondi-like” conformal where\/_b is an arbitrary vgctor field oh. T[]_e “base space”
frame introduced above these vector fields are globally deB of I, i.e., the space of integral curveswf on |, has the
fined at null infinity of our point-particle space-time as well. topology of St. As in four dimensions, the intrinsic metric
However, now they fail to be Killing fields even asymptoti- Gap ON | is the pullback tol of a metricg,, on B; that is,
cally. L702,b=0. Next, we have the conformal freedom given in

The second remark is that the stationary space-time wEd. (3.3). Thus,| is equipped with an equivalence class of
considered here is a very special solution. Generic stationarjairs @as,n%) satisfying Eqs(4.1) and(3.6), where two are
solutions in three-dimensional general relativity have a logaconsidered as equivalent if they differ by a conformal rescal-
rithmic behavior near infinity and, therefore, fail to satisfy ing: (Gap.N%)~(w’Gap,®” M%), with Lzw=0. This struc-
our definition of asymptotic flatness at null infinifyfsee Ap-  ture is completely analogous to that at null infinity of four-
pendix B. Our point-particle solution corresponds essentiallydimensional asymptotically flat space-times.
to the special cas€=0 in Egs.(B2) and (B3).] This is As we already saw, in three dimensions, a further simpli-
another key difference between three and four dimensions fication occurs: in any conformal frame,admits a unique

covector fieldm, such thatg,,=m,m,. Hence, in the uni-
IV. ASYMPTOTIC SYMMETRIES versal structure, we can repla@g, by m,. Thus, | is

. : . =& r
In four dimensions, the asymptotic symmetry group atngpped with equivalence classes of paitg (1*), safisfy

null infinity is given by the BMS groug13,16,17,2Q Its g

structure is the same as that of the Poingarip in that it is ~ —5__ =

a semidirect product of an Abelian group with the Lorentz myn"=0 and L5M,=0, “.2
group. The Abelian group, however, iifinite dimensional;

it is the additive group of functions on a two-sphéitee base

space ofl) with conformal weight+1. It is called the group second of Eqs(4.2) implies thati, is the pullback td of a
of supertranslations. The four-dimensional group of tranS|aE:ovector fieldm_”on the base spgdé
a .

tions can be invariantly singled out. However, unless addi- . .
tional conditions are imposddeari® ori "), the BMS group . The asymptouc symmetry gro@ls the subg_roup of the
. diffeomorphism group of which preserves this structure.

dogs not admit a preferred Lorentz or Pomca_rgbgroup. An infinitesimal asymptotic symmetry is, therefore, a vector
This enlargement from the ten-dimensional Poincgieup . Ta o
field £&2 on | satisfying

to the infinite-dimensional BMS group is brought about be-
cause, in the presence of gravitational radiation, one cannot
single out a preferred Minkowski metric even at infinity; one
can only single out a family of Minkowskian metrics and _ ~
they are related by super translations. for some smooth functio (which depends oi?) satisfy-

In this section, we will examine the asymptotic symmetrying Lza=0. Equations(4.3) ensure that the one-parameter
group in three dimensions. One’s first impulse is to expecfamily of diffeomorphisms generated b§? preserves the
that the situation would be completely analogous to that if‘ruling” of | by the integral curves of its null normal, its
four dimensions since the “universal structure” available atdivergence-free character, and maps pair, (1*) to an
I in the two cases is essentially the same. It turns out, howequivalent one, thereby preserving each equivalence class. It
ever, that because the space-time metric is dynamical even isteasy to check that vector fields satisfying Eds3) form a

YapVP=0 ifand only if VPaTiP, 4.2

where fn,,n?)~(wm,,» M?) for any nowhere-vanishing
smooth functionw on | satisfying Lzw=0. Note that the

Lim,=am, and L7n?=—-an?, 4.3
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Lie algebra which we will denote by’G. This is the Lie  stronger conditions would deprive the framework of interest-
algebra of infinitesimal asymptotic symmetries. ing examples. Could we have imposed even weaker condi-
To unravel the structure oG, we will proceed as in four tions? Note that, i) T, fails to admit a well-defined limit
dimensions. Let’S denote the subspace 4G spanned by 1O I, we could not even have concluded that a null hy-
vector fields of the typ%ag'ﬁ’ﬁa_ Elements ofZS will be persurfacegsee Eq.(3.2)]. What about the condition on the
called infinitesimalsupertranslationsEquations(4.3) imply ~ trace? In the absence of this condition, the pullback gfto
_ I would not have vanished. This then would have implied
Lzh=0, L7;zm,=0, and Lzzn%=0. (4.4  L£70.,=(4/3)L0,,#0. Consequently, the asymptotic sym-
_ o metry group would have borne little resemblance to the BMS
Thus, for any supertranslatioh,is the pullback td of h on  group[13,16,17,20that arises in four dimensions. Thus, the
the base spad8 and the action of the supertranslation leavesspecific conditions we used in the definition strike a balance:
each pair f1,,1?) individually invariant. Furthermore, given they are weak enough to admit interesting examples and yet

any ¢2e £G and anyhn?e £S, we have strong enough to yield interesting structurd at
(2) The semidirect product structure of the asymptotic
[E,Fﬁ]a=(ﬁgﬁ—5)ﬁa- (4.5 ~ Symmetry group is the same as that of the BMS group. The
supertranslation group is also the natural analogue of the
Thus, £S is a Lie ideal of£G. supertranslation subgroup of the BMS group. The quotient,

To unravel the structure ofG, let us examine the quo- however, is quite different: while it is the Lorentz group in
tient LG/ LS. Let [£2] denote the element of the quotient the fougﬁ:‘mseinsgnal Hcaﬁe’ It 1S nor\]/v a_rrfmge-mmensmng]
defined byé?; [£2] is thus an equivalence class of vectorgrOlfp’. ! (f )- dgca ' _owevEr, tbat In t e:};odgespon N9
fields onl satisfying Eqs(4.3), where two are regarded as ang ysIS 2|n doqr Imensions, tfe alse spac 3 t;/]vo-
equivalent if they differ by a supertranslation. The second ofP ereS” a rT“‘S a unique c;on or:na structurﬁ and the Lor-
Eqs. (4.3 implies that eveQ'Ea in £G admits an unambigu- entz group arises as its con ormla group. In the present case,

0s.{%.9) IMplé: A 9" the base spach is topologicallySt and the quotient of by
ous projectior® to the base spad8. The equivalence rela- the supertranslation subgroup is the conformal grougof
tion implies that all vector fieldg® in [£%] project to the (Recall that ¢ has to satisfy £;0.,=2aC,, Since
same fields® on B and thaf £°] is completely characterized g, =m,m,.) It just happens that, sincg' is one dimen-
by £2. What conditions doeg?® have to satisfy? The only sional, every diffeomorphism ofS' mapsq,, to a confor-
restriction comes from the first equation in Edd.3: &  mally related metric. This is the origin of the enlargement.
must satisfy/;gﬁzama for somea on B. However, since (3) Can one understand this enlargement from a more
B is one dimensional, this is no restriction at all. Thug  intuitive standpoint? Recall that the symmetry group is en-
can beany smooth vector field on the circl8. £G/£S is  larged when the boundary conditions are weakened. Thus, it
thus the Lie algebra of all smooth diffeomorphisms $hn is the weaker conditions on the faIIoff_ of stress energy_—and
[In four dimensions, by contrast, the first of Eds3) is very ~ Nence on the curvature of the physical metric—that is re-
restrictive since the base space is a two-sph&téias to be _spon5|ble f(_)r_ the enlarge_ment of the group. Th|s can be Seen
a conformal Killing field on 624,). The Lie algebra of in the explicit asymptotic form of the metric of Einstein-

these conformal Killing fields is just six dimensional and is Rosen waves that we encountered in Sec. |l C,
isomorphic to the Lie algebra of the Lorentz group in four
dimensiong,.

These results imply that the grogpof asymptotic sym-
metries has the structure of a semidirect product. The norma
subgroups is the Abelian group of supertranslations. Given

Ea cggio.rmal frame., each |nf|n|t§§lmal SLJpertrans'at'onradiation-free Minkowski space already to tleadingorder
§?=hn"is characterized by E/functlgm. If we change the 4t |l infinity. In four dimensions, by contrast, the leading
conformal  frame, Qapy>Uzp=wGan, We have grder behavior of the physical metric has no dynamical con-
N%—N'?=0 " 'n? and hencér—h’ = wh. Thus, each super- tent; the components of the metric carrying physical infor-
translation is characterized by a conformally weighted func-mation fall as 7. It is this difference that is responsible for
tion on the circleB; the supertranslation subgrodpis iso-  the tremendous enlargement of the asymptotic symmetry
morphic with the additive group of smooth functions on agroup.
circle with a unit conformal weight. The quotiegtS of G Let us analyze this point further. Suppose, in four dimen-
by the supertranslation subgrogpis the group DiffS') of  sions, we consider metrics whose form is suggested by Eq.
diffeomorphisms on a circle. In the semidirect product,(4.6):
Diff( S!) acts in the obvious way on the additive group of
conformally weighted functions o8?. ds?=e?’(—du?—2dudr) +r2d3?, 4.7

We will conclude this subsection with some remarks.

(1) In the light of the above discussion, let us reexaminewhere y=y(u,r, 6, ¢) has a well-defined limit as tends to
the conditions on the stress-energy tensor in our definition oihfinity along constanu, 6, ¢ curves, andd>? denotes the
asymptotic flatness. In Sec. Ill A we pointed out that thetwo-sphere metric. Now, the situation is similar to that en-
conditions are considerably weaker than those normally imeountered in the Einstein-Rosen waves: metrics with differ-
posed in four dimensions and argued that imposition ofnt radiative content differ already to leading order. None-

do?=e?'(—du?—2dudp) + p?d¢?, (4.6)

here y=vy(u) is a dynamical field orl, sensitive to the
diation. If y=0, we obtain Minkowski space. The radiative
space-times that result whep=0 thus differ from the
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theless, setting)=1/r, it is easy to carry out a conformal the base spacB be 27 and there is afnfinite-dimensional
completion of this metric and verify that it admits a smoothfreedom in the choice of such frames. Consequently, we can-
|. However, the problem is that theurvature of this metric  not select a three-dimensional space of translations in this
fails to fall off sufficiently rapidly for the stress-energy tensor manner.
to have the falloff normally required in four dimensions  Thus, to select translations, we need to impose additional
Hence, this metric fails to be asymptotically flat in the usualconditions. To be viable, they should select the standard,
four-dimensional sense. In three dimensions, on the othehree-dimensional translation group in Minkowski space-
hand, to obtain an interesting framework, we are forced taime. However, as we saw in the point-particle space-time,
admit the analogous metri¢.6). asymptotic space translations do not exist globally neir
M#0. (This is also the case for Einstein-Rosen wayes.
Hence, one would expect that, when the tafaDM-type)
mass is nonzero, the conditions should select only a time
In four dimensions, one can single out translations fromyransiation. Thus, the conditions have to be subtle enough to
the BMS group in a number of ways. Somewhat surprisingly achieve both these goals at once. Fortunately, such condi-
it turns out that every one of those techniques fails in threjons do exist and are, furthermore, satisfied by a large class
dimensions. We will first illustrate this point and then show of examples.
that one can introduce additional conditions to single out A space-time i, Jab) Will be said to bestrongly asymp-
translations. As one might expect from our discussion of Seqgtically flat at null infinityif it satisfies the boundary condi-

[l C, the situation is subtle even after introduction of the tions of Sec. IlI.A. and admits a conformal completion in
stronger conditions. which

Among various characterizations of the translation sub-

B. Translations

group of the BMS group, the one that is conceptually sim- ~ 1- k

plest and aesthetically most pleasing is given by group B=S-L= Ef 520

theory[20]: Translations form the unique four-dimensional

normal subgroup of the BMS group. In three dimensions, as one approaché%along |, (4.9
however, the asymptotic symmetry group is much larger; the

quotient ofG by supertranslations is now Difst)—the full wherek is a constant. Note that if the space-time is axisym-

diffeomorphism group of a circle—rather than tkfinite- ~ metric, B automatically approaches a constantlifis cho-
dimensiongl Lorentz group. Consequentlg,does not admit sen to be rotationally symmetri& would also be rotation-
any finite-dimensional normal subgroup. Thus, the most ob-ally symmetric everywhere ohand hence, in particular, its
vious four-dimensional strategy is not applicable. limit to i® along! will be angle independent as requiréd/e

In four dimensions, another method of singling out trans-will see in Sec. V that the positivity ok ensures that the
lations is to use the notion of “conformal-Killing transport” ADM-type energy is well defineg Thus, the additional con-
[21]. The conformal-Killing data at any point df corre-  dition is satisfied in a large class of examples, including the
sponding to translations are integrable because the Weyl tefzinstein-Rosen waves and our point-particle space-time.
sor (of the tilde metri¢ vanishes there identically. In three  Note that if the last condition is satisfied in a given con-
dimensions, the analogous condition would be vanishing oformal frame, we can rescale the conformal factor los-
the Bach tensor. Unfortunately, as we saw in Sec. lll B, instantand obtain another conformal frame in which it is also
the presence of matter fields the Bach tensor fails to vanish aatisfied. We can eliminate this trivial freedom by a normal-
I. (The explicit expression of the Bach tensor in the case ofzation condition. A conformal frame will be said to be of
Einstein-Rosen waves is given in Appendix) Ahis in turn  Bondi-typeif B satisfies Eq(4.8) andif §,; m,dS*=27. A
makes the conformal-Killing transport of data that would natural question is the following: How many Bondi-type
have corresponded to translations nonintegrableé @and the  conformal frames does a strongly asymptotically flat space-
strategy fails. time admit? We will show that Minkowski space admits pre-

Finally, a third method of selecting translations in four cisely a two-parameter family of them and the freedom cor-
dimensions is to go to a Bondi conformal frame, i.e., one inresponds precisely to that of choosing a unit timelike vector
which the metriag,, on the base space is the unit two-sphere(i.e., a rest frame This is completely analogous to the free-
metric and consider the four-parameter family of supertransdom in the choice of Bondi frames in four dimensions. If the
lations §a—hn whereh is any linear combination of the ADM-type mass is nonzero, however, the Bondi-type frame
/'=0,1 spherical harmonics. There is only a three-parametewill turn out to be generically uniquéunlike Bondi frames
family of Bondi frames and the conformal factor that relatesin four dimensions
them is highly constrained. As a resulthifis a linear com- To establish these results, let us fix a strongly asymptoti-
bination of the/=0,1 spherical harmonics in one Bondi cally flat space-time and two Bondi-type completions thereof
frame, it is so inall Bondi frameg20]. The construction thus in which B tends, respectively, t&/2 andk’/2 for some
selects precisely a four-parameter subgroup of the supegonstantsk andk’. (In Minkowski space-time, it turns out
translation groupS. This strategy fails in three dimensions that k=k’=1.) Let us suppose that the two conformal
because the base space is n8wand the notion of a “unit frames are related b@ =aQ’, i.e., g.p=a?g ., Then, the
S! metric” fails to have the rigidity that the unit two-sphere transformation property3.17) of E implies
metrics enjoy. Indeed, as we already remarked in Sec. Il C, )
the only nontrivial analogue of the Bondi frame condition is k

~ 1~
2 2 2
to require that the conformal frame be such that the length of 2 2¢ Fadta Z(aa) ' “.9
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WhereEEmaBaEﬁ/ﬁQS_ The question now is: How many now negative. We will, therefore, ignore the-1 cases from
(smooth solutions does Eq(4.9) admit? The equation is now on (although they do display interesting mathematical
nonlinear and rather complicated. However, if we takejits Structures; see Appendix)B

derivative we are left with a linear equation: To summarize, strongly asymptotically flat space-times
generically admit a preferred Bondi-type frame and a pre-
3[(32a)+ka]=0. (4.10 ferred time translation. In the exceptional cases, where

k=n? we obtain a three-parameter family of Bondi-type
This has regular solutions only K=n? for an integern frames. However, the only physically interesting exceptional
(recall that, in a Bondi frame, the range ¢f on B is in  case is Minkowski space-time whene=1.
[0,277)). Similarly, interchanging the role of primed and

unprimed frames, we conclude thdt= n’.2 for some integer V. CONSERVED QUANTITIES
n’. Finally, the fact that the length a8 in both conformal . o . _
frames is 2r implies thatn’=n. Thus, unlesk=k’=n?, This section is divided into two parts. In the first, we

Eq. (4.9 does not admit a regular solution. Thus, unlessintroduce the notion of energy at a retarded instant of time
k=n?2, the Bondi-type conformal frame is, in fact, unique. In @nd of fluxes of energy and, in the second, we discuss super-
this generic case, we have a preferred time translation sufomenta. Again, while the general ideas are similar to those
group of G generated b{éa:"ﬁa_ In the point-particle ex- introduced by Bondi, Sachs, and.Penrose in four dimensions,
ample, this is precisely the time translation selected by th&1€ré are also some important differences. ,

rest frame of the particle. In Einstein-Rosen waves, it turns_ P€'haps, the most striking difference is the following.

out to be the one selected by the total Hamiltonian of theéconsider generic, strongly asymptotically flat space-times.

system[10] As we saw, in this case, there is a preferred Bondi-type
If k:nz. the reduced equatiotd.10 clearly admits a frame and a preferred translation subgroup of the asymptotic

two-parameter family of solutions: In terms of the angularSYMMetry group. However, as the example of Einstein-
. Lo~ = . Rosen waves illustrates, because the space-time metric is dy-
coordinates on B (with m;=D,¢), these are given by

namical even at infinity, the vector field® (or a constant
a=A+Bcomd+Csimg  with —A2+B2+C2=—1. multiple thereof in the Bondi-type frame isotthe extension
(4.1  tol of aunittime translation in the space-time. If the initial
data of the scalar field are of compact support, space-time is
It is straightforward to check that they also satisfy the fullflat in a neighborhood of® and a constant multiple of
equation(4.9). n®—namely, expfy)n®—coincides with the extension toof
In the obvious completion of Minkowski space-tirigb-  the unit time translation neaf. However, in the region of
tained by settingM =0 in the point-particle example or | with nontrivial radiation, the restriction of the unit time
=0 in Einstein-Rosen wavgswe havef=1 and ﬁ:o, translation is given by exXp(u)n? the rescaling involved is
whenceB=1/2. This corresponds to the case-1. Thus, U dependent whence the vector field is not even a supertrans-
Minkowski space-time does admit Bondi-type conformallation. Energy, on the other hand, is associated with unit time
frames and the constat is precisely 1(i.e., we cannot translations. Hence, energy at null infinity is not directly as-
obtain any other value by going from one Bondi-type frameSOciated with any component of supermomentum and a new
to anothey. There is precisely a two-parameter family of Strategy is needed to define it.
Bondi-type frames related by a conformal facterof Eqg.

(4.11) (with n=1). Fix any one of these and consider the A. Energy

three-parameter family of supertranslations of the fdnn? The strategy we will adopt is to capture the notion of

where energy through the appropriate deficit angle. We will first
~ , begin with motivation, then write down the general expres-
h=(a+bcosp+csing). (412 sjon of energy, and finally verify that it has the expected

. . . physical properties.

U_smg Eq.(4.1D (with n=1), one can che(_:k that this _thre?' Let us begin with an axisymmetric, strongly asymptoti-
dimensional space of these supertranslations is left mvanarg:taIIy flat space-time and consider its Bondi-type completion
if we replace one Bondi-type frame by another. FollowingWith an axisymmetric conformal factor. (Thus

the (third) strategy(mentioned aboveused in four dimen- — _ . . . '
sions, one can call this the translation subgroup of the aéfB mad§_27') F.'X a cross segnorco of | to Wh'.Ch the
ymptotic symmetry group. This label is indeed appropriate:mtat'onal Killing f@l_d is tanggnt@li Because of axi symme-
It is easy to check that the restrictions Itof any transla- 1Y Of the construction, the fiel@ is constant onCo, say
tional Killing field of Minkowski space has precisely this Blc,=ko/2. If this were a cross section ¢f of the point-

form. Thus, ifn=1, the procedure does select for us a threeparticle space-time, it follows from our discussion of Sec.

dimensional translation subgroup Gf Il C [cf. Eq.(3.22] that we would associate with it energy
It turns out, however, that ih=1, the deficit angle at

spatial infinity vanishes and we, therefore, have zero ADM- E= i(l— \/k_) (5.1)

type energy. By three-dimensional positive energy theorem 4G o’ '

[10], the only physically interesting space-time in which this
can occur is the Minkowski space-time.Kf>1, we have a (Thus, in particular, ifkp=1 as in Minkowski space-time,
surplus angle at spatial infinity and the ADM-type energy iswe would haveE=0.)
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By inspection, we can generalize this expression to arbi- 1 - _ )
trary cross sections of null infinity of general—i.e., E[Ci]—E[C;]= %j Dia(1—V2B)m,dS*
nonaxisymmetric—space-times. Given any strongly asymp- A

totically flat space-time, a Bondi-type conformal frame and a 1 _ _
cross-sectiorC of |, we will set =———| (2B) " Y2Aim(Q 2L ,,,n™")
167G A N
1 - ~
E[Cl:= —= §£ (1-v2B)m,dS. (5.2 X €apd S, (5.3
87G C

The appearance of the square root is rather unusual and

seems at first alarming: the formula would not be meaningfu/hereA is the portion ofl bounded byC, and C,. [The

if B were to become negative. Note, however, that, by asI_|m|t in the integrand is well defined because of our condi-

. . . tions on the stress-energy tensor. For the Einstein-Rosen
sumption of strong asymptotic flatness, the likf2 of B to o ~ . Ea.3.01 If th
i% is positive. Furthermore, sincézB=lim,,,Q 2L 4n°n¢ Watyes,llt ISI Cr ) seed.t.q.( 't)r']] : ; € mz?jttgr t.;ources q
and since the right-hand side is positive definite if the mattera isfy local energy conditions, the integrand in the secon

. . . - expression is positive definite. Thuk[C,]<E[C,], the
sources satisfy local-energy conditiori®,remains positive ; . . ;
on I. Thus,E[C] is bounded above by 1 which is also equality holding .|f and only if there is no flux of maFter
the upper bound of the total Hamiltonian at spatial infinitythrough the re_g|onA. _A_‘S one would expect, radiation
[10]. through | carries positive energy. The appearance of

Let us now verify various properties of this quantity 1/\/515 in the integrand is not alarming because, as remarked
which provide a strong support in favor of its interpretationabove, for the class of space-times under considerafias,
as energy. guaranteed to be positive dnin Bondi-type frames.

First, let us suppose that we are in Minkowski space-time. In the case when the source is a zero rest-mass scalar
Then, inany Bondi-type frame, we havB=1/2 everywhere field, we can make the energy flux more explicit:
on|. Hence, on any cross section, the energy vanishes. lim_,(Q 2L,,,A™ ™ =2(Lz4)2. Hence, for Einstein-

Next, let us consider the point-mass space-time with posiRosen waves, Ed5.3) reduces to
tive M. Then, from Sec. IV B we know that there is a unique
Bondi-type frame and in this frame, B2=(1—4GM)?
whence, orany cross-sectiorC, we obtainE[C]=M. This 1 = ~
is, of course, not surprising since our general definition wag[cl]_ E[C,]=— ey Aey<u>(£ﬁ ) e, d 0. (5.4
motivated by the point-mass example. However, the result is
not trivial because we are now allowing arbitrary cross sec-
tions, not necessarily tangential to the rotational Killing field. | the Jimit in which the cuf C,] tends tai®, E[C,] reduces

Consider Eins'gein-F_%osen waves. In the. nontrivial Casg, the gravitational Hamiltoniafil0]. Hence, on any cut,
when the scalar field is nonzero, the Bondi-type frame is g1 is given by the difference between the total Hamil-

unique. In this frame, B=exg —2¥(u)]. Hence, tonian and the energy that is radiated out up until that cut.
1 Finally, note that, because of the appearance of @] in

E[C]= —= % (1—e "W)deg. the integrand, this expression of energy flux is more compli-
87G Jc cated than the flux formul&2.37) for y(u), i.e., the flux

- formula for Thorne’sC energy[2]. This is, however, to be

In the limit to i° [or, in the past of the support af(u) on expected: Even at spatial infinity, the total Hamiltonian is
1], we haveE—(1/4G)[1—exp(— )] This ispreciselythe  (1/4G)[1—exp(—7)] while the C energy is just (1/&)%,.
value of the total Hamiltonian at spatial infinity—the genera-In the weak field limit the two agree. But in strong fields,
tor of unit time translations nedf. This result is highly they are quite different. In particular, the total Hamiltonian
nontrivial because the Hamiltonian is defingD] through  andE[C] are bounded above by Iwhile theC energy is
entirely different techniques using the symplectic frameworkunbounded above.
based on Cauchy slices. In the limit t&, we know from We saw that, in the case of Einstein-Rosen waves, our
Sec. Il C thaty(u) tends to zero. Henc&[C] tends to zero. expression(5.2) of energy reduces to the total Hamiltonian
This behavior ofE[C] is also physically correct because in the limit as the cross section approacHedVe expect that
i * is regular in these space-times. We wish to emphasize thatis result holds much more generally: It should hold in any
these two constraints—agreement with the known expresspace-time which is strongly asymptotically flat at null infin-
sions both ati® andi* of Einstein-Rosen waves—on the ity and also satisfies the boundary conditions at spatial infin-
viable expression of energy are strong. Hence, the fact thaty needed in the Hamiltonian formulatiof.0]. That is,
there exists ageneral expression forE[ C] involving only  broadly speaking, we expect the agreement to hold if the
fields definedocally on the cross sectio@ which reduces to  space-time is sufficiently well behaved to have a well-
the correct limits at both ends df of the Einstein-Rosen defined total Hamiltoniarand a well-defined limit of Eq.
waves is quite nontrivial. (5.2 t0i°. It is easy to provide strong plausibility arguments

What about the flux of energy? If a cross sectfdnis in  for this conjecture since both quantities measure the deficit
the future of a cross-sectidd,, from Egs.(3.16) and(5.2), angle ati®. However, more detailed analysis are needed to
we have establish this result conclusively.
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B. Supermomentum VI. DISCUSSION

We will conclude the main paper by introducing a notion | this paper, we developed the general framework to ana-
of supermomentum. For reasons indicated in the beginning;e the asymptotic structure of space-time at null infinity in
of this section, however, these quantities are not related thee space-time dimensions. We did not have to restrict our-
the energy in a simple way. They are given primarily for g\ es to any specific type of matter fields. However, if the
complete.ness. As in four dlmen5|0|1j$8]., Ina suitable matter sources are chosen to be a triplet of scalar fields con-
Hamiltonian formulation based on null infinity, they may be stituting a nonlineafSO2,1)] o model, the space-times un-
thetgenTr?tors of canonical transformations induced by S%er considerations can bé thought of ,as arising from symme-
pertranslations. ) ) ) . 2T

Recall first that, in four dimensions, supermomentumtry reduptmn of four—dllmgnsmnal hgefneral(;_zed c_ylmdlncgl
arises as a linear map from the space of supertranslations fpves, 1.e., vacuum so utions to the our-dimensiona Ein-
real translations and is expressible in any conformal frameSt€in €quations with one space-translation isometry. If the
The basic fields that enter are constructed from the asympCUrce consists of a single zero rest-mass scalar field, the
totic curvature of the rescaled metriand matter sourcgs translation Killing field in four dimensions is hypersurface
However, in order to “remove irrelevant conformal factor Orthogonal. Finally, if there is, in addition, a rotational Kill-
terms,” one also has to introduce a kinematic figld@] with ~ ing field, the space-times are symmetry reductions of the

appropriate conformal properties. The situation in three difour-dimensional Einstein-Rosen waves.
mensions is rather similar. The general strategy we adopted was to follow the proce-

Let us begin by introducing the ana|og’ﬁe0f the kine- dures deVGIODEd by Bondi and Penrose in four dimensions.
matical field. Sefp=1/2 in any Bondi-type conformal frame However, we found that due to several peculiarities associ-

and transform it to any other frame via the following law: if ated with three dimensions, those procedures have to be
Q=aQ’, then modified significantly. A number of unexpected difficulties

_ _ arise and the final framework has several surprising features.
p'=a?p+ada—13(da)? (5.5 This is in contrast with the situation in higher dimensions
where the framework is likely to be very similar to that in
~ =~ . ~ four dimensions.
where, as bef_oreg?s maD.@.' Henzci, the field)—B trans- The new features can be summarized as follows. First, in
forms rather_smply:',{’—B’)_za (p—B) [see Eq(3.17].  three dimensions, the space-time metric is flat in any open
As in four dimensions, the fielg serves two purposes: it region where stress energy vanishes and thus we are forced
removes the unwanted, inhomogeneous terms in the transfog; consider gravity coupled with matter. To accommodate
mation properties oB and it removes the “purely kinemati- physically interesting cases, we have to allow matter fields
cal” part of B in the Bondi-type frames. such that the falloff of the stress-energy tensor at null infinity
We can now define the supermomentum. Fix any conforis significantly weaker than that in four dimensions. This, in
mal completion of the physical space-tifot necessarily turn, means that the metric is dynamical even at infinity; it
of a Bondi-typg. The value of the supermomentum on adoes not approach a Minkowskian metric even in leading
supertranslation?, evaluated at a cross-sectiGnof | will order. In fact, physically interesting information, such as the
be energy and energy fluxes, is coded in these leading order,
dynamical terms. As a result, the asymptotic symmetry
1 o groupg is enlarged quite significantly. Like the BMS group
P7[Cl=— 3§ (p—B)TmMd S (5.6) in four dimensions, it admits an infinite-dimensional normal
87G Je subgroupS of supertranslations. The structure of this sub-
group is completely analogous to that of its counterpart in
Under a conformal transformatiolQ—Q'=a"1Q, we four dimensions. However, the quotie@itsS is significantly
haveT’ =a 1T and .= a1, . Hence, the one-form in- larger. While in four dimensions the quotient is the six-

tegrand remains unchanged. Thus, as needed, the expressFHWenSi‘?nallLoren_tz group, now it s the infinite-dimensional
of supermomentum is conformally invariant; i.e., it is well 9'0UP Diff(S”) of diffeomorphisms of a circle. Furthermore,
defined. whereas the BMS group admits a preferrgébur-

Let us note its basic properties. First, by inspection, thélimensional group of translationsg does not. To select
map defined by the supermomentU®nfrom supertransla- f[ranslatlons, one has to impose addltlon_a! conditions, \_/vh|ch
tions to real translations is linear. Second, in Minkowskiln Some ways are analogous to the conditions needed in four
space-timep=B in any conformal frame. Hence, the value dimensions to extract a %refr(]arred tl:mgcarmgdrpup ﬁf thi
of supermomentum vanishes identicallyamy cross section. BMS grOl_Jp' We imposed t e§e y. eman_’lpg that there
Finally, since£=p=0, we have should exist a conformal frame in which th_e- f|eEBdtgnds t.o
a constant as one approachifsalong|. This condition is
o~ ) ~ ~ automatically satisfied in axisymmetric space-times. We saw

Li[(p—B)TMa]=—lim(Q ?Ly ™M TMa. (5.7 that, in a generic situation, it selects a unique conformal
e frame (up to constant rescalings which can be removed by a
normalization conditionand we can then select a preferred
Therefore, as in the case of energy, the flux of the componenime translation inS. If the past limit of thel energy is zero,
of the supermomentum along any timelike supertranslatioit selects a two-parameter family of frames—the analogues
(i.e., one in whichT>0) is positive. of Bondi frames in four dimensions. In this case, we can
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select a three-dimensional subgroup of translations féom dimensional general relativitfor of ten-dimensional string
Fina”y, given any cross sectidd of I, we associated with it theorle$. Quantlzatlon of such theories should shed consid-
energy E[C] as well as a supermomentufs[C]. The erable light on the conceptual problems of nonperturbative
former is a scalar and has several properties that one wouf@/antum gravity. As a first step towards quantization, one
expect energy to have. The latter is a linear map from thdight use ideas from the asymptotic quantization scheme
space of supertranslations to real translations and may aris@troduced in four dllmegstl)orﬁzz]bgdlonce ;he Lorentz S‘:jb'

in an appropriate Hamiltonian formulation basedloas the groups areé how replaced by the subgroups ofj an

. - l B . B B . _
generator of canonical transformations corresponding tgnce Difi(S’) admits interesting rgpresentatlo(wslth non
supertranslations, zero central charggsthe asymptotic quantum states would

These results refer to three-dimensional general relativit now have interesting, nontrivial sectors. Second, this quanti-
. . 9 Yation would also lead to “fuzzing” of space-time points
coupled to arbitrary matter fields. However, as noted above long the lines of Ref23]. To see this, recall first that the

if the matter fields are chosen appropriately, we can regar ght cone of each space-time point gives rise to a “cut” of
the three-dimensional system as arising from a symmetry (which, in general, is quite complicatedhus, given and
reduction of four-dimensional vacuum general relativity by aipege light cone cuts, one can “recover” space-time points in
space-translation Killing field(One can also consider four- g operational way. Now, in a number of cases with scalar
dimensional general relativity coupled to suitable matterfjg|q sources—including of course the Einstein-Rosen
Then, one acquires additional matter fields in three dimeng,gyes—one expects the initial-value problem based tm
sions) In this case, the enerdy[ C] (or the supermomentum e well posed and the classi@matrix to be well behaved.
P7[C]) associated with a cross sectioB of three- |nsuch cases, it should be possible to express the light cone
dimensional null infinity represents the energy super-  cyts onl directly in terms of the data of the scalar field on
momenmtum per unit length(along the symmetry axisn | Now, in the quantum theory, the scalar field bis pro-
four dimensions. Thus, the three-dimensional results havg,oted to an operator-valued distribution and, given any
direct applications to four-dimensional general relativity asq,antum state, one only has a probability distribution for the
well. In addition, as we will see in the companion pafiet],  gcalar field to assume various values. This immediately im-
the analysis of the asymptotic behavior of fields in threepies that one would also have only probability distributions
dimensions can also be used to shed light on the structure gf light cone cuts, i.e., for points of space-time. This ap-
null infinity in four-dimensions. _ proach may well lead one to a noncommutative picture of
There are a number of technical issues that remain OP€Rpace-time geometry.
First, as indicated in Sec. V A it is desirable to find the
precise conditions under which the past limitEffC] yields ACKNOWLEDGMENTS
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should be possible to select a preferred one-parameter sub- APPENDIX AZ RIEMANN AND BACH TENSORS
group of rotations inG and define angular momentum. Fi- 1 this appendix we will provide the behavior of the Rie-
nally, in the case whei' is regular, one would expect that, mann and Bach tensors at null infinity in th@+1)-
as in Minkowski space, there exists a two-parameter familyyimensional description of Einstein-Rosen waves.
of Bondi-type conformal frames in whicB tends to a con- Assume the metric to be given in Bondi-type coordinates
stant ati *. It is not a priori clear whether the Bondi-type (x°x!,x?)=(u,p,¢) as in Eq.(2.26. The Christoffel sym-
frame selected by the behavior Bfati® is included in the bols are
family selected at*. If the space-time is axisymmetric, the

answer is in the affirmative. It would be interesting to inves- [0=2vu=7, I%=pe?,
tigate what happens in the general case. 1 1 1
The present framework provides a natural point of depar- Foo=7p= 7w Toa=7v, l11=27,,
ture for constructing as-matrix theory both classically and, 1 s »
especially, quantum mechanically. Three-dimensional quan- I3=—pe ), T'=p " (A1)

tum gravity without matter fields can be solved exactly but
the solution is trivial in the asymptotically flat case. When
we bring in matter, we have a genuine field theory which is Ro10=€*"(y oo 2Y.up)s Ro2o= (V.= V),
diffeomorphism invariant. If the matter fields are suitably ' ' ' ’
restricted, the theories are equivalent to the reduction of four- Ro217=P7.,p» Riz1=2p7,. (A2)

The Riemann tensoR, =T}, ,— - - -) reads



684 ABHAY ASHTEKAR, JIRI BICAK, AND BERND G. SCHMIDT 55

In a general2+1)-dimensional space-time the Riemann ten- S, = 2P_1?’,pe_47: S,=0,
sor has the form
Rijiki = 2(Si[9ji1 =~ Sj Qi) » (A3) S:=Si=€ (37,50~ Yup)» S5=0
where Ss=p H¥,,= 7). (A11)
Sic=Rik— 19iR. (A4)  Assume now the scalar field admits an expangbR3. The

It has six independent components given by the symmetriF:Ield equationg2.27) and(2.28 imply

tensorS,.. In the case of the rotation symmetry only the

follow S hing. L, 1 .1
ollowing components are nonvanishing: y =—2f3— EfOfO;+ -
SOO: %Y,pp_ V,Up_l—p_l( Yo~ )/,u)a
1.1
_ _T2
SOl:SlOZ%y,pp_y,uP—‘rp 17,p1 ’Y,p_ZfOF+' T (AlZ)
Su=2p""v,, : .
P The Riemann tensdiA11) has then the asymptotic form
S22=p*€ 2! (37,pp— V.up)- (A5) 1 1
" ’ Sl=§e_47x‘f(2)1+0 —Z/,
The role of the Weyl tensor in three dimensions is played by p p
the conformally invariant Bach tens¢see, e.g.[1]): 1 1 1
= = — —2y ' — J—
Bijk= Sik;j — Sij k- (A6) Ss=S=3¢ f°f°p2+o(p3)’

The Bach tensor satisfid; = — Bj,; andBjjjyjcyi=0, and 1 1
it thus has five independent components. In the rotation- 56=2f2_+o(_2>, (A13)
symmetric case the Bach tensor writes(y ,—27v,,) p

where y,.=lim,_ .. y(u,p).

Booi=3(8uy=0,) ,+(8+y)(8,+p 2)—p 18 ) . . .
Finally, define the five real triad componerissalar$ of

P

Bion=—36,,T(8+2y (8 ,+p 5 —p 16,, the Bach tensor:
8202: p29727(8001_ BlOl)! 8212: _pzeiz‘yBlOl-(A7) B]_:Bijklinjmk, BZZBijkliljmk, Bngijkninjmk,
B,=Bjjxm'm/I¥, Bs=B;m'mink. (A14)

Let us choose the real null triad

Under the rotation symmetry we find only the last two sca-

i -2 i_q 1 i -1
I'=(0e77.0), n=(1=-20, m=(00p". lars nonvanishing. Their asymptotic behavior is

(A8)
It is easy to see that it is parallel propagated along _ 1 e3p 4L 1
u=const,¢=const, and it satisfies Ba=—7¢ [6(f°f1)+f°f°]p4+o p°)’
|ini:_1, mimi=1,|i|i=|imi=nini=nimi=0. 1 1 1
=Ze 2% fofo— 32+ 4f,f3]5+O| —|. (A15)
(A9) Bs 29 [fofo 0 0 o]pz 03

Further, let us introduce six real triad components of the
Riemann tensor or, equivalently, of the ten§yr given by  Now, the Bach tensor is conformally invariant and it is of
Eq. (A4) as interest to see precisely its form at null infinity in the un-
o _ physical space-time. Putting=p 1, U=u, ¢= ¢, and using
S;=Rijial'ml1¥m' =S 11, againQ =7 as in Eq.(2.33, we introduce the null triad in
3 ke ik the unphysical space by=0"%A=n,m=0"'m, so that
S=Ryjial'n'1m' = Sy m in the coordinatest,p,¢) we have

- BR.. Lrinitkn!l — mini mKi = i K _ _ ) .
SRy (T =mm M) =S (=(0-e,0, F=(1320, =(0,01.

S4: %RijkﬂinjlanZSiklink, (A16)
(Note that the vecton' is null everywhere. Outsidg, it is
not related in any simple way to the vector field
So=Ryjaminimkn' = Synink, (A10) N%=0*"VQ used in the main text.
Using thenB;;=Bj; we arrive at the following form of
Under the rotation symmetry we find the Bach tensor at null infinity :

85: Rijkmiljnka:Siknimk,
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B=ByM = — e~ 7o[6(Tof1) 5+ Tofog] + O(), g 1A
~ o~ i ~ o~ ~ ~ po
Bs =By M= 3e 2o fof ozu— 355+ 4fof o]
- At(a—1)°-1 a’A*
+0(p), (AL7) p=——————, py= (87)
Po Po

where yo="(U,p=0)=v.., fo(U)="Fo(u), f1(U)="Fy(u). he domi ditiory> _
Hence, the Bach tensor is finite and nonvanishing at nulfhe dominant energy conditiony=0, |p,|.[pg|<0c, re-

infinity in general. quires
_aAt]12
APPENDIX B: ASYMPTOTICS FOR STATIC CYLINDERS 1-A*=0, 1 f <a<0. (89)
IN THREE DIMENSIONS A

Starting from the four-dimensional Einstein-Rosen metric,Choosinga=0, 0<A* <1, we obtain the cylinders with

ds?=e27"2Y(—dt?+dp?) +e?’d 2+ p2e ?"d ¢?, (B1) 1-A*

0':
Marder[24] gives four-dimensional static solution represent- Po
ing the field outside a static cylinder in the form

=Pz p¢:O, (Bg)

generating the exterior fields as straight cosmic strings: lo-

y=—C(1-C) lnp—(1-C)InD, (B2) cally flat but conical, with a positive deficit angle given by
2m(1—A™). Curiously, if we admit a negative mass density
y=C2%(1-C) ?np—(1-2C)InD, (B3)  such that
whereC andD are constants which can be determined, by At=1+n, n=1,2,..., (B10)

matching the solution to an interior one, in terms of mass and

pressure distribution inside the cylinder. For mikger unit  and thus

length of the cylinder small, Levi-Civitand others suggest

thatC=2M; Thorne’sC energy{ 2] leads to the same results n

as long as the internal pressure of the cylinder is much ‘T:_%:_pz’ (B11)
smaller than its energy density.

The simplest models of the static cylinders employ thinthe exterior space is some covering space of a part of
shells. By studying the exterior and flat interior metric of anmMinkowski space. Indeed, it is easy to see that with
infinite static Cylindrical shell, StaChéQS:l found the con- y= _|n(1+n), l//: const, the metnc(B]_) can be converted
stantsC andD to be related to the internal structure of the 1 3 fiat metric withg e [0,2m(n+ 1)]. The holonomy group
cylinder in a simple way. Denoting the radius of the shell by 5,ch a space is the same as that of a part of Minkowski

po, and introducing Stachel's notatioa, and A*! for the  gpace so that vectors transported parallelly around closed
constants determining the external metric, we find Marder's;,rves coincide with the origindicf. also [27] and [28]

constantsC andD to be given by which find no “gravitational Aharonov-Bohm effect” in the
a cases corresponding t&* given by Eq.(B10)]. The Lie
C=——, algebra of Killing fields does not differ from that of a part of
a-1 Minkowski space. However, the geometfgletermined by
1 the metric itself, rather than by the conneclids different.
— a . . . . . _
InD = (a2lnpy+InAt), (B4) W|t_h the original coordinateb €[ 0,27) it reads(after res
1+a calingt)
so that @ ) 21 24424 42
, d ——dt+(n+1)2dp +pdop+dz.
y=a’ln——InA™, (B5)
Po Considering surfaces=const,z=const, and comparing the
proper lengths, zZp; and 2mp,, of the two circles with radii
W= aIn£+b. (B6) P1 anc_ilpz, with their proper “orthogona}l di_stance,’_’
Po (n+1)" *(p2—p1), the result differs from that in Minkowski

. ) . space. Thiganticonical character of space-time can be ob-
An agd|t|ve~constan2 in ¢ can be relnoved by a rescaling served also at infinity after performing an inversion using
p—&p,t—Et,z— & Z,y— g+ Inéy—y, E=const, which Cartesian coordinatefef. Egs. (2.19 of [11]]. This, of
leaves the metri¢B1) invariant. course, is true for anyanticonical space wittA* #1.

Let Sy, be the surface stress-energy tensor of the shell. |n any case, the asymptotic gravitational field describing
Then, Stachel's equationd.73—(1.79 determine the sur- static cylinders is determined by two parameters, rather than
face energy densityc=S and the surface pressures, one, describing the asymptotic field of cylindrical waves
P,=—S;, Py= —Sg in terms of the constan andA™ as  considered in the main textRelatively recently, Bondi26]
follows: examined quasistatically changing cylindrical systems and
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concluded that there is no conservation of these parameters
because of gravitational induction transferring energy paral-

lel to the axis)
The (2+1)-dimensional metric corresponding to E&.1)
is [cf. Eq.(2.1D)]

do?=e?"(—dt?+dp?)+ p?d 2. (B12)
Introducingu=t—p and writing y in the form
y=a%lnp+B, a’=0, Bconstants, (B13
we get
do?=p?@e?®(—du?—2dudp) + p?d¢?.  (B14)
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925—1/(2512—1)_ (B16)

The metric of the unphysical space-time then reads
do2=02dg2= eza[ _Ez(az—l)uzaz—l)d’ﬁz

—2(2a2—1) " LdUdp]+d 2. (B17)

Assume a®<3. This includes cases when mass per unit
length of the cylinder is small because then constastl
and 0<a?=C?(1—C) ?<1. Transformation(B15) shows
that p—o implies p—0, and Eq.(B16) implies =0 at
‘p=0. The metric(B17) becomes degenerate here. The con-
formal completion of the space-time with a givah< 3 can
thus be constructed, with infinity being &=0. However,

Now, we go over to the unphysical three-dimensional space=d- (B16) yieldsVQ =0 atp=0. Therefore, the asymptotics

time with coordinates

_ 2 ~
u=u, p=p*"1 ¢=¢

by a conformal transformation with the conformal factor

(B15)

for static cylinders is completely different from a standard
conformal completion of an asymptotically flat space-time.
In special cases of locally flat but conical space-times, the
asymptotics in(3+1)-dimensional context is analyzed in
[29].
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