PHYSICAL REVIEW D VOLUME 55, NUMBER 10 15 MAY 1997

Conformal symmetry and the chiral anomaly
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Two-loop contributions to the anomalous correlation functidp(x)J,(y)J,(z)) of three chiral currents are
calculated by a method based on the conformal properties of massless field theories. The method was previ-
ously applied to virtual photon diagrams in quantum electrodynamics, and it is extended here to diagrams with
scalars and chiral spinors in the Abelian Higgs model and in the SW&J(2)X U(1) standard model. In
each case there are nonvanishing contributions to the gauge current correlator from self-energy insertions,
vertex insertions, and nonplanar diagrams, but their sum exactly vanishes. The two-loop contribution to the
anomaly, therefore, also vanishes, in agreement with the Adler-Bardeen theorem. An application of the method
to the correlatofR,(X)R,(y)K,(2)) of the R and Konishi axial vector currents in supersymmetric gauge
theories which was reported by Anseleti al. is discussed here. The net two-loop contribution to this cor-
relator also vanishe$S0556-282(197)00410-4

PACS numbgs): 11.30.Rd, 12.15.Lk

[. INTRODUCTION model?! which is a simplified form of the standard model,
and then extend the treatment to the full glory of the
SU(3)XSU(2)xU(1) standard model, where there are four

. . : -, independent possibly anomalous correlators to be checked.
Bell and Jackiw[2] is a seminal concept of quantum field . X
In all cases the net sum of self-energy plus vertex insertions

theory. The absence of radiative corrections to the one—IooBIus nonplanar diagrams vanishes. So the full two-loop cur-

anomaly is of central importance in applications to neutral . : .
: . o rent correlators vanish, and their would be anomalous diver-
pion decay, to the structure of fermion families in the stan- . o . )
. ences vanish, thus validating by explicit calculation the
dard model, to mathematical contact between gauge theo

and the Atiyah-Singer index theoref8], and many other o_nvent|onal wisdom concerning radiative corrections to the
chiral anomaly.

questions. One might have thought that this matter was In our method the current correlator is calculated directly

settled by the early work of Adler and Bardept] which in Euclidean position space using a simplifying change of

involved regularizations of the theory, by the general renor- _ * .
L ) variables suggested by the conformal properties of the corr-
malization group argumerib] for anomalies of global cur-

rents, or by Becchi-Rouet-Sto@®RS) cohomology argu- elator to perform the internal integrations. Conformal sym-

ments[6] for gauge current anomalies. Yet there is muchmetry also explalns_ why the net two-loop correlator
literature which disputes the common wisdgm-10]. Fur- (3.003,(y)J,(2)) vanishes, when one might have expected

ther a certain level of suspicion of general theorems hainIy the vanishing of its divergence d/0x,)

The chiral anomaly discovered long ago by Adl&t and

proved to be healthy for theoretical physics, not necessaril ‘]M(X?‘]V(y)‘]/’(z»' The _two-loop_ correlator is conformally
ovariant for massless internal lines, and one can show that

because proofs can be wrong, but because inappropriate Rr any conformally covariant contribution the abnormal par-

sum_ptlons can be mage in the hypotheses._ Fo_r example, ti?/ part of the third rank tensor correlator vanishes if and
particular order of the operations of regularization and com

. . . i only if its divergences vanish. This method was previously

puting thg axial vector divergence which was usefdincan | ,caq by Baker and Johns¢2] to compute the two-loop

be questioned. . _ o ~ vector and axial vector vertex functions in massless quantum
Thus explicit calculations of possible radiative correctionsg|ectrodynamics. The ideas of the more comprehensive posi-

to the anomaly in chiral gauge theories are illuminating. Ation space method of differential renormalizati¢3,14

violation of the Adler-Bardeen theorem in the Standarda|so p|ay a role, but the Speciﬁc two-|00p calculations re-

model would be particularly significant because it would call

to question one of its most attractive features, namely, that———

the one-loop anomaly cancellation between quarks and lep-lour investigation was motivated by papers of Cheng and Li in

tons occurs so naturally and is sufficient to make the theorywhich a nonvanishing two-loop anomaly was obtained in this

consistent. We therefore study two-loop contributions to thaheory. A subtle error has recently been found, and there is now

gauge correlatofJ,(x)J,(y)J,(2)) in the Abelian Higgs agreement on the vanishing of the anomalg].
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quired to test the anomaly in this method do not require 1 — —
regularization or cutoff. S:f d*x ZFiﬂ‘ D,¢D, o+ ¢y,.D, ¢
The basic ideas of the method are described in Sec. Il.
The gauge-covariant derivative in the Abelian Higgs model — — N —
is —fp(Lp+Rp)h— Z(¢</))2 : (2.2
D, ¢=[3,+ig(aL+BR)A,]¢, (1.1) D,#=(9,+igA,) ¢,

o | _ D, ¥=[3,+igA,(aL+BR)]¥,
whereL andR are chiral projectors. We begin calculations
in Sec. lll at the poinB=—a=1/2, i.e., pure axial coupling, B—a=1,
because this is the point at which one can choose a gauge in
which the one-loop fermion vertex function and self-energy
are finite. This eliminates all subdivergences in the two-loop

current correlator graphs. The modifications required Q¢ g jnvariant under conformal transformations in the con-
handle all values of, 8 are described in Sec. IV. Because of tinuous component of @,1), but not necessarily under in-

parity nonconservation, ‘heFe is no true finite gauge for_ th ersion since that question is relafdd] to invariance under
vertex and self-energy functions, but we show that there is afjis .rote symmetries. For the special chojge — a=1/2

effective finite gauge in which the two-loop vertex and self-where we have a parity-conserving theory with pure axial

energy insertion contributions td,,(2)J,(x)J,(y)) have no gauge coupling, invariance holds under the transformations
subdivergences. In Sec. V the method is extended to th

Ys=Y1Y2Y3Ya, L=3(1—ys),

R= 3 (1+ys)

SU(3)XSU(2)xU(1) standard model. We assume the ¢(X)_>¢r(x)=X/2&XI),

usual couplings for which the one-loop anomalies cancel. (2.3
There are then no genuinely new graphs to compute, but the P(X)— ' (X) =X 2yk’ (X),

effective finite gauge mechanism is more complicated than

before. In supersymmetric gauge theories there are two for- ﬁx)a?(xhx’zﬁ’%,

mally conserved axial currents: tiecharge currenR ,(x) (2.9
and the Konishi current K,(x). The correlator Aﬂ(x)HAl’L(x)= —X’ZJW(X’)AV(X’),

(RL.(XR,(Y)K,(2)) was calculated by the present method-

ology as part of a recent stud$5] of the operator product as can be verified with diligence and the help of the relations
expansiong OPE’y of the superconformal algebra. Details

were not discussed irl5], and they are briefly presented in 4 d*x’ ) , ' )

Sec. VI below. d'x=—7g, X 7X'==x"3,(x)y,. (29

Inversion invariance does not hold in the general chiral
theory, and it is not required for our application.

Although conformal symmetry is concretely used in our It is important that_ corrglation functions are constructed
work largely to motivate a change of variables which simpli-from Feynman rules in which the vertex factors and propa-
fies the required two-loop Feynman integrals, we believe tha@ators hav_e simple inversion properties. In particular the sca-
it is useful to explain the method from a more fundamental@r and spinor propagators transform as
standpoint. It is well knowrisee, for exampld,16]) that the

IIl. METHOD

124,12
conformal group of Euclidean field theory ig®)1), and that A(X—y)= — ;2 - iz LZ
all transformations which are continuously connected to the 4me (x=y)* 4w (X' =y")*’
identity are obtained by combining rotations and translations
with the basic conformal inversion s — A 1 Xy
(X—y)= (X=y)= 272 (x=y)2
N 1 (XI_ r)
X, =, == 5 XYy —(X,_yy,)w'. 2.6

The gauge field propagator is another stdr]. In the usual

X 2X,X,, i i
RN S/l FEN T 2.1) family of covariant gauges one has
M g X g 1 8 1 J,( )
_ nv _ = nv X_y
fetaloy 2 ey ) 37

The Jacobian tensar,,(x)=J,,(x"), which is an improper
orthogonal matrix, will be very useful for us. BecausewhereI'=0 is the Feynman gauge afid=1 is the Landau

DetJ=—1, the inversion is a discrete operatid®], similar  gauge. Only the second term transforms as expected under
to parity, and not an element of the continuous component ohversion, since

0O(5,1) which contains the identity.
The Euclidean action of the massles&)JMHiggs model is J(X=Y)=3,,(X)J,6(X" =y ") I (Y"). (2.8
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point. One wayf13], which we now summarize, is to recog-

S Zu u n ; - X . :
nize that the amplitud€.10 is too singular at short distance
VA v Y to have a well-defined Fourier transform. One then regulates
, N which entails the introduction of several independent mass
P Xv Yp u xv  Yp u Xy Yp u Xy
@ ®) (©) [CY

scales, but the regulated form after the gamma matrix trace
depends only on the ratios of these scales. The regulated
amplitude is well defined, and one can check the Ward iden-

Zu Zu z z - -
.- 4 \ s tities, which take the expected form
’ v ’ Ay
! v y, u
v u ¢ m J Jd d
Ye Xv  Yp Xy ¥ o Xv
(e ) ()

o Xy y @Auvp(zixly):azsvp)\o’a_x}\ m5(x_z)5(y_2),
® (2-11)

FIG. 1. One- and two-loop contributions to the anomaly in theWith similar expressions for the divergences with respect to
Abelian Higgs theory. There is a chiral current at each corner of thes,, andy,,. The anomaly coefficients, ,a, ,a, depend on the
triangle. Solid lines are fermions, dashed lines scalars, and wavkatio of mass scales, and there is no choice of scales which
lines gauge fields. The solid circle ifg) is a local self-energy makes all coefficients vanish. Specifically the sum
renormalization. Not shown are the same two-loop diagrams rotateg, + a, +a,= — 142 is independent of the scales. There is a
+120° and diagrams with the opposite direction of fermion flow choice of scales which make&:ay:azz — 1/1272 which
for all but the nonplanar diagrarth), and it is understood that in js the Bose symmetric choice relevant for the gauge current
(b), (c), (e), and (h) both directions of Higgs propagation are in- correlation function in the (1) Higgs model(2.2), and an-
cIudeq. The coordinate and Lorentz |nd|c<_es correspond to the intesther choice to make,=a,=0 which is appropriate for the
grals in Sec. Ill, and we refer tt)—(h) with and without these  qrrelator of one axial and two vector currents.
indices(by their general topologyin the text. A tenet of the space-time approach to renormalization is

The full ¢ | v aft that the intrinsic ambiguity of a primitively divergent ampli-
e full propagator transforms properly only aiter a 9aUg&,de is an ultralocal distribution consistent with dimension

transformation is performed 2], and this complicates appli- and symmetry requirements. This corresponds to the

cations to amplitudes with virtual photons. p-space ambiguity of polynomials in external momenta. In

It IS well known that conformal symmetry restricts _the this light the ambiguous part of the tensor amplit@@4.0 is
tensorial form of two- and three-point correlation functions

and frequently determines these tensors uniquely up to a con- 9 9 9 9

stant multiple.(For recent discussions, s€&6,18.) Inver- AAL =8 uipo bl(ﬁ— a—) + b2<(9— - E)

sion symmetry is sufficient to determine these restrictions, o No Yo v

and the inversion property of a vector current of dimension 3 X 8(x—2)8(y—2), (2.12

is
’ 6 whereb, andb, are arbitrary constants. The mass scale de-
J,(X) =3, (X")=X""T ,,(X") I, (X). (2.9 pendence of the regulated amplitude is exactly of this form,

L . , and its Fourier transform is just the shift ambiguity due to
We are primarily interested in the abnormal parity part of the,

choice of loop momenta in the traditional approach to the
correlator (J,,(x)J,(y)J,(2)) of three conserved currents, anomaly[21]. The nugget of this discussion of the space-
and it is known that there i17] a unique conserved rank-3 ime approach to the lowest order axial anomaly is that the
tensor function with the inversion property required by Eq.\ye|| defined amplitude(2.10 for separated points deter-
(2.9. The specific form is given, up to a mqltlpllcqtlve CON- mines the fact that there is an anomaly of specific strength.
stant, by the lowest order massless fermion axial trianglerpe choice of regularization or calculational procedure for
amplitude[Fig. 1(@]: the Fourier transform is just a redistribution of the anomaly
between the three parametexs a,,a,, which does not af-

AMVP(Z’X.Y) = ( - )Tr7M75S(Z_ Y) ’)’ps(y_ X) YVS(X_ 2) fect their sum.

1 z—y y—X We now return to the discussion of conformal symmetry

= (277—2)3'”[ 757ﬂ(z_y)4 ?’p(y_x)4 Vv e}nd its role in the elucidation of pos;ible _radiative correc-
tions to the anomaly. One may question this role because of

X—z the common lore that the introduction of a scale required to
XW ' (2.10 handle the divergences of perturbation theory spoils expected

conformal properties. In general this is true, but the two-loop

in which the (—) is the usual factor for a closed fermion anomaly diagrams of Higgs models, which are drawn in Fig.
loop. The conformal properties can be readily verified usingl, are exceptional. Any primitively divergent amplitude is
Eqgs.(2.5 and(2.6). exceptional when studied iR space for separated points,

For separated points this function obeys all desiderata. kince the internal integrals converge without regularization.
is fully Bose symmetric and conserved on all three indicesThe nonplanar diagrams of Fig.(lh are primitives. Of
The expected anomaly is a local violation of the conservatiortourse there are many other diagrams which contain subdi-
Ward identities which arises because the differentiation ofzergent vertex and self-energy corrections, and these require
singular functions is involved. There are several waysa regularization scale. However, for the specific choice
[13,19,2Q to obtain the anomaly from thigz-space view- B=—a=1/2 which corresponds to pure axial coupling for
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the fermion, it is quite easy to see that there is a unique ig3f? aou | U u,

choice of gauge-fixing paramet&r which makes the one- N,,p(0X,y) = Wf d*ud U(W_ W)

loop self-energy finite. Since the vertex and self-energy cor-

rections are related by a Ward identity, each vertex correc- y—u  d—x

tion is also finite in the same gauge; specifically, the sum of XTr757P(y_—u)4 (u—x)*

the three contributing Feynman diagrams is ultraviolet finite.

In this “finite gauge” the integrals in the sum of three vertex X A 3.1)
insertion diagramgFigs. 1b), 1(c), 1(d)] at each corner of y”(x—v)“ (v—y)* ’

the two-loop triangle converge. The same statement holds for
the integrals in the sum of the two self-energy insertion dia-The integration variables,v each appear in three denomi-
grams[Figs. Xe), 1(f)] on each leg of the triangle. nators. This is not necessarily fatal, and indeedutendv

The photon propagatd2.7) is not conformal covariant, integrals can be evaluated in closed form using Feynman
and we will discuss this complication in the next section. Weparameter§23]. However, we will see that the conformal
will show there that the diagrams for which this difficulty inversion leads to simpler integrals. The change of variables
occurs are already covered by previous wtR,22. In the  outlined in the previous paragraph can be made with the help
remaining diagrams the photon propagator may be replaceaf (2.5 and(2.6) and the Higgs current transformation
by the inversion covariant second term of E8.7) and a
finite gauge can be chosen. We then have the situation that U, u, oo
each two-loop Feynman diagram we need to compute is con- 2,87 A2 u“v'“(v,—u,). (3.2
structed with inversion covariant propagators and vertices,
and the_sums of the self-energy diagrams on each leg and Spinor propagator “side factors,” e.gt/,ui’, etc., all col-
vertex diagrams at ea_ch corner are convergent. Then each %f se within the trace, and the Jacobiariy(’) 8 cancels
the three nonplanar diagrams and the summed self-energy wp

; . . ) ith factors in the numerator, giving the result
vertex insertion diagrams at each leg or corner of the triangle giving

is a conformal covariant contribution to the current correla- . 3.9
tion function. Each of these amplitudes must be a multiple of N (0x,y)= x'6y’63 ! "N

. . v ¥\ 12 y VV’(X )‘] ’(y )N v'ip's
the unique conformal tenséy,,,, of Eq. (2.10, and we will e 512x P rrp

show that the sum of the separate contributions to the net
two-loop correlator vanishes. Further, we will show that the ~ N R
conformal inversion can be used as a transformation of the Nw,p,—f d'u'd™’ (v, —uy)
integration variables which makes the calculation of the

eight-dimensional integrals easy and also gives an explicit <Tr y'—u' =X
verification of the conformal properties we have discussed YsYel (y'—u)® (u'—x)* "
above.

X, _ ﬁ ’ Ié r_ yr

. (3.3

X
(X/_U/)4 (vr_y/)4
lll. U (1) MODEL FOR B=—a=1/2

) ) ] We see the expected transformation factors for the currents
Euclidean correlation functions for the theory are con-g;y andy times an integral in whichi’ andv’ each appear

structed using the propagators of EG2.6) and (2.7), the iy only two denominators. Such convergent tensorial convo-
vertex rules which can bf read from the acti@®), and the  |ytion"integrals can be done by several methods. We have
instruction to integratg'd*u over each internal vertex of a |;geq Gegenbauer polynomial methd@4], and the results

diagram. are tabulated in the Appendix. When these results are used

To illustrate the way conformal symmetry is used in our g sybstituted within the trace, one finds the final amplitude
work, we first study the nonplanar graph of Fighil Its

amplitude is conformal covariant since no issues of subdiver- ig3f2
gences and gauge choice arise. The idea is to use the inver- N, (0x,y)=— 15 gX'%y"%3,,/(x" ), (Y")
sionu,=u//u’? andv,=v//v'? as a change of variable in ™
the internal integrals. In order to use the simple conformal TrYsYu Yo Vo (K =¥")
properties of the propagatof2.6) we must also refer the X —y)?
external points to their inverted images, ex,= XL/X’Z. If y
this is done for a generic configuration gfy,z, there is
nothing to be gained because the same integral is obtained{
theu’,v’ variables. However, if we use translation symme-
try to place one point at 0, sag=0, it then turns out that
the propagators attached to that point drop out of the integral, .3
essenti_ally.because the inverted point iscatand the inte- B,p(2,%,Y)= EAMVp(z,x,y), (3.5
grals simplify. 8

After summing over both directions of Higgs field propa-
gation and elementary manipulation of chiral factorend ~ whereA ,,, is given in Eq.(2.10. At z=0, and referred to
R, the amplitude for the grapfFig. 1(g)] can be written as  inverted pointsx’,y’, this reads

(3.9

The result above may be compared with the amplitude of
e one-loop triangle graplFig. 1(a)] (with one direction of
charge flow,
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i9° o e , , the integralsfd*ud*V,(y,v,u). Let us examine first the
BLup(0X,y)= 885" Y I (X")Ippr(Y") single |ntegralfd4va(y v,u) which can be simplified by
taking the pointy=0. We will discuss these integrals in
Trysy, e vu (X' =Y") some detail because the same integrals will occur in the ver-
(X —y")2 : (3.6 tex insertion diagrams of the two-loop current correlator.

We see that the required integrals are again convergent
One may now observe that the nonplanar amplitude is just @onvolution integrals. Using the tabulation in the Appendix,
numerical multiple of the unique conformal ten€@r10 as  we obtain
discussed in Sec. Il. The result may be written

igf? ysdy, u
N,uvp(orxiy): - WBMVP(O!XIY)- (37)
P 2
_ gf (b}m 2u,u,
The nonplanar graphs with scalar verticex aindy must T 324818 us )

give the same result by triangular symmetry. However, our
method of evaluation of the amplitude has singled out the
point z=0. Therefore a check on the result can be deter- igf2 ysy
mined by applying the inversion to the amplitudes for the f d*oV2(00,u)= 5= —72, (3.13
+120° rotated diagrams with=0. The integral in inverted 32" u

variables involves a different set of convolution integrals, ig? U

and we have checked that it gives the same re8Lif. f d*V@(0p,u)= 9 . 75%1704%, Y8

We now discuss, following12], the finite gauge mecha- 1287 u
nism for the one-loop self-energy and vertex corrections

(3.12

which are ingredients of our study of the two-loop anomaly. 1— _p) 5‘“’“
After a little algebra the sum of the Higgs and photon self- u?
energy graphs can be written as 1 [ 8alig+ 8poll, zuauﬁug)
1 b— 4 u? u?
E(v—u)— 7| 12+ 50%(1-1) |——
2 ( u) ig3 Y
_ Sya[( 25 _4U )
+ aw“(u —u). (3.9 1287 U ap
The first term is the separated point part of the amplitude +(1_F)5w“2]- 314
which is completely determined by the Feynman rules. Itis a Consider next the second integration

singular function ob —u whose Fourier transform is linearly
divergent. By choosing the gaudie= 1+ 2f2/g?, the ampli-
tude is made finite. It vanishes for separated points, but the
is a possible local term, the second term in E38), which

Jd*ufd*V,(0p,u) which gives the zero momentum vertex

rfunct|on The s, /u terms give the expected logarithmic

3|vergence but the integrals over the traceless tensor
u? 6 i i

: : e Sap—4U,U,)/U” converge by symmetric integration. One

's left ambiguous by the Feynman rules. The finite constanéees that the sum of the divergent contributions from Egs.

a will be determined by the Ward identity.
The amplitudes of the three vertex subgraphs in the dla(3 12, (313, and(3.14 is proportional to

grams[Figs. 1b), 1(c), 1(d)] are 2f2— 42— g2(1-T), (3.1
V(l)(y v u)— _'9 v 1 -y y (y—u) and therefore vanishes in the same gauge that makes the
w® Pw—u)? (v—y)* P (y-w* self-energy finite. Henceforth we will use this gauge.
3.9 The Ward identity for the theory may be derived by stan-
- dard functional methods or obtained directly from the vertex
2y p.u) = 'gf2 1 d 1 v—u amplitudes(3.9)—(3.11) using the relation
v, = P ]
Ve, 7 TSy =w)? dy, (y—u)? (v—u)* .
(3'10 \:‘(y_—u)2:—47T254(y_U). (3.16)
(3) N |93 v— y y_ ] .
Vo (YW= 15575 Y5Ya [y y)A Ve (y—u)d ¥ The result is
d
Sap(1=2T)  T(u=0v),U(—v)g ——V,(y,0,u)=—i3gys[ 8y —v)— 8*(y—u) ]S (v—u).
7+ 3 : W,
(3.1)

We wish to determine the constamin the self-energy3.9).
Each contribution has a logarithmic divergent Fourier transThis would appear in Eq3.17) as the coefficient of a very
form, and we consider the Fourier transform at zero fermiorsingular distribution, and so we integrate with respect to the
momentum to study finiteness properties; that is, we considesmooth test function 1 and use the integrated Ward identity
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i A _ 1o J =2
MV(U—U)——WEQ—W w(U=v), y=2.

T (3.29

‘ @ < ®) © @ The Landau gauge graphs give orggrcontributions to the

two-loop (J,,J,J,) correlator, and the remainder gives an
order g3f2 contribution. We now discuss these separately.
The Landau gauge propagator is conformal covariant only
after regauging by adding a gradient term givei8]. So
the sum of all virtual photon diagrams is conformal covari-
ant, but individual virtual photon vertex insertion diagrams
f d4va(y,v,O)= —ilgysS(y). (3.18 [Fig. 1(d)] are not, and are not simplified by the simple in-
version discussed at the beginning of this section. Neverthe-
o o ) _ less, the photon vertex contributions to the two-loop
In the finite gauge the only contributions to the integral IN(A,V,V,) correlator in quantum electrodynamics were cal-
Eq. (3.18 come from the traceless tensor structures in Eqseyjated by related but more complicated techniqueiL .

FIG. 2. Vanishing contributions to the three-current correlators
Diagrams(b), (c), and(d) are only present in correlators with non-
Abelian gauge currents, and are discussed in Sec. V B.

J
3y,

(3.12 and(3.14, and we have The net contribution to the correlator of vertex and self-
. energy insertions was found to vanish there, thus verifying
d4oV 0)= '9 §2_ 142 Yo¥p _ % the Adler-Bardeen theorem through two-loop order in QED.
v p(y!01 ) 4( Zg )7570’ 6 4" . . .
167 y 4y It is quite easy to see that, after clearipgfactors, all Lan-

(319  dau gauge virtual photon diagrams of Figd)lin the axial-
. coupled Abelian Higgs model are a uniform factor of 1/8
The singular tensor can be expressed as the traceless fomﬂimes the same graphs in QED. So it is fortunate that the

work of [12] can be taken over to our case with the imme-

% - 5;";: l( Dodp— Eggpm) —, (3.20  diate result that the net contribution of Landau gauge virtual
y 4y" 8 4 y photon graphs to the gauge current correl&y,J,) van-

o ] o ] ] . ishes. Specifically the sum of the Landau gauge vertex inser-
which is a well-defined distribution, and its divergence istjons and the ordeg® part of the self-energy insertiofisec-

easily obtained: ond term in Eq(3.23] vanishes.
2 We now study the ordeg®f? vertex insertion contribu-
i(yoyp _ %) __ 3l& S4(y) (3.21) tions to the three-point current correlator. These include vir-
ay,\ ¥ 4yt 8 7 ' ' tual Higgs diagrams plus a virtual photon diagram with the

o _ ~ propagator3.24). Each of these graphs has a conformal co-
Combining Egs.(3.18—(3.21) one finds the self-energy in variant integrand, and so the inversion technique can be ap-

the finite gauge plied. The amplitude for the diagram shown in Figb)lis,
3 with z=0,
2(y)= g2 (7= 309)05%(y). (3.22 PO i f d*ud*
wr OXY)= 5o | (02
It is this result for, (v —u) which is to be used to evalu-

ate the self-energy insertion contributiofsg. 1(g)] to the XTr L y—u
two-loop anomalous current correlation function. Because ys(v—y)“ yp(y—u)“
Eq. (3.22 is purely local, the integrafd*ud*v required for e <

the graph of Fig. (g) is trivial. Specifically thes*(v —u) in « oy
Eq. (3.22 can be used to do theintegration, and, acts on (u—x)4 x4 Tryt

the resulting propagator giving a secoadfunction which _ _ i )
can be used to do theintegration. The result is that the sum 1he inversion may be performed; Jacobian factors again can-

of the self-energy insertion grapfigs. 1e), 1(f), 1(g)]isa €l and the trace simplifies, giving

. (3.29

multiple of the one-loop amplitude 3.0
W 19 66wy Ly U
3 1 ,LLVp_5127T12X y VV’(X ) pp’(y ) uv'p'
— 2 2
E,uvp(zvxiy)_ 647T2(f _Eg )B,u,vp(zvxay)' (323) , ,
du’d?*
v(l)! !: U E
Let us now discuss the diagrams which remain to be mrp (U =v")
evaluated. The diagranifig. 2(a)] with three virtual boson -y’ 0 — %
lines vanish trivially because the fermion trace vanishes. XTH Y5 ———2 Vo ———7 Vo' V|-
Next come the vertex insertion diagrams. It is convenient to (v =y")* P (u'=x") a
view each virtual photon diagram as the sum of two graphs, (3.26

one with the photon propagator in the Landau galigel,
and the second with inversion covariant pure gauge propagdn both Egs.(3.25 and (3.26 the first three factors in
tor the integrals are exactly those of the vertex function
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Vf)l)(y,v,u). The major difference between Ed8.25 and It will be useful for our treatment of more general chiral
(3.2 is that thex/x* and #/v* propagators have disap- gauge theories to give an alternative discussion of the inte-
peared. The variable’ now appears in two denominators, grals in the vertex insertion graphs. We have seen that after
and thev’ integral is exactly the integra(3.12 with  conformal inversion thgd*’ of the three different vertex

u—u’—y'. We can thus write subgraphs can be read directly from E¢8.12—(3.14.
These expressions show that the dependence on the remain-
VO o[ gy (U =y")e(u =y, ing variableu (which is transformed ta’—y’ in the two-
pr T e u (u' —y")® loop graphgis a superposition of ans-wave” 50;/,/“4 and
o a “d-wave” (u,u,—1/45,,u®)/u® tensor form. For the
1 gy ) (u’—=x")\ v pure gauge propagat¢d.24), only the vertex diagranvﬁ(})
2 (U —y)3 (u—=x)H)F VYT Y has ad wave, and thes waves of fd* V(" [d*% V()

(3.27 fd“vvff) are in the ratio of 1+-2:1/2y. The final integral
fd*u’ in the sum of the three graphs diverges unless the net
The u’ integral diverges logarithmically as’—y’, re-  s-wave amplitude cancels, and this selects the vala® as
flecting the logarithmic divergence of individual vertex dia- the gauge parameter which makes the vertex insertion sub-
grams. However, we must now add the contributions of theyraphs finite.
diagrams of Figs. (), 1(d) in which the vertex parts of

v andV® of Egs.(3.10 and(3.11) will appear[the latter IV. GENERAL U (1) MODEL
with modified photon propagator E.24)]. After the inver- _ _ _ _
sion process, one finds that théx* and ¢/v* propagators The action of this model has already been given in Eq.

disappear, so that the’ integrals are again those of Egs. (2.2, and the Feynman rules differ from the special case
(3.13 and(3.14). We now consider the sum 2 ,v® and treated in Sec. Ill only in the gauge vertex factors which now
. . . p 1 p . . . .

gauge-modifiedv(®) insertions in the two-loop diagrams. It @™y the Ch'ril factors—lyllf(aL+,8R). we f'gd It cgnye-
follows by inspection of Eqs(3.12 and (3.13 that the net nient to use t, e two coup |ng'paramet¢5‘san' @ and im-
effect of the sum is to reduce the coefficient of thg, term pose the relatiofg— a=1 required for gauge invariance se-
in Eq. (3.27) by a factor of 2, giving a traceless tensor in Iec:nll\r/]ely as neceﬁs_aryl. blem of th | model i
those indices, so that the remaining convolution integral in e major technical problem of the more general model is
u’ is convergent and may be read from E410). The result that there is no true finite gauge due to the chiral gauge

for the net sum of vertex insertions at pojnbf the two-loop couplings. Th|s is immediately clear from the one-loop self-
energy amplitude

triangle is

< 7 Try5Y, Y Vo (X' —Y) 3 Y a2 an a2

R v (v—u)=s=[f"+20°(a*R+B°L)(1-T)]
V,u.v P 4 (X/ _y/)4 (328) 8
When combined with the prefactors in E§.26 and ex- X———=+(aL+bR)4, 8 v—u), (4.
pressed as a multiple of the one-loop amplitude one obtains (v—u)
f2 where, as in Eq(3.8), we have included a possible local
Vup(0X,y) = WBMW(QX,Y)- (329  term. One sees that fér= 0 anda?# B2 there is no value of

the gauge parametét which eliminates the ultraviolet sin-
The vertex insertions at poimgsandz must give the same gular 1/(U - U)5 factor. Nevertheless, we will see that there is
contribution. Again, we have studied the insertions at poin@n effective finite gauge which makes the abnormal parity
z using a conformal inversion at—0. A considerably more Ppart of self-energy and vertex insertions on each line or each
difficult set of integrals results in the inverted variables, butcorner of the two-loop triangle finite.
the final result agrees with E¢3.29. Let us consider first all ordeg®f? contributions to the
The various contributions to the ordePf? amplitude  current correlator including all virtual Higgs graphs plus vir-
must now be combined with careful attention to combinatortual photon graphs with a pure gauge propagator similar to
ics. There is a factor of 3 from the triangular symmetry, andEd. (3.24) but with y a numerical factor to be determined. It
a factor of 2 for opposite directions of fermion charge flow iS €asy to obtain the amplitude of the nonplanar graph. Clear-
for self-energy and vertex insertions, but not for the nonplaing the chiral factors and comparing with the previous case
nar diagrams[From Fig. 1h) we can see that the exchange (3.3, one sees that we now have
X<y produces a topologically equivalent diagrarifihere- ~
fore our results(3.7), (3.23 [with (f>—1/2g%)—f?], and N,,p(0X,y)=—4aBN,,,, (4.2
(3.29 must be added with weights
where the caret denotes the amplitude in the more general
model.
T4 Z) Bruvp For a given direction of fermion charge flow each vertex
(3.30 or self-energy insertion graph contains both normal and ab-
normal parity amplitudes. It follows from Furry’'s theorem
showing that the net ordeg®f? contribution to the gauge that the normal parity part cancels and the abnormal parity
current correlation functiogJ ,(z)J,(x)J,(y)) vanishes. part doubles in the sum of the two graphs with opposite

3f2 1 3
3N/“,p+ G(VMVP+2MVP)= - ﬁ 1



55 CONFORMAL SYMMETRY AND THE CHIRAL ANOMALY 6529

charge flow, and so we can restrict our attention to the ab- 1 » 3 3 ) s s d—u
normal parity parts. We 1e¢(), (z,x,y) for i=1,2,3 denote Te2lf (e’ =B —29°T (> B )JVSWG
the abnormal parity part of the two-loop vertex graphs with
vertex subgrapV{(y,v,u) inserted at one corner. The sub- + 3(a®b—pB3%a) y5 6,54 (v—u). 4.7
graph amplitudes are given in Eq<3.9—(3.11) for
B=—a=1/2. This effective self-energy must be multiplied by propagators
One can again manipulate chiral factors and compare witlfor adjacent fermions and integrat¢éd*vd*u. The integral
the previous case to find diverges unless the gauge parameter is chosen so that the
R singular 1/¢ —u)® term in Eq.(4.7) cancels. It is a relief, but
Vi (zxy)=—4apV]) (z.Xy), hardly a surprise, to see that cancellation occurs for the value
of y given in Eq.(4.4), which also makes vertex contribu-
V2 (zxy)=2(a?+BHV'E) (z.xy), (4.3  tions finite. _ o
We now see that, in the effective finite gauge, the abnor-
/(3) _ 5_ 53 mal parity part of the self-energy insertipRigs. 1e), 1(f),
Vi (2XY) =187 a?)Vy (2.XY). 1(g)] involves only the local part of (v—u) [Fig. 1(g)]

The relation3— a=1 has been used in the first equality. ~ 9iven by the second term in E¢.7). The singularities from

We now recall our discussion at the end of Sec. Il of thethe diagrams shown in Fig.(d) and Fig. If) cancel. The
integrals which occur in the vertex insertion graphs after thdocal term will now be obtained from the Ward identity
conformal inversion is implemented. The integrad®y’

gave the sum ofl-wave ands-wave tensors inu’ —y’ for i\?p(y,u,u)zig(aR+,8L)[64(y—v)—64(y—u)]

V) and pures waves forv(® andV® with s waves occur- ay,

ring in the ratio 1:=2:1/2y. The gauge parametgrmust be .

chosen so that the net sum of teewaves vanishes. To X2 (v—u), (4.8
implement this condition we must now weight the coeffi-

cients in Eq.(4.3 by 1, —2, and 1/2, thus obtaining obtained by direct differentiation of the vertex graph8 of

the model with general couplings. The integrated form,
(4.4)  which is the generalization of E¢3.18), is

_ (B )
725

—4(a?+af+ B7)+8(f—a®) =0,

WJ d*oV,(y,0,0=ig(aR+BL)S(y). (4.9
p
for the choice of gauge-fixing parameter which makes the ] .
sum of orderg®f? vertex insertion subgraphs at each corner W€ now note that in the environment of the larger two-
of the triangle finite. For this choice the residual finite con-100p graphgFig. 1(b), 1(c), 1(d)], all vertices at they corner
tribution to (J,,(2)J,(x)J,(y)) comes just from thel-wave ©f the triangle acquire the factor”R+ 7L obtained by
tensor ofV(®), and can be directly read from E@t.3) as moving theal + BR projectors at the andx corners to the
clockwise side of the poini. We are thus specifically inter-
v U 2 0B i i [ iden-
pr(z,x,y)_VLV)ijVszJrv( ) — —4apV,,,, ws gtsyted in the abnormal parity part of the effective Ward iden

up

whereV ,,, is given in Eq.(3.29.

Finally we must consider the self-energy insertion graphs. (¢R+5°L) Wf d*vV,(y,v,00=ig(a’R+B°L)X(Y),
We must check that they are finite in the same gauge as the P (4.10

vertex insertion diagrams, and we must determine the contri-
bution of possible local terms B(u—v), i.e.,aorbinEd.  and we observe that the chiral factor on the right side is
(4.1. To check finiteness we consider the insertion ofexactly that of the effective self-energy insertion in E46).
2 (v—u) of Eq. (4.) into the two-loop graptFigs. Xe), In the effective finite gaugé&.4) the integral in Eq(4.10
1), Ug)]. We move all chiral factors in the graph to the involves only thed-wave tensor from they() amplitude

¢ .

clockwise side of the insertell(v —u). This gives This contains an additionall + SR chiral vertex factor, and

1 so the coefficient of the abnormal parity part of E4.10
(e®R+B3L)S(v—u)= F[fz(aaR-i- B3L) comes froma?BR+ B%al and gives— 1/2aBys. The value
& of the integral is then a factor of 2 times E@.19 [with
b—u f2—1/292 replaced byf? in Eq. (3.19 since we are now
—ZQZF(OISRJF,BSL)]W considering the ordef? terms only. After computing the
al gy, divergence, as in Eq$3.20 and (3.2, the abnormal
+(a®bR+ B2al)b,5*(v—u). parity part of Eq(4.10 reads, after dropping the factiy on
4.6 both sides,

2
The sum over graphs with opposite direction of fermion _ 3f _(.3 315
charge flow selects the abnormal parity part: namely, apB 6472 ¥500*(y) = (aR+ B UE(y)'SZ?' 413
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This equation giveys times the effective self-energy includ- true finite gauge which makes the one-loop vertex and self-
ing chiral factors from the corners of the two-loop triangle. energy graphs entirely finite. This makes the argument sim-
With a little thought we can then see that each self-energpler. We first note that all ordey® graphs contain the chiral

graph of the general chiral theory is related to E3123 by
(4.12

[An extra negative sign has been gained by movingythe
past the propagatd®(z—v) to its original position in the
trace of the two-loop graphis.

The resultg4.2), (4.5), and(4.12 show that all contribu-
tions to the abnormal parity part of thd,J,J,) correlators

i,u.yp(zixvy) = _4a:82,u.1/p(zaxvy)-

in the U1) Higgs theory with general chiral couplings are a
uniform factor of —4«aB times the corresponding contribu-

tions in Sec. lll. Thus the sum of all ordgff? terms in the
correlation function vanishes.
We now discuss the ordepr virtual photon contributions.

We see from Eq94.1) and(3.15 that the Landau gauge is a

L=5FM-FR 3 gy

H A ~A
(9,u_ Ig35ij 5¢,quarkT|JGM_

factor (eL+BR)°, whose abnormal parity part is just
1/2(B°— «®) times the corresponding graph in the QED cor-
relator studied in12]. Further, when chiral factors are ex-
tracted from the Ward identitf4.9) one can see that it coin-
cides with the QED Ward identity used fia2] to determine
the local part of the self-energy. So the analysi$1#] ap-
plies in its entirety and shows that the two-lo¢p,J,J,)
correlator also vanishes in the chira(1) model.

V. STANDARD MODEL ANOMALIES

We next calculate the two-loop anomalies in the
SU(3)XSU(2)XU(1) gauge theory with one generation of
quarks and leptons. All fields are massless.

The Euclidean Lagrangian is

ig
2

ig>
75”73\/\/2"_ 5I]5IJ(YLL+YRR)BM l//]J

ig1 — —t _ —
5 Bu|p—TiligiRe+ediLl) —Tu(ai¢iRd+diLa)

quarks
leptons
O 1o P o Y i02- -
T _ _
¢ d,t 5 W, + 5 BM)(c?M 5 W,

—fu(ai(i ) ¢,‘TRU+U_¢J'(i 7);iLa)— i\ (@' ¢p)2

(5.9

7} are the Pauli matrices arf) the Gell-Mann matrices. three corresponding group generators. Since the trace of any

o

Lowercase Latin indicesi(j,a) refer to SU2); uppercase
Latin indices (,J,A) refer to SU3). |, is the lepton S(R)
doublet (v,e); q; is the quark doublety,d); ¢, is the Higgs

B, is the Abelian gauge boson. The non-Abelian gauge[non—u(l?] generator is zero, the only_ th_ree—current correla-
bosonsw? andG% will be referred to collectively as gluons. t0rs Which are potentially -nonvanishing argl;Jy 1),

(323,35, (J53531), and(J3J3d,). The SU3) current is non-
chiral; hence, théJ;J;J3) correlator is not anomalous. Fur-
thermore, after summing over the two directions of fermion

doublet (", #%). The leptons and Higgs bosons are singletsﬂow* each diagram is proportional to the group theary

under SU3), while the quarks are triplets. The(l hyper-

symbols, TT3{T° T}. Since thed symbols vanish for

charges of the standard model matter fields are tabulated b&U(2), the correlatorJ,J,J,) vanishes, as well.
low (Table ). The one-loop anomalies are easily shown to be The contributions to the abnormal parity part of the two-

absent with this assignment.

loop correlators from Abelian and non-Abelian gauge boson

The diagrams which contribute to the two-loop anomaliesexchange vanish in the Landau gauge, as follows from the
are essentially the same as those considered in Sec. IV, esesults 0f{ 12,22. We keep the non-Abelian gauge bosons in
cept that the fermion and gauge lines now carry group indithe Landau gauge and take the gauge paraniétir the
ces. We structure the calculation by comparison to the preb(1) vector boson as the Landau gauge value 1 plus a term
vious Abelian case with pure axial gauge coupling. There ar@roportional to the Yukawa couplings which we will discuss

in addition several diagrani§igs. 2b), 2(c), 2(d)] not con-

sidered previously involving vertices with three non-Abelian

below.
The determination of the ambiguous local part of the self-

gauge bosons, but we show that they do not contribute besnergy from the Ward identities will be discussed in a dif-
cause the anomaly vanishes at the one-loop level. The exteferent(but equivalentway from Sec. IV. We always check
sion to N generations of quarks and leptons with unitarythat in each gauge-invariant sector of the calculation there is

Cabibbo-Kobayashi-Maskaw&KM) mixing matrixM;; for

a choice of the 1) vector boson gauge parametémhich

the quarks adds no new complications. Each gauge bosanakes the would be divergestwave vertex contributions
exchange diagram gets the factoM'™ =N, and so each and 1/(—v)® self-energy contributions to the abnormal par-
two-loop contribution to the correlator is identical to that ity parts of the correlators simultaneously finjend zer. It

given below times\.

is then justified to keep only thd-wave parts of the once

In the standard model there is a potential anomaly foiintegratedfd*v’ vertex subgraphs, and the same for the in-
each choice of the three currents in the correlator. Howevetegrated Ward identity used to determine the local part of the
each diagram is proportional to the trace of the product of theelf-energy.
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TABLE I. Fermion and Higgs hypercharges. (5.4), each weighted by the factors1:2:—y/2 of the

s-wave integrals in Eq93.12—(3.14). This gives the effec-

Yo YR tive finite gauge condition

v -1 0 y

e -1 -2 ¢t Y=1 YEYE+ (Y2 VP D+ 25 (Ya-¥D)=0. (55

u 1/3 4/3

d 1/3 —2/3 . .. . .
We checked that this condition agrees with that obtained
from insisting that the sum of the self-energy diagrams be

A (3,3,3) finite and indeed zero up to the ambiguity of local terms.

o o It is easy to check that the nonplanar diagram is multi-
The(J,J,J,) calculation in the standard model is directly . (1)
X . plied by the same factor a&*) when compared to the pure
analogous to that of thelL + B8R theory considered in Sec. axial U(1) case, Eq(3.1):
IV. The only difference is the sum over the &Jand SU3) » EQLS. L
indices. We first check that the effective finite gauge mecha-
nism works as in the previous case. It is sufficient that such
a gauge exist for each gauge-invariant sector of the calcula-

tion. Since the leptons and quarks do not mix to this order\eXt we calculate the local part of the self-energy which

we find separate values for the gauge paramEterhich contributes when inserted in the fermion trianfffég. 1(g)]

make the lepton and quark vertex and self-energy insertion's the effecnvg finite gauge. If We.denc_)te M (z,u.v) tI_'1e

finite. We calculate the lepton contribution below. The quark/€Pton vertex (=electron or neutrinpwith charge flowing

calculation is analogous, with the charges replaced appropr{fl0m v to u and byX,(u—v) the self-energy with charge

ately. f!ovvmg m_the same direction, then the relevant Ward iden-
Including the relevant chirality factors and summing thelity is, as in Eq.(4.8),

contributions from internal electron and neutrino propaga-

tion, we easily find that the abnormal parity parts\AdF),
V@, and V@ [Fig. 1(b), 1(c), 1(d)] are, with the pointz
taken to zero,

N,,,(0XY)=Y{"YE'N,,,,(0X,y). (5.6)

JVE(z,u,v)= i%l[ﬁ“(z—v)— 5z—u)]

X(YRL+Y{R)Zi(u—v). (5.7
3
X2X (—4YEYEVE (0x,y),

~ 1
(€) N —
VMVp(O,XaY)—( 2

This can be integrated to give

nvp
(5.2

3
X2X2(Y(®2+Y©2)v2 (0xy),

wvp

\/(2) = —
V,uvp(o!x!y) - ( 2

ig . .
J AV = — DL (YEL+YIR)S4(z0).

5 (5.9

We calculate thel-wave (traceless part of the integrated

(5.3y  Vvertex as before, since tilsewave contributions and the cor-
responding 1 part of the self-energy vanish in the effective
—1\5 finite gauge. Again, the onlyl-wave contribution is from
\”/fV)p(o,x,y)z (7) (—16) 2 (Yg—YE)Vf’V)p. Fig. 1(b) with a single Higgs boson exchanged. We find that
Slectron
(5.9 d wave 3ig1f|2

J d*udZ Vi (z,up) = (2Y{L 8

16(472)

whereV® V() andV® are the same diagrams in the pure
+YER)H,64z—v).

axial U(1) theory considered in Sec. lll. The left-handed
electron and neutrino form an $2) doublet, and so they

have the same hyperchary§” . The superscriptd) on the  Projecting out the left- and right-handed pieces of &q9)
hypercharges denotes explicitly that only the right-handednd comparing with the Ward identit$.8), we find for the
electron hypercharge contributes. Of course, this comment igglevant contribution of the local part of the self-energy:
trivial since there is no right-handed neutrino in the theory,

(5.9

but Egs.(5.2—(5.4) are valid for the quark contributions as i _ —3f7 [ Y{® Y o
well with the appropriate replacement of lepton labels by 2i(z-v)= 16(4772) ZyTFf)Léi(eﬁWR b8 (z=v).

quark labels. For example, the contribution from the (5.10
Yukawa coupling is obtained from Eqé.2) and (5.3) by

the replacemeny{®%—Y{%. The factors of ¢1/2)* and  The &, means that the right-handed electiut not neu-
(—1/2)° come from the difference in the definition of charge trino) flows throughs..

from the previous case, and one factor of 2 in H§2) and We insert this self-energy into the fermion triangfg.
(5.9 is due to the S(2) trace over the electron and neutrino. 1(g)]. After pulling together chiral factors and summing over
The condition for cancellation of divergestwave integrals the electron and neutrino we indeed find a multiplicative
in the sum ofv(}) V) andV({® can now be written as factor Y(?'Y{ times the result in the pure axial case consid-

the sum of theﬂﬁpypelrtgﬁarge coupling factors in E§s2—  ered in Sec. llI:
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S 0x,y)=Y(©y® 0X.y), 5.1 diagrams is easy to work through. The three-gauge vertex is
2 OXY) = YIEVRT2 1 (OX,Y) .13 proportional to the SI(2) structure constanf3¢(= g2,
Summing over the two directions of fermion flow, we see

with (f?~1/29>)—~f?in 3 ,,,, Eq.(3.23. _ that the abnormal parity part of each of the diagrdffigs.
Thus the vertex, nonplanar, and self-energy diagrams arg(c), 2(d)] is proportional to TFad9&( 7277874 797e7¢.D)
each multiplied by an overall factor of(?Y{) times the — —Trfadefeda by oc 01— _oTrgabe So each two-loop dia-

corresponding diagrams in the pure axidll)Jcase treated in gram in question contains the factord?P¢, where the trace
Sec. lll. Note that withe, 3—Y(®, Y, this result is iden-  sums over all left-handed fermions in the theory. The condi-
tical to that of Sec. IV up to a factor of{4) which comes tion Trd2*°=0 also makes the one-loop anomaly vanish, as
from the difference in definition of (1) charge and the sum promised above. One can easily check that the same effect
over electron and neutrino. So the sum of all virtual leptonoccurs for the contribution of the analogous diagrams to the
contributions to the correlatafd;'J4J;) vanishes as in the other correlators discussed below. In both of the cases treated
previous case. below in Secs. V C and V C, Figs(@, 2(d) are proportional

The quark contributions vanish similarly. Note that while to the factor which makes the corresponding one-loop
the quarks have two different Yukawa couplings, to this or-anomaly vanish.
der these couplings do not mix because of the relative chiral-
ity flip between the two couplings. Furthermore, while the up C. (31(2)I(x)I(y))

type Yukawa couplingf, in the Lagrangian(5.1) seems .
more complicated than the down or electron type, we can The calculation of thdJ;J,J;) and(J;J5J;) correlators

redefine the Higgs field to be the € conjugate is complicated by the fact that the local part of the self-

;. L . energy calculated from the () Ward identity and the
¢i =(im)ij¢;, and then the kinetic term in terms of the .\ aue part of the I() vertex is not consistent with that
conjugated Higgs field Iopks |dent|ca] to the previous Cas&alculated via the S@) [SU(3)] Ward identity and the
except for a change of sign of the Higgsl charge. The 4 yave part of the S() [SU(3)] vertex. This is not surpris-
I%g since the vertex is also ambiguous up to a local term as a
? ; result of renormalization. We are free to fix the arbitrary
the superscript€)—(u)] and sign changes from the new qefficient of the local self-energy, as long as we concur-

U(1) charges. For example, in Eq&.2), (5.3), (5.6), and ety add local parts to the vertices to make them consistent

(5.11) there is an extra negative sign from the opposite sigN$yith the Ward identities.

of the Higgs U1) charge _and_{(LU)_YgJ)' _ We will use the local part of the self-energy calculated in
Hence the total contribution from the gauge fields andsec. v A and modify the local S@3) vertex to make it con-

each of the three Yukawa couplings to the two-loop correlasistent with this choice. The @ vertex is unmodified.

for the change from lepton notation to quark notatjery.,

tor vanishes, as expected. Again, we calculate only the lepton contribution here. The
guark contribution is analogous.
B. (J,J,3,) First we find the effective finite gauge for this calculation.

. ) Note that thed-wave contribution to the integrated &)
~ We noted earlier that the correlataF,J,J,) vanishes by \ertex vanishes. The left-handed fields do not contribute be-
virtue of the fact that the S@) d symbols are all zero. cqse at the Yukawa vertex they become right-handed fields
However, we expect that the vanishing of the anomalyhich do not couple to the SB) current. The right-handed
should not depend on the gauge group, as long as the quark§|ys do not contribute because they are(Hinglets; al-
and leptons are in a representation for which the one-l00gsmatively, their contribution is proportional tof=0. The
anomaly vanishes. We therefore check that even if we N€3nly nonvanishing two-loop diagram of the form FigbLis

glect the fact that the group theoredcsymbols are zero the ,m the 1) vertex, which is inserted at the point0 in
correlator still vanishes. We only require that the trace of thg;,o two-loop triangle. It contributes

d symbols over the left- handed fermion representations in

the theory vanish. y(12)ab_ %Y(Re)TrrarbV(l) . (5.12
The calculation is remarkably simple as a result of the e e

left-handedness of the $2) current. Since the Yukawa cou- ~

plings in the Lagrangiari5.1) always connect a left-handed The labelz on V(2 denotes that the vertex is placed at the

field to a right-handed one, it is easy to see that both th&J(1) corner, which is chosen to lie at point

nonplanar diagram and the vertex insertiéig. 1(b)] with a In diagrams of the form Fig. (), the two-Higgs-boson

single Higgs boson exchanged vanish. The contribution fronvertex can lie at the (1) corner or either of the S@@) cor-

the self-energy is determined via the @JUWard identity  ners of the triangle. When it lies at the(1) corner it con-

and vanishes because tth@vave part of the vertex contribu- tributes

tion vanishes. Since these are the only contributions to the

correlator in the effective finite gauge, which we also N

checked to exist, the correlator vanishes to two-loops. VELZva)ab: - %TrTaTbeV)p' (5.13
It appears at first that there are additional diagrRigs.

2(b), 2(c), 2(d)] which we have not calculated, but they are When it lies at one of the SI) vertices it contributes

all proportional to the one-loop anomaly. Figuré@con-

tains the one-loop triangle, and so it is immediately propor- N -

tional to the one-loop anomaly. The group theory of the other V20ab= G Zab= —2y{9TrAVE) L (.14
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The contribution to the vertex diagrams from the effective

U(1) gauge boson propagator is the same at each corner of ~ ~
the triangle. It is
/(32)ab_ /(3 x)ab_ {/(3y)ab_ 3 by /(3 x a
VS pab= /3 x)ab=y3V1ab= —y{®3Tr7a70v () yoa ve  yp xvb
(5.15 @ (®)
Including the relative coefficients of ™), v, and V) in FIG. 3. Contributions to(J%(2)32(y)32"(x)) from the SU2)

Egs. (5.12—(5.19 in the ratio —1:2:—y/2 as before and vertex renormalization. In Sec. VD we instead renormalize the
summing over the three corners of the triangle, we find they(1) vertex.
condition for the divergentstwave parts of the vertex dia-
grams to cancel: —-3f2 Y©
Z= 16(47°) v~ (5.20
1—ZY<L8> 2=0. (5.1 _ _ o _
2 Inserting this vertex renormalization at either of the(3U
corners of the one-loop lepton triandleigs. 3a), 3(b)], we
Although we obtained this result by summing over the thremmediately find a result proportional to the one-loop ampli-
corners of the triangle, the same condition makes th®) U tude, whose abnormal parity pan\/a?} is
and SU?2) vertex contributions separately finite. This is ex- e
pected because they are related to the same self-energy in- ab 1 (—3f|2) © b
sertion graphs by Ward identities, as in £4.10. AVp(0XY) =5 WYR Trr8r°B,,,,(0X.y)
We next consider the contribution from the local @U

vertex correction to the two-loop correlator. The relevant 1 (@) _a_b
SU(2) Ward identity is =5 YR T2 ,,,(0xy), (521
—ig whereB ,,, and, . are given in Eqs(3.5) and(3.23 [with
RN (zu0)= 2 )rﬁ[a“(z—u)—&“(z—v)] (f2—1/2620)—>f2],ﬂré’spectively.
The contribution from the diagrarfFig. 1(g)] with the
X2 (u—v)L, (5.17  self-energy Eq(5.10 inserted at any of the three legs of the

triangle is easily calculated to be

where the S(R) charge flows from to j andX (u—v) is the )
left-handed part of the self-energwhich is the same for the Eff;p: %Y(Ff)TrrarbEMp. (5.22
electron and neutrino

In the effective finite gauge the sum of the electron and The nonplanar diagram with the Higgs current placed at
neutrino contributions to the vertex and self-energy inserthe U1) vertex vanishes because the chiral projectors at the
tions is finite. Equivalently, there are rewave parts of Yukawa vertices annihilate the propagating fermions. The
vertex insertions, and so we can confine ourselves to just thebnormal parity contribution from each of the two remaining
d-wave part of the Ward identity and speak separately aboutonplanar diagrams is
the electron and neutrino. However, the (8lUvertex inser- < 0ab_ y)ab_ La®)reab
tion has no Higgs boson exchange diagridfiy. 1(b)] and N =N P=2YR'Tr N, . (5.23
thus nod-wave part. Thus, if we were to use the @JUWard . . . . )
identity to derive the consistent local part to the self-energyX€call again that in the pure axial case the relative contribu-
it would vanish as well. Thus the self-ener@.10 is not tions of the self-energy, yertex and nonpla}nar graphs were in
consistent with Eq(5.17). Hence we modify the vertex by a the ratio3:1:—4, summing to zero. Adding the contribu-

local contribution as discussed. We add to theBWertexa  tons in the effective finite gauge from Eq¢5.12 and
local part of the form (5.2)—(5.23 gives the now familiar result

1 1 1 1
i ~=24-.83) 34 - 14--2.(-4)| YO Trrert =0
Avﬁ”(z,u,v)=%zrﬁyﬂw“(z—u)a“(z—u). [(2—,’—)—« - 4_,_,] "

vertex correction vertex nonplanar

(5 1& +self energy (524)

Its divergence is easily calculated to be
D. (31(2)35(x)I3(y))

d au B i92_ , We proceed as in Sec. V C. The difference here is that
—AVif(zuv)= 72711[54(2_”)_54(2_”)] SU(3) couples only to quarks and the coupling is nonchiral.
First we check that the effective finite gauge mechanism

XR4,6*(v—u). (5.19  works in this case. Again, the two quark Yukawa couplings

fq and f, contribute independently at the two-loop level.
With the self energy given in Eq5.10, the Ward identity (They do not mix because of the relative chirality flip be-
(5.17 determines the paramet&rto be tween the two couplings, as can be seen by trying to draw a
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two-loop Higgs boson exchange diagram with both Yukawawhere thed; 4y means that the right-handed dowout not
couplings) We calculate the contribution from thfg, cou-  up) quark receives a self-energy contribution. Inserting this

pling here and note, as before, that thecoupling contrib-  self-energy in the fermion triangle, Fig(d), gives
utes analogously with an overall sign change from tti&)U

charges. Effjp —4ATITATEY (5.32
With the one-loop Higgs boson exchange vertex inserted
at the U1) corner[Fig. 1(b)] we get with 3, given by Eq.(3.23 with (f>—1/29%) —f2 Next
we calculate the correction to thg1) vertex which makes it
VE2AB=2. 2 TITATB(Y( - VPV = =4 TiTATBVY) . consistent with gauge invariance. Assume a correction of the
(5.25 form

At each of the SI(B) vertices it contributes the same except
for a negative sign which can be traced to the vector nature

AVHE(z,u,v)= ( 91 )y (a;L+ BiR)8*(z—u)64(z—v).

of the SU3) coupling, (5.33
VA= — 25 2 TITATB(Y (Y - YV Its divergence is
=4 TITATEVY) (5.26

*AVE(z,u v)— (a R+ B;L)[8*z—u)

Since the Higgs boson is an 8) singlet, the only vertex

diagram including the Higgs currefifig. 1(c)] is from the -8 z—v)]6,6%u—v). (5.34
U(1) corner of the triangle. It contributes

Recall the Y1) Ward identity

(22)AB_ ATBy\/(2)
V2DAB_ _ 55 aTITATBV2) (5.27 o
i
The U1) gauge boson exchange diagrgffig. 1(d)] contrib- 9, AV (z,u,v)=— —21[54(2—11)— 8 (z—v)]

utes at each corner of the triangle ' ' _
X(YRL+Y|{R)AS (u—v), (5.35
VEZXAB= 2 X (YE-YHTITATEVE) . (5.2

Kve qiarks whereAS ! (u—v) is

Recalling that in the previous case the diagrams of Figs. A3 (u—v)=35u—-v)—3i(u—v)
1(b), 1(c), 1(d) appeared in the ratio +;2:y/2, we find the

effective finite gauge condition either by summing over the 31‘2 2 1 5
three corners of the triangle or by summing the contributions 16(4772) d) Sial— Y(d) 4,6"(u=v).
at any particular corner.
(5.36
7
2 (Yi-Y})=0. (5.29  Comparing Eq(5.34 with Egs.(5.35 and(5.36) determines
Aqaris a and B, giving
One can easily check that the same condition makes the sin- iq 312
gular 1/ —u)® parts of the self-energy insertion diagrams AVH l( d ) ML—28 R
[Figs. Xe), 1(f)] cancel. (zuv)= 16479 )" [ iR]
For aesthetic reasons we choose not to introduce a parity- X 84z—u) 3 (z—v). (5.37)

nonconserving correction to the 8) fermion vertex but
rather introduce a correction to the ambiguous part of th
U(1) vertex. Then in the self-energy insertion Figgilwe
determine the ambiguous local part of the self-energy via th
relevant SW3) Ward identity and thed-wave part of the
integrated SB) quark vertex. The relevant identity is

?nserting this at the (1) vertex of the basic fermion triangle
éand summing over the andd quarks gives for the abnor-
mal parity part
) ) AV =8TITATES,,,, (5.39
z M — _ — —_ _
TuVai 193] 9%(2-0) = O (U=2)ITy25(u v)'(5 30 where again >,,, is given by Eq. (3.23 with
' (f2—1/29%)— f2. Finally, the only nonplanar diagram con-
where the notation is as before, withandJ SU(S) indices.  tributes
We calculate thel-wave part of the vertev to determine
the relevant ambiguous part of the self- energy which contrib- NZAP= —ATITATEN,,,, . (5.39
utes when inserted in the fermion triangle. We find
Once again, summing the contributions from E@s25),
(5.26), (5.32, (5.38, and(5.39 gives zero total contribution
to the axial part of théJ,J;J3) correlator, which is propor-
(5.3) tional to

i —3f
S5(z—v)= 16(—4777)(2L5i(d)+R)49264(z—v),
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3 (u—v), and an additional local term is required for one of

[(8_4,3)_3 —4.1- 4‘(_4)] Y@ T TATB =, the currents. There is some freedom in the assignment of
—— local terms to the currents and self-energy, but the full corr-

vertex correction nonplanar . . .
“self energy elator(R,R,K,) is independent of the choice made. Using

54 one convenient choice, and after careful comparison of all
(5.40 graphs with those of the basiol) model of Sec. IlI, it was

found that the sum of all one- and two-loop contributions is
VI. SUPERSYMMETRIC GAUGE THEORIES

2

Techniques very similar to those of this paper were ap- (R,(XR,(y)K (Z)>:[EdimT+ 9 ,TrTaTa
plied in a recent study of the operator product algebra of K’ g P 9 327
conserved currents of SUSY gauge theoli2S]. The re- 8 1
quired calculations were very briefly summarized|ib], x| =+ __3> A, (X.Y,2)
. - - - 3 3 IU,VP L t 1
and we will discuss some aspects in more detail here.
N=1 SUSY gauge theories contain component fields 6.3

Az(x) and \?(x), gluons and gluinos, respectively, in the

adjoint representation of a gauge graBpand complex sca- WhereA ., is given in Eq.(2.10. The orderg® two-loop

lars ¢' and their spinor partnerg’ which transform in a amplitude vanishes, with nonplanar, vertex, and self-energy
representation o with Hermitian generators;'. There are ~ graphs contributing in the rati8:1:~9, which is different
gauge interactions with gauge coupliggand a cubic super- from the ratios in Eq.3.30. The net result is an Adler-
potential with complex coupling;;, which is totally sym- ~ Bardeen theorem for thR ,R,K,) correlator, since the sum

metric. Using Euclidean Majorana spind25], the action is  Of Vvirtual gluon graphs can again be shown to vanish by
previous work{12].

A1 2 1o —— — The effect of the superpotential interactions was also con-
Szf d*x[zF;,+2ADA+D ,¢D ¢+ 3yD ¢ sidered in[15]. However, it was simpler to replace the cur-
. - rent K,(z) by its scalar superpartneK(z)= ¢(2z) ¢(2),
+1 \/Eg()\agbin”L(//' —yiRT PN which Is a scalar mass operator of canonical dimension two,
— L — —_— and study the correlatofR,(x)R,(y)K(2)). The operator
k k K 4
—3(PLY i@ W+ hRY i) + 3% 4T} @) K(2) [as well a ,(z)] acquires an anomalous dimension of
_ . [— o ”k . . - . .
_’_%Yijlelmd)J o] (6.1) order Y Y'*. An anomalous dimension is consistent with

conformal symmetry, and the correlator can be shown to be

The theory has two classically conserved, but anomalougenformal covariant through two-loop order. Inversion, con-
axial vector currents, thR current, and the Konishi current: Se€rvation, and scale properties can be used to fix its tensor
form up to a multiplicative constantl5]. The graphs con-

_ 1 2., tributing to (R,R,K) are typically subdivergent because
Ru(X)= SMYuYsh = g ¥yuysdt 30D, they contain subdiagrams with gauge-invariant anomalous
dimension. Nevertheless, in this more complicated situation
1 the conformal inversion technique could be combined with
K (X)= 5417, vs¢'+ ¢D . (6.2 differential _regularlzat|or{13] to compute all contributing
2 Feynman diagrams.
) ) All results forc’ obtained by the conformal methodology
Actually K, is conserved classically only ¥j=0. The  of this paper were verified by an alternate method of calcu-
operator product algebra &, andK, contains two central |ation in which the four-point correlation function
chargesc andc’, and the principal result dfl5] was evi- R,(X)R,(Y)R,(2)R,(w)) was studied in the relevant
dencg foraunivgrsality property of the i'ntgraction?dependen sgleptotic region using regularization by dimensional re-
radiative corrections to andc’. Forc’ this information was  qyction in intermediate stages of the calculation. The explicit
obtained from a study of two-loop contributions to the two- se of Ward identities to determine ambiguous local terms in
and three-point correlation functions of the currents, '”C|Ud'self-energy and vertex insertions was not required in this
ing the correlator(R,(X)R,(Y)K,(2)). Earlier work [26]  approach, and so agreement of the results of the two methods
could be modified to obtain the required information abOUtprovides a check on this aspect of the conformal approach.
c. Internal gauge and superpotential interactions can be
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fd v U4(U_X)2 2X2(XpX(r 4X 5p(r)1 (A7)
APPENDIX A

We discuss here the convolution integrals required in Sec. [
[l to elucidate the finite gauge mechanism and determine the f d%v
local part of the self-energy, and to calculate the two-loop
nonplanar and vertex insertion diagrams for the anomalous 2

(U_X)p(v_x)a'_ %1 5#0(0_)()2](0 _y))\
(v=x)*(v—y)*

. . - A A A
correlation function(J,,(2)J,(x)J,(y)). = _772< SpnA gt S A, — 2!’;;)‘ , (A8)
We use the method24] of Gegenbauer polynomials, 4A A
which appear naturally because their generating function is
the scalar propagator
o (,v,— 36,,0°) o2
1 1 y\" .. f L = (XX, — +X25,,),
=y =R (2) Ca(x-y), x>y, Domx)? 2T B0
A=0 (A1) (A9)
o _Xu o Yo oo
Xy M yﬂ—m, X-y=co09, . ,
4 L0=X) (v =X),— 3 6po(v—X)"](v—Y)y
sin(n+1)0 v (v—x)%v—y)*
Ch(co) = ———. (A2)
sing _ 728,80 125,8,1 5,,0,  8A8,A,
The orthogonality relation obeyed by these polynomials is 8 [ A* A® '
Co(y-2) A0
f dXCo(X-Y)C(X- D) =272 8m— g (A3)

- _ _ _ _ To evaluate Eq(A4) one applies Eq(Al) to the factor
wheredx=sir’6singdede¢dé is the angular integration mea- 1/(y —x)2 including both regionsv<x and v>x, which

sure for thex variable. have different dependence on the radial variableThe
We first list the integrals, and then comment briefly onquantityR is a temporary cutoff which has no effect on the
their evaluation. We use the notatidn=x—y: integrals used in Sec. lll. The resulf5) is obtained by

differentiation of Eq.(A4), and Eq.(A6) is obtained by re-

d4l) X2 . _ . . . . .
= 7=y, Ad placingx—x—y=A in Eq. (A5), changing integration vari-
J v2(v—x)2 TR (A4) ables tov’ =v +Yy, and then differentiating with respect to
y. To evaluate Eq(A7) or (A9) one takes the scalar product
f 4, (v=x), __ Wzﬁ (A5) with x,X,,, so that the integral contains the explicit Gegen-
vi(v—x)* x?’ bauer polynomiaC,(x-v). One then applies E¢A1) to the

factor 1/ —x)? and uses orthogonalit§A3). Finally, Eqgs.
(A8) and (A10) are obtained from EqgA7) and (A9), re-

j d4v(v—X)p(v—Y)o: w’ [ 2M,A, (A)  Spectively, by replacement—x—y=A, shift of integration
(v—x)%v—y)* 2A%2 %P7 AZ ] variables, and differentiation with respectyto
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