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Two-loop contributions to the anomalous correlation function^Jm(x)Jn(y)Jr(z)& of three chiral currents are
calculated by a method based on the conformal properties of massless field theories. The method was previ-
ously applied to virtual photon diagrams in quantum electrodynamics, and it is extended here to diagrams with
scalars and chiral spinors in the Abelian Higgs model and in the SU(3)3SU(2)3U(1) standard model. In
each case there are nonvanishing contributions to the gauge current correlator from self-energy insertions,
vertex insertions, and nonplanar diagrams, but their sum exactly vanishes. The two-loop contribution to the
anomaly, therefore, also vanishes, in agreement with the Adler-Bardeen theorem. An application of the method
to the correlator̂ Rm(x)Rn(y)Kr(z)& of the R and Konishi axial vector currents in supersymmetric gauge
theories which was reported by Anselmiet al. is discussed here. The net two-loop contribution to this cor-
relator also vanishes.@S0556-2821~97!00410-4#

PACS number~s!: 11.30.Rd, 12.15.Lk

I. INTRODUCTION

The chiral anomaly discovered long ago by Adler@1# and
Bell and Jackiw@2# is a seminal concept of quantum field
theory. The absence of radiative corrections to the one-loop
anomaly is of central importance in applications to neutral
pion decay, to the structure of fermion families in the stan-
dard model, to mathematical contact between gauge theory
and the Atiyah-Singer index theorem@3#, and many other
questions. One might have thought that this matter was
settled by the early work of Adler and Bardeen@4# which
involved regularizations of the theory, by the general renor-
malization group argument@5# for anomalies of global cur-
rents, or by Becchi-Rouet-Stora~BRS! cohomology argu-
ments @6# for gauge current anomalies. Yet there is much
literature which disputes the common wisdom@7–10#. Fur-
ther a certain level of suspicion of general theorems has
proved to be healthy for theoretical physics, not necessarily
because proofs can be wrong, but because inappropriate as-
sumptions can be made in the hypotheses. For example, the
particular order of the operations of regularization and com-
puting the axial vector divergence which was used in@4# can
be questioned.

Thus explicit calculations of possible radiative corrections
to the anomaly in chiral gauge theories are illuminating. A
violation of the Adler-Bardeen theorem in the standard
model would be particularly significant because it would call
to question one of its most attractive features, namely, that
the one-loop anomaly cancellation between quarks and lep-
tons occurs so naturally and is sufficient to make the theory
consistent. We therefore study two-loop contributions to the
gauge correlator̂ Jm(x)Jn(y)Jr(z)& in the Abelian Higgs

model,1 which is a simplified form of the standard model,
and then extend the treatment to the full glory of the
SU(3)3SU(2)3U(1) standard model, where there are four
independent possibly anomalous correlators to be checked.
In all cases the net sum of self-energy plus vertex insertions
plus nonplanar diagrams vanishes. So the full two-loop cur-
rent correlators vanish, and their would be anomalous diver-
gences vanish, thus validating by explicit calculation the
conventional wisdom concerning radiative corrections to the
chiral anomaly.

In our method the current correlator is calculated directly
in Euclidean position space using a simplifying change of
variables suggested by the conformal properties of the corr-
elator to perform the internal integrations. Conformal sym-
metry also explains why the net two-loop correlator
^Jm(x)Jn(y)Jr(z)& vanishes, when one might have expected
only the vanishing of its divergence (]/]xm)
^Jm(x)Jn(y)Jr(z)&. The two-loop correlator is conformally
covariant for massless internal lines, and one can show that
for any conformally covariant contribution the abnormal par-
ity part of the third rank tensor correlator vanishes if and
only if its divergences vanish. This method was previously
used by Baker and Johnson@12# to compute the two-loop
vector and axial vector vertex functions in massless quantum
electrodynamics. The ideas of the more comprehensive posi-
tion space method of differential renormalization@13,14#
also play a role, but the specific two-loop calculations re-

1Our investigation was motivated by papers of Cheng and Li in
which a nonvanishing two-loop anomaly was obtained in this
theory. A subtle error has recently been found, and there is now
agreement on the vanishing of the anomaly@11#.
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quired to test the anomaly in this method do not require
regularization or cutoff.

The basic ideas of the method are described in Sec. II.
The gauge-covariant derivative in the Abelian Higgs model
is

Dmc5@]m1 ig~aL1bR!Am#c, ~1.1!

whereL andR are chiral projectors. We begin calculations
in Sec. III at the pointb52a51/2, i.e., pure axial coupling,
because this is the point at which one can choose a gauge in
which the one-loop fermion vertex function and self-energy
are finite. This eliminates all subdivergences in the two-loop
current correlator graphs. The modifications required to
handle all values ofa,b are described in Sec. IV. Because of
parity nonconservation, there is no true finite gauge for the
vertex and self-energy functions, but we show that there is an
effective finite gauge in which the two-loop vertex and self-
energy insertion contributions tôJm(z)Jn(x)Jr(y)& have no
subdivergences. In Sec. V the method is extended to the
SU(3)3SU(2)3U(1) standard model. We assume the
usual couplings for which the one-loop anomalies cancel.
There are then no genuinely new graphs to compute, but the
effective finite gauge mechanism is more complicated than
before. In supersymmetric gauge theories there are two for-
mally conserved axial currents: theR-charge currentRm(x)
and the Konishi current Km(x). The correlator
^Rm(x)Rn(y)Kr(z)& was calculated by the present method-
ology as part of a recent study@15# of the operator product
expansions~OPE’s! of the superconformal algebra. Details
were not discussed in@15#, and they are briefly presented in
Sec. VI below.

II. METHOD

Although conformal symmetry is concretely used in our
work largely to motivate a change of variables which simpli-
fies the required two-loop Feynman integrals, we believe that
it is useful to explain the method from a more fundamental
standpoint. It is well known~see, for example,@16#! that the
conformal group of Euclidean field theory is O~5,1!, and that
all transformations which are continuously connected to the
identity are obtained by combining rotations and translations
with the basic conformal inversion

xm5
xm8

x82
,

]xm

]xn8
5x2S dmn2

2xmxn

x2 D[x2Jmn~x!. ~2.1!

The Jacobian tensorJmn(x)5Jmn(x8), which is an improper
orthogonal matrix, will be very useful for us. Because
DetJ521, the inversion is a discrete operation@16#, similar
to parity, and not an element of the continuous component of
O~5,1! which contains the identity.

The Euclidean action of the massless U~1! Higgs model is

S5E d4xF14Fmn
2 1Dmf̄Dmf1c̄gmDmc

2 f c̄~Lf1Rf̄ !c2
l

4
~f̄f!2G , ~2.2!

Dmf5~]m1 igAm!f,

Dmc5@]m1 igAm~aL1bR!#c,

b2a51, g55g1g2g3g4 , L5 1
2 ~12g5!,

R5 1
2 ~11g5!

It is invariant under conformal transformations in the con-
tinuous component of O~5,1!, but not necessarily under in-
version since that question is related@17# to invariance under
discrete symmetries. For the special choiceb52a51/2,
where we have a parity-conserving theory with pure axial
gauge coupling, invariance holds under the transformations

f~x!→f8~x!5x82f̄~x8!,
~2.3!

c~x!→c8~x!5x82g5x” 8c~x8!,

c̄~x!→c8~x!5x82c̄x” 8g5 ,
~2.4!

Am~x!→Am8 ~x!52x82Jmn~x8!An~x8!,

as can be verified with diligence and the help of the relations

d4x5
d4x8

x88
, x” 8gmx” 852x82Jmn~x8!gn . ~2.5!

Inversion invariance does not hold in the general chiral
theory, and it is not required for our application.

It is important that correlation functions are constructed
from Feynman rules in which the vertex factors and propa-
gators have simple inversion properties. In particular the sca-
lar and spinor propagators transform as

D~x2y!5
1

4p2

1

~x2y!2
5

1

4p2

x82y82

~x82y8!2
,

S~x2y!52]”D~x2y!5
1

2p2

x”2y”

~x2y!2

52
1

2p2 x8
2y82x” 8

~x” 82y” 8!

~x82y8!4
y” 8. ~2.6!

The gauge field propagator is another story@12#. In the usual
family of covariant gauges one has

Dmn5
1

4p2 F dmn

~x2y!2
2
1

2
G
Jmn~x2y!

~x2y!2 G , ~2.7!

whereG50 is the Feynman gauge andG51 is the Landau
gauge. Only the second term transforms as expected under
inversion, since

Jmn~x2y!5Jmr~x8!Jrs~x82y8!Jsn~y8!. ~2.8!
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The full propagator transforms properly only after a gauge
transformation is performed@12#, and this complicates appli-
cations to amplitudes with virtual photons.

It is well known that conformal symmetry restricts the
tensorial form of two- and three-point correlation functions
and frequently determines these tensors uniquely up to a con-
stant multiple.~For recent discussions, see@16,18#.! Inver-
sion symmetry is sufficient to determine these restrictions,
and the inversion property of a vector current of dimension 3
is

Jm~x!→Jm8 ~x8!5x86Jmn~x8!Jn~x8!. ~2.9!

We are primarily interested in the abnormal parity part of the
correlator ^Jm(x)Jn(y)Jr(z)& of three conserved currents,
and it is known that there is@17# a unique conserved rank-3
tensor function with the inversion property required by Eq.
~2.9!. The specific form is given, up to a multiplicative con-
stant, by the lowest order massless fermion axial triangle
amplitude@Fig. 1~a!#:

Amnr~z,x,y!5~2 !Trgmg5S~z2y!grS~y2x!gnS~x2z!

5
1

~2p2!3
TrH g5gm

z”2y”

~z2y!4
gr

y”2x”

~y2x!4
gn

3
x”2z”

~x2z!4 J , ~2.10!

in which the (2) is the usual factor for a closed fermion
loop. The conformal properties can be readily verified using
Eqs.~2.5! and ~2.6!.

For separated points this function obeys all desiderata. It
is fully Bose symmetric and conserved on all three indices.
The expected anomaly is a local violation of the conservation
Ward identities which arises because the differentiation of
singular functions is involved. There are several ways
@13,19,20# to obtain the anomaly from thisx-space view-

point. One way@13#, which we now summarize, is to recog-
nize that the amplitude~2.10! is too singular at short distance
to have a well-defined Fourier transform. One then regulates
which entails the introduction of several independent mass
scales, but the regulated form after the gamma matrix trace
depends only on the ratios of these scales. The regulated
amplitude is well defined, and one can check the Ward iden-
tities, which take the expected form

]

]zm Amnr~z,x,y!5az«nrls

]

]xl

]

]ys
d~x2z!d~y2z!,

~2.11!

with similar expressions for the divergences with respect to
xn andyr . The anomaly coefficientsaz ,ax ,ay depend on the
ratio of mass scales, and there is no choice of scales which
makes all coefficients vanish. Specifically the sum
ax1ay1az521/4p2 is independent of the scales. There is a
choice of scales which makesax5ay5az521/12p2 which
is the Bose symmetric choice relevant for the gauge current
correlation function in the U~1! Higgs model~2.2!, and an-
other choice to makeax5ay50 which is appropriate for the
correlator of one axial and two vector currents.

A tenet of the space-time approach to renormalization is
that the intrinsic ambiguity of a primitively divergent ampli-
tude is an ultralocal distribution consistent with dimension
and symmetry requirements. This corresponds to the
p-space ambiguity of polynomials in external momenta. In
this light the ambiguous part of the tensor amplitude~2.10! is

DAmnr5«mnrsFb1S ]

]xs
2

]

]ys
D1b2S ]

]ys
2

]

]zs
D G

3d~x2z!d~y2z!, ~2.12!

whereb1 andb2 are arbitrary constants. The mass scale de-
pendence of the regulated amplitude is exactly of this form,
and its Fourier transform is just the shift ambiguity due to
choice of loop momenta in the traditional approach to the
anomaly@21#. The nugget of this discussion of the space-
time approach to the lowest order axial anomaly is that the
well defined amplitude~2.10! for separated points deter-
mines the fact that there is an anomaly of specific strength.
The choice of regularization or calculational procedure for
the Fourier transform is just a redistribution of the anomaly
between the three parametersax ,ay ,az , which does not af-
fect their sum.

We now return to the discussion of conformal symmetry
and its role in the elucidation of possible radiative correc-
tions to the anomaly. One may question this role because of
the common lore that the introduction of a scale required to
handle the divergences of perturbation theory spoils expected
conformal properties. In general this is true, but the two-loop
anomaly diagrams of Higgs models, which are drawn in Fig.
1, are exceptional. Any primitively divergent amplitude is
exceptional when studied inx space for separated points,
since the internal integrals converge without regularization.
The nonplanar diagrams of Fig. 1~h! are primitives. Of
course there are many other diagrams which contain subdi-
vergent vertex and self-energy corrections, and these require
a regularization scale. However, for the specific choice
b52a51/2 which corresponds to pure axial coupling for

FIG. 1. One- and two-loop contributions to the anomaly in the
Abelian Higgs theory. There is a chiral current at each corner of the
triangle. Solid lines are fermions, dashed lines scalars, and wavy
lines gauge fields. The solid circle in~g! is a local self-energy
renormalization. Not shown are the same two-loop diagrams rotated
6120° and diagrams with the opposite direction of fermion flow
for all but the nonplanar diagram~h!, and it is understood that in
~b!, ~c!, ~e!, and ~h! both directions of Higgs propagation are in-
cluded. The coordinate and Lorentz indices correspond to the inte-
grals in Sec. III, and we refer to~b!–~h! with and without these
indices~by their general topology! in the text.
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the fermion, it is quite easy to see that there is a unique
choice of gauge-fixing parameterG which makes the one-
loop self-energy finite. Since the vertex and self-energy cor-
rections are related by a Ward identity, each vertex correc-
tion is also finite in the same gauge; specifically, the sum of
the three contributing Feynman diagrams is ultraviolet finite.
In this ‘‘finite gauge’’ the integrals in the sum of three vertex
insertion diagrams@Figs. 1~b!, 1~c!, 1~d!# at each corner of
the two-loop triangle converge. The same statement holds for
the integrals in the sum of the two self-energy insertion dia-
grams@Figs. 1~e!, 1~f!# on each leg of the triangle.

The photon propagator~2.7! is not conformal covariant,
and we will discuss this complication in the next section. We
will show there that the diagrams for which this difficulty
occurs are already covered by previous work@12,22#. In the
remaining diagrams the photon propagator may be replaced
by the inversion covariant second term of Eq.~2.7! and a
finite gauge can be chosen. We then have the situation that
each two-loop Feynman diagram we need to compute is con-
structed with inversion covariant propagators and vertices,
and the sums of the self-energy diagrams on each leg and
vertex diagrams at each corner are convergent. Then each of
the three nonplanar diagrams and the summed self-energy or
vertex insertion diagrams at each leg or corner of the triangle
is a conformal covariant contribution to the current correla-
tion function. Each of these amplitudes must be a multiple of
the unique conformal tensorAmnr of Eq. ~2.10!, and we will
show that the sum of the separate contributions to the net
two-loop correlator vanishes. Further, we will show that the
conformal inversion can be used as a transformation of the
integration variables which makes the calculation of the
eight-dimensional integrals easy and also gives an explicit
verification of the conformal properties we have discussed
above.

III. U „1… MODEL FOR b52a51/2

Euclidean correlation functions for the theory are con-
structed using the propagators of Eqs.~2.6! and ~2.7!, the
vertex rules which can be read from the action~2.2!, and the
instruction to integrate*d4u over each internal vertex of a
diagram.

To illustrate the way conformal symmetry is used in our
work, we first study the nonplanar graph of Fig. 1~h!. Its
amplitude is conformal covariant since no issues of subdiver-
gences and gauge choice arise. The idea is to use the inver-
sionua5ua8 /u82 andva5va8 /v82 as a change of variable in
the internal integrals. In order to use the simple conformal
properties of the propagators~2.6! we must also refer the
external points to their inverted images, e.g.,xm5xm8 /x8

2. If
this is done for a generic configuration ofx,y,z, there is
nothing to be gained because the same integral is obtained in
the u8,v8 variables. However, if we use translation symme-
try to place one point at 0, say,z50, it then turns out that
the propagators attached to that point drop out of the integral,
essentially because the inverted point is at`, and the inte-
grals simplify.

After summing over both directions of Higgs field propa-
gation and elementary manipulation of chiral factorsL and
R, the amplitude for the graph@Fig. 1~g!# can be written as

Nmnr~0,x,y!5
ig3f 2

512p12E d4ud4vS vm

u2v4
2

um

u4v2D
3Trg5gr

y”2u”

~y2u!4
u”2x”

~u2x!4

3gn

x”2v”
~x2v !4

v”2y”

~v2y!4
. ~3.1!

The integration variablesu,v each appear in three denomi-
nators. This is not necessarily fatal, and indeed theu andv
integrals can be evaluated in closed form using Feynman
parameters@23#. However, we will see that the conformal
inversion leads to simpler integrals. The change of variables
outlined in the previous paragraph can be made with the help
of ~2.5! and ~2.6! and the Higgs current transformation

vm

u2v4
2

um

u4v2
5u82v82~vm8 2um8 !. ~3.2!

Spinor propagator ‘‘side factors,’’ e.g.,x” 8,u” 8, etc., all col-
lapse within the trace, and the Jacobian (u8v8)28 cancels
with factors in the numerator, giving the result

Nmnr~0,x,y!5
ig3f 2

512p12x8
6y86Jnn8~x8!Jrr8~y8!Ñmn8r8,

Ñmn8r85E d4u8d4v8~vm8 2um8 !

3TrFg5gr8

y” 82u” 8

~y82u8!4
u” 82x” 8

~u82x8!4
gn8

3
x” 82v” 8

~x82v8!4
v” 82y” 8

~v82y8!4G . ~3.3!

We see the expected transformation factors for the currents
at x andy times an integral in whichu8 andv8 each appear
in only two denominators. Such convergent tensorial convo-
lution integrals can be done by several methods. We have
used Gegenbauer polynomial methods@24#, and the results
are tabulated in the Appendix. When these results are used
and substituted within the trace, one finds the final amplitude

Nmnr~0,x,y!52
ig3f 2

512p8 x8
6y86Jnn8~x8!Jrr8~y8!

3
Trg5gmgr8gn8~x” 82y” 8!

~x82y8!4
. ~3.4!

The result above may be compared with the amplitude of
the one-loop triangle graph@Fig. 1~a!# ~with one direction of
charge flow!,

Bmnr~z,x,y!5
ig3

8
Amnr~z,x,y!, ~3.5!

whereAmnr is given in Eq.~2.10!. At z50, and referred to
inverted pointsx8,y8, this reads
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Bmnr~0,x,y!5
ig3

8~8p6!
x86y86Jnn8~x8!Jrr8~y8!

3
Trg5gmgr8gn8~x” 82y” 8!

~x82y8!4
. ~3.6!

One may now observe that the nonplanar amplitude is just a
numerical multiple of the unique conformal tensor~2.10! as
discussed in Sec. II. The result may be written

Nmnr~0,x,y!52
f 2

8p2Bmnr~0,x,y!. ~3.7!

The nonplanar graphs with scalar vertices atx andy must
give the same result by triangular symmetry. However, our
method of evaluation of the amplitude has singled out the
point z50. Therefore a check on the result can be deter-
mined by applying the inversion to the amplitudes for the
6120° rotated diagrams withz50. The integral in inverted
variables involves a different set of convolution integrals,
and we have checked that it gives the same result~3.7!.

We now discuss, following@12#, the finite gauge mecha-
nism for the one-loop self-energy and vertex corrections
which are ingredients of our study of the two-loop anomaly.
After a little algebra the sum of the Higgs and photon self-
energy graphs can be written as

S~v2u!5
1

8p4 F f 21 1

2
g2~12G!G v”2u”

~v2u!6

1a]”d4~v2u!. ~3.8!

The first term is the separated point part of the amplitude
which is completely determined by the Feynman rules. It is a
singular function ofv2u whose Fourier transform is linearly
divergent. By choosing the gaugeG5112 f 2/g2, the ampli-
tude is made finite. It vanishes for separated points, but there
is a possible local term, the second term in Eq.~3.8!, which
is left ambiguous by the Feynman rules. The finite constant
a will be determined by the Ward identity.

The amplitudes of the three vertex subgraphs in the dia-
grams@Figs. 1~b!, 1~c!, 1~d!# are

Vr
~1!~y,v,u!5

2 ig f 2

32p6 g5

1

~v2u!2
v”2y”

~v2y!4
gr

~y”2u” !

~y2u!4
,

~3.9!

Vr
~2!~y,v,u!52

ig f 2

32p6g5

1

~y2u!2
]J

]yp

1

~y2u!2
v”2u”

~v2u!4
,

~3.10!

Vr
~3!~y,v,u!5

ig3

128p6g5ga

v”2y”

~v2y!4
gm

y”2u”

~y2u!4
gb

3Fdab~12 1
2 G!

~u2v !2
1

G~u2v !au~2v !b

~u2v !4
G .

~3.11!

Each contribution has a logarithmic divergent Fourier trans-
form, and we consider the Fourier transform at zero fermion
momentum to study finiteness properties; that is, we consider

the integrals*d4ud4vVr(y,v,u). Let us examine first the
single integral*d4vVr(y,v,u) which can be simplified by
taking the pointy50. We will discuss these integrals in
some detail because the same integrals will occur in the ver-
tex insertion diagrams of the two-loop current correlator.

We see that the required integrals are again convergent
convolution integrals. Using the tabulation in the Appendix,
we obtain

E d4vVr
~1!~0,v,u!5

ig f 2

32p4

g5u”gr u”

u6

52
ig f 2

32p4g5gsS dsr

u4
2
2usur

u6 D ,
~3.12!

E d4vVr
~2!~0,v,u!5

ig f 2

32p4

g5gr

u4
, ~3.13!

E d4vVr
~3!~0,v,u!5

ig3

128p4

g5gagsgru”gb

u4

3F S 12
1

4
G D dabus

u2

2
1

4
GS dasub1dbsua

u2
22

uaubus

u4 D G
5

ig3

128p4

g5ga

u6
@~u2dar24uar!

1~12G!damu
2#. ~3.14!

Consider next the second integration
*d4u*d4vVr(0,v,u) which gives the zero momentum vertex
function. Thedar /u

4 terms give the expected logarithmic
divergence, but the integrals over the traceless tensor
(u2dar24uaur)/u

6 converge by symmetric integration. One
sees that the sum of the divergent contributions from Eqs.
~3.12!, ~3.13!, and~3.14! is proportional to

2 f 224 f 22g2~12G!, ~3.15!

and therefore vanishes in the same gauge that makes the
self-energy finite. Henceforth we will use this gauge.

The Ward identity for the theory may be derived by stan-
dard functional methods or obtained directly from the vertex
amplitudes~3.9!–~3.11! using the relation

h
1

~y2u!2
524p2d4~y2u!. ~3.16!

The result is

]

]yr
Vr~y,v,u!52 i 12gg5@d4~y2v !2d4~y2u!#S~v2u!.

~3.17!

We wish to determine the constanta in the self-energy~3.8!.
This would appear in Eq.~3.17! as the coefficient of a very
singular distribution, and so we integrate with respect to the
smooth test function 1 and use the integrated Ward identity
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]

]yr
E d4vVr~y,v,0!52 i 12gg5S~y!. ~3.18!

In the finite gauge the only contributions to the integral in
Eq. ~3.18! come from the traceless tensor structures in Eqs.
~3.12! and ~3.14!, and we have

E d4vVr~y,v,0!5
ig

16p4 ~ f 22 1
2g

2!g5gsS ysyr

y6
2

dsr

4y4D .
~3.19!

The singular tensor can be expressed as the traceless form

ysyr

y6
2

dsr

4y4
5
1

8 S ]s]r2
1

4
dsrh D 1

y2
, ~3.20!

which is a well-defined distribution, and its divergence is
easily obtained:

]

]yr
S ysyr

y6
2

dsr

4y4D52
3p2

8
]sd4~y!. ~3.21!

Combining Eqs.~3.18!–~3.21! one finds the self-energy in
the finite gauge

S~y!5
3

64p2 ~ f 22 1
2g

2!]”d4~y!. ~3.22!

It is this result forS(v2u) which is to be used to evalu-
ate the self-energy insertion contributions@Fig. 1~g!# to the
two-loop anomalous current correlation function. Because
Eq. ~3.22! is purely local, the integral*d4ud4v required for
the graph of Fig. 1~g! is trivial. Specifically thed4(v2u) in
Eq. ~3.22! can be used to do theu integration, and]” v acts on
the resulting propagator giving a secondd function which
can be used to do thev integration. The result is that the sum
of the self-energy insertion graphs@Figs. 1~e!, 1~f!, 1~g!# is a
multiple of the one-loop amplitude

Smnr~z,x,y!5
3

64p2 S f 22 1

2
g2DBmnr~z,x,y!. ~3.23!

Let us now discuss the diagrams which remain to be
evaluated. The diagrams@Fig. 2~a!# with three virtual boson
lines vanish trivially because the fermion trace vanishes.
Next come the vertex insertion diagrams. It is convenient to
view each virtual photon diagram as the sum of two graphs,
one with the photon propagator in the Landau gaugeG51,
and the second with inversion covariant pure gauge propaga-
tor

D̃mn~u2v !52
1

8p2

g f 2

g2
1

~u2v !2
Jmn~u2v !, g52 .

~3.24!

The Landau gauge graphs give orderg5 contributions to the
two-loop ^JmJnJr& correlator, and the remainder gives an
order g3f 2 contribution. We now discuss these separately.
The Landau gauge propagator is conformal covariant only
after regauging by adding a gradient term given in@12#. So
the sum of all virtual photon diagrams is conformal covari-
ant, but individual virtual photon vertex insertion diagrams
@Fig. 1~d!# are not, and are not simplified by the simple in-
version discussed at the beginning of this section. Neverthe-
less, the photon vertex contributions to the two-loop
^AmVnVr& correlator in quantum electrodynamics were cal-
culated by related but more complicated techniques in@12#.
The net contribution to the correlator of vertex and self-
energy insertions was found to vanish there, thus verifying
the Adler-Bardeen theorem through two-loop order in QED.
It is quite easy to see that, after clearingg5 factors, all Lan-
dau gauge virtual photon diagrams of Fig. 1~d! in the axial-
coupled Abelian Higgs model are a uniform factor of 1/8
times the same graphs in QED. So it is fortunate that the
work of @12# can be taken over to our case with the imme-
diate result that the net contribution of Landau gauge virtual
photon graphs to the gauge current correlator^JmJnJr& van-
ishes. Specifically the sum of the Landau gauge vertex inser-
tions and the orderg5 part of the self-energy insertions@sec-
ond term in Eq.~3.23!# vanishes.

We now study the orderg3f 2 vertex insertion contribu-
tions to the three-point current correlator. These include vir-
tual Higgs diagrams plus a virtual photon diagram with the
propagator~3.24!. Each of these graphs has a conformal co-
variant integrand, and so the inversion technique can be ap-
plied. The amplitude for the diagram shown in Fig. 1~b! is,
with z50,

Vmnr
~1! ~0,x,y!5

ig3f 2

512p12E d4ud4v
~u2v !2

3TrFg5

v”2y”

~v2y!4
gr

y”2u”

~y2u!4

3
u”2x”

~u2x!4
gn

x”

x4
gm

v”
v4G . ~3.25!

The inversion may be performed; Jacobian factors again can-
cel and the trace simplifies, giving

Vmnr
~1! 5

ig3f 2

512p12x8
6y86Jnn8~x8!Jrr8~y8!Ṽmn8r8

~1! ,

Ṽmn8r8
~1!

5E d4u8d4v8

~u82v8!2

3TrFg5

v” 82y” 8

~v82y8!4
gr8

u” 82x” 8

~u82x8!4
gn8gmG .

~3.26!

In both Eqs. ~3.25! and ~3.26! the first three factors in
the integrals are exactly those of the vertex function

FIG. 2. Vanishing contributions to the three-current correlators.
Diagrams~b!, ~c!, and~d! are only present in correlators with non-
Abelian gauge currents, and are discussed in Sec. V B.
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Vr
(1)(y,v,u). The major difference between Eqs.~3.25! and

~3.26! is that thex” /x4 and v” /v4 propagators have disap-
peared. The variablev8 now appears in two denominators,
and the v8 integral is exactly the integral~3.12! with
u→u82y8. We can thus write

Ṽmn8r8
~1!

522p2E d4u8S ~u82y8!s~u82y8!r8
~u82y8!6

2
1

2

dsr8
~u82y8!4D ~u82x8!l

~u82x8!4
Trg5gsglgn8gm .

~3.27!

The u8 integral diverges logarithmically asu8→y8, re-
flecting the logarithmic divergence of individual vertex dia-
grams. However, we must now add the contributions of the
diagrams of Figs. 1~c!, 1~d! in which the vertex parts of
V(2) andV(3) of Eqs.~3.10! and~3.11! will appear@the latter
with modified photon propagator Eq.~3.24!#. After the inver-
sion process, one finds that thex” /x4 and v” /v4 propagators
disappear, so that thev8 integrals are again those of Eqs.
~3.13! and~3.14!. We now consider the sum ofVr

(1) ,Vr
(2) and

gauge-modifiedVr
(3) insertions in the two-loop diagrams. It

follows by inspection of Eqs.~3.12! and ~3.13! that the net
effect of the sum is to reduce the coefficient of thedsr8 term
in Eq. ~3.27! by a factor of 2, giving a traceless tensor in
those indices, so that the remaining convolution integral in
u8 is convergent and may be read from Eq.~A10!. The result
for the net sum of vertex insertions at pointy of the two-loop
triangle is

Ṽmn8r85
p4

4

Trg5gmgr8gn8~x” 82y” 8!

~x82y8!4
. ~3.28!

When combined with the prefactors in Eq.~3.26! and ex-
pressed as a multiple of the one-loop amplitude one obtains

Vmnr~0,x,y!5
f 2

64p2Bmnr~0,x,y!. ~3.29!

The vertex insertions at pointsx andzmust give the same
contribution. Again, we have studied the insertions at point
z using a conformal inversion atz→0. A considerably more
difficult set of integrals results in the inverted variables, but
the final result agrees with Eq.~3.29!.

The various contributions to the orderg3f 2 amplitude
must now be combined with careful attention to combinator-
ics. There is a factor of 3 from the triangular symmetry, and
a factor of 2 for opposite directions of fermion charge flow
for self-energy and vertex insertions, but not for the nonpla-
nar diagrams.@From Fig. 1~h! we can see that the exchange
x↔y produces a topologically equivalent diagram.# There-
fore our results~3.7!, ~3.23! @with ( f 221/2g2)→ f 2#, and
~3.29! must be added with weights

3Nmnr16~Vmnr1Smnr!52
3 f 2

8p2 S 12
1

4
2
3

4DBmnr ,

~3.30!

showing that the net orderg3f 2 contribution to the gauge
current correlation function̂Jm(z)Jn(x)Jr(y)& vanishes.

It will be useful for our treatment of more general chiral
gauge theories to give an alternative discussion of the inte-
grals in the vertex insertion graphs. We have seen that after
conformal inversion the*d4v8 of the three different vertex
subgraphs can be read directly from Eqs.~3.12!–~3.14!.
These expressions show that the dependence on the remain-
ing variableu ~which is transformed tou82y8 in the two-
loop graphs! is a superposition of an ‘‘s-wave’’ dsm /u

4 and
a ‘‘d-wave’’ (usum21/4dsmu

2)/u6 tensor form. For the
pure gauge propagator~3.24!, only the vertex diagramVm

(1)

has ad wave, and thes waves of *d4vVm
(1) ,*d4vVm

(2) ,
*d4vVm

(3) are in the ratio of 1:22:1/2g. The final integral
*d4u8 in the sum of the three graphs diverges unless the net
s-wave amplitude cancels, and this selects the valueg52 as
the gauge parameter which makes the vertex insertion sub-
graphs finite.

IV. GENERAL U „1… MODEL

The action of this model has already been given in Eq.
~2.2!, and the Feynman rules differ from the special case
treated in Sec. III only in the gauge vertex factors which now
carry the chiral factors2 igm(aL1bR). We find it conve-
nient to use the two coupling parametersb anda and im-
pose the relationb2a51 required for gauge invariance se-
lectively as necessary.

The major technical problem of the more general model is
that there is no true finite gauge due to the chiral gauge
couplings. This is immediately clear from the one-loop self-
energy amplitude

Ŝ~v2u!5
1

8p2 @ f 212g2~a2R1b2L !~12G!#

3
v”2u”

~v2u!6
1~aL1bR!]” vd

4~v2u!, ~4.1!

where, as in Eq.~3.8!, we have included a possible local
term. One sees that forfÞ0 anda2Þb2 there is no value of
the gauge parameterG which eliminates the ultraviolet sin-
gular 1/(v2u)5 factor. Nevertheless, we will see that there is
an effective finite gauge which makes the abnormal parity
part of self-energy and vertex insertions on each line or each
corner of the two-loop triangle finite.

Let us consider first all orderg3f 2 contributions to the
current correlator including all virtual Higgs graphs plus vir-
tual photon graphs with a pure gauge propagator similar to
Eq. ~3.24! but with g a numerical factor to be determined. It
is easy to obtain the amplitude of the nonplanar graph. Clear-
ing the chiral factors and comparing with the previous case
~3.3!, one sees that we now have

N̂mnr~0,x,y!524abNmnr , ~4.2!

where the caret denotes the amplitude in the more general
model.

For a given direction of fermion charge flow each vertex
or self-energy insertion graph contains both normal and ab-
normal parity amplitudes. It follows from Furry’s theorem
that the normal parity part cancels and the abnormal parity
part doubles in the sum of the two graphs with opposite
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charge flow, and so we can restrict our attention to the ab-
normal parity parts. We letV̂mnr

( i ) (z,x,y) for i51,2,3 denote
the abnormal parity part of the two-loop vertex graphs with
vertex subgraphVr

( i )(y,v,u) inserted at one corner. The sub-
graph amplitudes are given in Eqs.~3.9!–~3.11! for
b52a51/2.

One can again manipulate chiral factors and compare with
the previous case to find

V̂mnr
~1! ~z,x,y!524abVmnr

~1! ~z,x,y!,

V̂mnr
~2! ~z,x,y!52~a21b2!Vmnr

~2! ~z,x,y!, ~4.3!

V̂mnr
~3! ~z,x,y!516~b52a5!Vmnr

~3! ~z,x,y!.

The relationb2a51 has been used in the first equality.
We now recall our discussion at the end of Sec. III of the

integrals which occur in the vertex insertion graphs after the
conformal inversion is implemented. The integral*d4v8
gave the sum ofd-wave ands-wave tensors inu82y8 for
V(1) and pures waves forV(2) andV(3) with s waves occur-
ring in the ratio 1:22:1/2g. The gauge parameterg must be
chosen so that the net sum of thes waves vanishes. To
implement this condition we must now weight the coeffi-
cients in Eq.~4.3! by 1,22, and 1/2g, thus obtaining

24~a21ab1b2!18g~b52a5!50,
~4.4!

g5
~b32a3!

2~b52a5!
,

for the choice of gauge-fixing parameter which makes the
sum of orderg3f 2 vertex insertion subgraphs at each corner
of the triangle finite. For this choice the residual finite con-
tribution to ^Jm(z)Jn(x)Jr(y)& comes just from thed-wave
tensor ofV(1), and can be directly read from Eq.~4.3! as

V̂mnr~z,x,y!5V̂mnr
~1! 1V̂mnr

~2! 1V̂mnr
~3! 524abVmnr ,

~4.5!

whereVmnr is given in Eq.~3.29!.
Finally we must consider the self-energy insertion graphs.

We must check that they are finite in the same gauge as the
vertex insertion diagrams, and we must determine the contri-
bution of possible local terms inS(u2v), i.e.,a or b in Eq.
~4.1!. To check finiteness we consider the insertion of
S(v2u) of Eq. ~4.1! into the two-loop graph@Figs. 1~e!,
1~f!, 1~g!#. We move all chiral factors in the graph to the
clockwise side of the insertedS(v2u). This gives

~a3R1b3L !S~v2u!5
1

8p2 @ f 2~a3R1b3L !

22g2G~a5R1b5L !#
v”2u”

~v2u!6

1~a3bR1b3aL!]” vd
4~v2u!.

~4.6!

The sum over graphs with opposite direction of fermion
charge flow selects the abnormal parity part: namely,

1

16p2 @ f 2~a32b3!22g2G~a52b5!#g5

v”2u”

~v2u!6

1 1
2 ~a3b2b3a!g5 ]” vd

4~v2u!. ~4.7!

This effective self-energy must be multiplied by propagators
for adjacent fermions and integrated*d4vd4u. The integral
diverges unless the gauge parameter is chosen so that the
singular 1/(v2u)5 term in Eq.~4.7! cancels. It is a relief, but
hardly a surprise, to see that cancellation occurs for the value
of g given in Eq.~4.4!, which also makes vertex contribu-
tions finite.

We now see that, in the effective finite gauge, the abnor-
mal parity part of the self-energy insertion@Figs. 1~e!, 1~f!,
1~g!# involves only the local part ofS(v2u) @Fig. 1~g!#
given by the second term in Eq.~4.7!. The singularities from
the diagrams shown in Fig. 1~e! and Fig. 1~f! cancel. The
local term will now be obtained from the Ward identity

]

]yr
V̂r~y,v,u!5 ig~aR1bL !@d4~y2v !2d4~y2u!#

3Ŝ~v2u!, ~4.8!

obtained by direct differentiation of the vertex graphsV̂r
( i ) of

the model with general couplings. The integrated form,
which is the generalization of Eq.~3.18!, is

]

]yr
E d4vV̂r~y,v,0!5 ig~aR1bL !Ŝ~y!. ~4.9!

We now note that in the environment of the larger two-
loop graphs@Fig. 1~b!, 1~c!, 1~d!#, all vertices at they corner
of the triangle acquire the factora2R1b2L obtained by
moving theaL1bR projectors at thez andx corners to the
clockwise side of the pointv. We are thus specifically inter-
ested in the abnormal parity part of the effective Ward iden-
tity

~a2R1b2L !
]

]yr
E d4vV̂r~y,v,0!5 ig~a3R1b3L !Ŝ~y!,

~4.10!

and we observe that the chiral factor on the right side is
exactly that of the effective self-energy insertion in Eq.~4.6!.

In the effective finite gauge~4.4! the integral in Eq.~4.10!

involves only thed-wave tensor from theV̂r
(1) amplitude.

This contains an additionalaL1bR chiral vertex factor, and
so the coefficient of the abnormal parity part of Eq.~4.10!
comes froma2bR1b2aL and gives21/2abg5. The value
of the integral is then a factor of 2 times Eq.~3.19! @with
f 221/2g2 replaced byf 2 in Eq. ~3.19! since we are now
considering the order-f 2 terms only#. After computing the
]/]yr divergence, as in Eqs.~3.20! and~3.21!, the abnormal
parity part of Eq.~4.10! reads, after dropping the factorig on
both sides,

2ab
3 f 2

64p2g5]”d
4~y!5~a3R1b3L !Ŝ~y!u

par
abn. ~4.11!
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This equation givesg5 times the effective self-energy includ-
ing chiral factors from the corners of the two-loop triangle.
With a little thought we can then see that each self-energy
graph of the general chiral theory is related to Eq.~3.23! by

Ŝmnr~z,x,y!524abSmnr~z,x,y!. ~4.12!

@An extra negative sign has been gained by moving theg5
past the propagatorS(z2v) to its original position in the
trace of the two-loop graphs.#

The results~4.2!, ~4.5!, and~4.12! show that all contribu-
tions to the abnormal parity part of the^JmJnJr& correlators
in the U~1! Higgs theory with general chiral couplings are a
uniform factor of24ab times the corresponding contribu-
tions in Sec. III. Thus the sum of all orderg3f 2 terms in the
correlation function vanishes.

We now discuss the orderg5 virtual photon contributions.
We see from Eqs.~4.1! and~3.15! that the Landau gauge is a

true finite gauge which makes the one-loop vertex and self-
energy graphs entirely finite. This makes the argument sim-
pler. We first note that all orderg5 graphs contain the chiral
factor (aL1bR)5, whose abnormal parity part is just
1/2(b52a5) times the corresponding graph in the QED cor-
relator studied in@12#. Further, when chiral factors are ex-
tracted from the Ward identity~4.9! one can see that it coin-
cides with the QED Ward identity used in@12# to determine
the local part of the self-energy. So the analysis of@12# ap-
plies in its entirety and shows that the two-loop^JmJnJr&
correlator also vanishes in the chiral U~1! model.

V. STANDARD MODEL ANOMALIES

We next calculate the two-loop anomalies in the
SU(3)3SU(2)3U(1) gauge theory with one generation of
quarks and leptons. All fields are massless.

The Euclidean Lagrangian is

L5 1
4F

mnW
•FmnW 1 (

quarks
leptons

c̄ i Ig
mF]m2 ig3d i jdc,quarkTIJ

A Gm
A2

ig2
2

d IJt i j
aWm

aL2
ig1
2

d i jd IJ~YLL1YRR!BmGc jJ

1f†S ]Wm1
ig2
2

tW•WW m1
ig1
2
BmD S ]m2

ig2
2

tW•WW m2
ig1
2
BmDf2 f l~ l̄ if iRe1ēf i

†Ll i !2 f d~ q̄if iRd1d̄f i
†Lqi !

2 f u„q̄i~ i t
2! i jf j

†Ru1ūf j~ i t
2! j i Lqi…2

1
4l~f†f!2. ~5.1!

t i j
a are the Pauli matrices andTIJ

A the Gell-Mann matrices.
Bm is the Abelian gauge boson. The non-Abelian gauge
bosonsWm

a andGm
A will be referred to collectively as gluons.

Lowercase Latin indices (i , j ,a) refer to SU~2!; uppercase
Latin indices (I ,J,A) refer to SU~3!. l i is the lepton SU~2!
doublet (n,e); qi is the quark doublet (u,d); f i is the Higgs
doublet (f1,f0). The leptons and Higgs bosons are singlets
under SU~3!, while the quarks are triplets. The U~1! hyper-
charges of the standard model matter fields are tabulated be-
low ~Table I!. The one-loop anomalies are easily shown to be
absent with this assignment.

The diagrams which contribute to the two-loop anomalies
are essentially the same as those considered in Sec. IV, ex-
cept that the fermion and gauge lines now carry group indi-
ces. We structure the calculation by comparison to the pre-
vious Abelian case with pure axial gauge coupling. There are
in addition several diagrams@Figs. 2~b!, 2~c!, 2~d!# not con-
sidered previously involving vertices with three non-Abelian
gauge bosons, but we show that they do not contribute be-
cause the anomaly vanishes at the one-loop level. The exten-
sion to N generations of quarks and leptons with unitary
Cabibbo-Kobayashi-Maskawa~CKM! mixing matrixMi j for
the quarks adds no new complications. Each gauge boson
exchange diagram gets the factor TrM†M5N, and so each
two-loop contribution to the correlator is identical to that
given below timesN.

In the standard model there is a potential anomaly for
each choice of the three currents in the correlator. However,
each diagram is proportional to the trace of the product of the

three corresponding group generators. Since the trace of any
@non-U~1!# generator is zero, the only three-current correla-
tors which are potentially nonvanishing arêJ1J1J1&,
^J2J2J2&, ^J2J2J1&, and^J3J3J1&. The SU~3! current is non-
chiral; hence, thêJ3J3J3& correlator is not anomalous. Fur-
thermore, after summing over the two directions of fermion
flow, each diagram is proportional to the group theoryd
symbols, TrTa$Tb,Tc%. Since thed symbols vanish for
SU~2!, the correlator̂ J2J2J2& vanishes, as well.

The contributions to the abnormal parity part of the two-
loop correlators from Abelian and non-Abelian gauge boson
exchange vanish in the Landau gauge, as follows from the
results of@12,22#. We keep the non-Abelian gauge bosons in
the Landau gauge and take the gauge parameterG for the
U~1! vector boson as the Landau gauge value 1 plus a term
proportional to the Yukawa couplings which we will discuss
below.

The determination of the ambiguous local part of the self-
energy from the Ward identities will be discussed in a dif-
ferent ~but equivalent! way from Sec. IV. We always check
that in each gauge-invariant sector of the calculation there is
a choice of the U~1! vector boson gauge parameterG which
makes the would be divergents-wave vertex contributions
and 1/(u2v)5 self-energy contributions to the abnormal par-
ity parts of the correlators simultaneously finite~and zero!. It
is then justified to keep only thed-wave parts of the once
integrated*d4v8 vertex subgraphs, and the same for the in-
tegrated Ward identity used to determine the local part of the
self-energy.
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A. ŠJ1J1J1‹

The ^J1J1J1& calculation in the standard model is directly
analogous to that of theaL1bR theory considered in Sec.
IV. The only difference is the sum over the SU~2! and SU~3!
indices. We first check that the effective finite gauge mecha-
nism works as in the previous case. It is sufficient that such
a gauge exist for each gauge-invariant sector of the calcula-
tion. Since the leptons and quarks do not mix to this order,
we find separate values for the gauge parameterG which
make the lepton and quark vertex and self-energy insertions
finite. We calculate the lepton contribution below. The quark
calculation is analogous, with the charges replaced appropri-
ately.

Including the relevant chirality factors and summing the
contributions from internal electron and neutrino propaga-

tion, we easily find that the abnormal parity parts ofV̂(1),

V̂(2), and V̂(3) @Fig. 1~b!, 1~c!, 1~d!# are, with the pointz
taken to zero,

V̂mnr
~1! ~0,x,y!5S 21

2 D 3323~24!YL
~e!YR

~e!Vmnr
~1! ~0,x,y!,

~5.2!

V̂mnr
~2! ~0,x,y!5S 21

2 D 33232~YL
~e!21YR

~e!2!Vmnr
~2! ~0,x,y!,

~5.3!

V̂mnr
~3! ~0,x,y!5S 21

2 D 5~216! (
neutrino
electron

~YR
52YL

5!Vmnr
~3! .

~5.4!

whereV(1),V(2), andV(3) are the same diagrams in the pure
axial U~1! theory considered in Sec. III. The left-handed
electron and neutrino form an SU~2! doublet, and so they
have the same hyperchargeYL

(e) . The superscript (e) on the
hypercharges denotes explicitly that only the right-handed
electron hypercharge contributes. Of course, this comment is
trivial since there is no right-handed neutrino in the theory,
but Eqs.~5.2!–~5.4! are valid for the quark contributions as
well with the appropriate replacement of lepton labels by
quark labels. For example, the contribution from thef d
Yukawa coupling is obtained from Eqs.~5.2! and ~5.3! by
the replacementYL,R

(e)→YL,R
(d) . The factors of (21/2)3 and

(21/2)5 come from the difference in the definition of charge
from the previous case, and one factor of 2 in Eqs.~5.2! and
~5.3! is due to the SU~2! trace over the electron and neutrino.
The condition for cancellation of divergents-wave integrals
in the sum ofVmnr

(1) ,Vmnr
(2) , andVmnr

(3) can now be written as
the sum of the hypercharge coupling factors in Eqs.~5.2!–

~5.4!, each weighted by the factors21:2:2g/2 of the
s-wave integrals in Eqs.~3.12!–~3.14!. This gives the effec-
tive finite gauge condition

YL
~e!YR

~e!1~YR
~e!21YL

~e! 2!1
g

4( ~YR
52YL

5!50 . ~5.5!

We checked that this condition agrees with that obtained
from insisting that the sum of the self-energy diagrams be
finite and indeed zero up to the ambiguity of local terms.

It is easy to check that the nonplanar diagram is multi-

plied by the same factor asV̂(1) when compared to the pure
axial U~1! case, Eq.~3.1!:

N̂mnr~0,x,y!5YL
~e!YR

~e!Nmnr~0,x,y!. ~5.6!

Next we calculate the local part of the self-energy which
contributes when inserted in the fermion triangle@Fig. 1~g!#
in the effective finite gauge. If we denote byVi

m(z,u,v) the
lepton vertex (i5electron or neutrino! with charge flowing
from v to u and byS1(u2v) the self-energy with charge
flowing in the same direction, then the relevant Ward iden-
tity is, as in Eq.~4.8!,

]m
z Vi

m~z,u,v !5
ig1
2

@d4~z2v !2d4~z2u!#

3~YR
i L1YL

i R!S1
i ~u2v !. ~5.7!

This can be integrated to give

E d4u]m
z Vi

m52
ig1
2

~YR
i L1YL

i R!S1~z2v !. ~5.8!

We calculate thed-wave~traceless! part of the integrated
vertex as before, since thes-wave contributions and the cor-
responding 1/z5 part of the self-energy vanish in the effective
finite gauge. Again, the onlyd-wave contribution is from
Fig. 1~b! with a single Higgs boson exchanged. We find that

E d4u]m
z Vi

m~z,u,v ! 5
d wave 3ig1f l

2

16~4p2!
~2YL

~e!Ld i ~e!

1YR
~e!R!]” zd

4~z2v !. ~5.9!

Projecting out the left- and right-handed pieces of Eq.~5.9!
and comparing with the Ward identity~5.8!, we find for the
relevant contribution of the local part of the self-energy:

S1
i ~z2v !5

23 f l
2

16~4p2!S 2YL
~e!

YR
~e! Ld i ~e!1

YR
~e!

YL
~e! RD ]”d4~z2v !.

~5.10!

The d i (e) means that the right-handed electron~but not neu-
trino! flows throughS.

We insert this self-energy into the fermion triangle@Fig.
1~g!#. After pulling together chiral factors and summing over
the electron and neutrino we indeed find a multiplicative
factorYL

(e)YR
(e) times the result in the pure axial case consid-

ered in Sec. III:

TABLE I. Fermion and Higgs hypercharges.

YL YR

n 21 0
e 21 22 f i : Y51
u 1/3 4/3
d 1/3 22/3
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Ŝmnr~0,x,y!5YL
~e!YR

~e!Smnr~0,x,y!, ~5.11!

with ( f 221/2g2)→ f 2 in Smnr, Eq. ~3.23!.
Thus the vertex, nonplanar, and self-energy diagrams are

each multiplied by an overall factor ofYL
(e)YR

(e) times the
corresponding diagrams in the pure axial U~1! case treated in
Sec. III. Note that witha,b→YL

(e) ,YR
(e) , this result is iden-

tical to that of Sec. IV up to a factor of (24) which comes
from the difference in definition of U~1! charge and the sum
over electron and neutrino. So the sum of all virtual lepton
contributions to the correlator̂J1

mJ1
rJ1

n& vanishes as in the
previous case.

The quark contributions vanish similarly. Note that while
the quarks have two different Yukawa couplings, to this or-
der these couplings do not mix because of the relative chiral-
ity flip between the two couplings. Furthermore, while the up
type Yukawa couplingf u in the Lagrangian~5.1! seems
more complicated than the down or electron type, we can
redefine the Higgs field to be the SU~2! conjugate
f i85( i t2) i j f̄ j , and then the kinetic term in terms of the
conjugated Higgs field looks identical to the previous case
except for a change of sign of the Higgs U~1! charge. The
calculation is almost identical to the previous case, except
for the change from lepton notation to quark notation@e.g.,
the superscript (e)→(u)# and sign changes from the new
U~1! charges. For example, in Eqs.~5.2!, ~5.3!, ~5.6!, and
~5.11! there is an extra negative sign from the opposite signs
of the Higgs U~1! charge andYL

(u)2YR
(u) .

Hence the total contribution from the gauge fields and
each of the three Yukawa couplings to the two-loop correla-
tor vanishes, as expected.

B. ŠJ2J2J2‹

We noted earlier that the correlator^J2J2J2& vanishes by
virtue of the fact that the SU~2! d symbols are all zero.
However, we expect that the vanishing of the anomaly
should not depend on the gauge group, as long as the quarks
and leptons are in a representation for which the one-loop
anomaly vanishes. We therefore check that even if we ne-
glect the fact that the group theoreticd symbols are zero the
correlator still vanishes. We only require that the trace of the
d symbols over the left- handed fermion representations in
the theory vanish.

The calculation is remarkably simple as a result of the
left-handedness of the SU~2! current. Since the Yukawa cou-
plings in the Lagrangian~5.1! always connect a left-handed
field to a right-handed one, it is easy to see that both the
nonplanar diagram and the vertex insertion@Fig. 1~b!# with a
single Higgs boson exchanged vanish. The contribution from
the self-energy is determined via the SU~2! Ward identity
and vanishes because thed-wave part of the vertex contribu-
tion vanishes. Since these are the only contributions to the
correlator in the effective finite gauge, which we also
checked to exist, the correlator vanishes to two-loops.

It appears at first that there are additional diagrams@Figs.
2~b!, 2~c!, 2~d!# which we have not calculated, but they are
all proportional to the one-loop anomaly. Figure 2~b! con-
tains the one-loop triangle, and so it is immediately propor-
tional to the one-loop anomaly. The group theory of the other

diagrams is easy to work through. The three-gauge vertex is
proportional to the SU~2! structure constantf abc(5«abc).
Summing over the two directions of fermion flow, we see
that the abnormal parity part of each of the diagrams@Figs.
2~c!, 2~d!# is proportional to Trf ade(tbtctetd2tdtetctb)
5Trf adef edgtb$tc,tg%522Trdabc. So each two-loop dia-
gram in question contains the factor Trdabc, where the trace
sums over all left-handed fermions in the theory. The condi-
tion Trdabc50 also makes the one-loop anomaly vanish, as
promised above. One can easily check that the same effect
occurs for the contribution of the analogous diagrams to the
other correlators discussed below. In both of the cases treated
below in Secs. V C and V C, Figs. 2~c!, 2~d! are proportional
to the factor which makes the corresponding one-loop
anomaly vanish.

C. ŠJ1„z…J2„x…J2„y…‹

The calculation of thêJ1J2J2& and ^J1J3J3& correlators
is complicated by the fact that the local part of the self-
energy calculated from the U~1! Ward identity and the
d-wave part of the U~1! vertex is not consistent with that
calculated via the SU~2! @SU~3!# Ward identity and the
d-wave part of the SU~2! @SU~3!# vertex. This is not surpris-
ing since the vertex is also ambiguous up to a local term as a
result of renormalization. We are free to fix the arbitrary
coefficient of the local self-energy, as long as we concur-
rently add local parts to the vertices to make them consistent
with the Ward identities.

We will use the local part of the self-energy calculated in
Sec. V A and modify the local SU~2! vertex to make it con-
sistent with this choice. The U~1! vertex is unmodified.
Again, we calculate only the lepton contribution here. The
quark contribution is analogous.

First we find the effective finite gauge for this calculation.
Note that thed-wave contribution to the integrated SU~2!
vertex vanishes. The left-handed fields do not contribute be-
cause at the Yukawa vertex they become right-handed fields
which do not couple to the SU~2! current. The right-handed
fields do not contribute because they are SU~2! singlets; al-
ternatively, their contribution is proportional to Trta50. The
only nonvanishing two-loop diagram of the form Fig. 1~b! is
from the U~1! vertex, which is inserted at the pointz50 in
the two-loop triangle. It contributes

V̂mnr
~1 z!ab5 1

2YR
~e!TrtatbVmnr

~1! . ~5.12!

The labelz on V̂(1 z) denotes that the vertex is placed at the
U~1! corner, which is chosen to lie at pointz.

In diagrams of the form Fig. 1~c!, the two-Higgs-boson
vertex can lie at the U~1! corner or either of the SU~2! cor-
ners of the triangle. When it lies at the U~1! corner it con-
tributes

V̂mnr
~2 z!ab52 1

4 Trt
atbVmnr

~2! . ~5.13!

When it lies at one of the SU~2! vertices it contributes

V̂mnr
~2 x!ab5V̂mnr

~2 y!ab52 1
4YL

~e!TrtatbVmnr
~2! . ~5.14!
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The contribution to the vertex diagrams from the effective
U~1! gauge boson propagator is the same at each corner of
the triangle. It is

V̂mnr
~3 z!ab5V̂mnr

~3 x!ab5V̂mnr
~3 y!ab52YL

~e!3TrtatbVmnr
~3! .

~5.15!

Including the relative coefficients ofV(1),V(2), andV(3) in
Eqs. ~5.12!–~5.15! in the ratio21:2:2g/2 as before and
summing over the three corners of the triangle, we find the
condition for the divergent (s-wave! parts of the vertex dia-
grams to cancel:

12
g

2
YL

~e! 250. ~5.16!

Although we obtained this result by summing over the three
corners of the triangle, the same condition makes the U~1!
and SU~2! vertex contributions separately finite. This is ex-
pected because they are related to the same self-energy in-
sertion graphs by Ward identities, as in Eq.~4.10!.

We next consider the contribution from the local SU~2!
vertex correction to the two-loop correlator. The relevant
SU~2! Ward identity is

]m
z Vji

am~z,u,v !5S 2 ig1
2 D t j i

a @d4~z2u!2d4~z2v !#

3S~u2v !L, ~5.17!

where the SU~2! charge flows fromi to j andS(u2v) is the
left-handed part of the self-energy~which is the same for the
electron and neutrino!.

In the effective finite gauge the sum of the electron and
neutrino contributions to the vertex and self-energy inser-
tions is finite. Equivalently, there are nos-wave parts of
vertex insertions, and so we can confine ourselves to just the
d-wave part of the Ward identity and speak separately about
the electron and neutrino. However, the SU~2! vertex inser-
tion has no Higgs boson exchange diagram@Fig. 1~b!# and
thus nod-wave part. Thus, if we were to use the SU~2! Ward
identity to derive the consistent local part to the self-energy,
it would vanish as well. Thus the self-energy~5.10! is not
consistent with Eq.~5.17!. Hence we modify the vertex by a
local contribution as discussed. We add to the SU~2! vertex a
local part of the form

DVji
am~z,u,v !5

ig2
2
Zt j i

agmLd4~z2u!d4~z2v !.

~5.18!

Its divergence is easily calculated to be

]

]zm DVji
am~z,u,v !5

ig2
2
Zt j i

a @d4~z2v !2d4~z2u!#

3R]” vd
4~v2u!. ~5.19!

With the self energy given in Eq.~5.10!, the Ward identity
~5.17! determines the parameterZ to be

Z5
23 f 2

16~4p2!

YR
~e!

YL
~e! . ~5.20!

Inserting this vertex renormalization at either of the SU~2!
corners of the one-loop lepton triangle@Figs. 3~a!, 3~b!#, we
immediately find a result proportional to the one-loop ampli-
tude, whose abnormal parity partDVmnr

ab is

DVmnr
ab ~0,x,y!5

1

2

~23 f l
2!

16~4p2!
YR

~e!TrtatbBmnr~0,x,y!

52
1

2
YR

~e!TrtatbSmnr~0,x,y!, ~5.21!

whereBmnr andSmnr are given in Eqs.~3.5! and~3.23! @with
( f 221/2g2)→ f 2#, respectively.

The contribution from the diagram@Fig. 1~g!# with the
self-energy Eq.~5.10! inserted at any of the three legs of the
triangle is easily calculated to be

Ŝmnr
ab 5 1

2YR
~e!TrtatbSmnr . ~5.22!

The nonplanar diagram with the Higgs current placed at
the U~1! vertex vanishes because the chiral projectors at the
Yukawa vertices annihilate the propagating fermions. The
abnormal parity contribution from each of the two remaining
nonplanar diagrams is

N̂mnr
~x!ab5N̂mnr

~y!ab5 1
4YR

~e!TrtatbNmnr . ~5.23!

Recall again that in the pure axial case the relative contribu-
tions of the self-energy, vertex and nonplanar graphs were in
the ratio 3:1:24, summing to zero. Adding the contribu-
tions in the effective finite gauge from Eqs.~5.12! and
~5.21!–~5.23! gives the now familiar result

~5.24!

D. ŠJ1„z…J3„x…J3„y…‹

We proceed as in Sec. V C. The difference here is that
SU~3! couples only to quarks and the coupling is nonchiral.
First we check that the effective finite gauge mechanism
works in this case. Again, the two quark Yukawa couplings
f d and f u contribute independently at the two-loop level.
~They do not mix because of the relative chirality flip be-
tween the two couplings, as can be seen by trying to draw a

FIG. 3. Contributions tô J1
m(z)J2

ar(y)J2
bn(x)& from the SU~2!

vertex renormalization. In Sec. V D we instead renormalize the
U~1! vertex.
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two-loop Higgs boson exchange diagram with both Yukawa
couplings.! We calculate the contribution from thef d cou-
pling here and note, as before, that thef u coupling contrib-
utes analogously with an overall sign change from the U~1!
charges.

With the one-loop Higgs boson exchange vertex inserted
at the U~1! corner@Fig. 1~b!# we get

V̂mnr
~1 z!AB52•2 TrTATB~YR

~d!2YL
~d!!Vmnr

~1! 524 TrTATBVmnr
~1! .

~5.25!

At each of the SU~3! vertices it contributes the same except
for a negative sign which can be traced to the vector nature
of the SU~3! coupling,

V̂mnr
~1 x,y!AB52232 TrTATB~YR

~d!2YL
~d!!Vmnr

~1!

54 TrTATBVmnr
~1! . ~5.26!

Since the Higgs boson is an SU~3! singlet, the only vertex
diagram including the Higgs current@Fig. 1~c!# is from the
U~1! corner of the triangle. It contributes

V̂mnr
~2 z!AB52232TrTATBVmnr

~2! . ~5.27!

The U~1! gauge boson exchange diagram@Fig. 1~d!# contrib-
utes at each corner of the triangle

V̂mnr
~3 z,x,y!AB522 (

quarks
~YL

32YR
3 !TrTATBVmnr

~3! . ~5.28!

Recalling that in the previous case the diagrams of Figs.
1~b!, 1~c!, 1~d! appeared in the ratio 1:22:g/2, we find the
effective finite gauge condition either by summing over the
three corners of the triangle or by summing the contributions
at any particular corner.

11
g

4 (
quarks

~YR
32YL

3!50 . ~5.29!

One can easily check that the same condition makes the sin-
gular 1/(v2u)5 parts of the self-energy insertion diagrams
@Figs. 1~e!, 1~f!# cancel.

For aesthetic reasons we choose not to introduce a parity-
nonconserving correction to the SU~3! fermion vertex but
rather introduce a correction to the ambiguous part of the
U~1! vertex. Then in the self-energy insertion Fig. 1~g! we
determine the ambiguous local part of the self-energy via the
relevant SU~3! Ward identity and thed-wave part of the
integrated SU~3! quark vertex. The relevant identity is

]m
z VJI

Am5 ig3@d4~z2v !2d4~u2z!#TJI
A S3~u2v !,

~5.30!

where the notation is as before, withI andJ SU~3! indices.
We calculate thed-wave part of the vertexVJI

Am to determine
the relevant ambiguous part of the self-energy which contrib-
utes when inserted in the fermion triangle. We find

S3
i ~z2v !5

23 f d
2

16~4p2!
~2Ld i ~d!1R!]” zd

4~z2v !,

~5.31!

where thed i (d) means that the right-handed down~but not
up! quark receives a self-energy contribution. Inserting this
self-energy in the fermion triangle, Fig. 1~g!, gives

Ŝmnr
AB 524TrTATBSmnr , ~5.32!

with Smnr given by Eq.~3.23! with ( f 221/2g2)→ f 2. Next
we calculate the correction to the U~1! vertex which makes it
consistent with gauge invariance. Assume a correction of the
form

DVi
m~z,u,v !5S ig12 Dgm~a iL1b iR!d4~z2u!d4~z2v !.

~5.33!

Its divergence is

]m
z DVi

m~z,u,v !5
ig1
2

~a iR1b iL !@d4~z2u!

2d4~z2v !#]” ud
4~u2v !. ~5.34!

Recall the U~1! Ward identity

]m
z DVi

m~z,u,v !52
ig1
2

@d4~z2u!2d4~z2v !#

3~YR
i L1YL

i R!DS i~u2v !, ~5.35!

whereDS i(u2v) is

DS i~u2v !5S3
i ~u2v !2S1

i ~u2v !

5
3 f d

2

16~4p2!S 2

YR
~d! d i ~d!L2

1

YL
~d!RD ]” ud

4~u2v !.

~5.36!

Comparing Eq.~5.34! with Eqs.~5.35! and~5.36! determines
a andb, giving

DVi
m~z,u,v !5

ig1
2 S 3 f d

2

16~4p2!
Dgm@L22d i ~d!R#

3d4~z2u!d4~z2v !. ~5.37!

Inserting this at the U~1! vertex of the basic fermion triangle
~and summing over theu andd quarks! gives for the abnor-
mal parity part

DVmnr
AB 58TrTATBSmnr , ~5.38!

where again Smnr is given by Eq. ~3.23! with
( f 221/2g2)→ f 2. Finally, the only nonplanar diagram con-
tributes

N̂mnr
~z!AB524TrTATBNmnr . ~5.39!

Once again, summing the contributions from Eqs.~5.25!,
~5.26!, ~5.32!, ~5.38!, and~5.39! gives zero total contribution
to the axial part of thêJ1J3J3& correlator, which is propor-
tional to

6534 55JOSHUA ERLICH AND DANIEL Z. FREEDMAN



~5.40!

VI. SUPERSYMMETRIC GAUGE THEORIES

Techniques very similar to those of this paper were ap-
plied in a recent study of the operator product algebra of
conserved currents of SUSY gauge theories@15#. The re-
quired calculations were very briefly summarized in@15#,
and we will discuss some aspects in more detail here.

N51 SUSY gauge theories contain component fields
Am
a (x) and la(x), gluons and gluinos, respectively, in the

adjoint representation of a gauge groupG, and complex sca-
lars f i and their spinor partnersc i which transform in a
representation ofG with Hermitian generatorsTj

ai . There are
gauge interactions with gauge couplingg and a cubic super-
potential with complex couplingYi jk which is totally sym-
metric. Using Euclidean Majorana spinors@25#, the action is

S5E d4x@ 1
4Fmn

2 1 1
2 l̄D” l1DmfDmf1 1

2 c̄D” c

1 iA2g~ l̄af̄ iTj
aiLc j2c̄ iRTj

aif jla!

2 1
2 ~ c̄ iLYi jkf

kc j1c̄ iRȲ
i jkf̄kc j !1 1

2g
2~f̄ iTj

aif j !2

1 1
4Yi jkȲ

ilmf jfkf̄ lf̄m#. ~6.1!

The theory has two classically conserved, but anomalous,
axial vector currents, theR current, and the Konishi current:

Rm~x!5
1

2
l̄gmg5l2

1

6
c̄gmg5c1

2

3
f̄DJ mf,

Km~x!5
1

2
c̄ igmg5c

i1f̄ iDJ mf i . ~6.2!

Actually Km is conserved classically only ifYi jk50. The
operator product algebra ofRm andKm contains two central
chargesc and c8, and the principal result of@15# was evi-
dence for a universality property of the interaction-dependent
radiative corrections toc andc8. Forc8 this information was
obtained from a study of two-loop contributions to the two-
and three-point correlation functions of the currents, includ-
ing the correlator^Rm(x)Rn(y)Kr(z)&. Earlier work @26#
could be modified to obtain the required information about
c. Internal gauge and superpotential interactions can be
treated separately in two-loop order.

In the gauge sector, both currents are conserved and have
no anomalous dimensions, and conformal invariance holds,
and so the amplitude is again a constant multiple of the
unique conformal pseudotensorAmnr of Eq. ~2.10!. The
Feynman graphs of̂ RmRnKr& involve the gluon and
Yukawa interactions of Eq.~6.1! after settingYi jk50, and
they are the same graphs considered in Secs. III–V above
with different numerical coefficients. As was the case in the
standard model, there are Ward identities relating vertex
functions of Rm(x) and Km(x) to the same self-energy

S(u2v), and an additional local term is required for one of
the currents. There is some freedom in the assignment of
local terms to the currents and self-energy, but the full corr-
elator ^RmRnKr& is independent of the choice made. Using
one convenient choice, and after careful comparison of all
graphs with those of the basic U~1! model of Sec. III, it was
found that the sum of all one- and two-loop contributions is

^Rm~x!Rn~y!Kr~z!&5F19dimT1
g2

32p2TrT
aTa

3S 831
1

3
23D GAmnr~x,y,z!,

~6.3!

whereAmnr is given in Eq.~2.10!. The order-g2 two-loop
amplitude vanishes, with nonplanar, vertex, and self-energy
graphs contributing in the ratio8:1:29, which is different
from the ratios in Eq.~3.30!. The net result is an Adler-
Bardeen theorem for thêRmRnKr& correlator, since the sum
of virtual gluon graphs can again be shown to vanish by
previous work@12#.

The effect of the superpotential interactions was also con-
sidered in@15#. However, it was simpler to replace the cur-
rent Kr(z) by its scalar superpartnerK(z)5f̄(z)f(z),
which is a scalar mass operator of canonical dimension two,
and study the correlator̂Rm(x)Rn(y)K(z)&. The operator
K(z) @as well asKr(z)# acquires an anomalous dimension of
orderYi jkȲ

i jk . An anomalous dimension is consistent with
conformal symmetry, and the correlator can be shown to be
conformal covariant through two-loop order. Inversion, con-
servation, and scale properties can be used to fix its tensor
form up to a multiplicative constant@15#. The graphs con-
tributing to ^RmRnK& are typically subdivergent because
they contain subdiagrams with gauge-invariant anomalous
dimension. Nevertheless, in this more complicated situation
the conformal inversion technique could be combined with
differential regularization@13# to compute all contributing
Feynman diagrams.

All results forc8 obtained by the conformal methodology
of this paper were verified by an alternate method of calcu-
lation in which the four-point correlation function
^Rm(x)Rn(y)Rr(z)Rs(w)& was studied in the relevant
asymptotic region using regularization by dimensional re-
duction in intermediate stages of the calculation. The explicit
use of Ward identities to determine ambiguous local terms in
self-energy and vertex insertions was not required in this
approach, and so agreement of the results of the two methods
provides a check on this aspect of the conformal approach.
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APPENDIX A

We discuss here the convolution integrals required in Sec.
III to elucidate the finite gauge mechanism and determine the
local part of the self-energy, and to calculate the two-loop
nonplanar and vertex insertion diagrams for the anomalous
correlation function̂ Jm(z)Jn(x)Jr(y)&.

We use the method@24# of Gegenbauer polynomials,
which appear naturally because their generating function is
the scalar propagator

1

~x2y!2
[

1

x2(n50

` S yxD
n

Cn~ x̂• ŷ!, uxu.uyu,
~A1!

x̂m5
xm

uxu
, ŷm5

ym

uyu
, x̂• ŷ5cosu,

Cn~cosu!5
sin~n11!u

sinu
. ~A2!

The orthogonality relation obeyed by these polynomials is

E dx̂Cn~ x̂• ŷ!Cm~ x̂• ẑ!52p2dnm
Cn~ ŷ• ẑ!

n11
, ~A3!

wheredx̂5sin2usinfdudfdj is the angular integration mea-

sure for thex̂ variable.
We first list the integrals, and then comment briefly on

their evaluation. We use the notationD5x2y:

E d4v
v2~v2x!2

52p2ln
x2

R2 , ~A4!

E d4v
~v2x!r

v2~v2x!4
52p2

xr

x2
, ~A5!

E d4v
~v2x!r~v2y!s

~v2x!4~v2y!4
5

p2

2D2S drs2
2DrDs

D2 D , ~A6!

E d4v
~vrvs2 1

4 drsv
2!

v4~v2x!2
5

p2

2x2
~xrxs2 1

4 x
2drs!, ~A7!

E d4v
@~v2x!r~v2x!s2 1

4 dms~v2x!2#~v2y!l

~v2x!4~v2y!4

5
2p2

4D2 S drlDs1dslDr22
DrDsDl

D2 D , ~A8!

E d4v
~vrvs2 1

4 drsv
2!

v6~v2x!2
5

p2

2x4
~xrxs2 1

4 x
2drs!,

~A9!

E d4v
@~v2x!r~v2x!s2 1

4 drs~v2x!2#~v2y!l

~v2x!6~v2y!4

5
2p2

8 F2dlrDs12dlsDr1drsDl

D4 2
8DlDrDs

D6 G .
~A10!

To evaluate Eq.~A4! one applies Eq.~A1! to the factor
1/(v2x)2 including both regionsv,x and v.x, which
have different dependence on the radial variablev. The
quantityR is a temporary cutoff which has no effect on the
integrals used in Sec. III. The result~A5! is obtained by
differentiation of Eq.~A4!, and Eq.~A6! is obtained by re-
placingx→x2y5D in Eq. ~A5!, changing integration vari-
ables tov85v1y, and then differentiating with respect to
y. To evaluate Eq.~A7! or ~A9! one takes the scalar product
with xrxs , so that the integral contains the explicit Gegen-

bauer polynomialC2( x̂• v̂). One then applies Eq.~A1! to the
factor 1/(v2x)2 and uses orthogonality~A3!. Finally, Eqs.
~A8! and ~A10! are obtained from Eqs.~A7! and ~A9!, re-
spectively, by replacementx→x2y5D, shift of integration
variables, and differentiation with respect toy.

@1# S. L. Adler, Phys. Rev.177, 2426~1969!.
@2# J. S. Bell and R. Jackiw, Nuovo Cimento A60, 47 ~1969!.
@3# M. F. Atiyah in Supersymmetry and Supergravity Nonpertur-

bative QCD, proceedings of the Winter School held in Maha-
baleshwur, India, 1984, edited by P. Roy and V. Singh, Lec-
ture Notes in Physics, Vol. 208~Springer-Verlag, Berlin,
1984!.

@4# S. L. Adler and W. A. Bardeen, Phys. Rev.182, 1517~1969!.
@5# A. Zee, Phys. Rev. Lett.29, 1198~1972!.
@6# C. Lucchesi, O. Piguet, and S. P. Sorella, Int. J. Mod. Phys. A

2, 385 ~1987!; O. Piguet and S. P. Sorella, Nucl. Phys.B381,
373 ~1992!; B395, 661 ~1993!.

@7# L. L. DeRaad, Jr., K. A. Milton, and W.-Y. Tsai, Phys. Rev. D
6, 1766~1972!; 6, 3491~1972!.

@8# J. Schwinger, Particles, Sources and Fields~Addison-Wesley,
Reading, MA, 1989!, Vol. 3, Chaps. 5–9.

@9# A. A. Ansel’m and A. A. Johansen, Sov. Phys. JETP69, 670
~1989!.

@10# B. A. Faizullaev, M. M. Musakhanov, and N. K. Pak, Phys.
Lett. B 361, 343 ~1996!.

@11# H. Cheng and S. P. Li, ‘‘The radiative corrections of the tri-
angular anomaly,’’ Report No. hep-th/9603026~unpublished!;
‘‘How to treatg5,’’ Report No. hep-th/9608058~unpublished!.

@12# M. Baker and K. Johnson, Physica96A, 120 ~1979!.
@13# D. Z. Freedman, K. Johnson, and J. I. Latorre, Nucl. Phys.

B371, 353 ~1992!.
@14# D. Z. Freedman, G. Grignani, K. Johnson, and N. Rius, Ann.

Phys.~N.Y.! 218, 75 ~1992!.

6536 55JOSHUA ERLICH AND DANIEL Z. FREEDMAN



@15# D. Anselmi, D. Z. Freedman, M. T. Grisaru, and A. A. Jo-
hansen, ‘‘Universality of the operator product expansions of
SCFT4,’’ Report No. hep-th/9608125~to appear in Phys. Lett.
B!.

@16# H. Osborn and A. Petkou, Ann. Phys.~N.Y.! 231, 311 ~1994!.
@17# E. J. Schreier, Phys. Rev. D3, 980 ~1971!.
@18# J. Erdmenger and H. Osborn, Nucl Phys.B483, 431 ~1997!.
@19# K. Johnson, as reported by D. Z. Freedman inStrings and

Symmetries 1991, edited by N. Berkovitzet al., Proceedings,
Stony Brook, 1991~World Scientific, Singapore, 1992!.

@20# H. Sonoda, Phys. Rev. D55, 5245~1997!.
@21# R. Jackiw, in S. B. Treiman, R. Jackiw, B. Zumino, and E.

Witten,Current Algebra and Anomalies~Princeton University
Press, Princeton, 1985!.

@22# S. L. Adler, R. W. Brown, T. F. Wong, and B.-L. Young,
Phys. Rev. D4, 1787~1971!.

@23# H. Cheng~private communication!.
@24# J. I. Rosner, Ann. Phys.~N.Y.! 44, 11 ~1967!.
@25# H. Nicolai, Nucl. Phys.B140, 294 ~1978!.
@26# I. Jack, Nucl. Phys.B253, 323 ~1985!.

55 6537CONFORMAL SYMMETRY AND THE CHIRAL ANOMALY


