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The time evolution of O) symmetrich (®2)? scalar field theory is studied in the larbdimit. In this limit
the (®;) mean field and two-point correlation functiqd;®;) evolve together as a self-consistent closed
Hamiltonian system, characterized by a Gaussian density matrix. The static part of the effective Hamiltonian
defines the true effective potentidl; for configurations far from thermal equilibrium. Numerically solving
the time evolution equations for energy densities corresponding to a quench in the unstable spinodal region, we
find results quite different from what might be inferred from the equilibrium free energy poténtigypical
time evolutions show effectively irreversible energy flow from the coherent mean fields to the quantum
fluctuating modes, due to the creation of massless Goldstone bosons near threshold. The plasma frequency and
collisionless damping rate of the mean fields are calculated in terms of the particle number density by a linear
response analysis and compared with the numerical results. Dephasing of the fluctuations leads also to the
growth of an effective entropy and the transition from quantum to classical behavior of the ensemble. In
addition to casting some light on fundamental issues of nonequilibrium quantum statistical mechanics, the
general framework presented in this work may be applied to a study of the dynamics of second order phase
transitions in a wide variety of Landau-Ginsburg systems described by a scalar order parameter.
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PACS numbes): 11.30.Qc, 05.70.Ln, 11.15.Kc, 11.15.Pg

[. INTRODUCTION thermal fluctuations. In this paper we consider the model
where the scalar field is anN-component vector
Spontaneous symmetry breaking by a scalar order paran®;, i=1, ... N, with the ON)-symmetric quartic interac-

eter occurs in many different physical systems as diverse agon \ (®;®;)2. When the ON) symmetry is spontaneously
liuid “He at temperatures of order 2 K to the standardbroken by the nonzero expectation value of the guantum
model of electroweak interactions at temperatures of ordemean field(®,)= ¢;, massles$i.e., gaplessexcitations ap-
250 Ge\=3x% 10" K. The prototype renormalizable quan- pear, and it is their dynamical effects on the time evolution
tum field theory describing this symmetry breaking is a scayf the mean field which we wish to take into account. This
lar field (or set of scalar fielgswith a A\®* self-interaction. can be done in a systematic way by computing the quantum
The behavior of the finite temperature effective potential Oleffective action in a power series expansion in the parameter

Landau-Ginsburg-Helmholtz free energy in this theory isy\ 11_3] variation of this effective action yields equations
well known and forms the usual basis for discussion of the]c motion for the mean fields coupled to the higher point

symmetry restoratpn at high temperature. On the other han@sreen’s functions of the theory which are suitable for imple-
until recently very little effort had been devoted to the non- : : )
mentation on a computer. The leading order in lakgeor-

equilibrium or time-dependent aspects of the symmetry- ds t i istent field imation. i
breaking phase transition. With the development of practica'lreSpon s lo a sefl-consistent mean Nield approximation, 1.€., a

general techniques for studying time-dependent problems ifjuncation of the infinite hierarchy of Schwinger-Dyson
quantum field theory, as well as the advent of high speeduations for then-point correlation functions to a closed
supercomputers, it has become possible to address these dj@Mmiltonian system of just the one-point functio®;(x))
namical issues systematically for the first time. It is clear tha@nd two-point function(®;(x)®;(x")). Because no irreduc-
a detailed description of the time-dependent dynamics wilible correlators higher than these appear in the leading order
be necessary to calculate nonequilibrium properties of thef the largeN expansion, it is equivalent to a Gaussian ap-
phase transition, such as the formation and evolution of deproximation to the time-dependent density matrix of the sys-
fects in the*He system after a rapid quench or the efficiencytem. As will become apparent, the approximation allows au-
of baryogenesis in the electroweak phase transition. Othdpmatically for a mixed-state Gaussian density mapixand
examples requiring the detailed time evolution of scalars therefore more general than a Gaussian ansatz for the pure
fields are the chiral phase transition of the strong interactionstate wave function in the Schtimger picture. The mixed-
such as may soon be probed in relativistic heavy-ion collid-state Gaussian ensemilelescribes at once and on the same
ers and the problem of reheating the very early universe aftdpoting both the quantum and classical statistical fluctuations
it has passed through an epoch of rapid expansion and coadf the ®; field about its mean value, arbitrarily far from
ing. thermal equilibrium.

This class of problems requires a consistent treatment of An important property of the evolution equations in the
time-dependent mean fields, such as the expectation value Brge N limit is that they are Hamilton’s equations for an
the scalar field, in interaction with its own quantum and/oreffectiveclassicalHamiltonianH . (in which# appears as a
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parameter This effective Hamiltonian turns out to be noth- Goldstone boson@n d>1 spatial dimensionswhich domi-
ing else than the expectation value of the full quantumnate the dynamics in the largé limit. In d<1 spatial di-
HamiltonianH in the general mixed state described by themension there is no symmetry breaking and the system is

time-dependent Gaussian density majix.e., inevitably driven into the symmetric phase, no matter what
the initial state or energy density. The one-dimensional case
Her=Tr(pH) . (1.))  is of more than passing interest in showing how thé\{(

symmetry is restored dynamically and the Mermin-Wagner-

The canonical variables ¢ are in one-to-one correspon- Coleman theorerf6] is satisfied in real time. Fail>1, the
dence with the parameters needed to specify the generabsence of a finite mass threshold means that an arbitrarily
Gaussian density matrix in the Schiioger picture, or the small amount of energy in the mean field can create massless
one- and two-point functions of the Schwinger-Dyson hier-Goldstone boson pairs nearly at rest. This open channel pro-
archy in the Heisenberg picture. In order to highlight thevides an efficient mechanism for the mean field to continu-
Hamiltonian structure of the mean field equations, our firstously transfer its kinetic energy to the massless particle
purpose in this paper will be to establish these various cormodes over time. The existence of degrees of freedom with
respondences in detail for the ®Y-symmetric\(®;®;)*>  zero mass or infinite correlation length is characteristic of
theory. The existence of an effective Hamiltonian makes itsecond order phase transitions in general. Hence, the real
clear from the outset that the leading order lalyapproxi-  time dynamics of spinodal decomposition in such second
mation is self-consistent and energy conserving, and henasrder transitions can be studied in our approach. The pres-
does not introduce any time irreversibility or dissipation “by ence of a symmetry which requires massless particles is also
hand” into the system. In this connection let us be very clear feature which the @) model shares with other physically
that in this paper we are discussingclsed Hamiltonian  interesting theories such as non-Abelian gauge theories and
system, without any external fluctuations which can providegravity. The ON) scalar theory provides an instructive ex-
sources or sinks of energy. ample of mean field dissipation by means of massless par-

A corollary of the identification of the effective Hamil- ticle creation, which should be applicable in other quite di-
tonian Heyr in the largeN limit is that its static piecéJe  verse contexts, such as gluon production in relativistic
(obtained by setting all the canonical momenta to yerthe  heavy-ion collisions or graviton creation in early universe
true effective potential which governs the nonequilibrium phase transitions. Developing techniques and gaining some
evolution of the system. This true effective poten(BEP) is  valuable intuition for these more challenging problems is our
real, and completely well defined for states far from thermakhird reason for presenting a study »{®;®;)? theory in
equilibrium. In the special case of thermal equilibrium it be- some detail.
comes thenternal energyU of the closed Hamiltonian sys- |t is remarkable that despite the explicitly Hamiltonian
tem described byH«. In contrast, the Helmholtz free en- structure of the mean field equations, we observe quasidissi-
ergy F which is very often called the “effective” potential is pative features in the evolution, in the sense that energy
not defined away from thermal equilibrium and becomesflows from the mean field®;) into the fluctuating particle
complex in the unstable spinodal coexistence region betweamodes without returning over times of physical interest. In
the two spontaneously broken vacua in simple approximatiowther words, although the underlying equations are fully
schemes. This is easily understood in the more general nofime-reversal invariant, typical evolutions beginning with en-
equilibrium context of this paper: It means simply that thereergy concentrated in the mean fields afectively irrevers-
is no stable equilibrium state in the coexistence region with dple, at least over very long intervals of time. This apparent
fixed constant value of®;). In other words, if we start at irreversibility is quantifiable, first, in terms of the increase in
t=0 with initial conditions corresponding to this putative particle entropy obtained by averaging over the rapidly vary-
thermal equilibrium state, the system immediately begins tdng phases of the fluctuating modes and, second, by the ef-
evolve in time away from it, and this is the physical meaningfective damping rate of the collective motion which we cal-
of the imaginary part of [4]. culate by a standard linear response analysis. Since the mean

We shall see that the free energy functien(or its real field Gaussian approximation contains no collision terms, the
par is a very poor guide to the time evolution of the systemparticles interacting with each other only through the mean
far from thermal equilibrium. In particular, the oscillations of fields, this effective relaxation to a quasistationésyt non-
the time-dependent expectation valy®;(t)) about the therma) state is a form of collisionless damping, similar to
spontaneously broken minima are characterized by a frekandau damping in nonrelativistic electromagnetic plasmas.
quency(the plasma frequengywhich is not the second de- We call this collisionless damping due to effective loss of
rivative of F at its minimum(which turns out to be zejo  phase information in the fluctuating quantum modephas-
Moreover, even théocation of the minima ofF is in general  ing, and present numerical results which substantiate the the-
different from the stationary points of the mean field evolu-oretical discussion of damping of the mean figlddue to
tion. Explicitly solving for the actual nonequilibrium mean massless particle creation in the continuum.
field dynamics of a closed field theory system and demon- Dephasing of the fluctuations is both an extremely general
strating that it is quite different from what might be inferred and efficient mechanism for introducing effective dissipation
from an uncritical use of the equilibrium free energy functioninto the reversible Hamiltonian dynamics of mean field evo-
F is the second major emphasis of this work. In this welution. Hence, even in this relatively simple collisionless ap-
corroborate the similar conclusions reached in Ref. proximation to a quantum many-body theory one can begin

The spontaneous breakdown of the globaNP&ymme- to see how irreversibility and the second law of thermody-
try in the model leads to the existence Mf-1 massless namics emerge from a consistent treatment of fluctuations in
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a closed Hamiltonian system. Collisions which first appear aperturbations away from thermal equilibrium, as well as
one order beyond the mean field limit in the lafgeexpan-  away from the nonthermal stationary states found in the pre-
sion would be expected to make the dephasing and dissip&ious sections, compute the plasmon damping rate, and com-
tion found at lowest order still more efficient. pare it with the numerical results. We conclude in Sec. VII
In addition to the effective dissipation of energy from the With a discussion of our results and of their possible appli-
collective plasmon mode to the fluctuations, dephasing i§ation to diverse problems of interest in the real time dynam-
also responsible for quantum decoherence, in the sense &8 of second order phase transitions with a scalar order pa-
suppression with time of the off-diagonal elements of the'@meter. _ _ _
Gaussian density matrix. The point is that by going to the There are three Appendixes, the first on the renormaliza-
appropriate time-dependent number basis the diagonal m4on Of the energy and pressure of the theory, the second
trix elements ofp are adiabatic invariants ¢ .+ and there- catalpgmg some mgthemancal properties of the _G_aussmn
fore slowly varying functions of time, while the off-diagonal 9€NSity matrix used in the text, and the third containing the
elements are very rapidly varying. These rapid phase variaqeta'ls of the numerical methods used in solving the equa-
tions in the off-diagonal interference terms cancel out ven/'onS-
efficiently when the sum over the mode momentum is per-
formed or if the phases in a given mode are averaged in time. Il. LARGE N EFFECTIVE ACTION
In either case, the particle creation and interactions have the
effect of bringing the quantum system into wredfectively
looks more and more nearly like a classical mixture in which
the phase information in the off-diagonal components ma;} ) . -
be discarded for most practical purposes at late times. Th pvariance properties of the theory and providing a general

symmetry-breaking behavior of the density matrix and effec- ramework for the systematic expansion in powers & i

tive disappearance of quantum interference between the wdY d_eswed order beyond_ the mean field approxm_atlon. I_-|ere
classically allowed outcomes is the final result. we will present only a brief synopsis of the effective action

An important consequence of decoherence is the appe pproach and refer the interested reader to the earlier work

ance of a diagonal effective density matrix which may be 1-3] for details of the derivatioriwhich is quite standajd

sampled to generate smooth classical field configurationsThe underlying ON)-symmetric scalar field theory with

These configurations are free from spurious cutoff depen\-Nh'Ch we bggm is described id space dimensions by the
dences and can be used to address issues such as, e.g.,qms'cal action

generation of topological defects in a nonequilibrium phase

transition and the modeling of individual events in heavy-iong [ @, ,X]zj' dt dox Lo[D;,x]

collisions.

The time-dependent scalar theory is an excellent theoret- 1 N [x
ical laboratory for the study of general nonequilibrium phe- :J’ dt d [ —-®,G Y x]P+—x —+,u2)],
nomena such as decoherence and the quantum to classical 2 AT\ 2
transition quite aside from specific potential applications to 2.9
phase transitions in many systems of physical interest. The
detailed study of effective dissipation and decoherence in awherei=1, ... N and
explicit field theoretic example is the fourth major focus of
the present work. Some of our results on the Hamiltonian G Yx]l=—-0O+x (2.2
nature of the evolution and on dephasing and decoherence
have been reported earlier in condensed ffrin is the inverse propagator of th scalar fields. We take the

The paper is organized as follows. In the next section waignature of the Minkowski metric to be<,+,+,+) and
begin by reviewing the large\ expansion ofA(®;®;)?>  use units in which the speed of light and Boltzmann's con-
theory in the real time effective action formulation. The stant are unityc=kg=1, but we retairt in what follows in
Hamiltonian structure of the equations of motion is exhibitedorder to exhibit the semiclassical nature of the laxgkmit.
and the effective Hamiltonian and Gaussian density matrix The form of the action2.1) is equivalent to the more
are identified in Sec. Ill. The static part of this effective familiar Lagrangian density
Hamiltonian is the nonequilibrium true effective potential
U Which we define and relate to the thermodynamic free 1
energyF in Sec. IV. Numerical evolution of the actual equa- Lol ®i]=—5(9,Pi)(9"®i) = Vy
tions of motion in both one and three dimensions shows

The most direct method of deriving the equations of mo-
tion in the largeN approximation is the method of the effec-
ive action, which also has the advantages of exhibiting the

clearly the difference with what might have been inferred 1 A 2Nu?\?
from F. In Sec. V we identify the adiabatic particle number == 5(0,Pi) (")~ @(Cbi‘pi_ x ) ,
basis in which dissipation through the increase of the effec-

tive particle entropy and decoherence are described. We also 2.3

present numerical evidence for the efficient dephasing of the o . i

quantum modes in the time-dependent mean fields, and shoth the definition of the auxiliary field by

how it leads to typical classical configurations in the mixture

in which quantum interference effects have been washed out. - 24 Ld)d)- (2.4
In Sec. VI we perform a linear response analysis of small X WToN T '



6474 COOPER, HABIB, KLUGER, AND MOTTOLA 55

since the two Lagrangians; andL are then equal up to a
surface term. The quartic coupling in the Lagrangian has
been taken to b&/N from the outset, rather than rescaling it
later by 1N as is sometimes dorjd].

If the parameteru?>0, then this Lagrangian describes
spontaneous symmetry breaking since the minimum of the
classical potential/, occurs at

2
®; min=3in VN vg, Vo= \/;M (2.9

rather than at zero. The second derivative of the classical FIG. 1. The one-loop self-energy diagram.

potential is N
D —> 2
Ao [0 N 2, bidi—Ng, (2.10
70,00, 2N | PP Tt i
and drop the Qf) index, thereby returning to a single-
_ A component description in which is the rescaled expecta-
_(Xéij + ﬁq)icbj)' (2.6 tion value in the symmetry-breaking direction, i.e.,
which evaluated a®;=®, ,,;,, becomes b= (@)= 5nNo. (21D
PV, 0, i orj=1,...N—1, 'I_'henSd[qS_i XI1=NS[ b, x] is_ justN times the classical ac-
W oo =12 i=j=N. (2.7)  tion of a single-component field and EQ.8) becomes
if
— -1
At this minimum the ON) symmetry is spontaneously Serl b X1=NS[ b, x1+ N7 TrinG ™ {x] . (2.1

broken, y=0, and there ar&N—1 massless modes. Small
oscillations in the remaining=N radial direction describe a Thus, the role of the largdl limit is simply to justify the
massive mode with bare mass equal@u=\Avo. In this  neglect of the single radial massive degree of freedom rela-
standard way of describing the symmetry breaking, one ditive to theN—1 massless Goldstone bosons in the propaga-
rection is singled out and its vacuum expectation value igor G[ x] of the ® field. As we shall see in Sec. VI the
scaled withy/N as in Eq.(2.5). It is clear that in the large massive degree of freedom reappears in the guise ofthe
N limit the quantum effects of the single radial degree ofpropagator which controls the plasma oscillations around
freedom are down by W compared to théN—1 massless dnmin-
modes which dominate the dynamics. Before proceeding it is worth pausing at this point to com-
Passing now to the quantum theory, the laljemean pare and contrast the lardeeffective action2.12 with two
field approximation is obtained by retaining only the leadingdifferent but related approximations. The simplest is the
terms in a systematic expansion of Feynman diagrams istandard one-loop approximation on the single-component
1/N. To leading order these reduce to the one-loop diagrantheory, which is obtained by expanding tfkefield about its
with the effective mass squargdi.e., the quantum effective mean valugp. The quantum effective action in this approxi-

action to leading order is just mation is
|h 1 = it -1 7

Sel $1.X1=Sel &1 X1+ N% TrnG 1 x], (28 Stool #1=Sal ¢+~ TrinGY[vgl, (213
wherey is to be treated as an independent field, determinehere the effective mass appearing in the two-point function
from its own variational equation, IS

2
oS, - , 0 Vg 3\
el Pi s X] o, (2.9 cI:_Z_é,(DC = —,uz—l— 7(1)2 . (2.19
ox oo

and ¢; is the expectation value of the quantum operatorThe simple one-loop approximation includes only the one-
@, . In writing Eq. (2.8) we have ignored the difference be- loop self-energy diagram of Fig. 1, without any further re-
tweenN andN—1 in the one-loop term to leading order in summation of diagrams. As is well known this simple per-
largeN. turbative  expansion requires bothZiag<l and
The classical actiosy and Tr InG™[x] term in S are  ANgIN(¢p/M)<1, where m is some renormalization mass

both of order N because of the summation over scale. The appearance of large logarithms severely limits the
i=1,...Nin Eqg.(2.2). Once this is recognized it is some- range of validity of the one-loop approximation, and leads
what more convenient to make the replacement also to infrared divergences in the free energy potep@hl
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The approximation, usually called the Hartree or Gaussian

approximation in the literature, is closely related to the large

N approximation in that the second derivative of the classical

potential V¢, in Eq. (2.13 is replaced by its Gaussian mean

value, viz.,

if
Startred ¢, M?]=Sy+ - Trin G '[M?], (219

, | Vg , A A
Me = ) =\ —M +m¢k¢k 5IJ+N<(I>I(I)J> .
(2.16

In the Hartree approximation the classical action should be
expressed in terms of the appropriate set of variational pa-
rameters¢ and Mizj . In both the Hartree and large ap-
proximations the expectation values of bhilinears obey the
factorization condition

(‘Pi(X)‘Pj(y)):((Di(X)) (‘I)j(y)>—iGij(X,y)- (2.17 FIG. 2. Typical self-energy daisy and superdaisy diagrams in-
cluded in the Hartree or leading order lafyeapproximation.
Because of the sum over the repeated inklex,... N in the In physical terms, the fundamental excitations in the large

diagonal;; term, it is orderN® compared to the last, order  |imit are theN— 1 Goldstone modes, whose masslessness
1/N, term in Eq.(2.16. In the largeN approximationG;; is s fixed by the ON) symmetry which the N expansion
just 6;G[ x] for i,j#N, and the last term in Eq2.18 is  respects order by order. In contrast, the Hartree approxima-
discarded at leading order as in Eq2.6) and (2.12,  tjon is not a systematic expansion in any small parameter.
whereas in the Hartree approximation of E¢8.15 and  The result is that although the two approximations are very
(2.19 it is retained. An important consequence of this dif- simjlar in some respects and may be handled by the same
ference between the two approximation schemes is that URechniques, the physics they describe is really quite different.
like the Hartree approximation, the largeeffective action  which approximation is more reliable depends very much on
is the leading term in a series in a well-defined expansion ifhe application, and in particular whether or not the massless
powers of 1IN. Thus, it is possible to improve on the large Goldstone modes of the lardé limit actually play the lead

N limit in a systematic way by retaining higher order termso|e in the physics we wish to describe. Certainly one would
iq this series{_lfs’]. In contrast, the Hartree approximation is pnave no justification in applying the lardé method to the
simply a variational ansatz. _ caseN=1, for example, where no Goldstone modes exist at
_ In terms of the ordinary rules of weak coupling perturba- )| since we wish to describe the dynamics of second order
tion theory the Feynman diagrams that contribute in both th@)hase transitions in this paper, it is significant for our pur-
large N limit and the Hartree approximation may be repre-pose that the largd\ expansion predicts a second order
sented by the sum over the daisy and superdaisy diagrams ghase transition at the critical temperature given by (B

Fig. 2. This sum of perturbative self-energy inserti¢dd-  pelow, whereas the phase transition in the Hartree approxi-
fering in their internal ON) index structure and combina- mation is(weakly) first order[9]. The critical exponents of
toric factors in the Hartree and largé cases due to the the second order transition have been calculated up to order
difference between ;; andM?] simply amounts to a geo- 1/N2 in the large N approximation and give reasonable
metric series which shifts the mass pole of {dg®;) propa-  agreement with other methodsuch as thee expansioh,
gator from its perturbative valug2.14 to the self- even for moderately smal [2].

consistently determinegts;; or M, . Hence both the large In addition to providing a practical expansion technique in
N and Hartree effective action@.12) and (2.15 can be equilibrium phase transitions the largfeexpansion has the
written in the same form as the simple one-loop effectivesignificant conceptual advantage over the Hartree approxi-
action(2.13), but with different values of the mass parametermation of placing mean field theory in its proper context
in the one-loop term. This is the resummation of self-energywith respect to other systematic methods in nonequilibrium
diagrams required by a renormalization group analysis, angtatistical mechanics. In fact, the systematic truncation of the
in fact, y is a renormalization group invariafl]. This is  Schwinger-Dyson hierarchy of connected-goint functions
equivalent to the resummation of the leading logarithms oby the largeN expansion in quantum field theory is the pre-
perturbation theory which removes the infrared divergencesise analogue of the truncation of the BBGKY hierarchy of
in the equilibrium free energy function and extends the range-particle distribution functions in nonequilibrium classical
of validity to very small(or very large mean fields, until the statistical mechanics. The existence of an energy-conserving
subleading logarithms, i.e., terms lik&\ZIn(¢/m), eventu-  expansion parameter inN/iwhich preserves all the relevant
ally become important. symmetries of the underlying field theory is a powerful tech-
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nical tool for development of the quantum theory of nonequi-
librium processes from first principles in a systematic way
[3]. 09}t
In the real time formulation, the effective action of Eg.
(2.12 becomes the starting point for all further analysis of 08
the largeN nonequilibrium dynamics. Sincg is constructed
by taking a Legendre transform in the presence of external 07
sources, it follows that its first variation with respect to the
independent mean fields or y is proportional to the sources
for these fields. In the absence of external sources, theseos|
variations yield the equations of motion for the mean fields.
The variation with respect tg, Eq. (2.9 yields the equation 04r
of constraint or gap equation

03+
2, M 021
X00={ = W2+ 5 (00,0 -
. 04}
S N, I\
=—u +§¢ (X)_?G[X](X,X) y (2.18) 0 ! | I 1 I 1 I L
1 08 06 04 02 0 02 04 06 08 1

which will be recognized as just the expectation value of the @/

(operatoy definition of the auxiliary field in Eq(2.4) upon
using the factorization conditiof2.17), correct to leading
order in 1N. Since G x] itself depends ory through the
definition

FIG. 3. The unstable spinodal region of the,T) plane, where
X is negative. From Eq(4.7) this is the region¢< ¢ where
(p1/v)%2=1—(TIT.)? is the parabolic curve shown in the figure.

region of Fig. 3. The spinodal at a given temperature is the

region where the second derivative of the potential becomes

Eq. (2.18 is a nonlinear integral equation for the gap func- negative. In the larg&l approximation, this corresponds to
x<O0.

tion x. . . .
The variation with respect t@ yields the equation of In this paper we shall be concerned only W'th_ spatially
motion for the symmetry-breaking expectation value: hpmogeneous mean f'el.dﬁz ¢(1) and x=x(1). I.t IS not
difficult to treat spatially inhomogeneous mean fields by the
1 8Sei &, x] same methods, but as the homogeneous case is simpler and
N T=G‘1[X]¢(x)=[—D+X(x)]¢(x)=0 . already contains much of the essential physics, we restrict
(2.20 ourselves to that case in this paper. As we shall see explicitly
' in succeeding sections this restriction corresponds to a spa-

That y is a useful indicator of symmetry breaking should befially homogeneous ensemble average, although any particu-

(=O+x)GLx1(x,x") =" (x,x") , (2.19

clear from the spacetime-independent form of E420), lar member of the ensemble may be spatially inhomoge-
neous. Thus, information about spatial correlations is
x¢=0 (d,4=0), (2.2) certainly contained in the two-point correlation functi@n

describing fluctuations away from the mean values, even
which tells us that eithewp or x (or both must vanish when the mean valueg(t) and x(t) are space independent.
in a uniform, stationary state. The casp=0 is the Indeed, whenp andy are functions only of, then the two-
O(N)-symmetric state, while the case of nonvanishihgs point Green’s functior is a function of the spatial differ-
the spontaneously broken state in whjgh O is the vanish-  encex—x’ and it is useful to introduce the Fourier transform
ing Goldstone boson mass. This is an explicit realization obf the corresponding Wightman functida.. (or G_):
Goldstone’s theorem, which is respected by the Iaxgap-

proximation. In the following the explicit functional depen- G- (t,x;t' X )=—GX(t,x;t',x")

dence ofG[ x] and its inverse on the mean fieldwill be

suppressed, and we adopt the simpler notaGqmw,x’) or :f dk1e® O XG_ (1.t k). (2.2
still more brieflyG, hereafter. Ldk]e >(Lt5k), (2.2

Whereas the spontaneous symmetry-breaking solution
x=0 can be achieved only whepi= +v,==* 2\ clas-  With
sically, in the largeN approximation the two-point function
G contributes at the same order and can even dominate the d’k

) ) . ; ) [dk]=——3 . (2.23

mean field$ in Eq. (2.18. SinceG itself depends ory, this (2m)
additional term also has the effect that thefield can un-
dergo nonlinear collective plasmonlike oscillations as weln fact, G- is a function only ofk=|k| by rotational sym-
shall see explicitly in Sec. VI. Notice also that there is noth-metry of the spatially homogeneous state. Information about
ing to preventy from being negative at some times which spatial correlations resides in tkelependence of the Fourier
allows us to explore the dynamics of the unstable spinodaspectrum of this two-point function.
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The Wightman functions are solutions of the source-free f— coshy,e' %t 1¥f, + sinhy,e % 1EE (2,32
wave equation. Explicitly, if the original quantum field op-

erator®; is expanded about its mean val#11) in terms of  without affecting the mode equatiof2.27) or Wronskian
the quantum mode$, and the corresponding plane wave condition(2.30. This is equivalent to making a Bogoliubov
creation and destruction operatarsanday, transformation which sets to zero the expectation values of
the pair densitie¢a,a,)=(a/a})=0. Hence there is a natu-
OBy (1, ) =i(t,x) —(®;) ral SU1,1) Heisenberg group structutéor eachk) inherent
‘ ' in the leading order largBl equations.
=L~ 92 [e**f(hacte KX (Dal], i#N, In the gap equatiorf2.18 the coincidence limit of the
k Green’s functionG(x,x) appears. The coincidence limits of
(2.24 eitherG-. ,G_ or the Feynman propagat@ are all identi-
_ ) ) _ o cal, and so we obtain from Eq€.22 and(2.28 the coin-
in a d-dimensional cubical box of finite length, then the  cidence limit of any of the Green's functions in the form of
ARG (1, Xt ,x")=i(oD(t,x) 5P(t',X")) , AG- (1,1, =hG_(t,Xt,X)
AG_(t,xt" x")=i{s®(t' ,x")éP(t,x)) . (2.29 :ij (k] [F(O2L2NR)+ 1], (2.33
The relationG. = — G% follows immediately from the Her-
miticity of the underlying quantum field® in Eq. (2.24). Since the mode functions obeying Eq&.27) and (2.30
The expectation value of the particle number density inhehave as
this basis(not to be confused with thH of large N),

N(k=|k])=(afay), (226 f () =T (t)= \/zj(t) exp( —i ftdt'wk(t')> (2.34)
k

is also a function only ok by isotropy of the spatially ho-
mogeneous state. In terms N{k) and the complex mode for largek, where
functionsf,(t) obeying

. o= Vk*+ (1) , (2.39
d
az+k2+x(t) fi(t)=0, (227 the integral in Eq(2.33 is quadratically divergent inl=3

spatial dimensions. Introducing an explicit momentum cutoff
the Wightman functions may be expressed in the form A and performing the anguldr integrations, the gap equa-
tion (2.18 may be rewritten in the form
Go(t,t k) =if () fx (t)H[N(K) +1]+ifi (1) f (t")N(K) .

(2.28 A Ao [A
X(O)=—ui+ 5O+ | KK (D)o
The commutation relation (2.36
T

(8.8 1= b 229 ¢ d=3, where we have introduced the notation
implies that the complex mode functions should be chosen to _
satisfy the Wronskian condition 7 =2N(K)+1. (239

df* df The fact that the bare parameters and\ , must depend on

S L (2.30  the cutoff in order to render the equations independent of

“dt “dt A in the end has been exhibited explicitly as well. The qua-
dratic divergence id=3 is the divergence of the one-loop
self-energy diagram in Fig. 1 and is absorbed into the bare
mass parametgr, . One convenient way to effect this mass
renormalization is to evaluate Eq2.36 in the time-
=in oI (x—x") . (2.3) independent spontaneously broken vacuum, where0,

¢=v, o=1, and the mode functions are given by

in order for the quantum field operatdr to obey the usual
canonical commutation relation:

oD
@(t,x),ﬁ(t,x’)

The normalization of the time-independent Wronskian con-

dition (2.30 is the only place where the constd@nenters the f(vao _ \/ze—ikt (2.39
. . . . . . . k . .

mean field equations, which otherwise are classical in their 2k

time evolution dynamics.

We have not written tha priori possible bilinear terms In this way the quadratic divergence in the integral of Eq.
fi fi or fify in Eqg. (2.28, since they can always be ab- (2.36 is absorbed into the relation between the bare and
sorbed into a redefinition df, andN(k) under the transfor- physical expectation value of the field3 can be eliminated,
mation and we obtain
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Ao early back on the time-dependent mass gap functitn,
x(t)= 7[¢Z(t)—vz] corresponding to the full sum of daisy and superdaisy dia-
grams in Fig. 2.
Ay (A, ) h In d=1 space dimensions the integral in EQ.18 is
+ Ezfo Kk [f(O°ox =51+ (239 only logarithmically ultraviolet divergent and the one sub-
traction of Eq.(2.39 is sufficient without any\ renormal-
ization. However, in lower spatial dimensions the snkadir
infrared behavior of the integral becomes more delicate, and
must be treated carefully.

which is free of quadratic divergences.
The remaining logarithmic divergence in the mode inte-
gral of Eqg.(2.39 is removed by the logarithmic coupling

constant renormalization in the usual way: i.e.,
Ill. EFFECTIVE HAMILTONIAN AND DENSITY MATRIX

Aa=2Zy H(A,m) Ag(m?), (2.40 The presentation of the larg¢ equations of motion of the
previous section was based on the functional method, in
with which the extremization of the effective actidfyy in Egs.
(2.20 and(2.18) takes the place of the usual Euler-Lagrange
variational principle of classical mechanics. The equations so
% A2 . .
Z,(A,m)=1— —z)\R(mz)m(—z) obtglned are for the mean \(alues qf the f|elq operators and
327 m their two-point Green’s functions which describe fluctuations
5 A2 ]2 about the mean fields. This immediately raises a question: Is
1+ _2>\A|”(_2” (2.41) there a corresponding Hamilton form of the variational prin-
327 m ciple for an effective larg& Hamiltonian involving both the
mean fields and their fluctuations? In addition one would like
and )\R(mz) the renormalizedb? coupling defined at some to know to what distribution of field amplitudes in the Schro
finite mass scalen?. By dividing both sides of Eq2.39 by ~ dinger wave function(or density matrix do the largeN
\, and using Eqs(2.40 and(2.41), it is straightforward to  equations for the one- and two-point functions correspond. It
verify from the largek behavior of the integrand that the is to these questions that we turn in this section. Answering
logarithmic dependence oh of the integral in Eq(2.39 is  them will lead directly to the true effective potential of non-
canceled by the logarithm in E¢2.41). Thus, the resulting €quilibrium largeN mean field theory.

equation fory(t) is independent oA\ for A large, andy is _Let us begin by consideration of the casedef0 spatial
in fact a renormalization-group-invariant physical massdimensions, i.e., quantum mechanics. The generalization to
squared of the theory. higher d will turn out to be straightforward. Fod=0 the

The condition thaZ, >0 prevents us from taking the cut- LagrangianL or L. of Eq. (2.1) or (2.3 is that of an
off strictly to infinity with A\g>0 fixed, for otherwisez, N-component anharmonic oscillator. =1, it reduces to
from Eg. (2.41) would eventually become negative and thethe usual anharmonic double-well oscillator. In tbe=0
theory would become unstable. This is just a reflection of thecase there is n& index to be integrated and the equations
Landau ghost instability of scaldr* field theory, and means derived in the last section become simply
that the theory can be sensible and nontrivial only as an
effective field theory equipped with a large but finite cutoff
A. This presents no problem in practice as long\as large
enough that the physical time evolution, plasma oscillations,
damping, etc., occur on time scales much greater than N
A _ 1 In that case, the evolution is numencally quite insen- x(H)= §[¢2(t)+§2(t)—u§] (d=0), (3.2
sitive to the value ofA over a very wide range, provided
AR is not too largd 3]. We will focus in this work on mod- ) ]
erate coupling stengthdhg=1 where the effects of back Where we have introduced the notation
reaction on the mean field evolution are significant. The case

2

gz tx(0]eh=0,

2 — 2_ 2
of very weak couplingof order 10 2~10"13), of interest in &t =o [f(O)[*=2N+1)[f(1)] (3.2
inflationary models of the early universe, has been consid- i
ered in Refs[5,10,11. in terms of the expectation of the number operator

There is no wave function ap renormalization at lowest N=(a'a). We recognize that
order in largeN, and so no further renormalization is re- ) ) )
quired ind=3 to this order, and Eqg2.20), (2.27), and E(D)=(P()DP(1))— d7(1) =((P(1) — &(1))7) (3.9
(2.39 together with the constraint on the initial dg®&30 ) .
specify a well-defined closed system of evolution equationdS just the quadratic variance of the quantum operdi(r)
for the mean fieldsp and y in interaction with the fluctua- from its mean valueb(t). By differentiating this relation and
tions fy. defining n=¢ we find

Let us emphasize again that these equations differ from
the purely class_ical _tree_-level approximation or the simple 2§(t)n(t)=(<i)(t)<1)(t)+(l)(t)(i)(t)—2¢(t)¢(t)>
one-loop approximation in that the last term of E2.36) or )
(2.39 couples the fluctuations self-consistently and nonlin- =20Rgff*) . (3.9
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The advantage of defining these quantities will become apaa, a'a’, andaa’+a'a generate the Lie algebra of ()
parent from the role they play in the physical interpretationor sq2,1) which is the noncompact version of the ordinary

of the equations of motioK3.1) in the Schrdinger picture.

Indeed, by differentiating Eq3.4) again and using both the

equation of motion(2.27) (with k=0 in d=0 spatial dimen-
siong and the Wronskian conditiof2.30 for f(t), we find

e 'gz+ alf]? o 7202
in the new notation. This equation of motion and E8.1)
are just Hamilton’s equations

(3.9

L
p__ &¢ 1
. IH
=T g (3.6

for the effectivetwo-dimensional classical Hamiltonian

1 A
Her(p, &5 7, & 0) = §(p2+ 7°)+ §(¢2+ £2-p?2)2

t20?
+ 8e% (3.7
with
o aHeff
p=¢_ (9p [}
o IH g
p=E&= P (3.8

the canonical momenta conjugate to the two generalized co-
ordinatesp andé. A different but equivalent set of canonical

variables was discussed in REL2].

Hence by the simple change of notation in E¢§2) and
(3.4) we have recognized that the larfjeequations for the
guantum anharmonic oscillator with classical potential,

A N 2
V(@)= S—N( 2 cbicbi—w%) : (3.9

angular momentum algebra(&uor sd3), and moreover, the
Casimir invariant of this rank one Lie algebra is exactly
#2024, in the standard normalization. The corresponding
Lie group is just the three-parameter group of homogeneous
linear Bogoliubov transformation@.32).

To answer the second question posed at the beginning of
this section let us recall that both the time-dependent Hartree
(TDH) and largeN equations have been studied in the Sehro
dinger representation, and they are known to correspond to a
Gaussian trial wave function ansafd3]. Indeed, it is
straightforward to verify that the Gaussian ansatz for the nor-
malized pure state Schiimger wave function,

Px)=(X W () =[2m&*(t)]

pOx [ 1
:exp{' 5 _<4§2<t> * zz§<t>)[x_¢“”2}'

(3.11

obeys the expectation value of the Salinger equation,

£2 N 2
(W (1) [ - 721 WJFV(‘D)} |W (1))
. J
=ia{P(1)] = | W (1)), (3.12
in the coordinate representation whePeis the canonical
momentum,

(P(1)|O(®,P)|W(t))= J:dx W*(x;t)@(x,—iﬁ%)

XW(X;t). (3.13

This is true provided the largd limit is taken and the equa-
tions of motion(3.1) and (3.5 are satisfied for=1. Thus,
the Gaussian ansat3.1]) is a special case of the general
largeN equations of motion, whergand » are related to the
real and imaginary parts, respectively, of the Gaussian cova-
riance.

In earlier work[14] it had been recognized that the Gauss-
ian ansatz for the Schdinger wave functio(al) imposed

derived by the effective action technique of the last sectiorbne constraint on thab initio three independent symme-

are precisely equivalent to Hamilton’s equations for the ef
fective Hamiltonian(3.7). This answers the first question we
posed at the beginning of this section in the affirmative, at

least for the case ad=0.

An immediate corollary of the Hamiltonian structure in

the extended phase spaqe &; 7, £) is that the largeN evo-
lution equations are energy conserving withy the value of
the conserved energy. It is also interesting to note fileats

a constant of the motion which enters the effective potential

2.2

: N oo 2, PO
Ueﬁ(¢a§-0):§(¢ +&°—vp) +8—§2— (3.10

trized variances

(POI(P— )W (1) =€,

(V(O)|(PO+DP—2¢p)|W(1))=2(7,  (3.14

2

h
(PO|(P-p)¥ ()= 7"+ 75

482 (pure statg,

expressing all three in terms of only the two variabdesnd

7, in the present notation. The one antisymmetrized variance
is fixed by the commutation relatiop®,P]=i%. To what
does the restriction te==1 correspond and how can it be

as a single “centrifugal barrier” term, whose effect is to relaxed? The answer to this question is suggested by the
repel the variancé away from zero. The physical and math- form of Eqs.(3.14), and definition ofo in Eq. (2.37) or (3.2),
ematical analogy to an angular momentum barrier is madevhich shows thair=1 corresponds to zero expectation of
even stronger by the fact that the three symmetric bilinearthe number operataa’a, i.e., to the pure state vacuum an-
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nihilated bya. However, the mean field equations of Sec. Il for somew, and temperaturd@. Since such a thermal state
allow for the more general possibility that this expectationcorresponds not to a pure state Sclinger wave function,
value may take on any constant valde For example, we but rather to anixedstate density matrix, it is not surprising
might consider the finite temperature Bose-Einstein distributhat a pure state Gaussian wave function ansatz cannot de-
tion scribe this case. However, the general structure of the mean
1 field equations involves only the one- and two-point func-
exp( @) _ } tions of the quantum variable, and so we should expect them
T ' to correspond to a Gaussian ansatz but forieedstate den-
sity matrix instead of a pure state wave function. The most
general form for this mixed-state hormalized Gaussian den-
sity matrix p is

NT=

ﬁa)o
o7=1+2Nr=coth 5= | >1, (3.15

<X'|p(p,¢;7],§;o')|x>

0'2 g

~(2me) Vex i 2 =01 T = 97 (xm 971 5K~ 67— k= 6171+ T (X = )= )
—\eT % 8¢2 2hé 4¢2
(3.1

in the coordinate representation. In the special case thavard to verify that the Gaussian form is preserved by the
o=1 the last(mixed term in the exponent vanishes apd time evolution undeH . [15-17:
reduces to the pure state product,

0
p(D]yor= [T (OWT ()|, (3.17) 1 —p=[Hosc.p] - (3.22
with [W(t)) given by Eq.(3.1D). For o>1 the general |n fact, substitution of the Gaussian for8.16 into this
Gaussiarp does not decompose into a product, and Liouville equation and equating coefficients Bf x’, X2,
. . x'2, andxx’ gives five evolution equations for the five pa-
Tr pz(t)Ef dxf dx' (x| p(1)|x (X' [ p(t)]x) rameters specifying the Gaussian V\_/hich are none other than
— - the Egs.(3.1) and (3.5 together witho=0.

The effective classical Hamiltonian for the larjeequa-
tions, Eq.(3.7) is just the expectation value of the quantum
which is characteristic of a mixed-state density matrix. Hamiltonian in this general mixed-state Gaussian density

That Eq.(3.16) is indeed the correct generalization of the Matrix, 1.€.,

ure state Gaussian wave functi@ll) is easily verified b
Ehecking thatp(t) satisfies thel( ex;]))ectationyvalue of ¥he Her(4.pi&,7:0) =Tr(pH) =Tr(pHosd = oL ’(3 23
guantum Liouville equation '

in the largeN limit where ¢ is the energy density defined in

- i _ Eq. (A2). The three symmetrized variances are indeed now
Tr( e | =TiH.e] @19 4 independent with

provided the largeN limit as before is taken and the equa- T p(®— ¢)*]=&,
tions of motion(3.1) and(3.5) are satisfied foarbitrary o.
Taking the largeN limit is equivalent here to the replace- T p(P®+®P—2¢p)]=2&7, (3.29
ment of the full anharmonic Hamiltonian by a time-
dependent harmonic oscillator Hamiltonian: 2 2 h2o?

H— Hos= 5[ P?+ 0?(1) @], (3.20

replacing Eq(3.14 of the pure state case. The mean values
where

) ¢=(®)=Tr(®p) and p=(P)=Tr(Pp) (3.25

wz(t)=<ﬂ£ia¢j > _—>%[¢2(t)+§2(t)—v§]=x(t)

i=j

remain valid for both the pure- and mixed-state cases.

(3.21) The physical interpretation of the five parameters of the
general largeN equations f, ¢, ,&;0) in terms of the gen-

is the self-consistently determined frequency of the oscillatoeral time-dependent mixed-state Gaussian density matrix of

in the largeN limit. With this replacement it is straightfor- the Schrdinger picture is now explicit ind=0 guantum
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mechanics. Since is the constant parameter which deter- ) IH ot s o 2
mines the degree of mixing arid and o appear only in the P=""%5 — 5 (#°+E—vp)p=x¢=0
combinationfi o, it is clear that the larg&l equations allow

for a smooth interpolation between the quantum pure statand
case in whichio=7# to the high temperature or classical

T . JH fi20'2
limit where — e -
2T .
horo— asT—w or i, (3.26 If we look for a spontaneosly broken solutiahz= 0, then

x must vanish from the first of these conditions. But then we
cannot satisfy the second condition for finite- and&. This
is just a rederivation of the fact that there can be no sponta-
neous symmetry breaking o= 0 quantum mechanid®r in

Wo

in which # drops out entirely. Thus, quantum and classical
thermal fluctuations are treated on the same footing in the, .. ¢, anyd<1). We are forced instead to the symmetry-
large N limit, with the value of the constant parametes restored situation for whickh=0 and y= x>0 is deter-

determining whether the fluctuations describedébgnd 7 mined from the real positive root of the cubic equation
are to be regarded as predominantly quantal or thermal, or

intermediate between the two. Moreover, we see that large
N Gaussian dynamics is really classical dynamics of a (50 UO)_ 4§0 (3.29
Gaussian distribution function, except thfat- which mea-

sures the second moment of the classical distribution canné@r &5(c). The Gaussian density matrix centereddsat 0

be taken to zero as it could be classically, but instead iavith variance&3(o) is the solution of the time-independent
bounded from below byi. This is made explicit by the form Liouville equation for the anharmonic double-well oscillator

of the Wigner function corresponding to the density matrixWith a trial variational density matrix of the forit8.16). In
(3.16), viz., the limit that the height of the energy barrier between the two

wells, E,=\vg/8, is much greater than the fluctuation en-
1 (e _ y y ergy in either well E;=%o\\vy/2, the width of the Gauss-
fo(X,Py) = _f dyelpxy/ﬁ<)hL 2ol x— _> ian, £&—v3, and its energyE,—#20?/8v5=EZ/16E,<E;,
27t ) - 2 2 corresponding to a probability density spread over the entire
1 pl’ (X—$)2 282 region (—uvgq,vo) in all N components ofb; .

20_2

The entire development of the Hamiltonian equations and
2¢° h2o? Gaussian density matrix is quite easy to generalize to any
2 number of spatial dimensiorts at least for the case of spa-
_('f,_ z(x_ d’)} ] (3.27 tially homogeneous mean fields. Since in Fourier space the
§ mode equations are just replicated at every spatial momen-
tum k, we have simply to introduce the subscripbn all of
Before leaving ourd=0 example it is instructive to ex- the relevant definitions in this section. For example, the den-
amine the static solutions of the effective Hamiltonian, viz.,sity matrix ford>0 can be written as a product of Gaussians
the simultaneous vanishing of in Fourier space, viz.,

T mho

<{‘Pk},|P|{‘Pk}>:1;[ {etlp(Pr & 7 € o) { ext)

A+l
=11 (2wf§>—1’2exp{i %(goa—m—‘Tg—g»{[<¢&—¢k>2+<wk—¢k>2]

k

2
“%M—W — 2+ T <<ok B (@b { (3.30
k

whereg is the generalized coordinate of the field amplitude gﬁ(t)zgk“k(t”zz[zN(k)—{- 1]|fk(t)|2
in Fourier space anpy the corresponding canonical momen-
tum. The mean fields and their canonical momenta

Bk=B0d(t),  Pi=SioP(1) (3.31) M= éx. (3.32

all vanish except fok=0 in the spatially homogeneous case.
The definitions and
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A Uer( b, {&} i{owd)
X(t)=§( v+ | [dk]éﬁ(t)—v%) AR
A = x5 [ ok k2§2+—2—ﬁ20§)
§[¢ <t>+J [dk](fkm—ﬂ)—vz (3.33 a2 T
X x|\ 1 ﬁzoﬁ
. . . =§(¢2— N +§f [dk] (k2+x)§ﬁ+ﬁ :

have been introduced in obvious analogy to the0 case. &k
The effective Hamiltonian density which gives rise to these (4.2

equations is
This Uy is the energy density of an initial state with a
hzaﬁ Gaussian density matri(3.30 centered around with in-
stantaneously zero velocitigs= 7,=0 in both the mean
4§ ) field and the fluctuation variables. We c#lly; the “true
(3.39 effective potential”’(TEP) because it determines the true out-
of-equilibrium time evolution dynamics of the system ac-
cording to Hamilton's equationg3.35. It must be clearly

. g distinguished from the finite temperature free energy effec-
2
through the gap equatiof8.33 above. Thek® term arising e potential often discussed in the literature. The relation-

from the spatia] gradignt of the field h>0 dimensions.is ship between the two we would like to discuss next.

the most significant difference from trie=0 case consid-  The standard method of calculating the free energy at

ered previously. The Hamiltonian equations of motion temperaturdl is to continue analytically the effective action
S to imaginary time[8] and evaluate the Tr I& ! term

Hes 1

—p?+ ! —x°+ f[dk] 24 Kk2e2+
TR LI Tk it

with y regarded as a dependent variable¢gofand the &,

_ _ IH ot over fluctuations which are periodic in imaginary time with
$=p, p=-— p —= =—xao, period B=%/T. In this way one finds, for the case at hand,
d’ that the(unrenormalizeflfree energy is
. ) fi20'2 X ¢2_02_{)
= M, = =—(K*+ ) &+ ——= 2 LY
&=k, T f9§k (k“+x) & 48

(3.39

ﬁwk
[dk] T+T In

ﬁwk
1—€‘XF<—?)H, (4.2)
are completely equivalent to the equations of motion for
mean fields(2.18), (2.20, and the mode function@.27) in  Which is a real function of provided
the spatially homogeneous case in any number of dimen- 2 o
sions. The Wronskian conditiof2.30 is incorporated auto- o=k +x=0. 4.3
matically into this description.

This completes our demonstration that the laljenean ~ The cutoff dependent zero point energyFns handled in the
field equations of the previous section are Hamilton’s equatisual way by subtracting the energy of the zero temperature
tions with Hey given explicitly by Eq.(3.34) above, and the vacuum aty=0, i.e., [[dk]#k/2. With the subtraction of
identification of the time-dependent Gaussian density matri%his temperature-independent constant and the previous defi-
(3.30 to which the homogeneous mean field equations corhitions ofv and the logarithmic coupling renormalization by
respond. The case of spatially inhomogeneous mean fieldsds. (2.40 and (2.41), the thermodynamic free energy be-
involves only the straightforward generalization of E830  comes cutoff independent fax large and is given by18]
to Gaussian covariances which are off diagonal in the mo-
mentum indeXk, and a corresponding coupling between the . . Xt ho(A,
different momentum modes in the effective Hamiltonian F($.T)=—5| ¢"—v ——|+ mfo ke dk
(3.34). Since we have no need of these expressions in the A

present work, we do not give the explicit formulas here, X Ay
though they may be easily worked out within the present X wk—k—Z—;JrZTIn 1—ex;{ —?) ,
framework.

(4.9

IV. NONEQUILIBRIUM TRUE EFFECTIVE with X, the solution of the finite temperature gap equation:
POTENTIAL (TEP)

Having obtained the effective Hamiltonian which de- :)‘_A 22 +m\AJAk2 K
scribes the evolution of the closed system of mean fields and X(#) 2 (¢"=v9) 872 d
fluctuations in the largéN limit, it is natural to define the

dynamical or true effective potential to be the static part of Xl 1 ._(ﬁwk) 1] )

the effective Hamiltonian densit{8.34): i.e., oMo Tk
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As long asxT>0 the free energy functiofd.4) is real and 4
well defined.
The first derivative of the free energy function is given by 3
dF
%:XTqé (4.6) F 2
upon using the gap equati@d.5). In the spontaneously bro- 1
ken state defined byT=0, we have
0
B[ 1 T2 0.5 1 1.5 2 2.5
2_ 42 2 " —2_
¢°=d1=v 2772j0 k dk 7k v 1o )
exXx ? -1
4.7 FIG. 4. The Helmholtz free energy as a function of¢ for

three temperature®/T.=0.1,1,2 (in ascending ordérin units of
The last relation informs us that the expectation valye v=1 andr=1 in the leading order largdl approximation. The

vanishes at the critical temperature ¢-independent thermal free energym?T#/90 has been subtracted
out. The lowest curve terminates at the minimunmFoét ¢= ¢,
T :Zm v 4.9 x7=0, given by Eq.(4.7), which is the boundary of the spinodal
c . .

region; i.e., forp<¢ there is no stable equilibrium state. The

. i second derivative oF at ¢= ¢ vanishes, showing in particular
At T=T, the second derivative OF(¢,T) vanishes at ¢ the phase transition @t=T, is second order.

¢ =0, and therefore the phase transition is second order in

the largeN approximation. We remark that this mt the o can be replaced by a classical probability distribution at
case in the simple one-loop or Hartree approximation whergyte times when a relation like E.10 holds is discussed
the transition is weakly first ordd9]. Since thed®* field in the next section.

theory lies in the same universality class as spin models Ag it turns out, the second derivative of the free energy
which are known to have second order phase transif2hs  fynction vanishes at its minimum fany T<T,. This fol-

the Ia_1rgeN mean field apprqxi_mation gets the order of the|gws the fact that the derivative of the gap equatidb)
transition correct. Characteristic of a second order transitionggjyated aty_=0 involves an infrared linear divergence
.

the correlation length, which is given by the the inverse mass . . R .
of the radial excitation, with the result that solving for the derivative gives

6 |12 dx.(#) 0o 411
12,1 T\ -12 = .
d(T)_)\R ¢T _)()\RTC) (TC T) ’ (49) d¢ XT:O
diverges asT—T.. The critical exponent-1/2 is that of ~and
mean field theory.
Because of the divergence of the correlation length at the d?F dx (&)
critical temperature, it is sometimes said that the dynamics of de? =Xt do $=0 (4.12

a second order phase transition is classical, in the sense that
aty =0. This perhaps surprising feature of the laidree

ﬁNT(k)HI ' 4.10 energy is illustrated in Fig. 4 Itis a direc_:t consequence of
k the massless Goldstone particles present in the spontaneously
broken phase. As we shall see in Sec. VI, it also makes the

which is independent of ask—O0. It is true that the very equilibrium free energy useless for describing the plasma
long wavelength dynamics is dominated by the classicabscillations about the spontaneously broken thermal mini-
Rayleigh-Jeans part of the Bose-Einstein distributionmum.
N1(k). However, at finite length scales and/or in nonequilib- For T<T, and ¢ < ¢t the gap equatiofd.5 has no posi-
rium situations where finite time scales enter, the classicdive real solutions. This is the unstable spinodal region of
limit is not strictly justifieda priori, and should be checked Fig. 3. If <0, then the frequencw, becomes imaginary
on a case-by-case basis. Certainly the space and time scafes k<|x|Y2 This means that, strictly speaking the thermo-
of the order of the thermal wavelengtiT or less are not dynamic free energy is not well defined in this region.
classical at all, even in thermal equilibrium. Also, the classi-Despite the fact that no thermal equilibrium uniform state
cal limit of long wavelength modes in E.10 is a differ-  can exist in this spinodal region, what is sometimes done is
ent limit from that in which particles act like billiard balls to definethe free energy by an analytic continuation from
(i.e., when their de Broglie wavelength is musimallerthan x>0 to xy=—|x|<0. By this procedureF acquires an
their mean free pajhand a classical Boltzmann transport imaginary part, while its real part is no longer a convex
description becomes appropriate. The extent to which thé&unction of ¢ (as general theorems requir@his has led to
Gaussian gquantum density matrix of the lalj@pproxima- much discussion in the literatuf&9,2Q.. However, we need
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not wonder at the meaning of this analytic continuation and

imaginary part of in the more general nonequilibrium con- 8
text. The analytic continuation frony>0 to y=—|x|<0
simply defines a Gaussian density matrix centered at 6

$< ¢ with instantaneously zero velocitie$p= 7,=0, and
parameters, and o= 2N+(k) +1 determined by the ther-
mal distribution afx_|= —x_ where the free energy is well

defined. The density matrix will certainly evolve away from

this unstable configuration and the imaginary part is a mea- 2
sure of the rate at which this evolution will occur initially
1.5 2

[4]. However, shortly afterwards the nonlinear effects of the 0
evolution described by our general nonequilibrium equations
of motion will set in, and this imaginary part can only be at

best a simple order of magnitude estimate for the evolution P
away from the initial state in the weak coupling limit
fing=<1. FIG. 5. The TEPU as a function of¢ and evaluated in a

The nonconvexity of the real part of the free energy isthermal equilibrium state for the same three temperatures as in the
also related to the same instabilf80]. The point is that the  previous figure, with the subtraction of the thermal internal energy
construction of the equilibrium free energy by a loop expan-72T4/30. The bottom curve is fof/T,=0.1 and starts ap= ¢ .
sion or the largeN expansion tacitly assumes the existenceThe next two curves are foF/T,=1 andT/T,=2. The Gaussian
of a stable configuration as the starting point for the expanwidth parameteg, has been set equal to its minimum value by Eq.
sion. Itis precisely this assumption which breaks down in thg4.13 so thatU; becomes equal to the internal energy of the
unstable spinodal region. A careful definition of the “effec- system.
tive potential” F as the minimum of the free energy for fixed

¢=(®) independent of space and time leads to a flat con- U(¢,T)Eueﬁ(¢,{gk}:{§_k};gk:O-T W
stant function between the two minimaav which is con-

vex in accordance with the general theorems. However, this Xel 5, Xq ®
minimization cannot be achieved with a Gaussian density =5 | e +4—2J0 k® dk

matrix of the form(3.30 and the flat convex form ofF

defined in this manner tells us nothing about the dynamical

evolution of an initial Gaussian centered at a valuepoin X [ w—k—
the spinodal region. For this reason we propose to drop all

attempts to refine the definition of a free energy “e1‘fective_|_h first t is the classical potential denitvof
potential” and focus instead on the potential which actually e first term Is the classical potential energy densiyo
the mean field$ and the second term is the quantum plus

governs the nonequilibrium dynamics in a given approxima-, .
tion scheme. In the leading order larfescheme this dy- thermal energy of the fluctuations at the extrem(#riL4).

; - . : We recognize the expressiqd.15 as theinternal energy
namical potential is the true effective potentids. . . . -
In contrast to the free enerdy, the TEPU 4 is a func- U of the Gaussian configuration specified by E@s15 and

tion(al) of all of the generalized fluctuation coordinatgsas Eﬁ'mt’ W;'Cg tdh|ffers ;rom the Hleltmholtz free enerdy by
well as the mean fields. It also depends on the constant € standard thermodynamic retation
parametersr,, which need not be that in the thermal distri-

Xt

5 T 20 NT(k)} . (419

bution (3.15. Hence it is defined much more generally than F=U-TS (4.19
F and is manifestly real and positive. If we wish to considerWith
a function only of the mean fielé, it is possible to try first
minimizing U with respect to the Gaussian parameters
&k S=—TrpTIin=f [dk]{(Nt(k)+1)In[Ny(k)+1]
Ut h%oy —N(K)INN(K)} (4.17
5§i =(k*+x) fk_4_§3201 (4.13
k the von Neumann entropy of a Gaussian thermal density ma-
: . trix pt. Since the Bose-Einstein number density
which has the real solution
N7 (K) p(ﬁwk> 1}_1 4.18
— % =|exp —=|— .
E:ﬂ (4.14 T T
2wk
depends oyt and hence or) through Eqs(4.3) and(4.5),
provided again that Eq4.3) holds. the free energyF and internal energy) have different de-
If we restrictU further by requiringo, to be the Bose- pendences on the mean fieft> ¢1. The free energy and
Einstein thermal distributioor, = 1+ 2N+(k) of Eq. (3.15, internal energy become equal only at zero temperature

we find T=0.
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FIG. 6. A typical evolution of the mean fiel¢ and the mass
squaredy in the spontaneously broken phase, starting from an un
stable initial state withy(0)=—0.37<0. All time and lengths are
measured in units o =1. Note that if we use the initial energy
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any such initial configuration will necessarily evolve in time
by growth of the smalk Fourier components of the Gaussian
parameterg, . Indeed, this is obvious from the mode equa-
tions (2.27 which show that all the long wavelength modes
with k?<|y| will grow exponentially rather than oscillate
when y<0 [4]. Notice that the nonexistence of a solution to
the minimization conditior{4.13 implies that the exponen-
tially growing instability lies in the fluctuationg, for small

k. Only the nonlinear back reaction of this exponential
growth of the modes in the time-dependent gap equation
(2.39 can eventually bring to non-negative values and turn
off the instability. It is clear that this time-dependent process
involves many lowk Fourier components of the fiell and
cannot be described adequately by a single function of one
variable such as the “effective” potentiadf, much less a
function of one variable defined only in thermal equilibrium
in the spinodal region where no such thermal equilibrium
exists.

That the time evolution as determined hj,« is quite
different from what might be inferred from the free energy
function F is illustrated by our numerical solution of the
evolution equations, presented in Fig. 6. The oscillation fre-
quency and even the final point of the evolution ¢fas
t—o in general bear no simple relation to the minimum
¢ of the free energy “effective” potential. This is easily
understood from the stationary points of the TEP, for a true

density s =0.0697 to infer an effective temperature of mass|ess_stationary state does exist in the spontaneously broken phase

bosons, then the expected minimum ©f occurs at¢y,— 0.98
which is considerably different than the obserugg,=0.81. The

if we also require

oscillation frequency abou$= ¢, also bears no relation to the aueff: =0 4.19
second derivative of which vanishes at its minimum. o X ’
o - .. since this is satisfied b
AlthoughF andU have qualitatively similar behaviors in Y
the regiony=0 where they are both defined unambiguously, hoy
as shown in Figs. 4 and 5, cleafy andU have quite dif- x=0 and §E=7, (4.20

ferent physical meanings and applicability. The first is the
negative of the pressure of the gas of scalar particles againgfih £q. (2.38. Notice that there is such a static solution for
which work must be done in compressing the system at ﬁxegny ¢ and . The finite temperature case, E@.15, is

temperature, i.e., if the compression is performed while inyiy one of infinitely many possibilities for a static solution
contact with an external heat reservoir at temperaturéhe ¢ the mean field equations. Correspondingly there are also

second is the energy density of thlmsedsystem which is
conserved if it is allowed to evolve, isolated from all external
sources or sinks of energy. The free enefgyan be defined
only in thermal equilibrium. The internal energy is a spe-
cial case of the more general true effective potentiak
which is defined for any Gaussian density matrix, equilib-

rium or not, and which determines the evolution of the sys-
tem away from the instantaneous stationary state where

é=£&=0 according to the Hamiltonian equatior3.35.
Moreover, in the spinodal regiork0) whereT<T. and
¢< ¢ itis clear that the minimization conditio@.13 can-
not be satisfied for rea$?, which informs us that the time

derivative of the canonical momentum >0 for k?<|y|;

an infinite number of stationary density matrices satisfying
[p,Hysd =0, one for each choice afy . If o,=1+2N(k) is
given, then the static value of the expectation valhigs
determined by the static conditiop=0, which from Eq.
(2.39 implies

h o
%ot Wfo kdk Nk)=v2 . (4.21)

For arbitraryN(k) the relation(4.21) may be viewed as a
kind of sum rule which allows us to distribute any fraction of
thev? in the coherent mean field? and the remainder in the
integral over particle modes. In particular, there is no reason

i.e., the configuration is unstable against the fluctuatiorwhy the sum rule cannot be saturated nearly saturatgdy

widths &, growing in time for these lovk. Note that by the
definition (3.32, in terms of the mode functiof, & is

the integral alone, in which case the mean figlis zero(or
very smal), but y continues to vanish identically. Even

necessarily real. The physical interpretation is thus quitéhough ¢ may vanish, this stationary situation should be

straightforward in the more general nonequilibrium frame-
work we have laid out: There simply is no stationary spa-

tially homogeneous Gaussian density matrix f6£0, and

clearly distinguished from ordinary high temperature sym-
metry restoration al >T,, since the number density(k)
neednot be a thermal distribution at aJlLl1]. For example,
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the integral in Eq(4.21) may saturate the sum rule with the  Finally we point out that the stationary spontaneously bro-
number density strongly enhanced at low momentum relativéen solutiony=0 is disallowed ind=1 spatial dimension
to the Bose-Einstein distribution, so that their contribution to(as it was ind=0 quantum mechanigssince the integration
the total energy density of the systefwhich involves an in the definition ofy in Eq. (3.33 diverges logarithmically
additional power ok?) is very small, and much less than the ask— 0 which is inconsistent witly vanishing in Eq(4.20).
equilibrium energy density at the critical temperature. In thelt is this infrared divergence which prevents spontaneous
limit kN(k) approaches & function atk=0 the integral can symmetry breaking of the global ® symmetry in one
saturate the sum rule witho contribution of the zero mo- space dimension, consistent with the Mermin-Wagner-
mentum particles to the energy density. Such large particl€oleman theoreni6]. In two or higher space dimensions
occupation numbers at zefor very small momenta is a there is no such divergence and the spontaneous symmetry-
kind of Bose condensation which may be studied by classicabreaking static solutio4.20 is allowed.
methodg 11]. The consequences of the Mermin-Wagner-Coleman theo-
With the help of the sum rul¢4.21), therefore, one can rem for nonequilibrium dynamics in one dimension are illus-
easily understand the perhaps initially surprising resulttrated in Fig. 7 where the numerical evolutionyfand ¢ is
found numerically in Ref[21], that the evolution of thep  shown beginning from an unstable initial state with negative
mean field can settle to a value different from, and every. We see thaj does not go to zero at late timéso sym-
much smaller than, the thermal equilibrium valgie. It sim-  metry breaking and that both theg and ¢ oscillations damp
ply corresponds to the fact that the distribution of particles invery slowly as compared to the behavior in three dimensions.
the final state is not at all a thermal one. Obviously such arhis is because of the lack of any massless particles in
situation cannot be described by the thermodynamic free erd=1.
ergyF since its evaluation by continuation to imaginary time
assumes from the outset a thermal distribution of pa_rticles. V. DEPHASING, DISSIPATION, AND DECOHERENCE
For this reason one could not expect the true evolution ac-
cording to the mean field equations of motion to bear much Although we have shown by explicit construction of the
relation to what one might infer from an uncritical use of effective Hamiltonian(3.34 that the largeN mean field
F, particularly in the regiong< ¢+ where no thermody- equations are completely time reversible, nevertheless one
namic uniform equilibrium state exists and the Helmholtzobserves in typical evolutions as in Fig. 6 effective irre-
free energy is not even strictly defined. versibility, in the sense that energy flows from the mean
The inclusion of collisions in the next order of the expan-fields ¢ andy to the fluctuating modef, without returning
sion in 1N makes it more likely to bring the distribution of over times of physical interest. It is our purpose in this sec-
particles closer to a thermal one. However, since the evolution to explain this apparent irreversibility in terms of
tion is unitary, this can happen only in some effective sensedephasingi.e., the dynamical averaging to zero in the sums
This aspect is closely connected to the notion of dephasingverk of the rapidly varying phases of the fluctuations at a
which will be discussed in detail in Sec. VI. given time. To the extent that this phase averaging is exact
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and the information in the phases cannot be recovered, the ®(t)=p(t)+af(t)+alf* (1),
time evolution is irreversible. This is the sense in which the
fluctuationsf, act as a “heat bath” or “environment” for ®
the mean field evolution of and y. Of course, since infor- . - : :
mation is never truly “lost” in a closed Hamiltonian system E(t)_ P(t)= () +af(t) +a'f (1), 52
evolved with arbitrarily high accuracy, the information in the
phases can be recovered in principle and we should expetit terms of its mean value and quantized fluctuations. By
Poincarerecurrences in the mean field evolution after veryusing the Wronskian conditio(2.30 we may solve these
long times, at least in finite volum¥. As the number of relations fora anda':
modesf, (and particularly as the number of relevant infrared
modes neak=0) approaches infinity, we would expect the
recurrence time to go to infinity. In typical evolutions we
followed several tens of thousands of modes, and recurrences
were never observed in practice. The precise dependence of p Nf_ it
the recurrence time on th?a number of n?odes is ar?interesting (P=¢)i=(P=¢)f=—ira .3
question which may be studied quantitatively within our|n this time-independent basis, the Hamiltonian is given by
mean field framework by numerical methods. However, we
have not undertaken such a systematic study here, and leave
the question of the recurrence time for future research. In any Hos=hw(t=0)(a'a+ %). (5.9
case, we cannot expect the leading order laxgeollision-
less approximation to continue to be valid for times longerThe transformation to this number basis is jugcample®
than the collisional relaxation time in the full theory. The canonical transformation which on the quantum level is
study of recurrence times in the leading order approximatioimplemented by a unitary transformation of bases, with the
may be interesting nevertheless as a model for how suctiansformation matrix(x|n) in Dirac’s notation. To find this
recurrences and rephasing can occur in more realistic situdransformation matrix explicitly we use the definitio(&2)
tions. and (3.4), the equation of matiori3.5), and the Wronskian
To understand precisely what is meant by dephasing let ugondition again to secure
return to the Gaussian density matrix of only one degree of
freedom(3.16. The coordinate representation is only one of
many possible representations of the density matrix. The 72,
number basis, defined by the integer eigenvalues of

(D— ) F* —(P— ) f* =itia,

2 22 2
7

o £
—&nl(®—¢)(P—p)+(P—p)(P—¢)]

in terms of§, n, ando. Then by acting with this operator
defines a time-independent basis associated with the Fodélentity on the matrix(x|n) and replacing®—x and

=(P—¢)* +&(P-p)?

1
Ta+ =
aa+2

a'aln)=n|n), (5.1

decomposition of the Heisenberg operattics d=0), P— —iAd/dx we obtain the differential equation
52 1 B o 5 252 o _in d 2 ) iz d i% 5
o nt S| (x[M=1 (x=¢)%| 7n°+ 2 +&| i g - En| —ifi(X=¢) g = 5~ (x=)p| ({Xn), (5.5

which is easily solved in terms of the ordinary harmonic  With the transformation matrix element determined it is a

oscillator wave functions straightforward exercise in Gaussian integration and the
properties of Hermite polynomials to obtain the form of the
density matrix(3.16 in the time-independent number repre-

o 1 w 1/4H \/; ) o sentation:
l/fn(X,w)—W 7 n| NV 7X|€Xp — 57X

(5.9

Tolmy= | dx | dx’ (07 x ) (x'plx
oy (n’|p|n) f_mxf_wx(n XWX | p|x){x|n)

; (5.8

o—1

_25n,n
B o+1

o+1

ip(x—¢) in(x—¢)? h
oxm=exf PO S w0
(5.7 where o is defined by Eq(2.37. The derivation of these
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results and some further properties on the transformation ma-
trices are given in Appendix B.

The matrix elements of the Liouville equation in this basis
are

iﬁ<n|b|n,>:<n|[HosoP]|n,>:(En_En’)<n|p|n’>- (5.9 o
Clearly, since the density matrix in this basis is initially di- ‘

80.0 T T

Integrand

agonal, it stays diagonal and time independent. The time 400 1
independence of the matrix elementspoin the Heisenberg
number basign) is simply a reflection of the fact that the
density matrix(like the state vectolry)) is time independent “

in the Heisenberg picture where the field operabodepends zoo ~ } Integral

on time according to Eq2.24). All the time-dependent dy-
namics resides in the transition matrix eleméxijn) which \""“H‘ ‘H

depends on the five variablég(t),p(t); &(t), n(t); o) while

the matrix element$5.8) remain forever unchanging under

the mean field evolution. Indeed, this is just another reflec- ' 0° K

tion of the unitary Hamiltonian nature of the evolution, since

the von Neumann entropy of the Gaussian density matrix  FG. g, Integrand and integral of the RHS of E§.22 as a

function of k for fixed t=257. The value of the total integral is

o+1 o+1 o—1 o—1
=_ = — 19.74.
S=~—Trp Inp ( 5 In( 5 ) 5 )In( 5 )
— (N+1)In(N+1)—NInN (5.10 the Gaussian density matrix, tiebasis has another impor-

tant property, namely, the existence of an adiabatic invariant
ﬁ\f\|/. This adiabatic invariant may be constructed from the

amilton-Jacobi equation corresponding to the effective
.classical HamiltoniaH in the usual way:

is strictly constant under the time evolution. Hence, there i
no information lost in the evolution in any strict sense.
There is, however, another basis which is more appropri-

ate for discussing * physu_:al par_t!cle number. _Th|s is the 1/9W\2 w2 1/ oW\2 w2 5252
time-dependent Fock basis specified by replacing the mode  ~| —| +—x?+ =| —| + =&+ =E .
: - g 2\ ox 2 Pl 2 8¢2

function f which satisfies

(5.15
d2

2+X(t))f(t):0 (5.11) Since the Gaussian density matrix whose evolution is de-
scribed byH . is equivalent to that of a time-dependent har-
monic oscillator, we may regard the frequeneyt) in Eq.

by the adiabatic mode functiot,defined by Eq(2.34 and (5 15 a5 anarbitrary function of time and separate the equa-
the Fock representatiai®.2) by

2
qete (t))f(t)

—_ ~ —_~ ~ 40.0 T T
®(t)=a(t)f(t)+a T(1)f* (1),

()]
S (D=P(O)=-10®EOTO+ie®E OF* O, %00
(5.12

where thea anda ' operators must now be time dependent.
The corresponding time-dependent number basis is defined 20.0

by

Integral

afam)y=nm), (5.13 100

in which

Hoom 1 (3 3438 1 5.1
o= (@ ataa ) .19 %0 05 1.0
is diagonal for each time. In th@ @ number basisp is no

Lgnger dlagonal (@), (aa), etc., are nonvanishing, and FIG. 9. Integrand and integral of the phase-averaged quantity
N=(a " )#N in general, except in the static case of con-defined by the adiabatic particle number basis as a functiérfof
stantw. the same fixed=257. The value of the integral using the replace-

In addition to diagonalizing the time-dependent harmonicment (5.21) is 19.85, within 0.5% of the value in the previous
oscillator HamiltoniarH . which describes the evolution of figure.
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0.040 . varying functions of time, whereas its diagonal elements in
this basis will be only slowly varying. This is clearly seen in
the explicit form for the matrix elements of this basis in Eq.
Ss (B22) of Appendix B. Hence, if we are interested only in the
motion of the mean fields which are slowly varying functions
of time, we may average over the rapid phase variations in
the off-diagonal matrix elements gfin this adiabatic num-

8 ber basis. For only a single quantum degree of freedom this
amounts to a time averaging and can be implemented only
s, by fiat. However, in field theory there are many momentum
modes, so that this averaging is actually performed for us in
the mean field evolution equations by the integrations over
k at fixedt.

The termdephasinghas a precise meaning in this adia-
0.000 s batic particle number representation of the density matrix. To
0.0 5‘3['0 100.0 the extent that the phases in the off-diagonal matrix elements

of the density matrix in the adiabatiz basis are rapidly
varying in time, they should have little or no effect on the

FIG. 10. Evolution of the Boltzmann and effective von Neu- eyolution of more slowly varying quantities such as the mean
mann eﬁtroplgs of the dlagonql elements of the density matrix in thﬁelds # and y or the mean adiabatic particle numbir
adiabatic particle number basis. itself. Thus, a natural approximation to the full density ma-
trix p is immediately suggested by the existence of the adia-
batic number basis, namely, to discard the off-diagonal ele-
ments[see EQ.(B22) below] of p in this basis, which is

E, equivalent to time averaging the distribution of fluctuations
W= ﬁg dx 2E;— 0X?=27—, (5.16 in the exact Gaussian density matf&30 over times long
@ compared to their rapid variations. In field theory, where
there are many Fourier modes, each with its own rapid phase
variation, the effect of dephasing may be obtained by simply
k252 integrating over the momentum indéx at fixed time. In
W,= jg dé \/ZEz— w2~ e (5.17  either case, we expect this averaging procedure to scarcely
affect the actual evolution of the mean fields, and the extent
Under the substitution= £2/2 this turns out to be the same t0 which this expectation is realized is the extent to which
integral which occurs in the Kepler problem, again pointingdephasing of the fluctuations is effective, and the evolution is
out the formal similarity with the angular momentum barrier irreversible. In Figs. 8 and 9 we compare the ackudépen-

in a central potential. Using standard methf2a], one finds ~ dence of the functiorG(k,t) appearing in the mean field
evolution equation2.18 with the phase averaged quantity

defined by the adiabatic particle numidéfk); i.e., we make
the replacement

0.030

0.020

Entropy

0.010

tion with the ansatzW(x,&)=W;(x)+W,(&). Defining
E=E,+E, this yields, in the first variablg,

while in the second variablé one obtains

=
WZZZW;—WﬁU . (5.18

Hence the full adiabatic invariant is 1~
—iaG(kt)=|f ()|?— ==[2N(k)+1]  (5.2)
W_E 7 RN (5.19 2
20t he 2 '
m @ and discard the interference terms. The relevant integral in

upon using the definition dX, the definition ofe, and the renormalized gap equati¢@.39 is
G(X, X, x)—G(x,x,x=0
(5.20 (X,X,x) = G(X,x,x=0)

~ 1
E=(H>=<H059=hw(N+§

— 1 A 2 2 h }
SinceN is strictly a constant of the motion, E¢6.19 4772fo : dkhfk(t)' Tk 2k .22
informs us thaNN is an adiabatic invariant and therefore it is
slowly varying if @?= x in the actual self-consistent, nonlin- Notice that although there are many more oscillations in the
ear evolution is a slowly varying function of time. In the integrand of the right-hand sid®HS) of Eq. (5.22 than in
language of classical action-angle variabMé&js an action the phase averaged quantity, the integrals dvef the two
variable which is slowly varying while the angle variable quantities are almost the same (19.74 and 19.85, respec-
conjugate to it varies rapidly in timginearly with time in  tively).
the limit w is a constant, as in the exponent in E#.34)]. The adiabatic particle basis may also be used to define
This means that although the density majriis certainly not  effective Boltzmann and von Neumann entropif23]
diagonal in then number basis, its off-diagonal elements through the diagonal matrix elemer{®22) below. Neglect-
which depend on the angle variable will be very rapidly ing the rapidly varying off-diagonal matrix elements gives
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2.0 T T T T | T of observingl pairs in the ensemble. This probability distri-
A bution is derived in Appendix B and given by

p21(K)=(n=2l|p[n,=2l)| re1

¢=¢=0

(21— 1)1 |
= —2|”—sechyktanh2 Yo (5.249

where vy is the magnitude of the Bogoliubov transformation
between thea anda bases, given explicitly in terms of the
mode functions by

~ . [fit i wifil2
1.0 ! ] 1 1 L l L N(k)_SIanyk_ 2h wy ' (529
0.0 10.0 20.0 30.0 40.0
r which depends only ofk| =k by spatial homogeneity. Sam-

pling this distribution with random phases will yield typical
FIG. 11. Four typical field configurations drawn from the sameclassical field amplitudes which make up the distribution.
classical distribution of probabilities in the adiabatic particle num-Obtaining such typical classical fields in the ensemble can
ber basis, according to E¢5.29, for t=490 in the case the mean give us explicit realizations of the symmetry-breaking behav-
field $=0. The units ofr arev ™" and\,=1. ior of the system, as well as providing the starting point for
the study of topological defects produced during the phase
transition.
The sampling of the field configurations proceeds in sev-
eral steps. For a fixed late time and Fourier wave nunkber
w we calculate the Bogoliubov transformation coefficient from
Setr=—TrperiNpesr= — 2 2, pai(K)INpay (K), the staticn to time-dependent adiabatic particle numimer
k =0 basis from Eg.(5.25. This gives a set of numbers
(5.23  p, =("=2l|p[Ai=2I) normalized to unit total probability,

Sp= ; {IN(K)+ 1]In[N(k) + 11— N(K)InN(K)},

for the Boltzmann and effective von Neumann entropy of the o
truncated density matrix, whepg, (k) is given by Eq(5.24) E po=1 (5.26
below. The evolution of these two quantities for a typical =0

solution of the mean field equations is shown in Fig. 10.

Both display general increase due to continuous creation ¢ind which typically fall off very rapidly witH so that only a
massless Goldstone particles near thresH@d]. Neither finite number of thep, need be retained. Then we sample
quantity is a strictly monotonic function of time and neither this distribution by drawing a random numberin the unit
obeys a strict BoltzmanH theorem. Since the particle interval [0,1]. Looking at the table op, and the partial
modesf interact with the mean fielg but not directly with  sums,

each other, the effective damping observed is certainly

lisionless and the dephasing here is similar to that respon-

sible for Landau damping of collective modes in classical Q= 2 pir
electromagnetic plasmas. The entroy; of the effective

density matrix provides a precise measure of the informatioRye find| such that
lost by treating the phases as random. The Boltzmann “en-

tropy” yvould_t_)e .expecte_d tq equy qnly in_true thermq— Q_1<q=Q (5.28
dynamic equilibrium, which is not achieved in the collision-

less approximation of Eqs2.27). Notice the nonthermal to determinefi=2I of this random drawing for the given
distribution of particles in Fig. 9. In this nonthermal distri- yglye ofk. We then write

bution we see from Fig. 10 that the Boltzmann entr&y
generally overestimates the amount of information lost by

(5.27

1 1 _ :
phase averaging. Hr)=—> (a e *+ar e Tkx)
To the extent that the phase information in the off- WK V2wy
diagonal matrix elements gf is irretrievable the system has v (e =
become effectively classical, in the sense that the quantum A /_Zf dk Kk sinkr /icosﬂk, (5.29
interference effects present in the original ensemble repre- 7T Jo 2wy

sented by are washed out as well. In that case we might as

well regard the ensemble represented by the diagonal, trunvhere we have performed the angular integrations 43
cated effective density matrix in the adiabatic number basisimensions and written

as aclassicalprobability distribution with the diagonal ele- .

ments of(n=2l|p|/n=2l) giving the classical probabilities a,= \ny e’ (5.30
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FIG. 12. The Gaussiaps
for k=0.4 for the data and pa-
rameter values of Fig. 9 illus-
trating the strong suppression
of off-diagonal components
due to dephasing.

in terms of a random phagk . After performing the Fourier mean fields, zero momentum=0, and'&kzl+2N(k) re-
transform in Eq.(5.29 the result is a typical field configu- placingo; i.e., we obtain a product of Gaussians of the form
ration as a function of radial at the fixed timet. In this way
we obtained the four field configurations shown in Fig. 11. , B 21/ O, )
We observe that although the mean figtd=0 when aver- (eulperl o) =(2m&) ~exp — 8_55((’0"_(’0“)
aged over the entire ensemble, typical field configurations in
the ensemble are quite far from zero. In fact they sample , )
values of ¢ between the two minima at and —v. We _S_ﬁ(qok""@k)
observe as well that there is a typical correlation length in the
classical field configurations which is of the order of thein all the k0 modes where the mean field vanishes. This
inverse momentum in which the power of the two-pointform shows that the Gaussian distribution off the diagonal
function is distributed, as in Fig. 9. . @, = @y is strongly suppressed compared to the diagonal dis-
It is clearly possible by such sampling techniques to gentripution. Indeed in the numerical evolutions we have found
erate typical field configurations with any number of COMPO-that kKl(k) behaves typically like @onstantfor smallk (cf.

nents®; in any number of spatial dimensions Then by Fig. 9), so thata,=1k. From Eq.(5.3) this implies that
appropriately matching the number of components to the

number of dimensions we could search for different types of
defectlike structures such as vortices, strings, and domain %3 ' : ' '
walls. This classical description of the quantum mean field
theory is possible only when a classical decoherent limit ex- %2}
ists through the diagonal density matrix in the adiabatic par-

~2

: (5.3

ticle number basis. Moreover, the classical fields generated %'T

by this procedure are smooth and free of any cutoff- /\ /\ N A A
dependent short distance effects. The extraction of smooth X ° \/ VAVAY A
classical field configurations from a quantum mean field de- \/

scription is a direct consequence of dephasing and the defi- 011
nition of defect number in these smooth configurations is
free of the difficulties encountered when classical definitions 02t
of defects are applied uncritically to quantum field theories.
It would be very interesting to pursue these ideas further in 931
more realistic models of phase transitions where such topo-
logical defects are expected. This we leave for a future in- 041

vestigation.
The dephasing of the density matrix justifies the replace- 05 2 m o 2 100
ment of the exact Gaussignby its diagonal elements only t
in the adiabatic number basis leading to the effective density
matrix pes. Now if this effective density matrix is trans- FIG. 13. Time evolution and effective damping of tgemean

formed back into the coordinate basis, it corresponds to #eld towards zero, its stationary value in the spontaneously broken
density matrix of the original Gaussian form but with zero phase.
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T ' ' ' T VI. LINEAR RESPONSE, PLASMA OSCILLATIONS,

0.0006 1 AND DAMPING RATE
The very efficient damping of the oscillations around the
0.0004 T final state which we have studied in the density matrix for-
malism of the last section may also be understood as due to
0.0002 1 the continuous creation of massless Goldstone particles near

threshold. In this appearance of strictly massless modes the
} AR (N A y spontaneously broken®* model is qualitatively different
‘ from our previous studies of QED in the larjeapproxima-
tion [25]. In that case the charged particles are massive and
there is finally a tunneling barrier which shuts off particle
creation effects after the mean electric field has decreased
-0.0004 1 below a certain critical value. Beyond this point the mean
field undergoes essentially undamped plasma oscillations
10,0006 . since there is no transfer of energy to created patrticles. In
s . . ) contrast, the present model has no such critical threshold in
200 250 300 350 400 450 500 the mean fieldy which is free to continue creating massless
t bosons for arbitrarily small amplitude and—0 asymptoti-
cally. This very efficient asymptotic damping of tlhemean
field towards its stationary spontaneously broken solution at
x=0 is very well illustrated by the numerical results shown
in Figs. 13 and 14 fol ,=1 and an initialy=—0.5. We

whereas the root mean square deviation from zero along tHgMPhasize that the absence of a finite mass threshold is es-
diagonale] = oy is &= N(K)/k= Lk and is large at small sential to the long time quasidissipative behavior observed in

) L0 o
k, the root mean square deviation from zero in the orthogona'I:'gS.' 13 and 14. In the infinite voalume liri=1"—co th?
direction off the diagonal is continuum of modes extends all the way ke-0 and this

behavior persists to infinite time. In our simulations the
& 7 length L~4x10% which is much greater thah in these
==\ ——, (5.32 figures, so the continuum behavior is observed.

Tk 2kN(k) Sincey becomes very small at late times, it is possible to
L . L analyze the approach to zero by linear response methods.
which is much smaller. The result is that there is virtually no;, o, any static solution to the equations of motion with

support in fthe distributipn(5.3]) for “Schrodinger cat” spontaneous symmetry breaking, as in E420, we may
states in which quantum interference effects between the WOonsider the real time linear res’ponse of the,system away
classically allowed macroscopic statesvabnd —v can be

b d i d . i how dephasi from this static solution. This is accomplished by linearizing
observed. Instead we see in a diiterent way how dephasing,, o\o|ytion equations in the deviations from the static so-
produces an ensemble which may be regardeddasaical

o oo . . lution
probability distribution over classically distinct outcomes
(i.e., the diagonal field amplitude distributiobut with es-

-0.0002

FIG. 14. Same evolution as in Fig. 13 but followed to large
times and with an expanded scale fprto show the long time
behavior of the time-dependent Goldstone mass squared.

sentially no components in the off-diagonal quantum inter- ¢— ¢+ 59,
ference between these classical configurations. This is illus-
trated in Fig. 12. Hence even in this rather simple x—0+y,

collisionless approximation the particle creation effects in

the time-dependent mean field give rise to strong suppression (vao

of quantum interference effects and mediate the quantum to fi=Hi (0 + 6fi (1), (6.1)

classical transition of the ensemble, at least for small wave

numbers. This is in accordance with the usual intuition thatuith £(2 given by Eq.(2.38, the mode functions corre-

long wavelength physics of a second order phase transition iyonding to the static solutiop=0.

essentially classical, where the adiabatic particle number The Jinearized mode equation

N(k) has taken the place &f(k) in the discussion following

Egs.(4.9 and(4.10 of the previous section. d2
When more realistic collisional interactions are included [—2+k2

at the next and higher orders beyond the leading mean field dt

limit we can expect this transition to decoherent classical

behavior to be even more pronounced. As the Gaussian amiay be solved by use of the retarded Green'’s function

sumption is relaxed we expect the single peak at the origin to

split into two peaks. Hence we can begin to see how a quan- sink(t—t")

tum phase transition leads to an effective classically broken Ggr(t—t';k)= "

symmetry in which large domains are in a definite classical

ground state or another but not in a quantum superposition of

ground states. in the form

Sfi(t) = — x(D)F29(t) (6.2

o(t—t') 6.3
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OF (1) =AFL29(1) + B, f29% (1) 1+ 2N(k)

- o ¢?
= — st —
t H(S)—fo dt e >TI(t) = ?—‘Fﬁf [dk]m,
—f dt’ Gr(t—t";k)x(t)fY0(t"), (6.9
0 0
E(s)EJO dt e S'B(1)

whereA, andB, are coefficients of the solutions to the ho-
mogeneous equation. Because the Wronskian condition ¢5¢(0) 1+2N(k)

(2.30 is maintained under the linearization, tg must J[dk1 e(s 2|k)
have vanishing real part

Re A=0. 65 7o)= [ dteshn--B(9Bls, (612

The linearized$ equation gives, in the same way, and D(s), the simple algebraic reciprocal of the Laplace
transform ofD ~%(t),

Sp(t)=t 8¢(0)+ 54(0)

1 2 1+ 2N(k)
—D 1(8)——+H(S)— ¢_2+ﬁJ[dk]W+ik2)

t
—fo dt’ Gr(t—t";k=0)x(t")&(t") . (6.6) (6.13

>’|H

Both the bare coupling =\ , and the integral ovet involv-
ing theN(k)-independent term are logarithmically divergent.
They combine to give the ultraviolet finite contribution

X:x¢5¢+>\f[dk] Re( 63 FL3)[1+2N(k)]. 1 1 5 AA2
(6.7) Na(S4)  y 32772'”( 2 )

1 i
e(m?) 3272

At the same time the linearized gap equation reads

Upon substituting Eqs6.4)—(6.6) this becomes a linear in-
tegral equation for the perturbatiog,

In

4m?
= ) 6.14

The renormalized sum rul¢4.21) may be used in the

t
Y(t)= _)\f dUTI(t—t") x(t')+ AB(1), 6.8 N(k)-dependent term to secure, as well,
0

5-1(g) = 1 +1)2+ h
where =3 T 22

s+ 4k?

0 1)
( ) xJO k dk N(k) -2/ (6.19

H(t)—tgb2+hf [dk] 2N(k ————sinkt cokt (6.9
which is now independent of the static value ¢f

is the polarization part in the static background and The functionD (s) has a singularity as=0 and, de-

pending on the exact form dfi(k) neark=0 in general, a

. branch cut starting from the origin in the complsxplane

B(t)=t$4(0)+ $S4(0) which may be taken along the negative reaixis. Its physi-
14 2N(K) cal (_)rigin is the zero mass Gpldgtong bo_sons propagqting in

— — —ReBeZ)  (6.10 the internal loop of the polarizatioH in Fig. 15. The dis-
2k continuity across this cut arises from the nonzero probability

for the time-dependeny field to create Goldstone pairs with

depends only on the initial perturbation away from the staticarbitrarily small spatial momenturk above the massless
solution. The linearized integral equatit®® may be putin threshold. The functio® ~*(s) also may have one or more

+ﬁf [dk]

the form zeros in the left-half compleg plane. The zero at
¢ 2 & a2 32772 6.1
f dt'D - (t—t") x(t") = —B(1), (6.1 ST=AmTed w7 6.16
0
for A\g<<1 is the Landau ghost pole in the far ultraviolet
whereD 1 is the y inverse propagator function. which lies outside the range of validity of the larijeexpan-

The most direct method of solving such integral equationsion and which in any case does not affect the long time
is to make use of the Laplace transforms behavior of the inverse Laplace transform.
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A
FIG. 15. One-loop diagram which contributes to the polarization | %
I[I=-iGG/2 in the leading order larg®l approximation. In the ha A&A
infinite volume continuum limit, the cut extends ke=0. o6l &AA
4
In the special case of vacuum initial particle density
N(k)=0, the integral in Eq(6.15 vanishes an®, (s) is
given by

~0.8 I ."‘1 ! L I
0 200 400 600 800 1000 1200

t

2

Do ()= + (6.1
0 (S)_ )\R(SZ/4) SZ ' '
FIG. 16. The functiory, defined in Eq.(6.26 plotted for per-
Because of the logarithmic branch cut in H§.14), this  turbed thermal initial conditions at two values ®f,. The solid
function possesses an imaginary part when analytically corlines are the corresponding theoretical predictions.

tinued to complex with Re s<0. Taking this into account,

D, }(s) possesses a zero at comptexin the left-hand com- 51— @2
plex plane T7(8)= Ne(S2/4) ta
S+ =Fiwp—7, (6.18 h hs\ 2aT hs
" 1672\ "M 277) " s Y @At
which in the limit of weak coupling is given by ™ i S ™
3/2 1 7 h
2y 2 g Ay =t o
W= Np”, Y= Gan 0= G2, U (6.19 A\r(47°T4Ih°)  s° 16w
h 27T N hs 6.2
whnere X E m (6.2

(6.20 for Res>0 andT<T,. At finite temperature the analytic
structure ofD7*(s) in the complex plane with Re<0 is
different from the zero temperature case. There is no loga-
rithmic branch cut beginning &= 0, but rather a sequence

|5|2 wé
)\pI:)\R(TET :

for Ay<1. In the frequencyw, the effective mass of the

radial mode, ignored in the direct quantization of thie 1 of simple poles as,— — 47 Tn/%, N=0.12 along the
massless modes in E(R.24), reappears in the larde limit . on”_ A, RS, .
®.24 Ap i negative reab axis. Sinces is a Laplace transform variable,

as an oscillation in the real time linear response to perturbaIh | d to the Matsub ¢ . ¢ th
tions about the vacuumd=uv, xy=0. It may be viewed either ese poles correspond fo the Matsubara frequencies ot the
two-particle intermediate stateslihin the finite temperature

as this radial degree of freedom of tNecomponentd; field, . . time f i onlvin th ¢ wure limit
with its effective mass dressed by the polarization effects ofnaginary time formalism. nly in the zero temperature limi
0 the poles coalesce into a logarithmic branch cut. Indeed,

IT in the presence of massless Goldstone modes, or aItefﬁ di functi f I t beh lik
nately and just as correctly as a genuine collective excitatio € digamma function of smail argument behaves like
of the composite fielgk. The two descriptions are equivalent dInl(2) 1

since the oscillations of and ¢ are constrained by the lin- y(z2)=——————-——C as z—0, (6.22
earized equation§.6) and (6.7), and there is only one de- dz z

gree of freedom between them. The oscillation frequenc B . ,
(6.19 should be compared with the second derivative of thé@vhereC—O.S?? 2b ... isEuler's constant, so that we see

free energy potential aT=0 which vanishes from Eq. from the s_econd_ fofm of E.qG'ZD that_the Ioggrithms cancel
(4.12. Thus the “effective” potential is completely ineffec- and the discontinuity vanishes, leaving a simple pole struc-

tive at predicting the radial oscillation frequency at zero tem-1Ure

perature. It is clear that at zero temperature the origin of the 2

decay ratey is the imaginary part of the two-particle cut in _571(5)_) 1 LT L (6.23
the polarization diagram illustrated in Fig. 15. T AR(T'?)  s*  8ms '

In the case of a thermal distribution of massless bosons _ e . .
Eq. (3.15, the integral in(6.15 may be performed in closed as s—0, with T'=2me” ~T/%. Since the analytic struc-
form in terms of the digamma functio$ and we find ture of the functionD{l(s) near s=0 is now explicit,
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tive” potential F has no such real time information at either
zero or finite temperature, as conclusively demonstrated by

35 |

30 Eq. (4.12. Finally notice that this calculation relies on the
25 behavior ofD{l(s) nears=0, which relies in turn upon the
KN (K) 20 behavior of the integrand in Eq6.15 neark=0. If the

volumeV is not taken to infinity first this integral is replaced

15 by a sum, th&k=0 mode must be handled differently, and

ol the long time behavior of the Laplace transform will be quite
different.

st The linear response predictions for the oscillation fre-

quency and the damping rate in the case of finite temperature
were compared with a numerical evolution with =0.01
k andT=1 (in units ofZ andv=1). The theoretical predic-
tions of wyr=0.095 74 andy;=1.9894x 10" are in very
FIG. 17. Comparison of the analytic approximation to the par-good agreement with the numerical resuligr=0.095 85
ticle number density of E(6.30 (upper curvg with the adiabatic  and y,=2x10"%. A similar test was carried out at a larger
number density of the numerical calculatidsottom curve. value of the coupling\ ,=0.1 again with excellent results:

. ) ) predictions of w,r=0.3028 andyr=1.9894x 103 com-
we can freely continue this form to B€0, and find the pared with numerical values ofw,r=0.3031 and

dominant behavior of the inverse Laplace transform at IateyT=1.9944>< 103, The extraction of the behavior of the
times by setting the quadratic for6.23 equal to zero. In gpyelope from the numerical data is described below.

this way we obtain a pair of isolated poles Dfi(s) ats. Instead of plottingy directly as a function of time, infor-
=+iwy 1~ yr as in Eq.(6.18 with mation may be extracted more conveniently by plotting
T?[  3hNR(T'?)
2\ _(T'2)p2 1__<1_R—)
Y& it e —In(H 626
)\R(le)
Y= 167 (6.29

as a function of time, where each time points taken at
Since we have used E@6.22 for the behavior of the di- eijther a peak or a trough of the oscillation ands the time
gamma function near the origin, this formula is valid iff separation between two such neighboring points. At late
|s+|<T, which is satisfied for weak couplinfg\g/16m<1  times, if the frequency stabilizes,goes to a constant. Using

and for temperatures this fact, along with the late time conditiar® e, one can
o 5 o show from Eq.(6.26 that if the y oscillation envelope can
2> ANR(T™) z:h AR(T )vz 6.25 be fit by an expression of the form

19272 ¢ 1672

We cannot take Eq(6.24 over to the zero temperature At “exp(— yt), (6.2
case(6.19 since opposite limits of the digamma function are
involved, andT—0 is not permitted in Eq(6.24 without
violating the assumptions. |<T. However, if we takeT  then, at late times,
down to the minimum valu€6.25 for which Eq.(6.24 can
be valid (and the contribution of the nearby poles in the
digamma function as, for n=1,2, . . . becomes importajnt Vi=—yt—a, (6.28
we find w3r~\gv? and yr~%\ Y% /64 with the renormal-
ized running coupling\r evaluated atwire”2/4 which
agrees very nearly with the zero temperature reg6lts9,  enabling the direct reading off of the powerand the expo-
up to small corrections of order x(T'2)/1672. nentvy as they intercept and slope of a straight line, respec-

Hence the high temperature and zero temperature formgvely. It is important to note that this method is also a test of
of the plasma frequency and damping rate match quitevhether the frequency is stable as otherwise a straight line
smoothly at the boundary of their domains of validity in the will not be obtained. The behavior of, against time is
weak coupling limit. Notice also that a— T, from below  shown in Fig. 16 for the two values of the coupling constant
the plasma frequencyy,r— AgT /167 becomes the same mentioned above.
as the damping rater . ForT>T, the symmetry is restored _ When the distributioN(k) is nonthermal the behavior of
and the propagator becomes massive so that forn(élas), D 1(s) is more difficult to analyze, and there is no guaran-
(6.21, and (6.24) cease to apply. Finally we reiterate that tee that it possesses a zero in generaN(K) is peaked at
Dgl(s) describes the real time oscillations of tgemean  smallk, then a reasonable first approximation is to neglect
field coupled to the collective plasma oscillations of the auxthe last term in Eq(6.15. In that case we find a zero of
iliary field x, and that the equilibrium free energy “effec- D~ (s) at with
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. o ] FIG. 20. The samg evolution at late times betweér- 400 and
FIG. 18. The functiory; plotted for nonthermal initial condi-  {_ 520 showing the excellence of the simple fit over long times and

tions at two values ok , . The late time linear fits to the data are along with the results of Fig. 19, very good agreement over three
also shown with the intercepts determining the power law prefatoryacades of amplitude.

wsl"w’xplvz’ the numerical value of the plasma frequency from the data at
late times iswp=1.405 whereas Eq6.29 gives wp~1.
Npi )\S(ZU The damping rate is estimated to e 0.005(or 0.007 if the
Y= 64 “P 64 (6.29 correctwy, is used; however, the envelope of the oscillations

at late times is not even strictly exponential as we shall see
If the running renormalizecd\g is not very small and/or below. Hence we cannot expect to obtain an accurate esti-
N(k) is not sharply peaked &t=0, then the position of this mate of the damping rate by a simple pole analysis of the
zero of D ~(s) will be shifted from Eq.(6.29, and at some Laplace transfornD(s). Nevertheless, if one fits an expo-
values it may even cease to exist. Comparing with our nuhential to the data at late times, a valye 0.009 is obtained,
merical data for whictkN(k) is nonthermal as shown in Fig. agreeing only roughly with the estimaté.29.
9, we observe that the approximations leading to the esti- Despite the envelope of the oscillations being nonexpo-
mates(6.29 can only be order of magnitudes at best. Indeedential, w, is very well determined by the regular oscilla-
tions observedto a few parts in 1%). To obtain a more
accurate approximation to the plasma frequency consider the

006 ; ' ' ' following analytic approximation ta&N(K):
oo4~§ ] 2 Ao 4k
iy KN(K)=87wpb( wi—4k?) 1—(17, (6.30
i 0
0.02 wherew, is a free parameter which is close to the numerical
[\ {\ (\ value of the plasma frequency. The accuracy of this analytic
L o /\ /\ /\ /\ AAAAAAAAAAA fit to the data is shown in Fig. 17 fab,=w,. Notice that
\j v v VAR A because of dephasing, thek) used in the linear response
analysis may be identified with thH(k) of the particles
-0.02 created at earlier times in the nonlinear evolution from the
spinodal region.
0.04 Substituting the forn(6.30 into Eq. (6.15 we obtain
~ 1 02 2w3 (1
. . . . —D_l(S)Zm'f‘?'f'—Of dX(:I.—Xz)l/2
00 20 ) 80 100 120 R ™ Jo
t X —hl ! (6.32
FIG. 19. They evolution as a function of tim&ashed lingfor wox*+ s s '

Ma=1. The fit (6.27, shown by the solid curve, is . '
x(1)=6.63 " 1%xp(—0.0067)cos(1.405+0.5). This figure shows Because of the small prefactor of the logarithm in
the fit over an early time range between20 andt=120. 1/\r(s%/4), the running coupling constant is only a few per-
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cent different from the bark near the zero oD ~1(s) and VIl. SUMMARY
this running withs can be neglected in lowest order. Again
we sets=*iw,—y and look for a zero oD Y(s) near
w§=wh, with y/o<1. One could perform the integral in
Eq. (6.31) exactly but we content ourselves with this simple
approximation and obtain

In this paper we have presented a study of nonequilibrium
evolution and time-dependent behavior of symmetry-
breaking transitions irN-componentx (#?2)? field theory.
Starting from an effective action principle for the leading
order mean field approximation we emphasized the corre-
1 2 51 spondence of the equations with the Sclinger evolution
0= — — v_2+ _f dx[ (1—x?)¥2— (1—x2) "1, of a Gaussian density matrix according to a certain effective

pl g classical Hamiltonian. This is important for emphasizing that
(6.32 no fundamental irreversible behavior has been introduced by
the mean field approximation. Explicit numerical time evo-
Performing the integral we find, from the real part of this Jutions from the unstable spinodal region show effective time
equation, irreversibility in the form of the efficient averaging to zero of
the phase information in the density matrix. The effective
ol von Neumann entropy of the reduced density matrix mea-
PR (6.33  sures the information that is lost by discarding this phase
information. Its general increase with particle creation shows
the close connection between dephasing and irreversibility.
Thus our study of effective dissipation and decoherence casts
some light on fundamental issues in quantum statistical me-
chanics such as the origin of irreversibility, Boltzmanhis
theorem, and the quantum to classical transition. Here there
) . . is much that could be done still in the context of the frame-
(6.19 _numencally using the data of Fig. 9 f‘W(k) and work presented in this paper, most notably to study quanti-
reconfirmedw,=(1.405-0.001) from the location of the tatively the Poincarerecurrence cycls) expected in a

i -1 ) ) -
minimum of the real part oD~ (s). _ _ ~ Hamiltonian system and their dependence on the various pa-
The envelope of thg oscillations obtained numerically is gmeters of the model.

very well fit byt~ “exp(— ). This general behavior has been | the specific case at hand, @)-symmetrick (92)?2 sca-
checked for different values of the bare coupling and weg field theory is a prototype of models of spontaneous sym-
have verified that it does not depend on which choice of th%etry breaking in a wide variety of physical systems. It has
wy profiles (C4) and (C5) one makes for the initial condi- peen common to rely heavily on the thermodynamic free
tions. lllustrated in Fig. 18 are they =1 and\ ,=0.1 cases, energy and equilibrium considerations generally in analyzing
where =1.5, y=0.0067 anda=1.288, y=0.000 32, re-  these systems. One broad and generally applicable conclu-
spectively. Figures 19 and 20 display the complete fit to thesjon of the present study is that this can be very misleading
damped oscillation alongside the actual evolution for theyhere nonequilibrium dynamics is concerned. We have
case\, =1. Very good agreement is evident over long timesshown that the distribution of particles created in the mean
and a large amplitude range. The case\gf=0.1 is very field time evolution from an initial configuration in the spin-
similar. odal region is generally far from thermal. This leads to a
As expected from the time dependence of the envelope Gfnal state in which the mean field need not be close to mini-
the oscillations observed in FlgS 18, 19, and 20, the damping']um of the free energy potentiaL The Simp|e observation
rate cannot be obtained from a simple pole analysis. Indeeghat there is a sum rule which the nonthermally distributed
the imaginary part oD ~(s) evaluated from the numerical particles can saturate is sufficient to resolve this seemingly
data does not possess a zero &my y with w, fixed at  paradoxical result.
1.405, although it does decrease monotonicallyyas de- The linear response analysis of the oscillations about the
creased, thus favoring<<0.003. This value is close to our allowed stationary configurations is also a new result which
momentum resolutiordk and hence we could not go to is quite different from what consideration of the free energy
lower values reliably. In any case, the decay of the envelop&inction alone might lead one to expect. We have shown that
at late times is due to the creation of very low momentumthere is a collective plasma mode in the radial symmetry
massless bosons which have not yet dephased efficientlipreaking direction whose characteristics depend on the am-
Hence it is the behavior of the Laplace transform on thebient particle distribution. This also should be generally true
branch cut very close te=0 which determines the late time of the various systems described by the samb&)¢ field
damping, and this behavior depends in turn on the the modtheory. While there is excellent agreement in the thermal
functions|f,(t)|?> neark=0 where neither our replacement case for both the plasmon frequency and damping rate, the
(5.22) nor our single-pole-dominance assumptions are justinonthermal situation is more complicated. In this case, due to
fied. the lack of pole dominance, the late time behavior cannot be
In earlier studies of damping & 2 power law was en- described by exponentially damped oscillations. Our numeri-
countered and identified as due to the behavior of the releal results for the plasmon oscillation envelope are well fit
evant spectral density function near threshf@é]. In the by an expression of the forri™ “exp(—t). The plasmon
present case there is no simple argument that we are awarefoéquency compares well with an analytical estimate. How-
which would lead to such a power law at late times. ever, the precise dependence of the envelope function on the

In our simulations where\y =1=A\,, the output value of
the calculated plasma oscillation frequeney=1.414 is
within 0.6% of the measured value, = 1.405, showing the
self-consistency of the approximation and the(6it30), to
this accuracy. We also performed the integration in Eq
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particle density in the general case remains to be more fully 1., 1 ., x(x )
investigated. We have outlined also how dephasing leads p= Efﬁ —§X¢ +X §+M

also to effectively classical field configurations which one

can sample in order to extract information on the creation of 1 - k2 5
topological defects during the phase transition. These classi- + Ef [dk]Uk( |fil*— 3 tx |fil ]
cal field configurations in the Gaussian ensemble show evi-

dence for a finite correlation length whose dynamics may be 1., 1

investigated in the present approach. This direction is cer- = §¢ - m

tainly an interesting one to pursue both in the condensed
matter and cosmological phase transitions. 1 (A, - k? )

Throughout the paper we have endeavored to bring the +mfo k*dkay |y _§|fk| : (A3)
theoretical framework into close contact with practical nu-
merical methods. Indeed one of the main conclusions of this
work is that the real time dynamics of phase transitions caye have used the gap equati@?36) in passing to the latter
be studied in a concrete way with presently available comexpressions in each case.
puters. Besides the wide applicability of the spontaneously The energy density contains a quartic but constant cut-
broken ) (®?)? theory it is interesting for the existence of off dependencei.e., proportional toA?). This is the ex-
massless Goldstone bosons which are created freely durigscted vacuum energy contribution which should be sub-

the phase transition. This essential kinematics is shared Qyacted. The conservation of the energy density,
systems with an exact gauge symmetry such as QCD or gen-

eral coordinate invariance such as gravity. The numerical

techniques used in this work and the experience gained in £=0, (A4)
treating the massless case should prove to be valuable in

generalizations to these cases.

is easily checked from the equations of motion, and is not
ACKNOWLEDGMENTS affected by the subtraction of the constant quartic diver-
gence. As it will turn out this single constant subtraction is
ufficient to yield a cutoff-independent conserved energy
ensity.

The cutoff dependence of the isotropic presguie more
involved and requires a detailed understanding of how Lor-
entz invariancéor, more generally, coordinate invariande
APPENDIX A: THE ENERGY-MOMENTUM TENSOR broken by the spatial momentum cutoff we have introduced

AND ITS RENORMALIZATION in all the mode integrations. In the first forms of the two
expressiongA2) and (A3), i.e., before using the gap equa-
energy-momentum tensor at any order of the la¥gexpan- tion, there appear mode integrals Whosg cutoff dependences
sion [3]. In this appendix we give some details about theCOrrespond to those of a free theory with the maEsre-

energy-momentum tensor and its renormalization. Becaugelaced byx(t). Divergences in the energy-momentum tensor

of spatial homogeneity and isotropy, the only nontrivial com-&XPectation valugT,,) have been studied in the literature
ponents of this tensor are by covariant methods such as dimensional regularization or

covariant point splitting27] with the result that these diver-

Y. K. would like to thank Alex Kovner for fruitful discus-
sions. Numerical computations were carried out on the CM%
at the Advanced Computing Laboratd#CL), Los Alamos
National Laboratory.

The effective action2.12 leads directly to a conserved

(To=¢, gences must be proportional either to the metric tensor
g,,=diag(—1,1,1,1) in flat Minkowski spacetime or the to-
(Ti)=p&;, (A1) tal derivative “improvement term” of Eq(A12) below. Be-

cause we are using a regulator in the form of a cutoff in the
where the energy density and isotropic pressur@ are  Spatial momentum integrations whichnst covariant under
given by Lorentz or general time-dependent coordinate transforma-
tions, the quartic and quadratic cutoff dependence we shall
1., 1, x[x ) actually obtain will not have these covariant forms. Hence
=S¢ toxd"— | 5 T u ization i
2 2 N we shall have to perform the stress tensor renormalization in
a noncovariant manner as well to correct for the spurious

1 . noncovariantA* and A? cutoff dependence, in order to ob-
+ Ef [dkJon|fil®+ (K2 + x)|fil?} tain covariant results in the end.
The actual cutoff dependence in bathand p is easily
_L 2, 1, analyzed by means of an adiabatic expansion to the mode
B 2¢ 2\ 5 function equation(2.27), the lowest order solution of which
1 A is given by Eq(2.34). By substituting this lowest order adia-
- 2 1201205 |2 batic approximation to the mode functions into the mode
+4772f0 k® dkc o[l "+ k71l (A2) integrals in the first forms of EqgA2) and (A3) we can

characterize the most severe dependence on the ultraviolet
and cutoff A in the forms
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ho(A ; .
= k? dk Vk?+
ook R =6
ﬁA4 fLAz % 2 4A2 A 2 3 1.0 - B
T )2(_ in( )+ X2+OX_2
167 167° 64w X 1287 A
(A5)
and a
0.0 - _
_ fA k% dk
p0_1277 o Vk%+x
hAY  BA%x  hx?  [AAZ\ Thy? x°
= 48x7 4827 642" “3842 7O\ A7) 1.0 : ‘
X ~0.0 50.0 100.0 150.0
(AB) !
Clearly theA dependence isot such thats,=—p,, as re- FIG. 21. Evolution of the pressure as a function of time for

quired by considerations of general covariance. As has beef 1/6. The approach to the equation of states/3 is clearly seen.
known for some time the reason for this is that the spatial

momentum cutoffA acts as a noncovariant point splitting ~ The reason that we must still perform one additional sub-
tional to 5i(M5JV) in which the spatial directionsj=1,2,3 are next (_erer in the WKB_ad|abat|c expansion of the mode
distinguished. Since such terms do not appear in thgquatlon(2.27), one obtains, for the adiabatic frequency,
wu=r=0 time component, the energy density has the correct . “
A dependence and requires no covariantizing correction. Do _Eﬂ §ﬂ+ o (A9)
However, for the pressure we should have KR 4 02 b

Po=—¢eo (A7) If the energy density is calculated to this adiabatic order, one
finds no additional cutoff dependencednand so no addi-

on grounds of general covariance. This is easy to enfoyce tional subtractions are required for it. Indeed none are per-
hand by adding the differencepy—po=—&o—Po t0 Po mitted consistent with the principle of general coordinate

above which just corrects for the noncovariant terms inducedvariance. However, the pressure has an additional logarith-

by our momentum cutoff. mic cutoff dependence equal to
With this prescription to enforce covariance of the mode 7 AN2
integrals in the pressure, the quartic subtraction required on - ¥y Inl— A10
; X 2 XxIn . (A10)
both ¢ and p is the removal of the cosmological vacuum 96w

4 2 ; ; )
energyf A' /167", corresponding to a subtractive renormal Since this divergence appears only in the pressure but not in

ization of the constant cosmological vacuum term. We ar o . ; ;
notallowed to subtract the subleading quadratic and Iogarithpthe energy, it is consistent with the generally covariant and

mic divergences of appearing in Eq(A5), since, for one conserved form of the “improvement tern(28]

thing, they are multiplied by the time-dependent functjon AT ) =£&(g,,0-3d,0,) (9?) (A11)

and hence would spoil energy conservation, and for another, Y Y wev

such time-dependent terms do not correspond to a cosmen flat space. This term has no effect on the energy density

logical constant counterterm. Instead we recognize them tgor spatially homogeneous mean fields but adds to the pres-
be just the correct cutoff-dependent terms needed to combingyre the total derivative

with the cutoff-dependent terms in the “classical” energy

density d? £
Ap:—faz[¢2+f [dsk]0k|fk|2} =20 X (A12)
X(x X2 1 1 4A7?
TN, §+/“LA -T2 Ap(m?) —h 32772In m2 in which & is an arbitrary parameter. The fact that a diver-

gence such as E@gA10) appears in the pressure means that
we should introducé as a free bare parameter of the theory
from the very beginning, on the same footing as the mass
,u% and couplingh , , and allow for the possibility that the

in order to render the total energy density cutoff indepen-bareé, #0 will renormalize in general. Indeed this is known
dent. Because the analogous termspirare precisely the to be the case in®* theory[29] and we have the renormal-
negative of those appearing ia after the correction ization condition

Ps— Po has been added to its quantum part, we also obtain a

(partially) renormalized pressure by the same manipulations. (Er— %)=Z;1(A,m)[§R(m2)— 1, (A13)

v?  hA?
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wherez; ! is the same logarithmic renormalization constantsince collisional effects are not yet taken into account by the

as that for the coupling constant appearing in Egst0 and  leading order largé&l approximation, and the nonthermal na-

(2.47) of the text. Thus, ture of the late time state is apparent from the created particle
distribution of Fig. 9.

b1 1 Y 1)
Ay BAy AR 6 APPENDIX B: THE GAUSSIAN DENSITY MATRIX p
and the additional term in the pressi#€l2) becomes In this second appendix we examine some of the proper-
ties of the general mixed-state Gaussian density matrix
1 2 1. (3.16 and its time evolution. The discussion will be re-
Ap——mX—A—R gR_E X stricted mainly to the case af=0 spatial dimensions to
5 simplify the notation. Generalizations th>0 are straight-
. 1 n ANV 28R (AL5) forward. First, the time evolution of the density matrix is
9672\ m2 | X" \g X unitary:

Comparing the latter expression with E&10) we observe N C(t

that the logarithmic cutoff dependence cancels in the sum P(D)=U(1)p(0)U'(1), U(t)=ex;{ _'foHoséjt)a

p+Ap. Hence wemust add the improvement term and (B1)

renormalize¢ in precisely this way in order to obtain a com-

pletely cutoff-independent pressure. whereH . is the time-dependent harmonic oscillator Hamil-
To summarize this discussion of the renormalization ofiopjan,

the energy and pressure we define

4 Hosd @,P;t) =3 [ P2+ w?(t)®?], (B2)

AA

1672 (A16) which preserves the Gaussian structure einder time evo-

] ) lution, so that the Liouville equation
to be the cutoff-independent conserved energy density and

ER—TE—

J

hA* i —p=[Hosc, B3
Pr=P—Po—eot 7g—2+AP (AL7) P~ Hose] "9
16

. is satisfied without taking the trace.
to b? the renormalized pressure of tﬁ)él. theory_ for.the It is not difficult to find the explicit form of the unitary
spatially homogeneous mean fields considered in this pape; eratorU(t) in the coordinate basis
Let us also remark that the valde= 1/6 for the improve- P

ment term is also the value chosen for conformal invariance

’ — ; -1/2
of the scalar theory in the massless limit. Indeed the trace of (X|UDx)=[27ifo(1)]

the renormalized energy-momentum tensor is i )
Xexp =——[u(t)x®+v(t)x'2—2xx"]
ﬁxg 1 1 Zﬁv(t)
— _ — .2 — s
(TLr=—ert3pr=vx+ 552+ " &R G)X (A18) (B4)

upon using Eqs(A5), (A6), and(A15) above. At¢=1/6 the in terms of the two linearly independent solutions to the
last term vanishes, the first term is the renormalized classic&lassical evolution equation
trace of the energy-momentum tensor, and the second term is

the one-loop quantum trace anomaly d? ) uy
13(7\)2 XAd 1) fix (A19)
o2 RIX =7 5 AT Y |~ 252 ) )
2hg 2 dAIN ] s2m u0)=0(0)=1, U(0)=0(0)=0. (B5)

in terms of theB function of the coupling constannt.
We note that the trace of the renormalized energy mo
mentum tensor vanishd$or any value of¢) in the static

spontaneously broken vacuum whete=y=0 and Eq.

2.38 holds. This implies that th lativisti ti f . .
états) olds is implies that the relativistic equation o P()=UT(H)P(0)U(t) = p(t) + af()+aTF* (1), (B6)

This samelU(t) also evolves the quantum operators

®(t)=UT(t)P(0)U(t)= ¢(t) +af(t) +alf* (1),

Pr— & &g (A20) Mathematically, the three Fock space bilinear operators
aa, a'a’, anda’a+aa' generate the Lie algebra of the sym-
holds at late times, independently of the number density displectic group S[2)=SU(1,1)=SL(2R) which is the group
tribution. The numerically obtained approach to this equatiorof homogeneous linear transformations of phase space
of state is shown in Fig. 21. We emphasize that this equatioq®,P) which preserves the antisymmetric classical Poisson
of state does not imply relaxation to thermal equilibrium brackets{®,P}=1, i.e.,
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() P’ a b\/® 2 | o—-1} | B15
P - P/ \c d/ip/l’ (B7) p—0_+leX n o+1 aa ( )
with as far as computing matrix elements in this Heisenberg basis
is concerned.
ad—bc=1. (B8) By making a different IM§i2) group transformation it is

also possible to diagonalize E¢B2) at any given time,
Since this is one condition on four real parameters, the grougringing the quadratic Hamiltonian into the standard har-
Sp(2) is a three-parameter group. If taeanda’ Heisenberg  monic oscillator form Hoe=%w (33 '+3a '@ )/2, with a
operators are appended to these three, the algebra agajfe dependent. This adiabatic particle basis is related to the

closes upon itself, forming a five-parameter group, the inhotime-independent Heisenberg basis by the relations
mogeneous metaplectic group 1k&p [30]. The unitary evo-

lution (B1), (B4) of the Gaussian density matri8.16) is an f=af+pf*,
explicit representation of this group’s action.
The form of the density matrix in the time-independent a=a*a- B*3a T+ k¥, (B16)

Heisenberg basis is quite easy to obtain from the form of the

the transition matrix elemerk|n) given by Eq.(5.7) of the  \ith T the adiabatic mode function defined by E8.34) of
text. By substituting the integral representation of the Herype text, and

mite polynomials

i~ .
n! dz 2 a=—f*(f-iwf),
_ 2XZ— 7 h
HA() =5~ 396 e, (B9)
i~ .
whereC is a closed contour around the origin of the complex B=—f(ftiwf),
z plane into the expression h
o) <) i . .
(n’|p|n>=f dx’f dx(n’|x"W{x'| p|x){(x|n}, (B10) k=7 (1= of). (B17)

and interchanging the orders of integration we can perfornd he Bogoliubov coefficients: and 3 obey
the double Gaussian integral over the shifted vector

2 2__
(x— ¢,x" — @) first. Using the standard formula |al*~18*=1, (B18)
o - S and therefore may be expressed in terms of a real parameter
j d2x e X AXTBX=_ @B -A B4 (B11)  y and two phases
—w (detA)
i - a=coshye'?,
with A the 2X 2 matrix,
=—gj i(y—0)
otl/lto l-o B=—sinhye : (B19)
=— , B12 . . . . : .
8¢ \1-0 1+o (812 The density matrix in the adiabatic particle number basis can
be expressed in terms of these time-dependent parameters at
andB the column vector, any given timet. The direct evaluation of the expression
analogous to Eq(B10) in the n number basis is quite te-
V2o z dious, and is accomplished most rapidly by use of a coherent
T e |\ (B13) state basis as discussed in R&fl]. Making the identifica-
tions

the exponent of the resulting expression simplifies consider-

. i ot . 1 _
ably. Lettingz=e'’ andz’*=e'? we are left with a= __ St

S - 1_|S++|2’

2 (n'int\Y2r2nde’ . (27d6
=il ) J, 2 o), 2 g S-Sk (820
1 S—+ 1_|S++|2'
) og— ) ,
—ing (6—6")
xe M exp{z U+1)e' ] (B14  \ith
Expanding the last exponent in a Taylor series we find that S,_=S,_=sechye',
only the terms withn’ =n survive with Eq.(5.8) the final _
result. As discussed earlier in Sec. VI, in this Heisenberg S, . =tanhye'’,

basis the density matrix is time independent and diagonal. o
This fact allows the writing of Eq.B14) in an operator form: S__=—tanhye?? 17, (B21)
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and y— v in the notation of Ref[31], Eq. (5.32 of that for n=2l even butP,,,(0)=0 forn=2I+1 odd, the di-
work yields the desired matrix element in the case of zeragonal matrix elemen{B26) simplifies considerably in the

mean field, namely, pure state case:
& oF N _ 21—1)N
(nlpm =0 (n=2llp[A=21)| ,_, :(—2|||—sechy tant?'y,
=\ 12 $=¢=0 )
:2ei(ﬁ’71)0/2( g) [(02—1)2—4azsinl'122y]<ﬁ’*~”)’4 (B28)
n!

- with the mean number of created particles,
X[o?+1+2gcosh2y] (M L4

~ [f+iwf|?
~ = 4q7° —12 N=sinty= ——— (B29)
(n=n")2 y
><P(~ﬁ+~ﬁ,),2< 1 2_1)23|nr122y ) : (B22) 2he
which are Eqgs(5.24 and (5.25 of the text. These results
whereP]" is an associated Legendre polynomial. were reported in7].

The first important feature of this expression for our pur- In the pure state case the eveniagonal matrix elements
poses is the phase factor whern ’. If the exact mode of the density matrix are positive definite and may be inter-
function f is rewritten in the form preted as the probabilities for observihgincorrelated par-

- ticle pairs in the adiabatic particle basis. The addiagonal
] N L matrix elements vanish since particles can only be created in
HH= 2Q(t) exr{ ! JO dr' Ot )>’ (823 pairs from the vacuum. Otherwigee., for 0>1), the much
more complicated and nonpositive definite expressRz6)

this phase shows that there is no simple classical probability interpreta-
tion for the density matrix. The restriction to zero mean
9=arg i)zzf dt’ w(t) fields ¢=$=0 is not serious for spatially homogeneous
-B 0 backgrounds because of E®.31) which shows that all the
. mean fields vanish except for tlke=0 mode. Hence, at late
. Qwl/Q) times all thek>0 modes may be treated classically if
+tan 02— w2+ 02/402] (B24) dephasing is effective and typical classical field configura-

tions in the ensemble can be constructed as in Ef29

Thus, even in the adiabatic limit, whefh’02<1, the phase and(5.30 of the text, provided th&=0 mode is excluded.

angle # depends linearly on time and the off-diagonal ele- .
ments of the density matrixB22) are rapidly varying in APPENDIX C: NUMERICAL METHODS

time. On the other hand, the diagonal elements of(Bg2) In order to solve the system of equatiof&20), (2.27),
are independent of this phase angle and consequently mughq(2.39 as an initial value problem, we have to specify the
more slowly varying functions of time. Indeed, in the case ofjpjtia| conditions of the mean fiele, its time derivative, and
zero mean fields=0, the adiabatic invariaW of Eq.(5.19  the mode function and its time derivative. Then we have to
IS solve the gap equatio2.39 at the initial timet,. In order to

~ ) have a finite set of renormalized equations we have to choose
W=N—-N=osinify (B29  the mode functions so that the high momentum modes coin-

and(F [p[fi ) depends only uporr (a constantand y: cide with the zeroth order adiabatic vacuum described by

_ i~ = 1
(M |plN )=2[(0*~1)*~4o’siniP2y]"? fi(tg) = ————, (C1)
X[ 02+ 1+ 2¢cosh2y]~(2i+ D4 2andto)
2 —1/2 . ) éok(to)
xP=l|1- (Ugfl)zsinhzzy} ) f(to)= _|wk(t0)_m fi(to), (C2

(B26)  With wﬁ(t0)=k2+x(to). It is easy to verify that for initial

: . __conditions with ¢(to)=0, it is also true thafy(to)=0 by
Now, if o>1, the Legendre polynomial is not necessarily inspecting the time derivative of the gap equation. This sim-
positive which means that we cannot interpret the dlagonalIifies the form off (t,) to

kllo

matrix elements of the density matrix in the adiabatic particle'D
number basis as a classical probability distribution in the Ft) = —i ot Fult c3
general mixed state case. Howevergit 1, then the argu- to) @(to) lto)- ©3

ment of the Legendre polynomial vanishes for ap¢ 0.  For an initial state with positive square effective masse

Since could use the same form of the mode functions of &)
(21— 1)1 also for the low momentum modes. However, if we wish to
PN At investigate the case of a “quench” within the unstable spin-

Pa(0)=(-1) 2'! (B27) odal region by initial conditions with a negativg0), we
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have to modify the initial values of the low momentum 2m A
rr;odes in order to avoid the singularity fi(to) = 1/y2w at dk=1-= 3590~ 0-000 156. (CH)
k= —x(tg). We have used two different profiles of the fre-
guencyw, for the initial mode functions: The field ¢ was scaled in units af so thatk is also given in
units of v, x in units of v?, and the timet in units of v ~ 1.
2,0 \_ L2 k?+ x(to) Most of the results discussed in the text are for a bare cou-
wi(to) =k™+ x(to)tan X(to)] ) (€4 pling constani , =1 but other values were also investigated.

The corresponding renormalized coupling constants at the
w2(tg) =k2+ y(to)exp —v/k?). (C5) re;ormalization pointx(to)| are given by Eq(2.40 with
m? replaced by|x(ty)]. With A y=1 and for ¢(ty)/v=0,
At large momentum these profiles coincide with the adia-A\g=0.990 036, while forp(ty)/v=0.5,Ag=0.990 248. The
batic vacuum frequency as required. In all cases, except fagnergy densities in these cases a#e=0.1237 and
thermal initial conditions, the initial number of quasiparti- £=0.069 78, respectively.
cles,N(k)=0. The mode equations were stepped forward in time using a
Numerical simulations were performed on a massivelysixth order adaptive time step Runge-Kutta integrator. The
parallel computer using a momentum grid with 32 000time-steps were controlled by tracking the evolution yof
modes. The upper cutoff was set/t=5v, implying a grid  Energy conservation to a few parts per® Mas achieved
resolution over the temporal range of typical evolutions.
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