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The time evolution of O(N) symmetricl(F2)2 scalar field theory is studied in the largeN limit. In this limit
the ^Fi& mean field and two-point correlation function^FiFj& evolve together as a self-consistent closed
Hamiltonian system, characterized by a Gaussian density matrix. The static part of the effective Hamiltonian
defines the true effective potentialUeff for configurations far from thermal equilibrium. Numerically solving
the time evolution equations for energy densities corresponding to a quench in the unstable spinodal region, we
find results quite different from what might be inferred from the equilibrium free energy potentialF. Typical
time evolutions show effectively irreversible energy flow from the coherent mean fields to the quantum
fluctuating modes, due to the creation of massless Goldstone bosons near threshold. The plasma frequency and
collisionless damping rate of the mean fields are calculated in terms of the particle number density by a linear
response analysis and compared with the numerical results. Dephasing of the fluctuations leads also to the
growth of an effective entropy and the transition from quantum to classical behavior of the ensemble. In
addition to casting some light on fundamental issues of nonequilibrium quantum statistical mechanics, the
general framework presented in this work may be applied to a study of the dynamics of second order phase
transitions in a wide variety of Landau-Ginsburg systems described by a scalar order parameter.
@S0556-2821~97!02610-6#

PACS number~s!: 11.30.Qc, 05.70.Ln, 11.15.Kc, 11.15.Pg

I. INTRODUCTION

Spontaneous symmetry breaking by a scalar order param-
eter occurs in many different physical systems as diverse as
liquid 4He at temperatures of order 2 K to the standard
model of electroweak interactions at temperatures of order
250 GeV5331015 K. The prototype renormalizable quan-
tum field theory describing this symmetry breaking is a sca-
lar field ~or set of scalar fields! with a lF4 self-interaction.
The behavior of the finite temperature effective potential or
Landau-Ginsburg-Helmholtz free energy in this theory is
well known and forms the usual basis for discussion of the
symmetry restoration at high temperature. On the other hand,
until recently very little effort had been devoted to the non-
equilibrium or time-dependent aspects of the symmetry-
breaking phase transition. With the development of practical
general techniques for studying time-dependent problems in
quantum field theory, as well as the advent of high speed
supercomputers, it has become possible to address these dy-
namical issues systematically for the first time. It is clear that
a detailed description of the time-dependent dynamics will
be necessary to calculate nonequilibrium properties of the
phase transition, such as the formation and evolution of de-
fects in the4He system after a rapid quench or the efficiency
of baryogenesis in the electroweak phase transition. Other
examples requiring the detailed time evolution of scalar
fields are the chiral phase transition of the strong interactions
such as may soon be probed in relativistic heavy-ion collid-
ers and the problem of reheating the very early universe after
it has passed through an epoch of rapid expansion and cool-
ing.

This class of problems requires a consistent treatment of
time-dependent mean fields, such as the expectation value of
the scalar field, in interaction with its own quantum and/or

thermal fluctuations. In this paper we consider the model
where the scalar field is anN-component vector
F i , i51, . . . ,N, with the O(N)-symmetric quartic interac-
tion l(F iF i)

2. When the O(N) symmetry is spontaneously
broken by the nonzero expectation value of the quantum
mean field̂ Fi&5f i , massless~i.e., gapless! excitations ap-
pear, and it is their dynamical effects on the time evolution
of the mean field which we wish to take into account. This
can be done in a systematic way by computing the quantum
effective action in a power series expansion in the parameter
1/N @1–3#. Variation of this effective action yields equations
of motion for the mean fields coupled to the higher point
Green’s functions of the theory which are suitable for imple-
mentation on a computer. The leading order in largeN cor-
responds to a self-consistent mean field approximation, i.e., a
truncation of the infinite hierarchy of Schwinger-Dyson
equations for then-point correlation functions to a closed
Hamiltonian system of just the one-point function^Fi(x)&
and two-point function̂Fi(x)Fj (x8)&. Because no irreduc-
ible correlators higher than these appear in the leading order
of the largeN expansion, it is equivalent to a Gaussian ap-
proximation to the time-dependent density matrix of the sys-
tem. As will become apparent, the approximation allows au-
tomatically for a mixed-state Gaussian density matrix,r, and
is therefore more general than a Gaussian ansatz for the pure
state wave function in the Schro¨dinger picture. The mixed-
state Gaussian ensembler describes at once and on the same
footing both the quantum and classical statistical fluctuations
of the F i field about its mean value, arbitrarily far from
thermal equilibrium.

An important property of the evolution equations in the
largeN limit is that they are Hamilton’s equations for an
effectiveclassicalHamiltonianHeff ~in which\ appears as a
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parameter!. This effective Hamiltonian turns out to be noth-
ing else than the expectation value of the full quantum
HamiltonianH in the general mixed state described by the
time-dependent Gaussian density matrixr, i.e.,

Heff5Tr~rH! . ~1.1!

The canonical variables ofHeff are in one-to-one correspon-
dence with the parameters needed to specify the general
Gaussian density matrix in the Schro¨dinger picture, or the
one- and two-point functions of the Schwinger-Dyson hier-
archy in the Heisenberg picture. In order to highlight the
Hamiltonian structure of the mean field equations, our first
purpose in this paper will be to establish these various cor-
respondences in detail for the O(N)-symmetricl(F iF i)

2

theory. The existence of an effective Hamiltonian makes it
clear from the outset that the leading order largeN approxi-
mation is self-consistent and energy conserving, and hence
does not introduce any time irreversibility or dissipation ‘‘by
hand’’ into the system. In this connection let us be very clear
that in this paper we are discussing aclosedHamiltonian
system, without any external fluctuations which can provide
sources or sinks of energy.

A corollary of the identification of the effective Hamil-
tonianHeff in the largeN limit is that its static pieceUeff
~obtained by setting all the canonical momenta to zero! is the
true effective potential which governs the nonequilibrium
evolution of the system. This true effective potential~TEP! is
real, and completely well defined for states far from thermal
equilibrium. In the special case of thermal equilibrium it be-
comes theinternal energyU of the closed Hamiltonian sys-
tem described byHeff . In contrast, the Helmholtz free en-
ergyF which is very often called the ‘‘effective’’ potential is
not defined away from thermal equilibrium and becomes
complex in the unstable spinodal coexistence region between
the two spontaneously broken vacua in simple approximation
schemes. This is easily understood in the more general non-
equilibrium context of this paper: It means simply that there
is no stable equilibrium state in the coexistence region with a
fixed constant value of̂Fi&. In other words, if we start at
t50 with initial conditions corresponding to this putative
thermal equilibrium state, the system immediately begins to
evolve in time away from it, and this is the physical meaning
of the imaginary part ofF @4#.

We shall see that the free energy functionF ~or its real
part! is a very poor guide to the time evolution of the system
far from thermal equilibrium. In particular, the oscillations of
the time-dependent expectation value^Fi(t)& about the
spontaneously broken minima are characterized by a fre-
quency~the plasma frequency! which is not the second de-
rivative of F at its minimum~which turns out to be zero!.
Moreover, even thelocationof the minima ofF is in general
different from the stationary points of the mean field evolu-
tion. Explicitly solving for the actual nonequilibrium mean
field dynamics of a closed field theory system and demon-
strating that it is quite different from what might be inferred
from an uncritical use of the equilibrium free energy function
F is the second major emphasis of this work. In this we
corroborate the similar conclusions reached in Ref.@5#.

The spontaneous breakdown of the global O(N) symme-
try in the model leads to the existence ofN21 massless

Goldstone bosons~in d.1 spatial dimensions!, which domi-
nate the dynamics in the largeN limit. In d<1 spatial di-
mension there is no symmetry breaking and the system is
inevitably driven into the symmetric phase, no matter what
the initial state or energy density. The one-dimensional case
is of more than passing interest in showing how the O(N)
symmetry is restored dynamically and the Mermin-Wagner-
Coleman theorem@6# is satisfied in real time. Ford.1, the
absence of a finite mass threshold means that an arbitrarily
small amount of energy in the mean field can create massless
Goldstone boson pairs nearly at rest. This open channel pro-
vides an efficient mechanism for the mean field to continu-
ously transfer its kinetic energy to the massless particle
modes over time. The existence of degrees of freedom with
zero mass or infinite correlation length is characteristic of
second order phase transitions in general. Hence, the real
time dynamics of spinodal decomposition in such second
order transitions can be studied in our approach. The pres-
ence of a symmetry which requires massless particles is also
a feature which the O(N) model shares with other physically
interesting theories such as non-Abelian gauge theories and
gravity. The O(N) scalar theory provides an instructive ex-
ample of mean field dissipation by means of massless par-
ticle creation, which should be applicable in other quite di-
verse contexts, such as gluon production in relativistic
heavy-ion collisions or graviton creation in early universe
phase transitions. Developing techniques and gaining some
valuable intuition for these more challenging problems is our
third reason for presenting a study ofl(F iF i)

2 theory in
some detail.

It is remarkable that despite the explicitly Hamiltonian
structure of the mean field equations, we observe quasidissi-
pative features in the evolution, in the sense that energy
flows from the mean field̂Fi& into the fluctuating particle
modes without returning over times of physical interest. In
other words, although the underlying equations are fully
time-reversal invariant, typical evolutions beginning with en-
ergy concentrated in the mean fields areeffectively irrevers-
ible, at least over very long intervals of time. This apparent
irreversibility is quantifiable, first, in terms of the increase in
particle entropy obtained by averaging over the rapidly vary-
ing phases of the fluctuating modes and, second, by the ef-
fective damping rate of the collective motion which we cal-
culate by a standard linear response analysis. Since the mean
field Gaussian approximation contains no collision terms, the
particles interacting with each other only through the mean
fields, this effective relaxation to a quasistationary~but non-
thermal! state is a form of collisionless damping, similar to
Landau damping in nonrelativistic electromagnetic plasmas.
We call this collisionless damping due to effective loss of
phase information in the fluctuating quantum modesdephas-
ing, and present numerical results which substantiate the the-
oretical discussion of damping of the mean field~s! due to
massless particle creation in the continuum.

Dephasing of the fluctuations is both an extremely general
and efficient mechanism for introducing effective dissipation
into the reversible Hamiltonian dynamics of mean field evo-
lution. Hence, even in this relatively simple collisionless ap-
proximation to a quantum many-body theory one can begin
to see how irreversibility and the second law of thermody-
namics emerge from a consistent treatment of fluctuations in
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a closed Hamiltonian system. Collisions which first appear at
one order beyond the mean field limit in the largeN expan-
sion would be expected to make the dephasing and dissipa-
tion found at lowest order still more efficient.

In addition to the effective dissipation of energy from the
collective plasmon mode to the fluctuations, dephasing is
also responsible for quantum decoherence, in the sense of
suppression with time of the off-diagonal elements of the
Gaussian density matrix. The point is that by going to the
appropriate time-dependent number basis the diagonal ma-
trix elements ofr are adiabatic invariants ofHeff and there-
fore slowly varying functions of time, while the off-diagonal
elements are very rapidly varying. These rapid phase varia-
tions in the off-diagonal interference terms cancel out very
efficiently when the sum over the mode momentum is per-
formed or if the phases in a given mode are averaged in time.
In either case, the particle creation and interactions have the
effect of bringing the quantum system into whateffectively
looks more and more nearly like a classical mixture in which
the phase information in the off-diagonal components may
be discarded for most practical purposes at late times. The
symmetry-breaking behavior of the density matrix and effec-
tive disappearance of quantum interference between the two
classically allowed outcomes is the final result.

An important consequence of decoherence is the appear-
ance of a diagonal effective density matrix which may be
sampled to generate smooth classical field configurations.
These configurations are free from spurious cutoff depen-
dences and can be used to address issues such as, e.g., the
generation of topological defects in a nonequilibrium phase
transition and the modeling of individual events in heavy-ion
collisions.

The time-dependent scalar theory is an excellent theoret-
ical laboratory for the study of general nonequilibrium phe-
nomena such as decoherence and the quantum to classical
transition quite aside from specific potential applications to
phase transitions in many systems of physical interest. The
detailed study of effective dissipation and decoherence in an
explicit field theoretic example is the fourth major focus of
the present work. Some of our results on the Hamiltonian
nature of the evolution and on dephasing and decoherence
have been reported earlier in condensed form@7#.

The paper is organized as follows. In the next section we
begin by reviewing the largeN expansion ofl(F iF i)

2

theory in the real time effective action formulation. The
Hamiltonian structure of the equations of motion is exhibited
and the effective Hamiltonian and Gaussian density matrix
are identified in Sec. III. The static part of this effective
Hamiltonian is the nonequilibrium true effective potential
Ueff which we define and relate to the thermodynamic free
energyF in Sec. IV. Numerical evolution of the actual equa-
tions of motion in both one and three dimensions shows
clearly the difference with what might have been inferred
from F. In Sec. V we identify the adiabatic particle number
basis in which dissipation through the increase of the effec-
tive particle entropy and decoherence are described. We also
present numerical evidence for the efficient dephasing of the
quantum modes in the time-dependent mean fields, and show
how it leads to typical classical configurations in the mixture
in which quantum interference effects have been washed out.
In Sec. VI we perform a linear response analysis of small

perturbations away from thermal equilibrium, as well as
away from the nonthermal stationary states found in the pre-
vious sections, compute the plasmon damping rate, and com-
pare it with the numerical results. We conclude in Sec. VII
with a discussion of our results and of their possible appli-
cation to diverse problems of interest in the real time dynam-
ics of second order phase transitions with a scalar order pa-
rameter.

There are three Appendixes, the first on the renormaliza-
tion of the energy and pressure of the theory, the second
cataloging some mathematical properties of the Gaussian
density matrix used in the text, and the third containing the
details of the numerical methods used in solving the equa-
tions.

II. LARGE N EFFECTIVE ACTION

The most direct method of deriving the equations of mo-
tion in the largeN approximation is the method of the effec-
tive action, which also has the advantages of exhibiting the
covariance properties of the theory and providing a general
framework for the systematic expansion in powers of 1/N to
any desired order beyond the mean field approximation. Here
we will present only a brief synopsis of the effective action
approach and refer the interested reader to the earlier work
@1–3# for details of the derivation~which is quite standard!.
The underlying O(N)-symmetric scalar field theory with
which we begin is described ind space dimensions by the
classical action

Scl@F i ,x#5E dt ddx Lcl@F i ,x#

5E dt ddx H 2
1

2
F iG

21@x#F i1
N

l
xS x

2
1m2D J ,

~2.1!

wherei51, . . . ,N and

G21@x#[2h1x ~2.2!

is the inverse propagator of theN scalar fields. We take the
signature of the Minkowski metric to be (2,1,1,1) and
use units in which the speed of light and Boltzmann’s con-
stant are unity,c5kB51, but we retain\ in what follows in
order to exhibit the semiclassical nature of the largeN limit.

The form of the action~2.1! is equivalent to the more
familiar Lagrangian density

L̃cl@F i #52
1

2
~]mF i !~]mF i !2Vcl

52
1

2
~]mF i !~]mF i !2

l

8N S F iF i2
2Nm2

l D 2,
~2.3!

with the definition of the auxiliary fieldx by

x52m21
l

2N
F iF i , ~2.4!
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since the two LagrangiansLcl and L̃cl are then equal up to a
surface term. The quartic coupling in the Lagrangian has
been taken to bel/N from the outset, rather than rescaling it
later by 1/N as is sometimes done@1#.

If the parameterm2.0, then this Lagrangian describes
spontaneous symmetry breaking since the minimum of the
classical potentialVcl occurs at

F i min5d iN AN v0 , v05A2

l
m, ~2.5!

rather than at zero. The second derivative of the classical
potential is

]2Vcl

]F i]F j
5

l

2N S FkFk2
2Nm2

l D d i j1
l

N
F iF j

5S xd i j1
l

N
F iF j D , ~2.6!

which evaluated atF i5F i min becomes

]2Vcl

]F i]F j
U

F i5F i min

5H 0, i or j51, . . . ,N21,

lv0
2 , i5 j5N.

~2.7!

At this minimum the O(N) symmetry is spontaneously
broken,x50, and there areN21 massless modes. Small
oscillations in the remainingi5N radial direction describe a
massive mode with bare mass equal toA2m5Alv0. In this
standard way of describing the symmetry breaking, one di-
rection is singled out and its vacuum expectation value is
scaled withAN as in Eq.~2.5!. It is clear that in the large
N limit the quantum effects of the single radial degree of
freedom are down by 1/N compared to theN21 massless
modes which dominate the dynamics.

Passing now to the quantum theory, the largeN mean
field approximation is obtained by retaining only the leading
terms in a systematic expansion of Feynman diagrams in
1/N. To leading order these reduce to the one-loop diagram
with the effective mass squaredx; i.e., the quantum effective
action to leading order is just

Seff@f i ,x#5Scl@f i ,x#1N
i\

2
Tr lnG21@x#, ~2.8!

wherex is to be treated as an independent field, determined
from its own variational equation,

dSeff@f i ,x#

dx
50, ~2.9!

and f i is the expectation value of the quantum operator
Fi . In writing Eq. ~2.8! we have ignored the difference be-
tweenN andN21 in the one-loop term to leading order in
largeN.

The classical actionScl and Tr lnG21@x# term in Seff are
both of order N because of the summation over
i51, . . . ,N in Eq. ~2.1!. Once this is recognized it is some-
what more convenient to make the replacement

(
i51

N

f if i→Nf2 , ~2.10!

and drop the O(N) index, thereby returning to a single-
component description in whichf is the rescaled expecta-
tion value in the symmetry-breaking direction, i.e.,

f i5^Fi&5d iNANf. ~2.11!

ThenScl@f i ,x#5NScl@f,x# is justN times the classical ac-
tion of a single-component field and Eq.~2.8! becomes

Seff@f,x#5NScl@f,x#1N
i\

2
Tr lnG21@x# . ~2.12!

Thus, the role of the largeN limit is simply to justify the
neglect of the single radial massive degree of freedom rela-
tive to theN21 massless Goldstone bosons in the propaga-
tor G@x# of the F field. As we shall see in Sec. VI the
massive degree of freedom reappears in the guise of thex
propagator which controls the plasma oscillations around
fmin .

Before proceeding it is worth pausing at this point to com-
pare and contrast the largeN effective action~2.12! with two
different but related approximations. The simplest is the
standard one-loop approximation on the single-component
theory, which is obtained by expanding theF field about its
mean valuef. The quantum effective action in this approxi-
mation is

S1 loop@f#5S̃cl@f#1
i\

2
Tr lnG21@Vcl9 #, ~2.13!

where the effective mass appearing in the two-point function
is

Vcl9 5
]2Vcl

]F2 U
F5f

52m21
3l

2
f2 . ~2.14!

The simple one-loop approximation includes only the one-
loop self-energy diagram of Fig. 1, without any further re-
summation of diagrams. As is well known this simple per-
turbative expansion requires both\lR!1 and
\lRln(f/m)!1, where m is some renormalization mass
scale. The appearance of large logarithms severely limits the
range of validity of the one-loop approximation, and leads
also to infrared divergences in the free energy potential@8#.

FIG. 1. The one-loop self-energy diagram.
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The approximation, usually called the Hartree or Gaussian
approximation in the literature, is closely related to the large
N approximation in that the second derivative of the classical
potentialVcl9 in Eq. ~2.13! is replaced by its Gaussian mean
value, viz.,

SHartree@f,M2#5Scl1
i\

2
Tr lnG21@M2#, ~2.15!

with

Mi j
2[ K ]2Vcl

]Fi]Fj
L 5 K 2m21

l

2N
FkFkL d i j1

l

N
^FiFj& .

~2.16!

In the Hartree approximation the classical action should be
expressed in terms of the appropriate set of variational pa-
rametersf andMi j

2 . In both the Hartree and largeN ap-
proximations the expectation values of bilinears obey the
factorization condition

^Fi~x!Fj~y!&5^Fi~x!& ^Fj~y!&2 iGi j ~x,y!. ~2.17!

Because of the sum over the repeated indexk51,...,N in the
diagonald i j term, it is orderN

0 compared to the last, order
1/N, term in Eq.~2.16!. In the largeN approximationGi j is
just d i j G@x# for i , jÞN, and the last term in Eq.~2.16! is
discarded at leading order as in Eqs.~2.6! and ~2.12!,
whereas in the Hartree approximation of Eqs.~2.15! and
~2.16! it is retained. An important consequence of this dif-
ference between the two approximation schemes is that un-
like the Hartree approximation, the largeN effective action
is the leading term in a series in a well-defined expansion in
powers of 1/N. Thus, it is possible to improve on the large
N limit in a systematic way by retaining higher order terms
in this series@1–3#. In contrast, the Hartree approximation is
simply a variational ansatz.

In terms of the ordinary rules of weak coupling perturba-
tion theory the Feynman diagrams that contribute in both the
largeN limit and the Hartree approximation may be repre-
sented by the sum over the daisy and superdaisy diagrams of
Fig. 2. This sum of perturbative self-energy insertions@dif-
fering in their internal O(N) index structure and combina-
toric factors in the Hartree and largeN cases due to the
difference betweenxd i j andMi j

2 # simply amounts to a geo-
metric series which shifts the mass pole of the^FiFj& propa-
gator from its perturbative value~2.14! to the self-
consistently determinedxd i j or Mi j

2 . Hence both the large
N and Hartree effective actions~2.12! and ~2.15! can be
written in the same form as the simple one-loop effective
action~2.13!, but with different values of the mass parameter
in the one-loop term. This is the resummation of self-energy
diagrams required by a renormalization group analysis, and
in fact, x is a renormalization group invariant@1#. This is
equivalent to the resummation of the leading logarithms of
perturbation theory which removes the infrared divergences
in the equilibrium free energy function and extends the range
of validity to very small~or very large! mean fields, until the
subleading logarithms, i.e., terms like\2lR

2 ln(f/m), eventu-
ally become important.

In physical terms, the fundamental excitations in the large
N limit are theN21 Goldstone modes, whose masslessness
is fixed by the O(N) symmetry which the 1/N expansion
respects order by order. In contrast, the Hartree approxima-
tion is not a systematic expansion in any small parameter.
The result is that although the two approximations are very
similar in some respects and may be handled by the same
techniques, the physics they describe is really quite different.
Which approximation is more reliable depends very much on
the application, and in particular whether or not the massless
Goldstone modes of the largeN limit actually play the lead
role in the physics we wish to describe. Certainly one would
have no justification in applying the largeN method to the
caseN51, for example, where no Goldstone modes exist at
all. Since we wish to describe the dynamics of second order
phase transitions in this paper, it is significant for our pur-
pose that the largeN expansion predicts a second order
phase transition at the critical temperature given by Eq.~4.8!
below, whereas the phase transition in the Hartree approxi-
mation is~weakly! first order@9#. The critical exponents of
the second order transition have been calculated up to order
1/N2 in the largeN approximation and give reasonable
agreement with other methods~such as thee expansion!,
even for moderately smallN @2#.

In addition to providing a practical expansion technique in
equilibrium phase transitions the largeN expansion has the
significant conceptual advantage over the Hartree approxi-
mation of placing mean field theory in its proper context
with respect to other systematic methods in nonequilibrium
statistical mechanics. In fact, the systematic truncation of the
Schwinger-Dyson hierarchy of connected 2n-point functions
by the largeN expansion in quantum field theory is the pre-
cise analogue of the truncation of the BBGKY hierarchy of
n-particle distribution functions in nonequilibrium classical
statistical mechanics. The existence of an energy-conserving
expansion parameter in 1/N which preserves all the relevant
symmetries of the underlying field theory is a powerful tech-

FIG. 2. Typical self-energy daisy and superdaisy diagrams in-
cluded in the Hartree or leading order largeN approximation.
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nical tool for development of the quantum theory of nonequi-
librium processes from first principles in a systematic way
@3#.

In the real time formulation, the effective action of Eq.
~2.12! becomes the starting point for all further analysis of
the largeN nonequilibrium dynamics. SinceS is constructed
by taking a Legendre transform in the presence of external
sources, it follows that its first variation with respect to the
independent mean fieldsf or x is proportional to the sources
for these fields. In the absence of external sources, these
variations yield the equations of motion for the mean fields.
The variation with respect tox, Eq. ~2.9! yields the equation
of constraint or gap equation

x~x!5 K 2m21
l

2N
Fi~x!Fi~x!L

52m21
l

2
f2~x!2

il

2
G@x#~x,x! , ~2.18!

which will be recognized as just the expectation value of the
~operator! definition of the auxiliary field in Eq.~2.4! upon
using the factorization condition~2.17!, correct to leading
order in 1/N. SinceG@x# itself depends onx through the
definition

~2h1x!G@x#~x,x8!5dd11~x,x8! , ~2.19!

Eq. ~2.18! is a nonlinear integral equation for the gap func-
tion x.

The variation with respect tof yields the equation of
motion for the symmetry-breaking expectation value:

1

N

dSeff@f,x#

df
5G21@x#f~x!5@2h1x~x!#f~x!50 .

~2.20!

Thatx is a useful indicator of symmetry breaking should be
clear from the spacetime-independent form of Eq.~2.20!,

xf50 ~]mf50!, ~2.21!

which tells us that eitherf or x ~or both! must vanish
in a uniform, stationary state. The casef50 is the
O(N)-symmetric state, while the case of nonvanishingf is
the spontaneously broken state in whichx50 is the vanish-
ing Goldstone boson mass. This is an explicit realization of
Goldstone’s theorem, which is respected by the largeN ap-
proximation. In the following the explicit functional depen-
dence ofG@x# and its inverse on the mean fieldx will be
suppressed, and we adopt the simpler notationG(x,x8) or
still more brieflyG, hereafter.

Whereas the spontaneous symmetry-breaking solution
x50 can be achieved only whenf56v0[6A2/lm clas-
sically, in the largeN approximation the two-point function
G contributes at the same order and can even dominate the
mean fieldf in Eq. ~2.18!. SinceG itself depends onx, this
additional term also has the effect that thex field can un-
dergo nonlinear collective plasmonlike oscillations as we
shall see explicitly in Sec. VI. Notice also that there is noth-
ing to preventx from being negative at some times which
allows us to explore the dynamics of the unstable spinodal

region of Fig. 3. The spinodal at a given temperature is the
region where the second derivative of the potential becomes
negative. In the largeN approximation, this corresponds to
x,0.

In this paper we shall be concerned only with spatially
homogeneous mean fieldsf5f(t) and x5x(t). It is not
difficult to treat spatially inhomogeneous mean fields by the
same methods, but as the homogeneous case is simpler and
already contains much of the essential physics, we restrict
ourselves to that case in this paper. As we shall see explicitly
in succeeding sections this restriction corresponds to a spa-
tially homogeneous ensemble average, although any particu-
lar member of the ensemble may be spatially inhomoge-
neous. Thus, information about spatial correlations is
certainly contained in the two-point correlation functionG,
describing fluctuations away from the mean values, even
when the mean valuesf(t) andx(t) are space independent.
Indeed, whenf andx are functions only oft, then the two-
point Green’s functionG is a function of the spatial differ-
encex2x8 and it is useful to introduce the Fourier transform
of the corresponding Wightman functionG. ~or G,):

G.~ t,x;t8,x8!52G,* ~ t,x;t8,x8!

5E @dk#eik•~x2x8!G.~ t,t8;k!, ~2.22!

with

@dk#[
ddk

~2p!d
. ~2.23!

In fact,G. is a function only ofk[uku by rotational sym-
metry of the spatially homogeneous state. Information about
spatial correlations resides in thek dependence of the Fourier
spectrum of this two-point function.

FIG. 3. The unstable spinodal region of the (f,T) plane, where
x is negative. From Eq.~4.7! this is the regionf,fT where
(fT /v)

2512(T/Tc)
2 is the parabolic curve shown in the figure.
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The Wightman functions are solutions of the source-free
wave equation. Explicitly, if the original quantum field op-
eratorFi is expanded about its mean value~2.11! in terms of
the quantum modesf k and the corresponding plane wave
creation and destruction operatorsak

† andak ,

dFi~ t,x![Fi~ t,x!2^Fi&

5L2 d/2(
k

@eik•xf k~ t !ak1e2 ik•xf k* ~ t !ak
†#, iÞN,

~2.24!

in a d-dimensional cubical box of finite lengthL, then the
Wightman functions are given by the usual expressions

\G.~ t,x;t8,x8!5 i ^dF~ t,x!dF~ t8,x8!& ,

\G,~ t,x;t8,x8!5 i ^dF~ t8,x8!dF~ t,x!& . ~2.25!

The relationG.52G,* follows immediately from the Her-
miticity of the underlying quantum fielddF in Eq. ~2.24!.

The expectation value of the particle number density in
this basis~not to be confused with theN of largeN!,

N~k5uku!5^ak
†ak&, ~2.26!

is also a function only ofk by isotropy of the spatially ho-
mogeneous state. In terms ofN(k) and the complex mode
functions f k(t) obeying

F d2dt2 1k21x~ t !G f k~ t !50, ~2.27!

the Wightman functions may be expressed in the form

G.~ t,t8;k!5 i f k~ t ! f k* ~ t8!@N~k!11#1 i f k* ~ t ! f k~ t8!N~k! .
~2.28!

The commutation relation

@ak ,ak8
†

#5dk,k8 ~2.29!

implies that the complex mode functions should be chosen to
satisfy the Wronskian condition

f k
d fk*

dt
2 f k*

d fk
dt

5 i\ , ~2.30!

in order for the quantum field operatorF to obey the usual
canonical commutation relation:

FF~ t,x!,
]F

]t
~ t,x8!G5 i\dd~x2x8! . ~2.31!

The normalization of the time-independent Wronskian con-
dition ~2.30! is the only place where the constant\ enters the
mean field equations, which otherwise are classical in their
time evolution dynamics.

We have not written thea priori possible bilinear terms
f kf k or f k* f k* in Eq. ~2.28!, since they can always be ab-
sorbed into a redefinition off k andN(k) under the transfor-
mation

f k→coshgke
iuk1 ickf k1sinhgke

iuk2 ickf k* ~2.32!

without affecting the mode equation~2.27! or Wronskian
condition ~2.30!. This is equivalent to making a Bogoliubov
transformation which sets to zero the expectation values of
the pair densitieŝakak&5^ak

†ak
†&50. Hence there is a natu-

ral SU~1,1! Heisenberg group structure~for eachk) inherent
in the leading order largeN equations.

In the gap equation~2.18! the coincidence limit of the
Green’s functionG(x,x) appears. The coincidence limits of
eitherG. ,G, or the Feynman propagatorG are all identi-
cal, and so we obtain from Eqs.~2.22! and ~2.28! the coin-
cidence limit of any of the Green’s functions in the form of
an integral overk of the Fourier mode functions:

\G.~ t,x;t,x!5\G,~ t,x;t,x!

5 i E @dk# u f k~ t !u2@2N~k!11#. ~2.33!

Since the mode functions obeying Eqs.~2.27! and ~2.30!
behave as

f k~ t !→ f̃ k~ t ![A \

2vk~ t !
expS 2 i E t

dt8vk~ t8! D ~2.34!

for largek, where

vk~ t ![Ak21x~ t ! , ~2.35!

the integral in Eq.~2.33! is quadratically divergent ind53
spatial dimensions. Introducing an explicit momentum cutoff
L and performing the angulark integrations, the gap equa-
tion ~2.18! may be rewritten in the form

x~ t !52mL
2 1

lL

2
f2~ t !1

lL

4p2E
0

L

k2dku f k~ t !u2sk

~2.36!

for d53, where we have introduced the notation

sk[2N~k!11 . ~2.37!

The fact that the bare parametersmL andlL must depend on
the cutoff in order to render the equations independent of
L in the end has been exhibited explicitly as well. The qua-
dratic divergence ind53 is the divergence of the one-loop
self-energy diagram in Fig. 1 and is absorbed into the bare
mass parametermL . One convenient way to effect this mass
renormalization is to evaluate Eq.~2.36! in the time-
independent spontaneously broken vacuum, wherex50,
f5v, sk51, and the mode functions are given by

f k
~vac!5A \

2k
e2 ikt. ~2.38!

In this way the quadratic divergence in the integral of Eq.
~2.36! is absorbed into the relation between the bare and
physical expectation value of the field,mL

2 can be eliminated,
and we obtain
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x~ t !5
lL

2
@f2~ t !2v2#

1
lL

4p2E
0

L

k2dkH u f k~ t !u2sk2
\

2k J , ~2.39!

which is free of quadratic divergences.
The remaining logarithmic divergence in the mode inte-

gral of Eq. ~2.39! is removed by the logarithmic coupling
constant renormalization in the usual way: i.e.,

lL5Zl
21~L,m! lR~m2!, ~2.40!

with

Zl~L,m!512
\

32p2lR~m2!lnS L2

m2D
5F11

\

32p2lLlnS L2

m2D G21

~2.41!

andlR(m
2) the renormalizedF4 coupling defined at some

finite mass scalem2. By dividing both sides of Eq.~2.39! by
lL and using Eqs.~2.40! and ~2.41!, it is straightforward to
verify from the largek behavior of the integrand that the
logarithmic dependence onL of the integral in Eq.~2.39! is
canceled by the logarithm in Eq.~2.41!. Thus, the resulting
equation forx(t) is independent ofL for L large, andx is
in fact a renormalization-group-invariant physical mass
squared of the theory.

The condition thatZl.0 prevents us from taking the cut-
off strictly to infinity with lR.0 fixed, for otherwiseZl

from Eq. ~2.41! would eventually become negative and the
theory would become unstable. This is just a reflection of the
Landau ghost instability of scalarF4 field theory, and means
that the theory can be sensible and nontrivial only as an
effective field theory equipped with a large but finite cutoff
L. This presents no problem in practice as long asL is large
enough that the physical time evolution, plasma oscillations,
damping, etc., occur on time scales much greater than
L21. In that case, the evolution is numerically quite insen-
sitive to the value ofL over a very wide range, provided
lR is not too large@3#. We will focus in this work on mod-
erate coupling stengths\lR.1 where the effects of back
reaction on the mean field evolution are significant. The case
of very weak coupling~of order 10212–10213), of interest in
inflationary models of the early universe, has been consid-
ered in Refs.@5,10,11#.

There is no wave function orf renormalization at lowest
order in largeN, and so no further renormalization is re-
quired in d53 to this order, and Eqs.~2.20!, ~2.27!, and
~2.39! together with the constraint on the initial data~2.30!
specify a well-defined closed system of evolution equations
for the mean fieldsf andx in interaction with the fluctua-
tions f k .

Let us emphasize again that these equations differ from
the purely classical tree-level approximation or the simple
one-loop approximation in that the last term of Eq.~2.36! or
~2.39! couples the fluctuations self-consistently and nonlin-

early back on the time-dependent mass gap functionx(t),
corresponding to the full sum of daisy and superdaisy dia-
grams in Fig. 2.

In d51 space dimensions the integral in Eq.~2.18! is
only logarithmically ultraviolet divergent and the one sub-
traction of Eq.~2.39! is sufficient without anyl renormal-
ization. However, in lower spatial dimensions the smallk or
infrared behavior of the integral becomes more delicate, and
must be treated carefully.

III. EFFECTIVE HAMILTONIAN AND DENSITY MATRIX

The presentation of the largeN equations of motion of the
previous section was based on the functional method, in
which the extremization of the effective actionSeff in Eqs.
~2.20! and~2.18! takes the place of the usual Euler-Lagrange
variational principle of classical mechanics. The equations so
obtained are for the mean values of the field operators and
their two-point Green’s functions which describe fluctuations
about the mean fields. This immediately raises a question: Is
there a corresponding Hamilton form of the variational prin-
ciple for an effective largeN Hamiltonian involving both the
mean fields and their fluctuations? In addition one would like
to know to what distribution of field amplitudes in the Schro¨-
dinger wave function~or density matrix! do the largeN
equations for the one- and two-point functions correspond. It
is to these questions that we turn in this section. Answering
them will lead directly to the true effective potential of non-
equilibrium largeN mean field theory.

Let us begin by consideration of the case ofd50 spatial
dimensions, i.e., quantum mechanics. The generalization to
higher d will turn out to be straightforward. Ford50 the
LagrangianLcl or L̃cl of Eq. ~2.1! or ~2.3! is that of an
N-component anharmonic oscillator. IfN51, it reduces to
the usual anharmonic double-well oscillator. In thed50
case there is nok index to be integrated and the equations
derived in the last section become simply

S d2dt2 1x~ t ! Df~ t !50,

x~ t !5
l

2
@f2~ t !1j2~ t !2v0

2# ~d50!, ~3.1!

where we have introduced the notation

j2~ t ![s u f ~ t !u2[~2N11!u f ~ t !u2 ~3.2!

in terms of the expectation of the number operator
N5^a†a&. We recognize that

j2~ t !5^F~ t !F~ t !&2f2~ t !5^„F~ t !2f~ t !…2& ~3.3!

is just the quadratic variance of the quantum operatorF(t)
from its mean valuef(t). By differentiating this relation and
definingh[j̇ we find

2j~ t !h~ t !5^Ḟ~ t !F~ t !1F~ t !Ḟ~ t !22f~ t !ḟ~ t !&

52sRe~ ḟ f * ! . ~3.4!
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The advantage of defining these quantities will become ap-
parent from the role they play in the physical interpretation
of the equations of motion~3.1! in the Schro¨dinger picture.
Indeed, by differentiating Eq.~3.4! again and using both the
equation of motion~2.27! ~with k50 in d50 spatial dimen-
sions! and the Wronskian condition~2.30! for f (t), we find

ḣ5 j̈52xj2
j̇ 2

j
1

su ḟ u2

j
52x j1

\2s2

4j3
~3.5!

in the new notation. This equation of motion and Eq.~3.1!
are just Hamilton’s equations

ṗ52
]Heff

]f
,

ḣ52
]Heff

]j
, ~3.6!

for the effectivetwo-dimensional classical Hamiltonian

Heff~p,f;h,j;s!5
1

2
~p21h2!1

l

8
~f21j22v0

2!2

1
\2s2

8j2
, ~3.7!

with

p[ḟ5
]Heff

]p
,

h[j̇5
]Heff

]h
~3.8!

the canonical momenta conjugate to the two generalized co-
ordinatesf andj. A different but equivalent set of canonical
variables was discussed in Ref.@12#.

Hence by the simple change of notation in Eqs.~3.2! and
~3.4! we have recognized that the largeN equations for the
quantum anharmonic oscillator with classical potential,

Vcl~F!5
l

8N S (
i51

N

F iF i2v0
2D 2 , ~3.9!

derived by the effective action technique of the last section
are precisely equivalent to Hamilton’s equations for the ef-
fective Hamiltonian~3.7!. This answers the first question we
posed at the beginning of this section in the affirmative, at
least for the case ofd50.

An immediate corollary of the Hamiltonian structure in
the extended phase space (p,f;h,j) is that the largeN evo-
lution equations are energy conserving withHeff the value of
the conserved energy. It is also interesting to note that\s is
a constant of the motion which enters the effective potential

Ueff~f,j;s!5
l

8
~f21j22v0

2!21
\2s2

8j2
~3.10!

as a single ‘‘centrifugal barrier’’ term, whose effect is to
repel the variancej away from zero. The physical and math-
ematical analogy to an angular momentum barrier is made
even stronger by the fact that the three symmetric bilinears

aa, a†a†, andaa†1a†a generate the Lie algebra of su~1,1!
or so~2,1! which is the noncompact version of the ordinary
angular momentum algebra su~2! or so~3!, and moreover, the
Casimir invariant of this rank one Lie algebra is exactly
\2s2/4, in the standard normalization. The corresponding
Lie group is just the three-parameter group of homogeneous
linear Bogoliubov transformations~2.32!.

To answer the second question posed at the beginning of
this section let us recall that both the time-dependent Hartree
~TDH! and largeN equations have been studied in the Schro¨-
dinger representation, and they are known to correspond to a
Gaussian trial wave function ansatz@13#. Indeed, it is
straightforward to verify that the Gaussian ansatz for the nor-
malized pure state Schro¨dinger wave function,

C~x;t ![^xuC~ t !&5@2pj2~ t !#21/4

5expH i p~ t !x

\
2S 1

4j2~ t !
1 i

h~ t !

2\j~ t ! D @x2f~ t !#2J ,
~3.11!

obeys the expectation value of the Schro¨dinger equation,

^C~ t !u H 2
\2

2 (
i51

N
]2

]Fi]Fi
1V~F!J uC~ t !&

5 i\^C~ t !u
]

]t
uC~ t !&, ~3.12!

in the coordinate representation whereP is the canonical
momentum,

^C~ t !uO~F,P!uC~ t !&5E
2`

`

dx C* ~x;t !OS x,2 i\
]

]xD
3C~x;t !. ~3.13!

This is true provided the largeN limit is taken and the equa-
tions of motion~3.1! and ~3.5! are satisfied fors51. Thus,
the Gaussian ansatz~3.11! is a special case of the general
largeN equations of motion, wherej andh are related to the
real and imaginary parts, respectively, of the Gaussian cova-
riance.

In earlier work@14# it had been recognized that the Gauss-
ian ansatz for the Schro¨dinger wave function~al! imposed
one constraint on theab initio three independent symme-
trized variances

^C~ t !u~F2f!2uC~ t !&5j2,

^C~ t !u~PF1FP22fp!uC~ t !&52jh, ~3.14!

^C~ t !u~P2p!2uC~ t !&5h21
\2

4j2
~pure state!,

expressing all three in terms of only the two variablesj and
h, in the present notation. The one antisymmetrized variance
is fixed by the commutation relation@F,P#5 i\. To what
does the restriction tos51 correspond and how can it be
relaxed? The answer to this question is suggested by the
form of Eqs.~3.14!, and definition ofs in Eq. ~2.37! or ~3.2!,
which shows thats51 corresponds to zero expectation of
the number operatora†a, i.e., to the pure state vacuum an-
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nihilated bya. However, the mean field equations of Sec. II
allow for the more general possibility that this expectation
value may take on any constant valueN. For example, we
might consider the finite temperature Bose-Einstein distribu-
tion

NT5FexpS \v0

T D21G21

,

sT5112NT5cothS \v0

2T D.1, ~3.15!

for somev0 and temperatureT. Since such a thermal state
corresponds not to a pure state Schro¨dinger wave function,
but rather to amixed-state density matrix, it is not surprising
that a pure state Gaussian wave function ansatz cannot de-
scribe this case. However, the general structure of the mean
field equations involves only the one- and two-point func-
tions of the quantum variable, and so we should expect them
to correspond to a Gaussian ansatz but for amixed-state den-
sity matrix instead of a pure state wave function. The most
general form for this mixed-state normalized Gaussian den-
sity matrix r is

^x8ur~p,f;h,j;s!ux&

5~2pj2!21/2expH i p\ ~x82x!2
s211

8j2
@~x82f!21~x2f!2#1 i

h

2\j
@~x82f!22~x2f!2#1

s221

4j2
~x82f!~x2f!J

~3.16!

in the coordinate representation. In the special case that
s51 the last~mixed! term in the exponent vanishes andr
reduces to the pure state product,

r~ t !us515uC~ t !&^C~ t !u , ~3.17!

with uC(t)& given by Eq. ~3.11!. For s.1 the general
Gaussianr does not decompose into a product, and

Tr r2~ t ![E
2`

`

dxE
2`

`

dx8^xur~ t !ux8&^x8ur~ t !ux&

5s21,1, ~3.18!

which is characteristic of a mixed-state density matrix.
That Eq.~3.16! is indeed the correct generalization of the

pure state Gaussian wave function~3.11! is easily verified by
checking thatr(t) satisfies the expectation value of the
quantum Liouville equation

TrS i\ ]

]t
r D5Tr@H,r# , ~3.19!

provided the largeN limit as before is taken and the equa-
tions of motion~3.1! and ~3.5! are satisfied forarbitrary s.
Taking the largeN limit is equivalent here to the replace-
ment of the full anharmonic Hamiltonian by a time-
dependent harmonic oscillator Hamiltonian:

H→Hosc5
1
2 @P21v2~ t !F2#, ~3.20!

where

v2~ t !5 K ]2V

]Fi]Fj
L U

i5 j

→
l

2
@f2~ t !1j2~ t !2v0

2#5x~ t !

~3.21!

is the self-consistently determined frequency of the oscillator
in the largeN limit. With this replacement it is straightfor-

ward to verify that the Gaussian form is preserved by the
time evolution underHosc @15–17#:

i\
]

]t
r5@Hosc,r# . ~3.22!

In fact, substitution of the Gaussian form~3.16! into this
Liouville equation and equating coefficients ofx, x8, x2,
x82, andxx8 gives five evolution equations for the five pa-
rameters specifying the Gaussian which are none other than
the Eqs.~3.1! and ~3.5! together withṡ50.

The effective classical Hamiltonian for the largeN equa-
tions, Eq.~3.7! is just the expectation value of the quantum
Hamiltonian in this general mixed-state Gaussian density
matrix, i.e.,

Heff~f,p;j,h;s!5Tr~rH!5Tr~rHosc!5«Ld ,
~3.23!

in the largeN limit where« is the energy density defined in
Eq. ~A2!. The three symmetrized variances are indeed now
all independent with

Tr@r~F2f!2#5j2,

Tr@r~PF1FP22fp!#52jh, ~3.24!

Tr@r~P2p!2#5h21
\2s2

4j2
,

replacing Eq.~3.14! of the pure state case. The mean values

f5^F&5Tr~Fr! and p5^Ḟ&5Tr~Pr! ~3.25!

remain valid for both the pure- and mixed-state cases.
The physical interpretation of the five parameters of the

general largeN equations (p,f,h,j;s) in terms of the gen-
eral time-dependent mixed-state Gaussian density matrix of
the Schro¨dinger picture is now explicit ind50 quantum
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mechanics. Sinces is the constant parameter which deter-
mines the degree of mixing and\ ands appear only in the
combination\s, it is clear that the largeN equations allow
for a smooth interpolation between the quantum pure state
case in which\s5\ to the high temperature or classical
limit where

\sT→
2T

v0
as T→` or \→0, ~3.26!

in which \ drops out entirely. Thus, quantum and classical
thermal fluctuations are treated on the same footing in the
largeN limit, with the value of the constant parameter\s
determining whether the fluctuations described byj andh
are to be regarded as predominantly quantal or thermal, or
intermediate between the two. Moreover, we see that large
N Gaussian dynamics is really classical dynamics of a
Gaussian distribution function, except that\s which mea-
sures the second moment of the classical distribution cannot
be taken to zero as it could be classically, but instead is
bounded from below by\. This is made explicit by the form
of the Wigner function corresponding to the density matrix
~3.16!, viz.,

fW~x,px![
1

2p\E2`

`

dye2 ipxy/\K x1
y

2
uru x2

y

2L
5

1

p\s
expH 2

~x2f!2

2j2
2

2j2

\2s2

3Fpx2ḟ2
h

j
~x2f!G2J . ~3.27!

Before leaving ourd50 example it is instructive to ex-
amine the static solutions of the effective Hamiltonian, viz.,
the simultaneous vanishing of

ṗ52
]Heff

]f
52

l

2
~f21j22v0

2!f5xf50

and

ḣ52
]Heff

]j
52xj1

\2s2

4j3
50. ~3.28!

If we look for a spontaneosly broken solutionfÞ0, then
x must vanish from the first of these conditions. But then we
cannot satisfy the second condition for finite\s andj. This
is just a rederivation of the fact that there can be no sponta-
neous symmetry breaking ind50 quantum mechanics~or in
fact for anyd<1). We are forced instead to the symmetry-
restored situation for whichf50 andx5x0.0 is deter-
mined from the real positive root of the cubic equation

x05
l

2
~j0

22v0
2!5

\2s2

4j0
4 ~3.29!

for j0
2(s). The Gaussian density matrix centered atf50

with variancej0
2(s) is the solution of the time-independent

Liouville equation for the anharmonic double-well oscillator
with a trial variational density matrix of the form~3.16!. In
the limit that the height of the energy barrier between the two
wells, Eb5lv0

4/8, is much greater than the fluctuation en-
ergy in either well,Ef5\sAlv0/2, the width of the Gauss-
ian, j0

2→v0
2, and its energyE0→\2s2/8v0

25Ef
2/16Eb!Ef ,

corresponding to a probability density spread over the entire
region (2v0 ,v0) in all N components ofF i .

The entire development of the Hamiltonian equations and
Gaussian density matrix is quite easy to generalize to any
number of spatial dimensionsd, at least for the case of spa-
tially homogeneous mean fields. Since in Fourier space the
mode equations are just replicated at every spatial momen-
tum k, we have simply to introduce the subscriptk on all of
the relevant definitions in this section. For example, the den-
sity matrix ford.0 can be written as a product of Gaussians
in Fourier space, viz.,

^$wk%8uru$wk%&5)
k

^$wk8%ur~pk ,fk ;hk ,jk ;sk!u$wk%&

5)
k

~2pjk
2!21/2expH i pk\ ~wk82wk!2

sk
211

8jk
2 @~wk82fk!

21~wk2fk!
2#

1 i
hk

2\jk
@~wk82fk!

22~wk2fk!
2#1

sk
221

4jk
2 ~wk82fk!~wk2fk!J , ~3.30!

wherewk is the generalized coordinate of the field amplitude
in Fourier space andpk the corresponding canonical momen-
tum. The mean fields and their canonical momenta

fk5dk0f~ t !, pk5dk0p~ t ! ~3.31!

all vanish except fork50 in the spatially homogeneous case.
The definitions

jk
2~ t ![sku f k~ t !u2[@2N~k!11#u f k~ t !u2 ,

hk[j̇k, ~3.32!

and
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x~ t !5
l

2 S f2~ t !1E @dk#jk
2~ t !2v0

2D
5

l

2 Ff2~ t !1E @dk#S jk
2~ t !2

\

2kD2v2G ~3.33!

have been introduced in obvious analogy to thed50 case.
The effective Hamiltonian density which gives rise to these
equations is

Heff

Ld
5«5

1

2
p21

1

2l
x21

1

2E @dk#S hk
21k2jk

21
\2sk

2

4jk
2 D ,
~3.34!

with x regarded as a dependent variable off and thejk
through the gap equation~3.33! above. Thek2 term arising
from the spatial gradient of the field ind.0 dimensions is
the most significant difference from thed50 case consid-
ered previously. The Hamiltonian equations of motion

ḟ5p, ṗ52
]Heff

]f
52xf,

j̇k5hk , ḣk52
]Heff

]jk
52~k21x!jk1

\2sk
2

4jk
3

~3.35!

are completely equivalent to the equations of motion for
mean fields~2.18!, ~2.20!, and the mode functions~2.27! in
the spatially homogeneous case in any number of dimen-
sions. The Wronskian condition~2.30! is incorporated auto-
matically into this description.

This completes our demonstration that the largeN mean
field equations of the previous section are Hamilton’s equa-
tions withHeff given explicitly by Eq.~3.34! above, and the
identification of the time-dependent Gaussian density matrix
~3.30! to which the homogeneous mean field equations cor-
respond. The case of spatially inhomogeneous mean fields
involves only the straightforward generalization of Eq.~3.30!
to Gaussian covariances which are off diagonal in the mo-
mentum indexk, and a corresponding coupling between the
different momentum modes in the effective Hamiltonian
~3.34!. Since we have no need of these expressions in the
present work, we do not give the explicit formulas here,
though they may be easily worked out within the present
framework.

IV. NONEQUILIBRIUM TRUE EFFECTIVE
POTENTIAL „TEP…

Having obtained the effective Hamiltonian which de-
scribes the evolution of the closed system of mean fields and
fluctuations in the largeN limit, it is natural to define the
dynamical or true effective potential to be the static part of
the effective Hamiltonian density~3.34!: i.e.,

Ueff~f,$jk% ;$sk%!

[
1

2l
x21

1

2E @dk#S k2jk21 \2sk
2

4jk
2 D

5
x

2 S f22v0
22

x

l D1
1

2E @dk#S ~k21x!jk
21

\2sk
2

4jk
2 D .

~4.1!

This Ueff is the energy density of an initial state with a
Gaussian density matrix~3.30! centered aroundf with in-
stantaneously zero velocitiesp5hk50 in both the mean
field and the fluctuation variables. We callUeff the ‘‘true
effective potential’’~TEP! because it determines the true out-
of-equilibrium time evolution dynamics of the system ac-
cording to Hamilton’s equations~3.35!. It must be clearly
distinguished from the finite temperature free energy effec-
tive potential often discussed in the literature. The relation-
ship between the two we would like to discuss next.

The standard method of calculating the free energy at
temperatureT is to continue analytically the effective action
Seff to imaginary time@8# and evaluate the Tr lnG21 term
over fluctuations which are periodic in imaginary time with
periodb5\/T. In this way one finds, for the case at hand,
that the~unrenormalized! free energy is

x

2 S f22v0
22

x

l D
1E @dk# H \vk

2
1T lnF12expS 2

\vk

T D G J , ~4.2!

which is a real function off provided

vk
25k21x>0. ~4.3!

The cutoff dependent zero point energy inF is handled in the
usual way by subtracting the energy of the zero temperature
vacuum atx50, i.e., *@dk#\k/2. With the subtraction of
this temperature-independent constant and the previous defi-
nitions ofv and the logarithmic coupling renormalization by
Eqs. ~2.40! and ~2.41!, the thermodynamic free energy be-
comes cutoff independent forL large and is given by@18#

F~f,T!5
x
T

2
S f22v22

x
T

lL
D 1

\

4p2E
0

L

k2 dk

3H vk2k2
x
T

2k
12 T lnF12expS 2

\vk

T D G J ,
~4.4!

with x
T
the solution of the finite temperature gap equation:

x
T
~f!5

lL

2
~f22v2!1

\lL

8p2E
0

L

k2 dk

3H 1

vk
cothS \vk

2T D2
1

k J . ~4.5!
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As long asx
T
>0 the free energy function~4.4! is real and

well defined.
The first derivative of the free energy function is given by

dF

df
5x

T
f ~4.6!

upon using the gap equation~4.5!. In the spontaneously bro-
ken state defined byx

T
50, we have

f25fT
25v22

\

2p2E
0

`

k dk
1

expS \k

T D21

5v22
T2

12\
.

~4.7!

The last relation informs us that the expectation valuefT
vanishes at the critical temperature

Tc52A3\ v . ~4.8!

At T5Tc , the second derivative ofF(f,T) vanishes at
f50, and therefore the phase transition is second order in
the largeN approximation. We remark that this isnot the
case in the simple one-loop or Hartree approximation where
the transition is weakly first order@9#. Since theF4 field
theory lies in the same universality class as spin models
which are known to have second order phase transitions@2#,
the largeN mean field approximation gets the order of the
transition correct. Characteristic of a second order transition,
the correlation length, which is given by the the inverse mass
of the radial excitation,

d~T!5lR
21/2fT

21→S 6

lRTc
D 1/2~Tc2T!21/2, ~4.9!

diverges asT→Tc . The critical exponent21/2 is that of
mean field theory.

Because of the divergence of the correlation length at the
critical temperature, it is sometimes said that the dynamics of
a second order phase transition is classical, in the sense that

\NT~k!→
T

k
, ~4.10!

which is independent of\ as k→0. It is true that the very
long wavelength dynamics is dominated by the classical
Rayleigh-Jeans part of the Bose-Einstein distribution
NT(k). However, at finite length scales and/or in nonequilib-
rium situations where finite time scales enter, the classical
limit is not strictly justifieda priori, and should be checked
on a case-by-case basis. Certainly the space and time scales
of the order of the thermal wavelength\/T or less are not
classical at all, even in thermal equilibrium. Also, the classi-
cal limit of long wavelength modes in Eq.~4.10! is a differ-
ent limit from that in which particles act like billiard balls
~i.e., when their de Broglie wavelength is muchsmallerthan
their mean free path! and a classical Boltzmann transport
description becomes appropriate. The extent to which the
Gaussian quantum density matrix of the largeN approxima-

tion can be replaced by a classical probability distribution at
late times when a relation like Eq.~4.10! holds is discussed
in the next section.

As it turns out, the second derivative of the free energy
function vanishes at its minimum forany T<Tc . This fol-
lows the fact that the derivative of the gap equation~4.5!
evaluated atx

T
50 involves an infrared linear divergence

with the result that solving for the derivative gives

dx
T
~f!

df
U

x
T
50

50 ~4.11!

and

d2F

df2 5x
T
1
dx

T
~f!

df
f50 ~4.12!

at x
T
50. This perhaps surprising feature of the largeN free

energy is illustrated in Fig. 4. It is a direct consequence of
the massless Goldstone particles present in the spontaneously
broken phase. As we shall see in Sec. VI, it also makes the
equilibrium free energy useless for describing the plasma
oscillations about the spontaneously broken thermal mini-
mum.

ForT,Tc andf,fT the gap equation~4.5! has no posi-
tive real solutions. This is the unstable spinodal region of
Fig. 3. If x,0, then the frequencyvk becomes imaginary
for k,uxu1/2. This means that, strictly speaking the thermo-
dynamic free energyF is not well defined in this region.
Despite the fact that no thermal equilibrium uniform state
can exist in this spinodal region, what is sometimes done is
to define the free energy by an analytic continuation from
x.0 to x52uxu,0. By this procedureF acquires an
imaginary part, while its real part is no longer a convex
function off ~as general theorems require!. This has led to
much discussion in the literature@19,20#. However, we need

FIG. 4. The Helmholtz free energyF as a function off for
three temperaturesT/Tc50.1,1,2 ~in ascending order! in units of
v51 andl51 in the leading order largeN approximation. The
f-independent thermal free energy2p2T4/90 has been subtracted
out. The lowest curve terminates at the minimum ofF at f5fT ,
xT50, given by Eq.~4.7!, which is the boundary of the spinodal
region; i.e., forf,fT there is no stable equilibrium state. The
second derivative ofF at f5fT vanishes, showing in particular
that the phase transition atT5Tc is second order.
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not wonder at the meaning of this analytic continuation and
imaginary part ofF in the more general nonequilibrium con-
text. The analytic continuation fromx.0 to x52uxu,0
simply defines a Gaussian density matrix centered at
f,fT with instantaneously zero velocities,ḟ5hk50, and
parametersjk andsk52NT(k)11 determined by the ther-
mal distribution atux

T
u52x

T
where the free energy is well

defined. The density matrix will certainly evolve away from
this unstable configuration and the imaginary part is a mea-
sure of the rate at which this evolution will occur initially
@4#. However, shortly afterwards the nonlinear effects of the
evolution described by our general nonequilibrium equations
of motion will set in, and this imaginary part can only be at
best a simple order of magnitude estimate for the evolution
away from the initial state in the weak coupling limit
\lR!1.

The nonconvexity of the real part of the free energy is
also related to the same instability@20#. The point is that the
construction of the equilibrium free energy by a loop expan-
sion or the largeN expansion tacitly assumes the existence
of a stable configuration as the starting point for the expan-
sion. It is precisely this assumption which breaks down in the
unstable spinodal region. A careful definition of the ‘‘effec-
tive potential’’F as the minimum of the free energy for fixed
f5^F& independent of space and time leads to a flat con-
stant function between the two minima at6v which is con-
vex in accordance with the general theorems. However, this
minimization cannot be achieved with a Gaussian density
matrix of the form ~3.30! and the flat convex form ofF
defined in this manner tells us nothing about the dynamical
evolution of an initial Gaussian centered at a value off in
the spinodal region. For this reason we propose to drop all
attempts to refine the definition of a free energy ‘‘effective
potential’’ and focus instead on the potential which actually
governs the nonequilibrium dynamics in a given approxima-
tion scheme. In the leading order largeN scheme this dy-
namical potential is the true effective potentialUeff .

In contrast to the free energyF, the TEPUeff is a func-
tion~al! of all of the generalized fluctuation coordinatesjk as
well as the mean fieldf. It also depends on the constant
parameterssk , which need not be that in the thermal distri-
bution ~3.15!. Hence it is defined much more generally than
F and is manifestly real and positive. If we wish to consider
a function only of the mean fieldf, it is possible to try first
minimizing Ueff with respect to the Gaussian parameters
jk :

]Ueff

]jk
5~k21x! jk2

\2sk
2

4jk
3 50, ~4.13!

which has the real solution

j̄ k
25

\sk

2vk
~4.14!

provided again that Eq.~4.3! holds.
If we restrictUeff further by requiringsk to be the Bose-

Einstein thermal distributionsTk5112NT(k) of Eq. ~3.15!,
we find

U~f,T![Ueff~f,$jk%5$j̄k%;sk5sT k!

5
x
T

2
S f22v22

x
T

l
D 1

\

4p2E
0

`

k2 dk

3H vk2k2
x
T

2k
12vk NT~k!J . ~4.15!

The first term is the classical potential energy densityVcl of
the mean fieldf and the second term is the quantum plus
thermal energy of the fluctuations at the extremum~4.14!.
We recognize the expression~4.15! as theinternal energy
U of the Gaussian configuration specified by Eqs.~3.15! and
~4.14!, which differs from the Helmholtz free energyF by
the standard thermodynamic relation

F5U2TS, ~4.16!

with

S52TrrTlnrT5E @dk#$~NT~k!11!ln@NT~k!11#

2NT~k!lnNT~k!% ~4.17!

the von Neumann entropy of a Gaussian thermal density ma-
trix rT . Since the Bose-Einstein number density

NT~k!5FexpS \vk

T D21G21

~4.18!

depends onxT and hence onf through Eqs.~4.3! and~4.5!,
the free energyF and internal energyU have different de-
pendences on the mean fieldf.fT . The free energy and
internal energy become equal only at zero temperature
T50.

FIG. 5. The TEPUeff as a function off and evaluated in a
thermal equilibrium state for the same three temperatures as in the
previous figure, with the subtraction of the thermal internal energy
p2T4/30. The bottom curve is forT/Tc50.1 and starts atf5fT .
The next two curves are forT/Tc51 andT/Tc52. The Gaussian
width parameterjk has been set equal to its minimum value by Eq.
~4.13! so thatUeff becomes equal to the internal energy of the
system.
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AlthoughF andU have qualitatively similar behaviors in
the regionx>0 where they are both defined unambiguously,
as shown in Figs. 4 and 5, clearlyF andU have quite dif-
ferent physical meanings and applicability. The first is the
negative of the pressure of the gas of scalar particles against
which work must be done in compressing the system at fixed
temperature, i.e., if the compression is performed while in
contact with an external heat reservoir at temperatureT. The
second is the energy density of theclosedsystem which is
conserved if it is allowed to evolve, isolated from all external
sources or sinks of energy. The free energyF can be defined
only in thermal equilibrium. The internal energyU is a spe-
cial case of the more general true effective potentialUeff
which is defined for any Gaussian density matrix, equilib-
rium or not, and which determines the evolution of the sys-
tem away from the instantaneous stationary state where
ḟ5 j̇k50 according to the Hamiltonian equations~3.35!.
Moreover, in the spinodal region (x,0) whereT,Tc and
f,fT it is clear that the minimization condition~4.13! can-
not be satisfied for realjk

2 , which informs us that the time

derivative of the canonical momentumḣk.0 for k2,uxu;
i.e., the configuration is unstable against the fluctuation
widths jk growing in time for these lowk. Note that by the
definition ~3.32!, in terms of the mode functionf k , jk is
necessarily real. The physical interpretation is thus quite
straightforward in the more general nonequilibrium frame-
work we have laid out: There simply is no stationary spa-
tially homogeneous Gaussian density matrix forx,0, and

any such initial configuration will necessarily evolve in time
by growth of the smallk Fourier components of the Gaussian
parametersjk . Indeed, this is obvious from the mode equa-
tions ~2.27! which show that all the long wavelength modes
with k2<uxu will grow exponentially rather than oscillate
whenx,0 @4#. Notice that the nonexistence of a solution to
the minimization condition~4.13! implies that the exponen-
tially growing instability lies in the fluctuationsjk for small
k. Only the nonlinear back reaction of this exponential
growth of the modes in the time-dependent gap equation
~2.39! can eventually bringx to non-negative values and turn
off the instability. It is clear that this time-dependent process
involves many lowk Fourier components of the fieldF and
cannot be described adequately by a single function of one
variable such as the ‘‘effective’’ potentialF, much less a
function of one variable defined only in thermal equilibrium
in the spinodal region where no such thermal equilibrium
exists.

That the time evolution as determined byUeff is quite
different from what might be inferred from the free energy
function F is illustrated by our numerical solution of the
evolution equations, presented in Fig. 6. The oscillation fre-
quency and even the final point of the evolution off as
t→` in general bear no simple relation to the minimum
fT of the free energy ‘‘effective’’ potential. This is easily
understood from the stationary points of the TEP, for a true
stationary state does exist in the spontaneously broken phase
if we also require

]Ueff

]f
5xf50 ~4.19!

since this is satisfied by

x50 and jk
25

\sk

2k
, ~4.20!

with Eq. ~2.38!. Notice that there is such a static solution for
any f and sk . The finite temperature case, Eq.~3.15!, is
only one of infinitely many possibilities for a static solution
of the mean field equations. Correspondingly there are also
an infinite number of stationary density matrices satisfying
@r,Hosc#50, one for each choice ofsk . If sk5112N(k) is
given, then the static value of the expectation valuef is
determined by the static conditionx50, which from Eq.
~2.39! implies

f2ux501
\

2p2E
0

`

kdk N~k!5v2 . ~4.21!

For arbitraryN(k) the relation~4.21! may be viewed as a
kind of sum rule which allows us to distribute any fraction of
thev2 in the coherent mean fieldf2 and the remainder in the
integral over particle modes. In particular, there is no reason
why the sum rule cannot be saturated~or nearly saturated! by
the integral alone, in which case the mean fieldf is zero~or
very small!, but x continues to vanish identically. Even
though f may vanish, this stationary situation should be
clearly distinguished from ordinary high temperature sym-
metry restoration atT.Tc , since the number densityN(k)
neednot be a thermal distribution at all@11#. For example,

FIG. 6. A typical evolution of the mean fieldf and the mass
squaredx in the spontaneously broken phase, starting from an un-
stable initial state withx(0)520.37,0. All time and lengths are
measured in units ofv51. Note that if we use the initial energy
density «50.0697 to infer an effective temperature of massless
bosons, then the expected minimum ofF occurs atfout50.98
which is considerably different than the observedfout50.81. The
oscillation frequency aboutf5fout also bears no relation to the
second derivative ofF which vanishes at its minimum.
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the integral in Eq.~4.21! may saturate the sum rule with the
number density strongly enhanced at low momentum relative
to the Bose-Einstein distribution, so that their contribution to
the total energy density of the system~which involves an
additional power ofk2) is very small, and much less than the
equilibrium energy density at the critical temperature. In the
limit kN(k) approaches ad function atk50 the integral can
saturate the sum rule withno contribution of the zero mo-
mentum particles to the energy density. Such large particle
occupation numbers at zero~or very small! momenta is a
kind of Bose condensation which may be studied by classical
methods@11#.

With the help of the sum rule~4.21!, therefore, one can
easily understand the perhaps initially surprising result,
found numerically in Ref.@21#, that the evolution of thef
mean field can settle to a value different from, and even
much smaller than, the thermal equilibrium valuefT . It sim-
ply corresponds to the fact that the distribution of particles in
the final state is not at all a thermal one. Obviously such a
situation cannot be described by the thermodynamic free en-
ergyF since its evaluation by continuation to imaginary time
assumes from the outset a thermal distribution of particles.
For this reason one could not expect the true evolution ac-
cording to the mean field equations of motion to bear much
relation to what one might infer from an uncritical use of
F, particularly in the regionf,fT where no thermody-
namic uniform equilibrium state exists and the Helmholtz
free energy is not even strictly defined.

The inclusion of collisions in the next order of the expan-
sion in 1/N makes it more likely to bring the distribution of
particles closer to a thermal one. However, since the evolu-
tion is unitary, this can happen only in some effective sense.
This aspect is closely connected to the notion of dephasing
which will be discussed in detail in Sec. VI.

Finally we point out that the stationary spontaneously bro-
ken solutionx50 is disallowed ind51 spatial dimension
~as it was ind50 quantum mechanics!, since the integration
in the definition ofx in Eq. ~3.33! diverges logarithmically
ask→0 which is inconsistent withx vanishing in Eq.~4.20!.
It is this infrared divergence which prevents spontaneous
symmetry breaking of the global O(N) symmetry in one
space dimension, consistent with the Mermin-Wagner-
Coleman theorem@6#. In two or higher space dimensions
there is no such divergence and the spontaneous symmetry-
breaking static solution~4.20! is allowed.

The consequences of the Mermin-Wagner-Coleman theo-
rem for nonequilibrium dynamics in one dimension are illus-
trated in Fig. 7 where the numerical evolution ofx andf is
shown beginning from an unstable initial state with negative
x. We see thatx does not go to zero at late times~no sym-
metry breaking! and that both thex andf oscillations damp
very slowly as compared to the behavior in three dimensions.
This is because of the lack of any massless particles in
d51.

V. DEPHASING, DISSIPATION, AND DECOHERENCE

Although we have shown by explicit construction of the
effective Hamiltonian~3.34! that the largeN mean field
equations are completely time reversible, nevertheless one
observes in typical evolutions as in Fig. 6 aneffective irre-
versibility, in the sense that energy flows from the mean
fieldsf andx to the fluctuating modesf k without returning
over times of physical interest. It is our purpose in this sec-
tion to explain this apparent irreversibility in terms of
dephasing, i.e., the dynamical averaging to zero in the sums
over k of the rapidly varying phases of the fluctuations at a
given time. To the extent that this phase averaging is exact

FIG. 7. Evolution of the
mean field f and the mass
squaredx in one space dimen-
sion, starting from an unstable
initial state. The middle figure
shows thatx does not go to zero
asymptotically, and the oscilla-
tions do not damp as effectively
as in three dimensions. Both
these behaviors are conse-
quences of the Mermin-Wagner-
Coleman theorem which pre-
vents spontaneous symmetry
breaking in one space dimen-
sion.
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and the information in the phases cannot be recovered, the
time evolution is irreversible. This is the sense in which the
fluctuationsf k act as a ‘‘heat bath’’ or ‘‘environment’’ for
the mean field evolution off andx. Of course, since infor-
mation is never truly ‘‘lost’’ in a closed Hamiltonian system
evolved with arbitrarily high accuracy, the information in the
phases can be recovered in principle and we should expect
Poincare´ recurrences in the mean field evolution after very
long times, at least in finite volumeV. As the number of
modesf k ~and particularly as the number of relevant infrared
modes neark50! approaches infinity, we would expect the
recurrence time to go to infinity. In typical evolutions we
followed several tens of thousands of modes, and recurrences
were never observed in practice. The precise dependence of
the recurrence time on the number of modes is an interesting
question which may be studied quantitatively within our
mean field framework by numerical methods. However, we
have not undertaken such a systematic study here, and leave
the question of the recurrence time for future research. In any
case, we cannot expect the leading order largeN collision-
less approximation to continue to be valid for times longer
than the collisional relaxation time in the full theory. The
study of recurrence times in the leading order approximation
may be interesting nevertheless as a model for how such
recurrences and rephasing can occur in more realistic situa-
tions.

To understand precisely what is meant by dephasing let us
return to the Gaussian density matrix of only one degree of
freedom~3.16!. The coordinate representation is only one of
many possible representations of the density matrix. The
number basis, defined by the integer eigenvalues of

a†aun&5nun&, ~5.1!

defines a time-independent basis associated with the Fock
decomposition of the Heisenberg operators~for d50),

F~ t !5f~ t !1a f~ t !1a†f * ~ t !,

dF

dt
~ t !5P~ t !5ḟ~ t !1a ḟ~ t !1a† ḟ * ~ t !, ~5.2!

in terms of its mean value and quantized fluctuations. By
using the Wronskian condition~2.30! we may solve these
relations fora anda†:

~F2f! ḟ *2~P2ḟ ! f *5 i\a,

~F2f! ḟ2~P2ḟ ! f52 i\a†. ~5.3!

In this time-independent basis, the Hamiltonian is given by

Hosc5\v~ t50!~a†a1 1
2 !. ~5.4!

The transformation to this number basis is just a~complex!
canonical transformation which on the quantum level is
implemented by a unitary transformation of bases, with the
transformation matrix,̂xun& in Dirac’s notation. To find this
transformation matrix explicitly we use the definitions~3.2!
and ~3.4!, the equation of motion~3.5!, and the Wronskian
condition again to secure

\2sS a†a1
1

2D5~F2f!2S h2

s
1

\2s2

j2 D1j2~P2p!2

2jh@~F2f!~P2p!1~P2p!~F2f!#

in terms ofj, h, ands. Then by acting with this operator
identity on the matrix ^xun& and replacingF→x and
P→2 i\d/dx we obtain the differential equation

\2sS n1
1

2D ^xun&5H ~x2f!2S h21
\2s2

j2 D1j2S 2 i\
d

dx
2pD 222jhS 2 i\~x2f!

d

dx
2
i\

2
2~x2f!pD J ^xun&, ~5.5!

which is easily solved in terms of the ordinary harmonic
oscillator wave functions

cn~x;v!5
1

~2nn! !1/2S v

p\ D 1/4HnSAv

\
xD expS 2

v

2\
x2D
~5.6!

by

^xun&5expS ip~x2f!

\
1
ih~x2f!2

2\j DcnS x2f;
\s

2j2D .
~5.7!

With the transformation matrix element determined it is a
straightforward exercise in Gaussian integration and the
properties of Hermite polynomials to obtain the form of the
density matrix~3.16! in the time-independent number repre-
sentation:

^n8urun&5E
2`

`

dx E
2`

`

dx8 ^n8ux8&^x8urux&^xun&

5
2dn8n
s11 S s21

s11D
n

, ~5.8!

wheres is defined by Eq.~2.37!. The derivation of these
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results and some further properties on the transformation ma-
trices are given in Appendix B.

The matrix elements of the Liouville equation in this basis
are

i\^nuṙun8&5^nu@Hosc,r#un8&5~En2En8!^nurun8&. ~5.9!

Clearly, since the density matrix in this basis is initially di-
agonal, it stays diagonal and time independent. The time
independence of the matrix elements ofr in the Heisenberg
number basisun& is simply a reflection of the fact that the
density matrix~like the state vectoruc&) is time independent
in the Heisenberg picture where the field operatorF depends
on time according to Eq.~2.24!. All the time-dependent dy-
namics resides in the transition matrix element^xun& which
depends on the five variables„f(t),p(t);j(t),h(t);s… while
the matrix elements~5.8! remain forever unchanging under
the mean field evolution. Indeed, this is just another reflec-
tion of the unitary Hamiltonian nature of the evolution, since
the von Neumann entropy of the Gaussian density matrix

S52Trr lnr5S s11

2 D lnS s11

2 D2S s21

2 D lnS s21

2 D
5~N11!ln~N11!2N lnN ~5.10!

is strictly constant under the time evolution. Hence, there is
no information lost in the evolution in any strict sense.

There is, however, another basis which is more appropri-
ate for discussing ‘‘physical’’ particle number. This is the
time-dependent Fock basis specified by replacing the mode
function f which satisfies

S d2dt2 1v2~ t ! D f ~ t !5S d2dt21x~ t ! D f ~ t !50 ~5.11!

by the adiabatic mode function,f̃ defined by Eq.~2.34! and
the Fock representation~5.2! by

F~ t !5ã~ t ! f̃ ~ t !1ã †~ t ! f̃ * ~ t ! ,

dF

dt
~ t !5P~ t !52 iv~ t !ã~ t ! f̃ ~ t !1 iv~ t !ã †~ t ! f̃ * ~ t ! ,

~5.12!

where theã and ã † operators must now be time dependent.
The corresponding time-dependent number basis is defined
by

ã †ã uñ &5ñ uñ & , ~5.13!

in which

Hosc5
\v

2
~ ã †ã1ãã †! ~5.14!

is diagonal for each time. In theã †ã number basis,r is no
longer diagonal,^ã &, ^ãã&, etc., are nonvanishing, and
Ñ[^ã †ã &ÞN in general, except in the static case of con-
stantv.

In addition to diagonalizing the time-dependent harmonic
oscillator HamiltonianHoscwhich describes the evolution of

the Gaussian density matrix, theñ basis has another impor-
tant property, namely, the existence of an adiabatic invariant
W. This adiabatic invariant may be constructed from the
Hamilton-Jacobi equation corresponding to the effective
classical HamiltonianHeff in the usual way:

1

2 S ]W

]x D 21v2

2
x21

1

2 S ]W

]j D 21 v2

2
j21

\2s2

8j2
5E .

~5.15!

Since the Gaussian density matrix whose evolution is de-
scribed byHeff is equivalent to that of a time-dependent har-
monic oscillator, we may regard the frequencyv(t) in Eq.
~5.15! as anarbitrary function of time and separate the equa-

FIG. 8. Integrand and integral of the RHS of Eq.~5.22! as a
function of k for fixed t5257. The value of the total integral is
19.74.

FIG. 9. Integrand and integral of the phase-averaged quantity
defined by the adiabatic particle number basis as a function ofk for
the same fixedt5257. The value of the integral using the replace-
ment ~5.21! is 19.85, within 0.5% of the value in the previous
figure.
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tion with the ansatzW(x,j)5W1(x)1W2(j). Defining
E5E11E2 this yields, in the first variablex,

W15 R dx A2E12v2x252p
E1

v
, ~5.16!

while in the second variablej one obtains

W25 R djA2E22v2j22
\2s2

4j2
. ~5.17!

Under the substitutionr5j2/2 this turns out to be the same
integral which occurs in the Kepler problem, again pointing
out the formal similarity with the angular momentum barrier
in a central potential. Using standard methods@22#, one finds

W252p
E2

v
2p\s . ~5.18!

Hence the full adiabatic invariant is

W

2p\
5

E

\v
2

s

2
5Ñ2N ~5.19!

upon using the definition ofÑ, the definition ofs, and

E5^H&5^Hosc&5\vS Ñ1
1

2D . ~5.20!

SinceN is strictly a constant of the motion, Eq.~5.19!
informs us thatÑ is an adiabatic invariant and therefore it is
slowly varying ifv25x in the actual self-consistent, nonlin-
ear evolution is a slowly varying function of time. In the
language of classical action-angle variables,W is an action
variable which is slowly varying while the angle variable
conjugate to it varies rapidly in time@linearly with time in
the limit v is a constant, as in the exponent in Eq.~2.34!#.
This means that although the density matrixr is certainly not
diagonal in theñ number basis, its off-diagonal elements
which depend on the angle variable will be very rapidly

varying functions of time, whereas its diagonal elements in
this basis will be only slowly varying. This is clearly seen in
the explicit form for the matrix elements of this basis in Eq.
~B22! of Appendix B. Hence, if we are interested only in the
motion of the mean fields which are slowly varying functions
of time, we may average over the rapid phase variations in
the off-diagonal matrix elements ofr in this adiabatic num-
ber basis. For only a single quantum degree of freedom this
amounts to a time averaging and can be implemented only
by fiat. However, in field theory there are many momentum
modes, so that this averaging is actually performed for us in
the mean field evolution equations by the integrations over
k at fixed t.

The termdephasinghas a precise meaning in this adia-
batic particle number representation of the density matrix. To
the extent that the phases in the off-diagonal matrix elements
of the density matrix in the adiabaticñ basis are rapidly
varying in time, they should have little or no effect on the
evolution of more slowly varying quantities such as the mean
fields f and x or the mean adiabatic particle numberÑ
itself. Thus, a natural approximation to the full density ma-
trix r is immediately suggested by the existence of the adia-
batic number basis, namely, to discard the off-diagonal ele-
ments @see Eq.~B22! below# of r in this basis, which is
equivalent to time averaging the distribution of fluctuations
in the exact Gaussian density matrix~3.30! over times long
compared to their rapid variations. In field theory, where
there are many Fourier modes, each with its own rapid phase
variation, the effect of dephasing may be obtained by simply
integrating over the momentum indexk at fixed time. In
either case, we expect this averaging procedure to scarcely
affect the actual evolution of the mean fields, and the extent
to which this expectation is realized is the extent to which
dephasing of the fluctuations is effective, and the evolution is
irreversible. In Figs. 8 and 9 we compare the actualk depen-
dence of the functionG(k,t) appearing in the mean field
evolution equation~2.18! with the phase averaged quantity
defined by the adiabatic particle numberÑ(k); i.e., we make
the replacement

2 i\G~k,t !5u f k~ t !u2→
1

2k
@2Ñ~k!11# ~5.21!

and discard the interference terms. The relevant integral in
the renormalized gap equation~2.39! is

G~x,x,x!2G~x,x,x50!

5
1

4p2E
0

L

k2dkH u f k~ t !u2sk2
\

2k J . ~5.22!

Notice that although there are many more oscillations in the
integrand of the right-hand side~RHS! of Eq. ~5.22! than in
the phase averaged quantity, the integrals overk of the two
quantities are almost the same (19.74 and 19.85, respec-
tively!.

The adiabatic particle basis may also be used to define
effective Boltzmann and von Neumann entropies@23#
through the diagonal matrix elements~B22! below. Neglect-
ing the rapidly varying off-diagonal matrix elements gives

FIG. 10. Evolution of the Boltzmann and effective von Neu-
mann entropies of the diagonal elements of the density matrix in the
adiabatic particle number basis.
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SB[(
k

$@Ñ~k!11# ln@Ñ~k!11#2Ñ~k!lnÑ~k!%,

Seff[2Trrefflnreff52(
k

(
l50

`

r2l~k!lnr2l~k!,

~5.23!

for the Boltzmann and effective von Neumann entropy of the
truncated density matrix, wherer2l(k) is given by Eq.~5.24!
below. The evolution of these two quantities for a typical
solution of the mean field equations is shown in Fig. 10.
Both display general increase due to continuous creation of
massless Goldstone particles near threshold@24#. Neither
quantity is a strictly monotonic function of time and neither
obeys a strict BoltzmannH theorem. Since the particle
modesf k interact with the mean fieldx but not directly with
each other, the effective damping observed is certainlycol-
lisionless, and the dephasing here is similar to that respon-
sible for Landau damping of collective modes in classical
electromagnetic plasmas. The entropySeff of the effective
density matrix provides a precise measure of the information
lost by treating the phases as random. The Boltzmann ‘‘en-
tropy’’ would be expected to equalSeff only in true thermo-
dynamic equilibrium, which is not achieved in the collision-
less approximation of Eqs.~2.27!. Notice the nonthermal
distribution of particles in Fig. 9. In this nonthermal distri-
bution we see from Fig. 10 that the Boltzmann entropySB
generally overestimates the amount of information lost by
phase averaging.

To the extent that the phase information in the off-
diagonal matrix elements ofr is irretrievable the system has
become effectively classical, in the sense that the quantum
interference effects present in the original ensemble repre-
sented byr are washed out as well. In that case we might as
well regard the ensemble represented by the diagonal, trun-
cated effective density matrix in the adiabatic number basis
as aclassicalprobability distribution with the diagonal ele-
ments of^ñ52l uruñ52l & giving the classical probabilities

of observingl pairs in the ensemble. This probability distri-
bution is derived in Appendix B and given by

r2l~k!5^ñk52l uruñk52l &u s51

f5ḟ50

5
~2l21!!!

2l l !
sechgktanh

2lgk , ~5.24!

whereg is the magnitude of the Bogoliubov transformation
between thea and ã bases, given explicitly in terms of the
mode functions by

Ñ~k!5sinh2gk5
u ḟ k1 ivkf ku2

2\vk
, ~5.25!

which depends only onuku5k by spatial homogeneity. Sam-
pling this distribution with random phases will yield typical
classical field amplitudes which make up the distribution.
Obtaining such typical classical fields in the ensemble can
give us explicit realizations of the symmetry-breaking behav-
ior of the system, as well as providing the starting point for
the study of topological defects produced during the phase
transition.

The sampling of the field configurations proceeds in sev-
eral steps. For a fixed late time and Fourier wave numberk
we calculate the Bogoliubov transformation coefficient from
the staticn to time-dependent adiabatic particle numberñ
basis from Eq. ~5.25!. This gives a set of numbers
r2l5^ñ52l uruñ52l & normalized to unit total probability,

(
l50

`

r2l51 ~5.26!

and which typically fall off very rapidly withl so that only a
finite number of ther2l need be retained. Then we sample
this distribution by drawing a random numberq in the unit
interval @0,1#. Looking at the table ofr2l and the partial
sums,

Ql5 (
l 850

l

r l 8, ~5.27!

we find l such that

Ql21,q<Ql ~5.28!

to determineñ52l of this random drawing for the given
value ofk. We then write

f~r ,t !5
1

AV(
k

1

A2vk

~ake
ik–x1ak* e

2 ik–x!

→A V

p2r E0
`

dk k sinkrA ñk
2vk

cosuk , ~5.29!

where we have performed the angular integrations ind53
dimensions and written

ak5Añk eiuk ~5.30!

FIG. 11. Four typical field configurations drawn from the same
classical distribution of probabilities in the adiabatic particle num-
ber basis, according to Eq.~5.29!, for t5490 in the case the mean
field f50. The units ofr arev21 andlL51.

6490 55COOPER, HABIB, KLUGER, AND MOTTOLA



in terms of a random phaseuk . After performing the Fourier
transform in Eq.~5.29! the result is a typical field configu-
ration as a function of radialr at the fixed timet. In this way
we obtained the four field configurations shown in Fig. 11.
We observe that although the mean fieldf50 when aver-
aged over the entire ensemble, typical field configurations in
the ensemble are quite far from zero. In fact they sample
values off between the two minima atv and 2v. We
observe as well that there is a typical correlation length in the
classical field configurations which is of the order of the
inverse momentum in which the power of the two-point
function is distributed, as in Fig. 9.

It is clearly possible by such sampling techniques to gen-
erate typical field configurations with any number of compo-
nentsF i in any number of spatial dimensionsd. Then by
appropriately matching the number of components to the
number of dimensions we could search for different types of
defectlike structures such as vortices, strings, and domain
walls. This classical description of the quantum mean field
theory is possible only when a classical decoherent limit ex-
ists through the diagonal density matrix in the adiabatic par-
ticle number basis. Moreover, the classical fields generated
by this procedure are smooth and free of any cutoff-
dependent short distance effects. The extraction of smooth
classical field configurations from a quantum mean field de-
scription is a direct consequence of dephasing and the defi-
nition of defect number in these smooth configurations is
free of the difficulties encountered when classical definitions
of defects are applied uncritically to quantum field theories.
It would be very interesting to pursue these ideas further in
more realistic models of phase transitions where such topo-
logical defects are expected. This we leave for a future in-
vestigation.

The dephasing of the density matrix justifies the replace-
ment of the exact Gaussianr by its diagonal elements only
in the adiabatic number basis leading to the effective density
matrix reff . Now if this effective density matrix is trans-
formed back into the coordinate basis, it corresponds to a
density matrix of the original Gaussian form but with zero

mean fields, zero momentumhk50, ands̃k[112Ñ(k) re-
placings; i.e., we obtain a product of Gaussians of the form

^wk8ureffuwk&5~2pjk
2!21/2expH 2

s̃k
2

8jk
2 ~wk82wk!

2

2
1

8jk
2 ~wk81wk!

2J , ~5.31!

in all the kÞ0 modes where the mean field vanishes. This
form shows that the Gaussian distribution off the diagonal
wk85wk is strongly suppressed compared to the diagonal dis-
tribution. Indeed in the numerical evolutions we have found
that kÑ(k) behaves typically like aconstantfor small k ~cf.
Fig. 9!, so thats̃k}1/k. From Eq. ~5.31! this implies that

FIG. 12. The Gaussianreff

for k50.4 for the data and pa-
rameter values of Fig. 9 illus-
trating the strong suppression
of off-diagonal components
due to dephasing.

FIG. 13. Time evolution and effective damping of thex mean
field towards zero, its stationary value in the spontaneously broken
phase.
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whereas the root mean square deviation from zero along the
diagonalwk85wk is jk>A\N(k)/k}1/k and is large at small
k, the root mean square deviation from zero in the orthogonal
direction off the diagonal is

jk
s̃k

>A \

2kÑ~k!
, ~5.32!

which is much smaller. The result is that there is virtually no
support in the distribution~5.31! for ‘‘Schrödinger cat’’
states in which quantum interference effects between the two
classically allowed macroscopic states atv and2v can be
observed. Instead we see in a different way how dephasing
produces an ensemble which may be regarded as aclassical
probability distribution over classically distinct outcomes
~i.e., the diagonal field amplitude distribution! but with es-
sentially no components in the off-diagonal quantum inter-
ference between these classical configurations. This is illus-
trated in Fig. 12. Hence even in this rather simple
collisionless approximation the particle creation effects in
the time-dependent mean field give rise to strong suppression
of quantum interference effects and mediate the quantum to
classical transition of the ensemble, at least for small wave
numbers. This is in accordance with the usual intuition that
long wavelength physics of a second order phase transition is
essentially classical, where the adiabatic particle number
Ñ(k) has taken the place ofN(k) in the discussion following
Eqs.~4.9! and ~4.10! of the previous section.

When more realistic collisional interactions are included
at the next and higher orders beyond the leading mean field
limit we can expect this transition to decoherent classical
behavior to be even more pronounced. As the Gaussian as-
sumption is relaxed we expect the single peak at the origin to
split into two peaks. Hence we can begin to see how a quan-
tum phase transition leads to an effective classically broken
symmetry in which large domains are in a definite classical
ground state or another but not in a quantum superposition of
ground states.

VI. LINEAR RESPONSE, PLASMA OSCILLATIONS,
AND DAMPING RATE

The very efficient damping of the oscillations around the
final state which we have studied in the density matrix for-
malism of the last section may also be understood as due to
the continuous creation of massless Goldstone particles near
threshold. In this appearance of strictly massless modes the
spontaneously brokenlF4 model is qualitatively different
from our previous studies of QED in the largeN approxima-
tion @25#. In that case the charged particles are massive and
there is finally a tunneling barrier which shuts off particle
creation effects after the mean electric field has decreased
below a certain critical value. Beyond this point the mean
field undergoes essentially undamped plasma oscillations
since there is no transfer of energy to created particles. In
contrast, the present model has no such critical threshold in
the mean fieldx which is free to continue creating massless
bosons for arbitrarily small amplitude andx→0 asymptoti-
cally. This very efficient asymptotic damping of thex mean
field towards its stationary spontaneously broken solution at
x50 is very well illustrated by the numerical results shown
in Figs. 13 and 14 forlL51 and an initialx520.5. We
emphasize that the absence of a finite mass threshold is es-
sential to the long time quasidissipative behavior observed in
Figs. 13 and 14. In the infinite volume limitV5L3→` the
continuum of modes extends all the way tok50 and this
behavior persists to infinite time. In our simulations the
length L;43104 which is much greater thant in these
figures, so the continuum behavior is observed.

Sincex becomes very small at late times, it is possible to
analyze the approach to zero by linear response methods.
Given any static solution to the equations of motion with
spontaneous symmetry breaking, as in Eq.~4.20!, we may
consider the real time linear response of the system away
from this static solution. This is accomplished by linearizing
the evolution equations in the deviations from the static so-
lution

f→f1df,

x→01x,

f k→ f k
~vac!~ t !1d f k~ t !, ~6.1!

with f k
(vac) given by Eq.~2.38!, the mode functions corre-

sponding to the static solutionx50.
The linearized mode equation

F d2dt2 1k2Gd f k~ t !52x~ t ! f k
~vac!~ t ! ~6.2!

may be solved by use of the retarded Green’s function

GR~ t2t8;k!5
sink~ t2t8!

k
u~ t2t8! ~6.3!

in the form

FIG. 14. Same evolution as in Fig. 13 but followed to large
times and with an expanded scale forx to show the long time
behavior of the time-dependent Goldstone mass squared.
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d f k~ t !5Akf k
~vac!~ t !1Bkf k

~vac!* ~ t !

2E
0

t

dt8 GR~ t2t8;k!x~ t8! f k
~vac!~ t8!, ~6.4!

whereAk andBk are coefficients of the solutions to the ho-
mogeneous equation. Because the Wronskian condition
~2.30! is maintained under the linearization, theAk must
have vanishing real part

ReAk50. ~6.5!

The linearizedf equation gives, in the same way,

df~ t !5t dḟ~0!1df~0!

2E
0

t

dt8 GR~ t2t8;k50!x~ t8!f~ t8! . ~6.6!

At the same time the linearized gap equation reads

x5lfdf1lE @dk# Re~d f k* f k
~vac!!@112N~k!#.

~6.7!

Upon substituting Eqs.~6.4!–~6.6! this becomes a linear in-
tegral equation for the perturbation,x,

x~ t !52lE
0

t

dt8P~ t2t8!x~ t8!1lB~ t !, ~6.8!

where

P~ t !5tf21\E @dk#
112N~k!

2k2
sinkt coskt ~6.9!

is the polarization part in the static background and

B~ t ![tfdḟ~0!1fdf~0!

1\E @dk#
112N~k!

2k
Re~Bke

2ikt! ~6.10!

depends only on the initial perturbation away from the static
solution. The linearized integral equation~6.8! may be put in
the form

E
0

t

dt8D21~ t2t8!x~ t8!52B~ t !, ~6.11!

whereD21 is thex inverse propagator function.
The most direct method of solving such integral equations

is to make use of the Laplace transforms

P̃~s![E
0

`

dt e2stP~ t !5
f2

s2
1\E @dk#

112N~k!

2k~s214k2!
,

B̃~s![E
0

`

dt e2stB~ t !

5
fdḟ~0!

s2
1\E @dk#

112N~k!

2k
ReS Bk

s22ik D ,
x̃~s![E

0

`

dt e2stx~ t !52D̃~s!B̃~s!, ~6.12!

and D̃(s), the simple algebraic reciprocal of the Laplace
transform ofD21(t),

2D̃21~s!5
1

l
1P̃~s!5

1

l
1

f2

s2
1\E @dk#

112N~k!

2k~s214k2!
.

~6.13!

Both the bare couplingl5lL and the integral overk involv-
ing theN(k)-independent term are logarithmically divergent.
They combine to give the ultraviolet finite contribution

1

lR~s2/4!
5

1

lL
1

\

32p2 lnS 4L2

s2 D
5

1

lR~m2!
1

\

32p2 lnS 4m2

s2 D . ~6.14!

The renormalized sum rule~4.21! may be used in the
N(k)-dependent term to secure, as well,

2D̃21~s!5
1

lR~s2/4!
1
v2

s2
1

\

2p2

3E
0

`

k dk N~k!S 1

s214k2
2

1

s2D , ~6.15!

which is now independent of the static value off.
The functionD̃21(s) has a singularity ats50 and, de-

pending on the exact form ofN(k) neark50 in general, a
branch cut starting from the origin in the complexs plane
which may be taken along the negative reals axis. Its physi-
cal origin is the zero mass Goldstone bosons propagating in
the internal loop of the polarizationP in Fig. 15. The dis-
continuity across this cut arises from the nonzero probability
for the time-dependentx field to create Goldstone pairs with
arbitrarily small spatial momentumk above the massless
threshold. The functionD̃21(s) also may have one or more
zeros in the left-half complexs plane. The zero at

s2>64m2expS 32p2

\lR~m2! D→6` ~6.16!

for lR!1 is the Landau ghost pole in the far ultraviolet
which lies outside the range of validity of the largeN expan-
sion and which in any case does not affect the long time
behavior of the inverse Laplace transform.
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In the special case of vacuum initial particle density
N(k)50, the integral in Eq.~6.15! vanishes andD̃0

21(s) is
given by

2D̃0
21~s!5

1

lR~s2/4!
1
v2

s2
. ~6.17!

Because of the logarithmic branch cut in Eq.~6.14!, this
function possesses an imaginary part when analytically con-
tinued to complexs with Res,0. Taking this into account,
D̃0

21(s) possesses a zero at complexs6 in the left-hand com-
plex plane

s656 ivpl2g, ~6.18!

which in the limit of weak coupling is given by

vpl
2>lplv

2, g>
\lpl

64p
vpl5

\lpl
3/2

64p
v, ~6.19!

where

lpl5lRS usu2

4
>

vpl
2

4 D , ~6.20!

for lpl!1. In the frequencyvpl the effective mass of the
radial mode, ignored in the direct quantization of theN21
massless modes in Eq.~2.24!, reappears in the largeN limit
as an oscillation in the real time linear response to perturba-
tions about the vacuumf5v, x50. It may be viewed either
as this radial degree of freedom of theN componentF i field,
with its effective mass dressed by the polarization effects of
P in the presence of massless Goldstone modes, or alter-
nately and just as correctly as a genuine collective excitation
of the composite fieldx. The two descriptions are equivalent
since the oscillations ofx andf are constrained by the lin-
earized equations~6.6! and ~6.7!, and there is only one de-
gree of freedom between them. The oscillation frequency
~6.19! should be compared with the second derivative of the
free energy potential atT50 which vanishes from Eq.
~4.12!. Thus the ‘‘effective’’ potential is completely ineffec-
tive at predicting the radial oscillation frequency at zero tem-
perature. It is clear that at zero temperature the origin of the
decay rateg is the imaginary part of the two-particle cut in
the polarization diagram illustrated in Fig. 15.

In the case of a thermal distribution of massless bosons
Eq. ~3.15!, the integral in~6.15! may be performed in closed
form in terms of the digamma functionc and we find

2D̃T
21~s!5

1

lR~s2/4!
1

fT
2

s2

1
\

16p2 F lnS \s

4pTD2
2pT

\s
2cS \s

4pTD G
5

1

lR~4p2T2/\2!
1

fT
2

s2
2

\

16p2

3F2pT

\s
1cS \s

4pTD G ~6.21!

for Re s.0 andT<Tc . At finite temperature the analytic
structure ofD̃T

21(s) in the complex plane with Res,0 is
different from the zero temperature case. There is no loga-
rithmic branch cut beginning ats50, but rather a sequence
of simple poles atsn524pTn/\, n50,1,2,. . . , along the
negative reals axis. Sinces is a Laplace transform variable,
these poles correspond to the Matsubara frequencies of the
two-particle intermediate states inP in the finite temperature
imaginary time formalism. Only in the zero temperature limit
do the poles coalesce into a logarithmic branch cut. Indeed,
the digamma function of small argument behaves like

c~z![
d lnG~z!

dz
→2

1

z
2C as z→0, ~6.22!

whereC50.577 215 . . . isEuler’s constant, so that we see
from the second form of Eq.~6.21! that the logarithms cancel
and the discontinuity vanishes, leaving a simple pole struc-
ture

2D̃T
21~s!→

1

lR~T82!
1

f
T

2

s2
1

T

8ps
~6.23!

as s→0, with T8[2pe2CT/\. Since the analytic struc-
ture of the functionD̃T

21(s) near s50 is now explicit,

FIG. 15. One-loop diagram which contributes to the polarization
P52 iGG/2 in the leading order largeN approximation. In the
infinite volume continuum limit, the cut extends tok50.

FIG. 16. The functionyt defined in Eq.~6.26! plotted for per-
turbed thermal initial conditions at two values oflL . The solid
lines are the corresponding theoretical predictions.
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we can freely continue this form to Res,0, and find the
dominant behavior of the inverse Laplace transform at late
times by setting the quadratic form~6.23! equal to zero. In
this way we obtain a pair of isolated poles ofD̃T(s) at s6

56ivpl T2gT as in Eq.~6.18! with

vplT
2 >lR~T82!v2F12

T2

Tc
2S 12

3\lR~T82!

64p2 D G ,
gT>

lR~T82!

16p
T . ~6.24!

Since we have used Eq.~6.22! for the behavior of the di-
gamma function near the origin, this formula is valid iff
us6u!T, which is satisfied for weak coupling\lR/16p!1
and for temperatures

T2@
\lR~T82!

192p2 Tc
25

\2lR~T82!

16p2 v2 . ~6.25!

We cannot take Eq.~6.24! over to the zero temperature
case~6.19! since opposite limits of the digamma function are
involved, andT→0 is not permitted in Eq.~6.24! without
violating the assumptionus6u!T. However, if we takeT
down to the minimum value~6.25! for which Eq.~6.24! can
be valid ~and the contribution of the nearby poles in the
digamma function atsn for n51,2, . . . becomes important!,
we findvplT

2 'lRv
2 andgT'\lR

3/2v/64p with the renormal-
ized running couplinglR evaluated atvplT

2 e22C/4 which
agrees very nearly with the zero temperature results~6.19!,
up to small corrections of order\lR(T82)/16p2.

Hence the high temperature and zero temperature forms
of the plasma frequency and damping rate match quite
smoothly at the boundary of their domains of validity in the
weak coupling limit. Notice also that asT→Tc from below
the plasma frequency,vplT→lRTc/16p becomes the same
as the damping rategTc

. ForT.Tc the symmetry is restored
and the propagator becomes massive so that formulas~6.13!,
~6.21!, and ~6.24! cease to apply. Finally we reiterate that
D̃T

21(s) describes the real time oscillations of thef mean
field coupled to the collective plasma oscillations of the aux-
iliary field x, and that the equilibrium free energy ‘‘effec-

tive’’ potential F has no such real time information at either
zero or finite temperature, as conclusively demonstrated by
Eq. ~4.12!. Finally notice that this calculation relies on the
behavior ofD̃T

21(s) nears50, which relies in turn upon the
behavior of the integrand in Eq.~6.15! near k50. If the
volumeV is not taken to infinity first this integral is replaced
by a sum, thek50 mode must be handled differently, and
the long time behavior of the Laplace transform will be quite
different.

The linear response predictions for the oscillation fre-
quency and the damping rate in the case of finite temperature
were compared with a numerical evolution withlL50.01
andT51 ~in units of \ andv51). The theoretical predic-
tions of vplT50.095 74 andgT51.989431024 are in very
good agreement with the numerical resultsvplT50.095 85
andgT5231024. A similar test was carried out at a larger
value of the couplinglL50.1 again with excellent results:
predictions ofvplT50.3028 andgT51.989431023 com-
pared with numerical values ofvplT50.3031 and
gT51.994431023. The extraction of the behavior of thex
envelope from the numerical data is described below.

Instead of plottingx directly as a function of time, infor-
mation may be extracted more conveniently by plotting

yt[
ln@x~ t1e!#2 ln@x~ t !#

ln~ t1e!2 ln~ t !
~6.26!

as a function of time, where each time pointt is taken at
either a peak or a trough of the oscillation ande is the time
separation between two such neighboring points. At late
times, if the frequency stabilizes,e goes to a constant. Using
this fact, along with the late time conditiont@e, one can
show from Eq.~6.26! that if thex oscillation envelope can
be fit by an expression of the form

At2aexp~2gt !, ~6.27!

then, at late times,

yt52gt2a, ~6.28!

enabling the direct reading off of the powera and the expo-
nentg as they intercept and slope of a straight line, respec-
tively. It is important to note that this method is also a test of
whether the frequency is stable as otherwise a straight line
will not be obtained. The behavior ofyt against time is
shown in Fig. 16 for the two values of the coupling constant
mentioned above.

When the distributionN(k) is nonthermal the behavior of
D̃21(s) is more difficult to analyze, and there is no guaran-
tee that it possesses a zero in general. IfN(k) is peaked at
small k, then a reasonable first approximation is to neglect
the last term in Eq.~6.15!. In that case we find a zero of
D̃21(s) at with

FIG. 17. Comparison of the analytic approximation to the par-
ticle number density of Eq.~6.30! ~upper curve! with the adiabatic
number density of the numerical calculation~bottom curve!.
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vpl
2'lplv

2,

g'
lpl

64p
vpl5

lpl
3/2v

64p
. ~6.29!

If the running renormalizedlR is not very small and/or
N(k) is not sharply peaked atk50, then the position of this
zero ofD̃21(s) will be shifted from Eq.~6.29!, and at some
values it may even cease to exist. Comparing with our nu-
merical data for whichkÑ(k) is nonthermal as shown in Fig.
9, we observe that the approximations leading to the esti-
mates~6.29! can only be order of magnitudes at best. Indeed

the numerical value of the plasma frequency from the data at
late times isvpl51.405 whereas Eq.~6.29! gives vpl'1.
The damping rate is estimated to beg50.005~or 0.007 if the
correctvpl is used!; however, the envelope of the oscillations
at late times is not even strictly exponential as we shall see
below. Hence we cannot expect to obtain an accurate esti-
mate of the damping rate by a simple pole analysis of the
Laplace transformD̃(s). Nevertheless, if one fits an expo-
nential to the data at late times, a valueg50.009 is obtained,
agreeing only roughly with the estimate~6.29!.

Despite the envelope of the oscillations being nonexpo-
nential,vpl is very well determined by the regular oscilla-
tions observed~to a few parts in 103). To obtain a more
accurate approximation to the plasma frequency consider the
following analytic approximation tokN(k):

kN~k!58pv0u~v0
224k2!A12

4k2

v0
2 , ~6.30!

wherev0 is a free parameter which is close to the numerical
value of the plasma frequency. The accuracy of this analytic
fit to the data is shown in Fig. 17 forv05vpl . Notice that
because of dephasing, theN(k) used in the linear response
analysis may be identified with theÑ(k) of the particles
created at earlier times in the nonlinear evolution from the
spinodal region.

Substituting the form~6.30! into Eq. ~6.15! we obtain

2D̃21~s!5
1

lR~s2/4!
1
v2

s2
1
2v0

2

p E
0

1

dx~12x2!1/2

3F 1

v0
2x21s2

2
1

s2G . ~6.31!

Because of the small prefactor of the logarithm in
1/lR(s

2/4), the running coupling constant is only a few per-

FIG. 18. The functionyt plotted for nonthermal initial condi-
tions at two values oflL . The late time linear fits to the data are
also shown with the intercepts determining the power law prefator.

FIG. 19. Thex evolution as a function of time~dashed line! for
lL51. The fit ~6.27!, shown by the solid curve, is
x(t)56.63t21.5exp(20.0067t)cos(1.405t10.5). This figure shows
the fit over an early time range betweent520 andt5120.

FIG. 20. The samex evolution at late times betweent5400 and
t5520 showing the excellence of the simple fit over long times and
along with the results of Fig. 19, very good agreement over three
decades of amplitude.
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cent different from the barel near the zero ofD̃21(s) and
this running withs can be neglected in lowest order. Again
we sets56 ivpl2g and look for a zero ofD21(s) near
v0
25vpl

2 , with g/v!1. One could perform the integral in
Eq. ~6.31! exactly but we content ourselves with this simple
approximation and obtain

0>
1

lpl
2
v2

v0
21

2

pE0
1

dx@~12x2!1/22~12x2!21/2#.

~6.32!

Performing the integral we find, from the real part of this
equation,

vpl
2

v2
5

2lpl

22lpl
. ~6.33!

In our simulations wherelL51.lpl , the output value of
the calculated plasma oscillation frequencyvpl51.414 is
within 0.6% of the measured valuevpl51.405, showing the
self-consistency of the approximation and the fit~6.30!, to
this accuracy. We also performed the integration in Eq.
~6.15! numerically using the data of Fig. 9 forkÑ(k) and
reconfirmedvpl5(1.40560.001) from the location of the
minimum of the real part ofD̃21(s).

The envelope of thex oscillations obtained numerically is
very well fit by t2aexp(2gt). This general behavior has been
checked for different values of the bare coupling and we
have verified that it does not depend on which choice of the
vk profiles ~C4! and ~C5! one makes for the initial condi-
tions. Illustrated in Fig. 18 are thelL51 andlL50.1 cases,
where a51.5, g50.0067 anda51.288, g50.000 32, re-
spectively. Figures 19 and 20 display the complete fit to the
damped oscillation alongside the actual evolution for the
caselL51. Very good agreement is evident over long times
and a large amplitude range. The case oflL50.1 is very
similar.

As expected from the time dependence of the envelope of
the oscillations observed in Figs. 18, 19, and 20, the damping
rate cannot be obtained from a simple pole analysis. Indeed
the imaginary part ofD̃21(s) evaluated from the numerical
data does not possess a zero forany g with vpl fixed at
1.405, although it does decrease monotonically asg is de-
creased, thus favoringg,0.003. This value is close to our
momentum resolutiondk and hence we could not go to
lower values reliably. In any case, the decay of the envelope
at late times is due to the creation of very low momentum
massless bosons which have not yet dephased efficiently.
Hence it is the behavior of the Laplace transform on the
branch cut very close tos50 which determines the late time
damping, and this behavior depends in turn on the the mode
functions u f k(t)u2 neark50 where neither our replacement
~5.21! nor our single-pole-dominance assumptions are justi-
fied.

In earlier studies of damping a2 3
2 power law was en-

countered and identified as due to the behavior of the rel-
evant spectral density function near threshold@26#. In the
present case there is no simple argument that we are aware of
which would lead to such a power law at late times.

VII. SUMMARY

In this paper we have presented a study of nonequilibrium
evolution and time-dependent behavior of symmetry-
breaking transitions inN-componentl(F2)2 field theory.
Starting from an effective action principle for the leading
order mean field approximation we emphasized the corre-
spondence of the equations with the Schro¨dinger evolution
of a Gaussian density matrix according to a certain effective
classical Hamiltonian. This is important for emphasizing that
no fundamental irreversible behavior has been introduced by
the mean field approximation. Explicit numerical time evo-
lutions from the unstable spinodal region show effective time
irreversibility in the form of the efficient averaging to zero of
the phase information in the density matrix. The effective
von Neumann entropy of the reduced density matrix mea-
sures the information that is lost by discarding this phase
information. Its general increase with particle creation shows
the close connection between dephasing and irreversibility.
Thus our study of effective dissipation and decoherence casts
some light on fundamental issues in quantum statistical me-
chanics such as the origin of irreversibility, Boltzmann’sH
theorem, and the quantum to classical transition. Here there
is much that could be done still in the context of the frame-
work presented in this paper, most notably to study quanti-
tatively the Poincare´ recurrence cycle~s! expected in a
Hamiltonian system and their dependence on the various pa-
rameters of the model.

In the specific case at hand, O(N)-symmetricl(F2)2 sca-
lar field theory is a prototype of models of spontaneous sym-
metry breaking in a wide variety of physical systems. It has
been common to rely heavily on the thermodynamic free
energy and equilibrium considerations generally in analyzing
these systems. One broad and generally applicable conclu-
sion of the present study is that this can be very misleading
where nonequilibrium dynamics is concerned. We have
shown that the distribution of particles created in the mean
field time evolution from an initial configuration in the spin-
odal region is generally far from thermal. This leads to a
final state in which the mean field need not be close to mini-
mum of the free energy potential. The simple observation
that there is a sum rule which the nonthermally distributed
particles can saturate is sufficient to resolve this seemingly
paradoxical result.

The linear response analysis of the oscillations about the
allowed stationary configurations is also a new result which
is quite different from what consideration of the free energy
function alone might lead one to expect. We have shown that
there is a collective plasma mode in the radial symmetry
breaking direction whose characteristics depend on the am-
bient particle distribution. This also should be generally true
of the various systems described by the same (F2)2 field
theory. While there is excellent agreement in the thermal
case for both the plasmon frequency and damping rate, the
nonthermal situation is more complicated. In this case, due to
the lack of pole dominance, the late time behavior cannot be
described by exponentially damped oscillations. Our numeri-
cal results for the plasmon oscillation envelope are well fit
by an expression of the formt2aexp(2gt). The plasmon
frequency compares well with an analytical estimate. How-
ever, the precise dependence of the envelope function on the
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particle density in the general case remains to be more fully
investigated. We have outlined also how dephasing leads
also to effectively classical field configurations which one
can sample in order to extract information on the creation of
topological defects during the phase transition. These classi-
cal field configurations in the Gaussian ensemble show evi-
dence for a finite correlation length whose dynamics may be
investigated in the present approach. This direction is cer-
tainly an interesting one to pursue both in the condensed
matter and cosmological phase transitions.

Throughout the paper we have endeavored to bring the
theoretical framework into close contact with practical nu-
merical methods. Indeed one of the main conclusions of this
work is that the real time dynamics of phase transitions can
be studied in a concrete way with presently available com-
puters. Besides the wide applicability of the spontaneously
brokenl(F2)2 theory it is interesting for the existence of
massless Goldstone bosons which are created freely during
the phase transition. This essential kinematics is shared by
systems with an exact gauge symmetry such as QCD or gen-
eral coordinate invariance such as gravity. The numerical
techniques used in this work and the experience gained in
treating the massless case should prove to be valuable in
generalizations to these cases.
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APPENDIX A: THE ENERGY-MOMENTUM TENSOR
AND ITS RENORMALIZATION

The effective action~2.12! leads directly to a conserved
energy-momentum tensor at any order of the largeN expan-
sion @3#. In this appendix we give some details about the
energy-momentum tensor and its renormalization. Because
of spatial homogeneity and isotropy, the only nontrivial com-
ponents of this tensor are

^T00&5«,

^Ti j &5pd i j , ~A1!

where the energy density« and isotropic pressurep are
given by

«5
1

2
ḟ21

1

2
xf22

x

lS x

2
1m2D

1
1

2E @dk#sk$u ḟ ku21~k21x!u f ku2%

5
1

2
ḟ21

1

2lL
x2

1
1

4p2E
0

L

k2 dk sk~ u ḟ ku21k2u f ku2! ~A2!

and

p5
1

2
ḟ22

1

2
xf21

x

l S x

2
1m2D

1
1

2E @dk#skH u ḟ ku22S k23 1x D u f ku2J
5
1

2
ḟ22

1

2lL
x2

1
1

4p2E
0

L

k2dkskS u ḟ ku22
k2

3
u f ku2D . ~A3!

We have used the gap equation~2.36! in passing to the latter
expressions in each case.

The energy density« contains a quartic but constant cut-
off dependence~i.e., proportional toL4). This is the ex-
pected vacuum energy contribution which should be sub-
tracted. The conservation of the energy density,

«̇50, ~A4!

is easily checked from the equations of motion, and is not
affected by the subtraction of the constant quartic diver-
gence. As it will turn out this single constant subtraction is
sufficient to yield a cutoff-independent conserved energy
density.

The cutoff dependence of the isotropic pressurep is more
involved and requires a detailed understanding of how Lor-
entz invariance~or, more generally, coordinate invariance! is
broken by the spatial momentum cutoff we have introduced
in all the mode integrations. In the first forms of the two
expressions~A2! and ~A3!, i.e., before using the gap equa-
tion, there appear mode integrals whose cutoff dependences
correspond to those of a free theory with the massm2 re-
placed byx(t). Divergences in the energy-momentum tensor
expectation valuêTmn& have been studied in the literature
by covariant methods such as dimensional regularization or
covariant point splitting@27# with the result that these diver-
gences must be proportional either to the metric tensor
gmn5diag(21,1,1,1) in flat Minkowski spacetime or the to-
tal derivative ‘‘improvement term’’ of Eq.~A12! below. Be-
cause we are using a regulator in the form of a cutoff in the
spatial momentum integrations which isnot covariant under
Lorentz or general time-dependent coordinate transforma-
tions, the quartic and quadratic cutoff dependence we shall
actually obtain will not have these covariant forms. Hence
we shall have to perform the stress tensor renormalization in
a noncovariant manner as well to correct for the spurious
noncovariantL4 andL2 cutoff dependence, in order to ob-
tain covariant results in the end.

The actual cutoff dependence in both« and p is easily
analyzed by means of an adiabatic expansion to the mode
function equation~2.27!, the lowest order solution of which
is given by Eq.~2.34!. By substituting this lowest order adia-
batic approximation to the mode functions into the mode
integrals in the first forms of Eqs.~A2! and ~A3! we can
characterize the most severe dependence on the ultraviolet
cutoff L in the forms

6498 55COOPER, HABIB, KLUGER, AND MOTTOLA



«0[
\

4p2E
0

L

k2 dk Ak21x

5
\L4

16p2 1
\L2x

16p2 2
\x2

64p2 lnS 4L2

x D1
\x2

128p2 1OS x3

L2D
~A5!

and

p0[
\

12p2E
0

L k4 dk

Ak21x

5
\L4

48p2 2
\L2x

48p2 1
\x2

64p2 lnS 4L2

x D2
7\x2

384p2 1OS x3

L2D .
~A6!

Clearly theL dependence isnot such that«052p0, as re-
quired by considerations of general covariance. As has been
known for some time the reason for this is that the spatial
momentum cutoffL acts as a noncovariant point splitting
regulator would, giving terms in the regulated^Tmn& propor-
tional tod (m

i dn)
j in which the spatial directionsi , j51,2,3 are

distinguished. Since such terms do not appear in the
m5n50 time component, the energy density has the correct
L dependence and requires no covariantizing correction.
However, for the pressure we should have

p08[2«0 ~A7!

on grounds of general covariance. This is easy to enforceby
hand by adding the differencep082p052«02p0 to p0
above which just corrects for the noncovariant terms induced
by our momentum cutoff.

With this prescription to enforce covariance of the mode
integrals in the pressure, the quartic subtraction required on
both « and p is the removal of the cosmological vacuum
energy\L4/16p2, corresponding to a subtractive renormal-
ization of the constant cosmological vacuum term. We are
notallowed to subtract the subleading quadratic and logarith-
mic divergences of« appearing in Eq.~A5!, since, for one
thing, they are multiplied by the time-dependent functionx
and hence would spoil energy conservation, and for another,
such time-dependent terms do not correspond to a cosmo-
logical constant counterterm. Instead we recognize them to
be just the correct cutoff-dependent terms needed to combine
with the cutoff-dependent terms in the ‘‘classical’’ energy
density

2
x

lL
S x

2
1mL

2 D52
x2

2 H 1

lR~m2!
2\

1

32p2 lnS 4L2

m2 D J
2xS v22 1

\L2

16p2D ~A8!

in order to render the total energy density cutoff indepen-
dent. Because the analogous terms inp are precisely the
negative of those appearing in« after the correction
p082p0 has been added to its quantum part, we also obtain a
~partially! renormalized pressure by the same manipulations.

The reason that we must still perform one additional sub-
traction to obtain a fully renormalized pressure is that at the
next order in the WKB adiabatic expansion of the mode
equation~2.27!, one obtains, for the adiabatic frequency,

vk→vk2
1

4

v̈k

vk
2 1

3

8

v̇k
2

vk
3 1•••. ~A9!

If the energy density is calculated to this adiabatic order, one
finds no additional cutoff dependence in«, and so no addi-
tional subtractions are required for it. Indeed none are per-
mitted consistent with the principle of general coordinate
invariance. However, the pressure has an additional logarith-
mic cutoff dependence equal to

2
\

96p2 ẍ lnS 4L2

x D . ~A10!

Since this divergence appears only in the pressure but not in
the energy, it is consistent with the generally covariant and
conserved form of the ‘‘improvement term’’@28#

D^Tmn&5j~gmnh2]m]n! ^F2& ~A11!

in flat space. This term has no effect on the energy density
for spatially homogeneous mean fields but adds to the pres-
sure the total derivative

Dp52j
d2

dt2 Hf21E @d3k#sku f ku2J 522
j

l
ẍ, ~A12!

in which j is an arbitrary parameter. The fact that a diver-
gence such as Eq.~A10! appears in the pressure means that
we should introducej as a free bare parameter of the theory
from the very beginning, on the same footing as the mass
mL
2 and couplinglL , and allow for the possibility that the

barejLÞ0 will renormalize in general. Indeed this is known
to be the case inlF4 theory@29# and we have the renormal-
ization condition

~jL2 1
6 !5Zl

21~L,m!@jR~m2!2 1
6 #, ~A13!

FIG. 21. Evolution of the pressure as a function of time for
j51/6. The approach to the equation of statep5«/3 is clearly seen.
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whereZl
21 is the same logarithmic renormalization constant

as that for the coupling constant appearing in Eqs.~2.40! and
~2.41! of the text. Thus,

jL

lL
5

1

6lL
1

1

lR
S jR2

1

6D ~A14!

and the additional term in the pressure~A12! becomes

Dp52
1

3lL
ẍ2

2

lR
S jR2

1

6D ẍ

51
1

96p2 lnS 4L2

m2 D ẍ2
2jR
lR

ẍ . ~A15!

Comparing the latter expression with Eq.~A10! we observe
that the logarithmic cutoff dependence cancels in the sum
p1Dp. Hence wemust add the improvement term and
renormalizej in precisely this way in order to obtain a com-
pletely cutoff-independent pressure.

To summarize this discussion of the renormalization of
the energy and pressure we define

«R5«2
\L4

16p2 ~A16!

to be the cutoff-independent conserved energy density and

pR5p2p02«01
\L4

16p2 1Dp ~A17!

to be the renormalized pressure of theF4 theory for the
spatially homogeneous mean fields considered in this paper.

Let us also remark that the valuej51/6 for the improve-
ment term is also the value chosen for conformal invariance
of the scalar theory in the massless limit. Indeed the trace of
the renormalized energy-momentum tensor is

^Tm
m&R52«R13pR5v2x1

\x2

32p2 1
1

lR
S jR2

1

6D ẍ ~A18!

upon using Eqs.~A5!, ~A6!, and~A15! above. Atj51/6 the
last term vanishes, the first term is the renormalized classical
trace of the energy-momentum tensor, and the second term is
the one-loop quantum trace anomaly

1

2lR
2 b~lR!x252

x2

2
L

d

dLS 1

lL
D5

\x2

32p2 ~A19!

in terms of theb function of the coupling constantl.
We note that the trace of the renormalized energy mo-

mentum tensor vanishes~for any value ofj) in the static
spontaneously broken vacuum whereḟ5x50 and Eq.
~2.38! holds. This implies that the relativistic equation of
state

pR→ 1
3 «R ~A20!

holds at late times, independently of the number density dis-
tribution. The numerically obtained approach to this equation
of state is shown in Fig. 21. We emphasize that this equation
of state does not imply relaxation to thermal equilibrium

since collisional effects are not yet taken into account by the
leading order largeN approximation, and the nonthermal na-
ture of the late time state is apparent from the created particle
distribution of Fig. 9.

APPENDIX B: THE GAUSSIAN DENSITY MATRIX r

In this second appendix we examine some of the proper-
ties of the general mixed-state Gaussian density matrix
~3.16! and its time evolution. The discussion will be re-
stricted mainly to the case ofd50 spatial dimensions to
simplify the notation. Generalizations tod.0 are straight-
forward. First, the time evolution of the density matrix is
unitary:

r~ t !5U~ t !r~0!U†~ t !, U~ t !5expS 2 i E
0

t

HoscdtD ,
~B1!

whereHosc is the time-dependent harmonic oscillator Hamil-
tonian,

Hosc~F,P;t ![ 1
2 @P21v2~ t !F2#, ~B2!

which preserves the Gaussian structure ofr under time evo-
lution, so that the Liouville equation

i\
]

]t
r5@Hosc,r# ~B3!

is satisfied without taking the trace.
It is not difficult to find the explicit form of the unitary

operatorU(t) in the coordinate basis

^x8uU~ t !ux&5@2p i\v~ t !#21/2

3expH i

2\v~ t !
@u~ t !x21 v̇~ t !x8222xx8#J

~B4!

in terms of the two linearly independent solutions to the
classical evolution equation

S d2dt2 1x2~ t ! D S uv D 50,

u~0!5 v̇~0!51, u̇~0!5v~0!50. ~B5!

This sameU(t) also evolves the quantum operators

F~ t !5U†~ t !F~0!U~ t !5f~ t !1a f~ t !1a†f * ~ t !,

P~ t !5U†~ t !P~0!U~ t !5p~ t !1a ḟ~ t !1a† ḟ * ~ t !. ~B6!

Mathematically, the three Fock space bilinear operators
aa, a†a†, anda†a1aa† generate the Lie algebra of the sym-
plectic group Sp~2!>SU(1,1)>SL(2,R) which is the group
of homogeneous linear transformations of phase space
(F,P) which preserves the antisymmetric classical Poisson
brackets$F,P%51, i.e.,
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S F

PD→S F8

P8
D 5S a b

c dD S F

PD , ~B7!

with

ad2bc51. ~B8!

Since this is one condition on four real parameters, the group
Sp~2! is a three-parameter group. If thea anda† Heisenberg
operators are appended to these three, the algebra again
closes upon itself, forming a five-parameter group, the inho-
mogeneous metaplectic group IMp~2! @30#. The unitary evo-
lution ~B1!, ~B4! of the Gaussian density matrix~3.16! is an
explicit representation of this group’s action.

The form of the density matrix in the time-independent
Heisenberg basis is quite easy to obtain from the form of the
the transition matrix element^xun& given by Eq.~5.7! of the
text. By substituting the integral representation of the Her-
mite polynomials

Hn~x!5
n!

2p i RC
dz

zn11e
2xz2z2, ~B9!

whereC is a closed contour around the origin of the complex
z plane into the expression

^n8urun&5E
2`

`

dx8E
2`

`

dx^n8ux8&^x8urux&^xun&, ~B10!

and interchanging the orders of integration we can perform
the double Gaussian integral over the shifted vector
(x2f,x82f) first. Using the standard formula

E
2`

`

d2x e2x•A•x1B•x5
p

~detA!1/2
eB

T
•A21

•B/4, ~B11!

with A the 232 matrix,

A5
s11

8j2 S 11s 12s

12s 11s
D , ~B12!

andB the column vector,

B5
A2s

j S z

z8*
D , ~B13!

the exponent of the resulting expression simplifies consider-
ably. Lettingz5eiu andz8*5e2 iu8 we are left with

^n8urun&5
2

s11S n8!n!

2n81nD 1/2E02pdu8

2p
ein8u8E

0

2p du

2p

3e2 inuexpH 2S s21

s11Dei ~u2u8!J . ~B14!

Expanding the last exponent in a Taylor series we find that
only the terms withn85n survive with Eq.~5.8! the final
result. As discussed earlier in Sec. VI, in this Heisenberg
basis the density matrix is time independent and diagonal.
This fact allows the writing of Eq.~B14! in an operator form:

r5
2

s11
expH lnS s21

s11Da†aJ ~B15!

as far as computing matrix elements in this Heisenberg basis
is concerned.

By making a different IMp~2! group transformation it is
also possible to diagonalize Eq.~B2! at any given time,
bringing the quadratic Hamiltonian into the standard har-
monic oscillator formHosc5\v(ãã †1ã †ã )/2, with ã
time dependent. This adiabatic particle basis is related to the
time-independent Heisenberg basis by the relations

f5a f̃1b f̃ * ,

a5a* ã2b* ã †1k* , ~B16!

with f̃ the adiabatic mode function defined by Eq.~2.34! of
the text, and

a5
i

\
f̃ * ~ ḟ2 iv f !,

b52
i

\
f̃ ~ ḟ1 iv f !,

k5
i

\
~ḟ f2f ḟ !. ~B17!

The Bogoliubov coefficientsa andb obey

uau22ubu251, ~B18!

and therefore may be expressed in terms of a real parameter
g and two phases

a5coshgeic,

b52sinhgei ~c2u!. ~B19!

The density matrix in the adiabatic particle number basis can
be expressed in terms of these time-dependent parameters at
any given timet. The direct evaluation of the expression
analogous to Eq.~B10! in the ñ number basis is quite te-
dious, and is accomplished most rapidly by use of a coherent
state basis as discussed in Ref.@31#. Making the identifica-
tions

a5
1

S21*
5

S12

12uS11u2
,

b5
S22

S21
52

S12S11*

12uS11u2
, ~B20!

with

S125S125sechgeic,

S115tanhgeiu,

S2252tanhge2ic2 iu, ~B21!
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and x→g in the notation of Ref.@31#, Eq. ~5.32! of that
work yields the desired matrix element in the case of zero
mean field, namely,

^ñ 8uruñ &uf50

52ei ~ ñ82ñ!u/2S ñ 8!

ñ ! D 1/2@~s221!224s2sinh22g#~ ñ81ñ!/4

3@s21112scosh2g#2~ ñ81ñ11!/4

3P
~ ñ1 ñ8!/2
~ ñ2 ñ8!/2S F12

4s2

~s221!2
sinh22gG21/2D , ~B22!

wherePn
m is an associated Legendre polynomial.

The first important feature of this expression for our pur-
poses is the phase factor whenñÞñ 8. If the exact mode
function f is rewritten in the form

f ~ t !5A \

2V~ t !
expS 2 i E

0

t

dt8V~ t8! D , ~B23!

this phase

u5arg S a

2b D52E
0

t

dt8v~ t8!

1tan21S V̇v/V

V22v21V̇2/4V2D . ~B24!

Thus, even in the adiabatic limit, whereV̇/V2!1, the phase
angleu depends linearly on time and the off-diagonal ele-
ments of the density matrix~B22! are rapidly varying in
time. On the other hand, the diagonal elements of Eq.~B22!
are independent of this phase angle and consequently much
more slowly varying functions of time. Indeed, in the case of
zero mean fieldf50, the adiabatic invariantW of Eq. ~5.19!
is

W5Ñ2N5ssinh2g ~B25!

and ^ñ uruñ & depends only upons ~a constant! andg:

^ñ uruñ &52@~s221!224s2sinh22g# ñ /2

3@s21112scosh2g#2~2 ñ11!/4

3PñS F12
4s2

~s221!2
sinh22gG21/2D .

~B26!

Now, if s.1, the Legendre polynomial is not necessarily
positive which means that we cannot interpret the diagonal
matrix elements of the density matrix in the adiabatic particle
number basis as a classical probability distribution in the
general mixed state case. However, ifs51, then the argu-
ment of the Legendre polynomial vanishes for anygÞ0.
Since

P2l~0!5~21! l
~2l21!!!

2l l !
~B27!

for ñ52l even butP2l11(0)50 for ñ52l11 odd, the di-
agonal matrix element~B26! simplifies considerably in the
pure state case:

^ñ52l uruñ52l &u s51

f5ḟ50

5
~2l21!!!

2l l !
sechg tanh2lg,

~B28!

with the mean number of created particles,

Ñ5sinh2g5
u ḟ1 iv f u2

2\v
, ~B29!

which are Eqs.~5.24! and ~5.25! of the text. These results
were reported in@7#.

In the pure state case the evenñ diagonal matrix elements
of the density matrix are positive definite and may be inter-
preted as the probabilities for observingl uncorrelated par-
ticle pairs in the adiabatic particle basis. The oddñ diagonal
matrix elements vanish since particles can only be created in
pairs from the vacuum. Otherwise~i.e., fors.1), the much
more complicated and nonpositive definite expression~B26!
shows that there is no simple classical probability interpreta-
tion for the density matrix. The restriction to zero mean
fields f5ḟ50 is not serious for spatially homogeneous
backgrounds because of Eq.~3.31! which shows that all the
mean fields vanish except for thek50 mode. Hence, at late
times all the k.0 modes may be treated classically if
dephasing is effective and typical classical field configura-
tions in the ensemble can be constructed as in Eqs.~5.29!
and ~5.30! of the text, provided thek50 mode is excluded.

APPENDIX C: NUMERICAL METHODS

In order to solve the system of equations~2.20!, ~2.27!,
and~2.39! as an initial value problem, we have to specify the
initial conditions of the mean fieldf, its time derivative, and
the mode function and its time derivative. Then we have to
solve the gap equation~2.39! at the initial timet0. In order to
have a finite set of renormalized equations we have to choose
the mode functions so that the high momentum modes coin-
cide with the zeroth order adiabatic vacuum described by

f k~ t0!5
1

A2vk~ t0!
, ~C1!

ḟ k~ t0!5F2 ivk~ t0!2
v̇k~ t0!

2vk~ t0!
G f k~ t0!, ~C2!

with vk
2(t0)5k21x(t0). It is easy to verify that for initial

conditions with ḟ(t0)50, it is also true thatẋ(t0)50 by
inspecting the time derivative of the gap equation. This sim-
plifies the form of ḟ k(t0) to

ḟ k~ t0!52 ivk~ t0! f k~ t0!. ~C3!

For an initial state with positive square effective massx we
could use the same form of the mode functions of Eq.~C1!
also for the low momentum modes. However, if we wish to
investigate the case of a ‘‘quench’’ within the unstable spin-
odal region by initial conditions with a negativex(0), we
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have to modify the initial values of the low momentum
modes in order to avoid the singularity off k(t0)51/A2vk at
k252x(t0). We have used two different profiles of the fre-
quencyvk for the initial mode functions:

vk
2~ t0!5k21x~ t0!tanhS k21x~ t0!

ux~ t0!u
D , ~C4!

vk
2~ t0!5k21x~ t0!exp~2v4/k4!. ~C5!

At large momentum these profiles coincide with the adia-
batic vacuum frequency as required. In all cases, except for
thermal initial conditions, the initial number of quasiparti-
cles,N(k)50.

Numerical simulations were performed on a massively
parallel computer using a momentum grid with 32 000
modes. The upper cutoff was set atL55v, implying a grid
resolution

dk5
2p

L
5

L

32 000
50.000 156. ~C6!

The fieldf was scaled in units ofv so thatk is also given in
units of v, x in units of v2, and the timet in units of v21.
Most of the results discussed in the text are for a bare cou-
pling constantlL51 but other values were also investigated.
The corresponding renormalized coupling constants at the
renormalization pointux(t0)u are given by Eq.~2.40! with
m2 replaced byux(t0)u. With lL51 and forf(t0)/v50,
lR50.990 036, while forf(t0)/v50.5,lR50.990 248. The
energy densities in these cases are«50.1237 and
«50.069 78, respectively.

The mode equations were stepped forward in time using a
sixth order adaptive time step Runge-Kutta integrator. The
time-steps were controlled by tracking the evolution ofx.
Energy conservation to a few parts per 106 was achieved
over the temporal range of typical evolutions.
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