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BPS domain wall solutions in self-dual Chern-Simons-Higgs systems
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We study domain wall solitons in the relativistic self-dual Chern-Simons-Higgs systems by the dimensional
reduction method to two-dimensional spacetime. The Bogomol'nyi bound on the energy is given by two
conserved quantities in a similar way that the energy bound for Bogomol'nyi-Prasad-Somni{Bfigidlyons
is set in some Yang-Mills-Higgs systems in four dimensions. We find the explicit soliton configurations which
saturate the energy bound and their nonrelativistic counterparts. We also discuss the untletl@irsyper-
symmetry.[S0556-282(97)01410-Q

PACS numbgs): 11.27+d, 11.10.Kk, 11.30.Pb

[. INTRODUCTION N=2 supersymmetry and so do our Chern-Simons-Higgs
systems, our domain walls are also expected to have the BPS
In past years the Abelian self-dual Chern-Simons-Higgd$ound, which is more general than the Bogomol'nyi bound.
system with an appropriate potential has been studied exten- The goal of this paper is to explore the domain wall struc-
sively [1-3]. One of its interesting properties is that there isture of the self-dual Chern-Simons-Higgs system, by taking
a Bogomol'nyi-type bound on the enerf#], which is satu- the dimensional reduction of the model to two dimensions.
rated by the self-dual solitons which carry the fractional spin"ve show that the resultant two-dimensional model has a
and satisfy the fractional statistics. The potential of thisBPS-like energy bound. Our model hence forms a new class
model has two degenerate vacua, implying the existence &if two-dimensional models with the BPS-like energy bound,
topological domain walls interpolating between them. ItSimilar to the four-dimensional Yang-Mills Higgs systems.
turns out that the topological domain walls satisfy anothetVe show that the domain wall configurations saturating the
Bogomol'nyi bound as a two-dimensional model, which is€nergy bound consist of topological and nontopological do-
different from such a bound on three-dimensional self-duamain walls: topological domain walls interpolating the sym-
solitons[2]. metric and asymmetric phases and nontopological domain
These domain walls which interpolate between the symWwalls residing in the symmetric phase.
metric and asymmetric phases have been studied to under- The plan of this paper is as follows. In Sec. Il, we intro-
stand the behavior of the rotationally symmetric solitons induce our model and find the BPS-type energy bound. We
the large charge limit. In this case the energy density is conteduce the self-dual equations to a single ordinary nonlinear
centrated on a circular ring of large radius and its radial crosélifferential equation. In Sec. I, we solve the differential
section resembles the domain V\,{ﬂ] However, in the sym- equation to find and investigate all possible domain wall so-
metric phase there exist also rotationally symmetric nontolutions. In Sec. IV, we study the underlyimg=2 supersym-
pological solitons with vortices in the center, whose largemetry. In Sec. V, we study the nonrelativistic limit and its
charge and vorticity limit cannot be described exactly by thesolitons in the symmetric phase. In Sec. VI, we conclude
topological domain walls. This suggests to us a richer strucwith some remarks. In the Appendix, we study another
ture of domain walls. bound on the energy functional, which works only for the
On the other hand, recently some two-dimensional nontopological domain walls, and discuss its relation to the BPS
linear o models with appropriate potential§] have been bound.
shown to have many properties similar to the four-
dimensional Yang-Mills-Higgs systems which admit the Il. MODEL
Bogomolnyi-Prasad-SommerfielPS dyons solutions. In We start with the self-dual Abelian Chern-Simons-Higgs
particular, a Noether charge and a topological charge arg cram whose Laaran i4a] is
found to set the BPS-type bound on the endrj]|. Since Y grang
these two-dimensional self-dual models have the underlying K 1
ECSH=§€”VPAMf9VAp+|DM¢|2— ;2¢2(|¢|2—vz)2,

1
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metric phase wheré=v. Elementary charged excitations in where we introduc®.. = N(t,*), the constant asymptotic
the symmetric phase have mase=v?/x and spin values, and define their difference asN=(N_—N_).
s=4/k, and in the broken phase there are charge neutrdd/« can be identified by the magnetic flux per unit length in
particles of mass 2. There are also self-dual anyonic soli- three dimensions. There is also a conserved charge, corre-
tons in the symmetric and asymmetric phases. sponding to the translation invariance along yhaxis before

We consider the modes independent of Xecoordinate  the dimensional reduction,
to get the dimensionally reduced Lagrangian in two-
dimensional spacetime

Py= f dXi(Do¢* ¢~ ¢*Dop)N

L=xNFg+[D,¢|°~U(N,¢), 2
— f 2 _N2Y— AN
where the potentidl (N, ¢) is ) (N3 =NZ)=QN, (10
1 where we used the Gauss law and the averadeisfdefined
U(gN) =N g2+ 2|6 —0D% (3 e o€
The mass dimension of the fields and parameters become N_=(N++N,)/2. 1y

[¢]1=[v]=M° [A,]1=[N]=M, and [«]=M"'. The ki- -
netic part ofN,A , is that of the so-calle@F theory. To the ~ Thus theN can be regarded as the momentum carried by the
original Lagrangian, one can addéaterm, unit charge along thg direction. If we identifyN=N,, the

massm= \/N02+ wu? of elementary charged particles in the
symmetric phase can be thought to be a Lorentz-boosted one

o . . . . from three-dimensional mags by they momentumN.
which is possible only in two dimensions. It does not play For the conserved® t?lserey exis)':s the corres Oondin
y p g

any role classically and will be neglected in this paper. transformation of the fields:
The classical vacuum structure of this theory is deter- '

mined by the zeroes of the potentid{ #,N). The symmetric SN=0. Sb=iN SA=i/ SAa=i./ 12
phase(¢)=0 is infinitely degenerate adN) can take any + 0¢=ING, 1=lolk, o=l (12

value No. In the symmetric phase there are charged scalafyis transformation is somewhat puzzling as it does not

bosons of mass leave the Lagrangian invariant without the gauge field equa-
_ 5 tion, although the Hamiltonian is invariant modulo the Gauss
m=No+u ) law. Even though thg space has disappeared, there remains

ith =02« bei he th di . | Th this y directional translation.
with p=v*/« being the three-dimensional mass. The asym-  ringing the BPS energy bound begins with the explicit

metric phase is un_iquely given QBI)ZO,' (¢)=v up to the expression of the energy density:
gauge transformation. In the asymmetric phase, there are two

kinds of neutral bosons of masu2 Since all the vacua are 1
degenerate, we expect that topological domain walls exist€=|D¢|?+|D; |2+ N?| ¢|2+—d%(| |2 —v?)2. (13
(We call the domain walls residing in the symmetric phase K

nontopological, even though they are topological in a way a
they interpolate between differeht vacua)

Ly=0Fo1, (4)

ﬁ'ogether with the Gauss law, one can put the energy density

The Gauss law constraint from the variation/y is as
i 2
' i
kN'—i(Dggp* ¢—¢* Do) =0, (6) €=‘D0¢+ ;¢(|qb|2—v2)sina—iNgbcos;z
where the prime is the derivativd/dx. The variation ofN 1 2
yields another constraint, +|D 1+ — d(|p|?—v?)cosx+ Nesina
K

kFo1— 2N|¢|?=0, (7) 1

i i + 5 [k?N?=(|¢|*—v?)?]' cos
which does not play any important role here. 2k

The theory is invariant under the local gauge transforma-

tions +[N(v?=[4[*)]'sina, (14)

SH=iA(X)p, OA,=d,A. ®) \(/:vrtgarr‘c;eei is an arbitrary angle variable. We introduce two

Its global part is the (ll) symmetry, whose conserved cur-

rent is j,=i(D,¢* o—¢*D,¢). Making use of the the Y:j dxi[KZNZ—(|¢|2—uz)2]’, (15)
Gauss law, we can write the corresponding charge as 2k

Q- | dxio=ran, © 2= [ axtnw- 16
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The boundary conditions at spatial infinities for any finite After integrating this equation once, we obtain
configuration should approach the ground configuration of ' oo 5
the potential F. =1, N.=0) or (F.=0, N.=any value, F'e—4uFo(F°—=2F+a%)=0, (26)

2_ .2 ;
where|¢|*=v°F. We can rewrite the above two charges asWherea is an integration constant that lies|[if,1] for any

1 finite energy density solution. For a givéh configuration
Y=Py—Skp*(F —F_)(F.+F_-2), (17  Eq.(24) determines\.
There is one different feature in our model compared with
Z=u0Q. (18) the previously studied BPS-type solitons: The length scale of
the above Eq(26) is independent of the parametey and so
Thus we can identifyy as the topological charge atlas  is that of the self-dual domain walls.
the Noether charge in a broad sense.
From Eq.(14), we can now put a bound on the energy for [l. SELF-DUAL SOLITONS

configurations of a giveff’ andZ as A. Between the symmetric and asymmetric phases

E=Ycosy+Zsina (19 Fora=1, the solutions of Eq(26) are
for any . When coa=Y/\Y2+Z2 and sime=2/\YZ+ Z? 1
are chosen, the BPS-like bound follows: F= 1+e* 2w (27)
E= VY +2Z° (200 satisfyingF’=+2uF(1—F). These solutions describe to-

. ) ) . pological domain walls interpolating between the symmetric
For any localized configuration of given valuesfandZ 5,4 agsymmetric phases. The transition region from the sym-

should satisfiy this boundlf we chose a differentr, EQ.  metric phase to the asymmetric one has the size of order
(19 would be a weaker bound than EQO) and so, would 1/uu. The scalar fieldN from Eq. (24) is

not be saturatefl.The bound is saturated by the field con-

figurations satisfying the constraint equatiof® and (7), u(F1+cosw)
and the self-dual equations = Sina(1+e=2%)" (28

! 2 i i _ Of course the position of the solitons can be translation in
Dog+ K $(|I*~v)sina—iN gcom=0, @D space by replacing by x—c. This is the only zero mode of
the solution.

The solutions can be classified into two classes depending
on whetherF, is one or zero. In the first case with
(F,,F_)=(1,0), we get N,=0 and N_=u(-1
The self-dual configurations are static in time as one cant cosy)/sina, which fixesa in terms of N_. The total en-
show easily thatdg|$|?=doN=dArgp—A,=0. Further- ergy is
more, the self-dual configurations also satisfy the usual
second-order field equations. The reason why this works is kp?(1—cosx)
that the Noether chargeg and Z are given by the total - sirfa ' (29
derivatives when the Gauss law is used and so that the action
principle in the Hamiltonian formalism is satisfied by the The topological charges for this soliton ave= Ecosx and
self-dual configurationgThe additional constrain7) canbe = Z=Esina. In addition,Q=—«N_ andP,=— «kN? /2. Near
shown to be automatically satisfied by the field configura-a~0, the wall does not carry any charge and the energy
tions satisfying the self-dual equations and the Gauss| law. takesE = ku?/2, the minimum value of E¢(29).

The dimensional reduction of the Bogomol'nyi-type en-  The second case is with~( ,F_)=(0,1), which is the
ergy bound in three dimensions is identical to the above casspatial reflection of the first solution. In this case
with sine==*1 and so is not a new bound. However, in the N, = u(1+ cosw)/sina, which fixes thea in terms of N, ,
Appendix we will describe another Bogomol'nyi-type bound andN_=0. The energy of the soliton is
which works only for the topological domain walls.

D,¢p+ %¢(|¢|2—v2)005a+ Ngsina=0. (22

Again with F=|¢|?/v?, we can combine the Gauss law Eo Kk p?(1+cosw) 20

(6), and Egs(21) and(22) as B sirfa ' (30

N’=—2uF{u(F—1)sina—Ncosr}, (23 Again the charges are uniquely determined My or the
) anglea.

F'=—-2F{u(F—1)cosx+ Nsina}, (24

where the prime igl/dx. The above equations can be put B. In the symmetric phase

together as a single ordinary differential equation: Fora<1, the general solution of E@26) is given by

(InF)"=—2(uF'cosa+ N’sina) a2

F= . 31
=—4u’F(1-F). (25) 1+ 1—acosh2aux) 3
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SinceF .. =0, this domain wall lives in the symmetric phase. s Mol 12 1 ) s 9o
From Eq.(24), we get Lsysy= kNFo+|D 4| — N ¢| _;z|¢| (|¢l*—v?)
— .2 o NI A5 E 2 2N
Ne| A 1-a +igy*D, p—iNgy ¢+K(3|¢| v) Y. (39
| sina
asinh(2aux) +[ V1— a2+ cosi2aux)]cosx After the dimensional reduction, the supersymmetric trans-
X , formation becomes
1+ J1—a%cosh2aux)
32 1— —
%2 O = (L1, 0" + 07,4 D),
where N, =u(a+cosw)/sine and N_=—u(a—cos)/ _
sina. The energy is given b I — - -
“ IS GEnBY ON=— (LY Yd* +y°Lh), 5=y,
_ 2aku’? (33 1
sirfa Sy=—iy*{D,p+iy’(Np+ ;¢(|¢|2—v2)§- (36)

Thus, for a giverw anda, there is a unique solution up to the Since the parametéris a complex Dirac spinor, it generates

translation. AgainY andZ are Ecosx andEsina. the N=2 supersymmetry transformatiofWe can choose
Let us reconsider the above configuration somewhat difthe chiral spinors (* y°)¢/2 as independent parameters and

ferently. The average df is N= ucota. This fixes the angle so the supersymmetry is really=(2,2)

a. The difference oN is given by AN=2ua/sina, which For a given superfield the supersymmetric transforma-

fixes a in terms of N and AN. Since the electric charge is tion

Q=«AN, the energy(33) can be expressed as

SO=[i({R+RL),P], (37)

E=QVN?+ u?. (39

is generated by the supercharge

Since the mass of elementary charged particles in the sym- o . 5 i . s 2l o
metric phase isn=\/N2+ w2, this soliton can be regarded as R:f dx) | (D))" y*+Ne™y _;¢ (1¢1° =) |77y
a Q-ball lump of elementary particles if we identify the (38
vacuum valueN, by the averagé\.
In the limit a— 1, the size of this soliton gets very large.  After quantization, we get the canonical commutation re-
The spatial dependence is characterized by the parametattions between the fields. These lead to the reletaa2
m. As x increases, the value &f jumps from zero to a value superalgebra,
approximately one in a wall of size A/ then stays there for
the interval of approximate size{Iny1—a?)/2u, then falls [(RRy]=LyEnP ,— EnZ+i oY, (39)
down to zero in the wall of size 4. From the spatial de- .
pendence ofF and N, one can see that in this limit the
soliton looks more and more like a combination of two to-
pological solitons considered in the previous subsection.
Especially when we choosd=0 or cosx=0, the limit YZJ dx[N[i(D0¢*¢>—¢*Do¢)—wT¢]
Q=2kua—2v? asa—1. For the semiclassical picture to
be correct, the charge of this soliton should be much larger 1
than that of elementary particles, op2>1. — 2_&X(|¢|2_02)2]’ (40)
K

where two central charges are given as

IV. SUPERSYMMETRY

1
j z-- | dx[Nax|¢|2+—<|¢|2—v2>
In Ref.[7] the underlyingN =2 supersymmetry theory for K

the self-dual Chern-Simons Higgs systems has been found.

After the dimensional reduction of this model, we get again X[I(Dod* p— * Dop) — l/leﬂ)]}- (41)
anN=2 supersymmetric model. Here we use the convention

that 7,,=diag(1-1,—1), and y’=o,, y'=ioy,y”

=—ioy. After the dimensional reduction, we introduce These central charges become those in Ef§S. and (16)
v°=vs= "= 05. The supersymmetric Lagrangian in two once the Gauss la@) is used.

dimensions becomes After introducing a new spinor operator,



55 BPS DOMAIN WALL SOLUTIONS IN SELF-DUAL ... 6451

1 2 ) This energy is reasonable as its density is gauge invariant.
R :§(1+7’03 YR We split theN field as a sum of the averadé and the
fluctuation SN such thatsSN, + SN_=0.
o By making use of the Gauss lawN’ +|#|?=0, the en-
_ - (72— a) X R’
) (14 o€ ys)f dx ergy functional can be rewritten as

X

Dod)* — - 6% (|¢l2—vDsina-+iNg* E —ileHde - oNu?, @)
(Do9) K¢ (l¢ v°)sina+iN ¢* cosx nonrel_zlu 24 x¥ Ve

¥

plus the vanishing boundary terms, whe@e= — [dx||?

’ <0. Since the integrand is non-negative, the nonrelativistic
energy is bounded by thg directional kinetic energy,
N2|Ql|/(2u), which can be seen as the mass correction of the
the superalgebré39) becomes Q particles byP,=N. o

Introducing| ¢/|%=2uv?F, we can simplify the Gauss law
and the nonrelativistic self-dual equations to

1
- 754{('319/))* + ;¢*(|¢|2—v2)co&x+ N ¢* sina

(42

RL RN =E—(Ycosa+ Zsina). 43
5 (R Ryl =B~ : “3 SN'+2uF=0, (48)

As the left-hand side of this equation is positive definite, this F'—26NF=0. (49
equation leads to the energy boudd®). The energy bound is _ _
saturated wheR’)=0, which in turn implies the self-dual They in turn lead to the equations

equations. (InF)"+4u’F=0, (50)

V. THE NONRELATIVISTIC LIMIT SN=(InF)'/2. (52

i kWe .eXptECt the norlrt'alatn;:stlc limit t(;f tr:f th((ajory ggn be The equatior{50) is the Liouville equation in one dimension,
aken in the symmetric phase as the field describes which can be integrated to

charged particles. We expect the nonrelativistic limit is rea-
sonable if the kinetic energy is small. For this limit to make F'24+4u2F2%(2F—a?)=0, (52)
sense, it turns out that thg momentum per unit charge

should be also small compared with the three-dimensionakhere 0<a<1. This is again the nonrelativistic limit of Eq.

mass, ofNo|<u. (26) with the same parameter. The solutions are given by
In this case we take the nonrelativistic limit of the system
in the three-dimensional model by letting a?
é=(1\2u)e "y, where u=v?/«. The Lagrangian(l) F= 2cosR(aux)’ (53)
reduces to the well-known Lagrangif8i,
au
N=Ng— Ttanl"( aux). (54)

K . 1
»Cnonrelzz GMVPAM‘?VA,J"' iy* Dt‘/l_ﬂl D,U«‘Mz

In the largex region the above nonrelativistic solutions
n 1 (l4]2)? (44) match with the relativistic solutiof31) if a<1, sinm=—1.
2ukK ' The charge of this configuration is agdin=2«ua.

After dimensional reduction, it becomes VI. CONCLUDING REMARKS

1 1 Here we have explored the structure of the domain walls
Lronre= KNFop+i¢* Dyy— 2—|DX¢|2— 2—N2¢2 in the self-dual Chern-Simons-Higgs systems by the dimen-
M m sional reduction method. Their energy bound is similar to the
1 BPS bound on dyons in some Yang-Mills Higgs systems in
+2—(|¢|2)2. (450  four dimensions. We found all possible domain solutions,
MK which are made of topological and nontopological domain

walls. We studied th&l=2 supersymmetry behind the BPS-

This is equivalent to the nonrelativistic limit of the dimen- ;o energy bound. We also have studied the nonrelativistic
sionally reduced Lagrangian Wo<u. The energy func- |imit.

tional, after dropping the boundary term which depends only - oy two-dimensional model is different from the recent
on the conserved charge, is given by attempts to describe anyons in one-dimensional spafe
Our model does not seem to be directly related to the
E _J' dx(ilD ¢|2+LN2|¢//|2— i(|¢/’|2)2 Calogero-Sutherland model, in contrast to the recent work
nonref™ 2u' X 2u 2K ' [10]. Our nonrelativistic limit is simpler than the recently
(46) discovered chiral solitond 1]. However, it turns out that our
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nonrelativistic model also has intriguing properties as showrsupported by the Basic Research Institute Program, Ministry
in a recent work12]. of Education, Project No. BSRI-96-2401 and in part by KO-
There are several directions to explore from this point.SEP through the Center for Theoretical Physics of Seoul
There are self-dual Chern-Simons-Higgs models for anyNational University.
gauge group and any matter representafib®,14]. Espe-
cially with the matter in the adjoint representation, the APPENDIX: ANOTHER BOUND
vacuum structure is quite rigid5,16], implying the intricate . ] ] ) )
domain wall structure. As in the Abelian case, domain walls In this appendix, we briefly review another Bogomol'nyi-
in two dimensions are generally easier to understand thafyP€ bound which works only for the topological domain
solitons in three dimensions, and this will eventually lead towalls [2]. We can rewrite the energii3) as follows:
a better understanding of solitons in three dimensions. 1
We studied théN=2 supersymmetry underlying the self- E=|Dop=iNg|*+|D1p=—d(|d|?—v?)
duality. However, in three dimensions with the Chern- K
Simons term the maximal supersymmetry Ns=3 [18], 1
which could be translated to th&l=3 supersymmetric Fo—[k®N2+(|p|?—v?)?]". (A1)
theory in two dimensions. As a pure two-dimensional sys- 2K
tem, it would be interesting to find out how tiNe=3 super-

2

This is not identical to Eq(14) with cosa==*1 because of
the sign difference in the boundary term. The energy bound

exists a more general set of the self-dual systems witiBthe is then

kinetic term in two dimensions with larger supersymmetry
than theN=3 supersymmetry. 1

Along the similar line of thought, there may be a gauged EZU dxﬂ[K2N2+(|¢|2—Uz)Z]' : (A2)
version of the nonlinearr models considered in Ref5].
They would lead to a richer variety of two-dimensional mod- et us concentrate on the upper sign. The self-dual equa-
els with the BPS-type energy bound, which may be similar tajons in this case become
the dimensional reduction of the self-dual Gf(models

considered in three dimensiofis7]. kN'=—2[¢|?, (A3)
The quantum mechanical aspect of the theory should also

be interesting. In the massless limit=0, there may be a D ¢+£¢(|¢|2—v2)=0 (Ad)

guantum conformal symmetry. Also the three-dimensional ! K '

solitons may appear as instantons in two dimensions, whose .
effect is unclear at this moment. One of the noticeable feaWhere we have used the Gauss kB The ¢ equation leads

tures here is that the Euclidean action is complex and so th{® the topological domain wall solution(27) with
instanton solutions should be treated carefully as in the cadd +-F-)=(1,0). TheN equation has a nontrivial solution
of monopole instantons in three-dimensional Chern-Simon§28) with (N =0, N_>0).

Higgs system$19]. The two seemingly different sets of self-dual equations
are satisfied by the fields for the same topological domain
ACKNOWLEDGMENTS wall. The new energy boun@A2) is identical to the BPS

energy (29) for these configurations. We believe that the
The work of H.-C.K. was supported by the National Sci- presence of this additional energy bound is due to the inter-
ence Council of Taiwan-Republic of China under Contractdependence of two charg&sandZ for the topological do-
No. NSC 86-2112-M-032-011-T. The work of K.L. was sup- main walls. While the above bound does not lead to anything
ported by the U.S. Department of Energy and the NSF Preshew in the Abelian self-dual case, its analogue in the non-
dential Young Investigator program. The work of T.L. was Abelian case may be more useful.
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