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We study domain wall solitons in the relativistic self-dual Chern-Simons-Higgs systems by the dimensional
reduction method to two-dimensional spacetime. The Bogomol’nyi bound on the energy is given by two
conserved quantities in a similar way that the energy bound for Bogomol’nyi-Prasad-Sommerfield~BPS! dyons
is set in some Yang-Mills-Higgs systems in four dimensions. We find the explicit soliton configurations which
saturate the energy bound and their nonrelativistic counterparts. We also discuss the underlyingN52 super-
symmetry.@S0556-2821~97!01410-0#

PACS number~s!: 11.27.1d, 11.10.Kk, 11.30.Pb

I. INTRODUCTION

In past years the Abelian self-dual Chern-Simons-Higgs
system with an appropriate potential has been studied exten-
sively @1–3#. One of its interesting properties is that there is
a Bogomol’nyi-type bound on the energy@4#, which is satu-
rated by the self-dual solitons which carry the fractional spin
and satisfy the fractional statistics. The potential of this
model has two degenerate vacua, implying the existence of
topological domain walls interpolating between them. It
turns out that the topological domain walls satisfy another
Bogomol’nyi bound as a two-dimensional model, which is
different from such a bound on three-dimensional self-dual
solitons@2#.

These domain walls which interpolate between the sym-
metric and asymmetric phases have been studied to under-
stand the behavior of the rotationally symmetric solitons in
the large charge limit. In this case the energy density is con-
centrated on a circular ring of large radius and its radial cross
section resembles the domain wall@2#. However, in the sym-
metric phase there exist also rotationally symmetric nonto-
pological solitons with vortices in the center, whose large
charge and vorticity limit cannot be described exactly by the
topological domain walls. This suggests to us a richer struc-
ture of domain walls.

On the other hand, recently some two-dimensional non-
linear s models with appropriate potentials@5# have been
shown to have many properties similar to the four-
dimensional Yang-Mills-Higgs systems which admit the
Bogomol’nyi-Prasad-Sommerfield~BPS! dyons solutions. In
particular, a Noether charge and a topological charge are
found to set the BPS-type bound on the energy@4,6#. Since
these two-dimensional self-dual models have the underlying

N52 supersymmetry and so do our Chern-Simons-Higgs
systems, our domain walls are also expected to have the BPS
bound, which is more general than the Bogomol’nyi bound.

The goal of this paper is to explore the domain wall struc-
ture of the self-dual Chern-Simons-Higgs system, by taking
the dimensional reduction of the model to two dimensions.
We show that the resultant two-dimensional model has a
BPS-like energy bound. Our model hence forms a new class
of two-dimensional models with the BPS-like energy bound,
similar to the four-dimensional Yang-Mills Higgs systems.
We show that the domain wall configurations saturating the
energy bound consist of topological and nontopological do-
main walls: topological domain walls interpolating the sym-
metric and asymmetric phases and nontopological domain
walls residing in the symmetric phase.

The plan of this paper is as follows. In Sec. II, we intro-
duce our model and find the BPS-type energy bound. We
reduce the self-dual equations to a single ordinary nonlinear
differential equation. In Sec. III, we solve the differential
equation to find and investigate all possible domain wall so-
lutions. In Sec. IV, we study the underlyingN52 supersym-
metry. In Sec. V, we study the nonrelativistic limit and its
solitons in the symmetric phase. In Sec. VI, we conclude
with some remarks. In the Appendix, we study another
bound on the energy functional, which works only for the
topological domain walls, and discuss its relation to the BPS
bound.

II. MODEL

We start with the self-dual Abelian Chern-Simons-Higgs
system whose Lagrangian@1# is

LCSH5
k

2
emnrAm]nAr1uDmfu22

1

k2f
2~ ufu22v2!2,

~1!

where Dmf5(]m2 iAm)f. There are two phases in the
theory: the symmetric phase wheref50 and the antisym-
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metric phase wheref5v. Elementary charged excitations in
the symmetric phase have massm5v2/k and spin
s54p/k, and in the broken phase there are charge neutral
particles of mass 2m. There are also self-dual anyonic soli-
tons in the symmetric and asymmetric phases.

We consider the modes independent of thex2 coordinate
to get the dimensionally reduced Lagrangian in two-
dimensional spacetime

L5kNF011uDmfu22U~N,f!, ~2!

where the potentialU(N,f) is

U~f,N!5N2ufu21
1

k2f
2~ ufu22v2!2. ~3!

The mass dimension of the fields and parameters become
@f#5@v#5M0, @Am#5@N#5M , and @k#5M21. The ki-
netic part ofN,Am is that of the so-calledBF theory. To the
original Lagrangian, one can add au term,

Lu5uF01, ~4!

which is possible only in two dimensions. It does not play
any role classically and will be neglected in this paper.

The classical vacuum structure of this theory is deter-
mined by the zeroes of the potentialU(f,N). The symmetric
phase^f&50 is infinitely degenerate aŝN& can take any
valueN0. In the symmetric phase there are charged scalar
bosons of mass

m5AN0
21m2 ~5!

with m5v2/k being the three-dimensional mass. The asym-
metric phase is uniquely given as^N&50, ^f&5v up to the
gauge transformation. In the asymmetric phase, there are two
kinds of neutral bosons of mass 2m. Since all the vacua are
degenerate, we expect that topological domain walls exist.
~We call the domain walls residing in the symmetric phase
nontopological, even though they are topological in a way as
they interpolate between differentN vacua.!

The Gauss law constraint from the variation ofA0 is

kN82 i ~D0f*f2f*D0f!50, ~6!

where the prime is the derivatived/dx. The variation ofN
yields another constraint,

kF0122Nufu250, ~7!

which does not play any important role here.
The theory is invariant under the local gauge transforma-

tions

df5 iL~x!f, dAm5]mL. ~8!

Its global part is the U~1! symmetry, whose conserved cur-
rent is j m5 i (Dmf*f2f*Dmf). Making use of the the
Gauss law, we can write the corresponding charge as

Q5E dx j05kDN, ~9!

where we introduceN65N(t,6`), the constant asymptotic
values, and define their difference asDN5(N12N2).
Q/k can be identified by the magnetic flux per unit length in
three dimensions. There is also a conserved charge, corre-
sponding to the translation invariance along they axis before
the dimensional reduction,

Py5E dxi~D0f*f2f*D0f!N

5
k

2
~N1

2 2N2
2 !5QN̄, ~10!

where we used the Gauss law and the average ofN is defined
as

N̄5~N11N2!/2. ~11!

Thus theN̄ can be regarded as the momentum carried by the
unit charge along they direction. If we identifyN̄5N0, the
massm5AN0

21m2 of elementary charged particles in the
symmetric phase can be thought to be a Lorentz-boosted one
from three-dimensional massm by they momentumN0.

For the conservedPy , there exists the corresponding
transformation of the fields:

dN50, df5iNf, dA15j0 /k, dA05j1 /k. ~12!

This transformation is somewhat puzzling as it does not
leave the Lagrangian invariant without the gauge field equa-
tion, although the Hamiltonian is invariant modulo the Gauss
law. Even though they space has disappeared, there remains
this y directional translation.

Finding the BPS energy bound begins with the explicit
expression of the energy density:

E5uD0fu21uD1fu21N2ufu21
1

k2f
2~ ufu22v2!2. ~13!

Together with the Gauss law, one can put the energy density
as

E5UD0f1
i

k
f~ ufu22v2!sina2 iNfcosaU2

1UD1f1
1

k
f~ ufu22v2!cosa1NfsinaU2

1
1

2k
@k2N22~ ufu22v2!2#8cosa

1@N~v22ufu2!#8sina, ~14!

wherea is an arbitrary angle variable. We introduce two
charges:

Y5E dx
1

2k
@k2N22~ ufu22v2!2#8, ~15!

Z5E dx@N~v22ufu2!#8. ~16!
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The boundary conditions at spatial infinities for any finite
configuration should approach the ground configuration of
the potential (F651, N650) or (F650, N65any value!,
whereufu25v2F. We can rewrite the above two charges as

Y5Py2
1

2
km2~F12F2!~F11F222!, ~17!

Z5mQ. ~18!

Thus we can identifyY as the topological charge andZ as
the Noether charge in a broad sense.

From Eq.~14!, we can now put a bound on the energy for
configurations of a givenY andZ as

E>Ycosa1Zsina ~19!

for any a. When cosa5Y/AY21Z2 and sina5Z/AY21Z2

are chosen, the BPS-like bound follows:

E>AY21Z2. ~20!

For any localized configuration of given values ofY andZ
should satisfiy this bound.@If we chose a differenta, Eq.
~19! would be a weaker bound than Eq.~20! and so, would
not be saturated.# The bound is saturated by the field con-
figurations satisfying the constraint equations~6! and ~7!,
and the self-dual equations

D0f1
i

k
f~ ufu22v2!sina2 iNfcosa50, ~21!

D1f1
1

k
f~ ufu22v2!cosa1Nfsina50. ~22!

The self-dual configurations are static in time as one can
show easily that]0ufu25]0N5]xArgf2Ax50. Further-
more, the self-dual configurations also satisfy the usual
second-order field equations. The reason why this works is
that the Noether chargesY and Z are given by the total
derivatives when the Gauss law is used and so that the action
principle in the Hamiltonian formalism is satisfied by the
self-dual configurations.@The additional constraint~7! can be
shown to be automatically satisfied by the field configura-
tions satisfying the self-dual equations and the Gauss law.#

The dimensional reduction of the Bogomol’nyi-type en-
ergy bound in three dimensions is identical to the above case
with sina561 and so is not a new bound. However, in the
Appendix we will describe another Bogomol’nyi-type bound
which works only for the topological domain walls.

Again with F5ufu2/v2, we can combine the Gauss law
~6!, and Eqs.~21! and ~22! as

N8522mF$m~F21!sina2Ncosa%, ~23!

F8522F$m~F21!cosa1Nsina%, ~24!

where the prime isd/dx. The above equations can be put
together as a single ordinary differential equation:

~ lnF !9522~mF8cosa1N8sina!

524m2F~12F !. ~25!

After integrating this equation once, we obtain

F8224m2F2~F222F1a2!50, ~26!

wherea is an integration constant that lies in@0,1# for any
finite energy density solution. For a givenF configuration
Eq. ~24! determinesN.

There is one different feature in our model compared with
the previously studied BPS-type solitons: The length scale of
the above Eq.~26! is independent of the parametera, and so
is that of the self-dual domain walls.

III. SELF-DUAL SOLITONS

A. Between the symmetric and asymmetric phases

For a51, the solutions of Eq.~26! are

F5
1

11e72mx , ~27!

satisfyingF8562mF(12F). These solutions describe to-
pological domain walls interpolating between the symmetric
and asymmetric phases. The transition region from the sym-
metric phase to the asymmetric one has the size of order
1/m. The scalar fieldN from Eq. ~24! is

N5
m~711cosa!

sina~11e62mx!
. ~28!

Of course the position of the solitons can be translation in
space by replacingx by x2c. This is the only zero mode of
the solution.

The solutions can be classified into two classes depending
on whether F1 is one or zero. In the first case with
(F1 ,F2)5(1,0), we get N150 and N25m(21
1cosa)/sina, which fixesa in terms ofN2 . The total en-
ergy is

E5
km2~12cosa!

sin2a
. ~29!

The topological charges for this soliton areY5Ecosa and
Z5Esina. In addition,Q52kN2 andPy52kN2

2 /2. Near
a'0, the wall does not carry any charge and the energy
takesE5km2/2, the minimum value of Eq.~29!.

The second case is with (F1 ,F2)5(0,1), which is the
spatial reflection of the first solution. In this case
N15m(11cosa)/sina, which fixes thea in terms ofN1 ,
andN250. The energy of the soliton is

E5
km2~11cosa!

sin2a
. ~30!

Again the charges are uniquely determined byN1 or the
anglea.

B. In the symmetric phase

For a,1, the general solution of Eq.~26! is given by

F5
a2

11A12a2cosh~2amx!
. ~31!
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SinceF650, this domain wall lives in the symmetric phase.
From Eq.~24!, we get

N5S mA12a2

sina D
3S asinh~2amx!1@A12a21cosh~2amx!#cosa

11A12a2cosh~2amx!
D ,
~32!

where N15m(a1cosa)/sina and N252m(a2cosa)/
sina. The energy is given by

E5
2akm2

sin2a
. ~33!

Thus, for a givena anda, there is a unique solution up to the
translation. Again,Y andZ areEcosa andEsina.

Let us reconsider the above configuration somewhat dif-
ferently. The average ofN is N̄5mcota. This fixes the angle
a. The difference ofN is given byDN52ma/sina, which
fixes a in terms of N̄ andDN. Since the electric charge is
Q5kDN, the energy~33! can be expressed as

E5QAN̄21m2. ~34!

Since the mass of elementary charged particles in the sym-
metric phase ism5AN0

21m2, this soliton can be regarded as
a Q-ball lump of elementary particles if we identify the
vacuum valueN0 by the averageN̄.

In the limit a→1, the size of this soliton gets very large.
The spatial dependence is characterized by the parameter
m. As x increases, the value ofF jumps from zero to a value
approximately one in a wall of size 1/m, then stays there for
the interval of approximate size (2 lnA12a2)/2m, then falls
down to zero in the wall of size 1/m. From the spatial de-
pendence ofF and N, one can see that in this limit the
soliton looks more and more like a combination of two to-
pological solitons considered in the previous subsection.

Especially when we chooseN̄50 or cosa50, the limit
Q52kma→2v2 as a→1. For the semiclassical picture to
be correct, the charge of this soliton should be much larger
than that of elementary particles, or 2v2@1.

IV. SUPERSYMMETRY

In Ref. @7# the underlyingN52 supersymmetry theory for
the self-dual Chern-Simons Higgs systems has been found.
After the dimensional reduction of this model, we get again
anN52 supersymmetric model. Here we use the convention
that hmn5diag(1,21,21), and g05s2 , g15 is1 ,g

2

52 is3 . After the dimensional reduction, we introduce
g55g5[g0g15s3. The supersymmetric Lagrangian in two
dimensions becomes

LSUSY5kNF011uDmfu22N2ufu22
1

k2ufu2~ ufu22v2!2

1 i c̄gmDmc2 iNc̄g5c1
1

k
~3ufu22v2!c̄c. ~35!

After the dimensional reduction, the supersymmetric trans-
formation becomes

dAm5
1

k
~z̄gmcf*1c̄gmzf!,

dN5
i

k
~z̄g5cf*1c̄g5zf!,df5 z̄c,

dc52 igmzDmf1 ig5zNf1
1

k
f~ ufu22v2!z. ~36!

Since the parameterz is a complex Dirac spinor, it generates
the N52 supersymmetry transformation.@We can choose
the chiral spinors (16g5)z/2 as independent parameters and
so the supersymmetry is reallyN5(2,2).#

For a given superfieldF the supersymmetric transforma-
tion

dF5@ i ~ z̄R1R̄z!,F#, ~37!

is generated by the supercharge

R5E dxH F ~Dmf!* gm1Nf* g52
i

k
f* ~ ufu22v2!Gg0cJ .

~38!

After quantization, we get the canonical commutation re-
lations between the fields. These lead to the relevantN52
superalgebra,

@ z̄R,R̄h#5 z̄gmhPm2 z̄hZ1 i z̄g5hY, ~39!

where two central charges are given as

Y5E dxHN@ i ~D0f*f2f*D0f!2c†c#

2
1

2k
]x~ ufu22v2!2J , ~40!

Z52E dxHN]xufu21
1

k
(ufu22v2)

3[ i (D0f*f2f*D0f)2c†c)#J . ~41!

These central charges become those in Eqs.~15! and ~16!
once the Gauss law~6! is used.

After introducing a new spinor operator,
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R85
1

2
~11g0e

i ~p/22a!g5!R

5
1

2
~11g0e

i ~p/22a!g5!E dx

3H cF ~D0f!*2
i

k
f* ~ ufu22v2!sina1 iNf* cosaG

2g5cF ~D1f!*1
1

k
f* ~ ufu22v2!cosa1Nf* sina G J ,

~42!

the superalgebra~39! becomes

(
b

$Rb8 ,Rb8
†%5E2~Ycosa1Zsina!. ~43!

As the left-hand side of this equation is positive definite, this
equation leads to the energy bound~19!. The energy bound is
saturated when̂R8&50, which in turn implies the self-dual
equations.

V. THE NONRELATIVISTIC LIMIT

We expect the nonrelativistic limit of the theory can be
taken in the symmetric phase as the fieldf describes
charged particles. We expect the nonrelativistic limit is rea-
sonable if the kinetic energy is small. For this limit to make
sense, it turns out that they momentum per unit charge
should be also small compared with the three-dimensional
mass, oruN0u!m.

In this case we take the nonrelativistic limit of the system
in the three-dimensional model by letting
f5(1/A2m)e2 imtc, wherem5v2/k. The Lagrangian~1!
reduces to the well-known Lagrangian@8#,

Lnonrel5
k

2
emnrAm]nAr1 ic*Dtc2

1

2m
uDmcu2

1
1

2mk
~ ucu2!2. ~44!

After dimensional reduction, it becomes

Lnonrel5kNF011 ic*Dtc2
1

2m
uDxcu22

1

2m
N2c2

1
1

2mk
~ ucu2!2. ~45!

This is equivalent to the nonrelativistic limit of the dimen-
sionally reduced Lagrangian ifN0!m. The energy func-
tional, after dropping the boundary term which depends only
on the conserved charge, is given by

Enonrel5E dxH 1

2m
uDxcu21

1

2m
N2ucu22

1

2mk
~ ucu2!2J .

~46!

This energy is reasonable as its density is gauge invariant.
We split theN field as a sum of the averageN̄ and the
fluctuationdN such thatdN11dN250.

By making use of the Gauss lawkN81ucu250, the en-
ergy functional can be rewritten as

Enonrel5
1

2m
N̄2uQu1E dxH 1

2m
uDxc2dNcu2J , ~47!

plus the vanishing boundary terms, whereQ52*dxucu2
,0. Since the integrand is non-negative, the nonrelativistic
energy is bounded by they directional kinetic energy,
N̄2uQu/(2m), which can be seen as the mass correction of the
Q particles byPy5N̄.

Introducingucu252mv2F, we can simplify the Gauss law
and the nonrelativistic self-dual equations to

dN812m2F50, ~48!

F822dNF50. ~49!

They in turn lead to the equations

~ lnF !914m2F50, ~50!

dN5~ lnF !8/2. ~51!

The equation~50! is the Liouville equation in one dimension,
which can be integrated to

F8214m2F2~2F2a2!50, ~52!

where 0,a,1. This is again the nonrelativistic limit of Eq.
~26! with the same parametera. The solutions are given by

F5
a2

2cosh2~amx!
, ~53!

N5N02
am

2
tanh~amx!. ~54!

In the large x region the above nonrelativistic solutions
match with the relativistic solution~31! if a!1, sina521.
The charge of this configuration is againQ52kma.

VI. CONCLUDING REMARKS

Here we have explored the structure of the domain walls
in the self-dual Chern-Simons-Higgs systems by the dimen-
sional reduction method. Their energy bound is similar to the
BPS bound on dyons in some Yang-Mills Higgs systems in
four dimensions. We found all possible domain solutions,
which are made of topological and nontopological domain
walls. We studied theN52 supersymmetry behind the BPS-
like energy bound. We also have studied the nonrelativistic
limit.

Our two-dimensional model is different from the recent
attempts to describe anyons in one-dimensional space@9#.
Our model does not seem to be directly related to the
Calogero-Sutherland model, in contrast to the recent work
@10#. Our nonrelativistic limit is simpler than the recently
discovered chiral solitons@11#. However, it turns out that our
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nonrelativistic model also has intriguing properties as shown
in a recent work@12#.

There are several directions to explore from this point.
There are self-dual Chern-Simons-Higgs models for any
gauge group and any matter representation@13,14#. Espe-
cially with the matter in the adjoint representation, the
vacuum structure is quite rich@15,16#, implying the intricate
domain wall structure. As in the Abelian case, domain walls
in two dimensions are generally easier to understand than
solitons in three dimensions, and this will eventually lead to
a better understanding of solitons in three dimensions.

We studied theN52 supersymmetry underlying the self-
duality. However, in three dimensions with the Chern-
Simons term the maximal supersymmetry isN53 @18#,
which could be translated to theN53 supersymmetric
theory in two dimensions. As a pure two-dimensional sys-
tem, it would be interesting to find out how theN53 super-
symmetry can be maximal. One may wonder whether there
exists a more general set of the self-dual systems with theBF
kinetic term in two dimensions with larger supersymmetry
than theN53 supersymmetry.

Along the similar line of thought, there may be a gauged
version of the nonlinears models considered in Ref.@5#.
They would lead to a richer variety of two-dimensional mod-
els with the BPS-type energy bound, which may be similar to
the dimensional reduction of the self-dual CP(N) models
considered in three dimensions@17#.

The quantum mechanical aspect of the theory should also
be interesting. In the massless limitv50, there may be a
quantum conformal symmetry. Also the three-dimensional
solitons may appear as instantons in two dimensions, whose
effect is unclear at this moment. One of the noticeable fea-
tures here is that the Euclidean action is complex and so the
instanton solutions should be treated carefully as in the case
of monopole instantons in three-dimensional Chern-Simons
Higgs systems@19#.
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APPENDIX: ANOTHER BOUND

In this appendix, we briefly review another Bogomol’nyi-
type bound which works only for the topological domain
walls @2#. We can rewrite the energy~13! as follows:

E5uD0f6 iNfu21UD1f6
1

k
f~ ufu22v2!U2

7
1

2k
@k2N21~ ufu22v2!2#8. ~A1!

This is not identical to Eq.~14! with cosa561 because of
the sign difference in the boundary term. The energy bound
is then

E>U E dx
1

2k
[k2N21(ufu22v2)2] 8U. ~A2!

Let us concentrate on the upper sign. The self-dual equa-
tions in this case become

kN8522ufu2, ~A3!

D1f1
1

k
f~ ufu22v2!50, ~A4!

where we have used the Gauss law~6!. Thef equation leads
to the topological domain wall solution~27! with
(F1 ,F2)5(1,0). TheN equation has a nontrivial solution
~28! with (N150, N2.0).

The two seemingly different sets of self-dual equations
are satisfied by the fields for the same topological domain
wall. The new energy bound~A2! is identical to the BPS
energy ~29! for these configurations. We believe that the
presence of this additional energy bound is due to the inter-
dependence of two chargesY andZ for the topological do-
main walls. While the above bound does not lead to anything
new in the Abelian self-dual case, its analogue in the non-
Abelian case may be more useful.
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