
Tensors from K3 orientifolds

Joseph Polchinski*

Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030
~Received 12 December 1996!

Recently Gimon and Johnson and Dabholkar and Park have constructed type I theories onK3 orbifolds. The
spectra differ from that of type I on a smoothK3, having extra tensors. We show that the orbifold theories
cannot be blown up to smoothK3’s, but ratherZ2 orbifold singularities always remain. Douglas’s recent
proposal to useD-branes as probes is useful in understanding the geometry. TheZ2 singularities are of a new
type, with a different orientifold projection from those previously considered. We also find a new world-sheet
consistency condition that must be satisfied by orientifold models.@S0556-2821~97!04508-6#

PACS number~s!: 11.25.Mj, 11.25.Hf

I. A PUZZLE

Orientifolds are a generalization of orbifolds@1,2#, allow-
ing the construction of interesting string theories based on
free world-sheet fields. Although discovered some time ago
@3#, they have recently attracted renewed interest because
they are related by string dualities to many other vacua. In
particular, there has been a series of papers constructing
models of this type ind56 with N51 supersymmetry
@4,5,1,2#.1 In this work we would like to resolve a small
puzzle arising from some of this work. This will lead us to a
new orientifold construction and also to a world-sheet con-
sistency condition not previously noticed, though fortunately
satisfied by all the models of@4,5,1,2#. It also provides a nice
illustration of the recent idea of usingD-branes as probes of
spacetime geometry@8#.

The puzzle is this. References@4,1,2# all construct what
appears to be the type I string on aK3 orbifold, in that one
twists the IIB theory onT4 by world-sheet parityV ~produc-
ing the type I string! and by a spacetimeZN rotation ~pro-
ducingK3). For theZ2 case@4#, the spectrum agrees with
that of the type I string on a smoothK3.2 However, for
N>3 the orientifold spectrum does not agree with that on
smoothK3. The latter, like its heterotic dual, always has a
single antisymmetric tensor multiplet, while in the orienti-
fold an extram tensors live at eachZ2m11 or Z2m12 fixed
point @1,2#.

The cause of the discrepancy is that the parity operator
V of the orientifold theory is not given by the limit of the
V of the smooth theory.3 Let us consider first the type IIB

theory at aZN orbifold point ~also known as anAN21 singu-
larity!. The closed string Hilbert space has twisted sectors
labeled byk51, . . . ,N21,

Z3,4~2p!5akZ3,4~0!, a5e2p i /N, ~1.1!

where Zl5X2l1 iX2l11. The right-moving Neveu-Schwarz
~NS! sector contains two states which are singlets under the
massless SO~4! little group, while the right-movingR sector
contains a doublet. The left-moving sectors are the same, so
the full spectrum is

~2•112!3~2•112!55•113. ~1.2!

These five singlets plus anti-self-dual tensor form a tensor
multiplet of type IIB supergravity, call itTk , which decom-
poses to a tensor multiplet and hypermultiplet of type I. Thus
there areN21 tensor multiplets associated with the fixed
point. This is in agreement with the limit of the smoothK3
spectrum. At the fixed point there areN21 collapsed two-
spheres. Each gives rise to an anti-self-dual tensor~from the
self-dual four-form of the IIB theory!, plus three moduli
from the metric and twou parameters, from theR and NS
two-forms.

Under the IIB parity operatorV, the metric andR two-
form are even and the four-form and the NS two-form are
odd. Projection ontoV511 thus leavesN21 hypermultip-
lets at the fixed point. The parity operator of the orientifold
theory, call itV8, acts differently@1,2#. Reversing the orien-
tation of the string changes theak twist ~1.1! to
a2k5aN2k. Except whenk5N2k, this is off diagonal and
so one of the two linear combinationsTk6TN2k is even and
the other odd. Fork5N2k ~so thatN is even!, V8 takes
TN/2 to itself, and the tensor and one NS scalar are odd and
the other four scalars even. Forming the orientifold by pro-
jecting ontoV8511 then leavesm21 tensor multiplets and
m hypermultiplets forZ2m andm tensor multiplets andm
hypermultiplets forZ2m11. Only for Z2 doesV5V8.

EvidentlyV85VJ whereJ is some symmetry of the or-
bifold conformal field theory~CFT! which only acts on the
fields near the fixed point. In the rest of the paper we will
study thisJ in more detail, not just in theZN orbifold limit
but for the full moduli space ofV8 invariantK3’s. To make
the discussion simple we focus on aZ3 fixed point. From the
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1Orientifolds withd56 N51 supersymmetry were first found in

@6#. It is likely that some of the models found in these papers are
identical to models in@4,5,1,2#. However the puzzle we consider
depends on the spacetime picture, and so is not evident in these
fermionic constructions. For further background onD-branes and
orientifold see@7#.
2The blowing up of the orbifold singularities was discussed in

detail in @9#.
3This is also under study by Gimon and Johnson@10#, by Dab-

holkar and Park@11#, and by Blum.
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above discussion, this has twoV511 hypermultiplets, only
one of which hasV8511. Consider the almost locally Eu-
clidean ~ALE! space, the local region ofK3, obtained by
turning on theV8511 moduli. This cannot be smooth as
there would be no candidate forJ, a symmetry which must
act trivially at long distance from the blown up fixed point.
But there is indeed a family of singular ALE spaces which
includes theZ3 orbifold and which is parametrized by one
hypermultiplet. These spaces haveA1 singularities,Z2 orbi-
fold points.

From the orbifold point of view it is hard to see aZ3 fixed
point deform into aZ2 fixed point, but from other points of
view it is simple. The metric for a generalZN ALE space is
of the form @12#

ds25V21~dt2A•dy!21Vdy•dy,

V5 (
i50

N21
1

uy2yi u
, ¹V5¹3A, ~1.3!

where y is a three-vector andt has period 4p. The
3(N21) moduli mentioned earlier are just theN21 differ-
encesyi2y0; by a translation one can sety051. ForN53,
theZ3 orbifold singularity occurs when the three ‘‘charges’’
are coincident,y05y15y2. Pulling one charge away and
leaving two coincident leaves aZ2 fixed point, and these
singular ALE spaces are indeed parametrized by one hyper-
multiplet.

There are no further hypermultiplets to associate with
blowing up theZ2 fixed point but there is a tensor multiplet,
so this is different from theZ2 fixed points of@4#. The dif-
ference is now clear: theV8 projection is just keeping the
opposite states fromV at the fixed point, so thatJ is the
Z2 symmetry which is21 in the Z2-twisted sector and
11 in the untwisted sector.4

In the next section we studyV8 orientifolds of free field
theory. In the final section we verify the above argument
about the ALE geometry by usingD-branes to measure the
blownup metric directly. By the same method we find that
the generic blowup of theZ2m11 andZ2m12 singularities of
@1,2# leavesm separateA1 singularities, each with an asso-
ciated tensor multiplet.

II. A NEW Z2 ORIENTIFOLD

Now let us study the newZ2 fixed point in isolation. Start
with the IIB string in 10 dimensions. Twist by a reflection
R of X6,7,8,9 to produce an orbifold point at the origin, and
then twist byVJ. Note that this is akin to an asymmetric
orbifold, in that the symmetryJ does not exist until after the
first twist. Note also that if the second twist is byJ rather
than VJ it simply undoes theR-twist. Projecting onto
J511 removes theR-twisted states from the spectrum,
while theJ-twisted states are by definition ofJ those which

have a branch cut relative to theR-twisted states—that is,
they are theR-odd states that were removed by the first
projection.

In order for theVJ twist to be consistent,VJ must be
conserved. For purely closed string processes this follows
becauseV andJ are both conserved. It is also necessary to
check the closed-to-open transition:VJ as defined in the
closed string and open string sectors must be conserved by
this transition. This must be true for all orbifold and orienti-
fold twists in open string theory, and is the missing consis-
tency condition mentioned earlier. We will therefore also
reexamine the earlier models.

To be specific we consider the transition between the
closed string RR ground state and the open string vector. The
analytic parts of the relevant vertex operators are

Va5e2f/2Sa ,

Ta85e2f/2Sa8T,

Vm5e2fcm, ~2.1!

for the untwistedR ground state, twistedR ground state, and
untwisted NS vector, respectively. Heref is the bosonized
ghost @13#, Sa the spin field ~spinor indices are ten-
dimensional on unprimed objects and six-dimensional on
primed!, and T the internal part of the twistedR ground
state. All of these operators are weight (1,0), with the corre-
sponding (0,1) operators denoted by a tilde. The relevant
closed-to-open amplitudes on the unit disk are determined
purely by Lorentz invariance:

^Va~0!Ṽb~0!Vm~1!&5Gab
m ,

^Ta8 ~0!T̃b8 ~0!Vm~1!&5Gab8m . ~2.2!

Now consider the effect of orientation reversalV. This
takes

VaṼb→ṼaVb52VbṼa ,

Ta8 T̃b8→T̃a8Tb852Tb8 T̃a8 ,

Vm→2Vm. ~2.3!

Note that theR vertex operators anticommute, being space-
time spinors. That the photonVm isV odd is familiar, though
less obvious in the21 picture ~2.1! than in the 0 picture
where it is a tangent derivative. The ten-dimensionalG ma-
trices are symmetric so the untwisted amplitude~2.2! is even
underV, but the six-dimensionalG matrices are antisymmet-
ric and the twisted amplitude is odd. The full amplitude also
contains a Chan-Paton factor. The twistR acts on the Chan-
Paton factors as a matrixgR , so the Chan-Paton trace for the
twisted amplitude contains a factorgR : it is of the form

Tr~gRl1•••ln!. ~2.4!

Parity V takes l i→(gV
21l igV)

T and reverses the order
1, . . . ,n. This is equivalent togR→gVgR

TgV
21 . Conservation

of V in the full amplitude then requires

4This is after theZ3 singularity is partly resolved into aZ2 singu-
larity. On the original orbifold withZ3 singularity, J must inter-
change the sectors twisted bya anda2 while leaving the untwisted
sectors invariant. This symmetry is not manifest, for example, it is
not a symmetry of operator products involvingZ3 noninvariant op-
erators, but must be present in the orbifold CFT.
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gR52gVgR
TgV

21 . ~2.5!

This was not imposed explicitly in@4#, though the condition
that @V,R#50 hold on the Chan-Paton factors does imply
Eq. ~2.5! up to a sign. In fact, the sign is correct for the
model of@4#. It is also correct for theZ2 twist fields of@1,2#,
because this sector is the same as in@4# for all models. For
twists other thanZ2 the new condition is not as interesting.
For these,V takes the twistg into a different twistg21 so it
governs which linear combination of the two sectors appears.
This is necessary to get the correct vertex operators, but does
not affect the spectrum. Similarly in@5#, V is replaced by an
operatorVSwhich acts off diagonally on theR-fixed points.

Now consider the operatorVJ. By definition, this has an
extra minus sign in its action onTa8 T̃b8 , so the above argu-
ment leads to

gR51gVJgR
TgVJ

21 . ~2.6!

In the nine-brane sector, cancellation of the ten-form tadpole
requires as always 32 nine-brane indices withgVJ,951 in an
appropriate basis. ThengR8,9 is now symmetric, and so is
gVJR,9}gR,9gVJ,9 . The Chan-Paton algebra then implies that
gVJR,5 is antisymmetric, the opposite ofgVR,5 in @4#. Exam-
ining the tadpoles of@4#, this changes the sign of the cross-
term in the untwisted six-form tadpole so that the fixed point

has the opposite charge from the usualZ2 fixed point:1 1
2

times the five-brane charge for the new fixed point~call it

typeB) versus2 1
2 for the old ~call it typeA).

The vanishing of the twisted tadpole is not automatic as it
is at the usual fixed point. At the latter theV projection
removes the dangerous twisted sector six-form along with
the two-form, but theVJ projection leaves both. So if, for
example, there are no five-branes at some fixed point, the
tadpole condition of@4# implies that Tr(gR,9)50 for the
VJ projection. The symmetry ofgR,9 and the surviving or-
thogonal change of basis after settinggVJ,951 then allow
one to take

gR,95F I 16 0

0 2I 16
G . ~2.7!

We have studied the fixed point in a noncompact space
but now let us build a compact model. The six-form charges
found above do not allow all 16 fixed points to be of the new
type as all six-form sources would have the same sign, but
they suggest a model with eight fixed points of typeA, eight
of typeB, and no five-branes. Indeed this is possible. Take
K3 to be a hypercube of side 2, so the coordinates the fixed
point are all 0 or 1. Consider the eight fixed points with
X650. The productJ0 of the eight separateJ’s is not con-
served. However, the transition of a string from a fixed point
with X650 to one withX651 produces also a string with
winding numberw6 odd ~in the orbifoldw6 is only defined
mod 2!, so thatJ0(21)w6 is conserved. To see this, define
R as the reflection which leaves (0,0,0,0) invariant. Then
(1,0,0,0) is left invariant byT6R whereT6 is a translation by
2 units in theX6 direction. A transition from a state of mono-
dromyR to one of monodromyT6R produces also a string of
monodromyT6

21>T6, i.e., odd winding number.

Note that it is not possible in general to mix fixed points
of different types in an arbitrary way. It is only consistent to
project ~gauge! on an operation which is a symmetry of
string theory. One sees from the above that fixed points of
typesA andB can only be combined in groups of eight.

The prescription then is to project theK3 orbifold of the
IIB theory by VJ5VJ0(21)w6 and add in the usual 32
nine-brane indices. The symmetries act on the Chan-Paton
matrices asgVJ51 and gR given by Eq.~2.7!, while the
condition that the eight fixed points withX651 be of type
A require thatgT6R

be as in@4#,

gT6R
5F 0 I 16

2I 16 0 G . ~2.8!

This implies a nontrivial Wilson linegT6
5gT6R

gR
21 . The

resulting model satisfies all algebraic and tadpole conditions.
The untwisted closed string sector contributes the usual

gravitational multiplet, tensor multiplet, and four hypermul-
tiplets. The twisted sectors obviously contribute eight tensor
multiplets and eight hypermultiplets. The open string gauge
group is broken from SO~32! to SO(16)3SO(16) bygR and
then to SO(16) bygT6

. The open string spectrum also in-
cludes a hypermultiplet in the adjoint of SO~16!.

This is the same spectrum found in the models of@5#.
Those models had five-branes but no nine-branes. Not sur-
prisingly then, the model found here is equivalent to those
underT duality on theX6,7,8,9axes. TheT-duality acts on the
fixed point states as a discrete Fourier transform, taking a
fixed point with coordinatesXm into a linear combination of
all fixed points, the fixed point with coordinatesYm being
weighted by 224/2(21)X•Y. It follows that J052(21)X

6

maps to the translationY6→Y611 of the fixed point states,
up to a sign that can be absorbed in the definition of the
states. The factor (21)w6 maps to (21)n6, which translates
untwisted states by half the lattice spacing. ThusJ0(21)w6

maps to the full operatorT6
1/2 for translation by half the lat-

tice spacing. In the notation of@5#, T6
1/25RSand the orien-

tifold groups $1,R,VS,VRS% of the two models are the
same. SinceR here maps toR of @5#, our model is dual to
symmetric solution of that paper. But if we translate our
model X6→X611 and then take theT-dual, T6R of our
model would map toR of that paper, giving the antisymmet-
ric solution. It must be that the two solutions of@5# are
equivalent under a redefinition by the image ofT6

1/2, namely
J0(21)w6. One finds that this is indeed the case.5

The models of@5# also have two kinds of fixed point,
neither of which isA or B. Half the fixed points are ordinary
orbifold points, fixed byR but no operation involvingV.
These fixed points have no six-form charge, there being no
associated crosscap, and as discussed in the Introduction
have a tensor and a hypermultiplet. The other types are fixed
only by an operationVS, equivalent toVR. These must
have charge21, by overall neutrality of the model, and have

5In verifying this, note the models with five-branes only, open
strings should be regarded as having winding number
w65@X6(p)2X6(0)#/2pR6.
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no associated twisted states. Finally, Dabholkar and Park
have recently found yet another kind ofZ2 singularity in
orientifold models, having a tensor multiplet but six-form

charge2 1
2 . This is based on the projectionVJ but with a

different action on the Chan-Paton factors. In particular, the
operatorV2 is 11 in the 59 open string sector, having the
minus sign noted in@4# plus an additional minus sign be-
cause the 59 sector has half-integer rather than integer
masses.

III. ALE GEOMETRY

We can directly test our argument about the geometry of
theV8-invariantK3’s by using theD string as a probe, as
recently proposed by Douglas@8#. All results in the present
section are already implicit in@14–16#, but theD-probe idea
seems very promising and so it is worthwhile to work out
this simple example explicitly.

We start with theZ2 ALE space. Consider the IIB theory
with a Z2 orbifold point ~or more precisely six-plane! at
X6,7,8,950, and add aD-string in this plane atX2, . . . ,950. In
order for the string to be able to move off the fixed plane it
needs two Chan-Paton indices, for the string and itsZ2 im-
age. SinceR takes theD-string into its image,gR is the Pauli
matrixs1. The massless NS spectrum of the string is then~in
terms of the 0 picture vertex operators!

] tX
ms0,1, m50,1

]nX
is0,1, i52,3,4,5,

]nX
ms2,3, m56,7,8,9. ~3.1!

These are, respectively, a gauge field, the position of the
string within the six-plane, and the transverse position. Call
the correspondingD-string fieldsAm,xi ,xm, all 232 matri-
ces. The bosonic action is thed510 U~2! Yang-Mills action,
dimensionally reduced andR projected@which breaks the
gauge symmetry toU(1)3U(1)]. In particular, the potential
is

U52(
i ,m

Tr~@xi ,xm#2!1(
m,n

Tr~@xm,xn#2!. ~3.2!

The moduli space thus has two branches. On one,xm50 and
xi5uis01v is1. This corresponds to twoD-strings moving
independently in the plane, with positionsui6v i . The gauge
symmetry is unbroken, giving independent U~1!’s on each
D-string.6 On the other branch,xm is nonzero and
xi5uis0. The s1 gauge invariance is broken and so by
gauge choicexm5wms3. This corresponds to theD-string
moving off the fixed plane, the string and its image being at
(ui ,6wm).

Now let us turn on twisted-sector moduli. Define complex
qm by xm5s3Re(qm)1s2Im(qm), and define two doublets:

F05S q61 iq7

q81 iq9D , F15S q̄61 i q̄7

q̄81 i q̄9D . ~3.3!

These have charges61, respectively, under thes1 U~1!.
The three NSNS moduli can be written as a vectorD, and the
potential is proportional to

~F0
†tF02F1

†tF11D!2, ~3.4!

where the Pauli matrices are now denotedta to emphasize
that they act in a different space. This reduces to the second
term of the earlier potential~3.2! when D50. Its form is
determined by supersymmetry, and the trilinear coupling be-
tween the twisted sector field and two open string fields was
demonstrated in the appendix to@16#.

For DÞ0 the orbifold point is blown up. The moduli
space of theD-string is simply the set of possible locations,
that is, the blown up ALE space.7 Thezm contain eight scalar
fields. Three are removed by theD-flatness condition, that
the potential vanish, and a fourth is a gauge degree of free-
dom, leaving the expected four moduli. In terms of super-
multiplets, the system has the equivalent ofd56 N51 su-
persymmetry. TheD-string has two hypermultiplets and two
vector multiplets, which are broken down by the Higgs
mechanism to one hypermultiplet and one vector multiplet.

The idea of@8# is that the metric on this moduli space, as
seen in the kinetic term for theD-string fields, should be the
smoothed ALE metric. It is straightforward to verify this.
Define

y5F0
†tF0 . ~3.5!

This gives three coordinates on moduli space. The fourth
coordinatet can be defined

t52arg~F0,1F1,1!. ~3.6!

The period oft is 4p because of the orbifold projection. The
D-flatness condition implies that

F1
†tF15y1D, ~3.7!

andF0 andF1 are determined in terms ofy and t, up to
gauge choice.

The original metric isdF0
†dF01dF1

†dF1, but we need
to project this into the space orthogonal to the U~1! gauge
transformation.8 The result is

ds25dF0
†dF01dF1

†dF12
~v01v1!

2

4~F0
†F01F1

†F1!
, ~3.8!

where

6TheseD-strings can actually be regarded as collapsed three-
branes wrapped on the orbifold point. They couple to the corre-
sponding Ramond-Ramond~RR! field, the twisted-sector tensor.
Because theu parameter from the NS sector is nonzero@17#, they
also carry the untwisted six-form charge. When the theta parameter
is tuned to zero these strings become tensionless@15#.

7Note that the branch of the moduli space withv iÞ0 is no longer
present.
8This whole construction, imposing theD-flatness conditions and

making the gauge identification, is known as the hyper-Ka¨hler quo-
tient @14#.
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v i5 i ~F i
†dF i2dF i

†F i !. ~3.9!

It is now straightforward to express the metric in terms
of y and t using the identity (a†tab)(g†tad)
52(a†d)(g†b)2(a†b)(g†d) for arbitrary doublets
a,b,g,d. This implies, for example,

F0
†F05uyu, F1

†F15uy1Du,

dy•dy5uyudF0
†dF02v0

25uy1DudF1
†dF12v1

2 ,

~3.10!

and the metric is readily found to be of the ALE form~1.3!
with y050, y15D, up to a normalization that can be ab-
sorbed in a coordinate transformation. In particular, the vec-
tor potential is

A~y!•dy5uyu21v01uy1Du21v11dt, ~3.11!

and the field strength is readily obtained by taking the
exterior derivative and using the identity
eabc(a†tbb)(g†tcd)5 i (a†tad)(g†b)2 i (a†d)(g†tab).

This all extends to theZN case. In order to move away
from the fixed point theD-string needsN Chan-Paton indi-
ces, with theZN matrix ga5a taking each index into the
next. Define anotherN3N matrix b with the properties
ab5aba (a5e2p i /N), bN51, which together withaN de-
fine a andb up to change of basis. The open string states in
a convenient basis are

] tX
ml, a21la5l⇒l5Pr ,

]nX
il, a21la5l⇒l5Pr ,

]nZ
ll, a21la5a21l⇒l5bPr ,

]nZ̄
ll, a21la5al⇒l5b21Pr , ~3.12!

where

Pr5N21/2(
k50

N21

a rkak ~3.13!

are projection operators. Call the corresponding fieldsAr
m ,

xr
m , F r

l , F̄r
l with r50, . . . ,N21. With the lower index sup-

pressed these areN3N matrices. The covariant derivative is

DmF5]mF1 i @Am ,F#. ~3.14!

Noting thatPrb5bPr11, this implies

DmF r5]mF r1 i ~Ar21,m2Ar ,m!F r , ~3.15!

with r5N[r50. TheN U~1! D-flatness conditions require

F r11
† tF r112F r

†tF r5Dr . ~3.16!

Note that this implies that there areN21 D terms, as the
sum must vanish. The metric is then readily written in ALE
form, with

yi5(
r50

i21

Dr . ~3.17!

Now we can return to our original purpose, which was to
identify theV8-invariant ALE spaces. Recall above that the
matrix a is interpreted as connecting eachD string with its
image rotated bya. A Chan-Paton factor proportional to
ak is then an open string with one end at one image and the
other rotated byak. Orientation reversal, whetherV or V8,
switches the end points and so takes this into a string with
Chan-Paton factorsa2k. In terms of the projection operators
this isPr→PN2r , and so

V8: F r→FN2r , Dr→2DN2r21 . ~3.18!

It follows that, forN53, requiring the twisted background to
be V8 even implies thatD150, D252D0, and soy15y2
Þy0 as conjectured. Similarly for the generalZN fixed point,
one finds thatyi5yN2 i , leavingm collapsed two-spheres for
N52m11 or 2m12.

It would be interesting to understand the strong-coupling
behavior of the theory near the ALE singularity. Away from
the singularity it is strongly coupled type I and so weakly
coupled heterotic SO~32!, but there is no perturbative back-
ground of the heterotic string with extra tensors. In this con-
nection we should note that there have been many recent
discussions of extra tensors in the contexts ofM theory and
F theory; it is not clear whether these are directly relevant,
since thelocal physicsnear but not at the singularity is just
the heterotic string.
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