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Tensors from K3 orientifolds
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Recently Gimon and Johnson and Dabholkar and Park have constructed type | thedt®sidnifolds. The
spectra differ from that of type | on a smodi8, having extra tensors. We show that the orbifold theories
cannot be blown up to smootk3’s, but ratherZ, orbifold singularities always remain. Douglas’s recent
proposal to us®-branes as probes is useful in understanding the geometryZ I himgularities are of a new
type, with a different orientifold projection from those previously considered. We also find a new world-sheet
consistency condition that must be satisfied by orientifold mod&8556-282(97)04508-4

PACS numbsds): 11.25.Mj, 11.25.Hf

l. APUZZLE theory at aZ, orbifold point(also known as aky_; singu-
larity). The closed string Hilbert space has twisted sectors
Orientifolds are a generalization of orbifolfls,2], allow- labeled byk=1,... N—1,
ing the construction of interesting string theories based on _
free world-sheet fields. Although discovered some time ago 2342m)=a*2340), a=e*""N, (11
[3], they have recently attracted renewed interest because ) . )
they are related by string dualities to many other vacua. Ifvhere Z'=X?+iX?*1. The right-moving Neveu-Schwarz
particular, there has been a series of papers constructirﬂ.}‘s) sector contains two states which are singlets under the

models of this type ind=6 with N=1 supersymmetry massless S@) little group, while the right-movindR sector
[4,5,1,21 In this work we would like to resolve a small contains a doublet. The left-moving sectors are the same, so

puzzle arising from some of this work. This will lead us to athe full spectrum is

new orientifold construction and also to a world-sheet con- (2-1+2)x(2-1+2)=5-1+3. 1.2
sistency condition not previously noticed, though fortunately

satisfied by all the models ¢#,5,1,2. It also provides a nice  These five singlets plus anti-self-dual tensor form a tensor
|IlustraF|on of the recent idea of usirg-branes as probes of multiplet of type I1B supergravity, call iy, which decom-
spacetime geometig]. poses to a tensor multiplet and hypermultiplet of type I. Thus
The puzzle is this. Referencgs,1,2 all construct what there areN—1 tensor multiplets associated with the fixed
appears to be the type | string orka orbifold, in that one  point. This is in agreement with the limit of the smod<t3
twists the 1B theory orT* by world-sheet paritf) (produc-  spectrum. At the fixed point there aNe—1 collapsed two-
ing the type | string and by a spacetimg rotation (pro-  spheres. Each gives rise to an anti-self-dual teffsom the
ducingK3). For theZ, case[4], the spectrum agrees with self-dual four-form of the IIB theony plus three moduli
that of the type | string on a smootk3.2 However, for  from the metric and twa parameters, from th® and NS
N=3 the orientifold spectrum does not agree with that ontwo-forms.
smoothK3. The latter, like its heterotic dual, always has a Under the IIB parity operatof), the metric andR two-
single antisymmetric tensor multiplet, while in the orienti- form are even and the four-form and the NS two-form are
fold an extram tensors live at eacl,,, 1 Or Z,m., fixed — 0odd. Projection onté) = +1 thus leave®N—1 hypermultip-
point[1,2]. lets at the fixed point. The parity operator of the orientifold
The cause of the discrepancy is that the parity operatotheory, call it()’, acts differently[1,2]. Reversing the orien-
Q of the orientifold theory is not given by the limit of the tation of the string changes the* twist (1.1 to
Q of the smooth theory.Let us consider first the type 1IB a %= aN"K Except wherk=N—k, this is off diagonal and
so one of the two linear combinatioffg* 7y_ is even and
the other odd. Fok=N—k (so thatN is even, Q' takes
*Electronic address: joep@itp.ucsb.edu T to itself, and the tensor and one NS scalar are odd and
Orientifolds withd=6 N=1 supersymmetry were first found in the other four scalars even. Forming the orientifold by pro-
[6]. It is likely that some of the models found in these papers ardecting onto{)’ = + 1 then leavesn— 1 tensor multiplets and
identical to models if4,5,1,3. However the puzzle we consider m hypermultiplets forZ,,, and m tensor multiplets anan
depends on the spacetime picture, and so is not evident in thedypermultiplets forZ,,,,. Only for Z, doesQ2=".

fermionic constructions. For further background Drbranes and Evidently ' =QJ whereJ is some symmetry of the or-
orientifold se€7]. bifold conformal field theory(CFT) which only acts on the
>The blowing up of the orbifold singularities was discussed infields near the fixed point. In the rest of the paper we will
detail in[9]. study thisJ in more detail, not just in th&y orbifold limit
3This is also under study by Gimon and John$§tf], by Dab-  but for the full moduli space of)’ invariantk3’s. To make
holkar and Park11], and by Blum. the discussion simple we focus orZa fixed point. From the
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above discussion, this has tWb= + 1 hypermultiplets, only have a branch cut relative to thetwisted states—that is,
one of which had)’' = +1. Consider the almost locally Eu- they are theR-odd states that were removed by the first
clidean (ALE) space, the local region df3, obtained by projection.
turning on theQ)’ = +1 moduli. This cannot be smooth as  In order for theQ)J twist to be consistent}J must be
there would be no candidate fdr a symmetry which must conserved. For purely closed string processes this follows
act trivially at long distance from the blown up fixed point. because) andJ are both conserved. It is also necessary to
But there is indeed a family of singular ALE spaces whichcheck the closed-to-open transitiof2J as defined in the
includes theZ; orbifold and which is parametrized by one closed string and open string sectors must be conserved by
hypermultiplet. These spaces haie singularities,Z, orbi-  this transition. This must be true for all orbifold and orienti-
fold points. fold twists in open string theory, and is the missing consis-

From the orbifold point of view it is hard to seeZa fixed  tency condition mentioned earlier. We will therefore also
point deform into aZ, fixed point, but from other points of reexamine the earlier models.
view it is simple. The metric for a generZl, ALE space is To be specific we consider the transition between the
of the form[12] closed string RR ground state and the open string vector. The

B analytic parts of the relevant vertex operators are
ds?=V~1(dt—A-dy)2+Vdy-dy,
N

1 V,=e %2s |
V= 1 VW=VXA 1.3
<o ly—vil’ ' ' T,=e ??S.T,
where y is a three-vector and has period 4. The Ve =g by 2.1)

3(N—1) moduli mentioned earlier are just tie-1 differ-

encesy; —yo; by a translation one can sg§=1. FOrN=3,  {or the untwistecR ground state, twisteR ground state, and
the Z; orbifold singularity occurs when the three “charges” ntwisted NS vector, respectively. Hegeis the bosonized
are coincidentyo=y,=Yy,. Pulling one charge away and gnost [13], S, the spin field (spinor indices are ten-
leaving two coincident leaves 2, fixed point, and these gimensional on unprimed objects and six-dimensional on
smgylar ALE spaces are indeed parametrized by one hypebrimed, and T the internal part of the twiste® ground
multiplet. . , _state. All of these operators are weight (1,0), with the corre-
There are no further hypermultiplets to associate W'thsponding (0,1) operators denoted by a tilde. The relevant

blowing up theZ, fixed point but there is a tensor multiplet, closed-to-open amplitudes on the unit disk are determined
so this is different from the, fixed points of{4]. The dif-  yrely by Lorentz invariance:

ference is now clear: th€' projection is just keeping the

opposite states frond) at the fixed point, so thal is the (v (O)VB(O)V/L(]_»:F,U« ,
Z, symmetry which is—1 in the Z,-twisted sector and “ b
+ i i . ! ~! !
1 in the untwisted sectdr (TL(0)TH(0)VA(1)) =T 4. 2.2

In the next section we stud§’ orientifolds of free field
theory. In the final section we verify the above argument
about the ALE geometry by using-branes to measure the
blownup metric directly. By the same method we find that
Erllez]g:zr;irg;rzlosv;/up of thzzml anq_22m+2 singl_JIarities of vavﬁ_>\7av5: —Vﬁva,

, paratéd; singularities, each with an asso-
ciated tensor multiplet.

Now consider the effect of orientation revergal This
takes

T Tp=T Tp=—TsT,,
Il. ANEW Z, ORIENTIFOLD
VH— — VA, 2.3
Now let us study the new, fixed point in isolation. Start

with the IIB string in 10 dimensions. Twist by a reflection Note that theR vertex operators anticommute, being space-
R of X578%t0 produce an orbifold point at the origin, and time spinors. That the phota* is Q odd is familiar, though
then twist by(J. Note that this is akin to an asymmetric less obvious in the-1 picture (2.1) than in the O picture
orbifold, in that the symmetry does not exist until after the where it is a tangent derivative. The ten-dimensidnaha-
first twist. Note also that if the second twist is Byrather  trices are symmetric so the untwisted amplity@e) is even
than QJ it simply undoes theR-twist. Projecting onto under(}, but the six-dimensiondl matrices are antisymmet-
J=+1 removes theR-twisted states from the spectrum, ric and the twisted amplitude is odd. The full amplitude also
while the J-twisted states are by definition dfthose which  contains a Chan-Paton factor. The twistacts on the Chan-

Paton factors as a matrixz, so the Chan-Paton trace for the

twisted amplitude contains a factgk: it is of the form

“This is after theZ, singularity is partly resolved into &, singu-

larity. On the original orbifold withZ, singularity, J must inter- Tr(yrN1: - - Np)- (2.4
change the sectors twisted byand a? while leaving the untwisted
sectors invariant. This symmetry is not manifest, for example, it isParity 1 takes >\i—>(751?\im)T and reverses the order
not a symmetry of operator products involvidg noninvariant op- 1, ... n. This is equivalent to/p— ygygyﬁl. Conservation
erators, but must be present in the orbifold CFT. of Q) in the full amplitude then requires
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YR=— m?’bﬁl- (2.5 Note that it is not possible in general to mix fixed points
of different types in an arbitrary way. It is only consistent to
This was not imposed explicitly if4], though the condition project (gauge on an operation which is a symmetry of
that[Q,R]=0 hold on the Chan-Paton factors does implystring theory. One sees from the above that fixed points of
Eq. (2.5 up to a sign. In fact, the sign is correct for the typesA andB can only be combined in groups of eight.
model of[4]. It is also correct for th&, twist fields of[1,2], The prescription then is to project the3 orbifold of the
because this sector is the same afdihfor all models. For |IB theory by QJ=QJ,(—1)" and add in the usual 32
twists other tharZ, the new condition is not as interesting. hine-brane indices. The symmetries act on the Chan-Paton
For these{) takes the twisty into a different twistg ! so it ~ matrices asyqg;=1 and yg given by Eq.(2.7), while the
governs which linear combination of the two sectors appearsondition that the eight fixed points witk®=1 be of type
This is necessary to get the correct vertex operators, but doésrequire thatyr g be as inf4],
not affect the spectrum. Similarly 5], () is replaced by an
operator() S which acts off diagonally on thR-fixed points.
Now consider the operatd2J. By definition, this has an
extra minus sign in its action ofi, Ty, so the above argu-
ment leads to

(2.9

0 | 16}

YTgR™ 1 O .

This implies a nontrivial Wilson IineyT6= yTGRy,;l. The

YR=T mn’;)’ful- (2.6 resulting model satisfies all algebraic and tadpole conditions.
The untwisted closed string sector contributes the usual
In the nine-brane sector, cancellation of the ten-form tadpolgyravitational multiplet, tensor multiplet, and four hypermul-
requires as always 32 nine-brane indices witfy o=1 inan tiplets. The twisted sectors obviously contribute eight tensor
appropriate basis. Thefg g is now symmetric, and so is multiplets and eight hypermultiplets. The open string gauge
Yaire™ YreYaa,e- The Chan-Paton algebra then implies thatgroup is broken from S@2) to SO(16)x SO(16) byyg and
YaJRrs IS antisymmetric, the opposite ks in [4]. Exam-  then to SO(16) byyr,. The open string spectrum also in-
ining .the tadpolgs 0[4]z this changes the sign of the Cross- cludes a hypermultiplet in the adjoint of $18).
term in the untwisted six-form tadpole so that the fixed point  This is the same spectrum found in the modelsSi
has the opposite charge from the usHalfixed point: +3  Those models had five-branes but no nine-branes. Not sur-
times the five-brane charge for the new fixed pdudll it  prisingly then, the model found here is equivalent to those
type B) versus—} for the old(call it type A). underT duality on theX®’®%axes. TheT-duality acts on the
The vanishing of the twisted tadpole is not automatic as ifixed point states as a discrete Fourier transform, taking a
is at the usual fixed point. At the latter tH@ projection f|xeq point Wlth coord.lnatexm. into a linear r':ombmatlo'n of
removes the dangerous twisted sector six-form along witt@!l fixed points, the fixed point with coordinates™ being
the two-form, but theQJ projection leaves both. So if, for weighted by 242(—1)*"Y. It follows that Jo=—(—1)*
example, there are no five-branes at some fixed point, theaps to the translation®— Y%+ 1 of the fixed point states,
tadpole condition off4] implies that Tr(yrg)=0 for the up to a sign that can be absorbed in the definition of the
QJ projection. The symmetry ofr ¢ and the surviving or-  states. The factor<1)"¢ maps to ¢ 1)"s, which translates
thogonal change of basis after settiyg;o=1 then allow untwisted states by half the lattice spacing. Thye—1)"¢

one to take maps to the full operatonls’2 for translation by half the lat-
tice spacing. In the notation ¢6], T¢?>=RSand the orien-

|l O 5 tifold groups {1R,Q1S,QRS of the two models are the

YROT| o —l6)" 27 same. SinceR here maps tdR of [5], our model is dual to

symmetric solution of that paper. But if we translate our

We have studied the fixed point in a noncompact spacenodel X®—X®+1 and then take th@-dual, TgR of our
but now let us build a compact model. The six-form chargesnodel would map tdR of that paper, giving the antisymmet-
found above do not allow all 16 fixed points to be of the newric solution. It must be that the two solutions [B] are
type as all six-form sources would have the same sign, bugquivalent under a redefinition by the imageTgf?, namely
they suggest a model with eight fixed points of tyleeight ~ J,(—1)%s. One finds that this is indeed the case.
of type B, and no five-branes. Indeed this is possible. Take The models of[5] also have two kinds of fixed point,
K3 to be a hypercube of side 2, so the coordinates the fixedeither of which isA or B. Half the fixed points are ordinary
point are all 0 or 1. Consider the eight fixed points with orbifold points, fixed byR but no operation involving.
X6=0. The productl, of the eight separaté’s is not con-  These fixed points have no six-form charge, there being no
served. However, the transition of a string from a fixed pointassociated crosscap, and as discussed in the Introduction
with X®=0 to one withX®=1 produces also a string with have a tensor and a hypermultiplet. The other types are fixed
winding numberwg odd (in the orbifoldwg is only defined  only by an operation)S, equivalent toQR. These must
mod 2, so thatJy(—1)"6 is conserved. To see this, define have charge- 1, by overall neutrality of the model, and have
R as the reflection which leaves (0,0,0,0) invariant. Then
(1,0,0,0) is left invariant by ¢R whereTyg is a translation by
2 units in theX® direction. A transition from a state of mono-  Sin verifying this, note the models with five-branes only, open
dromyR to one of monodromy ¢R produces also a string of strings should be regarded as having winding number
monodromyTg '=Tg, i.e., odd winding number. we=[X®8(7) —X8(0)]/27R.
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no associated twisted states. Finally, Dabholkar and Park Now let us turn on twisted-sector moduli. Define complex
have recently found yet another kind @ singularity in g™ by x™=o°Re(@™) + o2Im(q™), and define two doublets:
orientifold models, having a tensor multiplet but six-form

Lo . . qt+iq” q°+iq”
charge— 3. This is based on the projectidaJ but with a o= = _ (3.3
different action on the Chan-Paton factors. In particular, the q®+ig®)’ °+ig?

operatorQ? is +1 in the 59 open string sector, having the ) 1
minus sign noted if4] plus an additional minus sign be- 1hese have charges1, respectively, under the™ U(1).

cause the 59 sector has half-integer rather than integerhe three NSNS moduli can be written as a ve@pand the
masses. potential is proportional to

Olrb,— Db, + D)2, 3.4
Ill. ALE GEOMETRY (PorPo—P;7P,+D) (3.9

We can directly test our argument about the geometry ofVnere the Pauli matrices are now denotédto emphasize
the Q'-invariantK3’s by using theD string as a probe, as that they act in a different space. This reduces to the second

recently proposed by Dougld8]. All results in the present (€M of the earlier potential3.2) when D=0. Its form is
section are already implicit ift4—16, but theD-probe idea determined by supersymmetry, and the trilinear coupling be-
seems very promising and so it is worthwhile to work outtween the twisted sector field and two open string fields was
this simple example explicitly. demonstrated in the .appendi.x [1:‘?6]' .
We start with theZ, ALE space. Consider the 1I1B theory For D#0 the orbifold point is blown up. The moduli

with a Z, orbifold point (or more precisely six-plajeat ~ SPace of théD-string is simply the set of possible locations,
X878 0, and add D-string in this plane ax? -+ %=0. In that is, the blown up ALE spaceThez™ contain eight scalar

ifields. Three are removed by thizflatness condition, that
the potential vanish, and a fourth is a gauge degree of free-
dom, leaving the expected four moduli. In terms of super-
multiplets, the system has the equivalentdef6 N=1 su-
persymmetry. Thé®-string has two hypermultiplets and two
vector multiplets, which are broken down by the Higgs

order for the string to be able to move off the fixed plane i
needs two Chan-Paton indices, for the string an& jtsm-
age. SinceR takes theéD-string into its imagey is the Pauli
matrix o1. The massless NS spectrum of the string is tfien
terms of the O picture vertex operatprs

aXra®t  u=0,1 mechanism to one hypermultiplet and one vector multiplet.
The idea of[8] is that the metric on this moduli space, as
X%t 1=2,34,5, seen in the kinetic term for the-string fields, should be the
smoothed ALE metric. It is straightforward to verify this.
9. X"o?3  m=6,7,8,9. (3.1  Define
—_ ot
These are, respectively, a gauge field, the position of the y=®y7dy. (3.9

string within the six-plane, and the transverse position. Call_ = . ) ,

the correspondindp-string fieldsA*,x',x™, all 2x 2 matri- This gives three coorqllnates on moduli space. The fourth
ces. The bosonic action is tlde= 10 U(2) Yang-Mills action, coordinatet can be defined

dimensionally reduced anB projected[which breaks the
gauge symmetry t&J (1) X U(1)]. In particular, the potential
is

t:2arqq)oYl(I)1’1). (36)

The period oft is 47 because of the orbifold projection. The
D-flatness condition implies that

U=2> Tr([xX',x™?)+ > Tr((x"x"?). (3.2 ®lrd,=y+D 3.7
i,m m,n 1 - ' .

The moduli space thus has two branches. On gfle;0 and and ®, and ®, are determined in terms gf andt, up to
x'=u'¢%+v'a?. This corresponds to twb-strings moving  gauge choice.

independently in the plane, with positions-v'. The gauge The original metric istI>8d<IJO+ dCDIdCDl, but we need
symmetry is unbroken, giving independentlVJs on each to project this into the space orthogonal to thél)Ugauge
D.-string.6 On the other branchx™ is nonzero and transformatiorf The result is

x'=u'¢®. The ¢! gauge invariance is broken and so by
gauge choicex™=w"g>. This corresponds to thB-string
moving off the fixed plane, the string and its image being at
(u', =w™m.

(wo+ w)?

— t t
= + —
ds?=dd}dd o+ ddbldd, TP T

(3.8

where

5These D-strings can actually be regarded as collapsed three-
branes wrapped on the orhifold point. They couple to the corre- "Note that the branch of the moduli space with: 0 is no longer
sponding Ramond-Ramon@RR) field, the twisted-sector tensor. present.
Because the&d parameter from the NS sector is nonzgtd], they 8This whole construction, imposing thz-flatness conditions and
also carry the untwisted six-form charge. When the theta parametenaking the gauge identification, is known as the hypenlaquo-
is tuned to zero these strings become tensiorilEsk tient [14].
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wi=i(®/dd;—dd D). (3.9 D,® =3, +i(A_1,~A )P, (3.19

It is now straightforward to express the metric in termswith r=N=r=0. TheN U(1) D-flatness conditions require
of y and t using the identity &'72B)(y'725)
=2(a"8)(y'B)—(a'B)(y'8) for arbitrary doublets O 7D, — DD, =D, . (3.1
a,B,v,6. This implies, for example,
Note that this implies that there aié—1 D terms, as the

Ty — Ty —
Do®o=ly[, P;®1=|y+D|, sum must vanish. The metric is then readily written in ALE
dy-dy=|y|d®{dd,— wi=|y+D|ddIdd,— w2,  orm. with
(3.10 -1
. . yi=>, D;. (3.17)
and the metric is readily found to be of the ALE forih.3) r=0

with yo=0, y;=D, up to a normalization that can be ab-

sorbed in a coordinate transformation. In particular, the vec- NOw we can return to our original purpose, which was to
tor potential is identify the )’ -invariant ALE spaces. Recall above that the

matrix a is interpreted as connecting eabhstring with its
A(y)-dy=|y| *wo+|y+D| tw;+dt,  (3.1)  image rotated bya. A Chan-Paton factor proportional to
' : . . . a¥ is then an open string with one end at one image and the
and the field strength is readily obtained by taking theyyer rotated by*. Orientation reversal, whethét or Q,
exterior ~ derivative = and = using  the identity gyjiches the end points and so takes this into a string with

beg T byt Csy _ico T YR Y, i
e a'TB) (v 1°0) =i(a 79)(y'B) ~i(a'9)(y' 7). Chan-Paton factora™X. In terms of the projection operators
This all extends to th&y case. In order to move away s isp Py, and so
r —r»

from the fixed point theD-string needdN Chan-Paton indi-
ces, with 'theZN matrix y,=a tqking egch index into 'the Q' ®—®y,, D—-Dy_, 1. (3.18
next. Define anotheNXN matrix b with the properties
ab=aba («=€""N), bN=1, which together witha" de- |t follows that, forN=3, requiring the twisted background to
fine a and_b up to_change of basis. The open string states iye () even implies thaD,; =0, D,= — Dy, and soy; =Y.,
a convenient basis are #Y, as conjectured. Similarly for the genem| fixed point,
IXEN, a-a=A=A=P one finds thay; =yy_;, leavingm collapsed two-spheres for
' n N=2m+1 or 2m+2.
aXIN, a a=A=A=P,, It would be interesting to understand the strong-coupling
behavior of the theory near the ALE singularity. Away from
g.Z'\, a a=a A=A=bP,, the singularity it is strongly coupled type | and so weakly
coupled heterotic S@2), but there is no perturbative back-
5n?>\, a a=ar=r=b"!P,, (3.12 ground of the heterotic string with extra tensors. In this con-
nection we should note that there have been many recent
where discussions of extra tensors in the contextdibtheory and
F theory; it is not clear whether these are directly relevant,

N—1 . . . : .
since thelocal physicsnear but not at the singularity is just
—N-12 Kok
P=N kZO aa (313 the heterotic string.
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